WO2012108532A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2012108532A1
WO2012108532A1 PCT/JP2012/053162 JP2012053162W WO2012108532A1 WO 2012108532 A1 WO2012108532 A1 WO 2012108532A1 JP 2012053162 W JP2012053162 W JP 2012053162W WO 2012108532 A1 WO2012108532 A1 WO 2012108532A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting layer
layer
fine particles
Prior art date
Application number
PCT/JP2012/053162
Other languages
English (en)
French (fr)
Inventor
椎野 修
真理 宮野
吉川 雅人
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2012108532A1 publication Critical patent/WO2012108532A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a light emitting element that emits light by applying a voltage in a forward direction.
  • LED light emitting diode
  • III-V compound semiconductors such as GaN and GaP are known (for example, see Patent Document 1).
  • an organic light emitting material such as Alq3 ((8-hydroxyquinoline) aluminum) or MEH-PPV (poly (2- (2′-ethyl-hexoxy) -5-methoxy-1,4-phenylenevinylene)) is used as a light emitting layer.
  • An organic light-emitting diode used for the above is also known (see, for example, Patent Document 2).
  • the III-V compound semiconductor When a III-V compound semiconductor is used for the light emitting layer, the III-V compound semiconductor must be formed by epitaxial growth, and a substrate whose lattice constant is the same as or close to that of the III-V compound semiconductor is required. It is. For this reason, the substrate material was expensive. Furthermore, an expensive vacuum apparatus has to be used to perform epitaxial film formation. Therefore, a light emitting diode using a III-V group compound semiconductor for the light emitting layer has a problem of high manufacturing cost.
  • An organic light emitting material has a more complicated manufacturing process than an inorganic light emitting material. For this reason, the organic light emitting diode using the organic light emitting material for the light emitting layer has a problem that the material cost is high and the manufacturing cost is high.
  • an object of the present invention is to provide a light-emitting element whose manufacturing cost is reduced by using a new light-emitting material.
  • a feature of the present invention is that a light emitting layer that emits light by recombination of holes and electrons, an anode electrode that injects the holes toward the light emitting layer, and a cathode that injects the electrons toward the light emitting layer.
  • An electrode and a hole injection layer that moves the holes toward the light-emitting layer, the hole injection layer being in contact with the anode electrode and the light-emitting layer and injecting holes from the anode electrode It is made of an organic material having a small barrier, and the light emitting layer includes silicon fine particles.
  • the light emitting layer contains silicon particulates.
  • Silicon (Si) is an abundant material that is non-toxic, inexpensive in terms of material. Accordingly, the silicon fine particles can reduce the material cost compared to the organic light emitting material. Since the light-emitting layer can be formed by a solution process, an expensive substrate is not required and a vacuum apparatus is not necessary. Therefore, a light emitting element with reduced manufacturing cost is obtained.
  • the hole injection layer is made of an organic material that is in contact with the anode electrode and the light emitting layer and has a small hole injection barrier from the anode electrode. Thus, holes injected from the anode electrode are efficiently injected into the light emitting layer, and the light emitting element emits light.
  • the hole injection layer may be made of polyethylene dioxythiophene-polystyrene sulfonate.
  • the silicon fine particles may include silicon fine particles in which the terminal group of the silicon fine particles is an organic compound.
  • the silicon fine particles are silicon having a particle size of nm scale, specifically, silicon having a particle size of 8.0 nm or less.
  • FIG. 1 is a schematic configuration diagram of a light-emitting diode 1 according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram of a light-emitting diode 1 according to the present embodiment.
  • the light emitting diode 1 has a substrate 10, an anode electrode 20, a hole injection layer 30, a light emitting layer 40, and a cathode electrode 50.
  • the light emitting diode 1 has a structure in which an anode electrode 20, a hole injection layer 30, a light emitting layer 40, and a cathode electrode 50 are formed on a substrate 10 in this order.
