WO2012109847A1 - 一种通信网络数据传输方法、节点和系统 - Google Patents

一种通信网络数据传输方法、节点和系统 Download PDF

Info

Publication number
WO2012109847A1
WO2012109847A1 PCT/CN2011/077725 CN2011077725W WO2012109847A1 WO 2012109847 A1 WO2012109847 A1 WO 2012109847A1 CN 2011077725 W CN2011077725 W CN 2011077725W WO 2012109847 A1 WO2012109847 A1 WO 2012109847A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
channel
control message
channel information
wavelength
Prior art date
Application number
PCT/CN2011/077725
Other languages
English (en)
French (fr)
Inventor
徐世中
邓宁
石晓钟
薛青松
马腾
罗小东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001337.9A priority Critical patent/CN102308591B/zh
Priority to PCT/CN2011/077725 priority patent/WO2012109847A1/zh
Publication of WO2012109847A1 publication Critical patent/WO2012109847A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a communication network data transmission method, node, and system. Background technique
  • Multi-channel transmission communication systems such as Time Division Multiplexing (TDM) and/or Wavelength Division Multiplexing (WDM) communication systems, provide an efficient transmission scheme for multiple nodes in a communication system.
  • TDM Time Division Multiplexing
  • WDM Wavelength Division Multiplexing
  • a major problem with multi-channel transmission systems is transmission collisions.
  • One solution is to assign a dedicated channel to each node, but this solution wastes transmission resources. Therefore, effectively allocating transmission resources dynamically becomes a hot issue in multi-channel transmission systems.
  • An aspect of the invention relates to a communication network data transmission method, including:
  • the first node receives the first control message, where the first control message carries the channel information of the first channel;
  • the first node allocates the second channel according to the channel information of the first channel carried by the first control message
  • the first node generates a second control message, where the second control message carries the channel information of the first channel and the channel information of the second channel;
  • the first node sends a second control message and transmits data through the second channel.
  • Another aspect of the present invention provides a node for data transmission in a communication network, including:
  • a transceiver module configured to receive a multi-channel input signal and transmit a multi-channel output signal
  • a service module configured to obtain a first control message that is carried by the input signal received by the transceiver module, where the first control message carries channel information of the first channel;
  • control module configured to obtain channel information of the first channel from the service module, allocate a second channel according to the channel information of the first channel, and control the transceiver module to send the service data on the allocated second channel,
  • the service module generates a second control message, where the second control message carries the channel information of the first channel and the channel information of the second channel, and sends the second control message through the output signal of the transceiver module.
  • Another aspect of the present invention provides a communication network including a plurality of nodes, where the first node is configured to receive a first control message carrying channel information of the first channel, and allocate a second according to channel information of the first channel. Channel, generating and transmitting a second control message that carries the channel information of the first channel and the channel information of the second channel; the second node is configured to receive the second control message, according to the first channel carried by the second control message Channel information and channel of the second channel.
  • the collection of information is assigned a third channel.
  • each node allocates a channel of the local node, and channel information of the channel allocated by each node in the communication network can be cumulatively transmitted to effectively ensure the transmission conflict of the communication network.
  • Each node is directly allocated according to the channel information of the channel of the received control message when the channel is allocated, and does not need to negotiate with other nodes. After the channel is assigned, the service can be sent according to the assigned channel.
  • FIG. 1 is a schematic diagram of a communication network according to an embodiment of the present invention
  • 3A is a schematic structural diagram of a burst transmission frame according to an embodiment of the present invention.
  • 3B is a schematic structural diagram of a control message according to an embodiment of the present invention.
  • 3C is a schematic diagram of another structure of a control message according to an embodiment of the present invention.
  • 4A-D are schematic diagrams showing transmission states of an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a node transmission process according to an embodiment of the present invention.
  • 6A is a schematic structural diagram of a node according to an embodiment of the present invention.
  • FIG. 6B is a schematic structural diagram of a node according to an embodiment of the present invention. detailed description
  • FIG. 1 shows the communication network, indicated by 100.
  • Communication network 100 includes a plurality of nodes, indicated at 110, which supports data transmission between nodes 110 that operate in accordance with various embodiments of the present invention.
  • Any node 110 can be operatively coupled to other network devices for transmitting data. Any node 110 can act as a source node to transmit data to other nodes in the communication network 100, which can be directly transmitted to neighboring nodes, or can be transmitted to the destination node through one or more nodes on the ring. Any node 110 can be connected to one or more data sources (not shown in Figure 1), receive data from the data source, and/or send data to the data source.
  • the data source can be a local area network, or a wide area network, or an access network, or any other type of device that can transmit/receive data. Data source and node
  • connection between the 110s can be either an optical connection or an electrical connection.
  • the numbers 1, 2, 3, 4, ... of the nodes 110 (N1, N2, N3, N4, ...) in Fig. 1 may indicate the node numbers.
  • a plurality of nodes can transmit data using a plurality of channels.
  • the channel can be divided by wavelength
  • the channel may also be a channel divided by time slots, or may be a channel divided by multiple wavelengths and multiple time slots.
  • each time slot can be a burst interval, which can be called a burst channel.
  • the burst interval can be marked in time or in the amount of data, such as the number of bits or bytes.
  • each time slot of each wavelength can serve as one channel.
  • the time slot can also be expressed by other terms, such as time interval, and can also be replaced by bandwidth. For the sake of convenience, the time slot is uniformly used hereinafter.
  • the communication network 100 can utilize Wavelength Division Multiplexing (WDM).
  • WDM Wavelength Division Multiplexing
  • Multiple nodes modulate data at multiple wavelengths in wavelength division multiplexing.
  • Each node can have one or more wavelengths, and wavelength resources between nodes can be shared or shared.
  • Inter-node wavelength non-sharing means that each wavelength is assigned to a specific node to send traffic. Other nodes cannot send traffic with this wavelength. For example, the resource of ⁇ 1 is used by node 1 to send traffic, then ⁇ 1 cannot be used by other nodes. Send a business.
  • Inter-node wavelength sharing means that one wavelength can be used by at least two nodes to transmit data. As long as there is no conflict between the services sent by the two shared nodes, this can be combined with time division multiplexing.
  • TDM Time Division Multiplexing
  • the communication network 100 can utilize Time Division Multiplexing (TDM). Multiple nodes transmit data in multiple time slots in a time division multiplexed manner, and each node may have one or more time slots.
  • TDM Time Division Multiplexing
  • n is an integer greater than or equal to 2.
  • the specific length may be marked with time, or may be marked by the amount of data, such as the number of bits or the number of bytes. The start and/or end of such a particular length of time slot can identify the delimitation.
  • the transmission in one slot represents a burst.
  • the time division multiplexing involved in the embodiments of the present invention may be fixed interval time division multiplexing or variable length interval time division multiplexing.
  • Communication network 100 may utilize a combination of wavelength division multiplexing and time division multiplexing.
  • the communication network 100 can provide M wavelengths, which are divided into n time slots in time, and M and n are integers greater than or equal to 2.
  • communication network 100 can provide M x n channels during any frame transmission period.
  • the combination of wavelength division multiplexing and time division multiplexing includes time division multiplexed wavelengths, i.e., each wavelength supports time division multiplexing.
  • each wavelength is uniquely assigned to a node for transmitting data, the node being the source node for the data, and each source node can transmit data at one or more wavelengths.
  • multiple time slots during any frame transmission period may be selectively assigned to multiple destination nodes for transmitting data from the source node to these destination nodes; each during any frame transmission period
  • the destination node can be assigned one or more time slots.
  • control messages can be transmitted between nodes, as shown by the solid line with arrows in Figure 1, and each control message (referred to as the first control message) carries channel information of one or more first channels.
  • a node that receives the control message, such as N2 the control message carries channel information indicating one or more first channels; and the second channel is allocated according to channel information of the first channel carried by the control message, thereby preventing the second channel and the first channel Channel conflict.
  • the node After the node allocates the channel, it sends a new control message (called the second control message) and sends data based on the second channel assigned by the node.
  • the data sent is as shown in Figure 1.
  • the new control message carries the channel information of the first channel indicated by the control message sent by the previous node and the channel information of the second channel allocated by the node.
  • the next node that receives the new control message such as N3 can obtain the channel information of the first channel and the channel information of the second channel from the new control message, and allocate a third channel to the node.
  • the channel involved here includes any of the aforementioned channels, which may be wavelength channels, channels of time slots, or channels divided by wavelengths and time slots (such as time division multiplexed wavelength channels or wavelength division multiplexing). Time slot channel).
  • the channel information of the channel carried in the control message can be represented by a bandwidth map.
  • the bandwidth map may include a description area corresponding to each of the plurality of nodes, and each description area corresponds to a node of the allocation channel, and is used to indicate channel information of the channel allocated by the corresponding node; thus, each node uses the channel of the local node after the channel is allocated.
  • the channel information of the assigned channel updates the description area corresponding to the node in the bandwidth map.
  • the bandwidth map may also include a description area corresponding to each of the plurality of wavelengths, and each description area corresponds to one wavelength, and is used to indicate channel information of the channel corresponding to the wavelength; thus, each node uses the allocated channel after allocating the channel of the node.
  • the channel information updates the description area of the corresponding wavelength in the bandwidth map.
  • the new control message is an update indicating the content of the channel information in the channel, and the message format and the message protocol may be unchanged. Since the channel information indicated by the control message is continuously accumulated, a specific message field can be defined, the information capacity of the specific message field being sufficient to carry the channel information of all channels that the communication network 100 can provide.
  • the communication network 100 has N nodes, all of which share M wavelengths (2 NM), and the bandwidth map may be a mapping of M*N matrices, as shown in Table 2.
  • the node needs to be authorized to perform bandwidth allocation, and the token can be used to implement authorization for bandwidth allocation.
  • the dotted line with an arrow in Figure 1 shows an example of the token obtained by the node.
  • Each channel corresponds to the source node and the destination node, and allows data transmission from the corresponding source node to the corresponding destination node.
  • the corresponding destination node allows receiving data for that channel.
  • Each channel is assigned by the corresponding source node of the channel.
  • each wavelength channel corresponds to the wavelength, the source node, and the destination node, and the data corresponding to the source node to the corresponding destination node is allowed to be transmitted at the corresponding wavelength.
  • the control message may indicate channel information for multiple wavelength channels, such as the Table 1 bandwidth map.
  • Each node can correspond to one or more wavelengths. If the channel is associated with a wavelength or a time slot, the channel can be called a time-division multiplexed wavelength channel.
  • Each channel corresponds to the wavelength, the source node, and the destination node, and corresponds to the time slot, allowing the corresponding source node to The data corresponding to the destination node is transmitted at the corresponding wavelength and the corresponding time slot.
  • the control message can carry a bandwidth map, which is used to indicate channel information of multiple channels, such as Table 2 bandwidth map or table. 3 Bandwidth map.
  • the node may only be allowed to exclusively use the respective wavelengths to transmit data, that is, any wavelength allows only one node to transmit data using the wavelength without allowing other nodes to transmit data using the wavelength, which we may call a communication network system.
  • the wavelength is bound to the source node, and each wavelength uniquely corresponds to one source node, and the wavelength is identified to identify the source node. Therefore, the information of the source node can be omitted.
  • each time slot channel corresponds to a time slot, a source node, and a destination node, and data corresponding to the source node to the corresponding destination node is allowed to be transmitted in the corresponding time slot.
  • Control messages can carry bandwidth maps and are used to describe multiple Channel information for the channel, as shown in Table 4 Bandwidth Map.
  • Each node can correspond to one or more time slots. If the channel is associated with a time slot or a wavelength, the channel may be referred to as a wavelength division multiplexed time slot channel.
  • Each channel corresponds to a time slot, a source node, and a destination node, and corresponds to a wavelength, allowing a corresponding source.
  • the data from the node to the corresponding destination node is transmitted in the corresponding time slot and corresponding wavelength.
  • the channel information in the control message is similar to the bandwidth map of Table 2 or the bandwidth map of Table 3, and will not be described again.
  • TS1, TS2, ..., TS5, ... represent time slots (Time Slot, TS), and ⁇ 1, ⁇ 2, ⁇ 3 represent wavelengths.
  • TS1, TS2, -TS5, ... can be represented by 0B1, 0B2, ..., 0B5, ....
  • Control messages can be transmitted over a particular channel, such as a particular wavelength dedicated to transmitting control information, or a specific time slot dedicated to transmitting control messages.
  • the specific wavelength dedicated to transmitting control information is different from the data wavelength used to transmit service data.
  • the wavelength of any node may be configured with a specific time slot dedicated to transmitting control messages, and the same location of any frame of any wavelength may be configured to be dedicated to a particular time slot in which control messages are transmitted.
  • a communication network 200 including four node nodes 210 (1, 2, 3, 4) on the ring network is shown.
  • the node 210 (1, 2, 3, 4) includes all functions of the node 110, which may be an electrical communication node or an optical communication node;
  • the network device 220 is a data source, which may be a local area network, or a wide area network, or an access network.
  • the number of nodes 4 is only an example, and may be other values.
  • the ring network includes at least three nodes 210.
  • Communication network 200 can include one or two rings that can be operated in a clockwise and/or counterclockwise direction.
  • Communication network 200 can be any of a variety of network types, including backbone transport networks, metropolitan area networks.
  • the communication network 200 is an optical network, supports multi-wavelength burst transmission, and provides multiple channels for service data transmission. Each channel corresponds to a specific wavelength.
  • the optical burst is realized by time-multiplexed wavelengths, from the time axis, each fixed period is a frame structure. Each frame structure is divided into n time slots by time division multiplexing. One time slot is one channel, and the transmission on each channel is one 0B.
  • any of the nodes 210 may have at least one channel for transmitting data of the own node. Of course, not every node has to allocate itself to the channel when it is allowed to allocate itself. For example, the node itself may not allocate channels when there is no data transmission requirement.
  • each dot-filled square represents a 0 ⁇ channel of ⁇ 1
  • each vertical line filled square represents a 0 ⁇ of ⁇ 2
  • each horizontal line filled square represents a 0 ⁇ channel of ⁇ 3 .
  • a square containing the cross symbol "X" indicates that no service or data is sent on the 0B channel
  • a square with no cross symbol "X" indicates that the service or data is sent on the 0B.
  • a blank fill, a square containing the cross symbol "X" indicates that no wavelength is received on the 0B channel.
  • node 210(1) has two wavelengths ⁇ 1 and ⁇ 2 for transmitting data, and the two wavelengths can be used to transmit data of the node to other nodes on the communication network 200, such as node 210 (1) to Data for nodes 210 (2), 210 (3), 210 (4).
  • Node 210 (2) has a wavelength ⁇ 3 for transmitting data, which can be used to transmit data of the node to other nodes on the communication network 200, such as node 210 (2) to node 210 (1), 210 (3) , 210 (4) data.
  • node 210 (3) and node 210 (4) may also have a wavelength ⁇ (not shown) for transmitting data.
  • the bandwidth of each node 210 is reasonably allocated and controlled so that the traffic transmissions do not conflict, for example, the time slots on the same wavelength do not collide and/or the time slots of services of different wavelengths reaching the same destination node do not collide.
  • the time slots of services of different wavelengths reaching the same destination node do not collide, so that the downlink output signal of the destination node is an optical signal of a time division multiplexed wavelength, that is, an optical signal having only one wavelength per time slot, which can effectively realize the all-optical light.
  • Communication If data source 220 is a terminal node, allowing data source 220 to be wavelength insensitive, only one detector can receive data of multiple wavelengths, with data source 220 having a receiving function.
  • the data transmitted between nodes can be data of various service types, such as Internet data, IPTV data, and the like.
  • FIG. 3A shows the burst transmission frame structure, which contains n 0Bs, such as 0B0, 0B1, 0B2-, to form a frame.
  • Frame K Frame2 ... is periodically transmitted at a fixed length time Tf , and Tf is a frame period.
  • Tf is a frame period.
  • any frame such as Framel or Frame2, it contains n 0Bs, such as 0 ⁇ 0, 0 ⁇ 1, 0 ⁇ 2 ⁇ . 0 ⁇ at the same position of different periods forms a 0 ⁇ channel.
  • T1 is the length of 0B
  • t2 is the length of the 0B slot
  • t3 is the guard time between bursts.
  • the protection time mainly refers to the time required for the optical device to be turned on and off when the 0B transmits, receives, and switches.
  • the structure of any 0B includes physical layer overhead (PL0) and payload (payload).
  • Physical layer overhead can include power lock, timing, delimitation, and 0B overhead, where power lock is used for burst receiver locks
  • the power of the OB is fixed for the clock of the burst receiver to lock 0B.
  • the delimitation is used to determine the boundary of 0B.
  • the 0B overhead contains the information of the 0B channel, and the payload carries the payload of 0B, that is, the burst.
  • Container Burst Container
  • Figure 3B shows an example of the structure of the control message of the present invention.
  • the control message is carried in 0B300, and 0B300 includes physical layer overhead and payload.
  • the physical layer overhead of 0B300 contains the following information:
  • Premable Implements frame synchronization.
  • Del imiter used to determine the boundary of 0B. In this embodiment, it takes 4 bytes and uses the hexadecimal value 0xB6AB31E0. It can be understood that in practical applications, the delimitation is included. The specific content can be changed accordingly.
  • Frame ID (Frame_Ind): used to identify the frame. For example, the frame number is used to identify the frame. It can be implemented by superframe counting super-frame counter, which occupies 7 bits.
  • Bandwidth Control Information used to indicate bandwidth. It may contain one or more of the following information: The working ring to which the bandwidth information is applied (the content of the Work field), and the type of bandwidth (the content of the BW-Type field) ), the bandwidth information length in the payload (the content of the BW-Len field). The working ring (the content of the Work field) to which the bandwidth information is applied is used to indicate the type of the working ring, which occupies 1 bit.
  • the value of the working ring identifier is 1 for the main control ring, 0 for the auxiliary control ring, and the bandwidth type (BW— The content of the Type field), used to indicate the bandwidth type, such as variable length bandwidth or fixed long bandwidth, occupying 2 bits; bandwidth information length (BW_Len), used to indicate the length of the bandwidth information in the payload, which can represent the payload.
  • the actual length of the bandwidth information field can also represent the number of channels in the payload. For example, it can occupy 5 bits to describe that each wavelength can provide 0 to 32 channels.
  • the bandwidth identifier (BW-ID) is used to indicate the bandwidth allocation identifier. The bandwidth allocation count value is implemented.
  • the first node In the ring network, it is counted by the first node and counted according to the bandwidth allocation period.
  • the first node may be any node in the communication network 200. It can be understood that, in practical applications, the specific content and the number of occupied bits or bytes included in the bandwidth control information (BW_Conlnfo) may be changed accordingly.
  • Token Used to indicate whether bandwidth is allowed to be allocated. As an authorization identifier for bandwidth allocation, it can occupy 1 byte. When the node is allowed to allocate bandwidth, the authorization flag is set to 1.
  • Cyclic Redundancy Check Used for burst control overhead error correction: The payload of 0B300 can describe the complete bandwidth map of the ring network and describe it as the source node of the allocated bandwidth. Or describe in terms of wavelength. In the source node architecture that uniquely corresponds to the wavelength and source node, because the wavelength is known, Knowing the source node, the above two methods have the same effect.
  • the bandwidth map may include a description area corresponding to each of the plurality of nodes, and each node has its own description area as shown in FIG. 3B Src_Node-1, ..., Src_Node_N .
  • the description area corresponding to the source node indicates channel information OBODes, OBlDes, ..., 0B30Des, 0B31Des, n of n channels, and the number of channels divided by one frame, where the channel is 0B channel.
  • the channel information OBODes , OBlDes , ..., 0B30Des , 0B31Des may indicate the reservation of the corresponding channel in one or more working rings.
  • the channel information may indicate the channel reservation status (the content of the Rev field) and the destination node corresponding to the channel (the content of the Des_Node_ID field), and the channel information may also include a working ring indication (the content of the Bw_ind field).
  • any node in the communication network can update the description area corresponding to the node in the bandwidth map by using the channel information of the channel allocated by the node.
  • the channel information of any channel includes description information of two working rings, and the channel information corresponding to each working ring occupies 1 byte, and there is an additional 1 byte of CRC check information.
  • the value of Bw_ind is 1 for the main control ring, 0 is the auxiliary control ring; the 0B1 of the primary control ring node 1 sends the service to the node 2, and the 0B1 of the auxiliary control ring node 1 sends the service to the node 3, then the Src_Node — OBlDes of 1 is configured as follows:
  • the second row indicates the specific configuration value
  • the first column to the fourth column indicate the channel information of the master control ring
  • the second column to the eighth column indicate the channel information of the auxiliary control ring.
  • the bandwidth map includes a description area of each of the plurality of wavelengths, and each description area corresponds to one wavelength, and is used to describe the channel allocation of the corresponding wavelength, such as The description area shown in Fig. 3C, ⁇ 1; ..., ⁇ ⁇ .
  • the description area corresponding to the wavelength indicates the channel information OBODes, OB1Des, ..., 0B30Des, 0B31Des, n of the n channels, and the number of channels divided by one frame, where the channel is the 0B channel.
  • the channel information OBODes, OBlDes, ..., 0B30Des, 0B31Des may indicate the reservation of the corresponding channel in one or more working rings.
  • the channel information may indicate the channel reservation status (the content of the Rev field) and the source node (the content of the Src_Node_ID field) and the destination node (the content of the Des_Node_ID field) corresponding to the channel, and the channel information may also include the work. Ring indication (the contents of the Bw-ind field).
  • the control message is carried in a 0B channel, typically, if each frame is divided into multiple 0B channels for carrying multiple OBs, a specific OB of multiple OBs can be used to carry this control message, for example, the first 0B, that is, 0B0.
  • the control message can also be carried on a dedicated wavelength, such as a dedicated control wavelength of the communication network 200.
  • the following describes a method for data transmission of a communication network in combination with a specific process. It is assumed that the connections between the nodes of the communication network 200 form at least two rings, each node having only one transmitter and one receiver on one ring, each transmitter corresponding to one wavelength, and the control message being carried over the 0B0 channel.
  • node N1 allocates the channel of the node according to the bandwidth requirement of the node, and determines the channel information of the allocated channel.
  • the channel information of the channel can be represented by a bandwidth map, which represents channel information of the channel from the source node to the destination node.
  • Node N1 maps the bandwidth map to 0 ⁇ 0 of ⁇ ⁇ 1 , transmits 0 ⁇ 0 mapped to the bandwidth map to other nodes of the communication network, and transmits the service data through the channel allocated by node N1, that is, the 0 ⁇ channel indicated by the bandwidth map, to the destination node. .
  • 1 is the node number of the node N1.
  • the other nodes N2, N3, and N4 are waiting to receive 0B0 of ⁇ N1 .
  • the node N1 waits to receive the bandwidth map of other nodes, such as 0 ⁇ 0 of ⁇ 2 of the receiving node N2.
  • the bandwidth requirement may include bandwidth requirements of at least two rings, such as the bandwidth requirement of the counterclockwise outer ring and the clockwise inner ring as shown in Fig. 2.
  • the bandwidth map may include a bandwidth map of at least two rings.
  • the other ring is the auxiliary control ring.
  • the counterclockwise outer ring is the main control ring, and the clockwise inner ring. It is an auxiliary control ring.
  • the bandwidth requirement is based on the amount of traffic to be sent, including the amount of traffic to be sent from N1 to multiple destination nodes.
  • the amount of traffic to be sent can be represented by 0 ⁇ , or by the number of bits or bytes of traffic to be sent, or by other parameters indicating the amount of traffic to be sent.
  • the bandwidth requirement of this embodiment includes the bandwidth requirements of multiple rings, such as the bandwidth requirements of the outer ring and the inner ring.
  • the bandwidth requirement depends on the traffic from node 1 to the destination node on the outer and inner rings, such as the bandwidth requirement of node N1 on the outer ring of Table 6 and the number of bandwidth requirements of node 1 on the inner ring of the table.
  • the values of ⁇ 2, ⁇ 3, and ⁇ 4 in Table 6 are 3, 2, and 2, respectively, indicating the number of 0 ⁇ required by the source node N1 to the destination node ⁇ 2, ⁇ 3, and ⁇ 4.
  • the number of 0Bs can be determined based on the amount of traffic to be transmitted and the capacity of 0B. It should be understood that the bandwidth requirements of the requests in Tables 6 and 7 are not limited to 0B numbers, but may be other parameters such as the number of service bits to be transmitted or the number of bytes.
  • the bandwidth map includes bandwidth maps of multiple rings, such as the bandwidth map of the node N1 on the outer ring and the inner ring, such as the bandwidth map Mapl N1 of the node N1 on the outer ring of Table 8 and the bandwidth map of the node N1 on the inner ring of the table 9. Map2 N1 is shown.
  • the main control is also ⁇ ⁇ (3 ⁇ 40 can carry multiple ring bandwidth maps, that is, in addition to the bandwidth map carrying the corresponding ring, that is, the bandwidth map of the outer ring, can also carry the bandwidth map of other rings, such as the inner ring Bandwidth map.
  • the set of bandwidth maps of multiple rings form the complete bandwidth map of the master ring and map the complete bandwidth map to ⁇ ⁇ (3 ⁇ 40.
  • the bandwidth map NetMap of the main control ring is a set of Tables 10A and 10B, wherein the values of ⁇ ⁇ 2 , ⁇ ⁇ ⁇ ⁇ ⁇ 4 rows are empty, so that the nodes ⁇ 2, ⁇ 3 , ⁇ 4 receive the order.
  • the bandwidth map allocated by the card is filled to the corresponding position; the format of 0 ⁇ 0 can refer to Figure 3 ⁇ .
  • node N1 sends the complete bandwidth map NetMap of the main control ring on the main control ring, and sends it on the auxiliary air ring.
  • the bandwidth map NetMap of the main control ring reaches the node ⁇ 2 through 0 ⁇ 0 of ⁇ ⁇ 1
  • the bandwidth map Map2 N1 on the auxiliary control ring reaches the node ⁇ 4 through 0 ⁇ 0 of ⁇ ⁇ 1, and then reaches the node ⁇ 3
  • the token reaches the node ⁇ 2
  • the node ⁇ 2 allocates the channel of the node according to the channel information of the channel mapped in the ⁇ , so as to avoid the transmission conflict between the nodes in the communication network.
  • the node ⁇ 2 allocates the channel of the node according to the channel information of the channel represented by the bandwidth map in 0 ⁇ 0 and its own bandwidth requirement, and represents the allocated channel by the bandwidth map.
  • the channel of the local node can be calculated by the algorithm of bandwidth allocation, so that the communication between the nodes in the communication network does not conflict, such as each column representing the destination node in the table, 0 ⁇ of the source node ⁇ 2 and 0 ⁇ of the source node N1. Collision, that is, to ensure that the channels of different source nodes and the same destination node do not conflict, the specific algorithm belongs to the prior art, and will not be described again.
  • the node ⁇ 2 merges the bandwidth map of the node into the bandwidth map NetMap of the main control ring, and sends the bandwidth map NetMap of the merged main control ring to the other nodes on the main control ring through 0 ⁇ 0 of ⁇ ⁇ 2 of the node N2.
  • the node ⁇ 2 transmits the bandwidth map Map2 N2 of the inner ring of the node to the other nodes on the auxiliary control ring through ⁇ ⁇ .
  • the node ⁇ 2 passes the service data of the node according to the bandwidth map of the node through the bandwidth map. is sent to the corresponding channel 0 ⁇ destination node.
  • ⁇ 0 ⁇ 0 2 differs from the token in the token ⁇ 0 ⁇ 0 ⁇ 1 because 0 ⁇ 0 ⁇ ⁇ 2 in the token is used to indicate the allocated bandwidth to allow ⁇ 3 node token is Any information that allows the authorized node to allocate bandwidth, in the embodiment of the present invention, different nodes may correspond to different tokens, so that the node can identify the token corresponding to itself, that is, each node can have a unique correspondence with it. Token.
  • Node N2 receives 0B0 of ⁇ N1 , reads the token in 0B0 (the value of Tokenld field); Node N2 determines whether to allow allocation of bandwidth according to the token, and assigns a channel to the node if allowed, and The channel information of the assigned channel is represented by a bandwidth map. Specifically, the node N2 adds 1 to Tokenld of 0 ⁇ 0 of ⁇ ⁇ and determines Tokenld+l is equal to the id of the node, and the channel is allocated to the node, and the channel information of the allocated channel is represented by a bandwidth map.
  • Node N2 will transparently transmit the ⁇ ⁇ optical signal, thereby transparently transmitting 0 ⁇ 0 of ⁇ ⁇ to the next node ⁇ 3, where transparent transmission means that the information in 0 ⁇ 0 is not modified.
  • other 0 ⁇ of ⁇ ⁇ 1 are also sent to node N3 together.
  • Node N2 determines ⁇ ⁇ according to the bandwidth map in 0B0 (3 ⁇ 41, 0 ⁇ 2, 0 ⁇ 3 are the channels of the local node, and receive the service data on these channels.
  • node ⁇ 4 receives 0 ⁇ 0 of ⁇ ⁇ 1, reads 0 ⁇ 0 The information is sent to determine that there is no token and no channel is allocated.
  • node ⁇ 4 starts waiting to receive 0 ⁇ 0 of other nodes, such as 0 ⁇ 0 of ⁇ ⁇ 2 of receiving node ⁇ 2.
  • Node ⁇ 4 determines 0 ⁇ 3 of ⁇ ⁇ 1 according to the bandwidth map of 0 ⁇ 0 of ⁇ ⁇ 1, 0 ⁇ 4 node is a channel, the receiving service data ⁇ 1 of ⁇ 0 ⁇ 3, 0 ⁇ 4 of.
  • the node N2 on the main control ring and the auxiliary control ring are waiting to receive 0B0 of other nodes, such as ⁇ ⁇ 3 of node N3.
  • node N3 will transparently transmit the ⁇ ⁇ optical signal, thereby transmitting ⁇ ⁇ (3 ⁇ 40 to the next node ⁇ 4, where transparent transmission means that the information in 0 ⁇ 0 is not modified.
  • Node ⁇ 3 determines ⁇ according to the bandwidth map in 0 ⁇ 0. 0 ⁇ 4 and 0 ⁇ 5 of ⁇ 1 are the channels of the node, and receive the service data on these channels.
  • node ⁇ 3 receives 0 ⁇ 0 of ⁇ ⁇ 1 , reads the token in 0 ⁇ 0 (the value of Tokenld field), node N3 determines whether to allow bandwidth allocation according to the token, allocates channel if allowed, and allocates channel Recorded as a bandwidth map, if not allowed, no channels are assigned. Specifically, the node N3 adds 1 to the token, and judges that if the token 2 is not equal to the id of the node after adding 1, the channel is not allocated. Node N3 begins to wait to receive 0B0 of other nodes, such as 0B0 of ⁇ ⁇ 2 of node N2.
  • the node N3 are transparently transmitted optical signal ⁇ ⁇ , so the ⁇ ⁇ (3 ⁇ 40 pass through the next node ⁇ 4, where transparent transmission means does not modify the information 0 ⁇ 0 Further, [lambda] also with other 0 ⁇ ⁇ 1 It is sent to the node ⁇ 4.
  • the node ⁇ 3 determines that 0 ⁇ 2 of ⁇ ⁇ 1 is the channel of the local node according to the bandwidth map in 0 ⁇ 0, and receives the service data on 0 ⁇ 2 of ⁇ ⁇ 1 .
  • the node ⁇ 2 allocates channels in the same way as node N1, and calculates the bandwidth map based on the bandwidth requirements of the node. Assume that the bandwidth requirement of node ⁇ 2 is as shown in Table 11 for the bandwidth requirement of node ⁇ 2 on the outer ring and the bandwidth requirement of node ⁇ 2 on the inner ring of Table 12:
  • the bandwidth map of node N2 is shown in Tables 13 and 14:
  • the bandwidth maps on the outer and inner rings at the current time are shown in Tables 15A and 15B, respectively.
  • the bandwidth map NetMap of the main control ring is the set of Tables 15A and 15B. See Figure 3B for the mapping method.
  • the bandwidth map NetMap on the main control ring reaches the node ⁇ 3 through 0 ⁇ 0 of ⁇ ⁇ 2 ; the token also reaches the node ⁇ 3, and after the node ⁇ 3 receives the token that allows the bandwidth allocated by the local node, according to the channel of the channel mapped in 0 ⁇ 0 Information is assigned to the channel of the node to avoid transmission collisions between nodes in the communication network. Similar to node ⁇ 2, node ⁇ 3 calculates the bandwidth map of the node according to its bandwidth requirement and the bandwidth map in 0 ⁇ 0.
  • the node ⁇ 3 merges the bandwidth map of the node into the bandwidth map NetMap of the main control ring, and sends the bandwidth map NetMap of the merged main control ring to the other nodes on the main control ring through 0 ⁇ 0 of the ⁇ ⁇ 3 of the node N3.
  • the node ⁇ 3 transmits the bandwidth map Map2 N3 of the inner ring of the node to the other nodes on the auxiliary control ring through 0 ⁇ 0 of ⁇ ⁇ 3 .
  • the node ⁇ 3 BWMap present node by the predetermined bandwidth of the map data service node of ⁇ ⁇ is sent to the corresponding channel OB destination node.
  • ⁇ ⁇ (the token in 3 ⁇ 40 is different from the token of ⁇ ⁇ (3 ⁇ 40, because the token in 0 ⁇ 0 of ⁇ 3 is used to indicate the allowable node ⁇ 4 bandwidth allocation.
  • Node N3 receives 0B0 of ⁇ N2 , extracts the token in 0B0, determines to allow the local node to allocate bandwidth according to the token, and calculates the bandwidth map of the node according to the bandwidth requirement of the node and the bandwidth map in 0B0. , in order to avoid transmission conflicts between nodes in the communication network. Specifically, the node N3 adds 1 to 3 of Tokenld of 0 ⁇ 0 of ⁇ ⁇ , and determines that Tokenld+1 is equal to the id of the node, and calculates the bandwidth map of the node.
  • the node N3 determines ⁇ ⁇ according to the bandwidth map in 0 ⁇ 0 of ⁇ ⁇ 2 (3 ⁇ 42, 0 ⁇ 3 is the channel of the local node, and receives the service data of ⁇ ⁇ (3 ⁇ 42, 0 ⁇ 3).
  • Node ⁇ 4 receives 0 ⁇ 0 of ⁇ ⁇ 1 , reads the token in 0 ⁇ 0 (the value of the Tokenld field), and node N4 determines whether to allow bandwidth allocation according to the token, and allocates the channel if allowed, if not allowed Assign channels. Specifically, the node N4 adds 1 to 2 in Tokenld of 0 ⁇ 0 of ⁇ ⁇ 1 , and determines that Tokenld+1 is not equal to the id of the node, and no channel is allocated. Node N4 begins to wait to receive 0B0 of other nodes, such as 0B0 of ⁇ ⁇ 2 .
  • the node N4 determines that 0 ⁇ 6 and 0 ⁇ 7 of ⁇ ⁇ 1 are channels of the own node according to the bandwidth map in 0 ⁇ 0 of ⁇ , and receive service data on 0 ⁇ 6, 0 ⁇ 7 of ⁇ ⁇ 1 .
  • Node ⁇ 2 receives 0 ⁇ 0 of ⁇ ⁇ 1 , and determines that no token is included. At this time, node ⁇ 2 does not allocate a channel. Node N2 begins to wait for the reception of ⁇ ⁇ (3 ⁇ 40. Node ⁇ 2 determines ⁇ ⁇ according to the bandwidth map in 0 ⁇ 0 of ⁇ ⁇ (3 ⁇ 41 is the channel of the local node, and receives the service data on 0B1 of ⁇ ⁇ .
  • Node N1 receives ⁇ ⁇ (3 ⁇ 40, determines that no token is included, node N1 starts waiting for receiving ⁇ ⁇ ⁇ node ⁇ 2 determines ⁇ ⁇ according to the bandwidth map in 0 ⁇ 0 of ⁇ ⁇ (3 ⁇ 43, 0 ⁇ 4 is The channel of this node receives the service data on 0 ⁇ 3, 0 ⁇ 4 of ⁇ ⁇ 2 .
  • the node ⁇ 3 transmits the bandwidth map of the inner ring of the node through the 0 ⁇ 0 of ⁇ ⁇ 3 on the auxiliary control ring.
  • Node N4 receives 0 ⁇ 0 of ⁇ ⁇ 2 , reads the token of 0 ⁇ 0 (the value of Tokenld field) is 2; adds Tokenld of 0 ⁇ 0 of ⁇ ⁇ 2 to get 3, and judges that Token+1 is not equal to this node. Id, node N4 does not allocate a channel and starts waiting to receive ⁇ ⁇ (3 ⁇ 40.
  • Node N1 receives 0 ⁇ 0 of ⁇ ⁇ 1 , reads the token of 0 ⁇ 0 (the value of Tokenld field) is 1; adds Tokenld of 0 ⁇ 0 of ⁇ ⁇ 2 to get 2, and judges that Token+1 is not equal to this node. Id, node N1 does not allocate a channel. Node N1 determines that the wavelength is its own wavelength and terminates the wavelength.
  • Node N4 receives 0B0 of ⁇ N2 , determines that no token is included, node N4 does not allocate a channel, and starts waiting for receiving 0 ⁇ 0 of ⁇ ⁇ 3.
  • the node ⁇ 4 0 ⁇ 0 ⁇ ⁇ 2 determined in the BWMap ⁇ ⁇ 2 0 ⁇ 2, 0 ⁇ 5 is the channel node, the reception of ⁇ ⁇ (3 ⁇ 42, traffic data on 0 ⁇ 5.
  • Node N1 receives 0 ⁇ 0 of ⁇ ⁇ 1 , determines that no token is included, node N1 does not allocate a channel, and starts waiting for 0 ⁇ 0 of ⁇ ⁇ 3. Node N1 determines that the wavelength is its own wavelength and terminates the wavelength.
  • Bandwidth map comprising node N3: The node N3 N3 Mapl bandwidth map table 18 and the outer ring node N3 Table N3 bandwidth map of Map2 the inner ring 19.
  • the bandwidth maps on the outer ring and the inner ring at the current time are shown in Tables 20A and 20B, respectively.
  • the bandwidth map of the main control ring is NetMap.
  • the bandwidth map NetMap on the master loop reaches the node ⁇ 4 through 0 ⁇ 0 of ⁇ ⁇ 3; the token also arrives at the node N4, after receiving the token that allows the local node to allocate bandwidth, the node N4 allocates the channel of the node according to the channel information indicated by the bandwidth map NetMap, so as to avoid the transmission conflict between the nodes in the communication network.
  • the node N4 allocates a channel, including: calculating a bandwidth map of the node according to the bandwidth requirement of the user and the bandwidth map in the OB, and the bandwidth map of the node indicates the channel information of the channel allocated by the node.
  • the node N4 merges the bandwidth map of the node into the bandwidth map NetMap of the main control ring, and sends the bandwidth map NetMap of the merged control ring to the other nodes on the main control ring through the ⁇ «0 of the node N4, such as the node N1. .
  • the node ⁇ 4 transmits the bandwidth map Map2 N4 of the inner ring of the node to the other nodes on the auxiliary control ring through 0 ⁇ 0 of ⁇ ⁇ 4 .
  • the node ⁇ 4 BWMap present node to node data traffic is defined by the bandwidth of the map.
  • 0 ⁇ 0 ⁇ ⁇ 4 in the token is different from ⁇ 4 (3 ⁇ 4 channel sent to the corresponding destination node of ⁇ 0 ⁇ 0 ⁇ 3 token, Because the token in 0 ⁇ 0 of ⁇ ⁇ 4 is used to indicate that the node N1 is allowed to allocate bandwidth.
  • Node N4 receives 0B0 of ⁇ N3 , extracts the token in 0B0, and determines to allow the local node to allocate bandwidth according to the token. Then, according to the channel information of the channel mapped in 0B0, the channel is allocated to the node to avoid communication. Transmission conflicts between nodes in the network. Specifically, the node N4 adds 1 to the Tokenld of 0 ⁇ 0 of ⁇ ⁇ 3 to obtain 4, and determines that Tokenld+l is equal to the id of the node, and calculates the bandwidth map of the node according to the bandwidth requirement of the node and the bandwidth map of ⁇ 3 (3 ⁇ 40) To avoid transmission conflicts between nodes in the communication network. Node ⁇ 4 determines that ⁇ ⁇ 0B1 is the channel of the local node according to the bandwidth map in 0 ⁇ 0 of ⁇ ⁇ 3 , and receives the service data on WL ⁇ 0B1.
  • Node N1 receives 0B0 of ⁇ N2 , extracts the token in 0B0 (Tokenld field value is 2), adds Tokenld to 1 to get 3, and judges that Tokenld+ l is not equal to the id of this node, so no channel is allocated.
  • Node N1 begins to wait for the reception of ⁇ ⁇ (3 ⁇ 40.
  • Node N1 determines ⁇ ⁇ according to the bandwidth map in ⁇ ⁇ (3 ⁇ 41 is the channel of the node, and receives the service data on 0B1 of ⁇ 2 .
  • Node N3 receives 0B0 of ⁇ N2 , judges that there is no token, node N3 does not allocate channel, and node N3 starts to wait to receive ⁇ « (3 ⁇ 40.
  • Node ⁇ 3 is determined according to ⁇ ⁇ (3 ⁇ 40 bandwidth map ⁇ ⁇ (3 ⁇ 41 is the channel of this node, receiving the service data on 0B1 of ⁇ .
  • Node N2 receives ⁇ ⁇ (3 ⁇ 40, determines no token, node ⁇ 2 does not allocate channel, node ⁇ 2 starts waiting to receive ⁇ « (3 ⁇ 40.
  • Node ⁇ 2 determines ⁇ according to the bandwidth map in ⁇ ⁇ ⁇ 0 ⁇ 0 ⁇ 083, (3 ⁇ 44 is the channel of this node, receiving ⁇ ⁇ (3 ⁇ 43, 0 ⁇ 4 on the business data.
  • Node N1 receives 0B0 of ⁇ N3 , reads token in 0B0 (value 3 of Tokenld field) is 3; adds Tokenld to 1 to get 4, determines that Tokenld+l is not equal to the id of this node, node N1 Do not assign a channel, start waiting to receive 0 ⁇ 0 of ⁇ «.
  • ⁇ ⁇ node N1 is determined according to the bandwidth map of 0 ⁇ 0 ⁇ ⁇ is the channel of this node 0 ⁇ 2, [lambda] receives traffic data on the 0 ⁇ 2 ⁇ 3.
  • Node ⁇ 2 receives 0 ⁇ 0 of ⁇ ⁇ 2 , reads the token of 0 ⁇ 0 (the value of Tokenld field) is 2; adds Tokenld of 0 ⁇ 0 of ⁇ ⁇ 2 to get 3, and judges that Token+1 is not equal to this node. Id, node N1 does not allocate a channel. Node N1 determines that the wavelength is its own wavelength and terminates the wavelength.
  • Node N1 receives 0B0 of ⁇ N3 , judges that there is no token, does not allocate a channel, and then waits to receive 0 ⁇ 0 of ⁇ «.
  • ⁇ ⁇ node N1 is determined according to the bandwidth map of 0 ⁇ 0 ⁇ ⁇ is the channel of 0 ⁇ 2 node receiving ⁇ ⁇ (the service data on 3 ⁇ 42.
  • Node ⁇ 2 receives 0 ⁇ 0 of ⁇ ⁇ 2, judges that there is no token, and does not allocate a channel. Node ⁇ 2 determines that the wavelength is its own wavelength and terminates the wavelength.
  • BWMap ⁇ 4 node comprises: a node such as bandwidth ⁇ 4 Mapl N4 map table 23 and the outer table node ⁇ 4 bandwidth map Map2 N4 24 on the inner ring.
  • the complete bandwidth maps on the outer and inner rings at the current time are shown in Tables 26A and 26B, respectively.
  • the complete bandwidth map of the main control ring, NetMap is the combination of Tables 25A and 25B. See Figure 3B for the mapping method.
  • each node generates a new token based on the received token after determining that the node has a token.
  • the starting node, node N1 re-sets Tokenld to 1 when the token is granted to N2 after regaining the token.
  • the token can also be implemented in other ways, as long as the authorized node can recognize that the token is its own, for example, each node determines that the token is authorized by the adjacent upstream node, that is, the token is for itself, then The node identifier of the node, such as the node number, is used as a new token, so that adjacent downstream nodes can be identified.
  • Each node in the communication network can The node identifiers of adjacent upstream nodes and adjacent downstream nodes are determined by topology awareness.
  • the T of the above embodiment represents the transmission time of the adjacent nodes, and the transmission time is consistent by ensuring the length of the fiber between the nodes; if there are different fiber lengths, the delay can ensure that the logical transmission time is consistent, that is, the line transmission delay It is consistent with the sum of device delays.
  • each node has only one transmitter and one receiver on one ring, each transmitter corresponds to one wavelength, and the control message is carried on the 0B0 channel.
  • each node may have a set of wavelengths for transmitting data having a plurality of different wavelengths. The node may select a particular wavelength from among the plurality of wavelengths possessed by the node for carrying control messages; the node may also carry control messages at each wavelength, such as the 0B0 channel carried at each wavelength.
  • the mechanism for transmitting a token in one direction is adopted, and the entire network structure has only one token, that is, the token is transmitted in one direction in one direction according to the connection direction between the nodes, and the ring that transmits the token is the main control ring,
  • the loop that passes the token is called the secondary loop.
  • the node After the node obtains the token, it can assign a channel to the node, and pass the token and the control message carrying the updated channel information to the next node. This can effectively ensure the effective synchronization of data reception, bandwidth allocation and data transmission throughout the network, avoiding nodes between communication networks.
  • FIG. 5 is a flowchart of processing a node according to an embodiment of the present invention. The operation of the flowchart can be applied to Figure 1.
  • step 501 the node (referred to as the first node) receives the control message.
  • At least one control message (referred to as a first control message) carries channel information of the first channel.
  • the first control message may be any of the control messages mentioned above, such as a control message carrying a bandwidth map so that the node can obtain a bandwidth map from the control message to obtain channel information for the channel indicated by the bandwidth map.
  • the bandwidth map in the first control message can be derived based on any of the above table mappings indicating the bandwidth map, and Figures 3B, 3C are an example of a control message carrying a bandwidth map.
  • the channel information of the first channel is allocated by the source node of the first channel, that is, the second node is allocated. Bandwidth maps can be described in terms of source nodes or in terms of wavelengths. See the description above for details.
  • the first control message carries the token, represented by Tokenld.
  • the token is used to indicate whether the node is allowed to allocate bandwidth/channel.
  • the first control message format is shown in Figure 3B, 3C, which carries the bandwidth map control message.
  • the token and channel information are carried in the same message, which can save the number of messages and ensure the synchronization of bandwidth allocation.
  • the token can be represented by a node identifier, such as a node number, a node device identifier, a location identifier of the node in the communication network, and the like.
  • the first node determines whether the token is the local node, and the token indicates that the local node is allowed to allocate bandwidth. If the token is the local node, go to step 504; if the token is not the local node, go to step 511. In the embodiment of the present invention, the first node determines whether the token is granted by an adjacent upstream node, and if yes, determines that the token is the local node. If the node does not have a token, it does not allocate the channel of the node, but continues to wait for receiving control messages. If the node has a token, go to step 504.
  • the first node determines whether the token is a neighboring upstream node.
  • the first node compares Tokenld+1 in the first control message with the local node number. If they are consistent, the token indicates that the token is its own.
  • the application scenario of this mode is as follows: The node number of each node on the token transmission path is sequentially increased by 1, assuming that the starting node fills its own node number as Tokenld into the control message, and each token transmission path After receiving the Tokenld in the control message of the upstream node, the node of one node fills its own node number to the adjacent downstream node, and so on.
  • the first node receives the service data of the node according to the channel information of the first channel carried by the first control message.
  • the first node receives the service data of the channel of the node as the destination node.
  • the channel information of the first channel describes the mapping of the first channel and the destination node.
  • the first node obtains channel information of the first channel carried by the first control message, and obtains channel information of the channel of the node as the destination node according to the mapping between the first channel and the destination node, thereby using the channel information of the channel of the node as the destination node.
  • the first node allocates the second channel of the node according to the channel information of the first channel to avoid transmission conflicts between nodes in the communication network.
  • the first node allocates the second channel to meet the bandwidth requirement of the node, and the bandwidth requirement of the node is related to the data volume of the local data, and may be the data volume of the local data, or the number of occupied channels, such as the above occupying 0B. Quantity.
  • the first node In step 507, the first node generates a second control message, where the second control message carries the channel information of the first channel and the channel information of the second channel.
  • the first node stores the channel information of the second channel locally, and may be stored on a non-volatile storage medium or on a volatile storage medium.
  • the channel information of the second channel and the channel information of the first channel may be stored separately or may be combined and stored.
  • the first node sends the channel information of the first channel and the channel information of the second channel through the second control message when obtaining the transmission authorization.
  • the first node may save the received first control message, where the first control message includes a description area corresponding to the first node; the first node updates the description area corresponding to the first node by using the channel information of the second channel to obtain the second control message. .
  • the first node may also extract channel information of the first channel, and generate a new control message by using channel information of the first channel and channel information of the second channel to obtain a second control message.
  • step 509 the first node sends a second control message and sends the service data through the second channel.
  • the first node waits for the control message of the receiving node Ni+2 to continue receiving the control message of the node M+2.
  • step 511 the service data of the local node is received according to the channel information of the first channel carried in the first control message.
  • the operation of step 504 is the same as step 511. It should be understood that the processing of steps 504 and 511 can all be performed prior to step 503.
  • step 503 and step 504 may further include a determination as to whether the control message includes the channel of the first node.
  • the first node obtains the first control message to indicate the information of the destination node of the first channel, such as the destination node identifier, and uses the information of the node and the information of the destination node to match whether the channel of the node is present, and if yes, perform step 511; No, continue to wait to receive other control messages.
  • the connections between the nodes of the communication network 200 form at least two rings.
  • the control message in step 501 may be a control message transmitted on a ring of the communication network 200, such as transmitted on the master ring.
  • the control message, correspondingly, the control message in step 507 may be a control message transmitted on the master ring.
  • the specific content of the control message has been described in detail and will not be described here.
  • the first node receiving and transmitting control messages may be carried at a dedicated wavelength, and the wavelength of the payload data is different from the wavelength.
  • control message received by the first node is carried on the first wavelength
  • control message sent by the first node may be carried on the second wavelength, where the first wavelength and the second wavelength are different.
  • Each control message can be carried in a predetermined position of the frame, and is divided into a plurality of 0B channels of the first 0B channel as shown in FIG. 3B, which is convenient for the node to obtain the control message and facilitates the synchronization processing because the 0B channel carrying the control message Before the other 0B channels carrying the service data.
  • the control message may further carry a token, as described in step 503. It should be understood that not all steps in the above steps 501 to 511 are necessary, for example, step 503 is optional.
  • the token and the channel information of the first channel may also be carried in different control messages, and the token is associated with the channel information of the first channel, that is, the control message carrying the token and the channel information carrying the first channel.
  • the source node of the send message that controls the message is the same.
  • FIG. 6A is a schematic diagram of a node structure.
  • Node 600 can be node 110 in communication network 100 described above or node 210 in communication network 200.
  • Node 600 is comprised of a series of hardware and software, having volatile or non-volatile memory, any suitable control logic, etc., representing any form of data operable to store data.
  • the node 600 supports multi-channel transmission, including a transceiver module 610, a service module 630, and a control module 650.
  • the transceiver module 610 is configured to receive the multi-channel input signal and transmit the multi-channel output signal.
  • the transceiver module 610 is configured to receive the multi-channel input signal and transmit the multi-channel output signal.
  • the service module 630 is configured to obtain a first control message that is carried by the input signal received by the transceiver module 610, where the first control message carries channel information of the first channel.
  • Control module 650 for the slave service module 630: Obtain channel information of the first channel, and allocate a second channel according to channel information of the first channel to avoid transmission conflicts between nodes in the communication network.
  • the control module 650 also controls the transceiver module 610 such that the transceiver module 610 transmits traffic data on the assigned second channel.
  • the service module 630 generates a second control message, where the second control message carries the channel information of the first channel and the channel information of the second channel, and sends the second control message through the output signal of the transceiver module 610, so as to receive the first
  • the node controlling the second message can allocate the channel of the node according to the channel information of the channel in the second control message to avoid the transmission conflict between the nodes in the communication network.
  • the control module 650 can combine the channel information of the first channel and the channel information of the second channel to form a channel information of the first channel and a channel information of the second channel.
  • the control module 650 further controls the transceiver module 610 according to the channel information of the channel of the destination node indicated by the channel information of the first channel, so that the transceiver module 610 outputs the signal received on the channel where the node is the destination node. See the above for details of the control message.
  • the above various channel information is recorded in the form of a bandwidth map. For the bandwidth map recording manner, refer to the above tables, FIGS. 3B and 3C, and corresponding text descriptions.
  • FIG. 6B shows a schematic diagram of another node structure.
  • Node 600a is a specific example of a multi-wavelength application of node 600 of Figure 6A.
  • the node 600a includes a transceiver module 610a, a service module 630a, and a control module 650a.
  • the three modules have the functions of the transceiver module 610, the service module 630, and the control module 650a, respectively.
  • Transceiver module 610a is an optical module for receiving a plurality of wavelengths ⁇ ⁇ 1, ⁇ ⁇ 1, ..., ⁇ ⁇ input signal and transmitting a plurality of wavelengths ⁇ ⁇ 1, ⁇ ⁇ 1, ..., ⁇ , ⁇ ⁇ output signal.
  • the transceiver module 610a photoelectrically converts at least part of the signals of the plurality of wavelengths ⁇ ⁇ 1 , ⁇ ⁇ 1 , ..., and the human, and supplies the output electrical signals to the service module 630a.
  • the transceiver module 610a also obtains an electrical signal from the service module 630a, and modulates the electrical signal to a wavelength and time slot corresponding to the second channel, and modulates the output optical signal and the plurality of wavelengths ⁇ ⁇ 1 , ⁇ ⁇ 1 , ..., ⁇ ⁇ At least a portion of the optical signal of the input signal is coupled into an output signal of a plurality of wavelengths ⁇ ⁇ 1 , ⁇ ⁇ 1 , ..., ⁇ ⁇ ⁇ , ⁇ ⁇ .
  • the transceiver module 610a includes: a demultiplexing module 611, a photoelectric conversion module 615, a burst optical module 617, and a combiner 613.
  • the demultiplexing module 611 is configured to separate a part of the input signals from the input signals of the plurality of wavelengths ⁇ ⁇ 1 , ⁇ ⁇ 1 , . . . , ⁇ , and perform photoelectric conversion on the part of the input signals, and provide the output electrical signals to the service module 630a.
  • the demultiplexing module 610a includes a demultiplexer (Demux) in an optical switch array coupled to the demultiplexer and the photoelectric conversion module 615.
  • the demultiplexer couples the input signals of each of the plurality of wavelengths ⁇ ⁇ 1 , ⁇ ⁇ 1 , ..., ⁇ ⁇ into a part of the wavelengths, and outputs the coupled optical signals of the respective wavelengths in a wavelength separation manner, and inputs the light signals to the light.
  • Switch array selectively outputs an optical signal of a specific wavelength, a specific time slot (eg, a specific 0B) under the control of the control module 650a.
  • the photoelectric conversion mode 615 block converts the optical signal output from the optical switch array into an electrical signal.
  • the service module 630a is configured with a protocol processing function, and is configured to obtain, by the signal received by the transceiver module 630a, a first control message that carries channel information of the first channel, and a channel information that encapsulates the first channel according to a transmission protocol.
  • the set of channel information of the two channels forms a second control message.
  • the service module 630a is capable of obtaining a first control message of the channel information of the first channel (such as the control message of FIG. 3B or 3C) from a specific location of the frame divided into the plurality of slots (such as 0B0 of FIG.
  • the set of channel information for one channel and the channel information for the second channel are encapsulated into a second control message (as in the control message of Figure 3B or 3C).
  • the control module 650a can control the opening and closing of each switching element of the optical switch array according to the channel information of the first channel, so that the node 600 is the channel of the destination node, that is, the node 600 is the channel corresponding to the destination node and the time slot (such as the corresponding wavelength)
  • the optical signal of 0B) is output to the photoelectric conversion module 615, and the service module 630a obtains the service data from the received signal.
  • the control module 650a may control the burst optical module 617 according to the channel information of the second channel, so that the burst optical module 617 modulates the service data of the destination node into a time slot (corresponding to OB) corresponding to the destination node into an optical signal.
  • the wavelength of the burst light module 617 is ⁇ ⁇ , which is different from the wavelength of ⁇ ⁇ carrying the first control message.
  • the burst light module 617 couples the generated optical signal (wavelength ⁇ ⁇ ) through the optical signal output from the combiner 613 and the demultiplexing module 611 into an output of one multi-wavelength ⁇ ⁇ 1 , ⁇ ⁇ 1 , ..., ⁇ , ⁇ ⁇ signal.
  • the node 600a may include multiple transceiver modules and multiple service modules.
  • the node 600a further includes a transceiver module 610b and a service module 630b.
  • the two modules respectively have a transceiver module 610a and a service module 630b.
  • Fig. 6B shows an example in which the transmission directions of 610a and 610b are opposite. It should be understood that the transmission directions of the two modules may be the same.
  • the control module 650a can not only control the receiving and transmitting of the transceiver module 610a, but also control the transmission and reception of the transceiver module 610b.
  • the control module 650a is a functional division, which can be one or more processors to perform the function, for example There are two processors, which respectively control the transceiver modules 610a and 610b. It is assumed that the transceiver module 610a is the transceiver module of the main control loop, the transceiver module 610b is the transceiver module of the auxiliary control loop, and the processor controlling the transceiver module 610a will control the transceiver module. The processor of the 610b obtains the bandwidth map of the auxiliary control ring, so as to carry the bandwidth map of the auxiliary control ring in the control message on the main control ring that the transceiver module 610a is responsible for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种通信网络数据传输方法、节点和系统。其中,通信网络中第一节点接收携带第一通道的通道信息的第一控制消息,根据第一通道的通道信息分配本节点的第二通道,生成并发送携带第一通道的通道信息和第二通道的通道信息的集合的第二控制消息。采用本发明供的方案,每个节点分配本节点的通道,通信网络中每个节点分配的通道可以累加传递以有效保证通信网络的传输冲突。

Description

一种通信网络数据传输方法、 节点和系统
技术领域
本发明实施例涉及通讯领域, 尤其涉及一种通信网络数据传输方法、 节点和系统。 背景技术
多通道传输通信系统, 例如采用时分复用 ( Time Division Multiplexing, TDM) 和 / 或波分复用 (Wavelength Division Multiplexing, WDM) 的通信系统, 为通信系统中多个 节点提供了有效的传输方案。 多通道传输系统存在较大的问题是传输冲突, 一个解决方案 是, 为每个节点分配专用的通道, 但这种解决方案会带来传输资源的浪费。 因此, 有效地 动态分配传输资源成为多通道传输系统的热点问题。
发明内容
本发明的一方面涉及一种通信网络数据传输方法, 包括:
第一节点接收第一控制消息, 第一控制消息携带第一通道的通道信息;
第一节点根据第一控制消息携带的第一通道的通道信息分配第二通道;
第一节点生成第二控制消息,第二控制消息携带第一通道的通道信息和第二通道的通 道信息的集合;
第一节点发送第二控制消息以及通过第二通道发送数据。
本发明的另一方面提供了一种通信网络中数据传输的节点, 包括:
收发模块, 用于接收多通道输入信号以及发送多通道输出信号;
业务模块, 用于从收发模块接收的输入信号中获得承载的第一控制消息, 第一控制消 息携带了第一通道的通道信息;
控制模块, 用于从业务模块获得第一通道的通道信息, 根据第一通道的通道信息分配 第二通道, 并控制收发模块在分配的第二通道上发送业务数据, 其中,
业务模块生成第二控制消息, 第二控制消息携带第一通道的通道信息和第二通道的通 道信息的集合, 并将第二控制消息通过收发模块的输出信号发送出去。
本发明的另一方面提供了一种包括多个节点的通信网络, 其中, 第一节点, 用于接收 携带第一通道的通道信息的第一控制消息, 根据第一通道的通道信息分配第二通道, 生成 并发送携带第一通道的通道信息和第二通道的通道信息的集合的第二控制消息;第二节点, 用于接收第二控制消息, 根据第二控制消息携带的第一通道的通道信息和第二通道的通道 信息的集合分配第三通道。
采用本发明供的方案, 每个节点分配本节点的通道, 通信网络中每个节点分配的通道 的通道信息可以累加传递以有效保证通信网络的传输冲突。 每个节点在分配通道时根据接 收到的控制消息的通道的通道信息直接分配, 不需和其它节点进行协商。 分配通道后, 可 按照分配通道发送业务。
从附图、说明书中,本发明的某些其它技术优点对于本领域技术人员将变得显而易见。 而且, 尽管上文列举了具体优点, 但是各种实施例可包含全部、 部分或不含所列举的优点。 附图说明
图 1为本发明实施例提供的通信网络架构;
图 2为本发明光环网架构实施例;
图 3A为本发明实施例突发传输帧结构示意图;
图 3B为本发明实施例控制消息一结构示意图;
图 3C为本发明实施例控制消息另一结构示意图;
图 4A-D为本发明实施例传输状态示意图;
图 5为本发明实施例节点传输处理流程示意图;
图 6A为本发明实施例节点结构示意图;
图 6B为本发明实施例节点结构示意图。 具体实施方式
图 1所示为通信网络, 用 100表示。 通信网络 100包括多个节点, 用 110表示, 通信 网络 100支持节点 110间的数据传输, 这些节点是按照本发明的各种实施例来操作。
任一节点 110可以操作性耦合到其它网络设备, 用于传输数据。 任一节点 110可以作 为源节点, 将数据传输到通信网络 100中的其它节点, 可以直接传输给相邻节点, 也可以 通过网环上的一个或多个节点传输给目的节点。 任一节点 110可以连接到一个或多个数据 源(图 1中未示出) , 接收来自数据源的数据和 /或向数据源发送数据。 数据源可以是局域 网, 或广域网、 或接入网、 或任何其它类型的可发送 /或接收数据的装置。 数据源和节点
110间的连接可以是光连接也可以是电连接。 图 1中的节点 110 (N1、 N2、 N3、 N4、 …)的编 号 1、 2、 3、 4、 …可以表示节点序号。
通信网络 100中, 多个节点可以利用多个通道传输数据。 通道可以是以波长划分的通 道, 也可以是以时隙划分的通道, 还可以是多个波长和多个时隙划分的通道。 在突发传输 中, 每一时隙可以是一个突发间隔, 可以称之为突发通道。 突发间隔可以以时间来标记也 可以以数据量大小, 如比特数或字节数来标记。 多个波长和多个时隙划分的通道中, 每一 个波长的每一个时隙可以作为一个通道。 其中,时隙也可以用其它术语表示,如时间间隔, 也可以用带宽来替代。 为了方便起见, 下文中统一用时隙表示。
通信网络 100可以利用波分复用 (Wavelength Division Multiplexing, WDM) 。 多个 节点以波分复用方式在多个波长上调制数据, 每个节点可以拥有一个或多个波长, 节点之 间波长资源可以不共享也可以共享。 节点间波长不共享是指每一个波长指派给特定节点用 来发送业务后其它节点不能用该波长发送业务, 例如 λ 1 的资源被节点 1用来发送业务, 则 λ 1 不能被其它节点用来发送业务。 节点间波长共享是指一个波长可以被至少两个节点 用来发送数据, 只要保证共享的两个节点发送的业务间不存在冲突, 这可以结合时分复用
( Time Division Multiplexing, TDM) 的方式实现。
通信网络 100可以利用时分复用 ( Time Division Multiplexing, TDM) 。 多个节点以 时分复用方式在多个时隙中传输数据, 每个节点可以拥有一个或多个时隙。 例如, 一个通 信网络 100 可被配置为将特定长度的时间区间通过时分复用 (Time Division Multiplexing, TDM) , 划分出 n个时隙, n为大于等于 2的整数。 这里特定长度可以以时 间来标记, 也可以以数据量大小, 如比特数或字节数来标记。 这种特定长度的时隙的起始 和 /或结尾可以识别定界。在通信网络 100支持突发传输情况, 一个时隙中的传输表示一个 突发。 应当理解,本发明实施例涉及的时分复用可以是固定间隔的时分复用,也可以是可变 长间隔的时分复用。
通信网络 100可以利用波分复用和时分复用的结合。 例如,在本发明一实施例中,通信 网络 100可以提供 M个波长, 从时间上划分为 n个时隙, M和 n均为大于等于 2的整数。 这样, 通信网络 100在任一帧传输期间内可以提供 M X n个通道。在本发明另一实施例的通 信网络中, 波分复用和时分复用的结合包括时分复用波长, 即每一个波长都支持时分复用。 例如, 在利用时分复用波长的通信网络 100中, 每一个波长唯一指派给一个节点用于发送 数据, 该节点为数据的源节点, 每一个源节点可以在一个或多个波长上发送数据。 对于任 意给定的波长,任一帧传输期间内的多个时隙可以选择性地指派给多个目的节点,用于传输 源节点到这些目的节点的数据; 任一帧传输期间内的每一个目的节点可以被指派一个或多 个时隙。
在操作中, 通信网络 100允许将其提供的多个通道在多个节点中分配, 防止通道资源 的冲突。 节点间可以传输控制消息, 如图 1 中带箭头的实线, 每一个控制消息 (称为为第 一控制消息) 携带一个或多个第一通道的通道信息。 接收到控制消息的节点, 如 N2, 该控 制消息携带指示一个或多个第一通道的通道信息; 根据控制消息携带的第一通道的通道信 息分配第二通道, 从而防止第二通道和第一通道冲突。 节点分配了通道后, 发送新的控制 消息 (称为为第二控制消息) 以及基于本节点分配的第二通道发送数据。 发送的数据如图 1 倾斜放置的矩形条。 新的控制消息携带前一节点发送的控制消息指示的第一通道的通道 信息以及本节点分配的第二通道的通道信息的集合。 类似的, 接收到这个新的控制消息的 下一节点, 如 N3, 可以从新的控制消息中获得第一通道的通道信息以及第二通道的通道信 息的集合, 为本节点分配第三通道。 这里涉及的通道包括前面提到的任意一种通道, 可以 是波长的通道, 可以是时隙的通道, 也可以是波长和时隙划分的通道 (如时分复用的波长 通道或波分复用的时隙通道) 。 控制消息中携带的通道的通道信息可以用带宽地图表示。 带宽地图可以包括对应多个节点各自的描述区, 每个描述区对应一个分配通道的节点, 用 于表示对应节点分配的通道的通道信息; 这样, 每个节点在分配本节点的通道后, 用分配 的通道的通道信息更新带宽地图中对应本节点的描述区。 带宽地图也可以包括对应多个波 长各自的描述区, 每个描述区对应一个波长, 用于表示对应波长的通道的通道信息; 这样, 每个节点在分配本节点的通道后, 用分配的通道的通道信息更新带宽地图中对应波长的描 述区。 其中, 新的控制消息是表示其内通道信息内容的更新, 消息格式和消息协议可以不 变。 由于控制消息指示的通道信息不断累加, 可以定义特定消息字段, 该特定消息字段的 信息容量足以携带通信网络 100能够提供的所有通道的通道信息。 例如, 通信网络 100有 N个节点, 所有的节点一共用了 M个波长 (2 N M), 带宽地图可以是 M*N的矩阵的映射, 如表 2所示。 在某些实施例中, 节点需要获得授权才能进行带宽分配, 可以采用令牌来实 现带宽分配的授权, 图 1中带箭头的虚线所示为节点获得的令牌的示例。
每一个通道和源节点、 目的节点对应, 允许对应源节点到对应目的节点的数据发送。 对应的目的节点允许接收该通道的数据。 每一个通道由该通道对应源节点分配。
如果通道是波长通道, 每一个波长通道与波长、 源节点和目的节点对应, 允许对应源 节点到对应目的节点的数据在对应波长发送。控制消息可以指示多个波长通道的通道信息, 如表 1带宽地图。 每一个节点可以对应一个或多个波长。 如果通道和波长、 时隙关联或对 应, 可以称这样的通道为时分复用的波长通道, 则每一个通道除了和波长、 源节点和目的 节点对应, 还和时隙对应, 允许对应源节点到对应目的节点的数据在对应波长和对应时隙 发送。 控制消息可以携带带宽地图, 用于指示多个通道的通道信息, 如表 2带宽地图或表 3 带宽地图。 在特定实施例中, 可以只允许节点排他性使用各自的波长发送数据, 即任一 波长只允许一个节点使用该波长发送数据而不允许其它节点使用该波长发送数据, 我们可 以称这样的通信网络系统为源节点系统。 在这种源节点系统中, 波长和源节点绑定, 每一 个波长唯一对应一个源节点, 标识了波长也就标识了源节点, 因此, 源节点的信息可以省 略。
表 1带宽地图
Figure imgf000007_0002
Figure imgf000007_0001
Figure imgf000007_0003
表 3带宽地图
Figure imgf000007_0004
如果通道是时隙通道, 每一个时隙通道与时隙、 源节点和目的节点对应, 允许对应源 节点到对应目的节点的数据在对应时隙发送。 控制消息可以携带带宽地图, 用于描述多个 通道的通道信息, 如表 4带宽地图。 每一个节点可以对应一个或多个时隙。 如果通道和时 隙、 波长关联或对应, 可以称这样的通道为波分复用的时隙通道, 则每一个通道除了和时 隙、 源节点和目的节点对应, 还和波长对应, 允许对应源节点到对应目的节点的数据在对 应时隙和对应波长发送。 控制消息中的通道信息类似于表 2带宽地图或表 3带宽地图, 不 再赘述。
Figure imgf000008_0001
上述个各表中, TS1、 TS2、 …、 TS5、 …表示时隙 ( Time Slot , TS ), λ 1、 λ 2、 λ 3- 表示波长。 在光突发 (Optical Burst, 0B ) 通信网络中, 可以用 0B1、 0B2、 …、 0B5、 … 表示 TS1、 TS2、 -TS5 …。
控制消息可以通过特定的通道传输, 例如专用于传输控制信息的特定波长, 或者专用 于传输控制消息的特定时隙。 其中, 专用于传输控制信息的特定波长不同于用于传输业务 数据的数据波长。 任意节点的波长可以配置有专用于传输控制消息的特定时隙, 可以将任 意波长任意帧的相同位置配置为专用于传输控制消息的特定时隙。
为进一步理解本发明, 以下通过环网的应用对本发明的方法、 装置和系统进行详细的 描述。
如图 2所示为环网上包含 4个节点节点 210 (1, 2, 3, 4) 的通信网络 200。 其中, 节点 210 (1, 2, 3, 4)包含节点 110的所有功能, 可以是电通信节点也可以是光通信节点; 网络设 备 220为数据源, 可以是局域网, 或广域网、 或接入网内可发送和 /或接收数据的装置, 或 任何其它类型的可发送和 /或接收数据的装置。 应当理解, 节点个数 4仅是个示例, 也可以 是其它值, 通常, 环网包含至少 3个节点 210。 通信网络 200可以包括一个环或两个环, 可以在顺时针和 /或逆时针方向上运行。通信网络 200可以是各种网络类型的任意一种, 这 些网络类型包括骨干传送网、 城域网。
通信网络 200是光网络, 支持多波长的突发传输, 提供多个通道用于业务数据传输, 每一个通道对应特定波长。 光突发通过时分复用波长实现, 从时间轴上, 每个固定的周期, 为一个帧结构。 每一帧结构通过时分复用, 划分出 n个时隙。 一个时隙为一个通道, 每个 通道上的传输为一个 0B。 通信网络 200中, 任一节点 210可以具有至少一个通道, 用于发 送本节点的数据。 当然, 并非每一个节点在允许给自己分配通道时都必须给自己分配, 例 如节点自身没有数据发送需求时可以不给自己分配通道。
图 2给出了 n=6的一个示例, 应当理解, n可以是其它任意大于等于 2的整数。 图 2 中, 每一个点填充的方格表示 λ 1的一个 0Β通道, 每一个竖线填充的方格表示 λ 2的一个 0Β, 每一个横线填充的方格表示 λ 3的一个 0Β通道。 包含交叉符号 " X "的方格表示该 0B 通道上不发送业务或数据, 没有交叉符号 " X "的方格表示该 0B上发送业务或数据。 空白 填充、 包含交叉符号 " X " 的方格表示该 0B通道上不接收任何波长。
图 2中, 节点 210 (1)具有两个用于发送数据的波长 λ 1和 λ 2, 可以利用这两个波长发 送本节点到通信网络 200上其它节点的数据,如节点 210 (1)到节点 210 (2)、210 (3)、210 (4) 的数据。 节点 210 (2)具有一个用于发送数据的波长 λ 3, 可以利用这个波长发送本节点到 通信网络 200上其它节点的数据, 如节点 210 (2)到节点 210 (1)、 210 (3)、 210 (4)的数据。 同样的, 节点 210 (3)和节点 210 (4)也可以具有用于发送数据的波长 λ (图中未示出) 。 图 2 中, 各个节点 210的带宽被合理的分配和控制, 使得业务传输不冲突, 例如相同波长上 的时隙不冲突和 /或到达相同目的节点的不同波长的业务的时隙不冲突等。到达相同目的节 点的不同波长的业务的时隙不冲突, 这样, 该目的节点下波输出信号是时分复用波长的光 信号, 即每个时隙只有一个波长的光信号, 可以有效实现全光通信。 如果数据源 220是末 端节点, 允许数据源 220对波长不敏感, 可以仅有一个探测器接收多个波长的数据, 其中 数据源 220具有接收功能。节点间传送的数据可以是各种业务类型的数据, 如 Internet数 据、 IPTV数据等。
本实施例通过在多个波长的每一个波长上划分多个 0B通道, 节点间可通过 0B通道来 传送数据, 每一个 0B通道传输一个 0B。 图 3A 所示为突发传输帧结构, 包含 n个 0Bs, 如 0B0、 0B1、 0B2- , 构成一帧。 Frame K Frame2、 …按固定长度时间 Tf周期性传输, Tf为帧 周期。 对于任一帧, 如 Framel或 Frame2, 包含 n个 0Bs, 如 0Β0、 0Β1、 0Β2···。 不同周期 的同一位置的 0Β形成一个 0Β通道。 t l为 0B长度, t2为 0B时隙长度, t3为突发之间的 保护时间。 保护时间主要指 0B发送、 接收以及切换时, 光器件开启、 关闭所需的时间。 任 一个 0B的结构包含物理层开销 (Physical Layer Overhead, PL0) 和净荷 (payload) 。 物理层开销可以包含功率锁定、 定时、 定界和 0B开销, 其中, 功率锁定用于突发接收机锁 定 OB的功率, 定时用于突发接收机锁定 0B的时钟, 定界用于定出 0B的边界, 0B开销中 包含有 0B通道的信息, 净荷承载的是 0B的净荷, 即突发容器 (Burst Container, BC) 。
图 3B 所示为本发明控制消息结构的一个示例。 该控制消息承载在 0B300 中, 0B300 包括物理层开销和净荷。
0B300的物理层开销包含如下信息:
前导 (Premable ) : 实现帧同步。 定界 (Del imiter) : 用于定出 0B的边界, 在本实施例中, 占用 4字节, 采用十六进 制值 0xB6AB31E0, 可以理解的是, 在实际应用中, 该定界中所包含的具体内容可以相应变 化。 帧标识(Frame— Ind):用于标识帧,例如用帧序号标识帧,可以用超帧计数 super-frame counter来实现, 占用 7比特; 帧标识 (Frame— Ind) 还可以包括一个突发包指示, 占用 1 比特,用于指示是否是承载控制消息的光突发包, 当 0B是 0B0时, 0B0— Ind = 1 ; 这里 0B0 指示可以设置于和帧标识独立的字段。
带宽控制信息(BW— Conlnfo) :用于指示带宽的控制信息, 可以包含如下一种或多种信 息: 带宽信息所应用的工作环 (Work字段的内容) 、 带宽类型 (BW— Type字段的内容) 、 净荷中带宽信息长度 (BW— Len字段的内容)。 其中, 带宽信息所应用的工作环(Work字段的 内容) , 用于指示工作环类型, 占用 1 比特, 工作环标识的值为 1表示主控环, 0表示辅 控环; 带宽类型 (BW— Type 字段的内容) , 用于指示带宽类型, 如可变长带宽或固定长带 宽, 占用 2 比特; 带宽信息长度 (BW— Len ) , 用于指示净荷中带宽信息长度, 可以表示净 荷中带宽信息字段实际长度, 也可以表示净荷中通道个数, 例如可以占用 5 比特来描述每 一个波长可以提供 0— 32个通道; 带宽标识 (BW— ID) , 用于指示带宽分配标识,可以用带宽 分配计数值实现, 在环网中, 由第一个节点来计数, 按带宽分配周期计数, 该第一节点可 以是通信网络 200 中的任一节点。 可以理解的是, 在实际应用中, 该带宽控制信息 (BW— Conlnfo) 中所包含的具体内容和占用的比特数或字节数可以相应变化。
令牌 (Token) : 用于表示是否允许分配带宽, 作为带宽分配的授权标识, 可以占用 1 字节, 当允许节点分配带宽时, 该授权标识置为 1。
循环冗余校验码 (Cycl ic Redundancy Check, CRC) : 用于突发控制开销纠错校验: 0B300 的净荷可以描述环网完整的带宽地图, 以分配带宽的源节点为单位进行描述, 或以波长为单位进行描述。 在波长和源节点唯一对应的源节点架构中, 因为知道了波长即 知道了源节点, 上述两种方式效果相同。
在以源节点为单位的描述方式中, 带宽地图可以包含对应多个节点各自的描述区, 每 一节点都有自己的描述区如图 3B的 Src— Node— 1, …, Src— Node— N。 对于每一个源节点, 该源节点对应的描述区指示 n个通道的通道信息 OBODes , OBlDes , …, 0B30Des, 0B31Des, n表示一帧所划分的通道的数量, 这里的通道是 0B通道。 通道信息 OBODes , OBlDes , …, 0B30Des , 0B31Des可以指示对应通道在一个或多个工作环的预留情况。 通道信息可以指示 通道预留状态 (Rev字段的内容)以及通道对应的目的节点 (Des— Node— ID字段的内容) , 通 道信息还可以包含工作环指示 (Bw— ind字段的内容) 。 这样, 通信网络中任意节点接收到 控制消息并根据控制消息分配本节点的通道后, 均可以用本节点分配的通道的通道信息更 新带宽地图中对应本节点的描述区。
图 3B的实施例中, 任一通道的通道信息, 如 OBlDes , 包含两个工作环的描述信息, 每个工作环对应的通道信息占用 1字节, 还有额外 1字节的 CRC校验信息。 例如, Bw— ind 的值为 1表示主控环, 0表示辅控环; 主控环节点 1的 0B1发送业务到节点 2 , 辅控环节点 1的 0B1发送业务到节点 3, 则 Src— Node— 1的 OBlDes按表 5配置为:
表 5节点 N1的 OBlDes
Figure imgf000011_0001
上表中,第一行为描述,第二行表示具体配置的值;第 1〜4列表示主控环的通道信息, 第 2〜8列表示辅控环的通道信息。
在以波长为单位的描述方式中, 参考表 2和图 3C所示, 该带宽地图包括多个波长各自 的描述区, 每个描述区对应一个波长, 用于描述对应波长的通道分配情况, 如图 3C所示的 描述区, λ1;…, λΜ。对于每一个波长,该波长对应的描述区指示 η个通道的通道信息 OBODes , OBlDes , …, 0B30Des, 0B31Des, n表示一帧所划分的通道的数量, 这里的通道是 0B通道。 通道信息 OBODes , OBlDes , …, 0B30Des, 0B31Des可以指示对应通道在一个或多个工作环 的预留情况。 通道信息可以指示通道预留状态(Rev 字段的内容)以及通道对应的源节点 ( Src— Node— ID字段的内容)和目的节点 (Des— Node— ID字段的内容) , 通道信息还可以包 含工作环指示 (Bw— ind字段的内容) 。 这样, 通信网络中任意节点接收到控制消息并根据 控制消息分配本节点的通道后, 均可以用本节点分配的通道的通道信息更新带宽地图中对 应波长的描述区。
控制消息承载在一个 0B通道中, 典型的, 如果每一帧分成多个 0B通道用于承载多个 OBs , 可以将多个 OBs中特定 OB用来承载这个控制消息, 例如第一个 0B, 即 0B0。 控制消 息也可以承载在专门的波长上, 例如通信网络 200的专用控制波长上。
下面结合具体的流程说明通信网络数据传输的方法。 假设通信网络 200节点间的连接 形成至少两个环, 每个节点在一个环上只有一个发射机和一个接收机, 每一个发射机对应 一个波长,控制消息通过 0B0通道承载。
1.在初始 to时刻
节点 N1作为源节点, 根据本节点的带宽需求分配本节点的通道, 确定所分配通道的通 道信息。
通道的通道信息可以用带宽地图表示, 该带宽地图表示源节点到目的节点的通道的通 道信息。 节点 N1将带宽地图映射到 λ Ν1的 0Β0, 将映射有带宽地图的 0Β0发送给通信网络 的其它节点以及将业务数据通过节点 N1所分配的通道, 即带宽地图指示的 0Β通道, 发往 目的节点。 节点 N1还在 λ Ν1的 0Β0标识 T0kenld = l, 指示拥有该令牌的节点分配带宽, 即 分配通道。 这里, 1为节点 N1的节点序号。 其它节点 N2、 N3、 N4均等待接收 λ N1的 0B0。 节点 N1在发送带宽地图之后,等待接收其它节点的带宽地图,如接收节点 N2的 λ 2的 0Β0。
带宽需求可以包括至少两个环的带宽需求, 如图 2逆时针的外环和顺时针的内环的带 宽需求, 相应的, 带宽地图可以包括至少两个环的带宽地图。 包含多个环的通信网络中, 可以指定其中一个环为主控环, 其它环为辅控环, 参考图 4Α, 本实施例中以逆时针的外环 为主控环, 顺时针的内环为辅控环。
带宽需求基于待发送业务量, 包括 N1到多个目的节点的待发送业务量。 待发送业务量 可以用 0Β个数表示, 也可以用待发送业务量的比特数或字节数表示, 或用表示待发送业务 量的其它参数表示。 本实施例的带宽需求包括多个环的带宽需求, 如外环和内环的带宽需 求。带宽需求取决于外环和内环上节点 1到目的节点的业务量, 如表 6外环上节点 N1的带 宽需求和表 Ί内环上节点 1的带宽需求的 0Β个数。 表 6中 Ν2、 Ν3和 Ν4列的值 3、 2、 2分 别表示外环上源节点 N1到目的节点 Ν2、 Ν3和 Ν4所需要的 0Β个数。 0B个数可以基于待发 送业务量和 0B的容量确定。应当理解, 表 6和表 7中的请求的带宽需求不仅限于 0B个数, 也可以是其它参数, 如待发送业务比特数或字节数。
表 6外环上节点 N1的带宽需求
的节点 N1 N2 N3 N4
源节点^"\^
N1 3 2 2 表 7内环上节点 1的带宽需求
Figure imgf000013_0002
相应的, 带宽地图包括多个环的带宽地图, 如外环和内环上节点 N1的带宽地图, 如表 8外环上节点 N1的带宽地图 MaplN1和表 9内环上节点 N1的带宽地图 Map2N1所示。
表 8外环上节点 N1的带宽地图 MaplN1
Figure imgf000013_0003
进一步的, 主控还上 λ ^的(¾0可以携带多个环的带宽地图, 即除了携带对应环的带宽 地图, 即外环的带宽地图, 还可以携带其它环的带宽地图, 如内环的带宽地图。 将多个环 的带宽地图的集合形成主控环的完整的带宽地图, 并将完整的带宽地图映射到 λ ^的(¾0。 具体的, 当前时刻外环和内环上的带宽地图分别如表 10A和 10B所示, 主控环的带宽地图 NetMap为表 10A和 10B的集合, 其中, λ Ν2、 λ Ν^Βλ Ν4行的值为空, 以便节点 Ν2、 Ν3、 Ν4 接收到令牌时自己分配的带宽地图填充到相应位置; 0Β0的格式可以参考图 3Β。如图 4Α所 示, 节点 N1在主控环上发送主控环的完整带宽地图 NetMap, 在辅空环上发送内环上节点 N1的带宽地图 Map2N1。其中, 辅控环上不传递令牌,或将令牌设定成特定值, 如 Tokenld=0。
表 10A外 3? F的带宽地图
Figure imgf000013_0001
Figure imgf000014_0001
表 10B内环的带宽地图
Figure imgf000014_0002
2. [ tO+T, tO+2T ] 时刻
如图 4B所示, 主控环的带宽地图 NetMap通过 λ Ν1的 0Β0到达节点 Ν2, 辅控环上的带宽 地图 Map2N1通过 λ Ν1的 0Β0到达节点 Ν4, 然后到节点 Ν3; 令牌到达节点 Ν2, 节点 Ν2收到 允许本节点分配带宽的令牌后, 根据 0Β中映射的通道的通道信息分配本节点的通道, 这样 可以避免通信网络中节点间传输冲突。具体的, 节点 Ν2根据 0Β0中带宽地图表示的通道的 通道信息以及自己的带宽需求分配本节点的通道, 并将分配的通道用带宽地图表示。 在分 配本节点的通道时, 可以通过带宽分配的算法计算得到, 使得通信网络中节点间的通信不 冲突, 如表中代表目的节点的每一列, 源节点 Ν2的 0Β和源节点 N1的 0Β不冲突, 即保证 对于不同源节点、 相同目的节点的通道不冲突, 具体的算法属于现有技术, 不再赘述。 节 点 Ν2将本节点的带宽地图合并到主控环的带宽地图 NetMap, 将合并后的主控环的带宽地 图 NetMap通过节点 N2的 λ Ν2的 0Β0发送给主控环上的其它节点。 节点 Ν2将本节点的内环 的带宽地图 Map2N2通过 λ ^的(¾0发送给辅控环上的其它节点。 节点 Ν2根据本节点的带宽 地图将本节点的业务数据通过带宽地图规定的 λ ^的 0Β通道发往相应的目的节点。 λ 2的 0Β0中的令牌不同于 λ Ν1的 0Β0的令牌,因为 λ Ν2的 0Β0中的令牌是用于指示允许节点 Ν3分 配带宽。 令牌是允许授权节点分配带宽的任何信息, 在本发明的实施例中, 不同的节点可 以对应各自不同的令牌, 以便于节点可以识别出和自己对应的令牌, 即每个节点可以拥有 与其唯一对应的令牌。
tO+T时刻:
主控环上: 节点 N2接收到 λ N1的 0B0, 读取 0B0中的令牌 (Tokenld字段的值) ; 节 点 N2根据令牌确定是否允许分配带宽, 如果允许则为本节点分配通道, 并将分配的通道的 通道信息用带宽地图表示。 具体的, 节点 N2将 λ ^的 0Β0中 Tokenld加 1 为 2, 并判断 Tokenld+l等于本节点的 id, 则为本节点分配通道, 并将分配的通道的通道信息用带宽地 图表示。 节点 N2会透传 λ ^光信号, 从而将 λ ^的 0Β0透传给下一节点 Ν3, 这里透传是指 不修改 0Β0中的信息。 此外, λ Ν1的其它 0Β也会一起发送给节点 N3。 节点 N2根据 0B0中 的带宽地图确定 λ ^的(¾1、 0Β2、 0Β3是本节点的通道, 接收这些通道上的业务数据。 辅控 环上: 节点 Ν4接收到 λ Ν1的 0Β0, 读取 0Β0中的信息发确定没有令牌则不分配通道。 此外, 节点 Ν4开始等待接收其它节点的 0Β0,如接收节点 Ν2的 λ Ν2的 0Β0。节点 Ν4根据 λ Ν1的 0Β0 中带宽地图确定 λ Ν1的 0Β3、 0Β4是本节点的通道, 则接收 λ Ν1的 0Β3、 0Β4的业务数据。
Ϊ0+2Τ时刻:
节点 N2通过 λ N2的 0B0发送两个环上的带宽地图, 其中, λ Ν2的 0B0中, TokenId=2, 为 λ Ν1的 0Β0中 Tokenld加 1后的值。 此外, 主控环和辅控环上节点 N2都等待接收其它节 点的 0B0, 如节点 N3的 λ Ν3的 ΟΒΟ ο
主控环上: 节点 Ν3接收到 λ Ν1的 0Β0, 读取 0Β0中的令牌 ( TokenId=l ) , 节点 N3根 据令牌确定是否允许分配带宽, 如果允许则分配通道, 并将分配的通道以带宽地图方式记 录,如果不允许则分配通道。具体的,节点 N3将 λ Ν1的 0Β0的 Tokenld加 1,并判断 Token Id+1 不等于本节点的 id, 则不分配通道。 节点 N3开始等待接收其它节点的 0B0, 如节点 N2的 λ Ν2的 0B0。 同样的, 节点 N3会透传 λ ^光信号, 从而将 λ ^的(¾0透传给下一节点 Ν4, 这 里透传是指不修改 0Β0中的信息。节点 Ν3根据 0Β0中的带宽地图确定 λ Ν1的 0Β4、 0Β5是本 节点的通道, 接收这些通道上的业务数据。
辅控环上: 节点 Ν3接收到 λ Ν1的 0Β0, 读取 0Β0中的令牌 (Tokenld字段的值) , 节 点 N3根据令牌确定是否允许分配带宽, 如果允许则分配通道, 并将分配的通道以带宽地图 方式记录, 如果不允许则不分配通道。 具体的, 节点 N3将令牌加 1, 并判断加 1后令牌 2 不等于本节点的 id, 则不分配通道。 节点 N3开始等待接收其它节点的 0B0, 如节点 N2的 λ Ν2的 0B0。 同样的, 节点 N3会透传 λ ^光信号, 从而将 λ ^的(¾0透传给下一节点 Ν4, 这 里透传是指不修改 0Β0中的信息。 此外, λ Ν1的其它 0Β也会一起发送给节点 Ν4。 节点 Ν3 根据 0Β0中的带宽地图确定 λ Ν1的 0Β2是本节点的通道, 接收 λ Ν1的 0Β2上的业务数据。
节点 Ν2分配通道的方式和节点 N1相同, 也是根据本节点的带宽需求计算带宽地图。 假设节点 Ν2的带宽需求如表 11外环上节点 Ν2的带宽需求和表 12内环上节点 Ν2的带宽需 求:
表 11外环上节点 Ν2的带宽需求
Figure imgf000016_0001
表 12内环上节点 N2的带宽需求
Figure imgf000016_0002
节点 N2的带宽地图如表 13和 14:
表 13外环上节点 N2的带宽地图 Mapl
Figure imgf000016_0003
表 14内环上节点 N2的带宽地图
Figure imgf000016_0004
则当前时刻外环和内环上的带宽地图分别如表 15A和 15B, 主控环的带宽地图 NetMap为表 15A和 15B的集合, 映射方式参见图 3B。
表 15A外环的的带宽地图
Figure imgf000016_0005
表 15B内环的的带宽地图
Figure imgf000017_0001
3. [ tO+3T, tO+4T ] 时刻
参考图 4C, 主控环上的带宽地图 NetMap通过 λ Ν2的 0Β0到达节点 Ν3; 令牌也到达节点 Ν3, 节点 Ν3收到允许本节点分配带宽的令牌后, 根据 0Β0中映射的通道的通道信息分配本 节点的通道, 以避免通信网络中节点间的传输冲突。 和节点 Ν2类似, 节点 Ν3根据自己的 带宽需求和 0Β0中的带宽地图计算本节点的带宽地图。节点 Ν3将本节点的带宽地图合并到 主控环的带宽地图 NetMap,将合并后的主控环的带宽地图 NetMap通过节点 N3的 λ Ν3的 0Β0 发送给主控环上的其它节点。 节点 Ν3将本节点的内环的带宽地图 Map2N3通过 λ Ν3的 0Β0发 送给辅控环上的其它节点。节点 Ν3根据本节点的带宽地图将本节点的业务数据通过带宽地 图规定的 λ 的 OB通道发往相应的目的节点。 λ ^的(¾0中的令牌不同于 λ ^的(¾0的令牌, 因为 λ 3的 0Β0中的令牌是用于指示允许节点 Ν4带宽分配。
t0+3T时刻:
主控环上: 节点 N3接收到 λ N2的 0B0, 提取 0B0中的令牌, 根据令牌确定允许本节点 分配带宽, 则根据本节点的带宽需求和 0B0中的带宽地图计算本节点的带宽地图, 以便通 信网络中节点间的传输冲突。 具体的, 节点 N3将 λ ^的 0Β0的 Tokenld加 1为 3, 判断 Tokenld+l等于本节点的 id, 则计算本节点的带宽地图。 节点 N3根据 λ Ν2的 0Β0中的带宽 地图确定 λ ^的(¾2、 0Β3是本节点的通道, 接收 λ ^的(¾2、 0Β3上的业务数据。
主控环上: 节点 Ν4接收到 λ Ν1的 0Β0, 读取 0Β0中的令牌 (Tokenld字段的值) , 节 点 N4根据令牌确定是否允许分配带宽, 如果允许则分配通道, 如果不允许则不分配通道。 具体的, 节点 N4将 λ Ν1的 0Β0中的 Tokenld加 1为 2, 并判断 Tokenld+l不等于本节点的 id, 则不分配通道。 节点 N4开始等待接收其它节点的 0B0, 如 λ Ν2的 0B0。 节点 N4根据 λ 的 0Β0中的带宽地图确定 λ Ν1的 0Β6、 0Β7是本节点的通道, 接收 λ Ν1的 0Β6、 0Β7上的业 务数据。
辅控环上: 节点 Ν2接收到 λ Ν1的 0Β0, 确定不包含令牌, 此时节点 Ν2不分配通道, 节点 N2开始等待接收 λ 的(¾0。节点 Ν2根据 λ ^的 0Β0中的带宽地图确定 λ ^的(¾1是本 节点的通道, 接收 λ ^的 0B1上的业务数据。
辅控环上: 节点 N1接收到 λ ^的(¾0, 确定不包含令牌, 节点 N1开始等待接收 λ 的 ΟΒΟο 节点 Ν2根据 λ ^的 0Β0中的带宽地图确定 λ ^的(¾3、 0Β4是本节点的通道, 接收 λ Ν2 的 0Β3、 0Β4上的业务数据。
Ϊ0+4Τ时刻:
节点 N3在主控环上通过 λ Ν3的 0Β0发送两个环上的带宽地图 NetMap, TokenId=3,主 控环和辅控环上节点 N3开始接收 λ Ν4的 0Β0。 节点 Ν3在辅控环上通过 λ Ν3的 0Β0发送本节 点内环的带宽地图,
Figure imgf000018_0001
主控环上: 节点 N4接收到 λ Ν2的 0Β0, 读取 0Β0中令牌 (Tokenld字段的值) 为 2; 将 λ Ν2的 0Β0的 Tokenld加 1得到 3, 判断 Token+1不等于本节点的 id, 节点 N4不分配通 道, 开始等待接收 λ 的(¾0。
主控环上: 节点 N1接收到 λ Ν1的 0Β0, 读取 0Β0中令牌 (Tokenld字段的值) 为 1 ; 将 λ Ν2的 0Β0的 Tokenld加 1得到 2, 判断 Token+1不等于本节点的 id, 节点 N1不分配通 道。 节点 N1确定该波长是自己的波长, 终结该波长。
辅控环上: 节点 N4接收到 λ N2的 0B0, 确定不包含令牌, 节点 N4不分配通道, 开始 等待接收 λ Ν3的 0Β0。节点 Ν4根据 λ Ν2的 0Β0中的带宽地图确定 λ Ν2的 0Β2、 0Β5是本节点的 通道, 接收 λ ^的(¾2、 0Β5上的业务数据。
辅控环上: 节点 N1接收到 λ Ν1的 0Β0, 确定不包含令牌, 节点 N1不分配通道, 开始 等待接收 λ Ν3的 0Β0。 节点 N1确定该波长是自己的波长, 终结该波长。
假设节点 Ν3的带宽需求如表 16外环上节点 Ν3的带宽需求和表 17内环上节点 Ν3的带 宽需求:
表 16外环上节点 Ν3的带宽需求
Figure imgf000018_0002
表 17内环上节点 Ν3的 7见而豕
的节点 N1 Ν2 N3 N4
源节点
Ν3 1 2 1 节点 N3的带宽地图包括:如表 18外环上节点 N3的带宽地图 MaplN3和表 19内环上节点 N3的带宽地图 Map2N3
表 18外环上节点 N3的带宽地图 MaplN3
Figure imgf000019_0001
则当前时刻外环和内环上的带宽地图分别如表 20A和 20B, 主控环的带宽地图 NetMap为表
20A和 20B的集合, 映射方式参见图 3B。
表 20A外环的带宽地图
Figure imgf000019_0002
表 20B内环的带宽地图
Figure imgf000019_0003
[ tO+5T, tO+6T ] 时刻
图 4D, 主控环上的带宽地图 NetMap通过 λ Ν3的 0Β0到达节点 Ν4; 令牌也到达节点 N4, 节点 N4收到允许本节点分配带宽的令牌后, 根据带宽地图 NetMap指示的通道信息分 配本节点的通道, 以避免通信网络中节点间的传输冲突。 节点 N4分配通道包括: 根据自己 的带宽需求和 0B0中的带宽地图计算本节点的带宽地图, 本节点的带宽地图表示本节点分 配的通道的通道信息。 节点 N4将本节点的带宽地图合并到主控环的带宽地图 NetMap, 将 合并后的主控环的带宽地图 NetMap通过节点 N4的 λ «的 0Β0发送给主控环上的其它节点, 如节点 Nl。 节点 Ν4将本节点的内环的带宽地图 Map2N4通过 λ Ν4的 0Β0发送给辅控环上的其 它节点。节点 Ν4根据本节点的带宽地图将本节点的业务数据通过带宽地图规定的 λ 4的(¾ 通道发往相应的目的节点。 λ Ν4的 0Β0中的令牌不同于 λ Ν3的 0Β0的令牌, 因为 λ Ν4的 0Β0 中的令牌是用于指示允许节点 N1分配带宽。
tO+5T时刻:
主控环上: 节点 N4接收到 λ N3的 0B0 , 提取 0B0中的令牌, 根据令牌确定允许本节点 分配带宽, 则根据 0B0中映射的通道的通道信息为本节点分配通道, 以避免通信网络中节 点间的传输冲突。 具体的, 节点 N4将 λ Ν3的 0Β0的 Tokenld加 1得到 4, 判断 Tokenld+l 等于本节点的 id, 则根据本节点的带宽需求和 λ 3的(¾0中的带宽地图计算本节点的带宽 地图, 以避免通信网络中节点间的传输冲突。 节点 Ν4根据 λ Ν3的 0Β0中的带宽地图确定 λ 的 0B1是本节点的通道, 接收 λ 的 0B1上的业务数据。
主控环上: 节点 N1接收到 λ N2的 0B0 , 提取 0B0中的令牌 (Tokenld字段值为 2 ) , 将 Tokenld加 1得到 3, 判断 Tokenld+ l不等于本节点的 id, 因此不分配通道, 节点 N1开 始等待接收 λ 的(¾0。 节点 N1根据 λ ^的(¾0中的带宽地图确定 λ ^的(¾1是本节点的通 道, 接收 λ 2的 0B1上的业务数据。
辅控环上: 节点 N3接收到 λ N2的 0B0 , 判断没有令牌, 节点 N3不分配通道, 节点 N3 开始等待接收 λ «的(¾0。 节点 Ν3根据 λ ^的(¾0中的带宽地图确定 λ ^的(¾1是本节点的 通道, 接收 λ ^的 0B1上的业务数据。
辅控环上: 节点 N2接收到 λ 的(¾0, 确定没有令牌, 节点 Ν2不分配通道, 节点 Ν2开始 等待接收 λ «的(¾0。节点 Ν2根据 λ Ν^0Β0中的带宽地图确定 λ 的083、(¾4是本节点的通道, 接收 λ 的(¾3、 0Β4上的业务数据。
tO+6T时刻:
节点 N4在主控环上通过 λ N4的 0B0发送两个环上的带宽地图, TokenId=4; 主控环和 辅控环上节点 N4开始等待接收 λ Ν1的 0Β0。 节点 Ν4在辅控环上通过 λ Ν4的 0Β0发送本节点 内环的带宽地图, Tokenld=0。
主控环上: 节点 N1接收到 λ N3的 0B0, 读取 0B0中令牌 (Tokenld字段的值 3 ) 为 3; 将 Tokenld加 1得到 4, 判断 Tokenld+l不等于本节点的 id, 节点 N1不分配通道, 开始等 待接收 λ «的 0Β0。 节点 N1根据 λ 的 0Β0中的带宽地图确定 λ 的 0Β2是本节点的通道, 接收 λ Ν3的 0Β2上的业务数据。
主控环上: 节点 Ν2接收到 λ Ν2的 0Β0, 读取 0Β0中令牌 (Tokenld字段的值) 为 2; 将 λ Ν2的 0Β0的 Tokenld加 1得到 3, 判断 Token+1不等于本节点的 id, 节点 N1不分配通 道。 节点 N1确定该波长是自己的波长, 终结该波长。
辅控环上: 节点 N1接收到 λ N3的 0B0, 判断没有令牌, 不分配通道, 则开始等待接收 λ «的 0Β0。 节点 N1根据 λ 的 0Β0中的带宽地图确定 λ 的 0Β2是本节点的通道, 接收 λ 的(¾2上的业务数据。
辅控环上: 节点 Ν2接收到 λ Ν2的 0Β0, 判断没有令牌, 不分配通道。 节点 Ν2确定该 波长是自己的波长, 终结该波长。
假设节点 Ν4的带宽需求如表 21外环上节点 Ν4的带宽需求和表 22内环上节点 Ν4的带 宽需求:
Figure imgf000021_0002
节点 Ν4的带宽地图包括: 如表 23外环上节点 Ν4的带宽地图 MaplN4和表 24内环上节点 Ν4的 带宽地图 Map2N4
表 23外 3? F上节点 N4的带宽地图 MaplN4
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000022_0002
则当前时刻外环和内环上的完整带宽地图分别如表 26A和 26B,主控环的完整带宽地图 NetMap为表 25A和 25B的合并, 映射方式参见图 3B。
Figure imgf000022_0003
后面的时序以此类推, 不再赘述。
上面实施例中, 每个节点在确定本节点有令牌后, 基于接收到的令牌生成新的令牌。 另外, 起始节点即节点 N1在重新获得令牌后, 在授权给 N2的令牌时重新将 Tokenld设成 1。 令牌也可以采用其它方式实现, 只要被授权的节点能够识别该令牌是自己的, 例如每个 节点在确定令牌是相邻上游节点授权的, 即该令牌是给自己的, 则将本节点的节点标识, 如节点序号, 作为新的令牌, 这样相邻的下游节点可以识别。 通信网络中的每一个节点可 以通过拓扑感知确定相邻上游节点和相邻下游节点的节点标识。
上面实施例的 T 表示相邻节点的传输时间,可以通过合理部署节点间的光纤长度保证 传输时间一致; 如果存在光纤长度不同,可以通过延迟保证逻辑上的传输时间是一致的,即 线路传输延迟与设备延迟之和是一致的。
上面的实施例每个节点在一个环上只有一个发射机和一个接收机, 每一个发射机对应 一个波长,控制消息承载在 0B0通道。 应当理解,每一个节点可以具有用于发送数据的波长 集,该波长集具有多个不同的波长。节点可以从本节点具有的多个波长中选择特定波长用于 承载控制消息; 节点也可以在每一个波长中承载控制消息, 如承载在每一个波长的 0B0通 道。
在上述实施例中, 采用单向传递令牌的机制, 整个网络结构只有一个令牌, 即令牌按 照节点间连接方向沿着一个方向单向传递, 传递令牌的环为主控环, 不传递令牌的环称为 辅控环。 节点在获得令牌后才能为本节点分配通道, 并将令牌和携带更新的通道信息的控 制消息传递给下一节点。 这样可以有效保证整个网络数据接收、 带宽分配和数据发送的有 效同步, 避免通信网络间节点
图 5所示为本发明实施例提供的节点的处理流程图。 该流程图的操作可以应用于图 1、
2和 4A〜D通信网络中任意节点。
步骤 501中, 节点 (称为第一节点) 接收控制消息。
至少一个控制消息 (称之为第一控制消息) 中携带第一通道的通道信息。 第一控制消 息可以是上文提到的任何控制消息, 例如携带带宽地图的控制消息以便本节点可以从控制 消息中获得带宽地图, 从而获得带宽地图指示的通道的通道信息。 第一控制消息中的带宽 地图可以基于上述任意指示带宽地图的表映射得到, 图 3B、 3C是携带带宽地图的控制消息 的一个示例。 第一通道的通道信息是第一通道的源节点分配的, 即第二节点分配的。 带宽 地图可以是以源节点为单位的描述方式, 也可以是以波长为单位的描述方式, 具体参见上 文描述。
在支持令牌的通信网络中, 第一控制消息携带了令牌, 用 Tokenld表示。 令牌用于指 示是否允许节点分配带宽 /通道。 第一控制消息格式如图 3B、 3C携带带宽地图的控制消息 所示。 令牌和通道信息承载在同一各消息中, 既可以节省消息数量也可以有效保证带宽分 配的同步。 令牌可以用节点标识表示, 如节点序号、 节点设备标识、 节点在通信网络中的 位置标识等。
步骤 503中, 第一节点判断令牌是否是本节点的, 该令牌指示允许本节点分配带宽。 如果令牌是本节点的, 执行步骤 504; 如果令牌不是本节点的, 执行步骤 511。 在本发明实施例中, 第一节点判断令牌是否是相邻的上游节点授予的, 如果是则确定 该令牌是本节点的。 如果本节点没有令牌, 不分配本节点的通道, 而是继续等待接收控制 消息。 如果本节点有令牌, 执行步骤 504。
第一节点判断令牌是否是相邻的上游节点授予可以采用如下方式: 第一节点将第一控 制消息中的 Tokenld+l后和本节点序号比较, 如果一致, 说明该令牌是自己的。 该方式的 应用场景为: 令牌传传输路径上的每一个节点的节点序号顺次增加 1, 假定起始节点将自 己的节点序号作为 Tokenld填充到控制消息中, 令牌传传输路径上的每一个节点的节点接 收到上游节点的控制消息中的 Tokenld后, 将自己的节点序号填充到相邻下游节点, 依此 类推。
步骤 504中, 第一节点根据第一控制消息携带的第一通道的通道信息接收本节点的业 务数据。
第一节点接收本节点作为目的节点的通道的业务数据。 第一通道的通道信息描述了第 一通道和目的节点的映射。 第一节点获得第一控制消息携带的第一通道的通道信息, 根据 第一通道和目的节点的映射获得本节点作为目的节点的通道的通道信息, 从而利用本节点 作为目的节点的通道的通道信息接收本节点的业务数据。
步骤 505中, 第一节点根据第一通道的通道信息分配本节点的第二通道, 以避免通信 网络中节点间传输冲突。 第一节点分配第二通道用于满足本节点的带宽需求, 本节点的带 宽需求和本地数据的数据量相关, 可以是本地数据的数据量, 也可以是占用通道的数量, 如上述占用 0B的数量。
步骤 507中,第一节点生成第二控制消息,第二控制消息携带第一通道的通道信息和第 二通道的通道信息的集合。 第一节点将第二通道的通道信息存储在本地, 可以是存储在非 易失性存储介质上也可以存储在易失性存储介质上。 第二通道的通道信息和第一通道的通 道信息可以独立存储也可以合并后存储。 第一节点在获得发送授权时通过第二控制消息将 第一通道的通道信息和第二通道的通道信息的集合发送出去。 第一节点可以保存接收到的 第一控制消息, 第一控制消息包括第一节点对应的描述区; 第一节点用第二通道的通道信 息更新第一节点对应的描述区从而得到第二控制消息。 第一节点也可以提取第一通道的通 道信息, 用第一通道的通道信息和第二通道的通道信息生成新的控制消息从而得到第二控 制消息。
步骤 509中, 第一节点发送第二控制消息以及通过第二通道发送业务数据。 第一节点等待接收节点 Ni+2的控制消息, 继续接收节点 M+2的控制消息。 步骤 511 中, 根据第一控制消息携带的第一通道的通道信息接收本节点的业务数据。 步骤 504的操作和步骤 511相同。应当理解,步骤 504和步骤 511的处理均可在步步骤 503 前执行。
在步骤 503和步骤 511之间, 步骤 503和步骤 504之间还可以包括控制消息是否包含 第一节点的通道的判断。 第一节点获得第一控制消息指示第一通道的目的节点的信息, 如 目的节点标识, 用本节点的信息和目的节点的信息匹配判断是否有本节点的通道, 如果有, 执行步骤 511 ; 如果没有, 继续等待接收其它控制消息。
结合图 4A〜D任意图所示, 通信网络 200节点间的连接形成至少两个环, 步骤 501中 的控制消息可以是通信网络 200某个环上传输的控制消息,例如主控环上传输的控制消息, 相应的, 步骤 507中的控制消息可以是主控环上传输的控制消息。 控制消息的具体内容上 面已经详细描述, 此处不再赘述。
在本发明的一实施例中, 第一节点接收和发送控制消息均可以承载在专用的波长, 承 载业务数据的波长和该波长不同。
在本发明的另一实施例中, 第一节点接收的控制消息承载在第一波长上, 第一节点发 送的控制消息可以承载在第二波长上, 第一波长和第二波长不同。 每一个控制消息可以承 载在帧的预定位置, 如图 3B所示划分成多个 0B通道的第一个 0B通道, 这样既便于节点获 得控制消息, 而且便于同步处理, 因为承载控制消息的 0B通道在承载业务数据的其它 0B 通道之前。 进一步的, 控制消息中还可以携带令牌, 参见步骤 503所述。 应当理解, 上述 步骤 501〜511中并非所有步骤都是必须的, 例如步骤 503是可选的。
应当理解, 令牌和第一通道的通道信息也可以承载在不同的控制消息中, 令牌和第一 通道的通道信息具有关联, 即携带令牌的控制消息和携带第一通道的通道信息的控制消息 的发送消息的源节点相同。
图 6A所示为节点结构示意图。节点 600可以是上述通信网络 100中的节点 110或通信 网络 200中的节点 210。 节点 600由一系列硬件和软件构成, 具有代表任何形式的可操作 用以存储数据的易失性或非易失性的存储器、 任何适当的控制逻辑器等。 节点 600支持多 通道传输, 包括收发模块 610、 业务模块 630和控制模块 650。 收发模块 610, 用于接收多 通道输入信号以及发送多通道输出信号。 收发模块 610, 用于接收多通道输入信号以及发 送多通道输出信号。 业务模块 630, 用于从收发模块 610接收的输入信号中获得承载的第 一控制消息, 第一控制消息携带了第一通道的通道信息。 控制模块 650, 用于从业务模块 630 获得第一通道的通道信息, 根据第一通道的通道信息分配第二通道以避免通信网络中 节点间传输冲突。 控制模块 650还控制收发模块 610, 以便收发模块 610在分配的第二通 道上发送业务数据。 业务模块 630生成第二控制消息, 第二控制消息携带第一通道的通道 信息和第二通道的通道信息的集合, 并将第二控制消息通过收发模块 610的输出信号发送 出去, 以便接收到第二控制消息的节点能够根据第二控制消息中的通道的通道信息分配本 节点的通道, 以避免通信网络中节点间的传输冲突。 控制模块 650可以合并第一通道的通 道信息和第二通道的通道信息形成第一通道的通道信息和第二通道的通道信息的集合。 控 制模块 650还根据第一通道的通道信息指示的本节点是目的节点的通道的通道信息控制收 发模块 610, 以使收发模块 610输出本节点是目的节点的通道上接收的信号。 控制消息的 细节参见上文所述。 上述各种通道信息以带宽地图形式记录, 带宽地图记录方式参见上述 各表、 图 3B和 3C以及相应的文字描述。
图 6B所示为另一节点结构示意图。节点 600a是图 6A节点 600的多波长应用的具体实 例。 节点 600a包括收发模块 610a、 业务模块 630a和控制模块 650a, 这三个模块分别具有 收发模块 610、 业务模块 630和控制模块 650a的功能。
收发模块 610a是光模块, 用于接收多个波长 λΝ1、 λΝ1、 …、 λΝΗ的输入信号以及发送多 个波长 λΝ1、 λΝ1、 …、 λ 、 λΜ的输出信号。 收发模块 610a将多个波长 λΝ1、 λΝ1、 …、 人^的 输入信号中至少部分信号进行光电转换, 将输出的电信号提供给业务模块 630a。 收发模块 610a还从业务模块 630a获得电信号, 并将电信号调制到第二通道对应的波长和时隙上, 并调制输出的光信号和多个波长 λΝ1、 λΝ1、 …、 λΝΗ的输入信号的至少部分光信号耦合成多 个波长 λΝ1、 λΝ1、 …、 λΝΗ、 λΜ的输出信号。 收发模块 610a包括: 解复用模块 611、 光电转 换模块 615、 突发光模块 617和合波器 613。
解复用模块 611用于从多个波长 λΝ1、 λΝ1、 …、 ^^的输入信号中分离出部分输入信号, 并将部分输入信号进行光电转换, 将输出的电信号提供给业务模块 630a。解复用模块 610a 包括解复用器(Demux)以光开关阵列, 光开关阵列耦合到解复用器以及光电转换模块 615。 解复用器将多个波长 λΝ1、 λΝ1、 …、 λΝΗ的输入信号中每一个波长的输入信号都耦合一部分 并以波长分离方式输出耦合出的各个波长的光信号, 并输入到光开关阵列。 光开关阵列在 控制模块 650a的控制下, 选择性地输出特定波长、 特定时隙 (如特定 0B)的光信号。 光电 转换模 615块将光开关阵列输出的光信号转换成电信号。
业务模块 630a, 配置有协议处理功能, 能够从收发模块 630a接收到的信号中获得携 带第一通道的通道信息的第一控制消息以及按传送协议规定封装第一通道的通道信息和第 二通道的通道信息的集合形成第二控制消息。业务模块 630a能够从划分成多个时隙的帧的 特定位置 (如图 3A的 0B0)中获得第一通道的通道信息的第一控制消息 (如图 3B或 3C的控 制消息), 以及将第一通道的通道信息和第二通道的通道信息的集合封装成第二控制消息, (如以图 3B或 3C的控制消息)。控制模块 650a可以根据第一通道的通道信息控制光开关 阵列各个开关元件的打开和关闭从而选择节点 600是目的节点的通道, 即节点 600是目的 节点的通道对应波长和时隙 (如相应波长的 0B) 的光信号输出给光电转换模块 615, 业务 模块 630a从接收到的信号中获得业务数据。
控制模块 650a可以根据第二通道的通道信息控制突发光模块 617,以使突发光模块 617 将目的节点的业务数据在目的节点对应的时隙 (相应 0B) 调制成光信号。 在图 3B中, 突 发光模块 617的波长为 λΜ, 和携带第一控制消息的 λΝΗ的波长不同。 突发光模块 617将生 成的光信号 (波长为 λΜ) 通过合波器 613与解复用模块 611输出的光信号耦合成一路多波 长 λΝ1、 λΝ1、 …、 λ 、 λΜ的输出信号。
可选地, 节点 600a可以包括多个收发模块和多个业务模块, 如图 6B所示节点 600a还 包括收发模块 610b和业务模块 630b, 这两个模块分别具有和收发模块 610a和业务模块 630b的功能。 图 6B给出了 610a和 610b传输方向相反的示例, 应当理解, 这两个模块的 传输方向也可以相同。 控制模块 650a不仅可以控制收发模块 610a的接收和发送, 而且可 以控制收发模块 610b的发送和接收, 这里, 控制模块 650a是功能上的划分, 其可以是一 个或多个处理器完成该功能, 例如, 有 2个处理器, 分别控制收发模块 610a和 610b, 假 定收发模块 610a是主控环的收发模块, 收发模块 610b是辅控环的收发模块, 控制收发模 块 610a的处理器会从控制收发模块 610b的处理器获得辅控环的带宽地图, 以便于在收发 模块 610a负责的主控环上的控制消息中携带辅控环的带宽地图。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程 序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中, 所述存储 介质可以是只读存储器, 磁盘或光盘等。
以上对本发明实施例, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具 体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权 利 要 求
1.一种通信网络数据传输方法, 其特征在于, 包括:
第一节点接收第一控制消息, 第一控制消息携带第一通道的通道信息;
第一节点根据第一控制消息携带的第一通道的通道信息分配本节点的第二通道; 第一节点生成第二控制消息,第二控制消息携带第一通道的通道信息和第二通道的通 道信息的集合;
第一节点发送第二控制消息以及通过第二通道发送数据。
2.根据权利要求 1所述的方法, 其特征在于, 第一控制消息包含带宽地图, 该带宽地 图包括对应多个节点各自的描述区, 每个描述区对应一个分配通道的节点, 用于表示对应 节点分配的通道的通道信息;
其中, 第一节点生成第二控制消息的步骤包括: 第一节点用第二通道的通道信息更新 带宽地图中对应第一节点的描述区。
3.根据权利要求 1所述的方法, 其特征在于, 第一控制消息包含带宽地图, 该带宽地 图包括多个波长各自的描述区, 每个描述区对应一个波长, 用于表示对应波长的通道的通 道信息;
其中, 第一节点生成第二控制消息的步骤包括: 第一节点用第二通道的通道信息更新 带宽地图中对应波长的描述区。
4.根据权利要求 1至 3任一项所述的方法, 其特征在于, 通信网络节点间的连接形成 至少两个环, 所述至少两个环包括主控环和辅控环;
第一节点接收第一控制消息包括: 第一节点通过主控环接收第一控制消息, 第一通道 包含主控环和辅控环的通道;
第一节点发送第二控制消息包括: 第一节点通过主控环发送第二控制消息, 第一通道 包含主控环和辅控环的通道。
5.根据权利要求 4所述的方法, 其特征在于, 所述方法进一步包括:
第一节点生成第三控制消息, 第三控制消息仅携带第一节点分配的辅控环的通道的通 道信息;
第一节点通过辅控环发送第三控制消息。
6.根据权利要求 1至 5任一项所述的方法, 其特征在于,
第一节点接收第一控制消息包括: 第一节点接收第一波长的光信号, 从第一波长光信 号中获得第一控制消息; 第一节点发送第二控制消息包括:第一节点通过第二波长的光信号发送第二控制消息, 第一波长和第二波长不同。
7.根据权利要求 6所述的方法, 其特征在于, 第一通道包含第一波长的通道, 第一波 长的光信号承载了第一节点作为目的节点的业务数据; 第一节点发送的第二波长的光信号 承载了第一节点作为源节点的业务数据。
8.根据权利要求 1至 7任一项所述的方法, 其特征在于, 第一控制消息中还包括允许 第一节点分配通道的令牌, 第二控制消息中还包括允许第二节点分配通道的令牌。
9.一种通信网络中数据传输的节点, 其特征在于, 包括:
收发模块 (610, 610a, 610b ) , 用于接收多通道输入信号以及发送多通道输出信号; 业务模块 (630, 630a, 630b ) , 用于从收发模块 (610, 610a, 610b ) 接收的输入信 号中获得承载的第一控制消息, 第一控制消息携带了第一通道的通道信息;
控制模块 (650, 650a, 650b ) , 用于从业务模块 (630, 630a, 630b ) 获得第一通道 的通道信息,根据第一通道的通道信息分配本节点的第二通道,并控制收发模块 ( 610, 610a, 610b ) 在分配的第二通道上发送业务数据, 其中,
业务模块(630, 630a, 630b ) 生成第二控制消息, 第二控制消息携带第一通道的通道 信息和第二通道的通道信息的集合, 并将第二控制消息通过收发模块 (610, 610a, 610b ) 的输出信号发送出去。
10.根据权利要求 9所述的节点, 其特征在于, 包括:
控制模块(650, 650a, 650b ) , 还用于根据第一通道的通道信息指示的本节点是目的 节点的通道的通道信息控制收发模块 (610, 610a, 610b ) , 以使收发模块 (610, 610a, 610b ) 输出本节点是目的节点的通道上接收的信号。
11.根据权利要求 9或 10所述的节点, 其特征在于,
控制模块(650, 650a, 650b )合并第一通道的通道信息和第二通道的通道信息形成第 一通道的通道信息和第二通道的通道信息的集合, 并将第一通道的通道信息和第二通道的 通道信息的集合提供给业务模块 (630, 630a, 630b ) 。
12. 根据权利要求 11所述的节点, 其特征在于, 第二控制消息包含对应多个节点各自 的描述区, 每个描述区对应一个分配通道的节点, 用于表示对应节点分配的通道的通道信 息, 第一通道的通道信息记录于分配第一通道的节点对应的描述区, 第二通道的通道信息 记录于本节点对应的描述区。
13. 根据权利要求 11所述的节点, 其特征在于, 第二控制消息包含对应多个波长各自 的描述区, 每个描述区对应一个波长, 用于表示对应波长的通道的通道信息; 第一通道的 通道信息记录于第一波长对应的描述区, 第二通道的通道信息记录于第二波长对应的描述 区。
14.一种通信网络, 包括多个节点, 其特征在于,
第一节点, 用于接收携带第一通道的通道信息的第一控制消息, 根据第一通道的通道 信息分配本节点的第二通道, 生成并发送携带第一通道的通道信息和第二通道的通道信息 的集合的第二控制消息;
第二节点, 用于接收第二控制消息, 根据第二控制消息携带的第一通道的通道信息和 第二通道的通道信息的集合分配第三通道。
15. 根据权利要求 14所述的通信网络, 其特征在于, 第一控制消息包含带宽地图, 该 带宽地图包括对应多个节点各自的描述区, 每个描述区对应一个分配通道的节点, 用于表 示对应节点分配的通道的通道信息;
其中, 第一节点用第二通道的通道信息更新带宽地图中对应第一节点的描述区。
PCT/CN2011/077725 2011-07-28 2011-07-28 一种通信网络数据传输方法、节点和系统 WO2012109847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001337.9A CN102308591B (zh) 2011-07-28 2011-07-28 一种通信网络数据传输方法、节点和系统
PCT/CN2011/077725 WO2012109847A1 (zh) 2011-07-28 2011-07-28 一种通信网络数据传输方法、节点和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077725 WO2012109847A1 (zh) 2011-07-28 2011-07-28 一种通信网络数据传输方法、节点和系统

Publications (1)

Publication Number Publication Date
WO2012109847A1 true WO2012109847A1 (zh) 2012-08-23

Family

ID=45381279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077725 WO2012109847A1 (zh) 2011-07-28 2011-07-28 一种通信网络数据传输方法、节点和系统

Country Status (2)

Country Link
CN (1) CN102308591B (zh)
WO (1) WO2012109847A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3541088A4 (en) * 2016-11-09 2020-07-01 ZTE Corporation METHOD, DEVICE AND SYSTEM FOR CARRYING THE FRAME NUMBER OF A MULTI-CHANNEL PASSIVE OPTICAL NETWORK AND STORAGE MEDIUM

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9578599B2 (en) * 2013-04-25 2017-02-21 Honeywell International Inc. System and method for optimizing battery life in wireless multi-hop communication systems
CN104796798B (zh) * 2014-01-22 2019-07-30 中兴通讯股份有限公司 一种光突发传送网obtn的业务传输方法、源节点及宿节点
CN106982496B (zh) * 2017-05-18 2018-11-02 范瑶飞 一种多光源控制系统
CN111049604B (zh) * 2019-12-16 2021-10-15 深圳市烽云技术有限公司 一种基于辅助接收通道的无线自组网方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214962A1 (en) * 2002-05-15 2003-11-20 Mark Allaye-Chan Method and apparatus for bandwidth optimization in network ring topology
CN1671118A (zh) * 2004-03-19 2005-09-21 富士通株式会社 利用多个令牌的通信网络中的数据传输
CN101500182A (zh) * 2008-01-29 2009-08-05 阿尔卡特朗讯 用于控制在光网络中建立连接的方法及光网络单元
CN101895367A (zh) * 2009-05-22 2010-11-24 华为技术有限公司 一种数据传输方法、网络设备和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965732B2 (en) * 2004-03-19 2011-06-21 Fujitsu Limited Scheduling token-controlled data transmissions in communication networks
US8711878B2 (en) * 2004-12-10 2014-04-29 Broadcom Corporation Upstream channel bonding in a cable communications system
KR100987266B1 (ko) * 2007-02-14 2010-10-12 삼성전자주식회사 단일 반송파 주파수 분할 다중접속 시스템에서 제어정보 송수신 방법 및 장치
CN101895893A (zh) * 2010-06-12 2010-11-24 中国人民解放军重庆通信学院 一种解决认知无线网络耳聋问题的驻留信道选择方法
CN102118758B (zh) * 2011-01-28 2015-06-03 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214962A1 (en) * 2002-05-15 2003-11-20 Mark Allaye-Chan Method and apparatus for bandwidth optimization in network ring topology
CN1671118A (zh) * 2004-03-19 2005-09-21 富士通株式会社 利用多个令牌的通信网络中的数据传输
CN101500182A (zh) * 2008-01-29 2009-08-05 阿尔卡特朗讯 用于控制在光网络中建立连接的方法及光网络单元
CN101895367A (zh) * 2009-05-22 2010-11-24 华为技术有限公司 一种数据传输方法、网络设备和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3541088A4 (en) * 2016-11-09 2020-07-01 ZTE Corporation METHOD, DEVICE AND SYSTEM FOR CARRYING THE FRAME NUMBER OF A MULTI-CHANNEL PASSIVE OPTICAL NETWORK AND STORAGE MEDIUM

Also Published As

Publication number Publication date
CN102308591B (zh) 2014-03-12
CN102308591A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
US7965732B2 (en) Scheduling token-controlled data transmissions in communication networks
EP2312780B1 (en) A packet add/drop multiplexing device and a data transmission method of a packet add/drop multiplexing device
US6922501B2 (en) Fast optical switch
JP4853821B2 (ja) 局側装置における帯域割当装置、帯域割当方法および帯域割当プログラム
US7623543B2 (en) Token-controlled data transmissions in communication networks
JP2007074234A (ja) 伝送装置
KR102369305B1 (ko) 클라이언트 전송 방법 및 디바이스
JP2008219890A (ja) 帯域割当の機器および方法
US8064341B2 (en) Temporal-spatial burst switching
WO2012109847A1 (zh) 一种通信网络数据传输方法、节点和系统
US20060092958A1 (en) Distributed intelligence MAC protocols for DWDM ring networks
JP4639175B2 (ja) 伝送装置
US7529267B2 (en) Data transmissions in communication networks using multiple tokens
WO2008043284A1 (fr) Procédé, système et dispositif noeud permettant d'établir une relation de mappage d'identificateurs
JP6373996B2 (ja) 帯域幅マップ更新方法及び装置
Fransson et al. Design of a medium access control protocol for a WDMA/TDMA photonic ring network
JP4290357B2 (ja) 高容量パケット切替型リングネットワーク
JP2008289202A (ja) 伝送装置及びネットワークシステム
US8456983B2 (en) Method and system for arranging link resource fragments
CN102497603B (zh) 一种缓解干线通信压力的epon小区下行业务调度优化方法
JP5822689B2 (ja) Ponシステム、局側光終端装置および帯域制御方法
JP2004048640A (ja) Atm−ponスレーブ装置及びその装置の送受信方法
JP2004304547A (ja) パケット転送装置およびパケット転送システム
JP5661665B2 (ja) 分岐光アクセスシステムおよび方法
JP5661664B2 (ja) 分岐光アクセスシステムおよび方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001337.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858642

Country of ref document: EP

Kind code of ref document: A1