WO2012111701A2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2012111701A2
WO2012111701A2 PCT/JP2012/053516 JP2012053516W WO2012111701A2 WO 2012111701 A2 WO2012111701 A2 WO 2012111701A2 JP 2012053516 W JP2012053516 W JP 2012053516W WO 2012111701 A2 WO2012111701 A2 WO 2012111701A2
Authority
WO
WIPO (PCT)
Prior art keywords
region
antenna
active species
combustion chamber
internal combustion
Prior art date
Application number
PCT/JP2012/053516
Other languages
English (en)
French (fr)
Other versions
WO2012111701A3 (ja
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to EP12746944.3A priority Critical patent/EP2677132A4/en
Priority to US13/982,577 priority patent/US9273599B2/en
Priority to JP2012557992A priority patent/JP6002893B2/ja
Publication of WO2012111701A2 publication Critical patent/WO2012111701A2/ja
Publication of WO2012111701A3 publication Critical patent/WO2012111701A3/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/02Arrangements having two or more sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/04Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits one of the spark electrodes being mounted on the engine working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/02Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an internal combustion engine that uses active species to promote combustion.
  • Patent Document 1 An ignition device using such a technique is disclosed in Patent Document 1, for example.
  • the ignition device described in Patent Document 1 is provided in an internal combustion engine such as a gasoline engine. This ignition device emits microwaves to the air-fuel mixture after ignition to cause plasma discharge, and raises the radical concentration to promote flame propagation.
  • the region and timing for generating active species are not considered in the combustion chamber in which the flame is propagated.
  • the present invention has been made in view of such points, and an object thereof is to effectively improve the flame propagation speed using active species in an internal combustion engine that uses active species to promote combustion. is there.
  • a first invention includes an internal combustion engine main body for burning an air-fuel mixture in a combustion chamber, and active species generating means for generating active species in a region before the flame surface reaches during propagation of flame in the combustion chamber. Is an internal combustion engine.
  • the active species is generated before the flame surface reaches the area where the flame finally passes. Therefore, when the flame surface passes through the region where the active species are generated, the oxidation reaction on the flame surface is promoted by the active species, and the flame propagation speed is increased. In the first invention, the oxidation reaction on the flame surface is directly promoted by the active species.
  • the active species generating means generates active species by generating plasma in a region before reaching the flame surface.
  • the active species generating means generates the active species before reaching the flame surface in a region where the occurrence frequency of knocking is relatively high in the combustion chamber.
  • active species are generated before reaching the flame surface in a region where the occurrence frequency of knocking is relatively high in the combustion chamber.
  • the speed of the flame surface stagnate before the region where knocking occurs, leading to knocking.
  • active species are generated in a region where knocking is likely to occur. Accordingly, the stagnation of the flame surface speed is suppressed.
  • the active species generating means is configured to detect the occurrence of knocking when the knock detection means detects the occurrence of knocking. In the region where the occurrence frequency of knocking is relatively high in the combustion chamber, active species are generated before reaching the flame surface.
  • the active species are generated before reaching the flame surface in a region where the occurrence frequency of knocking is relatively high. Therefore, in the combustion cycle immediately after the occurrence of knocking, the stagnation of the flame surface speed before the region where knocking has occurred is suppressed.
  • the internal combustion engine body is configured such that a piston reciprocates in a cylindrical cylinder, and an air-fuel mixture is formed at a central portion of a combustion chamber in the cylinder.
  • the active species generating means generates the active species before reaching the flame surface in a region where the arrival timing of the flame surface is relatively late among the regions located outside the central portion in the combustion chamber. Generate.
  • active species are generated before the flame surface arrives in a region where the arrival timing of the flame surface is relatively late among the regions located outside the center in the combustion chamber. Therefore, the oxidation reaction of the flame surface passing through the region where the arrival timing of the flame surface is relatively slow is promoted, and the flame propagation speed is increased.
  • the active species generating means includes an electromagnetic wave oscillator that oscillates an electromagnetic wave, and an antenna that radiates the electromagnetic wave supplied from the electromagnetic wave oscillator to the combustion chamber, and the electromagnetic wave radiated from the antenna.
  • electromagnetic wave plasma is generated in a region before the flame surface reaches.
  • the active species generating means generates electromagnetic wave plasma by radiating the electromagnetic wave to the region before reaching the flame surface.
  • the internal combustion engine body is configured such that the piston reciprocates in a cylindrical cylinder, and the air-fuel mixture is ignited at the center of the combustion chamber in the cylinder.
  • the antenna includes a knock region detecting unit that extends along an outer peripheral portion of the combustion chamber and detects a knocking generation region when knocking occurs in the combustion chamber, and the active species generating unit includes the antenna.
  • An electric field adjuster that changes the position of a strong electric field region having a relatively strong electric field strength on the surface of the surface, and adjusts the electric field adjuster based on a detection result of the knock region detecting means to generate the knock generation region or the Electromagnetic wave plasma is generated in the vicinity of the generation region.
  • the knocking region is detected by the knocking region detecting means.
  • the electric field adjuster adjusts the position of the strong electric field region so that electromagnetic wave plasma is generated in the region where knocking occurs or in the vicinity of the region.
  • electromagnetic wave plasma can be generated in a knocking generation region or in the vicinity of the generation region with a small number of antennas in a certain area where knocking is likely to occur.
  • the flame propagation speed can be effectively improved using the active species.
  • the third aspect of the invention it is possible to suppress the stagnation of the flame surface speed before the region where knocking is likely to occur. Accordingly, since the flame can reach the region where knocking is likely to occur before knocking occurs, the occurrence of knocking can be suppressed.
  • the stagnation of the flame surface speed before the region where knocking has occurred is suppressed. Therefore, continuous occurrence of knocking can be suppressed.
  • the oxidation reaction of the flame surface passing through the region where the arrival timing of the flame surface is relatively slow is promoted, and the flame propagation speed is increased. Therefore, the diffusion state of the flame seen from the center in the combustion chamber can be made uniform.
  • the seventh invention when the electromagnetic wave plasma is generated in the knocking generation region or in the vicinity of the generation region, it is possible to cover an area of a certain extent with a small number of antennas.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine according to an embodiment. It is a block diagram of the discharge device and electromagnetic wave radiation device concerning an embodiment. It is a schematic block diagram of the principal part of the internal combustion engine which concerns on embodiment, (a) is a figure which is radiating
  • FIG. 6C is a diagram in which microwaves are being radiated from the third antenna. It is a front view of the ceiling surface of the combustion chamber of the internal combustion engine which concerns on embodiment. It is a time chart showing the microwave radiation
  • the present embodiment is an internal combustion engine 10 that includes an electromagnetic wave emission device 13 that radiates electromagnetic waves to a combustion chamber 20.
  • the internal combustion engine 10 is a reciprocating type engine in which a piston 23 reciprocates.
  • the internal combustion engine 10 includes an internal combustion engine body 11, a discharge device 12, and an electromagnetic wave emission device 13.
  • the internal combustion engine 10 is controlled by an electronic control unit 30 (ECU). -Internal combustion engine body-
  • the internal combustion engine main body 11 includes a cylinder block 21, a cylinder head 22, and a piston 23 as shown in FIG.
  • a plurality of cylinders 24 having a circular cross section are formed in the cylinder block 21.
  • a piston 23 is provided in each cylinder 24 so as to reciprocate.
  • the piston 23 is connected to the crankshaft via a connecting rod (not shown).
  • the crankshaft is rotatably supported by the cylinder block 21.
  • the cylinder head 22 is placed on the cylinder block 21 with the gasket 18 in between.
  • the cylinder head 22 defines the combustion chamber 20 together with the cylinder 24 and the piston 23.
  • the cylinder head 22 is provided with one spark plug 15 for each cylinder 24.
  • the spark plug 15 is attached to the cylinder head 22 so that the discharge gap between the center electrode 15 a and the ground electrode 15 b is located in the combustion chamber 20.
  • the cylinder head 22 has an intake port 25 and an exhaust port 26 for each cylinder 24.
  • the intake port 25 is provided with an intake valve 27 that opens and closes the intake port 25 and an injector 29 that injects fuel.
  • the exhaust port 26 is provided with an exhaust valve 28 for opening and closing the exhaust port 26.
  • the intake port 25 is designed so that a strong tumble flow 35 is formed in the combustion chamber 20.
  • the predetermined gas flow 35 generated in the internal combustion engine 10 is a tumble flow 35.
  • the air-fuel mixture flowing in from the intake port 25 flows toward the exhaust port 26 along the ceiling surface of the combustion chamber 20 (the surface exposed to the combustion chamber 20 in the cylinder head 22). It turns in the vertical direction by the wall surface and the upper surface of the piston 23.
