WO2012111568A1 - Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recoding medium - Google Patents

Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recoding medium Download PDF

Info

Publication number
WO2012111568A1
WO2012111568A1 PCT/JP2012/053164 JP2012053164W WO2012111568A1 WO 2012111568 A1 WO2012111568 A1 WO 2012111568A1 JP 2012053164 W JP2012053164 W JP 2012053164W WO 2012111568 A1 WO2012111568 A1 WO 2012111568A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alloy
elements
elements selected
magnetic
Prior art date
Application number
PCT/JP2012/053164
Other languages
French (fr)
Japanese (ja)
Inventor
悠子 清水
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to SG2013058649A priority Critical patent/SG192259A1/en
Priority to CN201280008677.9A priority patent/CN103380458B/en
Publication of WO2012111568A1 publication Critical patent/WO2012111568A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a soft magnetic alloy for Co-based magnetic recording used as a soft magnetic layer in a perpendicular magnetic recording medium, a sputtering target material, and a magnetic recording medium provided with such a soft magnetic layer.
  • the perpendicular magnetic recording method is a method suitable for increasing the density because the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium.
  • This magnetic recording system has been developed as a multilayer recording medium having a magnetic recording layer with increased recording density, a soft magnetic layer, and an intermediate layer.
  • a CoCrPt—SiO 2 alloy is generally used for the magnetic recording layer.
  • the soft magnetic film layer an alloy in which Zr, Hf, Ta, Nb and B for improving amorphousness are added based on a soft magnetic element such as Co or Fe is disclosed in Japanese Patent Laid-Open No. 2008-299905 (patent) Document 1) and Japanese Patent Application Laid-Open No. 2008-189996 (Patent Document 2).
  • the soft magnetic film layer of this perpendicular magnetic recording medium is required to have high saturation magnetic flux density, high amorphousness, and high corrosion resistance.
  • a soft magnetic film of an Fe—Co—B-based compound As a soft magnetic layer of a two-layer recording medium, a soft magnetic film of an Fe—Co—B-based compound has been proposed.
  • Fe-Co-B targets As disclosed in Japanese Patent Application Laid-Open No. 2004-346423 (Patent Document 3), Fe-Co-B targets have been proposed in which the diameter of the maximum inscribed circle that can be drawn in a region where the boride layer does not exist in the cross-sectional microstructure is 30 ⁇ m or less.
  • the magnetron sputtering method is used for forming the soft magnetic film.
  • This magnetron sputtering method is a sputtering method that enables constrained film formation by placing a magnet behind the target material, leaking magnetic flux to the surface of the target material, and converging the plasma in the leakage magnetic flux region. is there.
  • This magnetron sputtering method is characterized in that magnetic flux leaks to the sputtering surface of the target material. Therefore, when the magnetic permeability of the target material itself is high, sufficient magnetic flux leakage necessary for the magnetron sputtering method is formed on the sputtering surface of the target material. It becomes difficult to do. Therefore, Patent Document 3 has been proposed in view of the requirement that the magnetic permeability of the target material itself must be reduced as much as possible.
  • Patent Document 4 reports the production of a soft magnetic target with improved corrosion resistance without deteriorating magnetic properties. Is not described.
  • the present inventors have recently improved the amorphous properties by adding the (A) group element selected from Ta, Nb and V, and by adding the (B) group element selected from Cr, Mo and W. Hardness is improved, the addition of the (C) group element selected from Ti, Zr and Hf ensures the amorphous nature, and the elements of the (A) group, (B) group and (C) group are corrosion resistant. It was found to be effective for improvement. This makes it possible to provide a soft magnetic alloy for magnetic recording that is excellent in amorphousness, corrosion resistance, and hardness. The amorphous property is effective for reducing noise, the hardness is effective for impact resistance, and the corrosion resistance is effective for reducing the thickness of the carbon film.
  • an object of the present invention is to provide a soft magnetic alloy for perpendicular magnetic recording media excellent in amorphousness, hardness and corrosion resistance, and a sputtering target material for producing a thin film of this alloy.
  • At. %so (A) 0.5% or more of one or more elements selected from the group consisting of Ta, Nb and V, (B) 0.5% or more of one or more elements selected from the group consisting of Cr, Mo and W, (C) 0 to 5% of one or more elements selected from the group consisting of Ti, Zr and Hf, (D) 1 to 30% of one or two elements selected from the group consisting of Ni and Mn, (E) 0 to 5% of one or two elements selected from the group consisting of Al and Cu; (F) 0 to 10% of one or more elements selected from the group consisting of Si, Ge, P, B and C
  • a soft magnetic alloy for magnetic recording comprising the balance Co and Fe and inevitable impurities, The ratio of Fe: Co is 10:90 to 70:30, and the total amount of the (A) group element, (B) group element and (C) group element is 10 to 30% of the alloy.
  • a soft magnetic alloy for recording is provided.
  • a sputtering target material composed of the soft magnetic alloy for magnetic recording of the present invention.
  • a magnetic recording medium comprising a soft magnetic layer composed of the soft magnetic alloy for magnetic recording of the present invention.
  • the soft magnetic alloy for magnetic recording according to the present invention is at. % Of elements selected from the group consisting of (A) Ta, Nb and V, 0.5% or more, and (B) elements selected from the group consisting of Cr, Mo and W 0.5% or more of one or more elements, 0 to 5% of one or more elements selected from the group consisting of (C) Ti, Zr and Hf, and (D) Ni and Mn
  • One or two elements selected from the group are 0-30%
  • (E) one or two elements selected from the group consisting of Al and Cu are 0-5%
  • the ratio of Fe: Co is 10:90 to 70:30, and the total amount of (A) group consisting
  • Fe and Co constitute a soft magnetic element, and are contained in the alloy at a ratio of Fe: Co of 10:90 to 70:30.
  • the ratio of Fe to Co is a parameter that ensures soft magnetism and greatly affects the saturation magnetic flux density, amorphousness, hardness, and corrosion resistance. In particular, when the Fe: Co ratio is less than 10, the saturation magnetic flux density is not sufficient. If it exceeds 70, corrosion resistance deteriorates.
  • (A) Group element is one or more elements selected from the group consisting of Ta, Nb and V, which improve the amorphousness and hardness, and 0.5 at. % Or more, preferably 2 to 20 at. %, More preferably 4 to 15 at. %included. 0.5 at. If it is less than%, the above improvement effect is not sufficient.