  • the substrate 10 enhances the handleability of the light-emitting diode 1, and for example, a glass substrate or a flexible PET film can be used.
  • the anode electrode 20 injects holes toward the light emitting layer 40.
  • the cathode electrode 50 injects electrons toward the light emitting layer 40.
  • ITO indium tin oxide
  • the ITO is formed by a coating method, a printing method, an industrially used sputtering method, a vacuum deposition method, or the like.
  • one electrode may be an opaque electrode (for example, an aluminum electrode). That is, when the anode electrode 20 side is caused to emit light, an aluminum electrode may be used for the cathode electrode 50. Similarly, when the cathode electrode 50 side is caused to emit light, an aluminum electrode may be used for the anode electrode 20.
  • the hole injection layer 30 is in contact with the anode electrode 20 and moves holes injected from the anode electrode 20 toward the light emitting layer 40.
  • the hole injection layer 30 is made of an organic material having a small hole injection barrier from the anode electrode 20.
  • the hole injection layer 30 is a layer made of polyethylene dioxythiophene-polystyrene sulfonate (PEDOT-PSS). Since the light emitting diode 1 has the hole injection layer 30, the light emitting layer 40 can emit light.
  • the hole injection layer 30 is formed using a coating method or a printing method.
  • the hole injection layer 30 may be an organic material having a small hole injection barrier from the anode electrode 20.
  • the hole injection layer 30 preferably has a sufficient hole carrier concentration.
  • the light emitting layer 40 is a layer containing silicon fine particles.
  • the light emitting layer 40 is a layer made of silicon fine particles.
  • the electrons injected from the anode electrode 20 and the holes injected from the cathode electrode 50 are recombined. Holes are injected into silicon fine particle conductors or LUMO orbitals. On the other hand, electrons are injected into the valence band of silicon fine particles or the orbit of HOMO. These holes and electrons are recombined in the silicon fine particles, and the energy of the difference is emitted as light.
  • the silicon fine particles may contain silicon fine particles whose terminal group is an organic compound.
  • the silicon fine particles are immersed in an acid (for example, hydrofluoric acid) to add H atoms to the surface of the silicon fine particles.
  • an acid for example, hydrofluoric acid
  • H atoms By substituting this H atom with, for example, an unsaturated hydrocarbon group, the terminal group of the silicon fine particles is made an organic compound.
  • Example 1 A glass substrate on which ITO was formed was prepared. PEDOT-PSS was applied onto ITO by a spin coat method. The formation condition is 5 seconds at 2500 rpm. After applying PEDOT-PSS, drying was performed in air at a temperature of 100 ° C. for 30 minutes. As a result, a PEDOT-PSS layer having a thickness of 100 nm was formed on the ITO.
  • silicon fine particles terminated with linalyl acetate were applied by spin coating.
  • the forming condition is 5 seconds at a rotational speed of 2000 rpm.
  • drying was performed in the atmosphere at a temperature of 150 ° C. for 30 minutes.
  • a light emitting layer having a thickness of 100 nm was formed on the PEDOT-PSS layer.
  • a layer made of ITO was formed on the light emitting layer by sputtering. ITO with a ratio of In to Sn of 90:10 was used. The size of the electrode is 1 mm ⁇ , and the thickness of the electrode is 50 nm.
  • Example 2 A light emitting diode (Example 2) was produced by the same method as in Example 1 described above. However, silicon fine particles terminated with 1-decene were coated on the PEDOT-PSS layer by spin coating instead of silicon fine particles terminated with linalyl acetate. The subsequent process is the same as that of Example 1 except that it was dried at a temperature of 190 ° C. in the atmosphere.
  • Example 3 A light emitting diode (Example 3) was produced by the same method as in Example 1 described above. However, a PET film on which ITO was formed was used instead of a glass substrate on which ITO was formed. The subsequent steps are the same as in the first embodiment. Therefore, PEDOT-PSS was coated on ITO coated on the PET film.