  • the tumble flow 35 is formed from the intake stroke to the compression stroke.
  • the discharge device 12 is provided corresponding to each combustion chamber 20. As shown in FIG. 2, the discharge device 12 includes an ignition coil (pulse output unit) 14 that outputs a high voltage pulse, and an ignition plug (discharge generation) that generates a discharge when the high voltage pulse from the ignition coil 14 is applied. Part) 15.
  • ignition coil pulse output unit
  • ignition plug discharge generation
  • the ignition coil 14 is connected to a direct current power source (for example, an automobile battery) (not shown).
  • a direct current power source for example, an automobile battery
  • the ignition coil 14 boosts the voltage applied from the DC power supply and outputs the boosted high voltage pulse to the spark plug 15.
  • the spark plug 15 when a high voltage pulse is applied, dielectric breakdown occurs in the discharge gap and spark discharge occurs. A discharge plasma 36 is generated by the spark discharge.
  • a strong tumble flow 35 is formed from the intake stroke to the compression stroke.
  • the bulk flow of the air-fuel mixture in the discharge gap flows from the intake port 25 side to the exhaust port 26 side due to the influence of the tumble flow 35.
  • the discharge plasma 36 formed by the spark discharge flows to the exhaust port 26 side.
  • the discharge plasma 36 is stretched by the gas flow 35.
  • the connecting portion (the portion on the base end side of the ground electrode 15 b) extending in the axial direction of the spark plug 15 in the ground electrode 15 b is the opening 25 a of the intake port 25 and the exhaust port. It is located in the area
  • the direction of gas flow in the discharge gap faces the vicinity of the middle of the opening 26 a of the two exhaust ports 26. Therefore, the discharge plasma 36 is caused to flow near the middle of the openings 26 a of the two exhaust ports 26.
  • the discharge plasma 36 is caused to flow toward the first antenna 41 described later by a tumble flow.
  • the electromagnetic wave emission device 13 constitutes active species generating means for generating electromagnetic species in the region before reaching the flame surface and generating active species during propagation of the flame in the combustion chamber 20.
  • the electromagnetic wave radiation device 13 includes an electromagnetic wave power source 31, an electromagnetic wave oscillator 32, a distributor 33, and a plurality of antennas 41-43. In the present embodiment, three antennas 41-43 are provided for each combustion chamber 20. In FIG. 2, only antennas 41-43 corresponding to one combustion chamber 20 are shown.
  • the electromagnetic wave power supply 31 supplies a pulse current to the electromagnetic wave oscillator 32 when receiving the electromagnetic wave drive signal from the electronic control unit 30.
  • the electromagnetic wave drive signal is a pulse signal.
  • the electromagnetic wave power supply 31 outputs a pulse current at a predetermined duty ratio from the rising point to the falling point of the electromagnetic wave drive signal.
  • the pulse current is continuously output over the time of the pulse width of the electromagnetic wave drive signal.
  • the electromagnetic wave oscillator 32 is, for example, a magnetron. When receiving the pulse current, the electromagnetic wave oscillator 32 outputs a microwave pulse. The electromagnetic wave oscillator 32 continuously outputs the microwave pulse over the time of the pulse width of the electromagnetic wave driving signal.
  • the electromagnetic wave oscillator 32 can use another oscillator such as a semiconductor oscillator instead of the magnetron.
  • the distributor 33 switches the antenna that supplies the microwave output from the electromagnetic wave oscillator 32 between the three antennas 41-43.
  • the distributor 33 receives the distribution signal from the electronic control unit 30, the distributor 33 sequentially supplies the microwaves to the three antennas 41-43.
  • the three antennas 41-43 are the first antenna 41, the second antenna 42, and the third antenna 43 from the spark plug 15 side.
  • Each antenna 41-43 is, for example, a monopole antenna.
  • the tip of each antenna 41-43 is a microwave radiation position (radiation position).
  • the first antenna 41 and the second antenna 42 are embedded in the cylinder head 22.
  • the microwave radiation end (tip) slightly protrudes from the surface of the cylinder head 22 (the ceiling surface of the combustion chamber).
  • the radiation ends of the first antenna 41 and the second antenna 42 are located in the middle between the openings 26 a of the two exhaust ports 26. Radiation ends of the first antenna 41 and the second antenna 42 are arranged along the radial direction of the combustion chamber 20.
  • the third antenna 43 is embedded in the gasket 18 and the microwave radiation end is substantially flush with the inner peripheral surface of the gasket 18.
  • the third antenna 43 is farther from the discharge device 12 than the first antenna 41 and the second antenna 42.
  • each antenna 41-43 The input end (base end) of each antenna 41-43 is connected to the distributor 33.
  • the microwave supplied from the distributor 33 is radiated from the radiation end to the combustion chamber 20.
  • the radiation end of the first antenna 41 is directed to the direction of gas flow in the discharge gap so that microwaves are irradiated to the discharge plasma 36 that is flowed by the tumble flow 35 in the ignition operation described later.
  • the radiation end of the first antenna 41 is close to the spark plug 15 on the ceiling surface of the combustion chamber 20.
  • the radiating end of the first antenna 41 faces a bent portion (the portion most flowed by the short bull flow) farthest from the discharge gap in the discharge plasma 36. Note that the radiation end of the first antenna 41 faces the bent portion of the discharge plasma 36 in all operating regions where microwave plasma is generated in the ignition operation.
  • the second antenna 42 and the third antenna are provided on the same side as the first antenna 41 with respect to the spark plug 15, but the second antenna 42 and the third antenna are provided with respect to the spark plug 15. You may provide in the opposite side to the 1st antenna 41.
  • the ignition operation of the air-fuel mixture by the discharge device 12 and the electromagnetic wave emission device 13 will be described.
  • a discharge operation in which the discharge device 12 generates discharge plasma and a radiation operation in which the electromagnetic wave oscillator 32 is driven to emit microwaves from the first antenna 41 are performed at the same time. Is supplied to ignite the air-fuel mixture in the combustion chamber 20.
  • the electronic control device 30 outputs an ignition signal and an electromagnetic wave drive signal. Then, in the discharge device 12, the ignition coil 14 outputs a high voltage pulse at the falling timing of the ignition signal, and spark discharge occurs in the spark plug.
  • the electromagnetic wave emission device 13 the electromagnetic wave power supply 31 continuously outputs a pulse current over a period from the rising point to the falling point of the electromagnetic wave drive signal. Then, the electromagnetic wave oscillator 32 receives the pulse current and continuously oscillates the microwave pulse to the distributor 33. Note that due to the operation delay of the magnetron 32, the start and end of the microwave oscillation period are slightly delayed from the start and end of the pulse current output period.
  • an ignition signal and an electromagnetic wave drive signal are output so that a spark discharge is generated immediately after the start of the microwave oscillation period.
  • the distributor 33 sets the supply destination of the microwave pulse to the first antenna 41.
  • the microwave is radiated from the first antenna 41 to the combustion chamber 20.
  • a strong electric field region 51 having a relatively strong electric field strength is formed in the combustion chamber 20 in the vicinity of the radiation end of the first antenna 41.
  • the discharge plasma 36 by spark discharge is caused to flow toward the exhaust port 26 by a strong tumble flow, and the bent portion enters the strong electric field region 51.
  • the microwave is applied to the bent portion of the discharge plasma 36.
  • the discharge plasma 36 is thickened by absorbing microwave energy.
  • a relatively large microwave plasma is generated.
  • the air-fuel mixture in the combustion chamber 20 is ignited by microwave plasma. Then, the flame surface spreads outward from the ignition position toward the wall surface of the cylinder 24.
  • a flame propagation promoting operation for increasing the flame propagation speed is performed during the flame propagation after the ignition operation.
  • the first operation and the second operation are performed as the flame propagation promoting operation.
  • the microwave supply destination is switched from the first antenna 41 in the order of the second antenna 42 and the third antenna 43.
  • the pulse width of the electromagnetic wave drive signal is set so that the output of the microwave pulse is continued until immediately after the flame surface reaches the wall surface of the cylinder 24.
  • the electronic control unit 30 outputs the first distribution signal immediately before the flame surface reaches the radiation end of the second antenna 42.
  • the first distribution signal is output at a timing when the flame surface passes near the middle between the first antenna 41 and the second antenna 42.
  • the distributor 33 switches the microwave supply destination to the second antenna 42.
  • microwaves are radiated from the second antenna 42 to the combustion chamber 20, and a strong electric field region 52 is formed in the vicinity of the radiation end of the second antenna 42. The microwave is radiated from the second antenna 42 until immediately after the flame surface passes through the strong electric field region 52.
  • the strong electric field region 52 for example, free electrons jumping out of the flame are accelerated.
  • the collision gas molecules are ionized.
  • Free electrons released as a result of ionization of gas molecules are also accelerated in the strong electric field region 52 and ionize surrounding gas molecules. In this way, in the strong electric field region 52, ionization of gas molecules occurs in an avalanche manner, and microwave plasma is generated.
  • active species for example, OH radicals
  • active species are generated in a region before the flame surface reaches during flame propagation after the air-fuel mixture is ignited.
  • the flame front passes through the area where the active species are generated. Therefore, the oxidation reaction on the flame surface is promoted by the active species, and the flame propagation speed is increased.
  • microwave energy is supplied to the flame surface, thereby increasing the flame propagation speed.