  • Group element is one or more elements selected from the group consisting of Cr, Mo and W, which improve the amorphous and corrosion resistance, and 0.5 at. % Or more, preferably 1 to 20 at. %, More preferably 2 to 10 at. %included. 0.5 at. If it is less than%, the above improvement effect is not sufficient.
  • (C) Group element is one or more elements selected from the group consisting of Ti, Zr and Hf, which improve the amorphous property, and 0 to 5 at. %, Preferably 2-4 at. %included. 5 at. If it exceeds 50%, a sufficient saturation magnetic flux density cannot be obtained.
  • the total amount of (A) group element, (B) group element and (C) group element is 10-30 at. %.
  • the (A) group element, the (B) group element, and the (C) group element are all elements that improve the amorphous property and the corrosion resistance, but the total amount of these elements is 10 at. If it is less than%, the effect is not sufficient, while if it exceeds 30%, the saturation magnetic flux density cannot be sufficiently obtained.
  • Group element is one or two kinds of arbitrary elements for adjusting the saturation magnetic flux density selected from the group consisting of Ni and Mn, and 0 to 30 at. %, Preferably more than 0% and 30 at. % Or less, more preferably 10 at. % Or less, more preferably 1 to 5 at. %included. If it is within these ranges, the saturation magnetic flux density can be sufficiently obtained.
  • Group element is one or two optional elements selected from the group consisting of Al and Cu, which improve corrosion resistance, and 0 to 5 at. %, Preferably more than 0% and 5 at. % Or less, more preferably 1 to 4 at. %included. Within these ranges, the amorphous property is unlikely to decrease.
  • Group element is one or more selected from the group consisting of Si, Ge, P, B, and C, and is an arbitrary element that improves amorphousness. %, Preferably more than 0% and 10 at. % Or less, more preferably 1 to 8 at. %included. Within these ranges, the saturation magnetic flux density can be prevented from decreasing without saturating the improvement effect.
  • the sputtering target material according to the present invention is composed of the above-described soft magnetic alloy for magnetic recording.
  • the thickness of the sputtering target material is not particularly limited, normal sputtering can be performed even if the thickness exceeds 5 mm, and is preferably 7 mm or more.
  • a seed layer in a perpendicular magnetic recording medium can be formed on a glass substrate by sputtering a sputtering target material having the same component as that of the seed layer.
  • the thin film formed by sputtering is rapidly cooled.
  • a quenched ribbon manufactured by a single roll type quenching apparatus is used as a test material in the present invention. This is a simple evaluation of the influence of various properties on the properties of the ribbons actually formed by sputtering using the liquid quenching ribbons.
  • Preparation conditions for quenching ribbon As conditions for preparing the quenching ribbon, 20 g of raw materials weighed for each component shown in Tables 1 and 2 were decompressed with a water-cooled copper mold having a diameter of about 40 mm, and arc-dissolved in Ar. A rapidly melted ribbon base material was used.
  • the conditions for preparation of the quenching ribbon are as follows. This molten base material is set in a quartz tube having a diameter of 15 mm by a single roll method, the tap nozzle diameter is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, the copper roll (diameter is 300 mm).
  • the hot water was discharged at a rotation speed of 3000 rpm and a gap of 0.3 mm between the copper roll and the hot water nozzle.
  • the hot water temperature was set immediately after each molten base material was melted.
  • the following items were evaluated using the thus prepared quenched ribbon as a test material.
  • Quenched ribbon structure Normally, when an X-ray diffraction pattern of an amorphous material is measured, a diffraction peak is not seen, and a halo pattern peculiar to amorphous is obtained. In addition, when it is not completely amorphous, a diffraction peak is observed, but the peak height is lower than that of the crystalline material, and a halo pattern is also observed. Therefore, the amorphous property was evaluated by the following method.
  • a sample was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer.
  • the test material was affixed on the glass plate so that the measurement surface was a copper roll contact surface of a quenched ribbon.
  • the X-ray source was Cu—K ⁇ ray, and measurement was performed at a scan speed of 4 ° / min. In this diffraction pattern, the halo pattern was confirmed as ⁇ , and the case where no halo pattern was observed was evaluated as x.
  • Measurement was performed with a saturated magnetic flux density VSM apparatus (vibrating sample magnetometer) of a rapidly cooled ribbon at an applied magnetic field of 1200 kA / m.
  • the weight of the test material was about 15 mg, the saturation magnetic flux density of 0.3 T or more and less than 1.0 T was marked with ⁇ , and the weight of 1.0 T or more was marked with ⁇ . Those with less than 0.3% were marked with x.
  • Table 1 and Table 2 show the component composition according to the present invention
  • Tables 3 and 4 show the saturation magnetic flux density, amorphousness, corrosion resistance, and hardness as effects thereof.
  • no. No. 34 has a low saturation magnetic flux density because the sum of the contents of the (A) group element and the (B) group element is high.
  • No. No. 35 has a low content of the group (A) element, so that the amorphous property is insufficient and the hardness is low.
  • No. No. 36 has a low content of the group (B) element, so that the amorphous property is insufficient and the corrosion resistance is not sufficient.
  • No. 37 has a high content of the (C) group element and a low saturation magnetic flux density.
  • No. 38 has a high content of the (E) group element and a low saturation magnetic flux density.
  • No. No. 39 has a high content of the (F) group element and a low saturation magnetic flux density, and the corrosion resistance is not sufficient. No. Since the Fe ratio is low, 40 does not have a sufficient saturation magnetic flux density.
  • No. No. 41 has a high Fe ratio and therefore lacks corrosion resistance, particularly corrosion resistance to NaCl.
  • No. 42 has a high content of the (D) group element and a low saturation magnetic flux density.
  • the above powder-filled billet was heated to 1150 ° C., then charged into a constraining container having a diameter of 230 mm, and molded under a pressure of 500 MPa.
  • the solidified molded body produced by the above method was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.
  • a sputtered film was formed on a glass substrate using a sputtering target material for these seven kinds of component compositions.
  • the X-ray diffraction pattern is no. 3, no. 11, no. 12, no. 13, no. No. 24 has a halo pattern, and no. 35, no. As for 38, a crystal peak was observed.
  • the corrosion resistance test salt spray test
  • No. 3, no. 11, no. 12, no. 13, no. No. 24 had no fire, no. 35, no. In 38, there was a partial start.
  • the results of the evaluation with the quenched ribbon and the evaluation of the sputtered film formed using the sputtering target material had the same tendency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