  • Example 4 A light emitting diode (Example 4) was produced in the same manner as in Example 2 described above. However, a PET film on which ITO was formed was used instead of a glass substrate on which ITO was formed. The subsequent steps are the same as in Example 2.
  • Comparative Example 1 A light emitting diode (Comparative Example 1) was produced by the same method as in Example 1 described above. However, a light emitting diode was formed without forming a PEDOT-PSS layer. Specifically, silicon fine particles having a surface terminated with linalyl acetate were applied onto ITO formed on a glass substrate by a spin coating method. The subsequent steps are the same as in the first embodiment. Therefore, the light emitting diode of Comparative Example 1 has a structure that does not have a hole injection layer and a hole transport layer.
  • Comparative Example 2 A light emitting diode (Comparative Example 2) was prepared by the same method as in Example 1 described above. However, Cu 2 O which is a p-type inorganic semiconductor was used instead of PEDOT-PSS. Specifically, a layer made of Cu 2 O was formed by sputtering on ITO formed on a glass substrate. Silicon fine particles having a surface terminated with linalyl acetate were applied onto a layer made of Cu 2 O by a spin coating method. The subsequent steps are the same as in the first embodiment.
  • Comparative Example 3 A light emitting diode (Comparative Example 3) was produced by the same method as in Example 1 described above. However, not PEDOT-PSS, but TPD (N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine) acting as a hole transport layer It was used. Specifically, TPD was applied by spin coating on ITO formed on a glass substrate. Silicon fine particles having a surface terminated with linalyl acetate were applied onto the layer made of TPD by spin coating. The subsequent steps are the same as in the first embodiment.
  • Comparative Example 4 A light emitting diode (Comparative Example 4) was produced by the same method as in Example 1 described above. However, a p-type silicon wafer was used instead of PEDOT-PSS. Specifically, silicon fine particles having a surface terminated with linalyl acetate were directly applied onto a p-type silicon wafer by a spin coating method. The subsequent steps are the same as in the first embodiment.
  • the light emitting layer contains silicon fine particles.
  • Silicon (Si) is a material that is inexpensive and abundant. Accordingly, the silicon fine particles can reduce the material cost compared to the organic light emitting material. Since the light emitting layer can be formed by a solution process (for example, a coating method or a printing method), an expensive substrate is not necessary, and a vacuum apparatus is not necessary. Therefore, the light-emitting element can be manufactured at low cost.
  • the hole injection layer is made of an organic material that is in contact with the anode electrode and the light emitting layer and has a small hole injection barrier from the anode electrode. Thus, holes injected from the anode electrode are efficiently injected into the light emitting layer, and the light emitting element emits light.
  • the light emitting layer can be formed by a solution process, the light emitting layer can be formed on a flexible substrate. Therefore, a flexible light emitting element can be manufactured.
  • silicon is a very safe material and a non-toxic material, safety is improved.
  • the silicon fine particles include silicon fine particles in which the terminal group of the silicon fine particles is an organic compound.
  • the stability of the silicon fine particles in the air is increased, so that the practicality of the light-emitting element is further improved.
  • the light-emitting element according to the present invention is more practical than a light-emitting element using an organic light-emitting material.
  • the dispersibility of the silicon fine particles in the organic solvent is improved, the silicon fine particles can be efficiently used in the formation of the light emitting layer using a solution process. As a result, the manufacturing cost can be suppressed.
  • the light emitting diode 1 is used as an example of the light emitting element according to this embodiment, but the present invention is not limited to this.
  • the present invention may be applied to a diode laser which is a light emitting element.
  • the light emitting diode 1 does not include the electron injection layer or the electron transport layer, but may have either or both of these in order to have higher light emission efficiency.
