WO2016035415A1 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
WO2016035415A1
WO2016035415A1 PCT/JP2015/067226 JP2015067226W WO2016035415A1 WO 2016035415 A1 WO2016035415 A1 WO 2016035415A1 JP 2015067226 W JP2015067226 W JP 2015067226W WO 2016035415 A1 WO2016035415 A1 WO 2016035415A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sputtering target
sputtering
oxide
particles
Prior art date
Application number
PCT/JP2015/067226
Other languages
French (fr)
Japanese (ja)
Inventor
荒川 篤俊
優斗 森下
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to SG11201606737UA priority Critical patent/SG11201606737UA/en
Priority to CN201580009968.3A priority patent/CN106029943B/en
Priority to JP2015548075A priority patent/JP5946974B1/en
Publication of WO2016035415A1 publication Critical patent/WO2016035415A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a magnetic material sputtering target used to form a magnetic thin film of a magnetic recording medium, in particular, a granular film in a magnetic recording medium of a hard disk adopting a perpendicular magnetic recording method, and causes the generation of particles during sputtering.
  • the present invention relates to a non-magnetic material particle-dispersed magnetic material sputtering target containing Co or Fe as a main component, which can suppress abnormal discharge of the non-magnetic material.
  • a material based on Co or Fe which is a ferromagnetic metal, is used for a recording layer of a hard disk adopting a perpendicular magnetic recording system.
  • Co—Cr-based, Co—Pt, Co—Cr—Pt-based, and Fe—Pt-based alloys composed mainly of ferromagnetic metals and non-magnetic inorganic materials are often used. Yes.
  • the magnetic thin film of such magnetic recording media, such as a hard disk is often produced by sputtering a sputtering target containing the above material as a component because of high productivity.
  • a melting method or a powder metallurgy method can be considered as a method for producing a sputtering target for a magnetic recording medium. Which method is used depends on the required characteristics, but it cannot be unequivocally stated, but it is used for the recording layer of hard disks of the perpendicular magnetic recording system, an alloy mainly composed of a ferromagnetic metal and a non-magnetic inorganic substance.
  • Sputtering targets made of particles are generally produced by powder metallurgy. This is because the inorganic particles need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
  • Patent Document 1 As a powder metallurgy method, for example, in Patent Document 1, mixed powder obtained by mixing Co powder, Cr powder, TiO 2 powder, and SiO 2 powder and Co spherical powder are mixed by a planetary motion mixer, and this mixing is performed. A method has been proposed in which powder is formed by hot pressing to obtain a sputtering target for a magnetic recording medium.
  • Patent Document 2 discloses a sputtering target for forming a magnetic recording medium thin film by mixing Co—Cr binary alloy powder, Pt powder, and SiO 2 powder and hot-pressing the obtained mixed powder. A method has been proposed.
  • Patent Document 3 proposes a sputtering target composed of a matrix phase of Co and Pt and a metal oxide phase having an average particle size of 0.05 ⁇ m or more and less than 7.0 ⁇ m, which suppresses the growth of crystal grains and has a low Proposals have been made to increase the film formation efficiency by obtaining a magnetic permeability and high density target. Further, in Patent Document 4, the average particle diameter of the particles formed by the oxide phase is set to 3 ⁇ m or less, and in Patent Document 5, silica particles or titania particles are sputtered in a cross section perpendicular to the main surface of the sputtering target.
  • the average particle diameter of the oxide particles present in the target is 1.5 ⁇ m or less
  • the maximum value of the distance between any two points on the outer periphery of the oxide particles is the maximum diameter
  • the inventors of the present invention have found that in a sputtering target containing an oxide phase as non-magnetic material particles, the oxide phase is formed in the form of a material having a high melting point. It has been found that by making it exist in the inside, the coarsening of the oxide phase can be prevented, an abnormal discharge due to a nonmagnetic material during sputtering does not occur, and a target with less generation of particles can be obtained.
  • a sputtering target containing an alloy containing Co or Fe as a main component and an oxide containing Mn and B and in the composition of the sputtering target, 9 at% ⁇ Mn + B + O ⁇ 56 at%, B ⁇ Mn (at %) And Mn + B ⁇ O (at%).
  • a sputtering target containing an alloy containing Co or Fe as a main component and Mn, B and X (where X is one or more elements selected from Co, Cr and Si), A sputtering target characterized in that the composition of the sputtering target satisfies the following conditions: 9 at% ⁇ Mn + B + X + O ⁇ 56 at%, B ⁇ Mn + X (at%), Mn + X + B ⁇ O (at%).
  • an oxide containing Mn and B or an oxide containing Mn, X and B is contained in an amount of 0.1 mol% or more and 15 mol% or less, respectively 1) or 2) The sputtering target as described.
  • the maximum value of the distance between any two points on the outer periphery of the oxide particles is the maximum diameter, and the distance between the two lines when the particles are sandwiched between two parallel lines
  • the ratio of the maximum diameter to the minimum diameter shows a numerical value larger than 0.5
  • oxide particles having a particle area of 6 ⁇ m 2 or more are within 1 mm 2 field of view.
  • the sputtering target according to any one of 1) to 3) above, which has an average of 1 or less.
  • One or more elements selected from Pt, Ru, Ag, and Pd are contained in an alloy component of the sputtering target in an amount of 1 mol% to 50 mol%, according to any one of 1) to 4) above Sputtering target.
  • the non-magnetic material particle dispersion type magnetic material sputtering target of the present invention thus adjusted does not cause abnormal discharge due to the non-magnetic material during sputtering, and a target with less generation of particles can be obtained. Thereby, it has the outstanding effect that the cost improvement effect by a yield improvement can be acquired.
  • FIG. 1 is a diagram (photograph) showing a cross-sectional structure of a sputtering target of Example 1.
  • FIG. It is a figure (photograph) which shows the sputtering target cross-sectional structure of the comparative example 1.
  • the sputtering target of the present invention has a structure in which oxide particles containing Mn and B are dispersed as a nonmagnetic material in an alloy mainly composed of Co or Fe, which is a ferromagnetic metal.
  • the alloy containing Co or Fe as a main component include ferromagnetic alloys such as a Co—Cr alloy, a Co—Pt alloy, a Co—Cr—Pt alloy, and an Fe—Pt alloy.
  • Oxide particles containing Mn and B contained as a nonmagnetic material have good wettability with an alloy containing Co or Fe as the main component, and are effective in improving the quality of the magnetic recording medium.
  • the present inventor can prevent the oxide agglomeration (coarse) in the sputtering target structure by forming the oxide containing B in the form of Mn—B—O and forming a material having a high melting point. It was possible to obtain the knowledge that the abnormal discharge caused by the aggregated portion of the oxide can be remarkably suppressed.
  • the sputtering target of the present invention is a sputtering target containing an alloy containing Co or Fe as a main component and an oxide containing Mn and B.
  • 9 at% ⁇ It is characterized by satisfying the conditions of Mn + B + O ⁇ 56 at%, B ⁇ Mn (at%), and Mn + B ⁇ O (at%).
  • the sputtering target if the total content of Mn, B, and O is less than 9 at%, the effect of good characteristics of the perpendicular magnetic recording medium due to the inclusion of Mn, B, and O cannot be obtained, and Mn, B, and O
  • the oxide phase itself composed of Mn—B—O becomes coarse.
  • B> Mn (at%) B is not limited to the form of Mn—B—O, but B—O is present, and the B oxide is dissolved during the sintering, so that the oxide particles (Phase) becomes coarse.
  • Mn + B> O (at%) the effect of good characteristics of the perpendicular magnetic recording medium cannot be obtained.
  • the melting point is higher than that of B 2 O 3 and the dissolution during sintering is suppressed. And abnormal discharge due to coarse particles during sputtering can be reduced.
  • the conditions of 9 at% ⁇ Mn + X + B + O ⁇ 56 at%, B ⁇ Mn + X (at%), and Mn + X + B ⁇ O (at%) are satisfied.
  • the total content of Mn, X, B, and O is less than 9 at% in the composition of the sputtering target, the effect of good characteristics of the perpendicular magnetic recording medium due to the inclusion of Mn, X, B, and O cannot be obtained.
  • the total content of Mn, X, B, and O exceeds 56 at%, the oxide phase composed of Mn—X—B—O becomes coarse.
  • B is not limited to the form of Mn—X—B—O, but B—O is present, and the B oxide is dissolved out during the sintering. The product particles (phase) become coarse. Further, when Mn + X + B> O (at%), the effect of good characteristics of the perpendicular magnetic recording medium cannot be obtained.
  • the present invention also covers the scope of the present invention in the case of a composition in which B is expressed as a simple substance instead of an oxide.
  • B is not added as an oxide, but a reaction of 2B + 3CoO ⁇ B 2 O 3 + 3Co occurs during sintering.
  • a B oxide is formed, and the B oxide is melted during sintering and an enlarged structure is observed.
  • Co-40Pt—B 2 O 3 -2MnO—CoO (mol%) is considered, and the composition of the Mn oxide, X oxide (corresponding to CoO) and B oxide in the sputtering target is set as described above. It is necessary to adjust to meet.
  • the composition of the sputtering target after oxidation is included in the scope of the present invention as long as the composition is within the range defined in the present invention.
  • the content of the above-described oxide containing Mn and B or the oxide containing Mn, X and B is preferably 0.1 mol% or more and 15 mol% or less in the composition of the sputtering target. If the amount is less than 0.1 mol%, the inclusion effect is hardly observed, and if it exceeds 15 mol%, the content is too large to obtain the desired effect.
  • the Si oxide content is preferably 10 mol% or less, and more preferably 6 mol% or less.
  • the maximum value of the distance between any two points on the outer periphery of the oxide particle is set as the maximum diameter on the target surface or the cross-sectional structure, and the particle is sandwiched between two parallel straight lines.
  • the minimum value of the distance between two straight lines is the minimum diameter
  • the ratio of the maximum diameter to the minimum diameter is a value larger than 0.5
  • the oxide particle having a particle area of 6 ⁇ m 2 or more is 1 mm 2. It is characterized by an average of less than 1 in the field of view.
  • all the oxide particles in the sputtering target of the present invention do not show a numerical value in which the ratio of the maximum diameter to the minimum diameter is larger than 0.5.
  • the increase in the number of particles is greatly affected. If the shape of the oxide particles is long and continuous, it is difficult to cause grain breakage and discharge abnormalities, but the diameter of the oxide particles is close to a circle or square (that is, the ratio of the maximum diameter to the minimum diameter is 0.5). If it shows a larger numerical value), the increase in the number of particles has a great influence.
  • the observation of the structure of the sputtering target is performed at any five locations by polishing the target surface and using an electron microscope (viewing field: 1 mm 2 ). The microscopic image is displayed on a PC screen, image analysis processing (binarization processing) is performed, the outline of the oxide particles (black portions) is clarified, and the number of oxide particles of a predetermined size is counted. The average number is obtained.
  • a Co alloy such as a Co—Cr alloy, a Co—Pt alloy, a Co—Cr—Pt alloy, or an Fe alloy such as an Fe—Pt alloy is effective.
  • one or more elements selected from Pt, Ru, Ag, and Pd are contained in an alloy component of the sputtering target in an amount of 1 mol% to 50 mol%. These are elements added as necessary, and the added amount is an effective amount for exerting the effect of addition.
  • the sputtering target of the present invention can be produced by a powder metallurgy method.
  • a metal raw material powder such as Co, Fe, and Pt
  • a non-magnetic material raw material powder such as MnO
  • an additive metal powder such as Ag
  • the particle size of the raw material it is desirable to use metal powder having an average particle diameter of 10 ⁇ m or less and non-magnetic material powder of 5 ⁇ m or less.
  • the non-magnetic material raw powder is more likely to be as spherical as possible to achieve the microstructure of the present invention.
  • the particle size of the powder can be measured with a laser diffraction particle size distribution meter.
  • an oxide raw material having a low melting point such as B oxide does not melt during sintering and the oxide phase is not coarsened.
  • the oxides having a high melting point (MnBO 3 , Mn 3 B 2 O 6 or the like) is prepared in advance and used as a raw material powder.
  • MnBO 3 powder for example, mixing a Mn 2 O 3 powder and B 2 O 3 powder, synthetic, can be used after pulverizing. However, the MnBO 3 powder may become Mn-rich, B-rich, and oxygen-rich MnBO 3 powder rather than the stoichiometric ratio.
  • Mn and B composition of the produced MnBO 3 powder for each mixed, synthesized, and pulverized lot, and determine the weighed value so as to obtain a predetermined target composition.
  • the Mn 3 B 2 O 6 powder for example, can be used mixed with MnO powder and B 2 O 3 powder, synthetic, those pulverized.
  • the Mn 3 B 2 O 6 powder may be Mn-rich, B-rich, and oxygen-rich Mn 3 B 2 O 6 powders rather than the stoichiometric ratio, as with the MnBO 3 powder, it was prepared.
  • Mn and B composition of the Mn 3 B 2 O 6 powder it is preferable to analyze the Mn and B composition of the Mn 3 B 2 O 6 powder for each lot that has been mixed, synthesized, and pulverized, and to determine the weighed value so as to obtain a predetermined target composition. At that time, it is preferable to use a small amount of CoO powder, Mn powder, CoB powder or the like for adjustment to obtain a desired composition. Next, these metal powders, non-magnetic material raw material powders, and the like are weighed so as to have a desired composition, and mixed by pulverization using a known method such as a ball mill. In order to shorten the mixing time and increase the productivity, it is preferable to use a high energy ball mill.
  • the mixed powder obtained as described above is sintered using a hot press or a hot isostatic press. Although it depends on the component composition of the target, by setting the mixing conditions and sintering conditions for the above raw materials, the density is sufficiently high and the conditions for non-magnetic material particles to be finely dispersed in the metal phase are found. If the manufacturing conditions are fixed, a sintered body target in which such non-magnetic material particles are always dispersed can be obtained.
  • Example 1 As the metal raw material powder, Co powder with an average particle diameter of 4 ⁇ m, Pt powder with an average particle diameter of 3 ⁇ m, as a nonmagnetic material powder, Cr 2 O 3 powder with an average particle diameter of 1 ⁇ m, MnBO 3 powder with an average particle diameter of 1.2 ⁇ m, A SiO 2 powder having an average particle size of 0.7 ⁇ m and a CoO powder having an average particle size of 2 ⁇ m were prepared.
  • MnBO 3 powder was used previously Mn 2 O 3 powder, B 2 O 3 powder mixed, synthetic, those pulverized. Then, 1500 g of these powders were weighed at the following composition ratio.
  • the composition of the oxide component is as follows: Mn: 3.2 at%, X as Co: 1.6 at%, Cr: 3.2 at% and Si: 0.8 at%, B: 3.2 at%, O: 16 .1 at%.
  • the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours.
  • the mixed powder thus obtained was filled in a carbon mold and hot-pressed in a vacuum atmosphere at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
  • the ratio of the maximum diameter to the minimum diameter is larger than 0.5 within a 1 mm 2 visual field, and the particle area is 6 ⁇ m.
  • the average number of the two or more oxide particles was 0.5.
  • a microscopic image is displayed on a PC screen, and image analysis processing (binarization processing) is performed. These were calculated after clarifying the outline of (black part).
  • this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed.
  • the sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm.
  • the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was seven. Even when sputtering is not performed, the number of particles on the silicon substrate may be counted as 4 to 6 when measured with a particle counter. Therefore, it can be said that the number of particles in this example is at an extremely low level. .
  • the composition of this oxide component is Mn: 2.3 at%
  • X is Cr: 1.6 at%
  • Si 0.8 at%
  • B 7.8 at%
  • O 17.8 at%.
  • the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours.
  • the mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
  • the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 ⁇ m 2.
  • the average number of the above oxide particles was 3.0. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
  • this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed.
  • the sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm.
  • the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was 35.
  • Example 2 As a metal raw material powder, Co powder with an average particle diameter of 4 ⁇ m, Pt powder with an average particle diameter of 3 ⁇ m, Ru powder with an average particle diameter of 5 ⁇ m, Mn powder with an average particle diameter of 4 ⁇ m, and CrBO 3 with an average particle diameter of 1 ⁇ m as a nonmagnetic material powder. A powder, MnBO 3 powder having an average particle diameter of 1.2 ⁇ m, and TiO 2 powder having an average particle diameter of 1 ⁇ m were prepared. For MnBO 3 powder, pre-mixing the Mn 2 O 3 powder and B 2 O 3 powder, synthesized, it was used after grinding. The same was used for CrBO 3 powder.
  • the composition of the oxide component is Mn: 2.3 at%, X is Cr: 4.5 at%, B: 6.0 at%, O: 19.6 at%. Note that Ti is omitted.
  • the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours.
  • the mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
  • the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 ⁇ m 2.
  • the average number of the above oxide particles was 0.8. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
  • this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed.
  • the sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm.
  • the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was nine.
  • Example 3 As the metal raw material powder, Fe powder having an average particle diameter of 4 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, Ag powder having an average particle diameter of 5 ⁇ m, and MnBO 3 powder having an average particle diameter of 1.2 ⁇ m, an average particle diameter of 0 A 7 ⁇ m SiO 2 powder was prepared.
  • MnBO 3 powder was used previously Mn 2 O 3 powder, B 2 O 3 powder mixed, synthetic, those pulverized. Then, 1500 g of these powders were weighed at the following composition ratio.
  • the composition of the oxide component is Mn: 1.7 at%
  • X is Si: 5.8 at%
  • B 1.7 at%
  • O 15.8 at%.
  • the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours.
  • the mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
  • the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 ⁇ m 2.
  • the average number of the above oxide particles was 1.0. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
  • this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed.
  • the sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm.
  • the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was 11.
  • Example 4 As the metal raw material powder, Co powder with an average particle size of 4 ⁇ m, Pt powder with an average particle size of 3 ⁇ m, Pd powder with an average particle size of 5 ⁇ m, and MnBO 3 powder with an average particle size of 1.2 ⁇ m, an average particle size of 2 ⁇ m as a nonmagnetic material powder Co 3 O 4 powder was prepared.
  • MnBO 3 powder previously, Mn 2 O 3 powder, the B 2 O 3 powder mixed, synthesized, was used after grinding. Then, 1500 g of these powders were weighed at the following composition ratio.
  • the composition of the oxide component is Mn: 1.6 at%
  • X is Co: 7.1 at%
  • B 1.6 at%
  • O 14.3 at%.
  • the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours.
  • the mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
  • the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 ⁇ m 2.
  • the average number of the above oxide particles was 1.0. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
  • this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed.
  • the sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm.
  • the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was eight.
  • Example 5 As the metal raw material powder, Co powder with an average particle diameter of 4 ⁇ m, Pt powder with an average particle diameter of 3 ⁇ m, as nonmagnetic material powder, Mn 3 B 2 O 6 powder with an average particle diameter of 2.4 ⁇ m, SiO 2 powder with an average particle diameter of 2 ⁇ m A CoO powder having an average particle diameter of 2 ⁇ m was prepared. The Mn 3 B 2 O 6 powder was used previously MnO powder, B 2 O 3 powder mixed, synthetic, those pulverized. Then, 1500 g of these powders were weighed at the following composition ratio.
  • the composition of this oxide component is Mn: 2.6 at%, X is Co: 3.5 at%, B: 1.7 at%, Si: 1.7 at%, O: 12.2 at%.
  • the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours.
  • the mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
  • the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 ⁇ m 2.
  • the average number of the above oxide particles was 0.8. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
  • this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed.
  • the sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm.
  • the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was seven.
  • the present invention can suppress abnormal discharge due to a nonmagnetic material during sputtering by suppressing aggregation (coarseness) of the oxide phase.
  • the magnetic thin film of a magnetic recording medium particularly a hard disk, has an excellent effect of reducing the generation of particles during sputtering caused by abnormal discharge and obtaining a cost improvement effect by improving yield. It is useful as a ferromagnetic material sputtering target used for forming a drive recording layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)
  • Thin Magnetic Films (AREA)