Provided is a soft magnetic alloy for magnetic recording containing: (A) not less than 0.5 at% of one or two or more elements selected from a group comprising Ta, Nb and V; (B) not less than 0.5 at% of one or two or more elements selected from a group comprising Cr, Mo and W; (C) 0 to 5 at% of one or two or more elements selected from a group comprising Ti, Zr and Hf; (D) 0 to 30 at% of at least one or two elements selected from a group comprising Ni and Mn; (E) 0 to 5 at% of one or two elements selected from a group comprising Al and Cu; (F) 0 to 10 at% of one or two or more elements selected from a group comprising Si, Ge, P, B and C; and the remainder comprising Co, Fe and unavoidable impurities. The Fe:Co ratio in the alloy ranges from 10:90 to 70:30, and the total quantity of group (A) elements, group (B) elements and group (C) elements is 10 to 30% of the alloy. This alloy has excellent amorphous properties, hardness and corrosion resistance, and is suitable as a soft magnetic alloy for perpendicular magnetic recording media.

Description

磁気記録用軟磁性合金、スパッタリングターゲット材及び磁気記録媒体Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium 関連出願の相互参照Cross-reference of related applications
 この出願は、2011年2月16日に出願された日本国特許出願2011-30562号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-30562 filed on Feb. 16, 2011, the entire disclosure of which is incorporated herein by reference.
 本発明は、垂直磁気記録媒体における軟磁性層として用いられるCo系磁気記録用軟磁性合金及びスパッタリングターゲット材、並びにそのような軟磁性層を備えた磁気記録媒体に関する。 The present invention relates to a soft magnetic alloy for Co-based magnetic recording used as a soft magnetic layer in a perpendicular magnetic recording medium, a sputtering target material, and a magnetic recording medium provided with such a soft magnetic layer.
 近年、垂直磁気記録の進歩は著しく、ドライブの大容量化のために、磁気記録密度化が進められており、従来普及していた面内磁気記録方式よりも更に高密度が実現できる、垂直磁気記録方式が実用化されている。ここで、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高密度化に適した方法である。この磁気記録方式においては、記録密度を高めた磁気記録層と軟磁性層及び中間層を有する多層記録媒体として開発されている。しかも、この磁気記録層には一般的にCoCrPt-SiO系合金が用いられている。 In recent years, the progress of perpendicular magnetic recording has been remarkable, and the magnetic recording density has been increased to increase the capacity of the drive. Perpendicular magnetic recording, which can achieve higher density than the conventional in-plane magnetic recording method, has been achieved. The recording method has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for increasing the density because the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. . This magnetic recording system has been developed as a multilayer recording medium having a magnetic recording layer with increased recording density, a soft magnetic layer, and an intermediate layer. Moreover, a CoCrPt—SiO 2 alloy is generally used for the magnetic recording layer.
 一方、軟磁性膜層に関しては、CoやFeの軟磁性元素をベースに、非晶質性を改善するZr、Hf,Ta、Nb及びBを添加した合金が特開2008-299905号公報(特許文献1)や特開2008-189996号公報(特許文献2)に提案されている。この垂直磁気記録媒体の軟磁性膜層には高飽和磁束密度、高非晶質性及び高耐食性が求められる。 On the other hand, with regard to the soft magnetic film layer, an alloy in which Zr, Hf, Ta, Nb and B for improving amorphousness are added based on a soft magnetic element such as Co or Fe is disclosed in Japanese Patent Laid-Open No. 2008-299905 (patent) Document 1) and Japanese Patent Application Laid-Open No. 2008-189996 (Patent Document 2). The soft magnetic film layer of this perpendicular magnetic recording medium is required to have high saturation magnetic flux density, high amorphousness, and high corrosion resistance.
 また、2層記録媒体の軟磁性層として、Fe-Co-B系化合物の軟磁性膜が提案されており、例えば、特開2004-346423号公報(特許文献3)に開示されるように、断面ミクロ組織においてホウ化物層の存在しない領域に描ける最大内接円の直径が30μm以下であるFe-Co-Bターゲットが提案されている。 Further, as a soft magnetic layer of a two-layer recording medium, a soft magnetic film of an Fe—Co—B-based compound has been proposed. For example, as disclosed in Japanese Patent Application Laid-Open No. 2004-346423 (Patent Document 3), Fe-Co-B targets have been proposed in which the diameter of the maximum inscribed circle that can be drawn in a region where the boride layer does not exist in the cross-sectional microstructure is 30 μm or less.
 上述した軟磁性膜の成膜には、一般にマグネトロンスパッタリング法が用いられている。このマグネトロンスパッタリング法とは、ターゲット材の背後に磁石を配置し、ターゲット材の表面に、磁束を漏洩させて、その漏洩磁束領域にプラズマを収束させることにより拘束成膜を可能とするスパッタリング法である。このマグネトロンスパッタリング法はターゲット材のスパッタ表面に磁束を漏洩させることに特徴があるため、ターゲット材自体の透磁率が高い場合にはターゲット材のスパッタ表面にマグネトロンスパッタリング法に必要十分な漏洩磁束を形成するのが難しくなる。そこで、ターゲット材自身の透磁率を極力低減しなければならないという要求から特許文献3が提案されている。 In general, the magnetron sputtering method is used for forming the soft magnetic film. This magnetron sputtering method is a sputtering method that enables constrained film formation by placing a magnet behind the target material, leaking magnetic flux to the surface of the target material, and converging the plasma in the leakage magnetic flux region. is there. This magnetron sputtering method is characterized in that magnetic flux leaks to the sputtering surface of the target material. Therefore, when the magnetic permeability of the target material itself is high, sufficient magnetic flux leakage necessary for the magnetron sputtering method is formed on the sputtering surface of the target material. It becomes difficult to do. Therefore, Patent Document 3 has been proposed in view of the requirement that the magnetic permeability of the target material itself must be reduced as much as possible.
 しかしながら、上述したターゲット製品の厚みの限界は5mm程度で、それ以上厚くすると十分な漏洩磁束が出ないため、正常なマグネトロンスパッタリングが行えないという問題がある。また、このターゲット材は成膜した時に高磁束密度であることが求められていることから、Feベースとした材料が望ましいが、その場合、耐食性に課題があり、また、ターゲット材の酸化により膜の品質が劣化したり、スパッタ時に酸化部に異常放電を起こしてスパッタ不良となる場合があった。 However, there is a problem that normal magnetron sputtering cannot be performed because the limit of the thickness of the target product described above is about 5 mm. In addition, since this target material is required to have a high magnetic flux density when it is formed, an Fe-based material is desirable. In this case, however, there is a problem in corrosion resistance, and the film is formed by oxidation of the target material. In some cases, the quality of the material deteriorates, or abnormal discharge occurs in the oxidized portion during sputtering, resulting in poor sputtering.
 それを解決するため、特開2007-284741号公報(特許文献4)にて、磁気特性を劣化させることなく、耐食性を向上させた軟磁性ターゲットの作製が報告されているが、優れたアモルファス性については記載されていない。 In order to solve this problem, Japanese Patent Application Laid-Open No. 2007-284741 (Patent Document 4) reports the production of a soft magnetic target with improved corrosion resistance without deteriorating magnetic properties. Is not described.
 本発明者らは、今般、Ta、Nb及びVから選択される(A)群元素の添加によりアモルファス性が向上し、また、Cr、Mo及びWから選択される(B)群元素の添加により硬さが向上し、Ti,Zr及びHfから選択される(C)群元素の添加によりアモルファス性を確保し、かつ、これら(A)群、(B)群及び(C)群の元素が耐食性改善にも効果的であることを見出した。これにより、アモルファス性、耐食性、硬さに優れた磁気記録用軟磁性合金を提供することが可能となった。なお、アモルファス性はノイズ低減に、硬さは耐衝撃性に、耐食性はカーボン膜の薄膜化にそれぞれ効果的である。 The present inventors have recently improved the amorphous properties by adding the (A) group element selected from Ta, Nb and V, and by adding the (B) group element selected from Cr, Mo and W. Hardness is improved, the addition of the (C) group element selected from Ti, Zr and Hf ensures the amorphous nature, and the elements of the (A) group, (B) group and (C) group are corrosion resistant. It was found to be effective for improvement. This makes it possible to provide a soft magnetic alloy for magnetic recording that is excellent in amorphousness, corrosion resistance, and hardness. The amorphous property is effective for reducing noise, the hardness is effective for impact resistance, and the corrosion resistance is effective for reducing the thickness of the carbon film.
 したがって、本発明の目的は、アモルファス性、硬さ、及び耐食性に優れた垂直磁気記録媒体用軟磁性合金、並びにこの合金の薄膜を作製するためのスパッタリングターゲット材を提供することにある。 Therefore, an object of the present invention is to provide a soft magnetic alloy for perpendicular magnetic recording media excellent in amorphousness, hardness and corrosion resistance, and a sputtering target material for producing a thin film of this alloy.
 本発明の一態様によれば、at.%で、
 (A)Ta,Nb及びVからなる群から選択される元素の1種又は2種以上を0.5%以上、
 (B)Cr,Mo及びWからなる群から選択される元素の1種又は2種以上を0.5%以上、
 (C)Ti,Zr及びHfからなる群から選択される元素の1種又は2種以上を0~5%、
 (D)Ni及びMnからなる群から選択される元素の1種又は2種を0~30%、
 (E)Al及びCuからなる群から選択される元素の1種又は2種を0~5%、
 (F)Si,Ge,P,B及びCからなる群から選択される元素の1種又は2種以上を0~10%
含み、残部Co及びFe並びに不可避的不純物からなる磁気記録用軟磁性合金であって、
 Fe:Coの比が10:90~70:30であり、かつ、(A)群元素、(B)群元素及び(C)群元素の合計量が前記合金の10~30%である、磁気記録用軟磁性合金が提供される。
According to one aspect of the invention, at. %so,
(A) 0.5% or more of one or more elements selected from the group consisting of Ta, Nb and V,
(B) 0.5% or more of one or more elements selected from the group consisting of Cr, Mo and W,
(C) 0 to 5% of one or more elements selected from the group consisting of Ti, Zr and Hf,
(D) 1 to 30% of one or two elements selected from the group consisting of Ni and Mn,
(E) 0 to 5% of one or two elements selected from the group consisting of Al and Cu;
(F) 0 to 10% of one or more elements selected from the group consisting of Si, Ge, P, B and C
A soft magnetic alloy for magnetic recording comprising the balance Co and Fe and inevitable impurities,
The ratio of Fe: Co is 10:90 to 70:30, and the total amount of the (A) group element, (B) group element and (C) group element is 10 to 30% of the alloy. A soft magnetic alloy for recording is provided.
 本発明の別の一態様によれば、本発明の磁気記録用軟磁性合金で構成されたスパッタリングターゲット材が提供される。 According to another aspect of the present invention, there is provided a sputtering target material composed of the soft magnetic alloy for magnetic recording of the present invention.
 本発明の更に別の一態様によれば、本発明の磁気記録用軟磁性合金で構成された軟磁性層を備えた、磁気記録媒体が提供される。 According to yet another aspect of the present invention, there is provided a magnetic recording medium comprising a soft magnetic layer composed of the soft magnetic alloy for magnetic recording of the present invention.
 以下に本発明を具体的に説明する。特段の明示が無いかぎり、本明細書において「%」はat%を意味するものとする。 The present invention will be specifically described below. In the present specification, “%” means at% unless otherwise specified.
 本発明による磁気記録用軟磁性合金は、at.%で、(A)Ta,Nb及びVからなる群から選択される元素の1種又は2種以上を0.5%以上、(B)Cr,Mo及びWからなる群から選択される元素の1種又は2種以上を0.5%以上、(C)Ti,Zr及びHfからなる群から選択される元素の1種又は2種以上を0~5%、(D)Ni及びMnからなる群から選択される元素の1種又は2種を0~30%、(E)Al及びCuからなる群から選択される元素の1種又は2種を0~5%、(F)Si,Ge,P,B及びCからなる群から選択される元素の1種又は2種以上を0~10%含み(comprising)、残部Co及びFe並びに不可避的不純物からなり、好ましくはこれらの元素および不可避的不純物から実質的になり(consisting essentially of)、より好ましくはこれらの元素および不可避的不純物のみからなる(consisting of)。本発明の合金は、Fe:Coの比が10:90~70:30であり、かつ、(A)群元素、(B)群元素及び(C)群元素の合計量が合金の10~30%である。 The soft magnetic alloy for magnetic recording according to the present invention is at. % Of elements selected from the group consisting of (A) Ta, Nb and V, 0.5% or more, and (B) elements selected from the group consisting of Cr, Mo and W 0.5% or more of one or more elements, 0 to 5% of one or more elements selected from the group consisting of (C) Ti, Zr and Hf, and (D) Ni and Mn One or two elements selected from the group are 0-30%, (E) one or two elements selected from the group consisting of Al and Cu are 0-5%, (F) Si, Ge , P, B and C containing 0-10% of one or more elements selected from the group consisting of Co, Fe and unavoidable impurities, preferably these elements and unavoidable Consisting essentially of impurities, more preferably these elements and It consists of inevitable impurities only (consisting of). In the alloy of the present invention, the ratio of Fe: Co is 10:90 to 70:30, and the total amount of (A) group element, (B) group element, and (C) group element is 10 to 30 of the alloy. %.
 Fe及びCoは、軟磁性元素構成するものであり、10:90~70:30のFe:Coの比で合金中に含まれる。FeとCoの比は、軟磁性を確保し、かつ飽和磁束密度、アモルファス性、硬さ、および耐食性に大きく影響するパラメータであり、特にFe:Coの比を10未満では飽和磁束密度が十分ではなく、また70を超えると耐食性が劣化する。 Fe and Co constitute a soft magnetic element, and are contained in the alloy at a ratio of Fe: Co of 10:90 to 70:30. The ratio of Fe to Co is a parameter that ensures soft magnetism and greatly affects the saturation magnetic flux density, amorphousness, hardness, and corrosion resistance. In particular, when the Fe: Co ratio is less than 10, the saturation magnetic flux density is not sufficient. If it exceeds 70, corrosion resistance deteriorates.
 (A)群元素は、Ta,Nb及びVからなる群から選択される1種又は2種以上の、アモルファス性と硬さを改善する元素であり、合金中に0.5at.%以上、好ましくは2~20at.%、さらに好ましくは4~15at.%含まれる。0.5at.%未満では上記改善効果が十分ではない。 (A) Group element is one or more elements selected from the group consisting of Ta, Nb and V, which improve the amorphousness and hardness, and 0.5 at. % Or more, preferably 2 to 20 at. %, More preferably 4 to 15 at. %included. 0.5 at. If it is less than%, the above improvement effect is not sufficient.
 (B)群元素は、Cr,Mo及びWからなる群から選択される1種又は2種以上の、アモルファス性と耐食性を改善する元素であり、合金中に0.5at.%以上、好ましくは1~20at.%、さらに好ましくは2~10at.%含まれる。0.5at.%未満では上記改善効果が十分ではない。 (B) Group element is one or more elements selected from the group consisting of Cr, Mo and W, which improve the amorphous and corrosion resistance, and 0.5 at. % Or more, preferably 1 to 20 at. %, More preferably 2 to 10 at. %included. 0.5 at. If it is less than%, the above improvement effect is not sufficient.
 (C)群元素は、Ti,Zr及びHfからなる群から選択される1種又は2種以上の、アモルファス性を改善する元素であり、合金中に0~5at.%、好ましくは2~4at.%含まれる。5at.%を超えると飽和磁束密度が十分に得られなくなる。 (C) Group element is one or more elements selected from the group consisting of Ti, Zr and Hf, which improve the amorphous property, and 0 to 5 at. %, Preferably 2-4 at. %included. 5 at. If it exceeds 50%, a sufficient saturation magnetic flux density cannot be obtained.
 (A)群元素、(B)群元素及び(C)群元素の合計量は合金の10~30at.%とする。(A)群元素、(B)群元素及び(C)群元素はいずれもアモルファス性と耐食性を改善する元素であるが、これらの元素の合計量が10at.%未満ではその効果が十分でない一方、30%を超えると飽和磁束密度が十分に得られなくなる。 The total amount of (A) group element, (B) group element and (C) group element is 10-30 at. %. The (A) group element, the (B) group element, and the (C) group element are all elements that improve the amorphous property and the corrosion resistance, but the total amount of these elements is 10 at. If it is less than%, the effect is not sufficient, while if it exceeds 30%, the saturation magnetic flux density cannot be sufficiently obtained.
 (D)群元素は、Ni及びMnからなる群から選択される1種又は2種の、飽和磁束密度を調整する任意元素であり、合金中に0~30at.%、好ましくは0%よりも多く30at.%以下、より好ましくは10at.%以下、さらに好ましくは1~5at.%含まれる。これらの範囲内であると飽和磁束密度が十分に得られやすい。 (D) Group element is one or two kinds of arbitrary elements for adjusting the saturation magnetic flux density selected from the group consisting of Ni and Mn, and 0 to 30 at. %, Preferably more than 0% and 30 at. % Or less, more preferably 10 at. % Or less, more preferably 1 to 5 at. %included. If it is within these ranges, the saturation magnetic flux density can be sufficiently obtained.
 (E)群元素は、Al及びCuからなる群から選択される1種又は2種の、耐食性を向上させる任意元素であり、合金中に0~5at.%、好ましくは0%よりも多く5at.%以下、より好ましくは1~4at.%含まれる。これらの範囲内であると、アモルファス性が低下しにくい。 (E) Group element is one or two optional elements selected from the group consisting of Al and Cu, which improve corrosion resistance, and 0 to 5 at. %, Preferably more than 0% and 5 at. % Or less, more preferably 1 to 4 at. %included. Within these ranges, the amorphous property is unlikely to decrease.
 (F)群元素は、Si,Ge,P,B及びCからなる群から選択される1種又は2種以上の、アモルファス性を改善する任意元素であり、0~10at.%、好ましくは0%を越えて10at.%以下、より好ましくは1~8at.%含まれる。これらの範囲内であると、上記改善効果を飽和させることなく、飽和磁束密度の低下を防止できる。 (F) Group element is one or more selected from the group consisting of Si, Ge, P, B, and C, and is an arbitrary element that improves amorphousness. %, Preferably more than 0% and 10 at. % Or less, more preferably 1 to 8 at. %included. Within these ranges, the saturation magnetic flux density can be prevented from decreasing without saturating the improvement effect.
 本発明によるスパッタリングターゲット材は、上記磁気記録用軟磁性合金で構成される。スパッタリングターゲット材の厚さは特に限定されないが、5mmを越える厚さであっても正常なスパッタリングを行うことができ、好ましくは7mm以上である。このような本発明のスパッタリングターゲット材を用いてスパッタリングを行うことにより、上記磁気記録用軟磁性合金で構成された軟磁性層を備えた、磁気記録媒体を製造することができる。 The sputtering target material according to the present invention is composed of the above-described soft magnetic alloy for magnetic recording. Although the thickness of the sputtering target material is not particularly limited, normal sputtering can be performed even if the thickness exceeds 5 mm, and is preferably 7 mm or more. By performing sputtering using such a sputtering target material of the present invention, a magnetic recording medium having a soft magnetic layer composed of the above-described soft magnetic alloy for magnetic recording can be produced.
 以下、本発明に係る合金について実施例によって具体的に説明する。 Hereinafter, the alloy according to the present invention will be specifically described with reference to examples.
 通常、垂直磁気記録媒体におけるシード層はその成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜し得られる。ここでスパッタにより成膜された薄膜は急冷されている。本発明での供試材としては、単ロール式の急冷装置にて作製した急冷薄帯を用いる。これは実際にスパッタにより成膜された薄帯の、成分による諸特性への影響を、簡易的に液体急冷薄帯により評価したものである。 Usually, a seed layer in a perpendicular magnetic recording medium can be formed on a glass substrate by sputtering a sputtering target material having the same component as that of the seed layer. Here, the thin film formed by sputtering is rapidly cooled. As a test material in the present invention, a quenched ribbon manufactured by a single roll type quenching apparatus is used. This is a simple evaluation of the influence of various properties on the properties of the ribbons actually formed by sputtering using the liquid quenching ribbons.
 急冷薄帯の作製条件
 急冷薄帯の作製条件としては、表1及び表2に示す各成分に秤量した原料20gを径40mm程度の水冷銅鋳型にて減圧して、Ar中でアーク溶解し、急冷薄帯の溶解母材とした。急冷薄帯の作成条件は、単ロール方式で径15mmの石英管中にて、この溶解母材をセットし、出湯ノズル径を1mmとし、雰囲気気圧61kPa、噴霧差圧69kPa、銅ロール(径300mm)の回転数3000rpm、銅ロールと出湯ノズルのギャップ0.3mmにて出湯した。出湯温度は各溶解母材の溶け落ち直後とした。このようにして作製した急冷薄帯を供試材とし、以下の項目を評価した。
Preparation conditions for quenching ribbon As conditions for preparing the quenching ribbon, 20 g of raw materials weighed for each component shown in Tables 1 and 2 were decompressed with a water-cooled copper mold having a diameter of about 40 mm, and arc-dissolved in Ar. A rapidly melted ribbon base material was used. The conditions for preparation of the quenching ribbon are as follows. This molten base material is set in a quartz tube having a diameter of 15 mm by a single roll method, the tap nozzle diameter is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, the copper roll (diameter is 300 mm). The hot water was discharged at a rotation speed of 3000 rpm and a gap of 0.3 mm between the copper roll and the hot water nozzle. The hot water temperature was set immediately after each molten base material was melted. The following items were evaluated using the thus prepared quenched ribbon as a test material.
 急冷薄帯の構造
 通常、アモルファス材料のX線回折パターンを測定すると、回折ピークが見られず、アモルファス特有のハローパターンとなる。また、完全なアモルファスでない場合は、回折ピークは見られるものの、結晶材料と比較してピーク高さが低くなり、かつハローパターンも見られる。そこで下記の方法にてアモルファス性の評価とした。
Quenched ribbon structure Normally, when an X-ray diffraction pattern of an amorphous material is measured, a diffraction peak is not seen, and a halo pattern peculiar to amorphous is obtained. In addition, when it is not completely amorphous, a diffraction peak is observed, but the peak height is lower than that of the crystalline material, and a halo pattern is also observed. Therefore, the amorphous property was evaluated by the following method.
 アモルファス性の評価として、ガラス板に両面テープで試材を貼り付け、X線回折装置にて回折パターンを得た。このとき、測定面は急冷薄帯の銅ロール接触面となるように供試材をガラス板に貼り付けた。X線源はCu-Kα線で、スキャンスピード4°/minで測定した。この回折パターンにハローパターンが確認できるものを○、全くハローパターンが見られないものを×としてアモルファス性を評価した。 As an evaluation of amorphous properties, a sample was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed on the glass plate so that the measurement surface was a copper roll contact surface of a quenched ribbon. The X-ray source was Cu—Kα ray, and measurement was performed at a scan speed of 4 ° / min. In this diffraction pattern, the halo pattern was confirmed as ○, and the case where no halo pattern was observed was evaluated as x.
 急冷薄帯の耐食性(NaCl)
 ガラス板に両面テープで供試材を貼り付け、5%NaCl-35℃-16hの塩水噴霧試験を行い、全面発銹:×、一部発銹:○として評価した。
Corrosion resistance of quenched ribbon (NaCl)
The test material was affixed to a glass plate with double-sided tape, and a salt spray test of 5% NaCl-35 ° C.-16 h was conducted.
 急冷薄帯の耐食性(HNO
 50mgの供試材を秤量し、3at.%HNO水溶液を10ml滴下した後、室温にて1hr放置後、3%HNO水溶液中へのCo溶出量を分析。Co溶出量が500ppm未満を○、500以上1000ppm未満を△、1000ppm以上を×した。
Corrosion resistance of quenched ribbon (HNO 3 )
50 mg of the test material was weighed and 3 at. After dropping 10 ml of% HNO 3 aqueous solution and leaving it to stand at room temperature for 1 hr, the amount of Co elution into the 3% HNO 3 aqueous solution was analyzed. The Co elution amount was less than 500 ppm, ◯, 500 or more and less than 1000 ppm, and 1000 ppm or more.
 急冷薄帯の硬さ
 急冷薄帯を縦に樹脂埋め研磨し、ビッカース硬度計にて測定。測定荷重は50gでn=10平均で評価した。1000HV以上を◎、760~1000HV未満を○、760HV未満を△とする。
Hardness of quenching ribbon The quenching ribbon is vertically filled with resin and polished, and measured with a Vickers hardness tester. The measurement load was 50 g, and n = 10 average was evaluated. 1000 HV or more is rated as ◎, 760 to less than 1000 HV as ◯, and less than 760 HV as △.
 急冷薄帯の飽和磁束密度
 VSM装置(振動試料型磁力計)にて、印加磁場1200kA/mで測定した。供試材の重量は15mg程度、0.3T以上1.0T未満の飽和磁束密度のものは○、1.0T以上のものは◎とした。0.3%未満のものは×とした。
Measurement was performed with a saturated magnetic flux density VSM apparatus (vibrating sample magnetometer) of a rapidly cooled ribbon at an applied magnetic field of 1200 kA / m. The weight of the test material was about 15 mg, the saturation magnetic flux density of 0.3 T or more and less than 1.0 T was marked with ◯, and the weight of 1.0 T or more was marked with ◎. Those with less than 0.3% were marked with x.
 以下、表1及び表2に本発明による成分組成を、また、表3、4にその効果としての飽和磁束密度、アモルファス性、耐食性、硬さを示す。 Hereinafter, Table 1 and Table 2 show the component composition according to the present invention, and Tables 3 and 4 show the saturation magnetic flux density, amorphousness, corrosion resistance, and hardness as effects thereof.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 まず、表1及び表2に示す成分組成について説明する。表1に示すNo.1~32は本発明例であり、表2に示すNo.33~41は比較例である。
Figure JPOXMLDOC01-appb-T000004
First, the component composition shown in Table 1 and Table 2 will be described. No. shown in Table 1. Nos. 1 to 32 are examples of the present invention. 33 to 41 are comparative examples.
 なお、成分組成の記載は、表1各列に記載したNo.3を例にとると、(A)~(F)群元素である(A)群のTaが8at.%、(B)群のCrが2at.%、(C)群のZrが4at.%、(E)群のAlが1at.%、(F)群のBが6at.%の含有量である。これらの合計量は21at.%である。(A)群~(F)群の残部がCoとFeであり、その量は、100から21at.%を差し引いた79at.%である。次に、CoとFeの比は、Co:Fe=90:10なので、at.%で言えば、Coの含有量は0.79×90=71.1at.%、Feの含有量は0.79×10=7.9at.%であることを意味している。 In addition, description of a component composition is No. described in each row | line | column of Table 1. 3 is taken as an example, the Ta of the (A) group which is the (A) to (F) group element is 8 at. %, (B) group Cr is 2 at. %, Zr of group (C) is 4 at. %, (E) group Al is 1 at. %, (F) group B is 6 at. % Content. The total amount of these is 21 at. %. The balance of the groups (A) to (F) is Co and Fe, and the amounts are from 100 to 21 at. % Minus 79 at. %. Next, since the ratio of Co to Fe is Co: Fe = 90: 10, at. %, The Co content is 0.79 × 90 = 71.1 at. %, Fe content is 0.79 × 10 = 7.9 at. % Means.
 比較例No.33、No.34は、(A)群元素と(B)群元素の含有量の和が高いため、飽和磁束密度が低い。No.35は、(A)群元素の含有量が低い為、アモルファス性が不足し、また硬さも低い。No.36は、(B)群元素の含有量が低い為、アモルファス性が不足し、また耐食性も十分でない。No.37は、(C)群元素の含有量が高く飽和磁束密度が低い。No.38は、(E)群元素の含有量が高く飽和磁束密度が低い。No.39は、(F)群元素の含有量が高く飽和磁束密度が低く、また、耐食性も十分でない。No.40は、Fe比が低いため、飽和磁束密度が十分でない。 Comparative Example No. 33, no. No. 34 has a low saturation magnetic flux density because the sum of the contents of the (A) group element and the (B) group element is high. No. No. 35 has a low content of the group (A) element, so that the amorphous property is insufficient and the hardness is low. No. No. 36 has a low content of the group (B) element, so that the amorphous property is insufficient and the corrosion resistance is not sufficient. No. 37 has a high content of the (C) group element and a low saturation magnetic flux density. No. No. 38 has a high content of the (E) group element and a low saturation magnetic flux density. No. No. 39 has a high content of the (F) group element and a low saturation magnetic flux density, and the corrosion resistance is not sufficient. No. Since the Fe ratio is low, 40 does not have a sufficient saturation magnetic flux density.
 No.41は、Fe比が高いため、耐食性、特にNaClへの耐食性が不足する。No.42は、(D)群元素の含有量が高く、飽和磁束密度が低い。これに対し、本発明例No.1~No.32はいずれも本発明の条件を満たしていることから、アモルファス性、硬さ、耐食性および飽和磁束密度に優れていることがわかる。 No. No. 41 has a high Fe ratio and therefore lacks corrosion resistance, particularly corrosion resistance to NaCl. No. 42 has a high content of the (D) group element and a low saturation magnetic flux density. On the other hand, the present invention example No. 1-No. Since all 32 satisfy | fill the conditions of this invention, it turns out that it is excellent in amorphous property, hardness, corrosion resistance, and a saturation magnetic flux density.
 以上述べたように、本発明によれば、アモルファス性、硬さ、耐食性および飽和磁束密度に優れた垂直磁気記録用軟磁性合金及びスパッタリングターゲット材、並びにこの合金を用いた磁気記録媒体が提供される。 As described above, according to the present invention, there are provided a soft magnetic alloy for perpendicular magnetic recording and a sputtering target material excellent in amorphousness, hardness, corrosion resistance, and saturation magnetic flux density, and a magnetic recording medium using this alloy. The
 スパッタリングターゲット材の製造
 次に、スパッタリングターゲット材の製造方法を示す。表1のNo.3、No.11、No.12、No.13、No.24及び表2のNo.35、No.38に示す7種類の成分組成について、溶解原料を秤量し、減圧Arガス雰囲気の耐火物坩堝内で誘導加熱溶解したあと、坩堝下部の直径8mmのノズルより出湯し、Arガスによりアトマイズした。このガスアトマイズ粉末を原料として、外径220mm、内径210mm、長さ200mmのSC製の缶に脱気装入した。脱気時の真空到達度は約1.3×10-2Paとした。上記の粉末充填ビレットを1150℃に加熱したあと、径230mmの拘束型コンテナ内に装入し、500MPaの加圧にて成形した。上記の方法で作製した固化成形体を、ワイヤーカット、旋盤加工、平面研磨により、直径180mm、厚さ7mmの円盤状に加工し、スパッタリングターゲット材とした。
Production of Sputtering Target Material Next, a method for producing a sputtering target material will be described. No. in Table 1 3, no. 11, no. 12, no. 13, no. 24 and No. 2 in Table 2. 35, no. With regard to the seven types of component compositions shown in Fig. 38, the melted raw materials were weighed and induction-heated and melted in a refractory crucible in a reduced pressure Ar gas atmosphere. This gas atomized powder was used as a raw material and deaerated and charged into an SC can having an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm. The degree of vacuum reached during degassing was about 1.3 × 10 −2 Pa. The above powder-filled billet was heated to 1150 ° C., then charged into a constraining container having a diameter of 230 mm, and molded under a pressure of 500 MPa. The solidified molded body produced by the above method was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.
 スパッタ膜の製造
 これら7種類の成分組成についてスパッタリングターゲット材を用い、ガラス基板上にスパッタ膜を成膜した。X線回折パターンは、No.3、No.11、No.12、No.13、No.24はいずれにおいてもハローパターンが見られ、No.35、No.38は結晶ピークが見られた。また、急冷薄帯と同様に耐食性試験(塩水噴霧試験)をおこなったところ、No.3、No.11、No.12、No.13、No.24はいずれも発銹がなく、No.35、No.38では一部発銹が見られた。以上総括すると、急冷薄帯にて評価した結果とスパッタリングターゲット材を用いて成膜したスパッタ膜の評価とが同等の傾向であることを確認した。
Production of Sputtered Film A sputtered film was formed on a glass substrate using a sputtering target material for these seven kinds of component compositions. The X-ray diffraction pattern is no. 3, no. 11, no. 12, no. 13, no. No. 24 has a halo pattern, and no. 35, no. As for 38, a crystal peak was observed. In addition, when the corrosion resistance test (salt spray test) was performed in the same manner as the quenched ribbon, No. 3, no. 11, no. 12, no. 13, no. No. 24 had no fire, no. 35, no. In 38, there was a partial start. In summary, it was confirmed that the results of the evaluation with the quenched ribbon and the evaluation of the sputtered film formed using the sputtering target material had the same tendency.

Claims (11)

  1.  at.%で、
     (A)Ta,Nb及びVからなる群から選択される元素の1種又は2種以上を0.5%以上、
     (B)Cr,Mo及びWからなる群から選択される元素の1種又は2種以上を0.5%以上、
     (C)Ti,Zr及びHfからなる群から選択される元素の1種又は2種以上を0~5%、
     (D)Ni及びMnからなる群から選択される元素の1種又は2種を0~30%、
     (E)Al及びCuからなる群から選択される元素の1種又は2種を0~5%、
     (F)Si,Ge,P,B及びCからなる群から選択される元素の1種又は2種以上を0~10%
    含み、残部Co及びFe並びに不可避的不純物からなる磁気記録用軟磁性合金であって、
     Fe:Coの比が10:90~70:30であり、かつ、(A)群元素、(B)群元素及び(C)群元素の合計量が前記合金の10~30%である、磁気記録用軟磁性合金。
    at. %so,
    (A) 0.5% or more of one or more elements selected from the group consisting of Ta, Nb and V,
    (B) 0.5% or more of one or more elements selected from the group consisting of Cr, Mo and W,
    (C) 0 to 5% of one or more elements selected from the group consisting of Ti, Zr and Hf,
    (D) 1 to 30% of one or two elements selected from the group consisting of Ni and Mn,
    (E) 0 to 5% of one or two elements selected from the group consisting of Al and Cu;
    (F) 0 to 10% of one or more elements selected from the group consisting of Si, Ge, P, B and C
    A soft magnetic alloy for magnetic recording comprising the balance Co and Fe and inevitable impurities,
    The ratio of Fe: Co is 10:90 to 70:30, and the total amount of the (A) group element, (B) group element and (C) group element is 10 to 30% of the alloy. Soft magnetic alloy for recording.
  2.  前記合金が、
     (A)Ta,Nb及びVからなる群から選択される元素の1種又は2種以上を0.5%以上、
     (B)Cr,Mo及びWからなる群から選択される元素の1種又は2種以上を0.5%以上、
     (C)Ti,Zr及びHfからなる群から選択される元素の1種又は2種以上を0~5%、
     (D)Ni及びMnからなる群から選択される元素の1種又は2種を0~30%、
     (E)Al及びCuからなる群から選択される元素の1種又は2種を0~5%、
     (F)Si,Ge,P,B及びCからなる群から選択される元素の1種又は2種以上を0~10%
     残部Co及びFe並びに不可避的不純物
    のみからなる、請求項1に記載の合金。
    The alloy is
    (A) 0.5% or more of one or more elements selected from the group consisting of Ta, Nb and V,
    (B) 0.5% or more of one or more elements selected from the group consisting of Cr, Mo and W,
    (C) 0 to 5% of one or more elements selected from the group consisting of Ti, Zr and Hf,
    (D) 1 to 30% of one or two elements selected from the group consisting of Ni and Mn,
    (E) 0 to 5% of one or two elements selected from the group consisting of Al and Cu;
    (F) 0 to 10% of one or more elements selected from the group consisting of Si, Ge, P, B and C
    The alloy according to claim 1, consisting only of the balance Co and Fe and inevitable impurities.
  3.  (D)群元素の1種又は2種を0%よりも多く30%以下、
     (E)群元素の1種又は2種を0%よりも多く5%以下、
     (F)群元素の1種又は2種以上を0%よりも多く10%以下
    含む、請求項1又は2に記載の合金。
    (D) 1 type or 2 types of group elements more than 0% and 30% or less,
    (E) One or two of the group elements is more than 0% and 5% or less,
    (F) The alloy of Claim 1 or 2 which contains 1 type or 2 types or more of a group element more than 0% and 10% or less.
  4.  (A)群元素の1種又は2種以上を2~20%含む、請求項1~3のいずれか一項に記載の合金。 The alloy according to any one of claims 1 to 3, comprising 2 to 20% of one or more of group elements (A).
  5.  (B)群元素の1種又は2種以上を1~20%含む、請求項1~4のいずれか一項に記載の合金。 The alloy according to any one of claims 1 to 4, comprising 1 to 20% of one or more of group elements (B).
  6.  (C)群元素の1種又は2種以上を2~4%含む、請求項1~5のいずれか一項に記載の合金。 The alloy according to any one of claims 1 to 5, comprising 2 to 4% of one or more of group (C) elements.
  7.  (D)群元素の1種又は2種を0%よりも多く10%含む、請求項1~6のいずれか一項に記載の合金。 The alloy according to any one of claims 1 to 6, comprising 10% of one or two elements of group (D) greater than 0%.
  8.  (E)群元素の1種又は2種を1~4%含む、請求項1~7のいずれか一項に記載の合金。 The alloy according to any one of claims 1 to 7, comprising 1 to 4% of one or two elements of group (E).
  9.  (F)群元素の1種又は2種以上を1~8%含む、請求項1~8のいずれか一項に記載の合金。 The alloy according to any one of claims 1 to 8, comprising 1 to 8% of one or more of group (F) elements.
  10.  請求項1~9のいずれか一項に記載の合金で構成されたスパッタリングターゲット材。 A sputtering target material comprising the alloy according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか一項に記載の合金で構成された軟磁性層を備えた、磁気記録媒体。 A magnetic recording medium comprising a soft magnetic layer composed of the alloy according to any one of claims 1 to 9.
PCT/JP2012/053164 2011-02-16 2012-02-10 Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recoding medium WO2012111568A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG2013058649A SG192259A1 (en) 2011-02-16 2012-02-10 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
CN201280008677.9A CN103380458B (en) 2011-02-16 2012-02-10 Magnetic recording non-retentive alloy, sputtering target material and magnetic recording media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-030562 2011-02-16
JP2011030562A JP5698023B2 (en) 2011-02-16 2011-02-16 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2012111568A1 true WO2012111568A1 (en) 2012-08-23

Family

ID=46672492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053164 WO2012111568A1 (en) 2011-02-16 2012-02-10 Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recoding medium

Country Status (5)

Country Link
JP (1) JP5698023B2 (en)
MY (1) MY181980A (en)
SG (2) SG192259A1 (en)
TW (1) TWI508114B (en)
WO (1) WO2012111568A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160141158A1 (en) * 2012-06-06 2016-05-19 Hitachi Metals, Ltd. Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD OF PRODUCING SAME

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116928B2 (en) * 2013-02-18 2017-04-19 山陽特殊製鋼株式会社 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
US9548073B1 (en) * 2013-03-13 2017-01-17 WD Media, LLC Systems and methods for providing high performance soft magnetic underlayers for magnetic recording media
JP6405261B2 (en) * 2014-05-01 2018-10-17 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
WO2016035415A1 (en) * 2014-09-04 2016-03-10 Jx金属株式会社 Sputtering target
WO2016157922A1 (en) * 2015-03-27 2016-10-06 日立金属株式会社 Soft magnetic film and sputtering target for forming soft magnetic film
JP6442460B2 (en) * 2016-10-27 2018-12-19 山陽特殊製鋼株式会社 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
TWI798579B (en) * 2019-08-26 2023-04-11 日商日立金屬股份有限公司 Fe-Si-B-Nb system target
WO2021039711A1 (en) * 2019-08-26 2021-03-04 日立金属株式会社 Fe-co-si-b-nb-based target
JPWO2021039712A1 (en) * 2019-08-26 2021-03-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123602A (en) * 2006-11-10 2008-05-29 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium
JP2008135137A (en) * 2006-11-29 2008-06-12 Fujitsu Ltd Magnetic recording medium, method of manufacturing magnetic recording medium and magnetic recording device
JP2010287269A (en) * 2009-06-10 2010-12-24 Sanyo Special Steel Co Ltd CoFeNi-BASED ALLOY FOR SOFT MAGNETIC FILM LAYER IN VERTICAL MAGNETIC RECORDING MEDIUM, AND SPUTTERING TARGET MATERIAL
JP2010287260A (en) * 2009-06-09 2010-12-24 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123602A (en) * 2006-11-10 2008-05-29 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium
JP2008135137A (en) * 2006-11-29 2008-06-12 Fujitsu Ltd Magnetic recording medium, method of manufacturing magnetic recording medium and magnetic recording device
JP2010287260A (en) * 2009-06-09 2010-12-24 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium
JP2010287269A (en) * 2009-06-10 2010-12-24 Sanyo Special Steel Co Ltd CoFeNi-BASED ALLOY FOR SOFT MAGNETIC FILM LAYER IN VERTICAL MAGNETIC RECORDING MEDIUM, AND SPUTTERING TARGET MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160141158A1 (en) * 2012-06-06 2016-05-19 Hitachi Metals, Ltd. Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD OF PRODUCING SAME
US9773654B2 (en) * 2012-06-06 2017-09-26 Hitachi Metals, Ltd. Fe-Co-based alloy sputtering target material, and method of producing same

Also Published As

Publication number Publication date
SG10201508695WA (en) 2015-11-27
JP5698023B2 (en) 2015-04-08
MY181980A (en) 2021-01-18
CN103380458A (en) 2013-10-30
JP2012169021A (en) 2012-09-06
TW201239922A (en) 2012-10-01
SG192259A1 (en) 2013-09-30
TWI508114B (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5698023B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
TWI512113B (en) An alloy for a seed layer of a magnetic recording medium, and a sputtering target
TWI627286B (en) CoFe-based alloy for soft magnetic film layer and sputtering target for perpendicular magnetic recording medium
TWI478183B (en) A magneto-magnetic recording medium for magnetic recording and a sputtering target, and a magnetic recording medium
JP6431496B2 (en) Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5714397B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
TW201323642A (en) Alloy for soft-magnetic thin-film layer on perpendicular magnetic recording medium, and sputtering-target material
JP5797398B2 (en) Ni-based alloy for magnetic recording, sputtering target material, and magnetic recording medium
TWI604078B (en) Perpendicular magnetic recording medium, soft magnetic film layer alloy, sputtering target, and perpendicular magnetic recording medium having a soft magnetic film layer
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
CN107251139B (en) Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
WO2017033936A1 (en) Non-magnetic amorphous alloy, and sputtering target material and magnetic recording medium using said alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747539

Country of ref document: EP

Kind code of ref document: A1