  • the use of a new light-emitting material can reduce the manufacturing cost, which is useful in the field of manufacturing light-emitting elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明に係る発光素子は、正孔と電子とが再結合して発光する発光層40と、発光層40に向けて正孔を注入する陽極電極20と、発光層40に向けて電子を注入する陰極電極50と、発光層40に向けて正孔を移動させる正孔注入層30と、を有し、正孔注入層30は、陽極電極20及び発光層40に接し、陽極電極20からの正孔注入障壁が小さい有機材料からなり、発光層40は、珪素微粒子を含む。

Description

発光素子
 本発明は、順方向に電圧を加えて発光する発光素子に関する。
 従来、順方向に電圧を加えると発光層が発光する発光ダイオード(LED)が知られている。発光層に用いられる材料として、GaNやGaPなどのIII-V属系化合物半導体が知られている(例えば、特許文献1参照)。
 また、Alq3((8‐ヒドロキシルキノリン)アルミニウム)やMEH-PPV(ポリ(2-(2'-エチル-ヘキソキシ)-5-メトキシ-1,4-フェニレンビニレン))などの有機発光材料を発光層に用いた有機発光ダイオードも知られている(例えば、特許文献2参照)。
特開2003-23181号公報 特開2002-164168号公報
 III-V属系化合物半導体を発光層に用いた場合、III-V属系化合物半導体は、エピタキシャル成長により形成しなければならず、格子定数がIII-V属系化合物半導体と同一又は近い基板が必要である。このため、基板材料が高価であった。さらに、エピタキシャル成膜を行うために、高価な真空装置を用いる必要があった。従って、III-V属系化合物半導体を発光層に用いた発光ダイオードは、製造コストが高いという問題があった。
 有機発光材料は、無機発光材料に比べて、製造工程が複雑になる。このため、有機発光材料を発光層に用いた有機発光ダイオードは、材料費が高くなり、製造コストが高いという問題があった。
 そこで、本発明は、このような状況に鑑みてなされたものであり、新たな発光材料を用いることにより、製造コストが抑えられた発光素子を提供することを目的とする。
 上述した課題を解決するため、本発明者らは、鋭意研究を行った結果、安価な材料である珪素微粒子に着目し、以下の特徴を持つ本発明を完成させた。本発明の特徴は、正孔と電子とが再結合して発光する発光層と、前記発光層に向けて前記正孔を注入する陽極電極と、前記発光層に向けて前記電子を注入する陰極電極と、前記発光層に向けて前記正孔を移動させる正孔注入層と、を有し、前記正孔注入層は、前記陽極電極及び前記発光層に接し、前記陽極電極からの正孔注入障壁が小さい有機材料からなり、前記発光層は、珪素微粒子を含むことを要旨とする。
 本発明の特徴によれば、発光層は、珪素微粒子を含む。珪素(Si)は、無毒で材料的にも安く、豊富にある材料である。従って、珪素微粒子は、有機発光材料に比べて、材料コストを抑えることができる。溶液プロセスにより発光層を形成することができるため、高価な基板も必要ないし、真空装置を用いる必要がない。従って、製造コストが抑えられた発光素子となる。
 また、正孔注入層は、陽極電極及び発光層に接し、陽極電極からの正孔注入障壁が小さい有機材料からなる。これによって、陽極電極から注入された正孔が発光層へ効率よく注入され、発光素子は発光する。
 前記正孔注入層は、ポリエチレンジオキシチオフェン-ポリスチレンスルホネートからなってもよい。
 前記珪素微粒子には、前記珪素微粒子の終端基が有機化合物である珪素微粒子が含まれてもよい。
 なお、珪素微粒子とは、nmスケールの粒径を持つ珪素であり、具体的には、8.0nm以下の粒径を持つ珪素である。
図1は、本実施形態に係る発光ダイオード1の概略構成図である。
 本発明に係る発光素子について、図面を参照しながら説明する。具体的には、(1)発光ダイオード1(2)実施例、(3)作用・効果、(4)その他実施形態について説明する。
 以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 (1)発光ダイオード1
 本実施形態に係る発光ダイオード1について、図1を参照しながら説明する。図1は、本実施形態に係る発光ダイオード1の概略構成図である。
 図1に示されるように、発光ダイオード1は、基板10、陽極電極20、正孔注入層30、発光層40、及び陰極電極50を有する。具体的には、発光ダイオード1は、基板10上に、陽極電極20、正孔注入層30、発光層40、陰極電極50の順に形成された構造を有する。