  • the electronic control unit 30 outputs the second distribution signal immediately before the flame surface reaches the radiation end of the third antenna 43.
  • the second distribution signal is output at a timing when the flame surface passes near the middle between the second antenna 42 and the third antenna 43.
  • the distributor 33 receives the second distribution signal, the distributor 33 switches the microwave supply destination to the third antenna 43.
  • a strong electric field region 53 is formed in the vicinity of the radiation end of the third antenna 43.
  • microwave plasma is generated.
  • microwave plasma is generated in a region before the flame surface reaches, and the flame propagation speed is increased by the microwave plasma.
  • active species are generated in the region before the arrival of the flame surface, and the flame surface passes through the region where the active species are generated. Therefore, the oxidation reaction on the flame surface is promoted by the active species, and the moving speed of the flame surface can be improved.
  • the first antenna group (the antenna group on the right side of the spark plug 15 in FIG. 6) includes a first antenna 41, a second antenna 42, and a third antenna 43.
  • the remaining second, third, and fourth antenna groups are constituted by the second antenna 42 and the third antenna 43.
  • an electromagnetic wave unit having an electromagnetic wave power source 31, an electromagnetic wave oscillator 32, and a distributor 33 is provided corresponding to each antenna group.
  • the first antenna 41 is supplied with microwaves at the same timing as the first antenna 41 of the above embodiment.
  • each second antenna 42 has a distance from the spark plug 15 equal to that of the second antenna 42 of the above embodiment, and microwaves are supplied at the same timing as that of the second antenna 42 of the above embodiment.
  • each third antenna 43 is embedded in the gasket 18 similarly to the third antenna of the above embodiment, and the microwave is supplied at the same timing as the third antenna 43 of the above embodiment.
  • microwave plasma radiated from the first antenna 41 is supplied to the discharge plasma 36 to ignite the air-fuel mixture, and then the microwave plasma generated by the microwave radiated from each second antenna 42 is used. Further, the flame propagation speed is increased by the microwave plasma generated by the microwave radiated from each third antenna 43.
  • intake and exhaust valves 27 and 28 are used as antennas for supplying microwaves to a region before the flame surface reaches, such as the second antenna 42 and the third antenna 43.
  • Antennas 27a and 28a are provided on the front surface (combustion chamber side surface) of the valve head. Transmission lines connected to the antennas 27a and 28a are provided in the valve shaft. The microwave output from the electromagnetic wave oscillator 32 is supplied to the transmission line by non-contact power feeding.
  • the antenna 27 a is provided only on the front surface of the valve head of the intake valve 27 without providing the antenna 28 a on the front surface of the valve head of the exhaust valve 28. It has been.
  • the electromagnetic wave emission device 13 emits an electromagnetic wave from the antenna 27a before the flame surface reaches the antenna 27a of the valve head of the intake valve 27 to generate electromagnetic wave plasma.
  • the speed of the flame surface passing through the region in the vicinity of the antenna 27a is increased by the active species generated by the electromagnetic wave plasma.
  • the radiation position of the antenna for supplying the microwave to the region before reaching the flame surface like the second antenna 42 and the third antenna 43 of the above embodiment is the frequency of occurrence of knocking in the combustion chamber 20. Is located in a relatively high area.
  • the radiation position of the antenna 47 is located outside the opening 25a of the intake port 25 as shown in FIG.
  • the antenna 47 is embedded in the gasket 18.
  • microwave plasma is generated before the flame surface reaches a region where the occurrence frequency of knocking is relatively high, and active species are generated along with the generation of the microwave plasma.
  • active species are generated in a region where knocking is likely to occur, the stagnation of the speed of the flame surface before this region is suppressed. Accordingly, since the flame can reach the region where knocking is likely to occur before knocking occurs, the occurrence of knocking can be suppressed.
  • the internal combustion engine 10 may include a knock sensor (knock detection means) that detects the occurrence of knocking in the combustion chamber 20.
  • the electromagnetic wave emission device 13 radiates microwaves from the antenna 47 to generate microwave plasma and active species before the flame surface reaches the antenna 47 only when the knock sensor detects the occurrence of knocking. Generate. In the combustion cycle immediately after the occurrence of knocking, the stagnation of the flame surface speed before the occurrence of knocking is suppressed. Therefore, continuous occurrence of knocking can be suppressed.
  • a knock sensor knock detection means
  • an antenna 48 for generating microwave plasma in a knocking generation region extends along the outer peripheral portion of the combustion chamber 20 as shown in FIG.
  • Four antennas 48 are provided.
  • Each antenna 48 extends to both sides along the outer periphery of the ceiling surface from each radiation 61 extending in the radial direction of the ceiling surface between the openings 25a, 26a of the intake and exhaust ports 25, 26.
  • the internal combustion engine 10 includes a knock region detector 70 (knock region detecting means) that detects a region where knocking occurs when knocking occurs in the combustion chamber 20.
  • the knock region detector 70 captures light emitted from a plurality of locations in the outer peripheral portion of the combustion chamber 20 using a plurality of optical fibers 71, and detects a region where light emission intensity in a wavelength band corresponding to OH radicals exceeds a predetermined threshold. It is determined that this is a knock generation area. The reason why the knock generation region is determined in this way is that the emission intensity of OH radicals rapidly increases with the occurrence of knocking.
  • the electromagnetic wave radiation device 13 is connected to the micro wave from the generation side antenna 48 before the flame surface reaches the generation side antenna 48 located on the knock generation region side. Radiate waves. Active species are generated in the vicinity of the generation antenna 48 as the microwave plasma is generated. Accordingly, the stagnation of the flame speed before the generation side antenna 48 is suppressed, knocking in the combustion cycle can be prevented, and continuous occurrence of knocking can be suppressed.
  • the antenna 49 for generating the microwave plasma in the knocking generation region extends over almost the entire circumference of the combustion chamber 20 as shown in FIG.
  • the antenna 49 is embedded in the gasket 18.
  • the electromagnetic wave radiation device 13 has an electric field regulator that changes the position of a strong electric field region having a relatively strong electric field strength on the surface of the antenna 49.
  • the electric field regulator is, for example, a stub tuner that can adjust impedance in a microwave transmission line.
  • the stub tuner is configured to be variable in length to operate as a stub, for example, by adjusting a position where the stub is short-circuited to the ground.
  • the electromagnetic wave emission device 13 adjusts the electric field regulator based on the detection result of the knock region detector 70 so that the strong electric field region is located at or near the knock generation region. Then, microwave plasma is generated near the strong electric field region. As a result, microwave plasma is generated in the knocking generation region or in the vicinity of the generation region.
  • a rod-shaped antenna 46 is provided instead of the antenna group of Modification 1.
  • Each antenna 46 extends in the radial direction of the ceiling surface of the combustion chamber 20 in a region between the openings 25 a and 26 a of the intake and exhaust ports 25 and 26.
  • Each antenna 46 extends straight from the outside of the spark plug 15 to the vicinity of the wall surface of the cylinder 24. Note that the inner end of at least the antenna 46 (the antenna on the right side of the spark plug 15 in FIG. 12) between the openings 26 a of the exhaust port 26 faces the bent portion of the discharge plasma 36.
  • an electromagnetic wave unit having an electromagnetic wave power source 31 and an electromagnetic wave oscillator 32 is provided corresponding to each antenna 46. Unlike the first modification, each electromagnetic wave unit does not have the distributor 33. Instead, an electric field regulator that changes the position of a strong electric field region having a relatively strong electric field strength on the surface of the antenna 46 is provided. Have.
  • the electric field regulator is operated so that the strong electric field region is located on the inner end surface of the antenna 46 during the ignition operation.
  • the radiation position of the antenna 46 between the openings 26 a of the exhaust port 26 faces the discharge plasma 36 that is caused to flow by the tumble flow 35. Therefore, microwave energy is effectively absorbed by the discharge plasma 36. As a result, the discharge plasma 36 becomes thick and the air-fuel mixture is ignited by volume.
  • the microwave radiation from each antenna 46 is continued.
  • the radiation position of the microwave from each antenna 46 is moved to the outside before the flame surface by the electric field regulator.
  • the area before reaching the flame surface is a strong electric field area.
  • the strong electric field region moves outward, and the microwave plasma generated in the strong electric field region also moves outward as the strong electric field region moves.
  • the flame surface passes through the region where the active species are generated, the oxidation reaction on the flame surface is promoted by the active species, and the flame propagation speed is improved.
  • the above embodiment may be configured as follows.
  • the internal combustion engine 10 may perform diffusion combustion like a diesel engine.
  • the active species generating means generates active species before the flame surface formed by the sprayed fuel reaches.
  • the antenna may not be exposed to the combustion chamber 20 and may be covered with an insulator or a dielectric.
  • the present invention is useful for an internal combustion engine that uses active species to promote combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 活性種を利用して燃焼を促進させる内燃機関10において、活性種を利用して効果的に火炎伝播速度を向上させる。燃焼室20において混合気を燃焼させる内燃機関本体11と、燃焼室20において火炎の伝播中に火炎面の到達前の領域において活性種を生成する活性種生成器13とを設ける。活性種生成器13は、最終的に火炎が通過する領域に火炎面が到達する前に活性種を生成する。

Description

内燃機関
 本発明は、活性種を利用して燃焼を促進させる内燃機関に関するものである。
 従来から、OHラジカル等の活性種を利用して燃焼を促進させる技術が知られている。このような技術を用いる点火装置が、例えば特許文献1に開示されている。特許文献1に記載の点火装置は、ガソリンエンジン等の内燃機関に設けられる。この点火装置は、着火後の混合気にマイクロ波を放射してプラズマ放電を起こし、ラジカル濃度を上昇させて火炎伝播を促進させる。
特開2007-113570号公報
 ところで、従来の内燃機関では、火炎伝播中の燃焼室において、活性種を生成する領域やタイミングが考えられていない。本発明は、かかる点に鑑みてなされたものであり、その目的は、活性種を利用して燃焼を促進させる内燃機関において、活性種を利用して効果的に火炎伝播速度を向上させることにある。
 第1の発明は、燃焼室において混合気を燃焼させる内燃機関本体と、上記燃焼室において火炎の伝播中に、火炎面の到達前の領域において活性種を生成する活性種生成手段とを備えている内燃機関である。
 第1の発明では、燃焼室において火炎の伝播中に、最終的に火炎が通過する領域に火炎面の到達前に活性種が生成される。そのため、活性種が生成された領域を火炎面が通過する際に、火炎面における酸化反応が活性種により促進され、火炎伝播速度が増大する。第1の発明では、火炎面における酸化反応を活性種により直接的に促進させている。
 第2の発明は、第1の発明において、上記活性種生成手段が、上記火炎面の到達前の領域にプラズマを生成して活性種を生成する。
 第3の発明は、第1又は第2の発明において、上記活性種生成手段が、上記燃焼室においてノッキングの発生頻度が相対的に高い領域において、火炎面の到達前に活性種を生成する。
 第3の発明では、燃焼室においてノッキングの発生頻度が相対的に高い領域において、火炎面の到達前に活性種が生成される。ここで、ノッキングが発生する場合は、ノッキングが発生する領域の手前で火炎面の速度が停滞し、ノッキングに至る。第3の発明では、ノッキングが発生しそうな領域において活性種が生成される。従って、火炎面の速度が停滞することが抑制される。
 第4の発明は、第3の発明において、上記燃焼室におけるノッキングの発生を検出するノック検出手段を備え、上記活性種生成手段は、上記ノック検出手段がノッキングの発生を検出した場合に、上記燃焼室においてノッキングの発生頻度が相対的に高い領域において火炎面の到達前に活性種を生成する。
 第4の発明では、ノッキングの発生が検出された場合に、ノッキングの発生頻度が相対的に高い領域において、火炎面の到達前に活性種が生成される。そのため、ノッキングの発生直後の燃焼サイクルにおいて、ノッキングが発生した領域の手前で火炎面の速度が停滞することが抑制される。
 第5の発明は、第1又は第2の発明において、上記内燃機関本体が、円筒状のシリンダ内をピストンが往復運動するように構成され、上記シリンダ内の燃焼室の中心部で混合気が点火される一方、上記活性種生成手段は、上記燃焼室において上記中心部の外側に位置する領域のうち、火炎面の到達タイミングが相対的に遅い領域において、火炎面の到達前に活性種を生成する。
 第5の発明では、燃焼室において中心部の外側に位置する領域のうち、火炎面の到達タイミングが相対的に遅い領域において、火炎面の到達前に活性種が生成される。従って、火炎面の到達タイミングが相対的に遅い領域を通過する火炎面の酸化反応が促進され、火炎伝播速度が増大する。
 第6の発明は、上記活性種生成手段が、電磁波を発振する電磁波発振器と、該電磁波発振器から供給された電磁波を上記燃焼室へ放射するためのアンテナとを有し、該アンテナから放射した電磁波により上記火炎面の到達前の領域に電磁波プラズマを生成する。
 第6の発明では、活性種生成手段が、火炎面の到達前の領域に電磁波を放射することにより電磁波プラズマを生成する。
 第7の発明は、第6の発明において、上記内燃機関本体は、円筒状のシリンダ内をピストンが往復運動するように構成され、上記シリンダ内の燃焼室の中心部で混合気が点火される一方、上記アンテナは、上記燃焼室の外周部分に沿って延び、上記燃焼室においてノッキングが発生した場合にノッキングの発生領域を検出するノック領域検出手段を備え、上記活性種生成手段は、上記アンテナの表面において相対的に電界強度が強い強電界領域の位置を変える電界調節器を備え、上記ノック領域検出手段の検出結果に基づいて電界調節器を調節して、上記ノッキングの発生領域、または該発生領域の近傍に電磁波プラズマを生成する。
 第7の発明では、ノック領域検出手段によりノッキングの発生領域が検出される。電界調節器は、ノッキングの発生領域、または該発生領域の近傍に電磁波プラズマが生成されるように強電界領域の位置を調節する。第7の発明では、ノッキングが発生しやすい、ある程度の広さの領域に対して、少ない数のアンテナでノッキングの発生領域又は該発生領域近傍に電磁波プラズマを生成することが可能である。
 本発明では、火炎面における酸化反応を活性種により直接的に促進させているので、活性種を利用して効果的に火炎伝播速度を向上させることができる。
 また、上記第3の発明では、ノッキングが発生しそうな領域の手前において、火炎面の速度が停滞することが抑制される。従って、ノッキングが発生する前に、ノッキングが発生しそうな領域に火炎を到達させることができるので、ノッキングの発生を抑制することができる。
 また、第4の発明では、ノッキングの発生直後の燃焼サイクルにおいて、ノッキングが発生した領域の手前で火炎面の速度が停滞することが抑制される。従って、ノッキングの連続的な発生を抑制することができる。
 また、第5の発明では、火炎面の到達タイミングが相対的に遅い領域を通過する火炎面の酸化反応が促進され、火炎伝播速度が増大する。従って、燃焼室において中心部から見た火炎の拡散状態の均一化を図ることができる。
 また、第7の発明では、ノッキングの発生領域又は該発生領域の近傍に電磁波プラズマを生成するのにあたって、少ない数のアンテナで、ある程度の広さの領域をカバーすることができる。
実施形態に係る内燃機関の概略構成図である。 実施形態に係る放電装置および電磁波放射装置のブロック図である。 実施形態に係る内燃機関の要部の概略構成図であり、(a)は第1アンテナからマイクロ波を放射中の図であり、(b)は第2アンテナからマイクロ波を放射中の図であり、(c)は第3アンテナからマイクロ波を放射中の図である。 実施形態に係る内燃機関の燃焼室の天井面の正面図である。 実施形態において各アンテナからのマイクロ波放射期間等を表すタイムチャートである。 実施形態の変形例1に係る内燃機関の燃焼室の天井面の正面図である。 実施形態の変形例2に係る内燃機関の燃焼室の天井面の正面図である。 実施形態の変形例3に係る内燃機関の燃焼室の天井面の正面図である。 実施形態の変形例4に係る内燃機関の燃焼室の天井面の正面図である。 実施形態の変形例5に係る内燃機関の要部の概略構成図である。 実施形態の変形例6に係る内燃機関の要部の概略構成図である。 実施形態の変形例7に係る内燃機関の要部の概略構成図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
《実施形態》
 本実施形態は、燃焼室20に電磁波を放射する電磁波放射装置13を備えた内燃機関10である。内燃機関10は、ピストン23が往復動するレシプロタイプのエンジンである。内燃機関10は、内燃機関本体11と放電装置12と電磁波放射装置13とを備えている。内燃機関10は、電子制御装置30(ECU)により制御される。
 -内燃機関本体-
 内燃機関本体11は、図1に示すように、シリンダブロック21とシリンダヘッド22とピストン23とを備えている。シリンダブロック21には、横断面が円形のシリンダ24が複数形成されている。各シリンダ24内には、ピストン23が往復自在に設けられている。ピストン23は、コネクティングロッドを介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック21に回転自在に支持されている。各シリンダ24内においてシリンダ24の軸方向にピストン23が往復運動すると、コネクティングロッドがピストン23の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド22は、ガスケット18を挟んで、シリンダブロック21上に載置されている。シリンダヘッド22は、シリンダ24及びピストン23と共に、燃焼室20を区画している。
 シリンダヘッド22には、各シリンダ24に対して、点火プラグ15が1つずつ設けられている。点火プラグ15は、中心電極15aと接地電極15bとの間の放電ギャップが燃焼室20に位置するようにシリンダヘッド22に取り付けられている。
 シリンダヘッド22には、各シリンダ24に対して、吸気ポート25及び排気ポート26が形成されている。吸気ポート25には、吸気ポート25を開閉する吸気バルブ27と、燃料を噴射するインジェクター29とが設けられている。一方、排気ポート26には、排気ポート26を開閉する排気バルブ28が設けられている。
 内燃機関10は、燃焼室20において強いタンブル流35が形成されるように吸気ポート25が設計されている。内燃機関10において生じる所定のガス流動35は、タンブル流35である。燃焼室20では、吸気ポート25から流入した混合気が、燃焼室20の天井面(シリンダヘッド22において燃焼室20に露出する面)に沿って排気ポート26側へ流れ、その流れがシリンダ24の壁面およびピストン23の上面により縦方向に旋回する。タンブル流35は、吸気行程から圧縮行程に亘って形成される。
 -放電装置-
 放電装置12は、各燃焼室20に対応して設けられている。放電装置12は、図2に示すように、高電圧パルスを出力する点火コイル(パルス出力部)14と、該点火コイル14からの高電圧パルスが印加されると放電が生じる点火プラグ(放電生成部)15とを備えている。
 点火コイル14は、直流電源(例えば自動車用のバッテリー)に接続されている(図示省略)。点火コイル14は、電子制御装置30から点火信号を受けると、直流電源から印加された電圧を昇圧し、昇圧後の高電圧パルスを点火プラグ15に出力する。点火プラグ15では、高電圧パルスが印加されると、放電ギャップにおいて絶縁破壊が生じてスパーク放電が生じる。スパーク放電により放電プラズマ36が生成される。
 ここで、上述したように、燃焼室20では、図3に示すように、吸気行程から圧縮行程に亘って強いタンブル流35が形成される。ピストン23が圧縮上死点の手前に位置する点火タイミングでは、放電ギャップにおける混合気のバルク流が、タンブル流35の影響により吸気ポート25側から排気ポート26側へ向かって流れている。このため、スパーク放電により形成された放電プラズマ36は、排気ポート26側へ流される。放電プラズマ36は、ガス流動35により引き伸ばされる。
 なお、本実施形態では、図4に示すように、接地電極15bにおいて点火プラグ15の軸方向に延びる接続部(接地電極15bの基端側の部分)が、吸気ポート25の開口25aと排気ポート26の開口26aとの間の領域側に位置している。このため、放電ギャップにおけるガス流動が、上記接続部の影響を受けにくい。放電ギャップにおけるガス流動の向きは、2つの排気ポート26の開口26aの真ん中付近を向く。従って、放電プラズマ36が、2つの排気ポート26の開口26aの真ん中付近へ流される。放電プラズマ36は、タンブル流により、後述する第1アンテナ41側へ流される。
 -電磁波放射装置-
 電磁波放射装置13は、燃焼室20において火炎の伝播中に、火炎面の到達前の領域に電磁波プラズマを生成して活性種を生成する活性種生成手段を構成している。電磁波放射装置13は、図2に示すように、電磁波用電源31と電磁波発振器32と分配器33と複数のアンテナ41-43とを備えている。本実施形態では、各燃焼室20に対して、3つのアンテナ41-43が設けられている。なお、図2では、1つの燃焼室20に対応するアンテナ41-43だけを記載している。
 電磁波用電源31は、電子制御装置30から電磁波駆動信号を受けると、電磁波発振器32にパルス電流を供給する。電磁波駆動信号はパルス信号である。電磁波用電源31は、電磁波駆動信号の立ち上がり時点から立ち下がり時点に亘って、所定のデューティー比でパルス電流を出力する。パルス電流は、電磁波駆動信号のパルス幅の時間に亘って継続的に出力される。
 電磁波発振器32は、例えばマグネトロンである。電磁波発振器32は、パルス電流を受けるとマイクロ波パルスを出力する。電磁波発振器32は、電磁波駆動信号のパルス幅の時間に亘ってマイクロ波パルスを継続的に出力する。なお、電磁波発振器32は、マグネトロンの代わりに、半導体発振器等の他の発振器を使用することもできる。
 分配器33は、3つのアンテナ41-43の間で、電磁波発振器32から出力されたマイクロ波を供給するアンテナを切り替える。分配器33は、電子制御装置30から分配信号を受けると、3つのアンテナ41-43に対して順番にマイクロ波を供給する。
 図3に示すように、3つのアンテナ41-43は、点火プラグ15側から、第1アンテナ41、第2アンテナ42、及び第3アンテナ43となっている。各アンテナ41-43は、例えばモノポールアンテナである。各アンテナ41-43では、その先端がマイクロ波の放射位置(輻射位置)となる。
 第1アンテナ41および第2アンテナ42は、シリンダヘッド22に埋設されている。第1アンテナ41および第2アンテナ42では、マイクロ波の放射端(先端)がシリンダヘッド22の表面(燃焼室の天井面)から僅かに突出している。図4に示すように、第1アンテナ41および第2アンテナ42の放射端は、2つの排気ポート26の開口26aの間の真ん中に位置している。第1アンテナ41および第2アンテナ42の放射端は、燃焼室20の径方向に沿って並んでいる。
 また、第3アンテナ43は、ガスケット18に埋設され、マイクロ波の放射端がガスケット18の内周面とほぼ面一になっている。第3アンテナ43は、第1アンテナ41及び第2アンテナ42よりも放電装置12から離れている。
 各アンテナ41-43の入力端(基端)は、分配器33に接続されている。各アンテナ41-43では、分配器33から供給されたマイクロ波が、その放射端から燃焼室20へ放射される。
 本実施形態では、第1アンテナ41の放射端が、後述する点火動作において、タンブル流35により流された放電プラズマ36にマイクロ波が照射されるように、放電ギャップにおけるガス流動の方向に対して放電ギャップの下流側に位置している。第1アンテナ41の放射端は、燃焼室20の天井面において点火プラグ15に近接している。第1アンテナ41の放射端は、放電プラズマ36において放電ギャップから最も離れた屈曲部分(短ブル流により最も流された部分)に対面している。なお、第1アンテナ41の放射端は、点火動作においてマイクロ波プラズマを生成する全ての運転領域において、放電プラズマ36の屈曲部分に対面する。
 なお、本実施形態では、第2アンテナ42および第3アンテナを点火プラグ15に対して第1アンテナ41と同じ側に設けているが、第2アンテナ42および第3アンテナを点火プラグ15に対して第1アンテナ41と反対側に設けてもよい。
 -点火動作-
 放電装置12及び電磁波放射装置13による混合気の点火動作について説明する。点火動作では、放電装置12が放電プラズマを生成する放電動作と、電磁波発振器32を駆動して第1アンテナ41からマイクロ波を放射する放射動作とが同時期に行われ、放電プラズマ36にマイクロ波のエネルギーを供給して燃焼室20の混合気を着火させる。
 点火動作では、電子制御装置30が点火信号および電磁波駆動信号を出力する。そうすると、放電装置12では、点火信号の立ち下がりタイミングに、点火コイル14が高電圧パルスを出力し、点火プラグにおいてスパーク放電が生じる。一方、電磁波放射装置13では、電磁波駆動信号の立ち上がり時点から立ち下がり時点までの期間に亘って、電磁波用電源31がパルス電流を継続的に出力する。そして、電磁波発振器32が、パルス電流を受けてマイクロ波パルスを分配器33へ継続的に発振する。なお、マグネトロン32の動作遅れにより、マイクロ波の発振期間の開始および終了は、パルス電流の出力期間の開始および終了に対して僅かに遅れる。
 点火動作では、図5に示すように、マイクロ波の発振期間の開始直後にスパーク放電が生じるように、点火信号および電磁波駆動信号が出力される。マイクロ波の発振期間の最初は、分配器33がマイクロ波パルスの供給先を第1アンテナ41へ設定する。マイクロ波は、第1アンテナ41から燃焼室20へ放射される。スパーク放電が生じるタイミングでは、第1アンテナ41の放射端の近傍に、燃焼室20において電界強度が相対的に強い強電界領域51が形成されている。図3(a)に示すように、スパーク放電による放電プラズマ36は、強いタンブル流により排気ポート26側へ流され、その屈曲部分が強電界領域51に入る。マイクロ波は、放電プラズマ36の屈曲部分へ照射される。放電プラズマ36は、マイクロ波のエネルギーを吸収して太くなる。そして、強電界領域51において、比較的大きなマイクロ波プラズマになる。強電界領域51では、燃焼室20の混合気が、マイクロ波プラズマにより体積着火される。そして、着火位置からシリンダ24の壁面へ向かって、火炎面が外側へ広がる。
 -火炎伝播促進動作-
 1回の燃焼サイクルでは、点火動作後の火炎伝播中に、火炎伝播速度を増大させるための火炎伝播促進動作が行われる。
 本実施形態では、火炎伝播促進動作として、第1動作および第2動作が行われる。一連の第1動作および第2動作では、マイクロ波の供給先が、第1アンテナ41から、第2アンテナ42、第3アンテナ43の順番で切り替えられる。なお、電磁波駆動信号のパルス幅は、火炎面がシリンダ24の壁面に到達した直後までマイクロ波パルスの出力が継続されるように設定されている。
 第1動作では、電子制御装置30が、第2アンテナ42の放射端に火炎面が到達する直前に、第1の分配信号を出力する。例えば、第1の分配信号は、火炎面が第1アンテナ41と第2アンテナ42との真ん中付近を通過するタイミングで出力される。分配器33は、第1の分配信号を受けると、マイクロ波の供給先を第2アンテナ42に切り替える。そうすると、図3(b)に示すように、第2アンテナ42から燃焼室20へマイクロ波が放射され、第2アンテナ42の放射端の近傍に強電界領域52が形成される。第2アンテナ42からは、火炎面が強電界領域52を通過した直後までマイクロ波が放射される。
 強電界領域52では、例えば、火炎から飛び出した自由電子が加速される。加速された自由電子は、周囲のガス分子に衝突する。衝突されたガス分子は電離する。ガス分子の電離に伴い放出された自由電子も、強電界領域52において加速され、周囲のガス分子を電離させる。このように、強電界領域52では、雪崩式にガス分子の電離が生じ、マイクロ波プラズマが生成される。
 強電界領域52では、マイクロ波プラズマにより、酸化力の強い活性種(例えばOHラジカル)が生成される。本実施形態では、混合気の着火後の火炎伝播中に、火炎面が到達する前の領域に活性種が生成される。火炎面は、活性種が生成された領域を通過する。従って、火炎面における酸化反応が活性種により促進され、火炎伝播速度が増大する。また、強電界領域52のマイクロ波プラズマと、弱電離プラズマの火炎面が接触する状態になるため、火炎面にマイクロ波のエネルギーが供給され、それによっても火炎伝播速度が増大する。
 続いて、第2動作では、電子制御装置30が、第3アンテナ43の放射端に火炎面が到達する直前に、第2の分配信号を出力する。例えば、第2の分配信号は、火炎面が第2アンテナ42と第3アンテナ43との真ん中付近を通過するタイミングで出力される。分配器33は、第2の分配信号を受けると、マイクロ波の供給先を第3アンテナ43に切り替える。そうすると、図3(c)に示すように、第3アンテナ43の放射端の近傍に強電界領域53が形成される。強電界領域53では、マイクロ波プラズマが生成される。第2動作では、第1動作と同様に、火炎面の到達前の領域にマイクロ波プラズマが生成され、マイクロ波プラズマにより火炎伝播速度が増大する。
  -実施形態の効果-
 本実施形態では、火炎面の到達前の領域に活性種を生成し、活性種が生成された領域を火炎面が通過するようにしている。従って、火炎面における酸化反応が活性種により促進され、火炎面の移動速度を向上させることができる。
  -実施形態の変形例1-
 変形例1では、図6に示すように、吸気および排気ポート25,26の開口25a,26aの間の領域の数に合わせて、4つのアンテナ群が設けられている。
 第1のアンテナ群(図6において点火プラグ15の右側のアンテナ群)は、第1アンテナ41、第2アンテナ42および第3アンテナ43により構成されている。残りの第2、第3および第4のアンテナ群は、第2アンテナ42および第3アンテナ43により構成されている。電磁波放射装置13では、各アンテナ群に対応して、電磁波用電源31、電磁波発振器32および分配器33を有する電磁波ユニットが設けられている。
 第1アンテナ41は、上記実施形態の第1アンテナ41と同じタイミングでマイクロ波が供給される。また、各第2アンテナ42は、点火プラグ15からの距離が上記実施形態の第2アンテナ42と等しく、上記実施形態の第2アンテナ42と同じタイミングでマイクロ波が供給される。また、各第3アンテナ43は、上記実施形態の第3アンテナと同様にガスケット18に埋設され、上記実施形態の第3アンテナ43と同じタイミングでマイクロ波が供給される。
 この変形例1では、第1アンテナ41から放射されたマイクロ波のエネルギーを放電プラズマ36へ供給して混合気を着火した後に、各第2アンテナ42から放射するマイクロ波により生成されたマイクロ波プラズマ、さらに各第3アンテナ43から放射するマイクロ波により生成されたマイクロ波プラズマにより火炎伝播速度が増大する。
  -実施形態の変形例2-
 変形例2では、図7に示すように、第2アンテナ42および第3アンテナ43のように火炎面が到達する前の領域にマイクロ波を供給するためのアンテナとして、吸気および排気バルブ27,28のバルブヘッドの前面(燃焼室側の面)にアンテナ27a,28aが設けられている。各アンテナ27a,28aに接続する伝送線路は、バルブシャフト内に設けられている。電磁波発振器32から出力されたマイクロ波は、非接触給電により伝送線路へ供給される。
  -実施形態の変形例3-
 変形例3では、図8に示すように、上記変形例2とは異なり、排気バルブ28のバルブヘッドの前面にアンテナ28aを設けずに、吸気バルブ27のバルブヘッドの前面にだけアンテナ27aが設けられている。
 ここで、燃焼室20の天井面付近において、タンブル流35により混合気のバルク流が吸気ポート25側から排気ポート26側へ流れる場合は、点火動作後の火炎の広がりが、排気ポート26側に比べて吸気ポート25側が遅くなる。変形例3では、電磁波放射装置13が、吸気バルブ27のバルブヘッドのアンテナ27aに火炎面が到達する前に、そのアンテナ27aから電磁波を放射して電磁波プラズマを生成する。その結果、このアンテナ27aの近傍の領域を通過する火炎面の速度が、電磁波プラズマにより生成された活性種により増大する。
