WO2012111055A1 - 部材のマウント方法 - Google Patents

部材のマウント方法 Download PDF

Info

Publication number
WO2012111055A1
WO2012111055A1 PCT/JP2011/006176 JP2011006176W WO2012111055A1 WO 2012111055 A1 WO2012111055 A1 WO 2012111055A1 JP 2011006176 W JP2011006176 W JP 2011006176W WO 2012111055 A1 WO2012111055 A1 WO 2012111055A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
liquid
substrate
region
line
Prior art date
Application number
PCT/JP2011/006176
Other languages
English (en)
French (fr)
Inventor
荒瀬 秀和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011553218A priority Critical patent/JP5036910B1/ja
Priority to CN2011800175250A priority patent/CN102844849A/zh
Priority to US13/453,629 priority patent/US8394458B2/en
Publication of WO2012111055A1 publication Critical patent/WO2012111055A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies
    • H01L2224/95143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • H01L2224/95145Electrostatic alignment, i.e. polarity alignment with Coulomb charges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01093Neptunium [Np]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas

Definitions

  • the present invention relates to a member mounting method.
  • the active liquid crystal display element and the organic electroluminescence display element are formed on a glass substrate. Pixels arranged in a matrix on the substrate are controlled by thin film transistors arranged in the vicinity of the pixels. Even using current technology, a thin film transistor formed of a crystalline semiconductor cannot be formed on a glass substrate. Therefore, a thin film transistor using an amorphous silicon or polysilicon thin film is used for pixel control. Thin film transistors can be manufactured on a large-area substrate at low cost. However, thin film transistors have the disadvantage that they are hindered from operating at high speed due to their lower mobility than crystalline silicon. To overcome this drawback, a number of transistors are fabricated on a silicon wafer in advance, then cut out from the wafer and placed on a substrate.
  • Patent Document 1 discloses preparing a substrate 10 having a plurality of hydrophilic regions 11 and a water-repellent region 12 surrounding the hydrophilic regions 11 as shown in FIG. 9A.
  • the member 40 disposed on the substrate is dispersed in a solvent 30 that does not substantially dissolve in water to prepare a member-containing liquid 60.
  • One surface of the member 40 is hydrophilic and is bonded to the substrate 10, and the surfaces of the member 40 other than this surface are water repellent.
  • the water 20 is disposed in the plurality of hydrophilic regions 11 using the first squeegee 51.
  • the member-containing liquid 60 is applied using the second squeegee 52, and the member-containing liquid 60 is brought into contact with the water 21 disposed in the hydrophilic region 11.
  • the member 40 moves into the water 21 arranged in the hydrophilic region 11.
  • the solvent contained in the water 21 and the member-containing liquid 60 is removed, and the member 40 is fixed to the hydrophilic region 11.
  • Patent Document 1 The method described in Patent Document 1 is an excellent method for disposing the member 40 on the substrate 10.
  • An object of the present invention is to provide a method for improving the probability that a member is disposed in a hydrophilic region.
  • the present invention is a method for placing a member on a substrate, comprising the following steps: Preparing the substrate, the first liquid, and the member-containing liquid (a), here,
  • the substrate comprises a water-repellent region, a hydrophilic region, and a hydrophilic line,
  • the water repellent region surrounds the hydrophilic region and the hydrophilic line;
  • Y direction is the length direction of the hydrophilic line
  • Z direction is the direction of the normal of the substrate
  • + X direction is a direction orthogonal to both the Y direction and the Z direction, -X direction is the reverse direction of the + X direction,
  • the hydrophilic region and the hydrophilic line are arranged in this order along the + X direction,
  • D1 represents an interval along the + X direction between the hydrophilic region and the hydrophilic line;
  • D2 represents the length of the hydrophilic region along the Y direction;
  • D3 represents the length of the hydrophilic line along the Y direction;
  • the present invention improves the probability that the member is placed in the hydrophilic region.
  • FIG. 1A shows a substrate 100 comprising a hydrophilic region 111, a hydrophilic line 112, and a water repellent region 120.
  • FIG. 1B shows a substrate 100 comprising a hydrophilic region 111, a hydrophilic line 112, and a water repellent region 120.
  • FIG. 2 schematically shows a member-containing liquid 600 containing the member 400.
  • FIG. 3A shows the substrate 100 before the member 400 is disposed.
  • FIG. 3B shows the step (b).
  • FIG. 3C shows step (c).
  • FIG. 3D shows the substrate 100 after the member 400 has been placed.
  • FIG. 4A shows a state in which the first liquid 200 applied to the water repellent region 121 moves on the substrate 100 together with FIGS. 4B and 4C.
  • FIG. 4B shows a state in which the first liquid 200 applied to the water repellent region 121 moves on the substrate 100 together with FIGS. 4A and 4C. 4C, together with FIGS. 4A and 4B, shows how the first liquid 200 applied to the water repellent region 121 moves on the substrate 100.
  • FIG. FIG. 5A is a perspective view for explaining a minimum length of a member.
  • FIG. 5B is a perspective view for explaining the minimum length of the member.
  • FIG. 5C is a perspective view for explaining the minimum length of the member.
  • FIG. 5D is a perspective view for explaining the minimum length of the member.
  • FIG. 6 is a top view showing how the first squeegee 510 moves the substrate 100.
  • FIG. 7A is a top view for explaining the values of D1 to D4.
  • FIG. 7B is a diagram for explaining the values of D1 to D4.
  • FIG. 8A is a top view for explaining the values of D1 to D4.
  • FIG. 8B is a diagram for explaining the values of D1 to D4.
  • FIG. 8C is a diagram for explaining the values of D1 to D4.
  • FIG. 9A shows the method described in Patent Document 1 together with FIGS. 9B to 9D.
  • FIG. 9B shows the method described in Patent Document 1 together with FIGS. 9A, 9C, and 9D.
  • FIG. 9C shows the method described in Patent Document 1 together with FIGS. 9A, 9B, and 9D.
  • FIG. 9D shows the method described in Patent Document 1 together with FIGS. 9A to 9C.
  • the substrate 100, the first liquid 200, and the member-containing liquid 600 are prepared.
  • 1A and 1B show a substrate 100.
  • the substrate 100 includes a hydrophilic region 111, a water repellent region 120, and a hydrophilic line 112 on the surface.
  • the water repellent region 120 surrounds the hydrophilic region 110.
  • the wettability of the hydrophilic region 111 and the hydrophilic line 112 to water is higher than the wettability of the water repellent region 120 to water.
  • + X direction, ⁇ X direction, Y direction, and Z direction are defined. That is, the Y direction is the length direction of the hydrophilic line 112. The Z direction is the direction of the normal line of the substrate 100.
  • the + X direction is a direction orthogonal to both the Y direction and the Z direction.
  • the hydrophilic region 111 and the hydrophilic line 112 are arranged in this order along the + X direction, which is the direction opposite to the + X direction in the ⁇ X direction.
  • D1 represents a distance along the + X direction between the hydrophilic region 111 and the hydrophilic line 112.
  • D1 means the distance between the hydrophilic region 111 and the hydrophilic line 112 along the imaginary line 803 shown in FIGS. 7A and 7B.
  • An imaginary line 803 connects the center of gravity 801 of the hydrophilic region 111 and the center of gravity 802 of the hydrophilic line 112.
  • D2 represents the length of the hydrophilic region 111 along the Y direction.
  • D3 represents the length of the hydrophilic line 112 along the Y direction.
  • D1 / D2 value The inventor has found that the value of D1 / D2 needs to be in the range of 0.1 to 1.2. When the value of D1 / D2 is less than 0.1, the probability that the member 400 is disposed in the hydrophilic region 111 may be reduced (see Comparative Example 1 described later). In other words, the value of (number Np of hydrophilic regions 111 in which the member 400 is arranged) / (number of hydrophilic regions 111) is small, which means low efficiency. Similarly, when the value of D1 / D2 exceeds 1.2, the probability that the member 400 is disposed in the hydrophilic region 111 may be reduced (see Comparative Examples 2 to 4 described later).
  • the present inventor has found that the value of D3 needs to be 5 ⁇ m or more. If the value of D3 is less than 5 ⁇ m, the probability that the member 400 is disposed in the hydrophilic region 111 may be reduced (see Comparative Examples 6 to 9 described later).
  • the value of D3 is preferably 1000 ⁇ m or less.
  • the value of D4 representing the width of the hydrophilic line 112 needs to be shorter than the minimum length of the member 400. If D4 is equal to or greater than the minimum length of member 400, member 400 may be placed in hydrophilic line 112. Preferably, the value of D4 is less than or equal to one-half of the minimum value of member 400.
  • the minimum length of the member 400 will be described in detail with reference to FIGS. 5A to 5D.
  • the member 400 includes two surfaces (P1), two surfaces (P2) having an area equal to or greater than the surface (P1), and two surfaces (A) having a larger area than the surface (P2) ( P3), the length of each side is (L1), (L2), and (L3).
  • the shape and size of the hydrophilic region 111 are the same as the shape and size of the surface (P3), one surface (P3) of the member 400 faces the surface on which the hydrophilic region 111 of the substrate 100 is provided.
  • the “minimum length of the member 400” means the short side length (L1) and the side length (L2) of the side (P3) constituting the surface to be mounted (P3). L1). The meaning of “same shape and size” in this specification will be described later.
  • the “minimum length of the member 400” is The length (L1) of the side having the shortest length among the sides (L1), (L2), and (L3) constituting the triangle.
  • the minimum length of the member 400 Means the length (L1) of the side having the shortest length among the sides (L1) to (L6) constituting the hexagon.
  • the “minimum length of the member 400” is The length (L1) of the diameter of the surface (P3). In the case of an ellipse, it means the minor axis.
  • the minimum length of the member 400 to be mounted is preferably 10 ⁇ m or more.
  • the member 400 is a rectangular parallelepiped having the surface (P1), the surface (P2), and the surface (P3), the long side (the length in FIG. 5A) of the surface (P3) that is the surface to be mounted.
  • (L2) side is preferably 1000 ⁇ m or less.
  • step (a) a first liquid is prepared.
  • the first liquid will be described in detail later together with the second liquid.
  • a member-containing liquid 600 is prepared.
  • the member-containing liquid 600 contains the member 400 and the second liquid 300.
  • FIG. 2 is a cross-sectional view schematically showing the member dispersion 600.
  • FIG. 2 schematically shows the member dispersion 600 placed in the container 700.
  • the member dispersion liquid 600 contains the second liquid 300 and the member 400 dispersed in the second liquid 300. Water does not substantially dissolve in the second liquid 300.
  • a specific second liquid 300 is hexane. Other specific examples of the second liquid 300 will be described later.
  • the term “dispersion” in the present specification means a state where the member 400 is not aggregated in the second liquid 300.
  • the member dispersion 600 can be agitated to disperse the member 400.
  • the first liquid 200 and the second liquid 300 are interfacial tension acting on the interface between the first liquid 200 and the second liquid 300, and the first liquid 200 and the second liquid 300 with respect to the surface of the member 400.
  • the liquid 300 can be appropriately selected in consideration of the wettability of each liquid 300.
  • first liquid 200 does not substantially dissolve in the second liquid 300. Since the first liquid 200 does not substantially dissolve in the second liquid 300, the first liquid 200 remains stable in the hydrophilic region 111 when the second liquid 300 comes into contact with the first liquid 200. . Then, the member 400 moves into the first liquid 200 due to the interfacial tension. “Substantially insoluble” means that the solubility defined by the weight of the first liquid dissolved in 100 ml of the second liquid is 10 g or less, more preferably 1 g or less.
  • the combination of the first liquid 200 and the second liquid 300 is, for example, a combination of a liquid having a large polarity as the first liquid 200 and a liquid having a smaller polarity than the first liquid 200 as the second liquid 300. . That is, the first liquid 200 is hydrophilic and the second liquid 300 is hydrophobic.
  • An example of the first liquid 200 is water.
  • alcohols such as methanol, ethanol, ethylene glycol and glycerin, or a mixture of water and alcohol can be used.
  • Water is more preferable because it has a large surface tension and can thus hold the member 400 firmly in the hydrophilic region 111.
  • An example of the second liquid 300 is Alkanes such as hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, Aromatic hydrocarbons such as toluene, benzene, xylene, Chlorinated solvents such as chloromethane, dichloromethane, chloroform, carbon tetrachloride, monochlorobutane, dichlorobutane, monochloropentane and dichloropentane, Ethers such as diethyl ether, petroleum ether, Esters such as ethyl acetate, butyl acetate, Silicone oil, perfluorooctane, perfluorononane, or These are mixed liquids.
  • Alkanes such as hexane, heptane, octane,
  • the second liquid 300 is preferably a chlorinated solvent.
  • the material of the substrate 100 is not limited.
  • a substrate formed of an inorganic material, a polymer resin material, or a composite material of an inorganic material and a polymer resin material can be used. Ceramics such as alumina, silicon and glass can be used as the inorganic material.
  • the polymer resin material polyimide resin, polyamide resin, epoxy resin, and polycarbonate resin can be used.
  • a composite material of an inorganic material and a polymer resin material for example, a composite material including a fiber made of glass, ceramics, or metal and a polymer resin material can be used. SOI substrates and compound semiconductor substrates can also be used.
  • Patent Document 1 discloses the known method.
  • the member 400 When a liquid having a large polarity such as water is used as the first liquid 200, the member 400 preferably has a high surface energy. More specifically, the surface energy is 40 mJ / m 2 or more.
  • the member 400 When the member 400 has a small surface energy, it is preferable to treat the surface of the member 400 to increase the surface energy.
  • the member 400 When the member 400 has silicon on the surface, the surface is irradiated with ultraviolet rays in an ozone atmosphere to increase the surface energy.
  • a thin film having affinity for the first liquid 200 can be formed on the surface of the member 400 to increase the surface energy of the member 400.
  • the first liquid 200 is water
  • an example of the thin film is a hydrophilic film.
  • a hydrophilic film of silicon oxide, silicon nitride, or titanium oxide can be formed on the surface of the member 400 by vacuum sputtering or thermal CVD.
  • the surface of the member 400 can be irradiated with ultraviolet rays in an ozone atmosphere.
  • the surface of the member 400 can be modified with a silane coupling agent having an amino group, a carboxyl group, or a hydroxyl group at the terminal, and the surface energy of the member 400 can be increased.
  • the surface of the member 400 has a metal
  • the surface can be modified with a thiol having an amino group, a carboxyl group, or a hydroxyl group at the terminal.
  • the hydrophilic line 112 may be linear or curved.
  • the shape of the hydrophilic region 111 can be determined depending on the shape of the member 400 mounted on the hydrophilic region 111.
  • the shape of the hydrophilic region 111 is, for example, a polygon such as a triangle, a quadrangle, or a hexagon, a circle, and an ellipse.
  • the hydrophilic region 111 preferably has the same shape as the surface of the member 400 to be mounted (that is, the surface of the member 400 facing the substrate 100 when mounted on the substrate 100). “The same shape” means that the shape of the hydrophilic region 111 and the surface of the member 400 to be mounted (the surface facing the substrate 100 when mounted on the substrate 100) have a congruent or similar relationship in the mathematical concept. Means that.
  • S1 is defined as the area of the surface of the member 400 that faces the substrate when placed on the substrate.
  • S2 is defined as the area of one member arrangement region 111.
  • the area of one member arrangement region 111 is defined as S2.
  • the value of S2 / S1 preferably has a value of 0.64 to 1.44. If the value of S2 / S1 is less than 0.64, the hydrophilic region 110 has significantly less water, so the probability that the member 400 is placed can be reduced. If the value of S2 / S1 is greater than 1.44, the hydrophilic region 110 has significantly more water. Therefore, a plurality of members 400 can be arranged in one member arrangement region 111.
  • the hydrophilic region 111, the hydrophilic line 112, and the water repellent region 120 can be produced by selectively forming a water repellent film on a hydrophilic substrate by, for example, photolithography.
  • the method of forming the hydrophilic region 111, the hydrophilic line 112, and the water repellent region 120 corresponds to WO 2010/058516 (this corresponds to US patent application Ser. No. 12 / 827,255. This patent application is It will be apparent to those skilled in the art who have read the methods described in paragraphs 0049-0057 of (incorporated herein).
  • the hydrophilic region 111 preferably has the same surface energy as the hydrophilic line 112. However, as long as the surface energy of the water repellent region 120 is lower than both the surface energy of the hydrophilic region 111 and the surface energy of the hydrophilic line 112, the hydrophilic region 111 has a surface energy different from that of the hydrophilic line 112. Can do.
  • the wettability of water on a solid surface is related not only to the surface energy of the solid but also to the surface tension of the water.
  • the specific value of the surface energy of the hydrophilic solid is preferably 40 mJ / m 2 or more. And more preferably 60 mJ / m 2 or more 1000 mJ / m 2 or less.
  • the specific value of the surface energy of the water-repellent solid is preferably 5 mJ / m 2 or more and less than 40 mJ / m 2 . And more preferably 5 mJ / m 2 or more 25 mJ / m 2 or less.
  • the first liquid 200 is continuously applied to the substrate 100 along the + X direction. In this way, the first liquid 200 is disposed in the hydrophilic region 111 and the hydrophilic line 112. The first liquid 200 is first disposed in the hydrophilic region 111 and then disposed in the hydrophilic region 112.
  • Reference numeral 211 indicates the first liquid 200 disposed in the hydrophilic region 111.
  • Reference numeral 212 indicates the first liquid 200 disposed in the hydrophilic line 112.
  • the first squeegee 510 is used. The first squeegee 510 moves along the + X direction.
  • the hydrophilic first liquid 200 for example, water
  • the hydrophilic first liquid 200 disposed in the hydrophilic region 111 and the hydrophilic line 112 in the step (b).
  • step (b) will be described in more detail.
  • FIGS. 4A to 4C are top views schematically showing the step (b).
  • the first squeegee 510 moves from one end side (left side in FIG. 4A) of the substrate 100 to the other end side (right side in FIG. 4A).
  • water is disposed in both the hydrophilic region 111 and the hydrophilic line 112.
  • water is also temporarily disposed in the water-repellent region 121 sandwiched between the hydrophilic region 111 and the hydrophilic line 112. This is because water is continuously applied to the substrate 100.
  • the water repellent region 121 is a region surrounded by a circle in FIG. 4A. Thereafter, as shown in FIGS.