 基板10は、発光ダイオード1のハンドリング性を高めるものであり、例えば、ガラス基板やフレキシブル性を有するPETフィルムを用いることができる。
 陽極電極20は、発光層40に向けて正孔を注入する。陰極電極50は、発光層40に向けて電子を注入する。陽極電極20及び陰極電極50には、例えば、ITO(酸化インジウム錫)が用いられる。ITOは、塗布法、印刷法又は工業的に用いられているスパッタ法若しくは真空蒸着法等を用いて形成される。また、発光面を限定した発光ダイオード1であれば、一方の電極は、不透明な電極(例えば、アルミニウム電極)を用いても良い。すなわち、陽極電極20側を発光させる場合は、陰極電極50にアルミニウム電極を用いても良い。同様に、陰極電極50側を発光させる場合は、陽極電極20にアルミニウム電極を用いても良い。
 正孔注入層30は、陽極電極20に接し、陽極電極20から注入された正孔を発光層40に向けて移動させる。正孔注入層30は、陽極電極20からの正孔注入障壁が小さい有機材料からなる。例えば、正孔注入層30は、ポリエチレンジオキシチオフェン-ポリスチレンスルホネート(PEDOT-PSS)からなる層である。発光ダイオード1は、正孔注入層30を有することにより、発光層40を発光させることができる。正孔注入層30は、塗布法又は印刷法を用いて形成される。正孔注入層30は、陽極電極20からの正孔注入障壁が小さい有機材料であっても良い。また、正孔注入層30は、充分な正孔キャリア濃度を有していることが好ましい。
 発光層40は、珪素微粒子を含む層である。本実施形態において、発光層40は、珪素微粒子からなる層である。発光層40では、陽極電極20から注入された電子と陰極電極50から注入された正孔とが再結合する。正孔は、珪素微粒子の伝導体、若しくはLUMOの軌道に注入される。一方、電子は、珪素微粒子の価電子帯、若しくはHOMOの軌道に注入される。この正孔と電子とが、珪素微粒子内で再結合し、差分のエネルギーが光となって放出される。
 珪素微粒子には、終端基が有機化合物である珪素微粒子が含まれていても良い。珪素微粒子を酸(例えば、フッ酸)に浸漬して珪素微粒子の表面にH原子を付加する。このH原子を、例えば、不飽和炭化水素基で置換することにより、珪素微粒子の終端基を有機化合物にする。
 (2)実施例
 本実施形態に係る発光ダイオード1の実施例を以下に示す。なお、本発明は、これら実施例に何ら制限されない。
 (2.1)実施例1
 ITOが成膜されたガラス基板を準備した。ITO上に、PEDOT-PSSをスピンコート法によって塗布した。形成条件は、回転数2500rpmで5秒間である。PEDOT-PSSを塗布した後、大気中において100℃の温度で乾燥を30分間行った。これにより100nmの膜厚を有するPEDOT-PSS層がITO上に形成された。
 PEDOT-PSS層上に、酢酸リナリルで表面を終端した珪素微粒子をスピンコート法によって塗布した。形成条件は、回転数2000rpmで5秒間である。珪素微粒子を塗布した後、大気中において150℃の温度で乾燥を30分間行った。これにより100nmの膜厚を有する発光層がPEDOT-PSS層上に形成された。
 発光層上に、スパッタ法によってITOからなる層を形成した。ITOは、InとSnとの比が90:10のものを使用した。電極の大きさは1mmφであり、電極の膜厚は50nmである。
 このようにして、発光ダイオード(実施例1)を作成した。
 (2.2)実施例2
 上述した実施例1と同様の方法により、発光ダイオード(実施例2)を作成した。ただし、酢酸リナリルで表面を終端した珪素微粒子でなく、1-デセンで表面を終端した珪素微粒子をスピンコート法によってPEDOT-PSS層上に塗布した。後の工程は、大気中において、190℃の温度で乾燥したことを除いて、実施例1と同様である。
 (2.3)実施例3
 上述した実施例1と同様の方法により、発光ダイオード(実施例3)を作成した。ただし、ITOが成膜されたガラス基板ではなく、ITOが成膜されたPETフィルムを用いた。後の工程は、実施例1と同様である。従って、PETフィルムに塗布されたITO上に、PEDOT-PSSを塗布した。
 (2.4)実施例4
 上述した実施例2と同様の方法により、発光ダイオード(実施例4)を作成した。ただし、ITOが成膜されたガラス基板ではなく、ITOが成膜されたPETフィルムを用いた。後の工程は、実施例2と同様である。
 (2.5)比較例1
 上述した実施例1と同様の方法により、発光ダイオード(比較例1)を作成した。ただし、PEDOT-PSS層を形成せずに、発光ダイオードを作成した。具体的には、ガラス基板に成膜されたITO上に、酢酸リナリルで表面を終端した珪素微粒子をスピンコート法によって塗布した。後の工程は、実施例1と同様である。従って、比較例1の発光ダイオードは、正孔注入層及び正孔輸送層を有しない構造である。
 (2.6)比較例2