 変形例3では、燃焼室20において中心部60の外側の領域のうち、火炎面の到達タイミングが相対的に遅い吸気ポート25側の領域において、火炎面の到達前に活性種が生成される。そのため、吸気ポート25側の領域を通過する火炎面の酸化反応が促進され、燃焼室20において中心部60から見た火炎の拡散状態の均一化を図ることができる。
  -実施形態の変形例4-
 変形例4では、上記実施形態の第2アンテナ42および第3アンテナ43のように火炎面の到達前の領域にマイクロ波を供給するためのアンテナの放射位置が、燃焼室20においてノッキングの発生頻度が相対的に高い領域に位置している。例えば、アンテナ47の放射位置は、図9に示すように、吸気ポート25の開口25aの外側に位置している。このアンテナ47は、ガスケット18に埋設されている。
 燃焼室20では、ノッキングの発生頻度が相対的に高い領域に火炎面が到達する前に、マイクロ波プラズマが生成され、そのマイクロ波プラズマの生成に伴って活性種が生成される。変形例4では、ノッキングが発生しそうな領域に活性種が生成されるので、その領域の手前で火炎面の速度が停滞することが抑制される。従って、ノッキングが発生する前に、ノッキングが発生しそうな領域に火炎を到達させることができるので、ノッキングの発生を抑制することができる。
 なお、内燃機関10が、燃焼室20におけるノッキングの発生を検出するノックセンサ(ノック検出手段)を備えていてもよい。その場合は、電磁波放射装置13は、ノックセンサがノッキングの発生を検出した場合にだけ、アンテナ47に火炎面が到達する前に、アンテナ47からマイクロ波を放射してマイクロ波プラズマおよび活性種を生成する。ノッキングの発生直後の燃焼サイクルでは、ノッキングの発生領域の手前で火炎面の速度が停滞することが抑制される。従って、ノッキングの連続的な発生を抑制することができる。
  -実施形態の変形例5-
 変形例5では、ノッキングの発生領域にマイクロ波プラズマを生成するためのアンテナ48が、図10に示すように、燃焼室20の外周部分に沿って延びている。アンテナ48は、4つ設けられている。各アンテナ48は、吸気および排気ポート25,26の開口25a,26aの間を天井面の径方向に延びる各放射線61から、天井面の外周に沿って両側に延びている。
 また、内燃機関10は、燃焼室20においてノッキングが発生した場合にノッキングの発生領域を検出するノック領域検出器70(ノック領域検出手段)を備えている。ノック領域検出器70は、例えば、複数の光ファイバー71により燃焼室20の外周部分の複数箇所の発光を取り込み、OHラジカルに対応する波長帯域の発光強度が所定の閾値を超える発光があった領域をノック発生領域であると判断する。なお、このようにノック発生領域を判断するのは、ノッキングの発生に伴ってOHラジカルの発光強度が急激に強くなるためである。
 電磁波放射装置13は、ノック領域検出器70がノッキングの発生を検出した直後の燃焼サイクルにおいて、ノック発生領域側に位置する発生側アンテナ48に火炎面が到達する前に、発生側アンテナ48からマイクロ波を放射する。発生側アンテナ48の近傍には、マイクロ波プラズマの生成に伴って活性種が生成される。従って、発生側アンテナ48の近傍の手前で火炎の速度が停滞することが抑制され、当該燃焼サイクルにおけるノッキングの発生を防止でき、ノッキングの連続的な発生を抑制することができる。
  -実施形態の変形例6-
 変形例6では、変形例5のようにノッキングの発生領域にマイクロ波プラズマを生成するためのアンテナ49が、図11に示すように、燃焼室20のほぼ全周囲に亘って延びている。アンテナ49は、ガスケット18に埋設されている。
 電磁波放射装置13は、アンテナ49の表面において相対的に電界強度が強い強電界領域の位置を変える電界調節器を有している。電界調節器は、例えば、マイクロ波の伝送線路におけるインピーダンスを調節可能なスタブチューナである。スタブチューナは、例えばスタブにおいてグランドに短絡させる位置を調節することにより、スタブとして動作する長さを可変に構成されている。
 電磁波放射装置13は、ノック領域検出器70の検出結果に基づいて、強電界領域がノック発生領域又はその近傍に位置するように電界調節器を調節する。そうすると、強電界領域の近傍にマイクロ波プラズマが生成される。これにより、ノッキングの発生領域、または該発生領域の近傍にマイクロ波プラズマが生成されることになる。
  -実施形態の変形例7-
 変形例7では、図12に示すように、上記変形例1のアンテナ群の代わりに、棒状のアンテナ46が設けられている。各アンテナ46は、吸気および排気ポート25,26の開口25a,26aの間の領域において、燃焼室20の天井面の径方向に延びている。各アンテナ46は、点火プラグ15の少し外側からシリンダ24の壁面の近傍まで真っ直ぐ延びている。なお、少なくとも排気ポート26の開口26aの間のアンテナ46(図12において点火プラグ15の右側のアンテナ)は、その内端が放電プラズマ36の屈曲部分に対面する。
 電磁波放射装置13では、各アンテナ46に対応して、電磁波用電源31および電磁波発振器32を有する電磁波ユニットが設けられている。各電磁波ユニットは、上記変形例1とは異なり分配器33を有しておらず、その代わりに、アンテナ46の表面において相対的に電界強度が強い強電界領域の位置を変化させる電界調節器を有している。
 各電磁波ユニットでは、点火動作の際に、強電界領域がアンテナ46の内端の表面に位置するように電界調節器を動作させる。排気ポート26の開口26aの間のアンテナ46の放射位置は、タンブル流35により流された放電プラズマ36に対面する。そのため、マイクロ波のエネルギーが、放電プラズマ36に効果的に吸収される。その結果、放電プラズマ36が太くなり、混合気が体積着火される。
 混合気の着火後の火炎伝播中も、各アンテナ46からのマイクロ波の放射が継続される。各アンテナ46からのマイクロ波の放射位置は、電界調節器により、火炎面より先に外側へ移動させる。火炎面の到達前の領域は、強電界領域になる。強電界領域は外側へ移動してゆき、強電界領域で生成されるマイクロ波プラズマも、強電界領域の移動に伴って外側へ移動してゆく。その結果、活性種が生成された領域を火炎面が通過することになり、火炎面における酸化反応が活性種により促進され、火炎伝播速度が向上する。
 《その他の実施形態》
 上記実施形態は、以下のように構成してもよい。
 上記実施形態において、内燃機関10が、ディーゼルエンジンのように拡散燃焼を行うものであってもよい。活性種生成手段は、噴霧燃料により形成された火炎面が到達する前に活性種を生成する。
 また、上記実施形態において、アンテナが、燃焼室20に露出しておらず、絶縁体または誘電体により覆われていてもよい。
 以上説明したように、本発明は、活性種を利用して燃焼を促進させる内燃機関について有用である。
              10       内燃機関
              11       内燃機関本体
              13       電磁波放射装置(活性種生成手段)
              20       燃焼室
              32       電磁波発振器
              41       第1アンテナ
              42       第2アンテナ
              43       第3アンテナ
 

Claims (7)

  1.  燃焼室において混合気を燃焼させる内燃機関本体と、
     上記燃焼室において火炎の伝播中に、火炎面の到達前の領域において活性種を生成する活性種生成手段とを備えている
    ことを特徴とする内燃機関。
  2.  請求項1において、
     上記活性種生成手段は、上記火炎面の到達前の領域にプラズマを生成して活性種を生成する
    ことを特徴とする内燃機関。
  3.  請求項1又は2において、
     上記活性種生成手段は、上記燃焼室においてノッキングの発生頻度が相対的に高い領域において、火炎面の到達前に活性種を生成する
    ことを特徴とする内燃機関。
  4.  請求項3において、
     上記燃焼室におけるノッキングの発生を検出するノック検出手段を備え、
     上記活性種生成手段は、上記ノック検出手段がノッキングの発生を検出した場合に、上記燃焼室においてノッキングの発生頻度が相対的に高い領域において、火炎面の到達前に活性種を生成する
    ことを特徴とする内燃機関。
  5.  請求項1又は2において、
     上記内燃機関本体は、円筒状のシリンダ内をピストンが往復運動するように構成され、上記シリンダ内の燃焼室の中心部で混合気が点火される一方、
     上記活性種生成手段は、上記燃焼室において上記中心部の外側に位置する領域のうち、火炎面の到達タイミングが相対的に遅い領域において、火炎面の到達前に活性種を生成する
    ことを特徴とする内燃機関。
  6.  請求項2において、
     上記活性種生成手段は、電磁波を発振する電磁波発振器と、該電磁波発振器から供給された電磁波を上記燃焼室へ放射するためのアンテナとを有し、該アンテナから放射した電磁波により上記火炎面の到達前の領域に電磁波プラズマを生成する
    ことを特徴とする内燃機関。
  7.  請求項6において、
     上記内燃機関本体は、円筒状のシリンダ内をピストンが往復運動するように構成され、上記シリンダ内の燃焼室の中心部で混合気が点火される一方、
     上記アンテナは、上記燃焼室の外周部分に沿って延び、
     上記燃焼室においてノッキングが発生した場合にノッキングの発生領域を検出するノック領域検出手段を備え、
     上記活性種生成手段は、上記アンテナの表面において相対的に電界強度が強い強電界領域の位置を変える電界調節器を備え、上記ノック領域検出手段の検出結果に基づいて電界調節器を調節して、上記ノッキングの発生領域、または該発生領域の近傍に電磁波プラズマを生成する
    ことを特徴とする内燃機関。
     
PCT/JP2012/053516 2011-02-15 2012-02-15 内燃機関 WO2012111701A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12746944.3A EP2677132A4 (en) 2011-02-15 2012-02-15 Internal combustion engine
US13/982,577 US9273599B2 (en) 2011-02-15 2012-02-15 Internal combustion engine
JP2012557992A JP6002893B2 (ja) 2011-02-15 2012-02-15 内燃機関

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-030042 2011-02-15
JP2011030042 2011-02-15

Publications (2)

Publication Number Publication Date
WO2012111701A2 true WO2012111701A2 (ja) 2012-08-23
WO2012111701A3 WO2012111701A3 (ja) 2012-11-01

Family

ID=46673001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053516 WO2012111701A2 (ja) 2011-02-15 2012-02-15 内燃機関

Country Status (4)

Country Link
US (1) US9273599B2 (ja)
EP (1) EP2677132A4 (ja)
JP (1) JP6002893B2 (ja)
WO (1) WO2012111701A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034715A1 (ja) * 2012-08-28 2014-03-06 イマジニアリング株式会社 プラズマ発生装置
WO2014069337A1 (ja) * 2012-10-29 2014-05-08 イマジニアリング株式会社 電磁波放射装置
EP2800215A2 (en) 2013-05-01 2014-11-05 NGK Spark Plug Co., Ltd. Ignition plug and ignition system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105569A2 (ja) * 2011-01-31 2012-08-09 イマジニアリング株式会社 プラズマ生成装置
JP5953532B2 (ja) * 2011-01-31 2016-07-20 イマジニアリング株式会社 プラズマ生成装置
EP2743494B1 (en) * 2011-07-16 2016-09-07 Imagineering, Inc. Internal combustion engine, and plasma generating device
WO2013042597A1 (ja) * 2011-09-22 2013-03-28 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
US20170306918A1 (en) * 2014-08-21 2017-10-26 Imagineering, Inc. Compression-ignition type internal combustion engine, and internal combustion engine
EP3064767A1 (de) * 2015-03-03 2016-09-07 MWI Micro Wave Ignition AG Verfahren und zum Einbringen von Mikrowellenenergie in einen Brennraum eines Verbrennungsmotors und Verbrennungsmotor
EP3064766A1 (de) * 2015-03-03 2016-09-07 MWI Micro Wave Ignition AG Verfahren und Vorrichtung zum Einbringen von Mikrowellenenergie in einen Brennraum eines Verbrennungsmotors
EP3064765A1 (de) * 2015-03-03 2016-09-07 MWI Micro Wave Ignition AG Verbrennungsmotor
US20180038322A1 (en) * 2016-08-08 2018-02-08 Jeffrey J. Karl Internal combustion engine with reduced exhaust toxicity and waste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113570A (ja) 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332223A (en) * 1980-08-29 1982-06-01 Dalton James M Plasma fuel ignitors
US4499872A (en) * 1983-01-10 1985-02-19 Combustion Electromagnetics, Inc. Ultra lean burn carburetted adiabatic engine
US4561406A (en) * 1984-05-25 1985-12-31 Combustion Electromagnetics, Inc. Winged reentrant electromagnetic combustion chamber
US4774914A (en) * 1985-09-24 1988-10-04 Combustion Electromagnetics, Inc. Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
JPS62223411A (ja) 1986-03-25 1987-10-01 Mazda Motor Corp 内燃機関の燃焼促進装置
CA2320597A1 (en) * 2000-01-06 2001-07-06 Blacklight Power, Inc. Ion cyclotron power converter and radio and microwave generator
CN104763572B (zh) * 2006-09-20 2017-05-24 创想科学技术工程株式会社 等离子设备
US8499746B2 (en) * 2007-07-12 2013-08-06 Imagineering, Inc. Internal combustion engine using electromagnetic wave radiation to activate burnt gas
JP5428057B2 (ja) * 2007-07-12 2014-02-26 イマジニアリング株式会社 圧縮着火内燃機関、グロープラグ及びインジェクタ
CN101910615A (zh) * 2008-01-08 2010-12-08 日本特殊陶业株式会社 等离子流火花塞点火控制
JP5061310B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 バルブを用いたプラズマ装置
JP5061335B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 シリンダヘッドを用いたプラズマ装置
JP5374691B2 (ja) * 2008-03-14 2013-12-25 イマジニアリング株式会社 複数放電のプラズマ装置
JP2010037947A (ja) 2008-07-31 2010-02-18 Nissan Motor Co Ltd 内燃機関

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113570A (ja) 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677132A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034715A1 (ja) * 2012-08-28 2014-03-06 イマジニアリング株式会社 プラズマ発生装置
US9377004B2 (en) 2012-08-28 2016-06-28 Imagineering, Inc. Plasma generation apparatus
JPWO2014034715A1 (ja) * 2012-08-28 2016-08-08 イマジニアリング株式会社 プラズマ発生装置
WO2014069337A1 (ja) * 2012-10-29 2014-05-08 イマジニアリング株式会社 電磁波放射装置
JPWO2014069337A1 (ja) * 2012-10-29 2016-09-08 イマジニアリング株式会社 電磁波放射装置
US9867270B2 (en) 2012-10-29 2018-01-09 Imagineering, Inc. Electromagnetic wave emission device
EP2800215A2 (en) 2013-05-01 2014-11-05 NGK Spark Plug Co., Ltd. Ignition plug and ignition system
US9368942B2 (en) 2013-05-01 2016-06-14 Ngk Spark Plug Co., Ltd. Ignition plug and ignition system

Also Published As

Publication number Publication date
WO2012111701A3 (ja) 2012-11-01
JPWO2012111701A1 (ja) 2014-07-07
US20140014050A1 (en) 2014-01-16
US9273599B2 (en) 2016-03-01
EP2677132A4 (en) 2017-06-28
JP6002893B2 (ja) 2016-10-05
EP2677132A2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6002893B2 (ja) 内燃機関
US9677534B2 (en) Internal combustion engine
JP6023956B2 (ja) 内燃機関
WO2009113690A1 (ja) バルブを用いたプラズマ装置
KR20100128327A (ko) 복수 방전 플라즈마 장치
JP6086427B2 (ja) プラズマ装置
JP6229121B2 (ja) 内燃機関
EP2672086B1 (en) Internal combustion engine
JP6082877B2 (ja) プラズマ生成装置、及び内燃機関
JP6191030B2 (ja) プラズマ生成装置、及び内燃機関
US9447768B2 (en) Internal combustion engine
WO2013011965A1 (ja) 内燃機関、及びプラズマ生成装置
JP6023966B2 (ja) 内燃機関
WO2012161232A1 (ja) 点火プラグ、及び内燃機関
WO2013039122A1 (ja) 高周波放射用プラグ及び内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746944

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2012557992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012746944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13982577

Country of ref document: US