Abstract

Provided is a sputtering target containing: an alloy including Co or Fe as a main component; and an oxide including Mn and B. The sputtering target is characterized by having the composition, which satisfies the conditions of 9 at% ≦ Mn+B+O ≦ 56 at%, B ≦ Mn (at%), and Mn+B ≦ O (at%). This sputtering target is capable of suppressing abnormal discharge which is caused by a non-magnetic material and results in the formation of particles during sputtering.

Description

スパッタリングターゲットSputtering target
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録媒体におけるグラニュラー膜の成膜に使用される磁性材スパッタリングターゲットに関し、スパッタリングの際にパーティクル発生の原因となる非磁性材の異常放電を抑制することができる、Co又はFeを主成分とする非磁性材粒子分散型磁性材スパッタリングターゲットに関する。 The present invention relates to a magnetic material sputtering target used to form a magnetic thin film of a magnetic recording medium, in particular, a granular film in a magnetic recording medium of a hard disk adopting a perpendicular magnetic recording method, and causes the generation of particles during sputtering. The present invention relates to a non-magnetic material particle-dispersed magnetic material sputtering target containing Co or Fe as a main component, which can suppress abnormal discharge of the non-magnetic material.
 垂直磁気記録方式を採用するハードディスクの記録層には、強磁性金属であるCo又はFeをベースとした材料が用いられている。中でも、Co-Cr系、Co-Pt、Co-Cr-Pt系、また、Fe-Pt系などの強磁性金属を主成分とする合金と非磁性の無機材料からなる複合材料が多く用いられている。そして、このようなハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とするスパッタリングターゲットをスパッタリングして作製されることが多い。 A material based on Co or Fe, which is a ferromagnetic metal, is used for a recording layer of a hard disk adopting a perpendicular magnetic recording system. Of these, Co—Cr-based, Co—Pt, Co—Cr—Pt-based, and Fe—Pt-based alloys composed mainly of ferromagnetic metals and non-magnetic inorganic materials are often used. Yes. And the magnetic thin film of such magnetic recording media, such as a hard disk, is often produced by sputtering a sputtering target containing the above material as a component because of high productivity.
 磁気記録媒体用スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるため一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性金属を主成分とする合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これは無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。 As a method for producing a sputtering target for a magnetic recording medium, a melting method or a powder metallurgy method can be considered. Which method is used depends on the required characteristics, but it cannot be unequivocally stated, but it is used for the recording layer of hard disks of the perpendicular magnetic recording system, an alloy mainly composed of a ferromagnetic metal and a non-magnetic inorganic substance. Sputtering targets made of particles are generally produced by powder metallurgy. This is because the inorganic particles need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
 粉末冶金法として、例えば、特許文献1には、Co粉末とCr粉末とTiO粉末とSiO粉末を混合して得られた混合粉末とCo球形粉末を遊星運動型ミキサーで混合し、この混合粉をホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている。
 また、特許文献2には、Co-Cr二元系合金粉末とPt粉末とSiO粉末を混合して、得られた混合粉末をホットプレスすることにより、磁気記録媒体薄膜形成用スパッタリングターゲットを得る方法が提案されている。
As a powder metallurgy method, for example, in Patent Document 1, mixed powder obtained by mixing Co powder, Cr powder, TiO 2 powder, and SiO 2 powder and Co spherical powder are mixed by a planetary motion mixer, and this mixing is performed. A method has been proposed in which powder is formed by hot pressing to obtain a sputtering target for a magnetic recording medium.
Patent Document 2 discloses a sputtering target for forming a magnetic recording medium thin film by mixing Co—Cr binary alloy powder, Pt powder, and SiO 2 powder and hot-pressing the obtained mixed powder. A method has been proposed.
 また、特許文献3には、Co、Ptのマトリックス相と、平均粒径が0.05μm以上7.0μm未満の金属酸化物相からなるスパッタリングターゲットが提案され、結晶粒の成長を抑制し、低透磁率、高密度のターゲットを得て、成膜効率を上げる提案がなされている。
 さらに、特許文献4には、酸化物相が形成する粒子の平均粒径を3μm以下とすること、特許文献5には、シリカ粒子又はチタニア粒子はスパッタリングターゲットの主表面に垂直な断面において、スパッタリングターゲットの主表面に対して垂直な方向の粒径をDn、前記主表面に平行な方向の粒径をDpとした時に、2≦Dp/Dnを満たすことが記載されている。
 その他、特許文献6には、ターゲット中に存在する酸化物粒子の平均粒径が1.5μm以下であり、酸化物粒子の外周上にある任意の2点の距離の最大値を最大径とし、平行な2本の直線で同粒子を挟んだときの2直線間の距離の最小値を最小径とした場合、最大径と最小径の差が0.4μm以下の酸化物粒子が、ターゲットの観察面において60%以上占めることが記載されている。
 しかし、これらの条件では、いずれも十分ではなく、さらなる改善が求められているのが現状である。
Patent Document 3 proposes a sputtering target composed of a matrix phase of Co and Pt and a metal oxide phase having an average particle size of 0.05 μm or more and less than 7.0 μm, which suppresses the growth of crystal grains and has a low Proposals have been made to increase the film formation efficiency by obtaining a magnetic permeability and high density target.
Further, in Patent Document 4, the average particle diameter of the particles formed by the oxide phase is set to 3 μm or less, and in Patent Document 5, silica particles or titania particles are sputtered in a cross section perpendicular to the main surface of the sputtering target. It is described that 2 ≦ Dp / Dn is satisfied, where Dn is a particle size in a direction perpendicular to the main surface of the target and Dp is a particle size in a direction parallel to the main surface.
In addition, in Patent Document 6, the average particle diameter of the oxide particles present in the target is 1.5 μm or less, and the maximum value of the distance between any two points on the outer periphery of the oxide particles is the maximum diameter, When the minimum value of the distance between two lines when the same particle is sandwiched between two parallel lines is set as the minimum diameter, oxide particles having a difference between the maximum diameter and the minimum diameter of 0.4 μm or less are observed on the target. It is described that it occupies 60% or more on the surface.
However, none of these conditions is sufficient and the present situation is that further improvement is required.
国際公開第2011/089760号パンフレットInternational Publication No. 2011/089760 Pamphlet 特開2009-1860号公報JP 2009-1860 A 特開2009-102707号公報JP 2009-102707 A 特開2009-215617号公報JP 2009-215617 A 特開2011-222086号公報JP 2011-2222086 国際公開第2013/125469号パンフレットInternational Publication No. 2013/125469 Pamphlet
 一般的に、Co又はFeを主成分とする非磁性材粒子分散型スパッタリングターゲットにおいて、酸化物などの非磁性材が絶縁体であるため異常放電の原因となっている。そして、この異常放電が原因でスパッタリング中のパーティクル発生が問題となる。特に、B(ボロン)を含有した場合、スパッタリングターゲットの組織内に粗大なBを含む酸化物相が形成されると、そこを起点として異常放電が発生して、パーティクルが著しく増加するということがあった。 Generally, in a non-magnetic material particle-dispersed sputtering target containing Co or Fe as a main component, an abnormal discharge is caused because a non-magnetic material such as an oxide is an insulator. Due to this abnormal discharge, generation of particles during sputtering becomes a problem. In particular, when B (boron) is contained, when a coarse oxide phase containing B is formed in the structure of the sputtering target, abnormal discharge occurs from that point and the number of particles increases significantly. there were.
 本発明者らは、上記課題を解決するために鋭意研究を行った結果、非磁性材粒子として酸化物相を含有するスパッタリングターゲットにおいて、該酸化物相を融点の高い材料の形態でターゲットの組織中に存在させることにより、酸化物相の粗大化を防止することができ、スパッタリング時の非磁性材による異常放電が生じず、パーティクルの発生の少ないターゲットが得られることを見出した。 As a result of intensive studies to solve the above problems, the inventors of the present invention have found that in a sputtering target containing an oxide phase as non-magnetic material particles, the oxide phase is formed in the form of a material having a high melting point. It has been found that by making it exist in the inside, the coarsening of the oxide phase can be prevented, an abnormal discharge due to a nonmagnetic material during sputtering does not occur, and a target with less generation of particles can be obtained.
 このような知見に基づき、本発明者らは、以下の発明を提供するものである。
 1)Co又はFeを主成分とする合金と、Mn及びBを含む酸化物とを含有するスパッタリングターゲットであって、前記スパッタリングターゲットの組成において、9at%≦Mn+B+O≦56at%、B≦Mn(at%)、Mn+B≦O(at%)、の条件を満たすことを特徴とするスパッタリングターゲット。
 2)Co又はFeを主成分とする合金と、Mn、B及びX(但し、XはCo、Cr、Siから選択される一種以上の元素)を含む酸化物を含有するスパッタリングターゲットであって、前記スパッタリングターゲットの組成において、9at%≦Mn+B+X+O≦56at%、B≦Mn+X(at%)、Mn+X+B≦O(at%)、の条件を満たすことを特徴とするスパッタリングターゲット。
 3)前記スパッタリングターゲットの組成において、Mn及びBを含む酸化物、又は、Mn、X及びBを含む酸化物が、各々0.1mol%以上15mol%以下含有することを特徴とする上記1)又は2)記載のスパッタリングターゲット。
 4)スパッタリングターゲットの表面又は断面組織において、酸化物粒子の外周上にある任意の2点の距離の最大値を最大径とし、平行な2本の直線で同粒子を挟んだときの2直線間の距離の最小値を最小径とした場合、その最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm2以上である酸化物粒子が1mm視野内に平均で1個以下であることを特徴とする上記1)~3)のいずれか一に記載のスパッタリングターゲット。
 5)Pt、Ru、Ag、Pdから選択される一種以上の元素をスパッタリングターゲットの合金成分において1mol%以上50mol%以下含有することを特徴とする上記1)~4)のいずれか一に記載のスパッタリングターゲット。
Based on such knowledge, the present inventors provide the following inventions.
1) A sputtering target containing an alloy containing Co or Fe as a main component and an oxide containing Mn and B, and in the composition of the sputtering target, 9 at% ≦ Mn + B + O ≦ 56 at%, B ≦ Mn (at %) And Mn + B ≦ O (at%).
2) A sputtering target containing an alloy containing Co or Fe as a main component and Mn, B and X (where X is one or more elements selected from Co, Cr and Si), A sputtering target characterized in that the composition of the sputtering target satisfies the following conditions: 9 at% ≦ Mn + B + X + O ≦ 56 at%, B ≦ Mn + X (at%), Mn + X + B ≦ O (at%).
3) In the composition of the sputtering target, an oxide containing Mn and B or an oxide containing Mn, X and B is contained in an amount of 0.1 mol% or more and 15 mol% or less, respectively 1) or 2) The sputtering target as described.
4) On the surface or cross-sectional structure of the sputtering target, the maximum value of the distance between any two points on the outer periphery of the oxide particles is the maximum diameter, and the distance between the two lines when the particles are sandwiched between two parallel lines When the minimum value of the distance is the minimum diameter, the ratio of the maximum diameter to the minimum diameter shows a numerical value larger than 0.5, and oxide particles having a particle area of 6 μm 2 or more are within 1 mm 2 field of view. The sputtering target according to any one of 1) to 3) above, which has an average of 1 or less.
5) One or more elements selected from Pt, Ru, Ag, and Pd are contained in an alloy component of the sputtering target in an amount of 1 mol% to 50 mol%, according to any one of 1) to 4) above Sputtering target.
 このように調整した本発明の非磁性材粒子分散型の磁性材スパッタリングターゲットは、スパッタリング時の非磁性材による異常放電が生ぜず、パーティクルの発生の少ないターゲットが得られる。これにより、歩留まり向上によるコスト改善効果を得ることができるという優れた効果を有する。 The non-magnetic material particle dispersion type magnetic material sputtering target of the present invention thus adjusted does not cause abnormal discharge due to the non-magnetic material during sputtering, and a target with less generation of particles can be obtained. Thereby, it has the outstanding effect that the cost improvement effect by a yield improvement can be acquired.
実施例1のスパッタリングターゲット断面組織を示す図(写真)である。1 is a diagram (photograph) showing a cross-sectional structure of a sputtering target of Example 1. FIG. 比較例1のスパッタリングターゲット断面組織を示す図(写真)である。It is a figure (photograph) which shows the sputtering target cross-sectional structure of the comparative example 1.
 本発明のスパッタリングターゲットは、強磁性金属であるCo又はFeを主成分とする合金に、非磁性材料として、Mn及びBを含む酸化物粒子が分散する組織を有するものである。Co又はFeを主成分とする合金としては、Co-Cr合金、Co-Pt合金、Co-Cr-Pt合金、Fe-Pt合金などの強磁性合金が挙げられる。
 非磁性材料として含有する、Mn及びBを含む酸化物粒子は、Co又はFeを主成分とする合金との濡れ性が良く、磁気記録媒体の品質の向上に有効とされる。ところが、酸化物としてBを含む場合、融点が低いために焼結時に酸化物が溶け出して、酸化物粒子(相)が粗大化するといった問題があった。本発明者は、Bを含有する酸化物をMn-B-Oの形態として、これが融点の高い材料となることで、スパッタリングターゲット組織中に酸化物の凝集部(粗大化)を防止することができ、これにより、酸化物の凝集部に起因する異常放電を著しく抑制できるとの知見を得た。
The sputtering target of the present invention has a structure in which oxide particles containing Mn and B are dispersed as a nonmagnetic material in an alloy mainly composed of Co or Fe, which is a ferromagnetic metal. Examples of the alloy containing Co or Fe as a main component include ferromagnetic alloys such as a Co—Cr alloy, a Co—Pt alloy, a Co—Cr—Pt alloy, and an Fe—Pt alloy.
Oxide particles containing Mn and B contained as a nonmagnetic material have good wettability with an alloy containing Co or Fe as the main component, and are effective in improving the quality of the magnetic recording medium. However, when B 2 O 3 is included as an oxide, since the melting point is low, there is a problem that the oxide is dissolved during sintering and the oxide particles (phase) are coarsened. The present inventor can prevent the oxide agglomeration (coarse) in the sputtering target structure by forming the oxide containing B in the form of Mn—B—O and forming a material having a high melting point. It was possible to obtain the knowledge that the abnormal discharge caused by the aggregated portion of the oxide can be remarkably suppressed.
 上記の知見に基づき、本発明のスパッタリングターゲットは、Co又はFeを主成分とする合金と、Mn及びBを含む酸化物を含有するスパッタリングターゲットであって、該スパッタリングターゲットの組成において、9at%≦Mn+B+O≦56at%、B≦Mn(at%)、Mn+B≦O(at%)の条件を満たすことを特徴とする。
 スパッタリングターゲットにおいて、Mn、B、Oの合計含有量が9at%未満であると、Mn、B、Oを含むことによる垂直磁気記録媒体の良好な特性の効果が得られず、Mn、B、Oの合計含有量が56at%を超えると、Mn-B-Oからなる酸化物相自体が粗大化してしまう。また、B>Mn(at%)の場合、BがMn-B-Oの形態だけに留まらず、B-Oが存在することになり、焼結時にB酸化物が溶け出して、酸化物粒子(相)が粗大化してしまう。さらに、Mn+B>O(at%)の場合、垂直磁気記録媒体の良好な特性の効果が得られない。
Based on the above knowledge, the sputtering target of the present invention is a sputtering target containing an alloy containing Co or Fe as a main component and an oxide containing Mn and B. In the composition of the sputtering target, 9 at% ≦ It is characterized by satisfying the conditions of Mn + B + O ≦ 56 at%, B ≦ Mn (at%), and Mn + B ≦ O (at%).
In the sputtering target, if the total content of Mn, B, and O is less than 9 at%, the effect of good characteristics of the perpendicular magnetic recording medium due to the inclusion of Mn, B, and O cannot be obtained, and Mn, B, and O When the total content of C exceeds 56 at%, the oxide phase itself composed of Mn—B—O becomes coarse. Further, when B> Mn (at%), B is not limited to the form of Mn—B—O, but B—O is present, and the B oxide is dissolved during the sintering, so that the oxide particles (Phase) becomes coarse. Further, when Mn + B> O (at%), the effect of good characteristics of the perpendicular magnetic recording medium cannot be obtained.
 Bの酸化物に関し、Mnの他、X(但し、XはCo、Cr、Siから選択される一種以上の元素)を含む場合も同様、Mn-Co-B-O、Mn-Cr-B-O、Mn-Si-B-O、Mn-Co-Cr-Si-B-Oなどの形態とすることで、Bよりも融点が高くなり、焼結時の溶け出しを抑制することができ、スパッタリング時の粗大粒による異常放電を低減することができる。
 また、スパッタリングターゲットの組成において、9at%≦Mn+X+B+O≦56at%、B≦Mn+X(at%)、Mn+X+B≦O(at%)の条件を満たすものである。
 スパッタリングターゲットの組成において、Mn、X、B、Oの合計含有量が9at%未満であると、Mn、X、B、Oを含むことによる垂直磁気記録媒体の良好な特性の効果が得られず、Mn、X、B、Oの合計含有量が56at%を超えると、Mn-X-B-Oからなる酸化物相自体が粗大化してしまう。また、B>Mn+X(at%)の場合、BがMn-X-B-Oの形態だけに留まらず、B-Oが存在することになり、焼結時にB酸化物が溶け出して、酸化物粒子(相)が粗大化してしまう。さらに、Mn+X+B>O(at%)の場合、垂直磁気記録媒体の良好な特性の効果が得られない。
Regarding the oxide of B, in the case of containing X (where X is one or more elements selected from Co, Cr, Si) in addition to Mn, Mn—Co—B—O, Mn—Cr—B— By adopting forms such as O, Mn-Si-BO, Mn-Co-Cr-Si-BO, etc., the melting point is higher than that of B 2 O 3 and the dissolution during sintering is suppressed. And abnormal discharge due to coarse particles during sputtering can be reduced.
In the composition of the sputtering target, the conditions of 9 at% ≦ Mn + X + B + O ≦ 56 at%, B ≦ Mn + X (at%), and Mn + X + B ≦ O (at%) are satisfied.
When the total content of Mn, X, B, and O is less than 9 at% in the composition of the sputtering target, the effect of good characteristics of the perpendicular magnetic recording medium due to the inclusion of Mn, X, B, and O cannot be obtained. When the total content of Mn, X, B, and O exceeds 56 at%, the oxide phase composed of Mn—X—B—O becomes coarse. In addition, when B> Mn + X (at%), B is not limited to the form of Mn—X—B—O, but B—O is present, and the B oxide is dissolved out during the sintering. The product particles (phase) become coarse. Further, when Mn + X + B> O (at%), the effect of good characteristics of the perpendicular magnetic recording medium cannot be obtained.
 また本発明は、Bを酸化物ではなく単体で表記された組成の場合も発明の適用範囲とするものである。例えば、Co-40Pt-2B-2MnO-4CoO(mol%)と表記される場合でも、Bは酸化物として添加されるものではないが、焼結時に、2B+3CoO→B+3Coの反応が生じてB酸化物を形成し、このB酸化物が焼結時に溶け出し、肥大した組織が見られることがある。この場合、Co-40Pt-B-2MnO-CoO(mol%)と捉えて、スパッタリングターゲットにおけるMn酸化物とX酸化物(CoOが相当)とB酸化物との組成を上記の条件を満たすように調整することが必要である。このように酸化によってBが形成される場合も、酸化後のスパッタリングターゲットの組成が本発明に規定する範囲に含まれるものであれば、発明の適用範囲とするものである。 The present invention also covers the scope of the present invention in the case of a composition in which B is expressed as a simple substance instead of an oxide. For example, even when expressed as Co-40Pt-2B-2MnO-4CoO (mol%), B is not added as an oxide, but a reaction of 2B + 3CoO → B 2 O 3 + 3Co occurs during sintering. In some cases, a B oxide is formed, and the B oxide is melted during sintering and an enlarged structure is observed. In this case, Co-40Pt—B 2 O 3 -2MnO—CoO (mol%) is considered, and the composition of the Mn oxide, X oxide (corresponding to CoO) and B oxide in the sputtering target is set as described above. It is necessary to adjust to meet. Thus, even when B 2 O 3 is formed by oxidation, the composition of the sputtering target after oxidation is included in the scope of the present invention as long as the composition is within the range defined in the present invention.
 上述した、Mn及びBを含む酸化物、あるいは、Mn、X及びBを含む酸化物の含有量は、スパッタリングターゲットの組成において、各々0.1mol%以上15mol%以下とするのが好ましい。0.1mol%未満であると、含有効果が殆ど見られず、15mol%超であると、多すぎて所望の効果が得られない。なお、Mn-Si-B-O形態の中には、Bよりも融点が高いものの、低融点となる組成域があることから、焼結時に近接粒子同士が溶け出して、粗大化する可能性がある。したがって、Si酸化物は10mol%以下、さらには、6mol%以下とするのが望ましい。 The content of the above-described oxide containing Mn and B or the oxide containing Mn, X and B is preferably 0.1 mol% or more and 15 mol% or less in the composition of the sputtering target. If the amount is less than 0.1 mol%, the inclusion effect is hardly observed, and if it exceeds 15 mol%, the content is too large to obtain the desired effect. In the Mn—Si—B—O form, although the melting point is higher than that of B 2 O 3 , there is a composition range in which the melting point is low, so that adjacent particles are melted during sintering and become coarse. there's a possibility that. Therefore, the Si oxide content is preferably 10 mol% or less, and more preferably 6 mol% or less.
 本発明のスパッタリングターゲットは、ターゲット表面又は断面組織において、酸化物粒子の外周上にある任意の2点の距離の最大値を最大径とし、平行な2本の直線で同粒子を挟んだときの2直線間の距離の最小値を最小径とした場合、その最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm2以上である酸化物粒子が1mm視野内に平均1個未満であることを特徴とする。なお、本願発明のスパッタリングターゲットにおける全ての酸化物粒子が、前記最大径と最小径の比が0.5よりも大きい数値を示すものではない。
 焼結時にB酸化物が溶け出して、酸化物相が粗大化してしまうサイズとして、粒子面積が6μm以上であると、パーティクル数の増加に大きな影響があり、また、
酸化物粒子の形状が細長く連なった粒子であると、脱粒しにくく放電異常を起こしにくいが、酸化物粒子の径上が円形や正方形に近い(つまり、最大径と最小径の比が0.5よりも大きい数値を示す)と、パーティクル数増加に大きな影響がある。
 スパッタリングターゲットの組織観察は、ターゲット表面を研磨し、電子顕微鏡(視野1mm)にて、任意の5箇所について行う。その顕微鏡像をPC画面に映し出し、画像解析処理(二値化処理)して、酸化物粒子(黒い部分)の輪郭を明確にした上で、所定のサイズの酸化物粒子の個数を計数して、その平均個数を求める。
In the sputtering target of the present invention, the maximum value of the distance between any two points on the outer periphery of the oxide particle is set as the maximum diameter on the target surface or the cross-sectional structure, and the particle is sandwiched between two parallel straight lines. When the minimum value of the distance between two straight lines is the minimum diameter, the ratio of the maximum diameter to the minimum diameter is a value larger than 0.5, and the oxide particle having a particle area of 6 μm 2 or more is 1 mm 2. It is characterized by an average of less than 1 in the field of view. In addition, all the oxide particles in the sputtering target of the present invention do not show a numerical value in which the ratio of the maximum diameter to the minimum diameter is larger than 0.5.
When the particle area is 6 μm 2 or more as a size that the B oxide is melted during sintering and the oxide phase becomes coarse, the increase in the number of particles is greatly affected.
If the shape of the oxide particles is long and continuous, it is difficult to cause grain breakage and discharge abnormalities, but the diameter of the oxide particles is close to a circle or square (that is, the ratio of the maximum diameter to the minimum diameter is 0.5). If it shows a larger numerical value), the increase in the number of particles has a great influence.
The observation of the structure of the sputtering target is performed at any five locations by polishing the target surface and using an electron microscope (viewing field: 1 mm 2 ). The microscopic image is displayed on a PC screen, image analysis processing (binarization processing) is performed, the outline of the oxide particles (black portions) is clarified, and the number of oxide particles of a predetermined size is counted. The average number is obtained.
 本発明のスパッタリングターゲットは、磁性金属として、Co-Cr系合金、Co-Pt系合金、Co-Cr-Pt系合金などのCo系合金、あるいは、Fe-Pt系合金などのFe系合金が有効であり、例えば、Ptが1mol%以上50mol%以下、残部Co及び不可避的不純物からなるCo-Pt系合金、Crが10mol%以上50mol%以下、Ptが5mol%を超え50mol%以下、残部Co及び不可避不純物から成るCo-Cr-Pt合金、Ptが1mol%を超え50mol%以下、残部Fe及び不可避的不純物からなるFe系合金を用いることができる。さらに磁気記録媒体としての特性を向上させるために、Pt、Ru、Ag、Pdから選択される一種以上の元素をスパッタリングターゲットの合金成分において1mol%以上50mol%以下含有することが好ましい。これらは必要に応じて添加される元素であり、前記添加量は、添加の効果を発揮させるための有効量である。 In the sputtering target of the present invention, as a magnetic metal, a Co alloy such as a Co—Cr alloy, a Co—Pt alloy, a Co—Cr—Pt alloy, or an Fe alloy such as an Fe—Pt alloy is effective. For example, a Co—Pt alloy composed of 1 mol% to 50 mol% of Pt, the balance Co and unavoidable impurities, Cr of 10 mol% to 50 mol%, Pt of more than 5 mol% and 50 mol% or less, the balance Co and A Co—Cr—Pt alloy composed of inevitable impurities, a Fe-based alloy composed of more than 1 mol% and not more than 50 mol%, the remaining Fe and inevitable impurities can be used. Furthermore, in order to improve the characteristics as a magnetic recording medium, it is preferable that one or more elements selected from Pt, Ru, Ag, and Pd are contained in an alloy component of the sputtering target in an amount of 1 mol% to 50 mol%. These are elements added as necessary, and the added amount is an effective amount for exerting the effect of addition.
 本発明のスパッタリングターゲットは、粉末冶金法により作製することができる。粉末冶金法の場合、Co、Fe、Ptなどの金属原料粉と、MnOなどの非磁性材原料粉、また必要に応じて、Agなどの添加金属粉を用意する。原料の粒度は、金属粉で平均粒径10μm以下、非磁性材粉で5μm以下のものを用いることが望ましい。非磁性材原料粉はできるだけ球状に近い方が、本発明の微細組織を達成しやすい。また、各金属元素の粉末の代わりにこれら金属の合金粉末を用意してもよい。なお、粉末の粒径はレーザー回折式粒度分布計で測定することができる。 The sputtering target of the present invention can be produced by a powder metallurgy method. In the case of powder metallurgy, a metal raw material powder such as Co, Fe, and Pt, a non-magnetic material raw material powder such as MnO, and an additive metal powder such as Ag are prepared as necessary. As for the particle size of the raw material, it is desirable to use metal powder having an average particle diameter of 10 μm or less and non-magnetic material powder of 5 μm or less. The non-magnetic material raw powder is more likely to be as spherical as possible to achieve the microstructure of the present invention. Moreover, you may prepare the alloy powder of these metals instead of the powder of each metal element. The particle size of the powder can be measured with a laser diffraction particle size distribution meter.
 本発明において重要なのは、焼結時にB酸化物のような融点の低い酸化物原料が溶け出して酸化物相が粗大化しないようにすることであり、融点の高い酸化物(MnBO、Mnなど)を事前に作製し、これを原料粉として用いることである。MnBO粉末については、例えば、Mn粉末とB粉末とを混合、合成、粉砕したものを使用することができる。但し、MnBO粉は、化学量論比よりも、Mnリッチ、Bリッチ、酸素リッチなMnBO粉となる場合がある。その場合は、作製したMnBO粉のMnとB組成を、混合、合成、粉砕したロット毎に分析し、所定のターゲット組成になるよう秤量値を決めることが好ましい。また、その際、所望の組成を得るための調整用として、少量のCoO粉、Mn粉、CoB粉等を用いるのが好ましい。Mn粉末については、例えば、MnO粉末とB粉末とを混合、合成、粉砕したものを使用することができる。但し、Mn粉末は、MnBO粉末と同様に、化学量論比よりも、Mnリッチ、Bリッチ、酸素リッチなMn粉となる場合があるため、作製したMn粉のMnとB組成を、混合、合成、粉砕したロット毎に分析し、所定のターゲット組成になるよう秤量値を決めることが好ましい。また、その際、所望の組成を得るための調整用として、少量のCoO粉、Mn粉、CoB粉等を用いるのが好ましい。次に、これらの金属粉末や非磁性材原料粉末などを所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。混合時間を短縮して生産性を高めるためには、高エネルギーボールミルを用いることが好ましい。 What is important in the present invention is that an oxide raw material having a low melting point such as B oxide does not melt during sintering and the oxide phase is not coarsened. The oxides having a high melting point (MnBO 3 , Mn 3 B 2 O 6 or the like) is prepared in advance and used as a raw material powder. For MnBO 3 powder, for example, mixing a Mn 2 O 3 powder and B 2 O 3 powder, synthetic, can be used after pulverizing. However, the MnBO 3 powder may become Mn-rich, B-rich, and oxygen-rich MnBO 3 powder rather than the stoichiometric ratio. In that case, it is preferable to analyze the Mn and B composition of the produced MnBO 3 powder for each mixed, synthesized, and pulverized lot, and determine the weighed value so as to obtain a predetermined target composition. At that time, it is preferable to use a small amount of CoO powder, Mn powder, CoB powder or the like for adjustment to obtain a desired composition. The Mn 3 B 2 O 6 powder, for example, can be used mixed with MnO powder and B 2 O 3 powder, synthetic, those pulverized. However, since the Mn 3 B 2 O 6 powder may be Mn-rich, B-rich, and oxygen-rich Mn 3 B 2 O 6 powders rather than the stoichiometric ratio, as with the MnBO 3 powder, it was prepared. It is preferable to analyze the Mn and B composition of the Mn 3 B 2 O 6 powder for each lot that has been mixed, synthesized, and pulverized, and to determine the weighed value so as to obtain a predetermined target composition. At that time, it is preferable to use a small amount of CoO powder, Mn powder, CoB powder or the like for adjustment to obtain a desired composition. Next, these metal powders, non-magnetic material raw material powders, and the like are weighed so as to have a desired composition, and mixed by pulverization using a known method such as a ball mill. In order to shorten the mixing time and increase the productivity, it is preferable to use a high energy ball mill.
 以上のように得られる混合粉をホットプレスや熱間静水圧プレスを用いて焼結を行う。ターゲットの成分組成にもよるが、上記原料の混合条件、焼結条件の設定により、密度が十分に高くなり、かつ、非磁性材粒子が金属相中に微細に分散する条件を見出して、その製造条件を固定すれば、常時そのような非磁性材粒子が分散した焼結体ターゲットを得ることができる。 The mixed powder obtained as described above is sintered using a hot press or a hot isostatic press. Although it depends on the component composition of the target, by setting the mixing conditions and sintering conditions for the above raw materials, the density is sufficiently high and the conditions for non-magnetic material particles to be finely dispersed in the metal phase are found. If the manufacturing conditions are fixed, a sintered body target in which such non-magnetic material particles are always dispersed can be obtained.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 金属原料粉末として、平均粒径4μmのCo粉末、平均粒径3μmのPt粉末を、非磁性材粉末として、平均粒径1μmのCr粉末、平均粒径1.2μmのMnBO粉末、平均粒径0.7μmのSiO粉末、平均粒径2μmのCoO粉末を用意した。MnBO粉末については、予めMn粉末、B粉末を混合、合成、粉砕したものを使用した。そして、これらの粉末を以下の組成比で1500g秤量した。
 組成(mol%):Co-20Pt-2B-2CoO-2Cr-4MnO-SiO
なお、この酸化物成分の組成は、Mn:3.2at%、XとしてCo:1.6at%及びCr:3.2at%及びSi:0.8at%、B:3.2at%、O:16.1at%である。
(Example 1)
As the metal raw material powder, Co powder with an average particle diameter of 4 μm, Pt powder with an average particle diameter of 3 μm, as a nonmagnetic material powder, Cr 2 O 3 powder with an average particle diameter of 1 μm, MnBO 3 powder with an average particle diameter of 1.2 μm, A SiO 2 powder having an average particle size of 0.7 μm and a CoO powder having an average particle size of 2 μm were prepared. For MnBO 3 powder was used previously Mn 2 O 3 powder, B 2 O 3 powder mixed, synthetic, those pulverized. Then, 1500 g of these powders were weighed at the following composition ratio.
Composition (mol%): Co-20Pt-2B 2 O 3 -2CoO-2Cr 2 O 3 -4MnO-SiO 2
The composition of the oxide component is as follows: Mn: 3.2 at%, X as Co: 1.6 at%, Cr: 3.2 at% and Si: 0.8 at%, B: 3.2 at%, O: 16 .1 at%.
 次に、秤量した粉末を粉砕媒体のタングステン合金ボールと共に容量10リットルのボールミルポットに封入し、120時間回転させて混合した。このようにして得られた混合粉をカーボン製の型に充填し、真空雰囲気中、温度980°C、保持時間2時間、加圧力30MPaの条件でホットプレスして焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが4mmの円盤状スパッタリングターゲットを得た。 Next, the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours. The mixed powder thus obtained was filled in a carbon mold and hot-pressed in a vacuum atmosphere at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
 このターゲット表面を研磨し、任意の5箇所を電子顕微鏡で観察した結果、1mm視野を内に、最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm以上の酸化物粒子は平均で0.5個であった。なお、酸化物粒子の最大径、最小径、粒子面積を算出するにあたっては、図1に示すように、顕微鏡像をPC画面に映し出し、画像解析処理(二値化処理)して、酸化物粒子(黒い部分)の輪郭を明確にした上で、これらを算出した。 As a result of polishing this target surface and observing arbitrary 5 points with an electron microscope, the ratio of the maximum diameter to the minimum diameter is larger than 0.5 within a 1 mm 2 visual field, and the particle area is 6 μm. The average number of the two or more oxide particles was 0.5. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, as shown in FIG. 1, a microscopic image is displayed on a PC screen, and image analysis processing (binarization processing) is performed. These were calculated after clarifying the outline of (black part).
 次に、このターゲットをDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1.2kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのシリコン基板上のパーティクル数は7個であった。なお、スパッタリングしない場合でも、パーティクルカウンターで測定すると、シリコン基板上にパーティクル数が4~6個とカウントされる場合があるので、本実施例のパーティクル数7個は、極めて少ないレベルにあると言える。 Next, this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed. The sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was seven. Even when sputtering is not performed, the number of particles on the silicon substrate may be counted as 4 to 6 when measured with a particle counter. Therefore, it can be said that the number of particles in this example is at an extremely low level. .
(比較例1)
 金属原料粉末として、平均粒径4μmのCo粉末、平均粒径3μmのPt粉末、非磁性材粉末として、平均粒径1μmのCr粉末、平均粒径2μmのB粉末、平均粒径1.2μmのMnO粉末、平均粒径0.7μmのSiO粉末を用意した。そして、これらの粉末を以下の組成比で1500g秤量した。
 組成(mol%):Co-20Pt-5B-Cr-3MnO-SiO
なお、この酸化物成分の組成は、Mn:2.3at%、XとしてCr:1.6at%及びSi:0.8at%、B:7.8at%、O:17.8at%である。
(Comparative Example 1)
As a metal raw material powder, a Co powder with an average particle size of 4 μm, a Pt powder with an average particle size of 3 μm, and as a nonmagnetic material powder, a Cr 2 O 3 powder with an average particle size of 1 μm, a B 2 O 3 powder with an average particle size of 2 μm, an average A MnO powder having a particle diameter of 1.2 μm and a SiO 2 powder having an average particle diameter of 0.7 μm were prepared. Then, 1500 g of these powders were weighed at the following composition ratio.
Composition (mol%): Co-20Pt-5B 2 O 3 —Cr 2 O 3 -3MnO—SiO 2
The composition of this oxide component is Mn: 2.3 at%, X is Cr: 1.6 at%, Si: 0.8 at%, B: 7.8 at%, O: 17.8 at%.
 次に、秤量した粉末を粉砕媒体のタングステン合金ボールと共に容量10リットルのボールミルポットに封入し、120時間回転させて混合した。このようにして得られた混合粉をカーボン製の型に充填し、実施例1と同様に、真空雰囲気中、温度980°C、保持時間2時間、加圧力30MPaでホットプレスして焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが4mmの円盤状のスパッタリングターゲットを得た。 Next, the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours. The mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
 このターゲット表面を研磨し、任意の5箇所を電子顕微鏡で観察した結果、1mm視野内に、最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm以上の酸化物粒子は平均で3.0個であった。なお、酸化物粒子の最大径、最小径、粒子面積を算出するにあたっては、実施例1と同様の方法で算出した。 As a result of polishing this target surface and observing arbitrary 5 points with an electron microscope, the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 μm 2. The average number of the above oxide particles was 3.0. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
 次に、このターゲットをDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1.2kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのシリコン基板上のパーティクル数は35個であった。 Next, this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed. The sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was 35.
 (実施例2)
 金属原料粉末として、平均粒径4μmのCo粉末、平均粒径3μmのPt粉末、平均粒径5μmのRu粉末、平均粒径4μmのMn粉末、非磁性材粉末として、平均粒径1μmのCrBO粉末、平均粒径1.2μmのMnBO粉末、平均粒径1μmのTiO粉末を用意した。MnBO粉末については、予め、Mn粉末とB粉末を混合、合成、粉砕したものを使用した。またCrBO粉末についても同様と使用した。なお、このときMnBO粉やCrBO粉を用いることに伴う酸素量の調整用としてMn粉末やCr粉末をごく少量使用した。そして、これらの粉末を以下の組成比で1500g秤量した。
 組成(mol%):Co-22Pt-5Ru-4B-3Cr-3MnO-TiO
なお、この酸化物成分の組成は、Mn:2.3at%、XとしてCr:4.5at%、B:6.0at%、O:19.6at%である。なお、Tiについては省略する。
(Example 2)
As a metal raw material powder, Co powder with an average particle diameter of 4 μm, Pt powder with an average particle diameter of 3 μm, Ru powder with an average particle diameter of 5 μm, Mn powder with an average particle diameter of 4 μm, and CrBO 3 with an average particle diameter of 1 μm as a nonmagnetic material powder. A powder, MnBO 3 powder having an average particle diameter of 1.2 μm, and TiO 2 powder having an average particle diameter of 1 μm were prepared. For MnBO 3 powder, pre-mixing the Mn 2 O 3 powder and B 2 O 3 powder, synthesized, it was used after grinding. The same was used for CrBO 3 powder. At this time, a very small amount of Mn powder or Cr powder was used for adjusting the amount of oxygen associated with the use of MnBO 3 powder or CrBO 3 powder. Then, 1500 g of these powders were weighed at the following composition ratio.
Composition (mol%): Co-22Pt-5Ru-4B 2 O 3 -3Cr 2 O 3 -3MnO-TiO 2
The composition of the oxide component is Mn: 2.3 at%, X is Cr: 4.5 at%, B: 6.0 at%, O: 19.6 at%. Note that Ti is omitted.
 次に、秤量した粉末を粉砕媒体のタングステン合金ボールと共に容量10リットルのボールミルポットに封入し、120時間回転させて混合した。このようにして得られた混合粉をカーボン製の型に充填し、実施例1と同様に、真空雰囲気中、温度980°C、保持時間2時間、加圧力30MPaでホットプレスして焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが4mmの円盤状のスパッタリングターゲットを得た。 Next, the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours. The mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
 このターゲット表面を研磨し、任意の5箇所を電子顕微鏡で観察した結果、1mm視野内に、最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm以上の酸化物粒子は平均で0.8個であった。なお、酸化物粒子の最大径、最小径、粒子面積を算出するにあたっては、実施例1と同様の方法で算出した。 As a result of polishing this target surface and observing arbitrary 5 points with an electron microscope, the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 μm 2. The average number of the above oxide particles was 0.8. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
 次に、このターゲットをDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1.2kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのシリコン基板上のパーティクル数は9個であった。 Next, this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed. The sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was nine.
 (実施例3)
 金属原料粉末として、平均粒径4μmのFe粉末、平均粒径3μmのPt粉末、平均粒径5μmのAg粉末、非磁性材粉末として、平均粒径1.2μmのMnBO粉末、平均粒径0.7μmのSiO粉末を用意した。MnBO粉末については、予めMn粉末、B粉末を混合、合成、粉砕したものを使用した。そして、これらの粉末を以下の組成比で1500g秤量した。
 組成(mol%):Fe-42Pt-3Ag-B-2MnO-7SiO
なお、この酸化物成分の組成は、Mn:1.7at%、XとしてSi:5.8at%、B:1.7at%、O:15.8at%である。
(Example 3)
As the metal raw material powder, Fe powder having an average particle diameter of 4 μm, Pt powder having an average particle diameter of 3 μm, Ag powder having an average particle diameter of 5 μm, and MnBO 3 powder having an average particle diameter of 1.2 μm, an average particle diameter of 0 A 7 μm SiO 2 powder was prepared. For MnBO 3 powder was used previously Mn 2 O 3 powder, B 2 O 3 powder mixed, synthetic, those pulverized. Then, 1500 g of these powders were weighed at the following composition ratio.
Composition (mol%): Fe-42Pt-3Ag-B 2 O 3 -2MnO-7SiO 2
The composition of the oxide component is Mn: 1.7 at%, X is Si: 5.8 at%, B: 1.7 at%, and O: 15.8 at%.
 次に、秤量した粉末を粉砕媒体のタングステン合金ボールと共に容量10リットルのボールミルポットに封入し、120時間回転させて混合した。このようにして得られた混合粉をカーボン製の型に充填し、実施例1と同様に、真空雰囲気中、温度980°C、保持時間2時間、加圧力30MPaでホットプレスして焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが4mmの円盤状のスパッタリングターゲットを得た。 Next, the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours. The mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
 このターゲット表面を研磨し、任意の5箇所を電子顕微鏡で観察した結果、1mm視野内に、最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm以上の酸化物粒子は平均で1.0個であった。なお、酸化物粒子の最大径、最小径、粒子面積を算出するにあたっては、実施例1と同様の方法で算出した。 As a result of polishing this target surface and observing arbitrary 5 points with an electron microscope, the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 μm 2. The average number of the above oxide particles was 1.0. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
 次に、このターゲットをDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1.2kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのシリコン基板上のパーティクル数は11個であった。 Next, this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed. The sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was 11.
 (実施例4)
 金属原料粉末として、平均粒径4μmのCo粉末、平均粒径3μmのPt粉末、平均粒径5μmのPd粉末、非磁性材粉末として、平均粒径1.2μmのMnBO粉末、平均粒径2μmのCo粉末を用意した。MnBO粉末については、予め、Mn粉末、B粉末を混合、合成、粉砕したものを使用した。そして、これらの粉末を以下の組成比で1500g秤量した。
 組成(mol%):Co-38Pt-2Pd-B-Mn-3Co
なお、この酸化物成分の組成は、Mn:1.6at%、XとしてCo:7.1at%、B:1.6at%、O:14.3at%である。
Example 4
As the metal raw material powder, Co powder with an average particle size of 4 μm, Pt powder with an average particle size of 3 μm, Pd powder with an average particle size of 5 μm, and MnBO 3 powder with an average particle size of 1.2 μm, an average particle size of 2 μm as a nonmagnetic material powder Co 3 O 4 powder was prepared. For MnBO 3 powder, previously, Mn 2 O 3 powder, the B 2 O 3 powder mixed, synthesized, was used after grinding. Then, 1500 g of these powders were weighed at the following composition ratio.
Composition (mol%): Co-38Pt-2Pd-B 2 O 3 —Mn 2 O 3 -3Co 3 O 4
The composition of the oxide component is Mn: 1.6 at%, X is Co: 7.1 at%, B: 1.6 at%, and O: 14.3 at%.
 次に、秤量した粉末を粉砕媒体のタングステン合金ボールと共に容量10リットルのボールミルポットに封入し、120時間回転させて混合した。このようにして得られた混合粉をカーボン製の型に充填し、実施例1と同様に、真空雰囲気中、温度980°C、保持時間2時間、加圧力30MPaでホットプレスして焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが4mmの円盤状のスパッタリングターゲットを得た。 Next, the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours. The mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
 このターゲット表面を研磨し、任意の5箇所を電子顕微鏡で観察した結果、1mm視野内に、最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm以上の酸化物粒子は平均で1.0個であった。なお、酸化物粒子の最大径、最小径、粒子面積を算出するにあたっては、実施例1と同様の方法で算出した。 As a result of polishing this target surface and observing arbitrary 5 points with an electron microscope, the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 μm 2. The average number of the above oxide particles was 1.0. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
 次に、このターゲットをDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1.2kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのシリコン基板上のパーティクル数は8個であった。 Next, this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed. The sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was eight.
 (実施例5)
 金属原料粉末として、平均粒径4μmのCo粉末、平均粒径3μmのPt粉末、非磁性材粉末として、平均粒径2.4μmのMn粉末、平均粒径2μmのSiO粉末、平均粒径2μmのCoO粉末を用意した。Mn粉末については、予めMnO粉末、B粉末を混合、合成、粉砕したものを使用した。そして、これらの粉末を以下の組成比で1500g秤量した。
 組成(mol%):Co-15Pt-3MnO-1B-2SiO-4CoO
なお、この酸化物成分の組成は、Mn:2.6at%、XとしてCo:3.5at%、B:1.7at%、Si:1.7at%、O:12.2at%である。
(Example 5)
As the metal raw material powder, Co powder with an average particle diameter of 4 μm, Pt powder with an average particle diameter of 3 μm, as nonmagnetic material powder, Mn 3 B 2 O 6 powder with an average particle diameter of 2.4 μm, SiO 2 powder with an average particle diameter of 2 μm A CoO powder having an average particle diameter of 2 μm was prepared. The Mn 3 B 2 O 6 powder was used previously MnO powder, B 2 O 3 powder mixed, synthetic, those pulverized. Then, 1500 g of these powders were weighed at the following composition ratio.
Composition (mol%): Co-15Pt-3MnO-1B 2 O 3 -2SiO 2 -4CoO
The composition of this oxide component is Mn: 2.6 at%, X is Co: 3.5 at%, B: 1.7 at%, Si: 1.7 at%, O: 12.2 at%.
 次に、秤量した粉末を粉砕媒体のタングステン合金ボールと共に容量10リットルのボールミルポットに封入し、120時間回転させて混合した。このようにして得られた混合粉をカーボン製の型に充填し、実施例1と同様に、真空雰囲気中、温度980°C、保持時間2時間、加圧力30MPaでホットプレスして焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが4mmの円盤状のスパッタリングターゲットを得た。 Next, the weighed powder was enclosed in a ball mill pot with a capacity of 10 liters together with a tungsten alloy ball as a grinding medium, and rotated and mixed for 120 hours. The mixed powder thus obtained was filled in a carbon mold, and in the same manner as in Example 1, sintered in a vacuum atmosphere by hot pressing at a temperature of 980 ° C., a holding time of 2 hours, and a pressure of 30 MPa. Got. Further, this was cut with a lathe to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 4 mm.
 このターゲット表面を研磨し、任意の5箇所を電子顕微鏡で観察した結果、1mm視野内に、最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm以上の酸化物粒子は平均で0.8個であった。なお、酸化物粒子の最大径、最小径、粒子面積を算出するにあたっては、実施例1と同様の方法で算出した。 As a result of polishing this target surface and observing arbitrary 5 points with an electron microscope, the ratio of the maximum diameter to the minimum diameter is larger than 0.5 in a 1 mm 2 visual field, and the particle area is 6 μm 2. The average number of the above oxide particles was 0.8. In calculating the maximum diameter, the minimum diameter, and the particle area of the oxide particles, the calculation was performed in the same manner as in Example 1.
 次に、このターゲットをDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1.2kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのシリコン基板上のパーティクル数は7個であった。 Next, this target was attached to a DC magnetron sputtering apparatus, and sputtering was performed. The sputtering conditions were a sputtering power of 1.2 kW, an Ar gas pressure of 1.5 Pa, and after performing 2 kWhr pre-sputtering, sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles on the silicon substrate was seven.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、酸化物相の凝集(粗大化)を抑制することにより、スパッタリング時の非磁性材による異常放電を抑制することができる。本発明によれば、異常放電が原因となるスパッタリング中のパーティクル発生を減少させ、歩留まり向上によるコスト改善効果を得ることができるという優れた効果を有するので、磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。 The present invention can suppress abnormal discharge due to a nonmagnetic material during sputtering by suppressing aggregation (coarseness) of the oxide phase. According to the present invention, the magnetic thin film of a magnetic recording medium, particularly a hard disk, has an excellent effect of reducing the generation of particles during sputtering caused by abnormal discharge and obtaining a cost improvement effect by improving yield. It is useful as a ferromagnetic material sputtering target used for forming a drive recording layer.

Claims (5)

  1.  Co又はFeを含む合金と、Mn及びBを含む酸化物とを含有するスパッタリングターゲットであって、前記スパッタリングターゲットの組成において、9at%≦Mn+B+O≦56at%、B≦Mn(at%)、Mn+B≦O(at%)、の条件を満たすことを特徴とするスパッタリングターゲット。 A sputtering target containing an alloy containing Co or Fe and an oxide containing Mn and B, wherein in the composition of the sputtering target, 9 at% ≦ Mn + B + O ≦ 56 at%, B ≦ Mn (at%), Mn + B ≦ A sputtering target characterized by satisfying the condition of O (at%).
  2.  Co又はFeを主成分とする合金と、Mn、B及びX(但し、XはCo、Cr、Siから選択される一種以上の元素)を含む酸化物とを含有するスパッタリングターゲットであって、前記スパッタリングターゲットの組成において、9(at%)≦Mn+B+X+O≦56(at%)、B≦Mn+X(at%)、Mn+X+B≦O(at%)、の条件を満たすことを特徴とするスパッタリングターゲット。 A sputtering target comprising an alloy containing Co or Fe as a main component and an oxide containing Mn, B, and X (where X is one or more elements selected from Co, Cr, and Si), A sputtering target characterized by satisfying the following conditions in the composition of the sputtering target: 9 (at%) ≦ Mn + B + X + O ≦ 56 (at%), B ≦ Mn + X (at%), Mn + X + B ≦ O (at%).
  3.  前記スパッタリングターゲットの組成において、Mn及びBを含む酸化物、又は、Mn、X及びBを含む酸化物が、各々0.1mol%以上15mol%以下であることを特徴とする請求項1又は2記載のスパッタリングターゲット。 3. The composition of the sputtering target, wherein the oxide containing Mn and B or the oxide containing Mn, X and B is 0.1 mol% or more and 15 mol% or less, respectively. Sputtering target.
  4.  スパッタリングターゲットの表面又は断面組織において、酸化物粒子の外周上にある任意の2点の距離の最大値を最大径とし、平行な2本の直線で同粒子を挟んだときの2直線間の距離の最小値を最小径とした場合、その最大径と最小径の比が0.5よりも大きい数値を示し、かつ、粒子面積が6μm2以上である酸化物粒子が1mm視野内に平均で1個以下であることを特徴とする請求項1~3いずれか一項に記載のスパッタリングターゲット。 On the surface or cross-sectional structure of the sputtering target, the maximum distance between any two points on the outer periphery of the oxide particle is the maximum diameter, and the distance between the two lines when the particles are sandwiched between two parallel lines When the minimum value is the minimum diameter, the ratio of the maximum diameter to the minimum diameter is a value larger than 0.5, and oxide particles having a particle area of 6 μm 2 or more are on average within 1 mm 2 field of view. The sputtering target according to any one of claims 1 to 3, wherein the number is one or less.
  5.  Pt、Ru、Ag、Pdから選択される一種以上の元素をスパッタリングターゲットの合金成分において1mol%以上50mol%以下含有することを特徴とする請求項1~4のいずれか一項に記載のスパッタリングターゲット。
     
    5. The sputtering target according to claim 1, wherein one or more elements selected from Pt, Ru, Ag, and Pd are contained in an alloy component of the sputtering target in an amount of 1 mol% to 50 mol%. .
PCT/JP2015/067226 2014-09-04 2015-06-16 Sputtering target WO2016035415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201606737UA SG11201606737UA (en) 2014-09-04 2015-06-16 Sputtering target
CN201580009968.3A CN106029943B (en) 2014-09-04 2015-06-16 Sputtering target
JP2015548075A JP5946974B1 (en) 2014-09-04 2015-06-16 Sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014179783 2014-09-04
JP2014-179783 2014-09-04

Publications (1)

Publication Number Publication Date
WO2016035415A1 true WO2016035415A1 (en) 2016-03-10

Family

ID=55439486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067226 WO2016035415A1 (en) 2014-09-04 2015-06-16 Sputtering target

Country Status (5)

Country Link
JP (1) JP5946974B1 (en)
CN (1) CN106029943B (en)
MY (1) MY179241A (en)
SG (1) SG11201606737UA (en)
WO (1) WO2016035415A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123500A1 (en) * 2016-12-28 2018-07-05 Jx金属株式会社 Magnetic material sputtering target and method for manufacturing same
CN108884557A (en) * 2016-03-31 2018-11-23 捷客斯金属株式会社 Ferromagnetic material sputtering target
WO2020066114A1 (en) * 2018-09-25 2020-04-02 Jx金属株式会社 Sputtering target and powder for producing sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276728A (en) * 1987-05-08 1988-11-15 Hitachi Ltd Magneto-optical recording medium
JPH07232926A (en) * 1993-12-27 1995-09-05 Alps Electric Co Ltd Fine-grained ferrite and its production
JP2012169021A (en) * 2011-02-16 2012-09-06 Sanyo Special Steel Co Ltd Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recording medium
WO2013024845A1 (en) * 2011-08-17 2013-02-21 山陽特殊製鋼株式会社 Alloy for soft-magnetic thin-film layer on perpendicular magnetic recording medium, and sputtering-target material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277002A1 (en) * 2004-06-15 2005-12-15 Heraeus, Inc. Enhanced sputter target alloy compositions
MY150826A (en) * 2010-07-20 2014-02-28 Jx Nippon Mining & Metals Corp Sputtering target of perromagnetic material with low generation of particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276728A (en) * 1987-05-08 1988-11-15 Hitachi Ltd Magneto-optical recording medium
JPH07232926A (en) * 1993-12-27 1995-09-05 Alps Electric Co Ltd Fine-grained ferrite and its production
JP2012169021A (en) * 2011-02-16 2012-09-06 Sanyo Special Steel Co Ltd Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recording medium
WO2013024845A1 (en) * 2011-08-17 2013-02-21 山陽特殊製鋼株式会社 Alloy for soft-magnetic thin-film layer on perpendicular magnetic recording medium, and sputtering-target material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884557A (en) * 2016-03-31 2018-11-23 捷客斯金属株式会社 Ferromagnetic material sputtering target
WO2018123500A1 (en) * 2016-12-28 2018-07-05 Jx金属株式会社 Magnetic material sputtering target and method for manufacturing same
JPWO2018123500A1 (en) * 2016-12-28 2019-03-28 Jx金属株式会社 Magnetic material sputtering target and method of manufacturing the same
WO2020066114A1 (en) * 2018-09-25 2020-04-02 Jx金属株式会社 Sputtering target and powder for producing sputtering target
CN112739846A (en) * 2018-09-25 2021-04-30 Jx金属株式会社 Sputtering target and powder for producing sputtering target
JPWO2020066114A1 (en) * 2018-09-25 2021-10-21 Jx金属株式会社 Sputtering target and manufacturing method of sputtering target
JP7072664B2 (en) 2018-09-25 2022-05-20 Jx金属株式会社 Sputtering target and manufacturing method of sputtering target

Also Published As

Publication number Publication date
CN106029943B (en) 2018-08-31
MY179241A (en) 2020-11-02
CN106029943A (en) 2016-10-12
SG11201606737UA (en) 2016-09-29
JPWO2016035415A1 (en) 2017-04-27
JP5946974B1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US8679268B2 (en) Sputtering target of ferromagnetic material with low generation of particles
JP5829747B2 (en) Magnetic material sputtering target and manufacturing method thereof
JP6359622B2 (en) Sputtering target containing Co or Fe
WO2013136962A1 (en) Magnetic material sputtering target and manufacturing method thereof
JP5847203B2 (en) Co-Cr-Pt-based sputtering target and method for producing the same
WO2013175884A1 (en) Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
JP6881643B2 (en) Sputtering target for magnetic recording medium and magnetic thin film
JP5946974B1 (en) Sputtering target
JP6005767B2 (en) Sputtering target for magnetic recording media
JP6545898B2 (en) Ferromagnetic sputtering target
JP6305881B2 (en) Sputtering target for magnetic recording media
JP5654121B2 (en) Ferromagnetic material sputtering target containing chromium oxide
CN109844167B (en) Magnetic material sputtering target and method for producing same
JP6359662B2 (en) Sputtering target for magnetic thin film formation
WO2013125259A1 (en) Ferromagnetic material sputtering target containing chrome oxide
WO2017141558A1 (en) Sputtering target for magnetic recording medium, and magnetic thin film
WO2024014156A1 (en) Co-Cr-Pt-OXIDE-BASED SPUTTERING TARGET
WO2013111706A1 (en) Ferromagnetic material sputtering target
JP7317741B2 (en) Sputtering targets, magnetic films, and mixed raw material powders for making sputtering targets

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548075

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837455

Country of ref document: EP

Kind code of ref document: A1