 上述した実施例1と同様の方法により、発光ダイオード(比較例2)を作成した。ただし、PEDOT-PSSではなく、p型無機半導体であるCuOを使用した。具体的には、ガラス基板に成膜されたITO上に、スパッタ法によってCuOからなる層を形成した。CuOからなる層上に酢酸リナリルで表面を終端した珪素微粒子をスピンコート法によって塗布した。後の工程は、実施例1と同様である。
 (2.7)比較例3
 上述した実施例1と同様の方法により、発光ダイオード(比較例3)を作成した。ただし、PEDOT-PSSではなく、正孔輸送層として働くTPD(N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン)を使用した。具体的には、ガラス基板に成膜されたITO上に、TPDをスピンコート法によって塗布した。TPDからなる層上に酢酸リナリルで表面を終端した珪素微粒子をスピンコート法によって塗布した。後の工程は、実施例1と同様である。
 (2.8)比較例4
 上述した実施例1と同様の方法により、発光ダイオード(比較例4)を作成した。ただし、PEDOT-PSSではなく、p型シリコンウエハを使用した。具体的には、p型シリコンウエハ上に、酢酸リナリルで表面を終端した珪素微粒子をスピンコート法によって直接塗布した。後の工程は、実施例1と同様である。
 (2.9)評価
 作成した発光ダイオードに、直流電圧10Vを印加して、発光するかどうかを確認した。実施例1から実施例4の発光ダイオードでは、いずれも発光した。一方、比較例1から比較例4の発光ダイオードでは、いずれも発光しなかった。
 (3)作用・効果
 本発明に係る発光素子によれば、発光層は、珪素微粒子を含む。珪素(Si)は、材料的にも安く、豊富にある材料である。従って、珪素微粒子は、有機発光材料に比べて、材料コストを抑えることができる。溶液プロセス(例えば、塗布法又は印刷法)により発光層を形成することができるため、高価な基板も必要ないし、真空装置を用いる必要がない。従って、製造コストが抑えられた発光素子である。
 また、正孔注入層は、陽極電極及び発光層に接し、陽極電極からの正孔注入障壁が小さい有機材料からなる。これによって、陽極電極から注入された正孔が発光層へ効率よく注入され、発光素子は発光する。
 また、溶液プロセスにより発光層を形成することができるため、柔軟性のある基板上に発光層を形成できる。従って、フレキシブルな発光素子を製造することもできる。
 また、珪素は、非常に安全な材料であり、無毒な材料であるため、安全性が向上する。
 本発明に係る発光素子によれば、珪素微粒子には、珪素微粒子の終端基が有機化合物である珪素微粒子が含まれる。終端基が有機化合物である珪素微粒子が含まれることにより、珪素微粒子の大気中の安定性が増すため、発光素子の実用性がより向上する。特に、有機発光材料は、大気中で安定性を欠くものが多いため、有機発光材料を用いた発光素子に比べて、本発明に係る発光素子は、実用性が優れている。また、珪素微粒子の有機溶媒への分散性が向上するため、溶液プロセスを用いた発光層の形成において、珪素微粒子を効率よく用いることができる。その結果、製造コストを抑えることができる。
 (4)その他実施形態
 本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施形態を含む。
 例えば、本実施形態に係る発光素子の例として、発光ダイオード1を用いて説明したが、これに限られない。本発明は、発光素子であるダイオードレーザーに適用しても良い。
 また、本実施形態に係る発光ダイオード1は、電子注入層又は電子輸送層を備えていなかったが、より高い発光効率を有するために、これらのいずれか又は両方を備えていても良い。
 本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第2011-026921号(2011年2月10日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明によれば、新たな発光材料を用いることにより、製造コストを抑えることができるため、発光素子の製造分野において有用である。
 1…発光ダイオード
 10…基板
 20…陽極電極
 30…正孔注入層
 40…発光層
 50…陰極電極

Claims (3)

  1.  正孔と電子とが再結合して発光する発光層と、
     前記発光層に向けて前記正孔を注入する陽極電極と、
     前記発光層に向けて前記電子を注入する陰極電極と、
     前記発光層に向けて前記正孔を移動させる正孔注入層と、を有し、
     前記正孔注入層は、前記陽極電極及び前記発光層に接し、前記陽極電極からの正孔注入障壁が小さい有機材料からなり、
     前記発光層は、珪素微粒子を含む発光素子。
  2.  前記正孔注入層は、ポリエチレンジオキシチオフェン-ポリスチレンスルホネートからなる請求項1に記載の発光素子。