  • the water arranged in the water repellent area 121 moves and is arranged in the hydrophilic area 111.
  • the low wettability of the water repellent region 121 with respect to water causes water movement.
  • the arrows in FIG. 4C schematically indicate the direction of water movement.
  • the volume of water arranged in the hydrophilic region 111 can be increased. Increasing the volume of water disposed in the hydrophilic region 111 improves the probability that the member 400 is mounted on the hydrophilic region 111.
  • the first liquid 200 (water) is temporarily disposed in the water-repellent region 121, the first liquid 200 (water) is continuously applied to the surface of the substrate 100. It is necessary to
  • FIG. 3B schematically shows the configuration and operation of a mounting apparatus for carrying out the mounting method of the present embodiment.
  • the mounting device includes a first squeegee 510 and a second squeegee 520.
  • the substrate 100 is exposed to the first liquid 200 by the first squeegee 510, and the first liquids 211 to 212 are disposed on the hydrophilic region 111 and the hydrophilic line 112.
  • step (c) the member-containing liquid 600 is brought into contact with the first liquid 211 disposed in the hydrophilic region 111.
  • the substrate 100 is exposed to the member dispersion 600 by the second squeegee 520.
  • the first squeegee 510 and the second squeegee 520 move along the + X direction on the substrate 100 while maintaining the distance therebetween.
  • the means for fixing and moving the squeegee are not shown.
  • the substrate 100 can be immersed in the member dispersion 600, and the substrate 100 can be exposed to the member dispersion 600.
  • the first liquid 200 (water) does not substantially dissolve in the second liquid 300, the first liquids (water) 211 to 212 remain stable on the hydrophilic region 111 and the hydrophilic line 112.
  • the member 400 moves into the water 211 disposed in the hydrophilic region 111.
  • the member 400 moves to the interface formed by the second liquid 300 and the water 211.
  • the first squeegee 510 and the second squeegee 520 move along the + X direction, and the substrate 100 does not move.
  • the first squeegee 510 and the second squeegee 520 do not move, and the substrate 100 can move along the ⁇ X direction.
  • the first squeegee 510 and the second squeegee 520 can move along the + X direction, and the substrate 100 can move along the ⁇ X direction.
  • the first liquid 200 is disposed at one end of the substrate 100. Thereafter, the substrate 100 can be tilted, and the first liquid 200 can be sequentially disposed in the hydrophilic region 111 and the hydrophilic line 112.
  • step (d) will be described.
  • the first liquid (water) 211 to 212 and the second liquid 300 are removed from the substrate 100, and the member 400 is disposed in the hydrophilic region 111 as shown in FIG. 3D.
  • the water 211 and 212 and the second liquid 300 are removed by a known drying method.
  • a suitable drying method selected from well-known drying methods such as natural drying, drying by a vacuum desiccator, drying by blowing air or gas, or drying by heating and / or reduced pressure may be used.
  • the substrate 100 Prior to drying, the substrate 100 can be cleaned.
  • Example 1 In Example 1, a silicon oxide plate was placed on a substrate using the placement method according to the present invention.
  • a plurality of hydrophilic regions 111 and a plurality of hydrophilic lines 112 surrounded by the water-repellent region 120 were formed on the substrate 100 made of silicon as follows.
  • the substrate 100 was 40 mm long and 60 mm wide.
  • the substrate 100 made of silicon having a thickness of 525 ⁇ m and a diameter of 4 inches was exposed to plasma treatment in an oxygen atmosphere, and the surface of the substrate 100 was oxidized. As a result, the entire surface of the substrate 100 became hydrophilic. Subsequently, a positive resist pattern corresponding to the hydrophilic region 111 and the hydrophilic line 112 was formed by photolithography.
  • a substrate 100 having a resist pattern is placed in a perfluorooctane solution containing CF 3 (CF 2 ) 7 C 2 H 4 SiCl 3 (hereinafter abbreviated as FS-17) at a concentration of 1 vol% for 20 minutes. Soaked. Thereafter, the substrate 100 was cleaned in pure perfluorooctane and then the solvent was removed. Further, the resist pattern was removed with acetone.
  • FS-17 perfluorooctane solution containing CF 3 (CF 2 ) 7 C 2 H 4 SiCl 3
  • the hydrophilic region 111 and the hydrophilic line 112 surrounded by the water-repellent region 120 were formed on the silicon substrate 100.
  • the hydrophilic region 111 formed in Example 1 is described in detail below.
  • Shape rectangle (see FIG. 7A) Width along the X direction: 40 ⁇ m
  • the hydrophilic line 112 formed in Example 1 is described in detail below.
  • Shape rectangle (see FIG. 7A) Width along the X direction (D4): 5 ⁇ m Length along the Y direction (D3): 20 ⁇ m D1: 2 ⁇ m
  • a member-containing liquid 600 containing a silicon oxide plate was prepared by the following method.
  • an aluminum thin film having a thickness of 100 nm was formed on the surface of a silicon substrate having a thickness of 525 ⁇ m by an electron beam evaporation method. Subsequently, a 200 nm silicon oxide thin film was formed by plasma CVD.
  • a part of the silicon oxide thin film was removed by dry etching using the resist pattern as a mask.
  • the resist pattern was peeled off by an oxygen plasma ashing process to form a plurality of silicon oxide plates.
  • Each silicon oxide plate had a size of 20 ⁇ m long ⁇ 40 ⁇ m wide ⁇ 0.2 ⁇ m high.
  • the aluminum thin film was etched with a mixed solution of phosphoric acid and nitric acid at 50 ° C. (hereinafter “hot phosphoric acid”), and the silicon oxide plate was lifted off.
  • the silicon oxide plate dispersed in hot phosphoric acid was suction filtered using a filter.
  • the filter with the silicon oxide plate attached was dried overnight in a dry atmosphere. Thereafter, the filter was immersed in a 1,4-dichlorobutane solution containing 1 vol% 1-chloroethyltrichlorosilane for 2 hours.
  • the silicon oxide plate was dispersed in the solution.
  • the silicon oxide plate was suction filtered using a filter in a dry nitrogen atmosphere. Unreacted 1-chloroethyltrichlorosilane was removed by washing, and a silicon oxide plate having a chemically modified surface was obtained on the filter.
  • the filter was immersed in 1,4-dichlorobutane and ultrasonic waves were applied. The application of ultrasound resulted in the silicon oxide plate attached to the filter being dispersed in 1,4-dichlorobutane. In this way, a member dispersion was prepared.
  • the lower surface of the first squeegee 510 was provided with a slit having a length of 20 mm and a width of 0.5 mm. In order to keep water stably, absorbent cotton containing water was put in the slit.
  • the second squeegee 520 was a polyethylene knife.
  • the first squeegee 510 and the second squeegee 520 are disposed on one end side of the substrate 100.
  • a member dispersion 600 having a volume of approximately 50 ⁇ L was disposed by a glass pipette.
  • the distance between the lower surface of the first squeegee 510 and the substrate 100 was maintained at approximately 0.2 mm.
  • the distance between the lower surface of the second squeegee 520 and the substrate 100 was also maintained at approximately 0.2 mm.
  • the distance between the first squeegee 510 and the second squeegee 520 was maintained at 1 mm.
  • the arrangement state of the silicon oxide plate on the substrate 100 was observed with a microscope. Specifically, 42 hydrophilic regions 111 were selected. Of the 42 hydrophilic regions 111 selected, the number (Np) of hydrophilic regions in which one silicon oxide plate was accurately arranged was counted. Furthermore, the number (N1) of hydrophilic regions in which a plurality of silicon oxide plates were arranged was counted. The number of hydrophilic regions (N2) in which one silicon oxide plate was distorted was also counted. Nc is the sum of N1 and N2. See Table 1 below.
  • Example 2 to 5 and Comparative Examples 1 to 5 Examples 2-5 and Comparative Examples 1-5 were performed to determine the range of values for D1 / D2.
  • Examples 2 to 5 and Comparative Examples 1 to 4 an experiment similar to Example 1 was performed except that the hydrophilic region 111 and the hydrophilic line 112 having the value of D1 shown in Table 1 were formed. It was conducted.
  • Comparative Example 5 the same experiment as in Example 1 was performed except that the hydrophilic line 112 was not formed.
  • Table 1 shows the values of Np and Nc in Examples 1 to 5 and Comparative Examples 1 to 5.
  • the values of Np in Comparative Examples 1 to 4 were 11 to 13. This means that when the hydrophilic line 112 is provided and the value of D1 / D2 is 0.10 or more and 1.20 or less, the probability that the member 400 is mounted on the hydrophilic region 111 is improved.
  • Example 6 to 17 and Comparative Examples 6 to 13 In order to determine the value of D3, Examples 6 to 17 and Comparative Examples 6 to 13 were carried out. Examples 6 to 17 and Comparative Examples 6 to 13 were the same as Example 1 except that the hydrophilic region 111 and the hydrophilic line 112 having the values of D1 to D3 shown in Table 2 were formed. The experiment was conducted.
  • Np by the mounting method of Examples 6 to 17 was 19 to 26.
  • Np of Comparative Examples 6 to 13 was 8 to 13, respectively. This means that when D3 is 5 ⁇ m or more and the value of D1 / D2 is 0.10 or more and 1.20 or less, the probability that the member 400 is mounted on the hydrophilic region 111 is improved.
  • the member mounting method of the present invention can be used for mounting a member including an electronic element and mounting a minute columnar member.
  • the member mounting method of the present invention can be used to manufacture an electronic device or an electronic element.
  • the present invention can be used to manufacture a circuit board and an electronic device including the circuit board.
  • the present invention allows the circuit board and the electronic equipment including it to be repaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Die Bonding (AREA)

Abstract

 本発明の方法は、次の工程を具備する:基板(100)、第1の液体、および部材含有液を準備する工程(a)、前記基板は、撥水性領域(120)、親水性領域(111)、および親水性ライン(112)を具備し、;第1の液体を基板に連続的に塗布しながら、第1の液体を親水性領域および親水性ラインに配置する工程(b);親水性領域に配置された第1の液体に部材含有液を接触させる工程(c);および、基板から第1の液体および部材含有液に含有される第2の液体を除去して、部材を親水性領域に配置する工程(d)。Y方向は親水性ラインの長さ方向、Z方向は基板の法線の方向、+X方向はY方向およびZ方向のいずれにも直交する方向である。D1は親水性領域および親水性ラインの間の+X方向に沿った間隔、D2は親水性領域のY方向に沿った長さ、D3は親水性ラインのY方向に沿った長さ、D4は親水性ラインの幅を表す。D1/D2の値は0.1以上1.2以下で、D3の値は5μm以上で、D4の値は部材の最小長よりも小さい。

Description

部材のマウント方法
 本発明は、部材のマウント方法に関する。
 アクティブ型液晶表示素子および有機エレクトロルミネッセンス表示素子はガラス基板上に形成されている。基板上にマトリックス状に配置された画素は、当該画素の近傍に配置された薄膜トランジスタによって制御される。現在の技術を用いても、結晶半導体から構成される薄膜トランジスタはガラス基板上に形成され得ない。そのため、アモルファスシリコンまたはポリシリコン薄膜を用いる薄膜トランジスタが画素の制御に用いられている。薄膜トランジスタは大面積の基板上に安価に作製され得る。しかし、薄膜トランジスタは、結晶性シリコンよりも低い移動度のために高速で動作することが阻害されるという欠点を有する。この欠点を克服するため、あらかじめシリコンウェハ上に多数のトランジスタが作製された後、ウェハから切り出されて、そして基板上に配置される。
 特許文献1は、図9Aに示すように、複数の親水性領域11と、当該親水性領域11を囲む撥水性領域12とを具備した基板10を準備することを開示している。次に、図9Bに示すように、基板に配置される部材40が水に実質的に溶解しない溶媒30に分散され、部材含有液60を準備する。部材40の一つの面は親水性であって基板10と接合し、この面以外の部材40の面は撥水性である。
 次に、図9Cに示されるように、第1のスキージ51を用いて複数の親水性領域11に水20が配置される。その後、図9Dに示すように、第2のスキージ52を用いて、部材含有液60が塗布され、部材含有液60を親水性領域11に配置された水21と接触させる。この過程において、部材40は親水性領域11に配置された水21の中に移動する。その後、水21および部材含有液60に含まれる溶媒が除去され、親水性領域11に部材40を固定する。
米国特許第7730610号公報(特許第4149507号公報に対応)
 特許文献1に記載の方法は、部材40を基板10に配置する優れた方法である。
 本発明の目的は、部材が親水性領域に配置される確率を向上させる方法を提供することである。
 本発明は、部材を基板上に配置する方法であって、以下の工程を具備する:
 前記基板、第1の液体、および部材含有液を準備する工程(a)、
  ここで、
  前記基板は、撥水性領域、親水性領域、および親水性ラインを具備しており、
  前記撥水性領域は、前記親水性領域および前記親水性ラインを囲んでおり、
  Y方向は、前記親水性ラインの長さ方向であり、
  Z方向は、前記基板の法線の方向であり、
  +X方向は、前記Y方向および前記Z方向のいずれにも直交する方向であり、
  -X方向は、前記+X方向の逆方向であり、
  前記親水性領域および親水性ラインは、前記+X方向に沿ってこの順で配置されており、
  D1は、前記親水性領域および前記親水性ラインの間の前記+X方向に沿った間隔を表し、
  D2は、前記親水性領域の前記Y方向に沿った長さを表し、
  D3は、前記親水性ラインの前記Y方向に沿った長さを表し、
  D4は、前記親水性ラインの幅を表し、
  D1/D2の値は0.1以上1.2以下であり、
  D3の値は、5μm以上であり、
  D4の値は、前記部材の最小長よりも小さく、
  前記第1の液体は親水性であり、
  前記部材含有液は、前記部材および第2の液体を含有し、
  前記第2の液体は、前記第1の液体に溶解せず、
  前記部材は親水性の表面を具備しており、
 前記第1の液体を前記基板に連続的に塗布しながら、前記第1の液体を前記親水性領域にまず配置し、次に前記第1の液体を前記親水性ラインに配置する工程(b)、
 前記親水性領域に配置された前記第1の液体に前記部材含有液を接触させる工程(c)、および
 前記基板から、前記第1の液体および第2の液体を除去することによって、前記部材を前記親水性領域に配置する工程(d)。
 本明細書における用語「配置」は「実装」を含む。本明細書における「部材」の例は、電子部品である。
 本発明は、部材が親水性領域に配置される確率を向上させる。
図1Aは、親水性領域111、親水性ライン112、および撥水性領域120を具備する基板100を示す。 図1Bは、親水性領域111、親水性ライン112、および撥水性領域120を具備する基板100を示す。 図2は、部材400を含有する部材含有液600を模式的に示す。 図3Aは、部材400が配置される前の基板100を示す。 図3Bは、工程(b)を示す。 図3Cは、工程(c)を示す。 図3Dは、部材400が配置された後の基板100を示す。 図4Aは、図4Bおよび図4Cと共に、撥水性領域121に塗布された第1の液体200が基板100上を移動する様子を示す。 図4Bは、図4Aおよび図4Cと共に、撥水性領域121に塗布された第1の液体200が基板100上を移動する様子を示す。 図4Cは、図4Aおよび図4Bと共に、撥水性領域121に塗布された第1の液体200が基板100上を移動する様子を示す。 図5Aは、部材の最小長を説明するための斜視図である。 図5Bは、部材の最小長を説明するための斜視図である。 図5Cは、部材の最小長を説明するための斜視図である。 図5Dは、部材の最小長を説明するための斜視図である。 図6は、第1スキージ510が基板100を移動する様子を示す上面図である。 図7Aは、D1~D4の値を説明するための上面図である。 図7Bは、D1~D4の値を説明するための図である。 図8Aは、D1~D4の値を説明するための上面図である。 図8Bは、D1~D4の値を説明するための図である。 図8Cは、D1~D4の値を説明するための図である。 図9Aは、図9B~図9Dと共に、特許文献1に記載された方法を示す。 図9Bは、図9A、図9C、および図9Dと共に、特許文献1に記載された方法を示す。 図9Cは、図9A、図9B、および図9Dと共に、特許文献1に記載された方法を示す。 図9Dは、図9A~図9Cと共に、特許文献1に記載された方法を示す。
 本発明の実施の形態が、以下、図面を参照しながら説明される。図面においては、本明細書の理解を促進するため、ハッチングが省略され得る。
 (工程(a))
 工程(a)では、基板100、第1の液体200、および部材含有液600が準備される。
 図1Aおよび図1Bは、基板100を示す。基板100は、親水性領域111、撥水性領域120、および親水性ライン112を表面に具備する。
 複数の親水性領域111が設けられることが好ましい。撥水性領域120は、親水性領域110を囲んでいる。
 親水性領域111および親水性ライン112の水に対するぬれ性は、撥水性領域120の水に対するぬれ性よりも高い。
 図1Aおよび図1Bに示されるように、+X方向、-X方向、Y方向、およびZ方向が定義される。すなわち、Y方向は、親水性ライン112の長さ方向である。Z方向は、基板100の法線の方向である。+X方向は、Y方向およびZ方向のいずれにも直交する方向である。-X方向は、+X方向の逆方向である、親水性領域111および親水性ライン112は、+X方向に沿ってこの順で配置されている。
 次に、D1、D2、D3、およびD4の値が説明される。
 (D1)
 図7A~図8Cに示されるように、D1は、親水性領域111および親水性ライン112の間の+X方向に沿った間隔を表す。
 正確には、図7Aおよび図7Bに示されるように、D1は、図7Aおよび図7Bに示される想像線803に沿った、親水性領域111および親水性ライン112の間の間隔を意味する。想像線803は、親水性領域111の重心801と、親水性ライン112の重心802との間を結ぶ。
 (D2)
 図7A~図8Cに示されるように、D2は、親水性領域111のY方向に沿った長さを表す。D3は、親水性ライン112のY方向に沿った長さを表す。
 (D1/D2の値)
 本発明者は、D1/D2の値は、0.1以上1.2以下の範囲であることが必要であることを見出した。D1/D2の値が0.1未満である場合には、部材400が親水性領域111に配置される確率が低下し得る(後述される比較例1を参照)。言い換えれば、(部材400が配置された親水性領域111の数Np)/(親水性領域111の数)の値が小さく、これは低効率を意味する。同様に、D1/D2の値が1.2を超える場合も、部材400が親水性領域111に配置される確率が低下し得る(後述される比較例2~4を参照)。
 (D3の値)
 本発明者はD3の値は、5μm以上であることが必要であることを見出した。D3の値が5μm未満であると、部材400が親水性領域111に配置される確率が低下し得る(後述する比較例6~9を参照)。D3の値は1000μm以下であることが好ましい。
 (D4の値)
 本発明では、親水性ライン112の幅を表すD4の値は、部材400の最小長よりも短いことが必要である。D4が部材400の最小長と同じまたはそれ以上である場合には、親水性ライン112に部材400が配置され得る。好ましくは、D4の値は部材400の最小値の2分の1以下である。
 ここで、「部材400の最小長」が、図5A~図5Dを用いて、詳細に説明される。
 図5Aに示されるように、部材400が、2つの面(P1)と、面積が面(P1)以上である2つの面(P2)と、面積が面(P2)よりも大きい2つの面(P3)とを備える直方体である場合において、各辺の長さを(L1)、(L2)、および(L3)とする。親水性領域111の形状および大きさが面(P3)の形状および大きさと同一である場合、部材400の1つの面(P3)が、基板100の親水性領域111が設けられている面に対向するように配置される。この場合、「部材400の最小長」とは、マウントされる面である面(P3)を構成する辺の長さ(L1)と辺の長さ(L2)のうち、短い辺の長さ(L1)のことをいう。なお、本明細書における「形状および大きさが同一」の意味については、後述する。
 図5Bに示されるように、部材400を構成する面のうち、基板100の親水性領域111に対向して配置する面(P3)の形状が三角形の場合、「部材400の最小長」とは、三角形を構成する辺(L1)、辺(L2)、辺(L3)のうち、その長さが最も短い辺の長さ(L1)のことをいう。
 図5Cに示されるように、部材400を構成する面のうち、基板100の親水性領域111に対向して配置する面(P3)の形状が六角形の場合、「部材400の最小長」とは、六角形を構成する辺(L1)~辺(L6)のうち、その長さが最も短い辺の長さ(L1)のことをいう。
 図5Dに示されるように、部材400を構成する面のうち、基板100の親水性領域111に対向して配置する面(P3)の形状が円形の場合、「部材400の最小長」とは、面(P3)の直径の長さ(L1)のことをいう。楕円の場合には短径をいう。
 マウントされる部材400の最小長は、10μm以上であることが好ましい。また、部材400が、前記面(P1)、前記面(P2)および前記面(P3)を備えた直方体である場合、マウントされる面である面(P3)の長辺(図5Aでは長さ(L2)の辺)は、1000μm以下であることが好ましい。
 工程(a)では第1の液体が準備される。第1の液体は、第2の液体と共に、後に詳細に説明される。
 工程(a)では、部材含有液600を準備する。部材含有液600は、部材400および第2の液体300を含有する。
 図2は、部材分散液600を模式的に示す断面図である。図2は、容器700に入れられた部材分散液600を模式的に示す。部材分散液600は、第2の液体300および第2の液体300中に分散させた部材400を含有する。第2の液体300には、水が実質的に溶解しない。具体的な第2の液体300はヘキサンである。第2の液体300の他の具体例は後述される。本明細書における用語「分散」とは、部材400が第2の液体300中で凝集していない状態を意味する。部材400を分散させるために部材分散液600は攪拌され得る。
 第1の液体200および第2の液体300は、第1の液体200と第2の液体300との間の界面に働く界面張力、および、部材400の表面に対する第1の液体200および第2の液体300のそれぞれのぬれ性を考慮して、適切に選択され得る。
 第1の液体200は第2の液体300に実質的に溶解しないことを必要とする。第1の液体200が第2の液体300に実質的に溶解しないので、第1の液体200に第2の液体300が接触したときに、第1の液体200は親水性領域111に安定にとどまる。そして、界面張力により部材400は第1の液体200の中に移動する。「実質的に溶解しない」とは、第2の液体100ml中に溶解する第1の液体の重量によって定義される溶解度が10g以下、より好ましくは1g以下であることを意味する。
 第1の液体200および第2の液体300の組み合わせは、例えば、第1の液体200として極性が大きい液体、および第2の液体300として第1の液体200よりも極性の小さい液体の組み合わせである。すなわち、第1の液体200は親水性であり、かつ第2の液体300は疎水性である。
 第1の液体200の例は、水である。水に代え、メタノール、エタノール、エチレングリコールおよびグリセリンのようなアルコール、水とアルコールとの混合液が用いられ得る。水は、大きい表面張力を有しており、従って、部材400を親水性領域111に強固に保持することができるため、より好ましい。
 第2の液体300の例は、
 ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカンのようなアルカン、
 トルエン、ベンゼン、キシレンのような芳香族炭化水素類、
 クロロメタン、ジクロロメタン、クロロホルム、四塩化炭素、モノクロロブタン、ジクロロブタン、モノクロロペンタンおよびジクロロペンタンのような塩素系溶媒、
 ジエチルエーテル、石油エーテルのようなエーテル、
 酢酸エチル、酢酸ブチルのようなエステル類、
 シリコーンオイル、パーフルオロオクタン、パーフルオロノナン、または、
 これらの混合液
である。
 第2の液体300は、塩素系溶媒であることが望ましい。
 基板100の材質は限定されない。無機材料、高分子樹脂材料、または、無機材料と高分子樹脂材料との複合材料から形成される基板が用いられ得る。無機材料として、アルミナのようなセラミックス、シリコンおよびガラスが使用され得る。高分子樹脂材料として、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、およびポリカーボネート樹脂が使用され得る。無機材料と高分子樹脂材料との複合材料として、例えば、ガラス、セラミックスまたは金属からなるファイバーと高分子樹脂材料とを含む複合材料が使用され得る。SOI基板および化合物半導体基板も使用され得る。
 公知の方法を用いて部材400および部材含有液600が調製され得る。特許文献1は、当該公知の方法を開示している。
 第1の液体200として水のような大きい極性を有する液体が用いられる場合、部材400は高い表面エネルギーを有することが好ましい。より具体的には、当該表面エネルギーは40mJ/m2以上である。
 部材400が小さい表面エネルギーを有する場合、部材400の表面を処理して、その表面エネルギーを増大することが好ましい。部材400が表面にシリコンを有する場合には、オゾン雰囲気中で紫外線を当該表面に照射し、その表面エネルギーを増大する。
 部材400の表面に、第1の液体200に対して親和性を有する薄膜を形成し、部材400の表面エネルギーを増大させ得る。第1の液体200が水である場合には、当該薄膜の例は、親水膜である。例えば、酸化シリコン、窒化シリコン、または酸化チタンの親水膜が、真空スパッタリング法または熱CVD法によって部材400の表面に形成され得る。親水膜が形成された後、部材400の表面にオゾン雰囲気で紫外線が照射され得る。末端にアミノ基、カルボキシル基、または水酸基を有するシランカップリング剤で部材400の表面が修飾され、部材400の表面エネルギーを増大し得る。部材400の表面が金属を有する場合には、末端にアミノ基、カルボキシル基または水酸基を有するチオールで表面が修飾され得る。
 図1Aおよび図1Bに示されるように、親水性ライン112は、直線状でもよいし、曲線状であってもよい。
 親水性領域111の形状は、その親水性領域111にマウントされる部材400の形状に依存して決定され得る。親水性領域111の形状は、例えば、三角形、四角形、六角形のような多角形、円形、楕円形である。親水性領域111は、マウントされる部材400の面(すなわち、基板100にマウントされた状態で基板100と対向する部材400の面)の形状と同一の形状を有していることが好ましい。「同一の形状」とは、親水性領域111の形状およびマウントされる部材400の面(基板100にマウントされた状態で基板100と対向する面)が、数学的概念における合同または相似関係にあることを意味する。
 S1は、基板に配置されたときに、部材400の基板と対向する表面の面積と定義される。S2は、1つの部材配置領域111の面積と定義される。1つの部材配置領域111の面積がS2と定義される。S2/S1の値は、0.64以上1.44以下の値を有することが好ましい。S2/S1の値が、0.64よりも小さい場合、親水性領域110が著しく少ない水を有するため、部材400が配置される確率が小さくなり得る。S2/S1の値が1.44よりも大きい場合、親水性領域110が著しく多くの水を有する。そのため、1つの部材配置領域111に複数の部材400が配置され得る。
 親水性領域111、親水性ライン112、および撥水性領域120は、例えば、フォトリソグラフィー法により、親水性の基板に選択的に撥水膜を形成することによって作製され得る。親水性領域111、親水性ライン112、および撥水性領域120を形成する方法は、国際公開第2010/058516号公報(これは、米国特許出願番号12/827,255に対応する。この特許出願は本願に援用される)の段落番号0049~0057に記載されている方法を読んだ当業者にとって明らかであろう。
 本実施の形態では、親水性領域111は、親水性ライン112と同じ表面エネルギーを有していることが好ましい。しかし、撥水性領域120の表面エネルギーが、親水性領域111の表面エネルギーおよび親水性ライン112の表面エネルギーのいずれよりも低い限り、親水性領域111は、親水性ライン112とは異なる表面エネルギーを有し得る。
 固体表面に対する水のぬれ性は、固体の表面エネルギーだけでなく、水の表面張力も関係する。親水性の固体の表面エネルギーの具体的な値は、40mJ/m2以上であることが好ましい。60mJ/m2以上1000mJ/m2以下であることがより好ましい。撥水性の固体の表面エネルギーの具体的な値は、5mJ/m2以上40mJ/m2未満であることが好ましい。5mJ/m2以上25mJ/m2以下であることがより好ましい。
 (工程(b))
 工程(b)においては、図3Bおよび図6に示されるように、第1の液体200を基板100に+X方向に沿って連続的に塗布する。このようにして、第1の液体200を親水性領域111および親水性ライン112に配置する。第1の液体200は先に親水性領域111に配置され、次に親水性領域112に配置される。参照符号211は、親水性領域111に配置された第1の液体200を指し示す。参照符号212は、親水性ライン112に配置された第1の液体200を指し示す。
 具体的には、第1のスキージ510が用いられる。この第1のスキージ510は、+X方向に沿って移動する。
 撥水性領域120は親水性領域111および親水性ライン112を囲んでいるので、工程(b)において親水性領域111および親水性ライン112に配置された親水性の第1の液体200(例えば、水)は、はみ出さない。
 ここで、工程(b)が、さらに詳細に説明される。
 図4A~図4Cは、工程(b)を模式的に示した上面図である。図4Aに示されるように、第1のスキージ510が基板100の一端側(図4Aの左側)から他端側(図4Aの右側)に移動する。この過程で、水は、親水性領域111および親水性ライン112のいずれにも配置される。加えて、水は、親水性領域111と親水性ライン112に挟まれた、撥水性領域121にも一時的に配置される。なぜなら、基板100に水は連続的に塗布されるからである。撥水性領域121は、図4Aにおいて円で囲まれた領域である。
 その後、図4Bおよび図4Cに示されるように、撥水性領域121に配置された水は移動し、親水性領域111に配置される。撥水性領域121の水に対する低いぬれ性が、水の移動を生じさせる。図4Cにおける矢印は、水の移動方向を模式的に指し示す。
 この結果、親水性領域111に配置される水の体積は、増大し得る。親水性領域111に配置される水の体積の増大は、部材400が親水性領域111にマウントされる確率を向上させる。
 上記の説明から明らかなように、第1の液体200(水)は撥水性領域121に一時的に配置されるため、第1の液体200(水)は基板100の表面に連続的に塗布されることが必要である。
 一方、図9A~図9Dに示されるように、親水性ライン112が形成されていない基板10が用いられる場合でも、第1の液体(水)は撥水性領域12上にもぬり広げられる。しかし、部材が親水性領域11にマウントされる確率は、本実施の形態による方法よりも低い(後述される比較例5を参照)。
 (工程(c))
 次に、工程(c)を説明する。
 図3Bは、本実施形態のマウント方法を実施するためのマウント装置の構成および動作を模式的に示す。図3Bに示されるように、マウント装置は、第1のスキージ510および第2のスキージ520を具備する。工程(b)において、第1スキージ510により、基板100が第1の液体200に曝され、親水性領域111および親水性ライン112上に第1の液体211~212を配置する。
 次に、工程(c)において、親水性領域111に配置された第1の液体211に部材含有液600を接触させる。図3Bおよび図3Cに示されるように、第2スキージ520により、基板100が部材分散液600に曝される。好ましくは、第1スキージ510および第2スキージ520は、その間隔を維持しながら基板100上を+X方向に沿って移動する。スキージを固定する手段および移動する手段は図示されていない。第2スキージ520を用いることに代え、工程(b)の後、基板100を部材分散液600に浸漬し、基板100を部材分散液600に曝され得る。
 第1の液体200(水)は、第2の液体300に実質的に溶解しないので、第1の液体(水)211~212は、親水性領域111および親水性ライン112上に安定にとどまる。この過程で、部材400に働く界面張力のため、部材400は、親水性領域111に配置された水211の内部に移動する。あるいは、部材400は、第2の液体300と水211とが形成する界面に移動する。
 図3Bおよび図3Cにおいては、第1スキージ510および第2スキージ520が+X方向に沿って移動し、基板100は移動しない。しかし、第1スキージ510および第2スキージ520が移動せず、基板100が-X方向に沿って移動し得る。または、第1スキージ510および第2スキージ520が+X方向に沿って移動し、かつ基板100が-X方向に沿って移動し得る。工程(b)では、基板100の一端に第1の液体200が配置される。その後、基板100を傾け、第1の液体200を親水性領域111および親水性ライン112に順に配置し得る。
 (工程(d))
 最後に、工程(d)を説明する。
 基板100から、第1の液体(水)211~212および第2の液体300が除去され、図3Dに示されるように、部材400を親水性領域111に配置する。
 水211・212および第2の液体300は、公知の乾燥方法により除去される。例えば、自然乾燥、真空デシケータによる乾燥、空気またはガスを吹き付けての乾燥、あるいは加熱および/または減圧による乾燥のような周知の乾燥方法から選択される適切な乾燥方法が用いられ得る。乾燥の前に基板100は洗浄され得る。
 (実施例)
 以下の実施例は、本発明による配置方法をさらに詳細に説明する。
 (実施例1)
 実施例1では、本発明による配置方法を用いて酸化シリコンプレートが基板に配置された。
<基板の作製>
 まず、撥水性領域120に囲まれた複数の親水性領域111および複数の親水性ライン112が、シリコンからなる基板100に以下のように形成された。基板100は、縦40mm、横60mmであった。
 525μmの厚みおよび4インチの直径を有するシリコンからなる基板100が酸素雰囲気下においてプラズマ処理に曝され、基板100の表面を酸化した。これにより、基板100の全面が親水性となった。続いて、フォトリソグラフィー法により、親水性領域111および親水性ライン112に相当するポジ型レジストパターンが形成された。
 乾燥雰囲気において、レジストパターンを有する基板100が、1vol%の濃度のCF3(CF2724SiCl3(以下、FS-17と略す)を含有するパーフルオロオクタン溶液に、20分間浸漬された。その後、基板100が純粋なパーフルオロオクタン中で洗浄され、次いで溶媒が除去された。さらにレジストパターンがアセトンにより除去された。
 このようにして、撥水性領域120に囲まれた親水性領域111および親水性ライン112がシリコン基板100上に形成された。
 実施例1において形成された親水性領域111は、以下に詳細に記述される。
   形状:長方形(図7A参照)
   X方向に沿った幅:40μm
   Y方向に沿った長さ(D2):20μm
   X方向に沿って隣接する2つの親水性領域111の間の間隔:150μm
   Y方向に沿って隣接する2つの親水性領域111の間の間隔:150μm
 実施例1において形成された親水性ライン112は、以下に詳細に記述される。
   形状:長方形(図7A参照)
   X方向に沿った幅(D4):5μm
   Y方向に沿った長さ(D3):20μm
   D1:2μm
 <部材含有液>
 酸化シリコンプレートを含有する部材含有液600は、以下の方法によって調製された。
 まず、525μmの厚みを有するシリコン基板の表面に、電子ビーム蒸着法により、100nmの厚みを有するアルミニウム薄膜が形成された。続いて、プラズマCVD法により200nmの酸化シリコン薄膜が形成された。
 レジストパターンをマスクとして利用するドライエッチングにより、酸化シリコン薄膜の一部が除去された。酸素プラズマアッシャー処理によってレジストパターンが剥離され、複数の酸化シリコンプレートを形成した。各酸化シリコンプレートは、縦20μm×横40μm×高さ0.2μmの大きさを有していた。続いて、50℃のリン酸および硝酸の混合液(以下、「熱リン酸」)により、アルミニウム薄膜がエッチングされ、酸化シリコンプレートをリフトオフした。
 次に、熱リン酸に分散した酸化シリコンプレートがフィルターを用いて吸引ろ過された。酸化シリコンプレートが付着したフィルターが、乾燥雰囲気において終夜、乾燥された。その後、1vol%の1-クロロエチルトリクロロシランを含有する1,4-ジクロロブタン溶液中に、フィルターが2時間浸漬された。酸化シリコンプレートは溶液中に分散した。
 乾燥窒素雰囲気においてフィルターを用いてシリコン酸化プレートは吸引ろ過された。未反応の1-クロロエチルトリクロロシランを洗浄により除去し、化学修飾された表面を有する酸化シリコンプレートをフィルター上に得た。フィルターは1,4-ジクロロブタン中に浸漬され、超音波が印加された。超音波の印加は、フィルターに付着した酸化シリコンプレートが1,4-ジクロロブタン中に分散することをもたらした。このようにして、部材分散液が調製された。
 <スキージ>
 第1スキージ510の下面は、長さ20mm、幅0.5mmのスリットを具備していた。水を安定に保持するために、水を含む脱脂綿がスリット内に入れられた。
 第2スキージ520は、ポリエチレン製のナイフであった。
 <配置方法>
 図3Bに示すように、第1スキージ510および第2スキージ520が基板100の一端側に配置された。第2スキージ520の前方に、およそ50μLの体積を有する部材分散液600がガラスピペットにより配置された。
 第1スキージ510の下面と基板100との間隔をおよそ0.2mmに維持された。
 第2スキージ520の下面と基板100との間隔も、およそ0.2mmに維持された。
 第1スキージ510と第2のスキージ520との間隔は1mmに維持された。
 その後、速度10mm/秒で第1スキージ510および第2スキージ520を+X方向に移動させた。
 この操作が10回繰り返された。
 基板100への酸化シリコンプレートの配置状態が顕微鏡で観察された。
 具体的には、42カ所の親水性領域111が選択された。選択された42箇所の親水性領域111の中から、1個の酸化シリコンプレートが正確に配置された親水性領域の数(Np)が数えられた。さらに、複数の酸化シリコンプレートが配置した親水性領域の数(N1)が数えられた。1つの酸化シリコンプレートが歪んで配置された親水性領域の数(N2)も数えられた。NcはN1およびN2の和である。後述される表1を参照せよ。
 (実施例2~実施例5、および比較例1~比較例5)
 D1/D2の値の範囲を決定するために、実施例2~5および比較例1~比較例5は実施された。
 実施例2~実施例5および比較例1~4では、表1に示されたD1の値を有する親水性領域111および親水性ライン112が形成されたこと以外は、実施例1と同様の実験行われた。比較例5は、親水性ライン112が形成されなかったこと以外は、実施例1と同様の実験が行われた。
 表1は、実施例1~5および比較例1~5におけるNpおよびNcの値を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~5のマウント方法によるNpの値は20~27であった。
 一方、比較例1~4のNpの値は、11~13であった。これは、親水性ライン112が設けられ、かつD1/D2の値が0.10以上1.20以下である場合、部材400が親水性領域111にマウントされる確率が向上することを意味する。
 (実施例6~実施例17、および比較例6~比較例13)
 D3の値を決定するために、実施例6~実施例17、および比較例6~比較例13は実施された。
 実施例6~実施例17および比較例6~13では、表2に示されたD1~D3の値を有する親水性領域111および親水性ライン112が形成されたこと以外は、実施例1と同様の実験が行われた。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例6~17のマウント方法によるNpは19~26であった。
 一方、比較例6~13のNpは、それぞれ8~13であった。これは、D3が5μm以上であり、かつD1/D2の値が0.10以上1.20以下である場合、部材400が親水性領域111にマウントされる確率が向上することを意味する。
 本発明の部材のマウント方法は、電子素子を含む部材をマウントすること、および微小な柱形状の部材をマウントするために用いられ得る。本発明の部材のマウント方法は、電子機器または電子素子を製造するために用いられ得る。具体的には、本発明は、回路基板およびそれを含む電子機器を製造するために用いられ得る。さらに、本発明は回路基板およびそれを含む電子機器が修理されることを可能にする。

Claims (5)

  1.  部材を基板上に配置する方法であって、以下の工程を具備する:
     前記基板、第1の液体、および部材含有液を準備する工程(a)、
      ここで、
      前記基板は、撥水性領域、親水性領域、および親水性ラインを具備しており、
      前記撥水性領域は、前記親水性領域および前記親水性ラインを囲んでおり、
      Y方向は、前記親水性ラインの長さ方向であり、
      Z方向は、前記基板の法線の方向であり、
      +X方向は、前記Y方向および前記Z方向のいずれにも直交する方向であり、
      -X方向は、前記+X方向の逆方向であり、
      前記親水性領域および親水性ラインは、前記+X方向に沿ってこの順で配置されており、
      D1は、前記親水性領域および前記親水性ラインの間の前記+X方向に沿った間隔を表し、
      D2は、前記親水性領域の前記Y方向に沿った長さを表し、
      D3は、前記親水性ラインの前記Y方向に沿った長さを表し、
      D4は、前記親水性ラインの幅を表し、
      D1/D2の値は0.1以上1.2以下であり、
      D3の値は、5μm以上であり、
      D4の値は、前記部材の最小長よりも小さく、
      前記第1の液体は親水性であり、
      前記部材含有液は、前記部材および第2の液体を含有し、
      前記第2の液体は、前記第1の液体に溶解せず、
      前記部材は親水性の表面を具備しており、
     前記第1の液体を前記基板に連続的に塗布しながら、前記第1の液体を前記親水性領域にまず配置し、次に前記第1の液体を前記親水性ラインに配置する工程(b)、
     前記親水性領域に配置された前記第1の液体に前記部材含有液を接触させる工程(c)、および
     前記基板から、前記第1の液体および第2の液体を除去することによって、前記部材を前記親水性領域に配置する工程(d)。
  2.  請求項1に記載の方法であって、
     工程(b)において、第1のスキージを用いて前記第1の液体を前記基板に連続的に塗布しながら、第1のスキージを前記+X方向に沿って移動させる。
  3.  請求項1に記載の方法であって、
     工程(b)において、第1のスキージを用いて前記第1の液体を前記基板に連続的に塗布しながら、前記基板を前記-X方向に沿って移動させる。
  4.  請求項2に記載の方法であって、
     工程(b)において、前記基板を前記-X方向に沿って移動させる。
  5.  請求項1に記載の方法であって、
     第1の液体は水である。
PCT/JP2011/006176 2011-02-14 2011-11-04 部材のマウント方法 WO2012111055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011553218A JP5036910B1 (ja) 2011-02-14 2011-11-04 部材のマウント方法
CN2011800175250A CN102844849A (zh) 2011-02-14 2011-11-04 部件的安装方法
US13/453,629 US8394458B2 (en) 2011-02-14 2012-04-23 Method for disposing a component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-028204 2011-02-14
JP2011028204 2011-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/453,629 Continuation US8394458B2 (en) 2011-02-14 2012-04-23 Method for disposing a component

Publications (1)

Publication Number Publication Date
WO2012111055A1 true WO2012111055A1 (ja) 2012-08-23

Family

ID=46672021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006176 WO2012111055A1 (ja) 2011-02-14 2011-11-04 部材のマウント方法

Country Status (3)

Country Link
JP (1) JP5036910B1 (ja)
CN (1) CN102844849A (ja)
WO (1) WO2012111055A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739877B (zh) * 2020-07-27 2020-12-04 深圳市隆利科技股份有限公司 亲疏水界面组装制备led显示器的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058516A1 (ja) * 2008-11-18 2010-05-27 パナソニック株式会社 部材のマウント方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058516A1 (ja) * 2008-11-18 2010-05-27 パナソニック株式会社 部材のマウント方法

Also Published As

Publication number Publication date
JP5036910B1 (ja) 2012-09-26
JPWO2012111055A1 (ja) 2014-07-03
CN102844849A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4531862B2 (ja) 部材のマウント方法
JP4149507B2 (ja) 電子回路構成部材のマウント方法およびマウント装置
JP2005260040A (ja) ドーピング方法、半導体装置の製造方法および電子応用装置の製造方法
US8419962B2 (en) Method for disposing a microstructure
JP4733786B2 (ja) 部材をマウントする方法
US8394458B2 (en) Method for disposing a component
JP5036910B1 (ja) 部材のマウント方法
JP2007059559A (ja) 実装方法、電子機器の製造方法および表示装置
JP5087720B1 (ja) 部材を配置する方法
US8414976B2 (en) Method for disposing a component
JP5000015B2 (ja) 部材の配置方法
JP5000014B2 (ja) 部材の配置方法
US8178154B2 (en) Method for disposing a component
US8187667B2 (en) Method for disposing a component
JP2010145441A (ja) 部材のマウント方法
JP4534491B2 (ja) 電子応用装置の製造方法およびマイクロロッドトランジスタのアッセンブリ方法
JP2005197611A (ja) 微小機能素子およびその製造方法ならびに回路基板およびその製造方法ならびに電子応用装置およびその製造方法
JP2001331121A (ja) マイクロチップの拡大配置方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017525.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011553218

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858564

Country of ref document: EP

Kind code of ref document: A1