  3.  前記珪素微粒子には、前記珪素微粒子の終端基が有機化合物である珪素微粒子が含まれる請求項1又は2に記載の発光素子。
PCT/JP2012/053162 2011-02-10 2012-02-10 発光素子 WO2012108532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011026921 2011-02-10
JP2011-026921 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108532A1 true WO2012108532A1 (ja) 2012-08-16

Family

ID=46638743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053162 WO2012108532A1 (ja) 2011-02-10 2012-02-10 発光素子

Country Status (1)

Country Link
WO (1) WO2012108532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141983A (ja) * 2014-01-28 2015-08-03 京セラ株式会社 半導体粒子ペーストおよびその製法、ならびに光電変換装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004548A1 (ja) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. 発光素子及び表示デバイス
JP2005502176A (ja) * 2001-09-04 2005-01-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 量子ドットを有するエレクトロルミネセント装置
JP2006066395A (ja) * 2004-08-25 2006-03-09 Samsung Electronics Co Ltd 半導体ナノ結晶を含有する白色発光有機/無機ハイブリッド電界発光素子
JP2007513478A (ja) * 2003-12-02 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネッセント装置
JP2007149537A (ja) * 2005-11-29 2007-06-14 Catalysts & Chem Ind Co Ltd 電界発光素子
JP2007227355A (ja) * 2005-12-19 2007-09-06 Samsung Electronics Co Ltd 3次元構造の発光素子及びその製造方法
JP2008177168A (ja) * 2007-01-22 2008-07-31 Samsung Electronics Co Ltd タンデム構造のナノドット発光ダイオードおよびこの製造方法
JP2009537659A (ja) * 2006-05-15 2009-10-29 日東電工株式会社 発光デバイスおよび組成物
JP2010205686A (ja) * 2009-03-06 2010-09-16 National Institute For Materials Science 発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502176A (ja) * 2001-09-04 2005-01-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 量子ドットを有するエレクトロルミネセント装置
WO2005004548A1 (ja) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. 発光素子及び表示デバイス
JP2007513478A (ja) * 2003-12-02 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネッセント装置
JP2006066395A (ja) * 2004-08-25 2006-03-09 Samsung Electronics Co Ltd 半導体ナノ結晶を含有する白色発光有機/無機ハイブリッド電界発光素子
JP2007149537A (ja) * 2005-11-29 2007-06-14 Catalysts & Chem Ind Co Ltd 電界発光素子
JP2007227355A (ja) * 2005-12-19 2007-09-06 Samsung Electronics Co Ltd 3次元構造の発光素子及びその製造方法
JP2009537659A (ja) * 2006-05-15 2009-10-29 日東電工株式会社 発光デバイスおよび組成物
JP2008177168A (ja) * 2007-01-22 2008-07-31 Samsung Electronics Co Ltd タンデム構造のナノドット発光ダイオードおよびこの製造方法
JP2010205686A (ja) * 2009-03-06 2010-09-16 National Institute For Materials Science 発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141983A (ja) * 2014-01-28 2015-08-03 京セラ株式会社 半導体粒子ペーストおよびその製法、ならびに光電変換装置

Similar Documents

Publication Publication Date Title
JP5021321B2 (ja) ナノチューブ・コンタクトを用いた半導体デバイスおよび方法
KR101304635B1 (ko) 무기물 발광 다이오드 및 그의 제조방법
US7592618B2 (en) Nanoparticle electroluminescence and method of manufacturing the same
TWI332721B (ja)
WO2015105027A1 (ja) 発光デバイス、及び発光デバイスの製造方法
JP2008533735A (ja) 無機電子輸送層を含む量子ドット発光ダイオード
KR101003232B1 (ko) 유기 발광 소자 및 이의 제작 방법
Mu et al. Effects of in-situ annealing on the electroluminescence performance of the Sn-based perovskite light-emitting diodes prepared by thermal evaporation
KR20080074548A (ko) 양자점 발광 소자 및 이의 제조 방법
Ayobi et al. The effects of MoO 3/TPD multiple quantum well structures on the performance of organic light emitting diodes (OLEDs)
CN108539028B (zh) 一种量子点发光二极管器件及其制备方法
WO2012108532A1 (ja) 発光素子
Ramana et al. Electrical Characteristics of ITO/MEH–PPV/ZnO/Al Structure
Chen et al. Retracted Article: Wavelength modulation of ZnO nanowire based organic light-emitting diodes with ultraviolet electroluminescence
Nagpal et al. Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review
EP3155670A1 (fr) Dispositif électronique organique et son procédé de préparation
KR101687637B1 (ko) 단일의 양자점으로 이루어지는 발광층과 컬러변환층을 이용한 백색광 발광소자
Mohammed et al. Preparation of hybrid junction light emitting device from cadmium sulphite quantum dot/poly-TPD junction
US11778891B2 (en) Crosslinked nanoparticle thin film, preparation method thereof, and thin film optoelectronic device having the same
CN114267799B (zh) 一种量子点发光二极管及其制备方法
US20240147839A1 (en) Light-emitting element and production method therefor
KR101378168B1 (ko) 나노입자를 포함하는 전자소자의 제조방법
Lim et al. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission
CN117623369A (zh) 锌基氧化物半导体纳米晶的对称掺杂方法及其应用
WO2023184028A1 (en) Process for the halogen treatment of metal oxide layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP