WO2012108189A1 - 波長選択スイッチ及び波長選択スイッチ用光学ユニット - Google Patents

波長選択スイッチ及び波長選択スイッチ用光学ユニット Download PDF

Info

Publication number
WO2012108189A1
WO2012108189A1 PCT/JP2012/000822 JP2012000822W WO2012108189A1 WO 2012108189 A1 WO2012108189 A1 WO 2012108189A1 JP 2012000822 W JP2012000822 W JP 2012000822W WO 2012108189 A1 WO2012108189 A1 WO 2012108189A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
input
wavelength
unit
dispersion
Prior art date
Application number
PCT/JP2012/000822
Other languages
English (en)
French (fr)
Inventor
松本 浩司
智史 渡部
山崎 健
稔明 鈴木
暢喜 岩崎
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011027751A external-priority patent/JP2012168285A/ja
Priority claimed from JP2011027856A external-priority patent/JP2012168290A/ja
Priority claimed from JP2011027829A external-priority patent/JP2012168287A/ja
Priority claimed from JP2011027833A external-priority patent/JP2012168288A/ja
Priority claimed from JP2011255411A external-priority patent/JP2012181497A/ja
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2012108189A1 publication Critical patent/WO2012108189A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror

Definitions

  • the present invention relates to a wavelength selective switch.
  • WDM Widelength Division Multiplexing
  • the wavelength selective switch has an input port for inputting an optical signal, a collimator lens for collimating a light beam emitted from the input port, a dispersion unit (diffraction grating) for wavelength-dispersing the collimated light, and condensing the dispersed light beam.
  • a condensing lens, a deflecting unit that changes the traveling direction of each light beam so that the dispersed and condensed light beams of each wavelength enter an arbitrary output port, and the like are provided.
  • a wavelength selective switch that disperses the signal light from the input port for inputting a plurality of optical signals to each multiplexed wavelength and selectively couples it to one output port. Necessary.
  • 46A and 46B are diagrams schematically showing an example of the wavelength selective switch.
  • 46A is a side view showing the configuration of the wavelength selective switch 1100
  • FIG. 46B is a top view of the same.
  • the wavelength selective switch 1100 includes input ports 1101a, 1101b, 1101d, and 1101e, an output port 1101c, a microlens array 1102, a first lens 1103, a second lens 1106, a dispersive element 1107, a third lens 1108, and a plurality of them.
  • wavelength-multiplexed light is input from an arbitrary input port of the input ports 1101 a, 1101 b, 1101 d, and 1101 e, and the dispersive element 1107 is passed through the first lens 1103 and the second lens 1106.
  • 46A and 46B show a state where the wavelength multiplexed light input from the input port 1101a is output to the output port 1101c.
  • the focal lengths of the second lens 1106 and the third lens 1108 are substantially the same, and the image of the primary condensing point 1105 is propagated to the mirror array 1109 at a magnification of 1 ⁇ . ing.
  • FIG. 47 shows the optical signal processing apparatus.
  • the wavelength-division multiplexed optical signal is dispersed into each wavelength by an AWG (Arrayed Waveguide Grating) 2101 which is a dispersion element, and is emitted from the end face of the AWG 2101.
  • the optical signal emitted from the AWG 2101 passes through the cylindrical lens 2102, the condenser lens 2103, and the parallel plate 2104, is condensed on the signal processing element 2105 corresponding to the wavelength, and is modulated by the signal processing element 2105.
  • the modulated optical signal is reflected by the mirror 2106 and then multiplexed by the AWG 2101 along a path opposite to the forward path.
  • the signal processing element 2105 is configured using a liquid crystal element, a MEMS (Micro Electro Mechanical Systems) mirror, an optical crystal, or the like.
  • the device having a plurality of ports for inputting / outputting optical signals is a wavelength selective switch. Therefore, the wavelength selective switch has almost the same components as the optical signal processing device. ing.
  • the optical signal processing apparatus shown in FIG. 47 compensates for the temperature dependence of the dispersion characteristics of the AWG 2101 by the thermo-optic action of the parallel plate 2104 or by adjusting the angle of inclination of the parallel plate 2104 with respect to the optical axis.
  • the signal light of each wavelength dispersed in (1) is condensed at a corresponding position of the signal processing element 2105.
  • wavelength selective switches are the main devices of optical communication networks that require high reliability and are required to operate stably over a long period of time. Therefore, it has been proposed that hermetic sealing (hermetic sealing) is performed (for example, Patent Document 2).
  • FIG. 48 shows a wavelength selective switch disclosed in Patent Document 3.
  • the wavelength-multiplexed optical signal input from the input port 3101 passes through the condenser lens 3102 and is dispersed and reflected by the reflection type dispersion element 3103 for each wavelength.
  • the optical signals dispersed by the dispersion element 3103 are condensed by the condenser lens 3102 onto the deflecting elements 3104 -1 to 3104 -n corresponding to the wavelengths of the respective optical signals and deflected independently.
  • the light is again wavelength-multiplexed by the dispersive element 3103 through the condenser lens 3102, and output from the output port (not shown) arranged in the direction perpendicular to the paper surface along with the input port 3101 through the condenser lens 3102.
  • a wavelength selective switch used for optical wavelength division multiplexing communication is required to have a device with higher wavelength resolution. Therefore, an input port and an output port in which incident and output ends are arranged in series, a lens for converging light including one or more wavelengths input from the input port to a primary condensing point, and the lens 2.
  • a wavelength selective switch having a cylindrical convex lens that is provided between a primary condensing point and converges light having passed through a lens with a greater degree of convergence in a direction orthogonal to an arrangement direction of an input port and an output port is known (for example, , See Patent Document 4).
  • Such a wavelength selective switch uses a cylindrical convex lens to converge an elliptical spot converged in the dispersion direction, that is, having a small spot width in the dispersion direction, to the primary condensing point.
  • the light that has passed through the primary condensing point is converted into parallel light by the lens, dispersed by a dispersive element that disperses the light in a direction orthogonal to the arrangement direction of the ports, and arranged by the condensing lens corresponding to each wavelength.
  • the light is condensed again as an elliptical spot on a plurality of micromirrors.
  • the light separated for each wavelength reflected by the micromirror is output to a predetermined output port through a path opposite to the forward path.
  • This wavelength selective switch has a high resolution of the diffraction grating and excellent wavelength transmission band characteristics by forming an elliptical spot having a narrow width in the dispersion direction on the micromirror.
  • the converging position of the wavelength-dispersed optical signal is shifted from the center of the corresponding signal processing element in the dispersion direction due to an assembly error due to an installation error of an optical component or other factors. is there.
  • a desired light transmittance characteristic that is, a filter characteristic as a wavelength selective switch for the used wavelength cannot be obtained.
  • a method for correcting the deviation of the condensing position for example, the configuration of FIG. 47 is adopted, a parallel plate is arranged in the dispersion optical path, and the inclination angle with respect to the optical axis is adjusted to correct the optical path of the dispersed light. It is assumed that
  • the wavelength selective switch can correct the filter characteristics with a small configuration.
  • the failed wavelength selective switch is replaced on a case-by-case basis. It may be possible to replace the deflection unit in a room with a very high degree of cleanliness and humidity controlled, but it is very difficult to work without attaching dust and dirt generated by removing the deflection unit to the optical system. It is.
  • the wavelength selection switch and the wavelength selection switch optical unit capable of solving such problems can easily replace the deflection unit.
  • the dispersive element generally has polarization characteristics in which the transmittance and reflectance with respect to the wavelength (diffraction efficiency in the diffraction grating) are different between the P-polarized component and the S-polarized component. Therefore, as in the wavelength selective switch shown in FIG. 48, when the optical signal input from the input port 3101 and output to the output port is subjected to the dispersion action in the forward path and the return path by the dispersion element 3103, the polarization characteristics as a whole Will be superimposed two times. For example, when the dispersive element 3103 has a polarization characteristic of the reflectance R with respect to the wavelength ⁇ as shown in FIG. 49A, the polarization characteristic as a whole is as shown in FIG. It will be a stack of things.
  • the cylindrical lens when a cylindrical lens is used as in Patent Document 4, the cylindrical lens generally has a cylindrical refracting surface and a flat surface provided on the back side of the refracting surface. For this reason, the light input from the input port is transmitted through both the refracting surface and the plane, but at that time, part of the light is reflected by the plane of the cylindrical lens and becomes stray light to the input port and the output port. May return.
  • FIG. 50 is a side view showing a configuration from the input port and the output port of the wavelength selective switch according to the conventional example to the primary condensing point 4105.
  • the light input from the input optical fiber 4101 a is converted into collimated light by the corresponding microlens of the microlens array 4102, and is condensed at the primary condensing point 4105 by the lens 4103 and the cylindrical lens 4104.
  • the cylindrical lens 4104 is arranged with a cylindrical surface 4104a on the output side of the input light.
  • the reflected light reflected by the plane 4104b is the lens 4103. And can pass through a corresponding microlens of the microlens array 4102 and be coupled to, for example, an optical fiber 4101c for output.
  • reflected light that is not separated into light of each wavelength is added to the optical fiber 4101c in addition to the wavelength-separated light (regular light) that should be incident as signal light. Is concerned.
  • FIG. 51A is a top view showing a light flux of input light of the wavelength selective switch of FIG. 50, and a broken line shows a wavefront of the input light.
  • the wavefront of the input light is indicated by a broken line.
  • FIG. 51B shows an optical path of the reflected light in which a part of the input light is reflected by the plane 4104b on the incident side. As shown in FIG.
  • the wavefront of the input light and the plane 4104b of the cylindrical lens 4104 have substantially the same shape, so that the light reflected by the plane 4104b is collected near the output port via the lens 4103.
  • the light is imaged on the output optical fiber 4101c.
  • the reflected light incident on the optical fiber 4101c generates crosstalk.
  • the input light is reflected by the port side surface or the dispersion element side surface of the first lens 1103 close to the input ports 1101a, 1101b, 1101d, and 1101e.
  • the output port 1101c When light is coupled to the output port 1101c, it may cause crosstalk.
  • FIG. 52 is a diagram for explaining the shape of the light flux from the input / output port of the wavelength selective switch of FIGS. 46A and 46B to the primary condensing point 4105.
  • the input light input from the input ports 1101 a, 1101 b, 1101 d, and 1101 e is a Gaussian beam, and on the first lens 1103 at a position away from the microlens array 1102, the beam diameter is wider than the vicinity of the microlens array 1102.
  • an overlap may occur between the optical paths of the light beams from the adjacent input ports 1101a, 1101b, 1101d, and 1101e or to the adjacent output port 1101c.
  • the input light is reflected toward the input / output port by the substantially flat surface.
  • the reflected light easily enters another port.
  • the light flux of the input light from the input ports 1101b and 1101d in FIG. 52 partially overlaps the light flux of the output light to the output port 1101c on the surface 1103a on the input / output port side of the first lens 1103. Yes. Therefore, when input light is reflected at this overlapping portion, it easily enters the output port 1101c. In this manner, crosstalk may occur due to the first lens 1103.
  • the wavelength selective switch can reduce the occurrence of crosstalk.
  • an object of the present invention made in view of such circumstances is to provide a wavelength selective switch having excellent characteristics that solves at least one of the above problems.
  • the invention of the wavelength selective switch according to the first aspect of achieving the above object is as follows: At least one input port; A dispersion unit that wavelength-disperses input light incident from the input port; A condensing element that condenses the light wavelength-dispersed by the dispersion unit; A deflecting unit for deflecting light collected by the light collecting element; At least one output port for emitting the light deflected by the deflecting unit as output light; An optical path correction unit that is arranged in an optical path between the input port and the dispersion unit and shifts an incident position of the light wavelength-dispersed by the dispersion unit with respect to the deflection unit; It is characterized by providing.
  • the optical path correction unit that shifts the incident position of the light dispersed by the dispersion unit with respect to the deflecting unit is disposed in the optical path between the input port and the dispersion unit.
  • a wavelength selective switch capable of correcting the filter characteristics can be provided.
  • the optical unit for wavelength selective switch At least one input port; A dispersion unit for wavelength-dispersing the input light input from the input port; A condensing element that condenses the light dispersed by the dispersion unit; At least one output port; A housing for sealing the input port, the dispersion unit, the light collecting element, and the output port;
  • the case is an optical unit for a wavelength selective switch in which an optically transparent transparent portion is formed at a position where light condensed by the light collecting element is incident.
  • the deflecting unit is attached to the outside of the casing. As a result, the user can easily replace the deflecting unit while maintaining the hermetic seal of the optical member.
  • the invention of the wavelength selective switch is as follows: At least one input port; A first dispersion unit for dispersing light input from the input port; A deflection unit that deflects the light dispersed by the first dispersion unit; A second dispersion unit that wavelength-multiplexes the light deflected by the deflection unit; And at least one output port for outputting the light wavelength-multiplexed by the second dispersion unit,
  • the first dispersion unit includes a first dispersion element that disperses light from the input port, and the second dispersion unit wavelength-multiplexes the light deflected by the deflection unit and makes it incident on the output port.
  • the second dispersive element has a polarization characteristic that cancels the polarization characteristic of the first dispersive element, It is characterized by this.
  • the polarization characteristic of the first dispersion element of the first dispersion unit that disperses the light from the input port is set to the second dispersion element of the second dispersion unit that wavelength-multiplexes the light deflected by the deflection unit.
  • the polarization-dependent loss due to the dispersive element can be reduced because it is canceled or canceled by the polarization characteristics.
  • An input / output unit including at least one input port and at least one output port;
  • a dispersion unit that disperses wavelength-multiplexed input light incident from the input port into light for each wavelength;
  • a condensing element that condenses the light for each wavelength dispersed by the dispersion unit;
  • a deflecting unit that deflects the light for each wavelength collected by the light collecting element and emits the light to the output port;
  • An elliptical element that is arranged between the input / output unit and the dispersion unit and makes an elliptical spot of the light for each wavelength condensed on the deflection unit;
  • the ovalization element has at least two surfaces through which the input light passes, and a part of the input light reflected by each of the two surfaces emits light for each wavelength of the output port.
  • a light beam having a diameter larger than that of the emission surface is formed at the position of the emission surface.
  • a part of the input light reflected by each of the two surfaces of the ovalization element is a light beam having a diameter larger than that of the emission surface at the position of the emission surface that emits light for each wavelength of the output port. Therefore, the occurrence of crosstalk can be reduced.
  • An input / output unit including at least one input port and at least one output port; A dispersion unit that disperses wavelength-multiplexed input light incident from the input port into light for each wavelength; A relay optical system including at least one transmission-type relay optical element that guides the input light incident from the input port to the dispersion unit; A first condensing element that condenses the light of each wavelength dispersed by the dispersion unit; A deflecting unit that deflects each wavelength of light collected by the first light collecting element and emits the light to the output port, The relay optical element is disposed so as to be inclined or shifted with respect to the input light so that stray light generated when the input light is reflected by any surface of the relay optical element does not enter the output port. It is characterized by that.
  • the relay optical element is tilted with respect to the input light so that the stray light generated when the input light is reflected by any surface of the relay optical element does not enter the output port, or Since the arrangement is shifted, occurrence of crosstalk can be reduced.
  • a wavelength selective switch having excellent characteristics can be provided.
  • FIG. 4B is a development view of an optical path when the wavelength selective switch of FIG. 4A is viewed from a wavelength dispersion direction by a dispersion unit. It is the elements on larger scale of the dispersion
  • FIG. 6B is a development view of an optical path when the wavelength selective switch of FIG. 6A is viewed from a wavelength dispersion direction by a dispersion unit. It is a figure which shows the modification of the quarter wavelength plate and deflection
  • FIG. 17B is a schematic configuration diagram of the wavelength selective switch of FIG. 17A viewed from a direction orthogonal to the wavelength dispersion direction by the first and second dispersion units. It is a schematic perspective view of the 1st and 2nd dispersion
  • FIG. 17A It is a perspective view which shows the other example of the suitable structure of the 1st and 2nd dispersion
  • FIG. 30 is a side view for explaining an example of the reflected light of the input light by the surface on the input / output port side of the first lens (relay lens) in the wavelength selective switch of FIGS.
  • FIG. 30 is a top view illustrating an example of a reflected light beam of input light from a surface on the input / output port side of a first lens (relay lens) in the wavelength selective switch of FIGS. 28 and 29.
  • FIG. 30 is a side view illustrating an example of a reflected light beam of input light by a surface on the dispersion element side of the first lens (relay lens) in the wavelength selective switch of FIGS. 28 and 29.
  • FIG. 30 is a top view for explaining an example of the light flux of the input light reflected by the surface on the dispersion element side of the first lens (relay lens) in the wavelength selective switch of FIGS. 28 and 29.
  • FIG. 30 is a top view for explaining a light intensity adjustment method in the wavelength selective switch of FIGS.
  • FIG. 40 is a diagram in which the optical axis of the first lens (relay lens) in FIG. 39 is arranged to coincide with the traveling direction of input light.
  • FIG. 40 is a diagram in which the optical axis of the first lens (relay lens) in FIG. 39 is arranged to be inclined with respect to the traveling direction of the input light.
  • FIG. 1A and 1B are conceptual diagrams of the wavelength selective switch according to the first embodiment.
  • FIG. 1A is a conceptual diagram of the wavelength selective switch as viewed from the wavelength dispersion direction by the dispersion unit
  • FIG. 1B is a conceptual diagram of the wavelength selective switch as viewed from the direction orthogonal to the wavelength dispersion direction.
  • the wavelength selective switch includes one input port 10a, four output ports 10b-10e, an optical path correction unit 20, a dispersion unit 30, a condensing lens 40 that is a condensing element, and a deflection unit 50.
  • the chromatic dispersion direction by the dispersion unit 30 is defined as the X direction
  • the direction perpendicular to the surface where the dispersed light spreads spatially by the chromatic dispersion of the dispersion unit 30 is defined as the Y direction.
  • a deflecting member such as a mirror or a prism (not shown) is arranged to bend the optical path in the optical path of the actual wavelength selective switch
  • the explanation of the X direction and the Y direction is such a deflecting member. It is assumed that it is used on the premise of a virtual optical system that does not have any.
  • the input / output end portions of the input port 10a and the output ports 10b-10e are arranged in series in the Y direction.
  • the input port 10a and the output port 10b-10e will be collectively referred to as the input / output ports 10a-10e as appropriate.
  • the input / output ports 10a-10e include corresponding optical fibers 11a-11e and microlens arrays 12 arranged on the end faces thereof.
  • the microlens array 12 includes optical fibers 11a-11e and corresponding spherical or aspherical microlenses 13a-13e.
  • the wavelength division multiplexed optical signal (input light) emitted from the optical fiber 11a of the input port 10a is converted into parallel light by the corresponding microlens 13a and is incident on the optical path correction unit 20.
  • the optical path correction unit 20 is disposed in the optical path between the input / output ports 10a-10e and the dispersion unit 30. Then, the optical path correction unit 20 corrects the optical path so that the incident position of the dispersed light that is wavelength-dispersed by the dispersion unit 30 and enters the deflection unit 50 via the condenser lens 40 is shifted on the deflection unit 50.
  • 1A and 1B exemplify a case where the optical path correction unit 20 includes a parallel plate 21.
  • the parallel plate 21 is inclined with respect to the optical axis of the condenser lens 40 so that the dispersed light emitted from the dispersion unit 30 is shifted in parallel to the wavelength dispersion direction (X direction) of the dispersion unit 30. Is done.
  • the parallel plate 21 may be fixed after correcting the optical path as described above, or may be arranged so that the inclination angle with respect to the optical path can be adjusted.
  • the dispersion unit 30 disperses the input light from the input port 10a into optical signals for each wavelength.
  • the dispersion unit 30 has, for example, a transmission type grating.
  • FIG. 1B illustrates a case where the dispersion unit 30 can disperse input light into optical signals for each of five wavelengths.
  • the condensing lens 40 is arranged so that its front focal point substantially coincides with the dispersion base point of the dispersion unit 30, and condenses the optical signal wavelength-dispersed by the dispersion unit 30 onto the deflection unit 50.
  • the wavelength-dispersed optical signal is condensed on the deflecting unit 50 for each wavelength and condensed.
  • the plurality of optical signals collected by the condenser lens 40 enter the deflection unit 50 substantially perpendicularly when viewed from a direction perpendicular to the wavelength dispersion direction.
  • the condenser lens 40 is preferably configured as an image side telecentric lens.
  • the deflection unit 50 includes a plurality of deflection elements arranged linearly in the wavelength dispersion direction of the dispersion unit 30.
  • the deflecting unit 50 includes five deflecting elements 51a to 51e is illustrated, but the number is not limited to this.
  • the deflection elements 51a to 51e correspond to the five wavelengths dispersed by the dispersion unit 30, and are configured to be independently driven. Thereby, the optical signal for each wavelength incident on the deflecting unit 50 is deflected.
  • the deflecting unit 50 including such array-shaped deflecting elements 51a to 51e is configured using, for example, a MEMS mirror, a liquid crystal element, an optical crystal, or the like.
  • the optical signal for each wavelength deflected by the deflecting unit 50 enters the desired output port 10b-10e as output light through the condenser lens 40, the dispersing unit 30, and the optical path correcting unit 20, respectively.
  • 1A illustrates a case where output light is incident on the output port 10c.
  • FIG. 1A is a diagram viewed from the chromatic dispersion direction (X direction) by the dispersion unit 30, and FIG. 1B is a switching direction (Y of output light) that is an arrangement direction of the input / output ports 10a-10e orthogonal to the chromatic dispersion direction. It is the figure seen from (direction).
  • FIG. 1A illustrates one input port 10a and four output ports 10b-10e
  • the input port 10a may be an output port and the output port 10b-10e may be an input port.
  • the numbers of input ports and output ports are set as appropriate without being limited to the examples.
  • the wavelength selective switch according to the present invention is not limited to the case where the wavelength division multiplexed input light is dispersed and outputted for each wavelength, and a plurality of input lights for each wavelength are multiplexed and outputted. May be used as well.
  • the input port and the output port are not limited to being arranged in an array at one place, and the input port and the output port may be arranged at different places by being spatially separated.
  • the incident position of the light incident on the deflecting unit 50 is shifted from the center of the corresponding deflecting element due to an assembly error due to an attachment error of the optical component or other factors.
  • the deviation can be corrected by the optical path correction unit 20.
  • the optical path correction unit 20 includes the parallel plate 21, the above-described deviation can be corrected by adjusting the inclination angle of the parallel plate 21 with respect to the optical path of the input light.
  • the shift amount ⁇ x of the optical path is expressed by the following equation.
  • d indicates the thickness of the parallel plate 21
  • n1 indicates the external refractive index
  • n2 indicates the refractive index of the parallel plate 21 at the used wavelength.
  • ⁇ x d ⁇ n1 ⁇ ⁇ / n2
  • the optical path correction unit 20 can be corrected by the optical path correction unit 20.
  • the parallel plate 21 is fixed so that the tilt angle with respect to the optical path can be adjusted, it corresponds to an error that can change with time, such as a change in dispersion characteristics of the dispersion section 30 due to a temperature change. Therefore, it is possible to correct the deviation of the filter characteristics.
  • the optical path correction unit 20 is disposed in the optical path between the input / output ports 10a-10e and the dispersion unit 30, the optical path correction unit 20 can be reduced in size. For example, as shown in FIGS.
  • the dimensions of the parallel plates 21 in the Y direction are such that input light from all the input / output ports 10a-10e is incident.
  • the dimension in which the input light from almost one input / output port is incident should be secured.
  • the dimension in the X direction is not affected at all by the number of wavelengths that are wavelength division multiplexed and the number of wavelengths that are wavelength-dispersed. Therefore, it is possible to provide a wavelength selective switch capable of correcting the optical path with a small configuration and correcting the filter characteristics.
  • Patent Document 1 when a parallel plate is arranged in the optical path between the condenser lens 40 after wavelength dispersion and the deflecting unit 50 and optical path correction is performed, the Y direction of the parallel plate is used.
  • the dimension and the dimension in the X direction a dimension in which all of the dispersed light is incident on the input light from all of the input / output ports 10a to 10e is required.
  • the signal light of each wavelength is made incident on the element element as the number of wavelengths of the wavelength division multiplexed optical signal increases.
  • the optical path correction unit 20 is configured by the parallel plate 21, it is preferably assembled so that the parallel plate 21 is inclined with respect to the optical path of the input light in a state where the above-described deviation is corrected.
  • another optical component is attached in a state where the parallel plate 21 is inclined in advance with respect to the optical path of the input light.
  • the tilt angle of the parallel plate 21 is adjusted so that the incident position of the dispersed light incident on the deflecting unit 50 corresponds to the corresponding deflecting element.
  • the optical path of the input light is corrected so as to be positioned at the center of the center.
  • the parallel plate 21 is fixed by bonding or the like, or the parallel plate 21 is fixed so that the inclination angle of the parallel plate 21 can be adjusted. Further, the parallel plate 21 is arranged with reference to a plane perpendicular to the optical path of the input light so that the parallel plate 21 is not arranged perpendicular to the optical path of the input light after the inclination angle of the parallel plate 21 is adjusted. It is preferable to set the angle to be tilted in advance to be larger than the assumed tilt angle adjustment range.
  • the parallel plate 21 is fixed in a state where the deviation of the condensing position of the dispersed light due to the assembly error and other errors is corrected and tilted with respect to the optical path of the input light, the parallel plate 21 and the micro plate 21 are fixed. Multiple reflections of input light and output light between the lens array 12 and the dispersion unit 30 can be effectively prevented. Accordingly, stray light due to multiple reflection can be prevented from being mixed into the output light, so that S / N can be improved and crosstalk can be reduced.
  • the optical path correction unit 20 can compensate for the temperature dependence of the dispersion characteristics by the dispersion unit 30 as in the case of Patent Document 1 by its thermo-optic action.
  • FIGS. 4A and 4B are diagrams showing a configuration of a main part of the wavelength selective switch according to the first embodiment of the present invention
  • FIG. 4A is a diagram seen from a direction orthogonal to the wavelength dispersion direction by the dispersion unit
  • FIG. 4B is a development view of the optical path viewed from the wavelength dispersion direction. Note that components having the same functions as those shown in FIGS. 1A and 1B are denoted by the same reference numerals and description thereof is omitted.
  • the wavelength selective switch according to the present embodiment is disposed in the optical path between the input / output ports 10a-10e and the condensing lens 40, and constitutes a condensing point forming element.
  • a lens 60 is provided.
  • the lens 60 is, for example, a condenser lens, a cylindrical lens having a lens power in the arrangement direction of the input / output ports 10a-10e, or the input / output ports 10a-10e with respect to a direction orthogonal to the arrangement direction of the input / output ports 10a-10e.
  • An anamorphic lens having a strong lens power in the arrangement direction is used. Thereby, the input light from the input / output ports 10a-10e is condensed at the condensing point F.
  • the condensing lens 40 is arranged so that its front focal position is located in the vicinity of the front and rear of the condensing point F of the input light by the lens 60.
  • the parallel flat plate 21 is disposed in the vicinity of the front and rear of the condensing point F of the input light by the lens 60, in the vicinity of the front side of the condensing point F in the drawing, with an inclination relative to the optical path of the input light.
  • the dispersion unit 30 includes a dispersion element 31 made of a transmissive grating and a folding mirror 32 that is a reflection element.
  • the dispersion unit 30 reflects the dispersed light from the dispersion element 31 by the folding mirror 32 and makes it incident on the dispersion element 31 again. have.
  • the dispersion unit 30 is disposed so that the dispersion base point of the dispersion element 31 is located in the vicinity of the rear focal position of the condenser lens 40.
  • the dispersion element 31 and the folding mirror 32 are dispersed again by the diffraction efficiency by the incident angle when the input light is incident on the dispersion element 31 and dispersed, and the dispersion light is folded by the folding mirror 32. Arrangement is made so that the diffraction efficiency due to the incident angle when entering the element 31 and being dispersed is substantially equal.
  • the maximum emission angle of the dispersed light dispersed by the dispersion element 31 and directed to the folding mirror 32 is ⁇ 1, and the minimum emission angle is ⁇ 2.
  • the incident angle of the dispersed light that is folded back by the folding mirror 32 and is incident on the dispersion element 31 again is the incident angle ⁇ 1 of the dispersed light dispersed at the maximum emission angle ⁇ 1 and becomes the minimum incident angle, and is dispersed at the minimum emission angle ⁇ 2.
  • the incident angle ⁇ 2 of the dispersed light thus obtained becomes the maximum incident angle. Therefore, in this case, as shown in FIG. 5B, the dispersive element 31 and the folding mirror 32 are arranged so that the diffraction efficiency A at the minimum emission angle ⁇ 2 is equal to the diffraction efficiency B at the maximum incident angle ⁇ 2.
  • the deflection unit 50 is arranged on the opposite side of the dispersion unit 30 with respect to the condenser lens 40, that is, on the same side as the input / output ports 10a to 10e.
  • the input light when a wavelength division multiplexed optical signal (input light) is emitted from the optical fiber 11a of the input port 10a, the input light is converted into parallel light by the corresponding microlens 13a. Converted and injected. Thereafter, the input light is condensed by the lens 60, transmitted through the parallel plate 21, and condensed at the condensing point F.
  • the input light passes through the condenser lens 40 and enters the dispersion element 31 of the dispersion unit 30 having the Littman-Metcalf structure and is wavelength-dispersed.
  • the input light is wavelength-dispersed by the dispersion element 31, folded back by the folding mirror 32, dispersed again by the dispersion element 31, and emitted from the dispersion unit 30.
  • FIG. 4A illustrates the case where the dispersion unit 30 disperses the light at three wavelengths.
  • FIG. 4B illustrates a case where one of the dispersed lights from the dispersion unit 30 is incident on the output port 10c.
  • the parallel plate 21 constituting the optical path correction unit is disposed in the vicinity of the condensing point F of the input light by the lens 60. Therefore, the parallel plate 21 is incident on the input light from all the input / output ports 10a-10e even if the dimension in the Y direction is smaller than the width in which the input / output ports 10a-10e are arranged. Thus, the optical path can be shifted.
  • the dimension of the parallel plate 21 in the X direction it is only necessary to ensure the dimension in which the input light from one input / output port is incident as described above. As a result, a desired filter characteristic can be obtained using the small parallel plate 21 as compared with the configuration described with reference to FIGS. 1A and 1B, and the entire apparatus can be further reduced in size.
  • a parallel plate is used as the dispersed light between the condenser lens 40 and the deflecting unit 50. It is assumed that it is arranged in the optical path of However, in this case, the parallel plate needs to be large enough to refract and transmit the dispersed light incident on all the deflecting elements 51a to 51e of the deflecting unit 50. Therefore, there is a concern that the parallel flat plate is enlarged and the entire apparatus is also enlarged.
  • the parallel flat plate if the parallel flat plate is inclined to the condenser lens 40 side, the parallel flat plate protrudes into the optical path of the input light from the input port 10a toward the condenser lens 40, and vignetting may occur in the input light.
  • vignetting if a parallel flat plate is placed close to the front surface of the deflecting unit 50 and arranged parallel to the deflecting unit 50, stray light is generated due to multiple reflection with the deflecting unit 50, and S There is a concern that / N may decrease or crosstalk may increase. According to the wavelength selective switch according to the present embodiment, such a matter of concern can be solved at once, and optical path correction capable of obtaining desired filter characteristics with a small configuration is possible.
  • FIGS. 6A and 6B are diagrams showing a configuration of a main part of the wavelength selective switch according to the second embodiment of the present invention
  • FIG. 6A is a diagram seen from a direction orthogonal to the wavelength dispersion direction by the dispersion unit
  • 6B is a development view of the optical path of FIG. 6A viewed from the wavelength dispersion direction. Note that the same reference numerals are assigned to components having the same functions as those shown in FIGS. 4A and 4B, and description thereof is omitted.
  • the mirror 70 and the quarter wavelength plate 71 are arranged in the dispersed optical path between the condenser lens 40 and the deflecting unit 50. It is a thing. Then, after the dispersed light traveling toward the deflecting unit 50 through the condenser lens 40 is reflected by the mirror 70 in a predetermined angle direction (below the paper surface in FIG. 6A) with respect to the surface where the dispersed light spreads spatially, 1 The light is incident on the deflecting unit 50 through the / 4 wavelength plate 71.
  • the dispersed light deflected by the deflecting unit 50 is reflected by the mirror 70 through the quarter-wave plate 71 and then enters the dispersing unit 30 through the condenser lens 40.
  • Other configurations and operations are the same as those of the wavelength selective switch according to the first embodiment.
  • the angle at which the mirror 70 reflects the dispersed light is preferably 90 degrees, but is not limited to this angle as long as the dispersed light can be bent substantially.
  • the dispersed light incident on the deflecting unit 50 can be converted from linearly polarized light to circularly polarized light.
  • the circularly polarized light emitted from the light can be converted into linearly polarized light orthogonal to the linearly polarized light of the incident light and returned to the dispersion unit 30.
  • the quarter-wave plate 71 is disposed in the optical path of the dispersed light bent by the mirror 70, no vignetting occurs in the incident light incident on the condenser lens 40 by the quarter-wave plate 71. . Further, the mirror 70 and the quarter-wave plate 71 do not hinder the installation of the parallel plate 21 that is an optical path correction unit.
  • the quarter-wave plate 71 is not limited to being arranged alone, but can also be provided as an incident window of the package of the polarizing unit 50 as shown in FIG.
  • the quarter wave plate 71 may be a higher order one. Thereby, cost reduction can be achieved.
  • the optical path correction unit is not limited to the parallel plate described above, and various configurations are possible.
  • the optical path correction unit that shifts the optical path in parallel can be configured as shown in FIGS. 8A to 8D.
  • the optical path correction unit shown in FIG. 8A uses the prism 22, and the shift amount ⁇ x of the optical path transmitted through the prism 22 can be adjusted by moving the prism 22 as indicated by a broken line.
  • the optical path correction unit shown in FIG. 8B uses two wedge-shaped prisms 23a and 23b. By moving one wedge-shaped prism 23a or 23b and adjusting the interval between the two wedge-shaped prisms 23a and 23b, The shift amount ⁇ x of the optical path that passes through 23b can be adjusted.
  • the optical path correction unit shown in FIG. 8C uses a mirror 24, and the optical path shift amount ⁇ x can be adjusted by moving the mirror 24 as indicated by a broken line.
  • the optical path correction unit shown in FIG. 8D uses a prism 25 and reflects and emits a light beam inside the prism 25, and adjusts the shift amount ⁇ x of the optical path by moving the prism 25 as indicated by a broken line. can do.
  • the optical path correction unit is not limited to the configuration in which the optical path is shifted in parallel, and may adjust the angle of the optical path so as to shift the position where the dispersed light enters the deflection unit 50 so as to shift on the deflection unit 50. Is possible. 9A and 9B show the configuration of the optical path correction unit when adjusting the angle of the optical path.
  • the optical path correction unit shown in FIG. 9A uses the prism 27, and the optical path can be tilted by ⁇ by rotating the prism 27 around the incident position of the light beam as shown by a broken line.
  • the optical path correction unit shown in FIG. 9B uses a mirror 28, and the optical path can be tilted by ⁇ by rotating the mirror 28 around the incident position of the light beam as shown by a broken line.
  • the condensing lens 40 only needs to exhibit a condensing function, and a condensing mirror, a diffractive condensing element, or the like can be used.
  • the microlens array 12 may not necessarily be arranged.
  • the dispersion section is not limited to a transmission type dispersion element or a Littman-Metcalf structure, and a reflection type diffraction grating, Grism, super prism, or the like can also be used.
  • FIG. 10 is a schematic configuration diagram of a wavelength selective switch according to the third embodiment of the present invention.
  • the wavelength selective switch 111 according to the present embodiment includes a casing 201, an optical system 203 assembled in the casing 201, and a deflecting unit 205 that is detachably attached to the outside of the casing 201. .
  • the housing 201 has an optically transparent sealing window 207 provided at an attachment portion of the deflection unit 205, and has a sealed structure.
  • the sealing window 207 has an optical surface 227. Further, the sealing window 207 is made of, for example, glass, and the portion other than the sealing window 207 of the housing 201 is made of, for example, metal. And the whole housing
  • casing 201 is hermetic sealed, for example, and the outstanding airtightness is implement
  • the optical system 203 includes at least one input port 209, at least one output port 210, a microlens array 211, a dispersion unit 213, a condensing element 215, and a mirror 217.
  • the components of the optical system 203 are mounted on the plate 219, and the plate 219 is made of, for example, metal or quartz.
  • the plate 219 is preferably made of a material having a small linear expansion capable of suppressing the relative displacement of the optical component at high and low temperatures.
  • three ports including the input port 209 and the output port 210 are illustrated, but the number of ports is not limited to three.
  • the input port 209 is for inputting wavelength-multiplexed light to the wavelength selective switch 111. Further, the output port 210 is for causing the light incident from the input port 209 to be emitted as signal light after the path is switched for each wavelength.
  • the input port 209 and the output port 210 are formed by optical fibers or optical waveguides. In the present application, the vicinity of the tip of the optical fiber or the optical waveguide will be described as the input port 209 or the output port 210 in particular.
  • a port array can be formed by combining at least one input port 209 and at least one output port 210.
  • a port array having a single-port input port and a multi-port output port a multi-port A port array having an input port and a single output port and a port array having a multi-port input port and a multi-port output port can be realized.
  • FIG. 10 only the input port 209 or the output port 210 in the vicinity of the tip of the optical fiber or the optical waveguide is illustrated.
  • an optical fiber or an optical waveguide extends from the illustrated input port 209 and output port 210, respectively.
  • the optical fiber or the optical waveguide is extended outside the casing 201 as a fiber array or an optical waveguide.
  • the through-hole for passing the fiber array formed in the housing 201 and the fiber array are arranged without a gap. For this reason, the inside of the housing 201 is kept sealed even though the fiber array extends to the outside of the housing.
  • the microlens array 211 has microlenses that are paired with the input port 209 and the output port 210 arranged in an array.
  • the microlens array 211 converts the input light incident from the input port 209 into a parallel light flux and converges the light returned from the light deflecting unit 205 to the output port 210.
  • the dispersion unit 213 is for dispersing the light collimated by the microlens array 211 for each wavelength, and is composed of, for example, a transmission type dispersion element (grating). Note that a dispersion element having a Littman-Metcalf type configuration may be used as the dispersion unit 213. In this embodiment, a transmissive dispersion element is used. However, the present invention is not limited to this, and a reflective diffraction grating, Grism, super prism, or the like can also be used.
  • the condensing element 215 is, for example, a condensing lens, and condenses the light (dispersed light) dispersed for each wavelength by the dispersion unit 213 at a predetermined position for each wavelength on the deflecting unit 205.
  • a condensing mirror, a diffractive condensing element, or the like can also be used as the condensing element 215.
  • the mirror 217 reflects the light from the light condensing element 215 and guides it to the deflecting unit 205 through the plate 219 and the sealing window 207. Therefore, when the plate 219 is made of metal, the plate 219 is provided with a hole for forming an optical path between the mirror 217 and the sealing window 207. In the case where the plate 219 is formed of an optically transparent member, for example, quartz, it can be omitted to form an optical path hole in the plate 219. In addition, since the deflection
  • the deflecting unit 205 deflects the optical path of the dispersed light so that each dispersed light reflected by the mirror 217 enters the predetermined output port 210.
  • light from the optical system 203 is transmitted through the sealing window 207 and is incident on the deflecting unit 205, whose direction is deflected by the deflecting unit 205, and returns to the optical system 203 again. That is, the optical path between the optical system 203 and the deflecting unit 205 is formed through the sealing window 207.
  • the light returning to the optical system 203 is incident on the output port 210 corresponding to the wavelength through the mirror 217, the light condensing element 215, the dispersion unit 213, and the microlens array 211 in order.
  • the deflecting unit 205 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror array or a LOCS (Liquid crystal on silicon) which is a reflective liquid crystal display panel.
  • the deflecting unit 205 is a MEMS mirror array
  • the deflecting unit 205 includes a plurality of micromirrors corresponding to wavelengths arranged in an array. Each micromirror is driven by power supply from the cable 221, thereby changing the inclination of the mirror itself and changing the traveling direction of light for each wavelength.
  • the deflection unit 205 is attached to the outside of the housing 201.
  • the deflection unit 205 is bonded and fixed to an attachment member 223 attached to the housing 201 or is fixed by a screw.
  • the deflection unit 205 may be directly attached to the housing 201 without the fixing unit 223.
  • the deflecting unit 205 is attached to the outside of the casing 201, and the optical path between the optical system 203 and the deflecting unit 205 in the casing 201 is an optically transparent sealing window 207. It is formed to pass through. That is, the deflection unit 205 constituting the wavelength selective switch 111 is located outside the casing 201 and can be removed while keeping the hermetic seal of the casing 201. The deflecting unit 205 can be replaced without considering the damage to the optical system due to moisture and dust. Further, even when the attachment of the deflecting unit 205 has failed, it can be once removed, adjusted and fixed again. Since only the deflection unit 205 can be replaced and adjusted, it is not necessary to discard other components of the wavelength selective switch 111. That is, the wavelength selective switch 111 in this embodiment is excellent in terms of cost and environment.
  • the deflection unit 205 can be fixed to the mounting member 223 by screwing, the user of the wavelength selective switch 111 can easily remove and replace the deflection unit 205.
  • the wavelength selective switch optical unit 225 is attached to the casing 201 in advance and together with the casing 201 including the optical system 203. May be formed.
  • the deflection unit 205 can be attached to the sealing window 207 without using the attachment member 223. Since the deflecting unit 205 is often sealed with a cover glass or the like for protecting a device for deflecting light from dust or the like, the protective glass and the casing 201 are hermetically sealed.
  • the window 207 can be fixed to the housing 201 by joining with an optically transparent adhesive.
  • the optical surface 227 of the sealing window 207 is illustrated so as to be perpendicular to the light beam from the optical system 203. It is not necessarily limited to the embodiment.
  • the optical surface 227 can be tilted with respect to the light beam from the optical system 203.
  • the reflected light from the optical surface 227 passes through the optical path of the light from the input port 209 to the sealing window 207 in the reverse direction.
  • the light may enter the output port 210 as stray light.
  • the SN ratio (signal-to-noise ratio) of the optical signal is reduced and the crosstalk is increased. Therefore, by tilting the optical surface 227 with respect to the light beam from the optical system 203, the direction of the reflected light can be changed and the reflected light can be prevented from entering the input port 209 or the output port 210.
  • the optical system 203 is fixed to the plate 219.
  • the present invention is not limited to this, and a modification as shown in FIG.
  • the optical system 203 is fixed on the housing 201 or the sealing window 207.
  • Other configurations are the same as those in the example of FIG. With such a configuration, the plate 219 can be omitted, and cost reduction can be expected by reducing the number of parts.
  • the deflection unit 205 is attached via the attachment member 223, but it may be attached directly to the sealing window 207 as shown in FIG. 12.
  • FIG. 14 is a schematic configuration diagram of a wavelength selective switch according to the fourth embodiment of the present invention.
  • the wavelength selective switch 121 of this embodiment includes a housing 251, an optical system 253 assembled in the housing 251, and a deflecting unit 255.
  • An optical system 253 (including at least one input port 259, at least one output port 260, a microlens array 261, a dispersion unit 263, a condensing element 265, and a mirror 267) and a deflection unit 255 are illustrated in FIG.
  • optical systems 203 including at least one input port 209, at least one output port 210, a microlens array 211, a dispersion unit 213, a condensing element 215, and a mirror 217), and a deflection unit 205 Since it has the same function, explanation is omitted.
  • the casing 251 is a part of which is an optically transparent plate 269, and seals the optical system 253 assembled on the plate.
  • the plate 269 is made of, for example, quartz.
  • the input light incident from the input port 259 passes through the microlens array 261, the dispersion unit 263, and the condensing element 265, and is reflected by the mirror 267.
  • the light reflected by the mirror 267 passes through the plate 269, is guided to the deflecting unit 255, is deflected by the deflecting unit 255, and returns to the mirror 267 (optical system 253) again. That is, the optical path between the optical system 253 and the deflecting unit 255 is formed through the plate 269.
  • the light that has returned to the optical system 253 is emitted as output light through the mirror 267, the condensing element 265, the dispersion unit 263, the microlens array 261, and the output port 260 in this order.
  • the plate 269 can be provided with an antireflection film (not shown) in a region where an optical path between the optical system 253 and the deflecting unit 255 passes. As a result, the amount of unnecessary light reflected by the plate 269 entering the input port 259 and the output port 260 via the mirror 267 of the optical system 253 is reduced, and problems of crosstalk and S / N degradation are prevented. Can do.
  • the deflection unit 255 is detachably attached to the outside of the housing 251.
  • the deflection unit 255 is bonded and fixed to a mounting member 273 attached to the outside of the plate 269 or screwed.
  • the deflecting unit 255 may be directly attached to the housing 251 without the attaching unit 273.
  • the deflecting unit 255 is attached to the outside of the housing 251, and the optical path between the optical system 253 and the deflecting unit 255 in the housing 251 is transmitted through the optically transparent plate 269. Is formed. That is, the deflection unit 255 constituting the wavelength selective switch 121 is located outside the housing 251 and can be removed while keeping the hermetic seal of the housing 251. Therefore, when the deflection unit 255 fails, The deflection unit 255 can be replaced without considering the damage to the optical system due to moisture and dust. Therefore, even when the attachment of the deflecting unit 255 fails, it can be once removed, adjusted and fixed again.
  • the wavelength selective switch 121 in this embodiment is excellent in terms of cost and environment. Further, in order to realize an optical path between the optical system 253 in the housing 251 and the deflecting unit 255 outside the housing 251, a plate 269 for attaching the optical system 253 is effectively used. Therefore, since the installation of the transparent sealing window as described in the third embodiment can be omitted, the wavelength selective switch can be easily manufactured. Further, by using a glass having a small linear expansion such as quartz for the plate 269, the relative displacement of optical components at high temperatures and low temperatures can be suppressed, and the reliability can be further improved.
  • the deflection unit 255 when the deflection unit 255 is fixed to the mounting member 273 by screwing, the user of the wavelength selective switch 121 can easily remove the deflection unit 255 and replace it.
  • the wavelength selective switch optical unit 275 is mounted together with the housing 251 including the optical system 253. It may be formed.
  • the deflection unit 255 can be attached to the plate 269 without using the attachment member 273. Since the deflecting unit 255 is often sealed with a cover glass or the like for protecting a device for deflecting light from dust or the like, the protective glass and the plate 269 are bonded with an optically transparent adhesive. It can fix to the plate 269 by joining.
  • the optical surface 277 of the plate 269 is shown to be perpendicular to the light beam from the optical system 253, but this embodiment is in this mode. It is not limited.
  • the optical path passing portion of the optical surface 277 can be partially inclined with respect to the light beam from the optical system 253 by polishing.
  • the reflected light from the optical surface 277 passes through the optical path of the light from the input port 259 to the mirror 267 in the reverse direction, or There is a possibility that the light enters the output port 260 as stray light.
  • the SN ratio (signal-to-noise ratio) of the optical signal is reduced and the crosstalk is increased. Therefore, by tilting the optical surface 277 with respect to the light beam from the optical system 253, the direction of the reflected light can be changed and the reflected light can be prevented from entering the input port 259 or the output port 260.
  • the optical system includes at least one input port, at least one output port, a microlens array, a dispersion unit, a condensing element, and a mirror.
  • the optical system of the present invention can include additional components.
  • the optical system can include a cylindrical lens, an optical path adjusting plate for adjusting the optical path of light, and the like.
  • the microlens array is not necessarily arranged. If the light beam input from the input port is a parallel light beam, the light beam does not necessarily have to be made parallel by a collimating element such as a microlens array.
  • the wavelength selective switch includes four input ports 310a to 310d, one output port 310e, first dispersion units 330a and 330b, a second dispersion unit 332, a condensing lens 340, and a deflection unit 350, and includes four input ports 310a.
  • the optical signals having different wavelengths input from ⁇ 310d are selectively multiplexed and output from one output port 310e.
  • the input ports 310a to 310d and the output port 310e are collectively referred to as input / output ports 310a to 310e as appropriate.
  • the input / output ports 310a to 310e are linearly arranged in the Y direction with the output port 310e as the center.
  • the input / output ports 310a to 310e include corresponding optical fibers 311a to 311e and a microlens array 312 arranged at the subsequent stage thereof.
  • the microlens array 312 includes spherical or aspherical microlenses corresponding to the optical fibers 311a to 311e.
  • the optical signal (input light) input from the optical fiber 311c of the input port 310c is converted into parallel light by the corresponding microlens and is incident on the corresponding first dispersion unit 330b.
  • the first dispersion unit 330b includes a first dispersion element 331b made of, for example, a transmissive diffraction grating, and disperses input light from the input port 310c according to the wavelength.
  • a first dispersion element 331b made of, for example, a transmissive diffraction grating
  • optical signals when optical signals are input from the other input ports 310a and 310b, they are similarly dispersed according to the wavelength by the first dispersion element 331a made of, for example, a transmission type diffraction grating of the first dispersion unit 330a.
  • FIG. 17B illustrates a case where the first dispersion unit 330b can disperse optical signals of five wavelengths.
  • the condensing lens 340 is arranged so that the front focal position thereof substantially coincides with the dispersion base points of the first dispersion parts 330a and 330b, and the optical signal wavelength-dispersed by the first dispersion parts 330a and 330b is sent to the deflecting part 350. Condensate.
  • the wavelength-dispersed optical signal is condensed on the deflecting unit 350 for each wavelength and condensed.
  • the plurality of optical signals collected by the condenser lens 340 enter the deflection unit 350 substantially perpendicularly when viewed from a direction perpendicular to the wavelength dispersion direction.
  • the condenser lens 340 is preferably configured as an image side telecentric lens.
  • the deflection unit 350 includes a plurality of deflection elements arranged linearly in the wavelength dispersion direction of the first dispersion units 330a and 330b.
  • the deflecting unit 350 includes five deflecting elements 351a-351e, but the number is not limited thereto.
  • the deflection elements 351a-351e correspond to the five wavelengths dispersed and collected by the first dispersion units 330a and 330b, and are configured to be independently driven. Thereby, the optical signal for each wavelength incident on the deflecting unit 350 is deflected.
  • the deflecting unit 350 including such an array of deflecting elements 351a to 351e is configured using, for example, a MEMS mirror, a liquid crystal element, an optical crystal, or the like.
  • the optical signal for each wavelength deflected by the deflecting unit 350 is incident on the second dispersion unit 332 through the condenser lens 340.
  • the second dispersion unit 332 includes a second dispersion element 333 made of, for example, a transmission diffraction grating, and wavelength-multiplexes the optical signal deflected by the deflecting unit 350 so as to enter the output port 310e.
  • optical signals having different wavelengths input from the four input ports 310a to 310d are selectively output as output light from one output port 310e.
  • FIG. 17A is a diagram viewed from a wavelength dispersion direction (X direction) by the first dispersion units 330a and 330b
  • FIG. 17B is a diagram viewed from a direction (Y direction) orthogonal to the wavelength dispersion direction.
  • the Z direction indicates a direction orthogonal to the X direction and the Y direction.
  • a deflecting member such as a mirror or a prism (not shown) is arranged to bend the optical path in the optical path of the actual wavelength selective switch
  • the explanation of the X direction and the Y direction is such a deflecting member. It is assumed that it is used on the premise of a virtual optical system that does not have any.
  • FIG. 18 is a schematic perspective view of the first dispersion portions 330a and 330b, the second dispersion portion 332, the condenser lens 340, and the deflection portion 350.
  • the first dispersion unit 330a includes first dispersion elements 331a corresponding to the input ports 310a and 310b.
  • the first dispersion unit 330b includes first dispersion elements 331b corresponding to the input ports 310c and 310d.
  • the second dispersion unit 332 includes a second dispersion element 333 corresponding to the output port 310e.
  • FIG. 18 is a schematic diagram, and light does not actually travel linearly. That is, in the XZ plane, light is incident on the first dispersion portions 330a and 330b obliquely and emitted obliquely. Similarly, in the XZ plane, light is incident on the second dispersion portion 332 obliquely and emitted obliquely.
  • the first dispersion elements 331a and 331b of the first dispersion units 330a and 330b have, for example, the polarization characteristics of the diffraction efficiency E with respect to the wavelength ⁇ as shown in FIG. 19A.
  • the second dispersion element 333 of the second dispersion unit 332 has a polarization characteristic shown in FIG. 19B that cancels or compensates for the polarization characteristics of the first dispersion elements 331a and 331b, that is, cancels out.
  • the polarization characteristics in the round trip (total) by the first dispersion element 331a or 331b and the second dispersion element 333 are as shown in FIG. 19C.
  • the P polarization component and the S polarization component are A difference in diffraction efficiency can be reduced, and polarization dependent loss (PDL) can be reduced.
  • the first dispersion units 330a and 330b and the second dispersion unit 332 having the first dispersion elements 331a and 331b and the second dispersion element 333 are preferably configured as shown in FIG. 20A or FIG. 20B, for example. .
  • the first dispersion elements 330a and 330b and the second dispersion part 332 are configured by attaching the first dispersion elements 331a and 331b and the second dispersion element 333 on the same transparent substrate 334 by bonding or the like. The case is shown as an example.
  • the first dispersion elements 330a and 330b and the second dispersion part 332 are configured by integrally forming the first dispersion elements 331a and 331b and the second dispersion element 333 on the same optical member 335 by lithography or the like.
  • the case is shown as an example.
  • the polarization characteristics of the first dispersion elements 331a and 331b and the second dispersion element 333 can be controlled by a known technique such as changing the depth of the grating, the duty ratio, and the composition of the grating material. is there.
  • the first dispersion elements 331a and 331b and the second dispersion element 333 are configured to have the same lattice groove spacing so that the first dispersion parts 330a and 330b and the second dispersion part 332 have the same dispersion amount. ing. This is the same in other embodiments.
  • the second dispersion element 333 of the second dispersion unit 332 that disperses the light deflected by the deflecting unit 350 includes the first dispersion unit 330a that disperses the light from the input port. Since it has polarization characteristics that cancel the polarization characteristics of the first dispersion elements 331a and 331b of 330b, polarization-dependent loss can be reduced. In addition, the polarization characteristics of the diffraction grating may vary due to variations in the manufacturing of the diffraction grating. In the configuration shown in FIG.
  • a better combination of the first dispersive elements 331a and 331b and the second dispersive element 333 can be selected from the diffraction gratings having different polarization characteristics. For this reason, when manufacturing a diffraction grating, there exists an advantage that it is hard to receive the influence of the manufacturing variation.
  • the wavelength selective switch according to the present invention is not limited to the case where a plurality of input lights for each wavelength are divided and multiplexed, and the wavelength division multiplexed input light is dispersed and outputted for each wavelength. Sometimes used to do.
  • 17B illustrates five deflecting elements 351a-351e in the deflecting unit 350, but in actuality, the number of deflecting elements depends on the frequency interval (channel interval) of the propagated signal and the frequency bandwidth ( Number of channels). This is the same in other embodiments.
  • the port interval between the input port and the output port may be changed so that the input light and the output light can be reliably separated.
  • the interval between the input ports 310a and 310b and the interval between the input ports 310c and 310d are d1, respectively, and the interval between the input port 310b and the output port 310e and the interval between the input port 310c and the output port 310e are d2.
  • d2 ⁇ d1.
  • FIGS. 17A and 17B are schematic configuration diagrams of the wavelength selective switch according to the sixth embodiment of the present invention.
  • the wavelength selective switch includes four output ports 315a to 315d and one input port 315e in place of the four input ports 310a to 310d and one output port 310e in the configuration shown in FIGS. 17A and 17B.
  • the input ports 315e are linearly arranged in the Y direction so as to be positioned at one end. Similar to the fifth embodiment, these output ports 315a-315d and input ports 315e include corresponding optical fibers 311a-311e and microlens arrays 312 disposed on their end faces. Also, one first distribution unit 330 corresponding to the input port 315e and one second distribution unit 332 corresponding to the output ports 315a to 315d are provided.
  • FIG. 22 is a schematic perspective view of portions of the first dispersion unit 330, the second dispersion unit 332, the condenser lens 340, and the deflection unit 350.
  • the first dispersion unit 330 corresponding to the input port 315e includes a first dispersion element 331.
  • the second dispersion unit 332 corresponding to the output ports 315a to 315d includes the second dispersion element 333.
  • the second dispersion element 333 has a polarization characteristic that cancels or compensates for the polarization characteristic of the first dispersion element 331, that is, cancels it out.
  • FIG. 21A is a view seen from the chromatic dispersion direction (X direction) by the first dispersion element 331, as in FIG. 17A
  • FIG. 21B is a direction orthogonal to the chromatic dispersion direction (as in FIG. 17B). It is the figure seen from (Y direction). Since other configurations are the same as those in FIGS. 17A and 17B, the same reference numerals are given to components having the same actions, and detailed description thereof is omitted.
  • the wavelength-multiplexed optical signal (input light) input from the input port 315e is wavelength-dispersed by the first dispersion element 331 of the first dispersion unit 330 in the forward path, and then deflected by the condenser lens 340.
  • the light is incident on the deflecting elements 351a-351e corresponding to the wavelength of the unit 350 and deflected.
  • the optical signal for each wavelength deflected by the deflecting unit 350 is dispersed by the second dispersion element 333 of the second dispersion unit 332 through the condenser lens 340 in the return path.
  • the polarization characteristic in the forward path is canceled.
  • the optical signal wavelength-multiplexed by the second dispersion element 333 is selectively output from the output ports 315a-315d.
  • FIG. 21A illustrates a case where an optical signal is incident on one output port 315c.
  • the polarization dependent loss can be reduced as in the case of the fifth embodiment.
  • the configuration can be simplified and the cost can be reduced.
  • FIG. 21A four output ports 315a-315d and one input port 315e are illustrated, but the input port 315e may be an output port and the output port 315a-315d may be an input port.
  • FIG. 23 is a schematic configuration diagram of a wavelength selective switch according to the seventh embodiment of the present invention.
  • This wavelength selective switch has at least one input port and at least one output port in which incident / exit ends are arranged in series in the direction perpendicular to the paper surface (Y direction).
  • the four output ports 315a to 315d and one input port 315e shown in the sixth embodiment are provided, and the input port 315e is arranged in the Y direction so as to be positioned at one end. To do.
  • the wavelength-multiplexed optical signal (input light) input from the input port 315e is collected by the primary condenser lens 360 in the forward path, and then incident on the first dispersion unit 330 by the condenser lens 340.
  • the condensing lens 340 is disposed so that its front focal position is located at a condensing point by the primary condensing lens 360.
  • the first dispersion unit 330 includes a first dispersion element 331 having a transmissive diffraction grating and a folding mirror 336 that is a reflection element.
  • the first dispersion element 331 reflects the dispersed light from the first dispersion element 331 by the folding mirror 336 and the first dispersion element 330 again. It has a Littman-Metcalf structure that is incident on the dispersive element 331.
  • the first dispersion element 331 is disposed so that the dispersion base point thereof is positioned in the vicinity of the rear focal position of the condenser lens 340.
  • the optical signal from the input port 315e incident on the first dispersion unit 330 by the condenser lens 340 is dispersed by the first dispersion element 331, reflected by the folding mirror 336, and again dispersed by the first dispersion element 331. And emitted from the first dispersion unit 330.
  • the optical signal emitted from the first dispersion unit 330 is collected by the condensing lens 340 onto the deflecting elements 351a-351e corresponding to the wavelength of the deflecting unit 350 and is independently deflected.
  • the deflecting unit 350 is disposed on the opposite side of the condensing lens 340 from the first dispersion unit 330, that is, on the same side as the input / output ports 315a to 315e.
  • the optical signals deflected independently by the deflection unit 350 are incident on the second dispersion unit 332 through the condenser lens 340 in the return path.
  • the second dispersion unit 332 includes a second dispersion element 333 (not shown) having a transmissive diffraction grating, and a folding mirror 336 used together with the first dispersion unit 330. As described above, the folding mirror 336 is shared by the first dispersion unit 330 and the second dispersion unit 332.
  • the second dispersive element 333 has a polarization characteristic that cancels the polarization characteristic of the first dispersive element 331, and is configured in the same manner as FIG. 20A and FIG. 20B in the direction perpendicular to the paper of FIG. Is done.
  • FIG. 23 is a diagram viewed from a direction orthogonal to the wavelength dispersion direction (X direction) of the first dispersion element 331, and illustrates a case where the first dispersion element 331 is dispersed into three wavelengths.
  • the polarization dependent loss can be reduced as in the above embodiment.
  • the first dispersion unit 330 and the second dispersion unit 332 have a Littman-Metcalf structure having the folding mirror 336, a large dispersion can be obtained, and the wavelength selective switch can be downsized. Become.
  • the present invention can be effectively applied not only to the transmissive type but also to the configuration using a reflective type, Grism, super prism, or the like.
  • the microlens array 312 does not necessarily have to be arranged.
  • the condensing lens 340 and the primary condensing lens 360 may have a condensing function, and a condensing mirror, a diffractive condensing element, or the like can be used.
  • (Eighth embodiment) 24A and 24B are a side view and a top view, respectively, showing the configuration of the wavelength selective switch 401 according to the eighth embodiment of the present invention.
  • the wavelength selection switch 401 includes an input / output unit 410, a lens 412, a cylindrical lens 413, a lens 414, a dispersion element 415 that forms a dispersion unit, a lens 416 that is a condensing element, and a deflector 417 that forms a deflection unit. Has been.
  • the input / output unit 410 is provided with a microlens array 411 in which ends of optical fibers of the optical fiber array 405 are arranged in an array (in series), and a plurality of microlenses corresponding to the ends are arranged in an array. Yes.
  • the pair of optical fibers and the microlens constitute one of the input port 410a and the output ports 410b to 410e.
  • the input port 410a and the output ports 410b to 410e are used to input wavelength-multiplexed signal light from the outside of the wavelength selective switch 401 and to output signal light to the outside.
  • the input port 410a and the output ports 410b to 410e are collectively referred to as the input / output ports 410a to 410e as appropriate.
  • the number of input / output ports may be 10 or more and the number of output ports may be larger than the number of input ports.
  • five input / output ports 410c are mainly used. Only the output ports 410a to 410e are shown.
  • the other end of the input / output optical fiber array 405 is connected to the outside of the wavelength selective switch 401.
  • the microlens of the microlens array 411 converts the light incident from the optical fiber into a parallel light beam, and converts the parallel light beam output to the input / output ports 410b to 410e in the wavelength selective switch 401 into the optical fiber array 405. To the corresponding optical fiber.
  • the input light that enters the wavelength selective switch 401 from the input / output port 410a and the output light that travels toward the input / output ports 410b to 410e in the wavelength selective switch 401 become parallel light beams.
  • the traveling direction of parallel light input from the input / output port 410a is defined as the optical axis direction (z direction).
  • This optical axis direction is also the optical axis direction of the optical system including the lens 412 and the lens 414.
  • the direction in which the input / output ports 410a to 410e are arranged is defined as a first direction (y direction).
  • the optical axis direction and the first direction are orthogonal to each other.
  • a direction orthogonal to each of the optical axis direction and the first direction (y direction) is referred to as a second direction (x direction).
  • a deflecting member such as a mirror or a prism (not shown) is arranged to bend the optical path in the optical path of the actual wavelength selective switch
  • the description of the x direction and the y direction is such a deflecting member. It is assumed that it is used on the premise of a virtual optical system that does not have any.
  • the cylindrical lens 413 is a lens that has cylindrical surfaces on both the incident side and the emission side and contracts the light beam in the second direction (x direction), that is, has a refractive power only in the second direction (x direction). is there.
  • the cylindrical lens 413 converges the convergent light from the lens 412 as it is in the first direction (y direction) and converges with a greater degree of convergence in the second direction (x direction). Therefore, the input light transmitted through the lens 412 and the cylindrical lens 413 forms a narrow elliptical spot in the second direction (x direction) at the primary condensing point 420 near the focal point of the lens 412. That is, in the present embodiment, the cylindrical lens 413 is an ovalizing element that ovalizes a light beam.
  • the lens 414 and the lens 416 are, for example, lenses having the same focal length f, and the lens 414, the dispersive element 415, the lens 416, and the deflector 417 are the primary condensing point 420, the lens 414, and the dispersive surfaces of the dispersive element 415,
  • the lens 416 and the deflection element surface formed by the deflection element (mirror) 418 of the deflector 417 are arranged so that the distance between them is equal to the focal length f.
  • the light beam that has passed through the primary condensing point 420 becomes parallel light by the lens 414 and is condensed by the lens 416 onto the deflecting element 418 of the deflector 417.
  • the lens 414 and the lens 416 may have different focal lengths.
  • the dispersion element 415 is, for example, a diffraction grating in which a grating parallel to the first direction (y direction) is formed on the dispersion surface.
  • a diffraction grating in which a grating parallel to the first direction (y direction) is formed on the dispersion surface.
  • the dispersive element one having a high light decomposition performance for each wavelength and a larger dispersion angle is desirable.
  • the input light transmitted through the lens 414 becomes substantially parallel light and enters the dispersive element 415, and is different for each wavelength in the second direction (x direction) on the dispersive surface of the dispersive element 415. Distributed by angle. That is, the dispersive element 415 separates input light into light for each wavelength included in the input light.
  • the light for each wavelength dispersed by the dispersion element 415 is converted into a light beam parallel to each other by the lens 416, and is substantially applied to the deflection element 418 corresponding to each wavelength in the second direction (x direction). Incident vertically.
  • the input light that has passed through the primary condensing point is dispersed by the dispersive element 415, and then the optical axis of the lens 416 and the deflecting element 418 in the yz plane.
  • the light is condensed at a height position where it intersects with the deflection element surface.
  • the deflector 417 is, for example, a MEMS mirror array, and the deflection element 418 is a rectangular micromirror that is long in a plurality of first directions (y direction) constituting the MEMS mirror array.
  • the deflection element 418 is arranged in parallel in the second direction (x direction) at the height position of the optical axis of the lens 416, corresponding to the light of each wavelength to be separated.
  • the deflector 417 can change the tilt by independently controlling each deflecting element 418. In particular, by changing the inclination in the yz plane in FIG. 24A, the light for each incident wavelength is reflected in a height direction different from the incident direction.
  • the deflector 417 is not limited to the MEMS mirror array, and may be configured using a liquid crystal element or an optical crystal. In FIG. 24B, only nine deflection elements 418 are illustrated, but the number of deflection elements 418 is not limited to nine.
  • each deflecting element 418 passes through the lens 416, is diffracted by the dispersive element 415, passes through the optical path in the opposite direction to the input light, and is used for input in the input / output unit 410. It is output as regular light to any of the input / output ports 410b to 410e or other input / output ports (not shown).
  • the deflection direction of the corresponding deflection element 418 is controlled, and a broken line in FIG. As shown, light of a specific wavelength is reflected in a predetermined direction.
  • the light having a specific wavelength reflected by the deflecting element 418 passes through the lens 416, and is output from the input / output port 410c via the dispersive element 415, the lens 414, the cylindrical lens 413, and the lens 412.
  • the plurality of wavelengths of light are multiplexed by the dispersion element 415.
  • FIG. 25A is a top view showing a light flux of input light from the input / output port 410a of the wavelength selective switch 401 of FIG.
  • This figure shows a state where the input light is converged by the lens 412 and the cylindrical lens 413 and condensed on the primary condensing point 420.
  • FIG. 25B is a top view showing the luminous flux of the reflected light reflected by the incident side surface (incident surface) 413a of the cylindrical lens 413.
  • the incident surface 413a is a curved surface that is convexly convex toward the incident side, whereas the wavefront Sc of the input light just before entering the incident surface 413a has a shape close to a substantially flat surface. . For this reason, when a part of the input light is reflected by the incident surface 413a, the reflected light becomes a light flux having a diameter increased in the first direction (x direction) toward the input / output ports 410a to 410e.
  • the reflected light forms a light beam wider than the diameter of the exit surface at the exit surface of the input / output port 410c, that is, the position of the microlens array 411. Further, since the reflected light incident on the microlens array 411 is limited by the diameter of the microlens constituting the microlens array 411, only a part of the wide luminous flux is incident on the microlens. For this reason, the amount of reflected light of the light reflected by the incident surface 413a that enters the optical fiber constituting the optical fiber array 405 is reduced.
  • the reflected light whose diameter increases in the traveling direction does not form an image on the end face of the optical fiber array 405 even if a part of the reflected light passes through the microlens array 411, and therefore hardly enters the optical fiber. Therefore, the magnitude of crosstalk caused by this reflected light can be reduced.
  • FIG. 25C is a top view showing the luminous flux of the reflected light that is reflected by the surface (exiting surface) 413b of the cylindrical lens 413 on the input side.
  • the exit surface 413b is a curved surface that is concavely curved toward the incident side, whereas the wavefront Sd of the input light just before entering the exit surface 413b is refracted by the entrance surface 413a and is concave in the traveling direction. It has a shape. For this reason, when a part of the input light is reflected by the emission surface 413b, the reflected light becomes a light beam whose diameter is narrowed in the first direction (x direction) toward the input / output ports 410a to 410e.
  • the reflected light once converges in the first direction (x direction) and then diverges, and the diameter of the lens at the position of the exit surface of the input / output port 410c, that is, the lens surface of the corresponding microlens of the microlens array 411.
  • a wider luminous flux is formed. Therefore, similarly to the case of FIG. 25B, the amount of reflected light incident on the microlens is small. Further, similarly to the case of FIG. 25B, the magnitude of crosstalk caused by the reflected light can be reduced.
  • FIG. 26 is a top view illustrating an example of the shape of the cylindrical lens in FIGS. 24A and 24B.
  • the cylindrical lens 413 is configured to have two cylindrical surfaces having a common central axis (a straight line passing through the center C in FIG. 26 and perpendicular to the paper surface) and having two curvature radii R facing each other. That is, the cylindrical lens 413 can be cut out and formed from a single transparent member such as columnar glass.
  • FIG. 27 is a top view illustrating another shape of the cylindrical lens as a modification of the present embodiment.
  • the cylindrical lens 423 in this figure is a cylindrical surface where the incident-side surface 423a is a convex cylindrical surface, and the exit-side surface 423b is a concave cylindrical surface having a larger radius of curvature than the incident-side cylindrical surface, that is, a small curvature. is there.
  • the refractive power obtained by combining the refractive power of the incident-side surface 423a and the refractive power of the outgoing-side surface 423b is equivalent to a cylindrical lens having a positive refractive power.
  • both the incident-side surface 423a and the emission-side surface 423b are formed by curved surfaces, the occurrence of crosstalk due to reflected light can be suppressed as in the case of using the cylindrical lens 413.
  • the cylindrical lens 413 disposed to form an elliptical spot in the wavelength selective switch 401 is connected to both the incident side and the emission side through which input light passes. Since it is configured to have a surface, the reflected light of the input light reflected by either the incident-side surface 413a or the output-side surface 413b becomes a light beam having a wide diameter at the position of the output surface of the output port. Therefore, occurrence of crosstalk can be suppressed.
  • both the incident-side surface 413a and the emission-side surface 413b of the cylindrical lens 413 are formed as curved surfaces instead of flat surfaces. It is possible to suppress the reflected light from being imaged on the end face of the optical fiber array 405 by the microlens array 411 and entering the optical fiber to generate crosstalk.
  • the cylindrical lens 413 since the two surfaces of the cylindrical lens 413 are formed as opposed cylindrical surfaces having a common central axis, the cylindrical lens can be easily cut out from one cylindrical member.
  • the elliptical element is a cylindrical lens in which two surfaces through which input light passes are cylindrical surfaces.
  • the present invention is not limited to this.
  • a refracting surface similar to the cylindrical surface may be formed by providing a Fresnel shape instead of one or both of the cylindrical surfaces.
  • the ovalization element is not limited to a lens having refractive power only in the second direction (x direction), and for example, refractive power in both the first direction (y direction) and the second direction (x direction).
  • a lens having a larger refractive power in the first direction (y direction) can also be used.
  • the vertical direction orthogonal to the optical axis direction (z direction) of the input light output from the input / output port is the first direction (y direction), and the horizontal direction is the second direction (x
  • the first direction (y direction) is not limited to the vertical direction
  • the second direction (x direction) is not limited to the horizontal direction.
  • the first direction (y direction) and the second direction (x direction) may be two directions that are substantially orthogonal to the traveling direction of the input light and substantially orthogonal to each other.
  • the microlens array 411 is not necessarily arranged.
  • the exit surface of the output port refers to the end face of the optical fiber at the port that functions as the output port of the input / output port 410.
  • the lens 412, the lens 414, and the lens 417 may have a light condensing function, and a condensing mirror, a diffractive condensing element, or the like can be used.
  • the dispersive element 415 may have a Littman-Metcalf type structure in which a dispersive element and a reflective surface are combined. In this case, the lens 414 and the lens 416 can be shared.
  • the dispersive element 415 is not limited to the transmissive type, and a reflective diffraction grating, a Grism, a super prism, or the like can also be used.
  • (Ninth embodiment) 28 and 29 are a side view and a top view, respectively, showing the configuration of the wavelength selective switch according to the ninth embodiment.
  • the wavelength selective switch 501 includes an input / output unit 510, a first lens 512, a second lens 514, a dispersion element 515 that constitutes a dispersion unit, a third lens 516 that is a first condensing element, and a deflection unit.
  • the deflector 517 is configured to be included.
  • the first lens 512 and the second lens 514 are relay optical elements that constitute a relay optical system.
  • the solid arrow indicates the optical path of light from the input / output unit 510 to the deflector 517
  • the broken arrow indicates the optical path of light returning from the deflector 517 to the input / output unit 510. .
  • the input / output unit 510 is provided with a microlens array 511 including a plurality of microlenses corresponding to the ends of an optical fiber array including a plurality of optical fibers arranged in series.
  • the pair of optical fibers and the microlens constitute one of the input ports 510a, 510b, 510d, and 510e and the output port 510c.
  • the input ports 510a, 510b, 510d, 510e and the output port 510c are for inputting wavelength-multiplexed signal light from the outside of the wavelength selective switch 501 and for outputting signal light to the outside.
  • the input ports 510a, 510b, 510d, and 510e and the output port 510c are appropriately described as input / output ports 510a to 510e as appropriate.
  • the number of input / output ports is, for example, six or more, and a plurality of output ports and input ports can be provided in any arrangement, but in FIG. 28, for convenience of explanation, five input / output ports centering on the output port 510c are provided. Only ports 510a-510e are shown. 28 and 29 show an example in which light input from the input port 510b is output to the output port 510c.
  • the intensity of the light flux of the input light has a Gaussian distribution as shown in FIG. 30, and the light intensity is the strongest at the center position of the light flux.
  • the light beam diameter spreads from the vicinity of the microlens array 511 on the first lens 512 at a position away from the microlens array 511, the input from the adjacent input ports 510 a, 510 b, 510 d, and 510 e or adjacent to each other. Overlap occurs with the optical path of the light flux to the output port 510c.
  • the width of the light flux of the input light that determines the overlap of the input light is defined by the diameter of the light flux at which the light intensity is 1 when the highest value of the light intensity of the input light is 100. If the light intensity is less than about 1% of the peak value of the light intensity, even if a part of the light is reflected and enters the adjacent port, it does not cause much crosstalk.
  • the size of the light beam is not limited to the above definition, and may be defined using, for example, a light beam diameter that is 5% or 13.5% of the peak value of the light intensity.
  • Each microlens of the microlens array 511 converts light incident from the optical fibers of the input ports 510a, 510b, 510d, and 510e into substantially parallel collimated light, and the input / output port 510c in the wavelength selective switch 501.
  • the substantially parallel collimated light output toward is coupled to the corresponding optical fiber of the optical fiber array.
  • the input light that enters the wavelength selective switch 501 from the input ports 510a, 510b, 510d, and 510e and the output light that travels toward the output port 510c in the wavelength selective switch 501 become substantially parallel collimated light. Designed as such.
  • the input / output ports 510a to 510e are arranged in a first direction (y direction) orthogonal to the direction of input light (z direction).
  • a direction orthogonal to the direction of input light (z direction) and the first direction (y direction) is defined as a second direction (x direction).
  • the direction along the optical path at the position on each optical path is the z direction, and the direction orthogonal to the first direction (y direction) Is the second direction (x direction).
  • a deflecting member such as a mirror or a prism (not shown) is arranged to bend the optical path in the optical path of the actual wavelength selective switch
  • the description of the x direction and the y direction is such a deflecting member. It is assumed that it is used on the premise of a virtual optical system that does not have any.
  • the first lens 512 is a lens having convex surfaces on both sides.
  • the input light transmitted through the first lens 512 forms a spot condensed by the first lens 512 at the primary condensing point 520.
  • the primary condensing point 520 is a position where input lights from a plurality of input ports intersect.
  • the first lens 512 is arranged such that the optical axis has an inclination in the second direction in the xz plane with respect to the traveling direction of the input light. For this reason, the relay optical system including the first lens 512 is not a coaxial optical system but an asymmetric optical system with respect to the optical axis.
  • FIG. 31 is a top view for explaining an example of an optical path of light transmitted through the first lens (relay lens) 512.
  • the first lens 512 has two surfaces, a surface 512 a on the input / output unit 510 side and a surface 512 b on the dispersion element 515 side.
  • the input light incident from the input ports 510a, 510b, 510d, and 510e is in the first center (in the y direction), the first lens 512 has a first center at the center of the input portion side surface 512a.
  • the light is incident on the optical axis O of the lens 512 at an angle ⁇ and is emitted from the surface 512b on the dispersion element side at an angle ⁇ .
  • the angle ⁇ and the angle ⁇ are generally not equal.
  • the second lens 514 and the third lens 516 are, for example, lenses having substantially the same focal length f.
  • the second lens 514, the dispersive element 515, the third lens 516, and the deflector 517 include the primary condensing point 520, the second lens 514, the dispersive surface of the dispersive element 515, the third lens 516, and The distance between the deflecting elements (mirrors) 518 of the deflector 517 is arranged to be substantially equal to the focal length f.
  • the light beam that has passed through the primary condensing point 520 becomes collimated light by the second lens 514 and is condensed by the third lens 516 onto the deflecting elements 518 a to 518 e of the deflector 517.
  • the focal lengths of the second lens 514 and the third lens 516 may be different.
  • the dispersion element 515 is, for example, a diffraction grating in which a grating parallel to the first direction (y direction) is formed on the dispersion surface.
  • the input light transmitted through the second lens 514 enters the dispersive element 515 as collimated light substantially parallel to each other in the first direction (y direction) of the light at each input port.
  • FIG. 32 shows spots 515a, 515b, 515d, and 515e of input light incident from the input ports 510a, 510b, 510d, and 510e on the dispersion surface of the dispersion element 515.
  • Each input light is dispersed at a different angle for each wavelength in the second direction (x direction) on the dispersion surface of the dispersion element 515. That is, the dispersive element 515 separates input light into light for each wavelength included in the input light.
  • the dispersive element 515 and the third lens 516 are separated from each other by the focal length f, the light for each wavelength dispersed by the dispersive element 515 is transmitted by the third lens 516 as shown in FIG.
  • the convergent lights are parallel to each other in the second direction (x direction) of the light for each wavelength, and are incident on the deflection element 518 corresponding to each wavelength.
  • the individual light for each wavelength forms a spot condensed on the deflection element 518 corresponding to each wavelength of the deflector 517 by the third lens 516. Further, when viewed from the side, as shown in FIG.
  • the input light that has passed through the primary condensing point 520 is dispersed by the dispersive element 515 and then deflected with the optical axis of the third lens 516 within the yz plane.
  • the light is condensed at a height position (position in the y direction) where the deflecting element surface of the deflecting element 518 of the vessel 517 intersects.
  • FIG. 33 is a perspective view of the deflector 517 as viewed from the third lens 516 side.
  • the deflector 517 is, for example, a MEMS mirror array, and the deflection element 518 has a rectangular micromirror that is long in each first direction (Y direction) constituting the MEMS mirror array.
  • the direction in which the MEMS mirror array is arranged in the xz in-plane direction will be described as the second direction (X direction).
  • the second direction is different from the second direction (x direction) at the input / output port, they are described as the X direction and the Y direction.
  • the deflection elements 518 are arranged in at least the number of wavelengths in the second direction (X direction).
  • each deflection element 518 has two degrees of freedom of rotation: X ⁇ that rotates about the X axis and Y ⁇ that rotates about the Y axis.
  • the light for each wavelength is deflected in the first direction (Y direction) and the second direction (X direction) by the rotation of X ⁇ and Y ⁇ , respectively.
  • the first direction (Y direction) By deflecting the light for each wavelength in the first direction (Y direction), the light of the input port for each wavelength emitted to the output port 510c is selected, and the light for each wavelength in the second direction (X direction).
  • the intensity of light at the input port for each wavelength emitted to the output port 510c can be adjusted. This deflection in the second direction is used for attenuation described later.
  • each deflection element 518 passes through the third lens 516 as diffused light, and is collimated by the third lens 516. It becomes light and enters the dispersion element 515.
  • the rotation angles of Y ⁇ of the deflection elements 518 are equal, as shown in FIG. 29, the light for each wavelength transmitted through the third lens 516 is a dispersion element when viewed from the first direction (y direction). 515 gather at the same point on the surface of the dispersive element.
  • the rotation angle of X ⁇ of each deflecting element 518 the light for each wavelength is incident on a different position in the first direction of the dispersive element 515. In FIG.
  • the light having the wavelength output to the output port 510c is indicated by a broken line.
  • the deflection element 518 corresponding to the different wavelengths around the X axis.
  • the wavelength is multiplexed by the dispersive element 515, and the light is emitted from the same output port 510c.
  • the light transmitted through the dispersive element 515 enters the second lens 514 while maintaining the collimated state, and is condensed on the primary condensing point 520, then collimated by the first lens 512, and output to the output port 510c.
  • the light enters the microlens of the corresponding microlens array 511.
  • the output light is collected by the microlens to the corresponding output port 510c and output as normal light.
  • the optical axis of the first lens 512 is inclined in the second direction (x direction) with respect to the traveling direction of the input light.
  • 34A and 34B are a side view and a top view for explaining an example of a stray light beam by reflection of input light by the surface 512a on the input / output ports 510a to 510e side of the first lens 512, respectively.
  • FIGS. 35A and 35B are a side view and a top view for explaining an example of a stray light beam caused by reflection of input light by the surface 512b of the first lens 512 on the dispersion element side, respectively.
  • a part of the input light emitted from the input port 510b is slightly reflected on the surface 512a on the input / output port side of the first lens 512 to become stray light.
  • This stray light beam becomes light diffused by reflection on the convex surface of the lens, and as shown in FIG. 34A, for example, height that overlaps part of the input ports 510a and 510b and the output port 510c of the microlens array 511. And returns to the input / output unit 510 side.
  • the optical axis of the first lens 512 is inclined in the second direction (x direction) by the angle ⁇ in FIG.
  • the input light is reflected as shown in FIG. 34B. Since the stray light generated in this manner deviates in the second direction (x direction), it can be prevented from entering the microlens array 511. Therefore, the return light can be prevented from entering the output port 510c.
  • a part of the input light incident from the input port 510b is slightly reflected by the surface 512a on the dispersion element side of the first lens 512 and becomes stray light.
  • the stray light flux is condensed by internal reflection of the convex surface of the lens and becomes diffused light, and has a height that overlaps, for example, the input port 510d and the output port 510c of the microlens array 511 as shown in FIG. 35A. It becomes light and returns to the input / output unit 510 side.
  • the optical axis of the first lens 512 is tilted by the angle ⁇ in FIG.
  • the input light is reflected as shown in FIG. 35B. Since the stray light generated in this manner deviates in the second direction, it can be prevented from entering the microlens array 511. Therefore, the return light can be prevented from entering the output port 510c.
  • the angle ⁇ is determined so that stray light caused by reflection of input light on the lens surface does not enter the microlens array 511.
  • 34A, 34B, 35A, and 35B show an example of the stray light beam due to reflection, and the form of stray light due to reflection of the input light by the lens surface of the first lens 512 is limited to this. I can't.
  • the stray light reaching the vicinity of the microlens array 511 can be generated depending on the shape of the first lens 512, whether the diameter of the light beam is larger or smaller.
  • the stray light generated by the reflection on the lens surface 512b on the dispersion element side of the first lens 512 is once converged and then becomes a divergent light beam near the microlens array 511.
  • the present invention is not limited to this, and depending on the shape of the first lens 512, it may reach the vicinity of the microlens array 511 as a condensed light beam.
  • FIG. 36 is a top view for explaining a light intensity adjustment method in the wavelength selective switch of FIGS.
  • Wavelength multiplexed light input from the input ports 510a, 510b, 510d, and 510e of the input / output unit 510 generally has different light intensity input for each wavelength.
  • the wavelength selective switch can have a function (attenuation) of aligning different intensities for each wavelength, performing wavelength multiplexing, and outputting from the output port. Attenuation is performed by reducing the light intensity of the light of other wavelengths to the light having the smallest light intensity value among the light of the plurality of wavelengths targeted for light intensity adjustment.
  • the wavelength selection switch 501 of this embodiment performs attenuation by swinging the deflecting elements (mirrors) 518a to 518e of the deflector (mirror array) 517 in the second direction (X direction).
  • Figure 36 shows how output to the deflection element 518c, only the second direction (X-direction) light L 2 reflected from the mirror in the case where waving mirror how the output port 510c of the deflector 517 .
  • the light L 2 reflected by the deflection element 518c is incident in the xz plane, the deflection elements 518a, 518b, 518d, the third lens 516 at different angles to the light L 1 reflected by 518e, after exiting from the third lens 516, is diffracted by the dispersive element 515, when viewed from the first direction (y-direction), the deflecting elements 518a, 518b, 518d, fixed distance light L 1 and reflected by 518e
  • the separated parallel light L 2 is condensed at the primary condensing point 520 by the second lens 514 and then incident on the first lens 512.
  • FIG. 37 is a diagram for explaining the optical path in the vicinity of the first lens 512 in FIG. 36
  • FIG. 38 is a diagram for explaining the optical path in the vicinity of the input / output port 510c in FIG.
  • the light L 2 is a micro lens corresponding to the output port 510c of the microlens array 511, incident parallel to the optical axis at a position away from the optical axis of the microlens, tilted by ⁇ as shown in FIG. 38 Then, the light enters the fiber end of the output port 510c.
  • the coupling efficiency ⁇ of the output port 510c when obliquely entering by the angle ⁇ is expressed by the following equation (1), and it can be seen from this equation (1) that the coupling efficiency ⁇ decreases as the angle ⁇ increases.
  • exp ( ⁇ 2 ⁇ 2 ⁇ 2 / ⁇ ) (1)
  • represents the spot size incident on the fiber end of the output port 510c
  • represents the wavelength of light output to the output port 510c.
  • the deflection element 518 is rotated around the Y axis (swinged in the second direction), so that the light for each wavelength reflected by the deflection element 518 is within the xz plane.
  • the emission direction at can be changed.
  • the incident angle ⁇ of the light entering the output port 510c can be similarly changed.
  • the light intensity output to the output port 510c can be freely changed.
  • the deflection element 518 of the deflector 517 can be swung in either the clockwise direction or the counterclockwise direction around the Y axis in FIG. 33 from the direction in which incident light is vertically reflected.
  • the incident angle at which the light L 2 reflected by the deflector 517 enters the first lens 512 shakes the deflection element 518. It is desirable to swing the deflecting element 518 in a direction that is larger than before.
  • the deflection element 518 When the deflection element 518 is swung in a direction in which the incident angle of the first lens 512 is larger than that before the deflection element 518 is swung, the light passes through the surface 512b of the first lens 512 on the dispersion element 515 side. Incidently. As a result, it is possible to suppress the occurrence of slightly reflected light between the deflector 517 and the input / output unit 510 on the surface 512b of the first lens 512, thereby suppressing the occurrence of crosstalk. Can do. Further, when the deflection direction of the deflecting element 518 in the second direction (X direction) is determined, the direction of the inclination of the first lens 512 is determined accordingly, thereby suppressing the occurrence of crosstalk. be able to.
  • the wavelength selective switch 501 arranges the first lens (relay optical element) 512 so that the optical axis has an inclination with respect to the traveling direction of the input light, and the input light. Is also configured such that the stray light generated by being reflected by any surface of the first lens 512 does not enter the output port 510c, and thus crosstalk due to stray light generated by undesired reflection by the first lens 512. Can be reduced.
  • the focal length of the first lens 512 may become long, and the overlap of light fluxes in the first lens 512 may become larger.
  • at least one of the surfaces constituting the first lens 512 may be close to a substantially flat surface.
  • employing the wavelength selective switch 501 according to the present embodiment is particularly preferable from the viewpoint of reducing the occurrence of crosstalk due to reflection of input light by the lens surface.
  • the input / output ports 510a to 510e are arranged in series in the first direction (y direction), and the optical axis of the first lens 512 is relative to the traveling direction of the input light incident on the first lens 512.
  • the angle of tilting the optical axis of the first lens 512 with respect to the traveling direction of the input light is small.
  • the stray light caused by the reflected light of the input light can be prevented from entering the input / output ports 510a to 510e.
  • the optical axis of the first lens 512 can be tilted in the first direction (y direction).
  • the tilt angle becomes large.
  • the direction in which the optical axis of the first lens 512 is inclined does not necessarily need to be the second direction (x direction) strictly orthogonal to the first direction (y direction), but the first direction (y The same effect can be obtained even in a direction substantially orthogonal to (direction).
  • the light flux of the input light from the input ports 510a, 510b, 510d, and 510e that enters the first lens 512 and the light flux of the output light that goes to the output port 510c are adjacent to the other input ports 510a, 510b, 510d, and 510e. Therefore, the input / output port density can be further increased. At this time, by tilting the optical axis of the first lens 512, it is possible to suppress the occurrence of crosstalk due to the reflection of the input light even if the light beams overlap.
  • the deflection of the light for each wavelength in the second direction (X direction) by the deflecting element 518 is more than when the light for each wavelength is reflected by the deflecting element 518 perpendicular to the second direction (X direction). Since the light is incident on the first lens 512 in such a direction that the incident angle of the light for each wavelength increases, the regular light reflected by the deflector 517 returns to the surface on the dispersion element side of the first lens 512. The occurrence of crosstalk due to external reflection at 512b can be suppressed.
  • the optical axis of the first lens 512 with respect to the traveling direction of the input light is Arranged to have an inclination.
  • the crosstalk is reflected not only by the first lens 512 but also by, for example, the second lens 514 or another transmissive optical element disposed between the input port and the dispersive element, or a reflective optical element. It can also be caused by transmission due to. Also in this case, by straying the traveling direction of the input light incident on these optical elements and the optical axis of the optical elements, stray light can be prevented from entering the output port, and crosstalk can be removed or reduced.
  • FIG. 39 is a top view showing the configuration of the wavelength selective switch 501 according to the tenth embodiment.
  • This embodiment is the wavelength selective switch according to the ninth embodiment, and in particular, the traveling direction of input light incident on the first lens 512 and the traveling direction of input light exiting the first lens 512 are:
  • the first lens 512 is disposed so as to match. That is, the angle ⁇ and the angle ⁇ in FIG. 31 are equal.
  • the first lens 512 is arranged so that the optical path of the input light coincides with the optical axis of the first lens 512 when viewed from the first direction (y direction). .
  • the angle ⁇ is 0 degree.
  • the first lens 512 is rotated using an adjustment jig or the like around the axis in the first direction (y direction) passing through the front principal point 512c of the first lens 512. Let As a result, the angle ⁇ and the angle ⁇ are equal.
  • ⁇ X which is the shift amount in the second direction can be expressed by the following equation.
  • t is the thickness of the first lens 512
  • n 1 is the refractive index of the first lens 512
  • n 2 is the refractive index of air or vacuum around the first lens 512.
  • the traveling direction of the input light incident on the first lens 512 and the traveling direction of the input light exiting the first lens 512 substantially coincide with each other. Overall assembly is improved and the performance of the device is easy to achieve.
  • the wavelength selective switch according to the eleventh embodiment is the same as the wavelength selective switch 501 of the ninth embodiment shown in FIGS. 28 and 29, but the optical axis of the first lens 512 is the input light from the input / output unit 510.
  • the optical path of the input light and the optical axis of the first lens 512 are shifted from each other when viewed from the first direction in parallel with the traveling direction.
  • 41A and 41B are a side view and a top view for explaining an example of a reflected light beam of the input light by the surface 512a on the input / output ports 510a to 510e side of the first lens 512, respectively.
  • 42A and 42B are a side view and a top view, respectively, for explaining an example of the light flux of the input light reflected by the surface 512b of the first lens 512 on the dispersion element side.
  • a part of the input light incident from the input port 510b is slightly reflected by the surface 512a on the input / output ports 510a to 510e side of the first lens 512 to become stray light.
  • This stray light beam becomes light diffused by reflection on the convex surface of the lens, and as shown in FIG. 41A, for example, height that overlaps part of the input ports 510a and 510b and the output port 510c of the microlens array 511, for example. And returns to the input / output unit 510 side.
  • the optical path of the input light is shifted from the optical axis of the first lens 512, so that the input light is reflected and generated as shown in FIG. 41B.
  • the stray light thus deviated in the second direction does not enter the microlens array 511, and therefore does not return to the output port 510c as return light.
  • a part of the input light incident from the input port 510b is slightly reflected on the surface 512b on the dispersion element side of the first lens 512 to become stray light.
  • the stray light flux is condensed by the internal reflection of the convex surface of the first lens 512 and then becomes diffused light.
  • the input port 510d and the output port 510c of the microlens array 511 It becomes light of overlapping height and returns to the input / output unit 510 side.
  • the stray light generated by reflecting the input light as shown in FIG. The light does not enter the microlens array 511, and therefore does not return to the output port 510c as light.
  • the deviation between the optical path of the input light and the optical axis of the first lens 512 when viewed from the first direction (y direction) is the return light due to the reflection of the input light on the lens surface of the first lens 512. Is not incident on the microlens array 511.
  • the light beams shown in FIGS. 41A, 41B, 42A, and 42B are examples, and the form of stray light due to reflection of input light by the lens surface of the first lens 512 is not limited thereto.
  • the wavelength selective switch 501 When viewed from the first direction (y direction), the wavelength selective switch 501 according to the present embodiment arranges the optical path of the input light and the optical axis of the first lens 512 so that the input light is the first
  • the stray light reflected and generated by any surface of the lens 512 is configured not to enter the output port 510c, so that the occurrence of crosstalk due to undesired reflection at the first lens 512 can be reduced. it can.
  • any part of the light flux of any input light is the surface on the input / output port side of the first lens 512.
  • the light is incident obliquely on 512a and the surface 512b on the dispersion element side. This prevents stray light caused by reflection of input light from the input ports 510a, 510b, 510d, and 510e from returning to the position of the microlens array 511.
  • (Twelfth embodiment) 43A and 43B are a side view and a top view, respectively, showing the configuration of the wavelength selective switch according to the twelfth embodiment.
  • the wavelength selective switch of the present embodiment also uses a transmissive dispersion element similar to that of the ninth embodiment, and the optical path is deflected by the dispersion element.
  • FIG. From 510 to deflector 517 are shown linearly.
  • the wavelength selective switch according to the ninth embodiment has four input ports 510a, 510b, 510d, and 510e and one output port 510c.
  • 510a is an input port
  • 510b to 510b are input ports.
  • a wavelength selective switch 501 having one input port and four output ports with 510d as an output port is illustrated.
  • the wavelength selective switch 501 includes an input / output unit 510, a first lens 512 that is a second condensing element, a cylindrical lens 513 that is a relay optical element, a second lens 514, a dispersive element 515 that constitutes a dispersive part, a first element.
  • a third lens 516 that is one light condensing element, and a deflector 517 that constitutes a deflection unit are included.
  • the description has been made focusing on the first lens 512.
  • the surface constituting the first lens 512 has a special shape, or when the number of input / output ports constituting the input / output unit 510 is not so large, any of the first lens 512 is constituted.
  • the surface it is also possible for the surface to have a shape that is not substantially planar. In such a case, the crosstalk caused by the first lens 512 is less likely to be a problem. On the other hand, stray light due to reflection on the plane side of the cylindrical lens 513 may be a problem.
  • the input / output unit 510 is provided with a microlens array 511 in which ends of a plurality of optical fiber arrays 505 are arranged in an array (in series), and a plurality of microlenses corresponding to the ends are arranged in an array. .
  • the pair of optical fibers and the microlens constitute one of the input port 510a and the output ports 510b to 510e.
  • the input port 510a and the output ports 510b to 510e are used to input wavelength-multiplexed signal light from the outside of the wavelength selective switch 501 and to output signal light to the outside.
  • the input port 510a and the output ports 510b to 510e are collectively referred to as input / output ports 510a to 510e as appropriate.
  • the number of input / output ports may be 6 or more and the number of output ports may be larger than the number of input ports.
  • FIG. 43A for convenience of explanation, five input / output ports centering on the output port 510c are provided. Only ports 510a-510e are shown.
  • the other end of the input / output optical fiber array 505 is connected to the outside of the wavelength selective switch 501.
  • the microlens of the microlens array 511 converts light incident from the optical fiber into collimated light, and collimated light output to the input / output ports 510b to 510e in the wavelength selective switch 501 is converted to the optical fiber array 505. To the corresponding optical fiber.
  • the input light that enters the wavelength selective switch 501 from the input port 510a and the output light that travels toward the input / output ports 510b to 510e in the wavelength selective switch 501 are designed to be collimated light.
  • the cylindrical lens 513 has a flat surface on the input / output unit 510 side and a cylindrical surface on the dispersion element 515 side, and contracts the light beam in the second direction (x direction), that is, refracts only in the second direction (x direction). It is a lens with power.
  • the cylindrical lens 513 converges the convergent light from the first lens 512 as it is in the first direction (y direction) and converges with a greater degree of convergence in the second direction (x direction). Therefore, the input light transmitted through the first lens 512 and the cylindrical lens 513 forms a narrow elliptical spot in the second direction (x direction) at the primary condensing point 520 near the focal point of the first lens 512. .
  • the cylindrical lens 513 is an ovalizing element that ovalizes a light beam.
  • the plane of the cylindrical lens 513 on the input / output unit 510 side is inclined so that the light flux of the input light does not enter vertically.
  • the cylindrical lens 513 is arranged such that the plane on the incident side of the cylindrical lens 513 is inclined with respect to the optical axis of the first lens 512.
  • the cylindrical lens 513 is arranged such that the incident side plane of the cylindrical lens 513 is not parallel to the plane perpendicular to the optical axis of the first lens 512. Therefore, the first lens 512, the cylindrical lens 513, and the second lens 514 constituting the relay optical system are optical systems that are asymmetric with respect to the optical axis.
  • the second lens 514 and the third lens 516 are lenses having the same focal length f, for example, as in the ninth embodiment.
  • the second lens 514, the dispersive element 515, the third lens 516, and the deflector 517 are arranged in the same manner as in the ninth embodiment.
  • the dispersive element 515 and the deflector 517 have the same configuration as in the ninth embodiment.
  • the input light incident from the input port 510 a is dispersed for each wavelength by the dispersive element 515 via the first lens 512, the cylindrical lens 513, and the second lens 514, and by the third lens 516.
  • the light is condensed on each deflection element 518 of the deflector 517.
  • the light of each wavelength reflected by each deflecting element 518 passes through the third lens 516, is diffracted by the dispersive element 515, passes through the optical path in the direction opposite to the input light, and is used for input in the input / output unit 510. It is output as regular light to any one of the output ports 510b to 510e other than the above or to another output port (not shown).
  • 43A and 43B illustrate a case where input light that has been wavelength-multiplexed from the input port 510a is input and output light having a specific wavelength is output from the output port 510c.
  • the cylindrical lens 513 has a plane on the incident side with respect to the traveling direction of the input light in the second direction (x direction) in the xz plane orthogonal to the first direction (y direction). Tilt and place.
  • the inclination in the second direction (x direction) is such that when a part of the input light is reflected by the plane on the incident side of the cylindrical lens 513, the stray light Ls due to the reflection deviates from the optical axis in the x direction, and the output port 510b.
  • ⁇ 510e is set so as not to substantially enter.
  • the input light is incident on the plane on the incident side of the cylindrical lens 513 with an inclination, so that the occurrence of crosstalk can be suppressed.
  • the incident side plane of the cylindrical lens 513 is temporarily fixed using a jig or the like so as to be orthogonal to the light flux of the input light. Then, the final fixed position is determined by performing fine adjustment by rotating the cylindrical lens 513 so that the performance of the optical system is not degraded and the crosstalk is reduced. At this time, it is desirable to adjust the arrangement of the cylindrical lenses 513 so that the change in the emission angle of light (regular light) emitted from the cylindrical lens 513 is small before and after the rotation of the cylindrical lens 513.
  • the cylindrical lens 513 before passing through the cylindrical lens 513, the light passes through the point P on the surface top of the cylindrical lens 513 as shown in the top view of FIG. 44A. Then, as shown in the top view of FIG. 44B, the cylindrical lens 513 is rotated at the same time as the light passes through the point P on the surface of the cylindrical lens 513, and at the same time, the cylindrical lens 513 is moved in the x and z directions. . Then, the emission angle of the light emitted from the cylindrical lens 513 can be made uniform before and after the rotation of the cylindrical lens 513.
  • the position of the light emitted from the cylindrical lens 513 moves by ⁇ X before and after the rotation.
  • this movement amount ⁇ X is very small with respect to the rotation angle ⁇ , it does not deviate greatly from the center position of the second lens 514 in the second direction (x direction).
  • the cylindrical lens 513 can be rotated with the center of the arc of the cylindrical surface as the rotation center C.
  • the cylindrical lens 513 may be arranged such that the surface on the output side of the input light is a flat surface as shown in the top view of FIG. 44D. Even in this case, the inclination can be adjusted so that a part of the input light transmitted through the incident-side surface and reflected by the emission-side plane becomes stray light and does not enter the output port.
  • the plane on the incident side of the cylindrical lens 513 is arranged to be inclined with respect to the light flux of the input light, and the stray light Ls due to the reflection deviates from the optical axis in the x direction. Since the light does not enter the output ports 510b to 510e, the occurrence of crosstalk can be reduced.
  • (13th Embodiment) 45A and 45B are a side view and a top view, respectively, showing the configuration of the wavelength selective switch according to the thirteenth embodiment.
  • the direction of inclination of the cylindrical lens 513 is not the second direction (x direction) but the first direction (y direction).
  • the inclination in the first direction (y direction) is such that when a part of the input light is reflected on the plane on the incident side of the cylindrical lens 513, the stray light Ls due to the reflection deviates from the optical axis in the y direction, and the output port 510b.
  • ⁇ 510e is set so as not to substantially enter. Thereby, the occurrence of crosstalk can be reduced. Since other configurations and operations are the same as those of the twelfth embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the vertical direction perpendicular to the optical axis direction (z direction) of the input light output from the input / output port is the first direction (y direction), and the horizontal direction is the second direction.
  • the direction (x direction) is used, the first direction (y direction) is not limited to the vertical direction, and the second direction (x direction) is not limited to the horizontal direction.
  • the first direction (y direction) and the second direction (x direction) may be two directions orthogonal to the traveling direction of the input light and orthogonal to each other.
  • the dispersive element 515 may have a Littman-Metcalf type structure in which the dispersive element and the reflecting surface are combined.
  • the lens 514 and the lens 516 can be shared.
  • the dispersive element 515 is not limited to a transmission type, and a reflection type diffraction grating, a Grism, a super prism, or the like can also be used.
  • one set of optical fiber and microlens constitutes one of the input ports 510a, 510b, 510d, and 510e and the output port 510c.
  • each input / output port may not include a microlens. Good.
  • the elliptical element is a cylindrical lens in which one surface through which input light passes is a cylindrical surface.
  • the present invention is not limited to this.
  • the ovalization element is not limited to a lens having refractive power only in the second direction (x direction), and has refractive power in both the first direction (y direction) and the second direction (x direction).
  • a lens having a larger refractive power in the first direction (y direction) can also be used.
  • either surface of the ellipsing element of the twelfth and thirteenth embodiments is a flat surface
  • the input light is incident on the elliptical device even when both surfaces of the ellipsing device are non-planar.
  • the plane on the incident side of the cylindrical lens 513 is inclined with respect to the optical axis of the lens 512 in the xz plane, and at the same time, is inclined with respect to the optical axis of the lens 512 in the yz plane. May be arranged.
  • the optical axes of the first lens 512 and the second lens 514 are not inclined with respect to the traveling direction of the input light, but one or both of these lenses are inclined. A configuration is also possible.
  • each member each means, each step, etc.
  • the functions included in each member, each means, each step, etc. can be rearranged so as not to be logically contradictory, and a plurality of means, steps, etc. can be combined into one or divided. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 少なくとも一つの入力ポート10aと、該入力ポート10aから入射される入力光を波長分散する分散部30と、分散部30により波長分散される光を集光する集光素子40と、集光素子40により集光される光を偏向する偏向部50と、偏向部50で偏向された光を出力光として出射する少なくとも一つの出力ポート10b-10eと、入力ポート10aと分散部30との間の光路中に配置され、分散部30により波長分散される光の偏向部50に対する入射位置をシフトさせる光路補正部20と、を備える。

Description

波長選択スイッチ及び波長選択スイッチ用光学ユニット 関連出願の相互参照
 本出願は、2011年2月10日に出願された日本国特許出願2011-027751号、日本国特許出願2011-027829号、日本国特許出願2011-027833号、日本国特許出願2011-027856号および日本国特許出願2011-027859号、ならびに、2011年11月22日に出願された日本国特許出願2011-255411号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、波長選択スイッチに関するものである。
 近年、サービスエリアの広がりを見せる光ファイバネットワークでは、大量のデータ通信を可能とするため、WDM(Wavelength Division Multiplexing:波長分割多重)技術が用いられ、それぞれの光ファイバには波長多重された光が伝送されている。このような光信号を分岐または結合するための光スイッチにおいては、多重された波長ごとにスイッチングが行える波長選択スイッチが必要となる。
 波長選択スイッチは、光信号を入力するための入力ポート、入力ポートにより出射された光束をコリメートするコリメータレンズ、そのコリメート光を波長分散させる分散部(回折格子)、分散された光束を集光する集光レンズ、分散・集光されたそれぞれの波長の光束を任意の出力ポートに入射するようにそれぞれの光束の進路方向を変更する偏向部などを備えるものである。また、上記の例とは逆に複数の光信号を入力する入力ポートからの信号光を多重されたそれぞれの波長に分散させ、選択的にひとつの出力ポートへと結合するような波長選択スイッチも必要となる。
 図46A、図46Bは、波長選択スイッチの一例を概略的に示した図である。図46Aは、波長選択スイッチ1100の構成を示す側面図であり、図46Bは同じく上面図である。
 波長選択スイッチ1100は、入力ポート1101a,1101b,1101d,1101e、出力ポート1101c、マイクロレンズアレイ1102、第1のレンズ1103、第2のレンズ1106、分散素子1107、第3のレンズ1108、及び、複数のミラー(偏向素子)1110a~1110eを有するミラーアレイ(偏向器)1109を含んで構成されている。この波長選択スイッチ1100では、波長多重された光が、入力ポート1101a,1101b,1101d,1101eの任意の入力ポートから入力され、第1のレンズ1103、第2のレンズ1106を介して、分散素子1107で波長ごとに分離された後、第3のレンズ1108によりミラーアレイ1109のミラー1110a~1110eに集光され、当該ミラー1110a~1110eの偏向により任意の波長の光を選択し、出力ポート1101cに出力する。
 図46Aおよび図46Bでは、入力ポート1101aから入力された波長多重された光が出力ポート1101cに出力される様子を示している。また、この波長選択スイッチ1100では第2のレンズ1106と第3のレンズ1108の焦点距離がほぼ同じに構成されており、一次集光点1105の像を1倍の倍率でミラーアレイ1109に伝播している。
 波長選択スイッチに関連する技術として、特許文献1に開示された光信号処理装置がある。図47は、その光信号処理装置を示すものである。図47において、波長分割多重された光信号は、分散素子であるAWG(Arrayed Waveguide Grating:アレイ導波路回折格子)2101により各波長に分散されて、AWG2101の端面から射出される。AWG2101から射出された光信号は、シリンドリカルレンズ2102、集光レンズ2103および平行平板2104を経て波長に対応する信号処理素子2105に集光されて、該信号処理素子2105により変調される。そして、変調された光信号は、ミラー2106により反射された後、往路とは逆の経路を辿ってAWG2101により合波される。
 ここで、信号処理素子2105は、液晶素子、MEMS(Micro Electro Mechanical Systems)ミラー、光学結晶などを用いて構成される。図47に示した光信号処理装置において、光信号を入出力するためのポートが複数配置された装置が波長選択スイッチであるため、波長選択スイッチは、光信号処理装置とほぼ同等の部品を備えている。
 図47に示した光信号処理装置は、平行平板2104の熱光学作用により、あるいは平行平板2104の光軸に対する傾斜角度を調整することにより、AWG2101の分散特性の温度依存性を補償して、AWG2101で分散された各波長の信号光を信号処理素子2105の対応する位置に集光させるようにしている。
 また、波長選択スイッチは、高い信頼性を求められる光通信網の主要デバイスであり長期間に亘り安定に動作することが要求されるため、従来、波長選択スイッチの構成部品は、筐体に組み込まれ、ハーメチックシール(気密封止)されることが提案されている(例えば、特許文献2)。
 さらに、図48は、特許文献3に開示された波長選択スイッチを示すものである。図48において、入力ポート3101から入力される波長多重された光信号は、集光レンズ3102を経て反射型の分散素子3103により波長毎の光信号に分散されて反射される。分散素子3103により分散された光信号は、集光レンズ3102により各光信号の波長に対応する偏向素子3104-1-3104-nに集光されてそれぞれ独立して偏向される。そして、再び集光レンズ3102を経て分散素子3103により波長多重されて、集光レンズ3102を経て入力ポート3101とともに紙面垂直方向に配列された図示しない出力ポートから出力される。
 また、光波長多重通信に用いられる波長選択スイッチでは、より波長分解能が高い装置が求められている。このため、入射および出射端部が直列に配列された入力ポートおよび出力ポートと、入力ポートから入力された一以上の波長を含む光を一次集光点に収束させるためのレンズと、該レンズと一次集光点との間に設けられレンズを通過した光を入力ポートおよび出力ポートの配列方向と直交する方向により大きな収束度で収束させるシリンドリカル凸レンズとを有する波長選択スイッチが知られている(例えば、特許文献4参照)。
 このような波長選択スイッチは、シリンドリカル凸レンズによって、分散方向により収束した、すなわち分散方向によりスポット幅の小さい楕円形のスポットを、一次集光点に収束させる。一次集光点を通過した光は、レンズにより平行光に変換され、ポートの配列方向と直交する方向に光を分散させる分散素子により分散され、集光レンズにより波長毎に対応して配列された複数のマイクロミラーに再び楕円形のスポットとして集光される。マイクロミラーで反射された波長毎に分離された光は、往路と逆の経路を通って所定の出力ポートに出力される。
 この波長選択スイッチは、マイクロミラー上に分散方向の幅が狭い楕円形のスポットを形成することによって、回折格子の分解能が高く、波長透過帯特性に優れている。
特開2009-36901号公報 特開2009-145887号公報 米国特許第6,381,387号明細書 特開2009-9073号明細書
 ところで、波長選択スイッチは、光学部品の取付け誤差等による組立て誤差やその他の誤差の発生要因によって、波長分散された光信号の集光位置が対応する信号処理素子の中心から分散方向にずれる場合がある。このような集光位置のずれが生じると、使用波長に対する波長選択スイッチとしての所望の光透過率特性つまりフィルタ特性が得られなくなる。その集光位置のずれを補正する方法として、例えば図47の構成を採用し、分散光路中に平行平板を配置して、その光軸に対する傾斜角度を調整することにより、分散光の光路を補正することが想定される。
 しかしながら、図47に示した構成のように、平行平板を分散素子と信号処理素子との間の分散光路中に配置すると、平行平板として、空間的に分散される全ての波長の信号光が入射する大きさのものが必要となる。しかも、分散光の各波長に割り当てられる信号処理素子の要素素子の間隔を小さくできない場合は、波長分割多重された光信号の波長の数が多くなるほど、各波長の信号光を要素素子に入射させるために、分散光路中での分散光の空間的な広がり幅を大きくする必要がある。そうすると、分散光の空間的な広がり幅にしたがって信号処理素子が大きくなるため、平行平板の大きさも大きくする必要がある。その結果、フィルタ特性を所望の特性が得られるように補正するために、装置全体が大型化することが懸念される。
 このような課題を解決し、波長選択スイッチは、小型な構成でフィルタ特性の補正が可能なことが好ましい。
 また、特許文献2に記載のように、波長選択スイッチの構成部品が全て一つの筐体で封止された場合、各構成部品の寿命はそれぞれ異なるにも関わらず、いずれか1つでも故障すると、筐体単位で取り替えなければならない。構成部品の中では、唯一の可動部である偏向部は、他の構成部品に比べ故障する可能性が高い。そのため、波長選択スイッチに故障が生じる場合の多くの原因は偏向部起因の可能性が高く、そのような場合には偏向部を取替え、修理を行うことが考えられる。しかしながら、偏向部が気密封止筐体に入っている場合、もしくは偏向部が気密封止筐体の一部となっている場合には、偏向部を取り外すと光学系の気密封止が開放されてしまい、光学部品へのゴミ付着、湿気にさらされる等の問題が生じるため、偏向部の取り外し、交換は困難であり、したがって、故障した波長選択スイッチは筐体単位で交換することになる。非常にクリーン度が高く、湿気がコントロールされた部屋で偏向部を交換することも考えられるが、偏向部取り外しで発生するゴミ、埃を光学系に付着させることなく作業を行うことは非常に困難である。
 このような課題を解決し、可能な波長選択スイッチ及び波長選択スイッチ用光学ユニットは、偏向部を容易に取り替えることができることが好ましい。
 さらに、分散素子は、一般に、P偏光成分とS偏光成分とで波長に対する透過率や反射率(回折格子では回折効率)が異なる偏光特性を有している。そのため、図48に示した波長選択スイッチにおけるように、入力ポート3101から入力されて出力ポートに出力する光信号が、分散素子3103により往路と復路とで分散作用を受ける場合、全体としての偏光特性は2回分が重畳されたものとなる。例えば、分散素子3103が、図49Aに示すような波長λに対する反射率Rの偏光特性を有する場合、全体としての偏光特性は、図49Bに示すように、図49Aの偏光特性が往復の2回分積み重なったものとなる。
 その結果、分散素子3103によるP偏光成分とS偏光成分との効率差が大きく生じることになる。これにより、光信号の偏波依存性損失(PDL: Polarization Depending Loss)が増大することが懸念される。このような現象は、透過型の分散素子を用いて、往路と復路とで分散素子を透過させる場合も、分散素子がP偏光成分とS偏光成分とで透過率(回折格子では回折効率)が異なる偏光特性を有するため、同様に生じるものである。
 このような課題を解決し、波長選択スイッチにおいて、分散素子による偏波依存性損失を低減できることが好ましい。
 また、特許文献4のようにシリンドリカルレンズを使用する場合、一般に、シリンドリカルレンズは、円筒形の屈折面とこの屈折面の裏面側に設けられた平面とを有する。このため、入力ポートから入力された光は、屈折面と平面との双方を透過するが、その際に一部の光がシリンドリカルレンズの平面により反射され、迷光となって入力ポートおよび出力ポートに戻ることがある。
 図50は、従来例による波長選択スイッチの入力ポートおよび出力ポートから、一次集光点4105までの構成を示す側面図である。入力用の光ファイバ4101aから入力された光は、マイクロレンズアレイ4102の対応するマイクロレンズによりコリメート光に変換され、レンズ4103およびシリンドリカルレンズ4104により一次集光点4105に集光されている。シリンドリカルレンズ4104は、この場合入力光の出射側にシリンドリカル面4104aを有して配置されている。このような配置において、入力光が略平面の波面を有し、その一部の光がシリンドリカルレンズ4104の入射側の平面4104bにより反射されると、この平面4104bで反射された反射光はレンズ4103およびマイクロレンズアレイ4102の対応するマイクロレンズを通り、例えば出力用の光ファイバ4101cに結合し得る。このような場合、光ファイバ4101cには、本来信号光として入射すべき波長分離された光(正規光)に加えて、波長毎の光に分離されていない反射光が加わりクロストークを発生させることが懸念される。
 図51Aは、図50の波長選択スイッチの入力光の光束を示す上面図であり、破線は入力光の波面を示している。この図において、入力光の波面を破線で示している。この図では、入力光が、レンズ4103およびシリンドリカルレンズ4104で屈折されて、一次集光点4105に集光する様子を示している。一方、図51Bは、入射側の平面4104bで一部の入力光が反射された反射光の光路を示している。図51Bのように、入力光の波面とシリンドリカルレンズ4104の平面4104bとは、ほぼ同等の形状となっているので、平面4104bで反射された光は、レンズ4103を介して出力ポートの近傍で集光され、出力用の光ファイバ4101cに結像する。この場合、光ファイバ4101cに入射した反射光はクロストークを発生させる。
 なお、シリンドリカルレンズ4104の向きを変えて、入出力ポート側にシリンドリカル面、一次集光点側に平面を向けて配置した場合も、出射側の平面に反射された入力光が光ファイバに結像して、クロストークを発生させるおそれがある。
 さらに、図46A,Bに示した従来例において、入力ポート1101a,1101b,1101d,1101eに近い第1のレンズ1103のポート側の面または分散素子側の面で、入力光が反射され、この戻り光が出力ポート1101cに結合すると、クロストークを発生させる原因となり得る。
 図52は、図46A、図46Bの波長選択スイッチの入出力ポートから一次集光点4105までの光束の形状を説明する図である。入力ポート1101a,1101b,1101d,1101eから入力される入力光は、ガウシアンビームであり、マイクロレンズアレイ1102から離れた位置にある第1のレンズ1103上では光束径がマイクロレンズアレイ1102近傍より広がる。そうすると、隣接する入力ポート1101a,1101b,1101d,1101eからの、または、隣接する出力ポート1101cへの光束の光路との間で重なりが発生する場合がある。
 ここで、第1のレンズ1103の少なくとも一方の面が、略平面に近い場合、当該略平面によって入力光が、入出力ポートに向けて反射される。第1のレンズ1103の入出力ポート側の面1103aの光束の重なり部で、入力光が反射されると、その反射光は容易に他のポートに入射してしまう。例えば、図52の入力ポート1101bおよび1101dからの入力光の光束は、第1のレンズ1103の入出力ポート側の面1103aにおいて、出力ポート1101cへの出力光の光束と一部重なりを有している。したがって、この重なり部で入力光が反射されると、容易に出力ポート1101cへ入射してしまう。このように、第1のレンズ1103によって、クロストークが発生する場合がある。
 このような課題を解決し、波長選択スイッチは、クロストークの発生を低減できることが好ましい。
 したがって、かかる事情に鑑みてなされた本発明の目的は、上記課題の少なくとも1つを解決する優れた特性を有する波長選択スイッチを提供することにある。
 上記目的を達成する第1の観点に係る波長選択スイッチの発明は、
 少なくとも一つの入力ポートと、
 該入力ポートから入射される入力光を波長分散する分散部と、
 該分散部により波長分散される光を集光する集光素子と、
 該集光素子により集光される光を偏向する偏向部と、
 該偏向部で偏向された光を出力光として出射する少なくとも一つの出力ポートと、
 前記入力ポートと前記分散部との間の光路中に配置され、前記分散部により波長分散される光の前記偏向部に対する入射位置をシフトさせる光路補正部と、
 を備えることを特徴とするものである。
 このように構成することによって、分散部により分散される光の偏向部に対する入射位置をシフトさせる光路補正部が、入力ポートと分散部との間の光路中に配置されるので、小型な構成でフィルタ特性の補正が可能な波長選択スイッチを提供することが可能となる。
 また、上記目的を達成する第2の観点に係る波長選択スイッチ用光学ユニットは、
 少なくとも一つの入力ポートと、
 該入力ポートから入力された入力光を波長分散させる分散部と、
 該分散部により分散される光を集光する集光素子と、
 少なくとも一つの出力ポートと、
 前記入力ポート、前記分散部、前記集光素子及び前記出力ポートを密閉する筐体と
を備え、
 前記筐体は、前記集光素子により集光された光が入射する位置に光学的に透明な透明部が形成されている波長選択スイッチ用光学ユニットである。
 このように構成された波長選択スイッチ用光学ユニットによれば、偏向部は筐体の外側に取り付けられている。これにより、使用者は、光学部材の気密封止を保ったまま偏向部を容易に取り替えることができる。
 さらに、上記目的を達成する第3の観点に係る波長選択スイッチの発明は、
 少なくとも一つの入力ポートと、
 該入力ポートから入力される光を分散する第1分散部と、
 該第1分散部により分散される光を偏向する偏向部と、
 該偏向部で偏向された光を波長多重する第2分散部と、
 該第2分散部で波長多重された光を出力する少なくとも一つの出力ポートと、を備え、
 前記第1分散部は、前記入力ポートからの光を分散する第1分散素子を備え、前記第2分散部は、前記偏向部により偏向された光を波長多重して前記出力ポートに入射させる第2分散素子を備え、前記第2分散素子は、前記第1分散素子の偏光特性を相殺するような偏光特性を有する、
 ことを特徴とするものである。
 このように構成することによって、入力ポートからの光を分散する第1分散部の第1分散素子における偏光特性を、偏向部により偏向された光を波長多重する第2分散部の第2分散素子の偏光特性によって相殺、つまり打ち消されるので、分散素子による偏波依存性損失を低減できる。
 また、上記目的を達成する第4の観点に係る波長選択スイッチの発明は、
 少なくとも一つの入力ポートおよび少なくとも一つの出力ポートを含む入出力部と、
 前記入力ポートから入射される波長多重された入力光を、波長毎の光に分散する分散部と、
 該分散部により分散される前記波長毎の光を集光する集光素子と、
 該集光素子により集光される前記波長毎の光をそれぞれ偏向して、前記出力ポートに出射させる偏向部と、
 前記入出力部と前記分散部との間に配置され、前記偏向部に集光する前記波長毎の光のスポットを楕円形状にする楕円化素子と、
を備え、
 前記楕円化素子は、少なくとも前記入力光が通過する2つの面を有し、該2つの面のそれぞれにより反射される前記入力光の一部が、前記出力ポートの前記波長毎の光を出射させる出射面の位置において該出射面より径の広い光束を形成するものである。
 このように構成することによって、楕円化素子の2つの面のそれぞれにより反射された入力光の一部が、出力ポートの波長毎の光を出射させる出射面の位置において出射面より径の広い光束を形成するようにしたので、クロストークの発生を低減することができる。
 さらに、上記目的を達成する第5の観点に係る波長選択スイッチの発明は、
 少なくとも一つの入力ポートおよび少なくとも一つの出力ポートを含む入出力部と、
 前記入力ポートから入射される波長多重された入力光を、波長毎の光に分散する分散部と、
 前記入力ポートから入射される前記入力光を前記分散部へと導く、少なくとも1つの透過型のリレー光学素子を含むリレー光学系と、
 前記分散部により分散された前記波長毎の光を集光する第1の集光素子と、
 前記第1の集光素子により集光された前記波長毎の光をそれぞれ偏向して、前記出力ポートに出射させる偏向部と、を備え、
 前記リレー光学素子は、前記入力光が該リレー光学素子のいずれかの面で反射され発生した迷光が、前記出力ポートに入射しないように、前記入力光に対して傾け、または、ずらして配置されていることを特徴とするものである。
 このように構成することによって、リレー光学素子を、入力光が該リレー光学素子のいずれかの面で反射され発生した迷光が、出力ポートに入射しないように、入力光に対して傾け、または、ずらして配置したので、クロストークの発生を低減することができる。
 本発明によれば、優れた特性を有する波長選択スイッチを提供することができる。
第1実施の形態に係る波長選択スイッチを分散部による波長分散方向から見た概念図である。 図1Aの波長選択スイッチを分散部による波長分散方向と直交する方向から見た概念図である。 平行平板による光路の平行シフトを説明するための図である。 組立て誤差とフィルタ特性との関係を示す図である。 偏向素子に対応する透過波長帯域と光信号帯域との関係を示す図である。 第1実施の形態に係る波長選択スイッチの要部の構成を分散部による波長分散方向と直交する方向から見た図である。 図4Aの波長選択スイッチを分散部による波長分散方向から見た光路の展開図である。 図4Aの分散部の部分拡大図である。 図4Aの分散部における入射角と回折効率との関係を説明するための図である。 第2実施の形態に係る波長選択スイッチの要部の構成を分散部による波長分散方向と直交する方向から見た図である。 図6Aの波長選択スイッチを分散部による波長分散方向から見た光路の展開図である。 図6Bに示す1/4波長板および偏向部の変形例を示す図である。 光路を平行シフトする光路補正部の他の例を示す図である。 光路を平行シフトする光路補正部の更に他の例を示す図である。 光路を平行シフトする光路補正部の更に他の例を示す図である。 光路を平行シフトする光路補正部の更に他の例を示す図である。 光路の角度を調整する光路補正部の一例を示す図である。 光路の角度を調整する光路補正部の他の例を示す図である。 第3実施の形態に係る概略的な波長選択スイッチの構成図である。 図10に示される波長選択スイッチの波長選択スイッチ用光学ユニットの構成図である。 図10に示される波長選択スイッチの変形例である。 図10に示される波長選択スイッチの変形例である。 本発明の第4実施の形態に係る概略的な波長選択スイッチの構成図である。 図14に示される波長選択スイッチの波長選択スイッチ用光学ユニットの構成図である。 図14に示される波長選択スイッチの変形例である。 第5実施の形態に係る波長選択スイッチを第1および第2分散部による波長分散方向から見た概略構成図である。 図17Aの波長選択スイッチを第1および第2分散部による波長分散方向と直交する方向から見た概略構成図である。 図17Aの第1および第2分散部、集光レンズおよび偏向部の部分の概略斜視図である。 図17Aの第1分散部の第1分散素子における回折効率の偏光特性を示す図である。 図17Aの第2分散部の第2分散素子における回折効率の偏光特性を示す図である。 図17Aの第1および第2分散素子による往復の回折効率の偏光特性を示す図である。 図17Aの第1および第2分散部の好適構成の一例を示す斜視図である。 図17Aの第1および第2分散部の好適構成の他の例を示す斜視図である。 第6実施の形態に係る波長選択スイッチを第1および第2分散部による波長分散方向から見た概略構成図である。 図21Aの波長選択スイッチを第1および第2分散部による波長分散方向と直交する方向から見た概略構成図である。 図21Aの第1および第2分散部、集光レンズおよび偏向部の部分の概略斜視図である。 第7実施の形態に係る波長選択スイッチの概略構成図である。 第8実施の形態に係る波長選択スイッチの構成を示す側面図である。 第8実施の形態に係る波長選択スイッチの構成を示す上面図である。 図24の波長選択スイッチの入出力ポートから一次集光点までの入力光の光束を示す上面図である。 シリンドリカルレンズの入射側の面で反射された反射光の光束を示す上面図である。 シリンドリカルレンズの出射側の面で反射された反射光の光束を示す上面図である。 シリンドリカルレンズの形状を説明する図である。 シリンドリカルレンズの他の例を説明する図である。 第9実施の形態に係る波長選択スイッチの構成を示す側面図である。 第9実施の形態に係る波長選択スイッチの構成を示す上面図である。 光束の大きさを説明する図である。 図28,29の第1のレンズ(リレーレンズ)を透過する光の光路の一例を説明する図である。 図28,29の分散素子上での入力光のスポットを示す斜視図である。 図28,29の偏向器の構成を示す斜視図である。 図28,29の波長選択スイッチにおける第1のレンズ(リレーレンズ)の入出力ポート側の面による入力光の反射光の光束の一例を説明する側面図である。 図28,29の波長選択スイッチにおける第1のレンズ(リレーレンズ)の入出力ポート側の面による入力光の反射光の光束の一例を説明する上面図である。 図28,29の波長選択スイッチにおける第1のレンズ(リレーレンズ)の分散素子側の面による入力光の反射光の光束の一例を説明する側面図である。 図28,29の波長選択スイッチにおける第1のレンズ(リレーレンズ)の分散素子側の面による入力光の反射光の光束の一例を説明する上面図である。 図28,29の波長選択スイッチにおける光強度の調節方法を説明する上面図である。 図36の第1のレンズ(リレーレンズ)近傍における光路を説明する図である。 図36の出力ポート近傍における光路を説明する図である。 第10実施の形態に係る波長選択スイッチの構成を示す上面図である。 図39の第1のレンズ(リレーレンズ)の光軸を入力光の進行方向に一致させて配置した図である。 図39の第1のレンズ(リレーレンズ)の光軸を入力光の進行方向に対して傾けて配置した図である。 第11実施の形態に係る波長選択スイッチにおける第1のレンズ(リレーレンズ)の入出力ポート側の面による入力光の反射光の光束を説明する側面図である。 第11実施の形態に係る波長選択スイッチにおける第1のレンズ(リレーレンズ)の入出力ポート側の面による入力光の反射光の光束を説明する上面図である。 第11実施の形態に係る波長選択スイッチにおける第1のレンズ(リレーレンズ)の分散素子側の面による入力光の反射光の光束を説明する側面図である。 第11実施の形態に係る波長選択スイッチにおける第1のレンズ(リレーレンズ)の分散素子側の面による入力光の反射光の光束を説明する上面図である。 第12実施の形態に係る波長選択スイッチの構成を示す側面図である。 第12実施の形態に係る波長選択スイッチの構成を示す上面図である。 入力光の入射側を平面とするシリンドリカルレンズの配置を調整する前の状態を示す図である。 図44Aのシリンドリカルレンズの回転調整方法を説明する図である。 図44Aのシリンドリカルレンズの他の回転調整方法を説明する図である。 入力光の出射側を平面とするシリンドリカルレンズの配置を調整する前の状態を示す図である。 図44Dのシリンドリカルレンズの回転調整方法を説明する図である。 第13実施の形態に係る波長選択スイッチの構成を示す側面図である。 第13実施の形態に係る波長選択スイッチの構成を示す上面図である。 従来例による波長選択スイッチの構成を示す側面図である。 従来例による波長選択スイッチの構成を示す上面図である。 従来の技術を説明するための図である。 従来の技術を説明するための図である。 図48の分散素子の偏光特性を示す図である。 図48の分散素子により2回分散される場合の偏光特性を示す図である。 従来例による波長選択スイッチの入力ポートおよび出力ポートから、一次集光点までの構成を示す側面図である。 図50の波長選択スイッチの入力光の光束を示す上面図である。 図50の波長選択スイッチのシリンドリカルレンズ入射側の平面による入力光の反射光の光路を示す図である。 入出力ポートから一次集光点まで光束の形状を説明する図である。
 以下、本発明の実施の形態について、図を参照して説明する。
(第1実施の形態)
 図1Aおよび図1Bは、第1実施の形態に係る波長選択スイッチの概念図である。図1Aは波長選択スイッチを分散部による波長分散方向から見た概念図であり、図1Bは波長選択スイッチを波長分散方向と直交する方向から見た概念図である。
 この波長選択スイッチは、1つの入力ポート10a、4つの出力ポート10b-10e、光路補正部20、分散部30、集光素子である集光レンズ40および偏向部50を備える。ここで、図1A及び図1Bにおいて、分散部30による波長分散方向をX方向、分散部30の波長分散により分散光が空間的に広がる面に対して垂直な方向をY方向とする。なお、現実の波長選択スイッチの光路中に、図示しないミラー、プリズム等の偏向部材が光路を折り曲げるために配置されている場合には、X方向及びY方向との説明は、このような偏向部材が無いものとした仮想的な光学系を前提として用いられることとする。
 入力ポート10aおよび出力ポート10b-10eの入射・出射端部は、Y方向に直列に配列されている。以下、説明の便宜上、入力ポート10aおよび出力ポート10b-10eを、適宜、入出力ポート10a-10eとまとめて表記する。入出力ポート10a-10eは、対応する光ファイバ11a-11eとそれらの端面に配置されたマイクロレンズアレイ12とを備える。マイクロレンズアレイ12は、光ファイバ11a-11eと対応する球面または非球面のマイクロレンズ13a-13eとを備える。
 入力ポート10aの光ファイバ11aから出射される波長分割多重された光信号(入力光)は、対応するマイクロレンズ13aにより平行光に変換されて光路補正部20に入射される。
 光路補正部20は、入出力ポート10a-10eと分散部30との間の光路中に配置される。そして、光路補正部20は、分散部30で波長分散されて集光レンズ40を経て偏向部50に入射する分散光の入射位置を、偏向部50上でシフトさせるように光路を補正する。なお、図1Aおよび図1Bは、光路補正部20が平行平板21からなる場合を例示している。この場合、平行平板21は、分散部30を出射した分散光が分散部30の波長分散方向(X方向)に平行にシフトするように、集光レンズ40の光軸に対して傾斜して配置される。また、平行平板21は、光路を前記の通り補正した後に固定されることとしてもよいし、光路に対する傾き角が調節可能となるように配置されていてもよい。
 分散部30は、入力ポート10aからの入力光を波長毎の光信号に分散する。分散部30は、例えば透過型グレーティングを有している。図1Bは、分散部30が、入力光を5波長の波長毎の光信号に分散可能な場合を例示している。
 集光レンズ40は、その前側焦点位置が分散部30の分散基点にほぼ一致するように配置されて、分散部30で波長分散された光信号を偏向部50に集光する。ここで、入力光が複数の離散的な波長で波長分割多重されている場合は、波長分散された光信号は、偏向部50に波長毎に分離して集光する。また、集光レンズ40により集光される複数の光信号は、波長分散方向に対して垂直な方向から見たときに、偏向部50に対してほぼ垂直に入射することが好ましい。すなわち、集光レンズ40は、像側テレセントリックレンズとして構成されていることが好ましい。
 偏向部50は、分散部30の波長分散方向に直線状に配列された複数の偏向素子を備える。本実施の形態では、偏向部50は、5つの偏向素子51a-51eを備える場合を例示しているがこの数に限定されない。偏向素子51a-51eは、分散部30により分散される5波長に対応しており、各々独立して駆動可能に構成されている。これにより、偏向部50に入射する波長毎の光信号がそれぞれ偏向される。このようなアレイ状の偏向素子51a-51eを備える偏向部50は、例えば、MEMSミラー、液晶素子、光学結晶などを用いて構成される。
 偏向部50により偏向された波長毎の光信号は、集光レンズ40、分散部30および光路補正部20を経て、所望の出力ポート10b-10eへそれぞれ出力光として入射される。なお、図1Aは、出力ポート10cへ出力光が入射される場合を例示している。
 図1Aは、分散部30による波長分散方向(X方向)から見た図であり、図1Bは、波長分散方向と直交する入出力ポート10a-10eの配列方向である出力光のスイッチング方向(Y方向)から見た図である。
 なお、図1Aには、1つの入力ポート10aと4つの出力ポート10b-10eとが例示されているが、入力ポート10aが出力ポートとなり、出力ポート10b-10eが入力ポートとなる場合もある。また、入力ポートおよび出力ポートの数は、例示に限らず適宜設定される。つまり、本発明に係る波長選択スイッチは、上述したように、波長分割多重された入力光を波長毎に分散して出力する場合に限らず、波長毎の複数の入力光を多重して出力するように使用される場合もある。また、入力ポートおよび出力ポートは、一箇所にアレイ状に配列される場合に限らず、入力ポートと出力ポートとが空間的に分離して異なる箇所に配置される場合もある。
 本実施の形態に係る波長選択スイッチによると、光学部品の取付け誤差等による組立て誤差やその他の誤差の発生要因によって、偏向部50に入射する光の入射位置が対応する偏向素子の中心からずれた場合、光路補正部20によりそのずれを補正することができる。例えば、光路補正部20が平行平板21からなる場合は、入力光の光路に対する平行平板21の傾斜角度を調整することにより、上記のずれを補正することができる。
 例えば、図2に示すように、平行平板21が、入力光の光路に対してθ度傾いて配置されている場合、その光路のシフト量Δxは、下式で表される。ただし、下式において、dは平行平板21の厚さを示し、n1は外部屈折率、n2は平行平板21の使用波長における屈折率を示す。
 Δx=d×n1×θ/n2
 これにより、使用波長に対する波長選択スイッチとしての光透過率特性つまりフィルタ特性を補正して所望のフィルタ特性を得ることが可能となる。例えば、図3Aに示すように、分散部50の偏向素子51a-51cの各々について、実線で示すフィルタ特性が要求される場合、組立て誤差、温度変化による分散部30の分散特性の変化等の誤差要因により、偏向素子51a-51cが破線で示す位置にシフトされたとする。この場合、偏向素子51a-51cのフィルタ特性も破線で示すようにシフトされて、フィルタ特性の中心波長ズレが生じることになる。なお、図示しない他の偏向素子についても同様である。その結果、図3Bに示すように、各偏向素子に対応する光信号帯域の透過波長帯域が減少して光信号の一部が除去され、信号品質の低下を招くことになる。
 本実施の形態に係る波長選択スイッチによると、このような各偏向素子のフィルタ特性のずれを光路補正部20により補正することができる。また、光路に対する傾き角が調節可能となるように平行平板21が固定されている場合は、温度変化による分散部30の分散特性の変化等のように経時的に変化し得る誤差に対応して、フィルタ特性のずれを補正することができる。しかも、光路補正部20は、入出力ポート10a-10eと分散部30との間の光路中に配置されているので、小型にできる。例えば、図1Aおよび図1Bに示したように、光路補正部20が平行平板21からなる場合、平行平板21のY方向の寸法は、全ての入出力ポート10a-10eからの入力光が入射する寸法が必要となるが、X方向の寸法については、入出力ポート10a-10eがY方向に一列に並んでいるため、ほぼ一つの入出力ポートからの入力光が入射する寸法を確保すればよい。しかも、そのX方向寸法は、波長分割多重される波長の数や波長分散される波長の数に何ら影響されない。したがって、小型な構成で光路を補正してフィルタ特性を補正することが可能な波長選択スイッチを提供することができる。
 これに対し、特許文献1に開示のように、波長分散後の集光レンズ40と偏向部50との間の光路中に平行平板を配置して光路補正を行う場合は、平行平板のY方向寸法およびX方向の寸法として、全ての入出力ポート10a-10eからの入力光に対する全ての分散光が入射する寸法を要することになる。しかも、分散光の各波長に割り当てられる信号処理素子の要素素子の間隔を小さくできない場合は、波長分割多重された光信号の波長の数が多くなるほど、各波長の信号光を要素素子に入射させるために、分散光路中での分散光の空間的な広がり幅を大きくする必要がある。そうすると、分散光の空間的な広がり幅にしたがって信号処理素子が大きくなるため、平行平板の大きさも大きくする必要がある。結果として、フィルタ特性を所望の特性が得られるように補正するために、装置全体が大型になる。
 なお、光路補正部20を平行平板21で構成する場合、好適には、上記のずれが補正された状態で、平行平板21が入力光の光路に対して傾斜するように組み立てる。そのためには、好ましくは、平行平板21を入力光の光路に対して予め傾けた状態で、他の光学部品を取付ける。そして、取付け後に、偏向部50に入射する分散光の入射位置に誤差がある場合、平行平板21の傾き角を調整して、偏向部50に入射する分散光の入射位置が、対応する偏向素子のほぼ中心に位置するように入力光の光路を補正する。補正後は、平行平板21を接着等により固定するか、又は平行平板21の傾き角が調節可能となるように平行平板21を固定する。さらに、平行平板21の傾き角の調整後に平行平板21が入力光の光路に対して垂直に配置されることのないように、入力光の光路に対して垂直な面を基準として平行平板21を予め傾ける角度を、想定される傾き角の調整幅より大きく設定することが好ましい。
 このように、平行平板21を、組立て誤差その他の誤差による分散光の集光位置のずれが修正された状態で、入力光の光路に対して傾斜した状態で固定すれば、平行平板21とマイクロレンズアレイ12や分散部30との間での入力光や出力光の多重反射を有効に防止できる。したがって、多重反射による迷光が出力光に混入するのを防止できるので、S/Nの向上やクロストークの低減を図ることができる。
 また、光路補正部20は、その熱光学作用により、特許文献1の場合と同様に、分散部30による分散特性の温度依存性を補償することもできる。
 次に、本実施の形態に係る波長選択スイッチの具体的な実施の形態について説明する。
 図4Aおよび図4Bは、本発明の第1実施の形態に係る波長選択スイッチの要部の構成を示す図で、図4Aは分散部による波長分散方向と直交する方向から見た図であり、図4Bは波長分散方向から見た光路の展開図である。なお、図1Aおよび図1Bに示した構成要素と同一作用をなす構成要素には、同一参照符号を付して説明を省略する。
 図4Aおよび図4Bに示すように、本実施の形態に係る波長選択スイッチは、入出力ポート10a-10eと集光レンズ40との間の光路中に配置され、集光点形成素子を構成するレンズ60を備える。レンズ60は、例えば集光レンズ、入出力ポート10a-10eの配列方向にレンズパワーを有するシリンドリカルレンズ、又は入出力ポート10a-10eの配列方向と直交する方向に対して入出力ポート10a-10eの配列方向に強いレンズパワーを有するアナモフィックレンズ等で構成される。これにより、入出力ポート10a-10eからの入力光は、集光点Fに集光される。
 集光レンズ40は、その前側焦点位置がレンズ60による入力光の集光点Fの前後近傍に位置するように配置される。
 平行平板21は、レンズ60による入力光の集光点Fの前後近傍、図では集光点Fの前側近傍に、入力光の光路に対して傾斜して配置される。
 分散部30は、透過型グレーティングからなる分散素子31と反射素子である折返しミラー32とを備え、分散素子31による分散光を折返しミラー32により反射させて再び分散素子31に入射させるリットマン・メトカルフ構造を有している。分散部30は、分散素子31の分散基点が、集光レンズ40の後側焦点位置近傍に位置するように配置される。
 なお、分散部30において、分散素子31および折返しミラー32は、入力光が分散素子31に入射して分散される際の入射角による回折効率と、分散光が折返しミラー32で折り返されて再び分散素子31に入射して分散される際の入射角による回折効率とがほぼ等しくなるように配置する。
 例えば、図5Aに分散部30の部分拡大図を示すように、分散素子31により分散されて折返しミラー32へ向かう分散光の最大出射角をα1、最小出射角をα2とする。この場合、折返しミラー32で折り返されて再び分散素子31に入射する分散光の入射角は、最大出射角α1で分散された分散光の入射角β1が最小入射角となり、最小出射角α2で分散された分散光の入射角β2が最大入射角となる。したがって、この場合は、図5Bに示すように、最小出射角α2における回折効率Aと、最大入射角β2における回折効率Bとが等しくなるように、分散素子31および折返しミラー32を配置する。
 図4Aおよび図4Bにおいて、偏向部50は、集光レンズ40に関して、分散部30と反対側、つまり入出力ポート10a-10eと同一側に配置される。
 本実施の形態に係る波長選択スイッチにおいて、入力ポート10aの光ファイバ11aから波長分割多重された光信号(入力光)が出射されると、その入力光は、対応するマイクロレンズ13aにより平行光に変換されて射出される。その後、入力光は、レンズ60により集光されて平行平板21を透過して集光点Fに集光される。
 そして、入力光は、集光レンズ40を経てリットマン・メトカルフ構造を有する分散部30の分散素子31に入射して波長分散される。分散部30において、入力光は、分散素子31により波長分散された後、折返しミラー32で折り返されて再び分散素子31により分散され、分散部30から射出される。これにより、短い光路長であっても、分散光路中での分散光の空間的な広がり幅を大きくすることが可能となる。
 分散部30から波長分散されて射出された光は、集光レンズ40により集光されて偏向部50の波長に対応する偏向素子51a-51eに入射する。そして、偏向素子51a-51eにより各々独立して偏向されて、集光レンズ40、分散部30、集光レンズ40、光路補正部20およびレンズ60を経て、所望の出力ポート10b-10eへ出力光として入射される。なお、図4Aは、分散部30により3つの波長に分散された場合を例示している。また、図4Bは、分散部30による分散光の1つが出力ポート10cに入射される場合を例示している。
 本実施の形態に係る波長選択スイッチによると、光路補正部を構成する平行平板21が、レンズ60による入力光の集光点Fの近傍に配置されている。したがって、平行平板21は、Y方向の寸法については、その大きさを入出力ポート10a-10eが配列された幅より小さくしても、全ての入出力ポート10a-10eからの入力光を入射して、その光路をシフトさせることができる。また、平行平板21のX方向の寸法については、前述した通り、ほぼ一つの入出力ポートからの入力光が入射する寸法だけ確保すればよい。これにより、図1Aおよび図1Bで説明した構成の場合よりも、小型な平行平板21を用いて所望のフィルタ特性を得ることができ、装置全体のさらなる小型化が図られる。
 なお、図4Aおよび図4Bに示した構成において、分散光の入射位置を偏向部50上でシフトさせるための他の手段として、平行平板を集光レンズ40と偏向部50との間の分散光の光路中に配置することが想定される。しかし、この場合は、平行平板として、偏向部50の全ての偏向素子51a-51eに入射する分散光を屈折透過させる大きさを要することになる。そのため、平行平板が大型化して、装置全体も大型化することが懸念される。しかも、平行平板を集光レンズ40側に傾斜して配置しようとすると、平行平板が入力ポート10aから集光レンズ40に向かう入力光の光路に突出して、入力光にケラレが生じることも想定される。また、そのケラレを解消するため、平行平板を偏向部50の前面に近接して、偏向部50と平行に配置しようとすると、偏向部50との間の多重反射による迷光が発生して、S/Nが低下したり、クロストークが増加したりすることが懸念される。本実施の形態に係る波長選択スイッチによると、このような懸念事項を一挙に解決でき、小型な構成で所望のフィルタ特性が得られる光路補正が可能となる。
(第2実施の形態)
 図6Aおよび図6Bは、本発明の第2実施の形態に係る波長選択スイッチの要部の構成を示す図で、図6Aは分散部による波長分散方向と直交する方向から見た図であり、図6Bは波長分散方向から見た図6Aの光路の展開図である。なお、図4Aおよび図4Bに示した構成要素と同一作用をなす構成要素には、同一参照符号を付して説明を省略する。
 本実施の形態に係る波長選択スイッチは、図4Aおよび図4Bに示した構成において、集光レンズ40と偏向部50との間の分散光路中に、ミラー70および1/4波長板71を配置したものである。そして、集光レンズ40を経て偏向部50へ向かう分散光を、分散光が空間的に広がる面に対して所定の角度方向(図6Aにおいて紙面の下方)へミラー70により反射させた後、1/4波長板71を経て偏向部50に入射させる。また、偏向部50で偏向された分散光は、1/4波長板71を経てミラー70により反射した後、集光レンズ40を経て分散部30に入射させる。その他の構成および作用は、第1実施の形態に係る波長選択スイッチと同様である。ミラー70が分散光を反射させる角度は、90度であることが好ましいが、実質的に分散光を折り曲げることができればこの角度に制限されるものではない。
 このように、偏向部50への分散光の入出射光路に1/4波長板71を配置することにより、偏向部50に入射する分散光を直線偏光から円偏光に変換でき、さらに偏向部50から出射される円偏光を入射光の直線偏光と直交する直線偏光に変換して分散部30へ戻すことができる。これにより、第1実施の形態の場合の効果に加えて、分散部30の偏光依存性に伴う光信号の損失を低減でき、S/Nを向上することができる。しかも、1/4波長板71は、ミラー70によって折り曲げられた分散光の光路中に配置されるので、1/4波長板71によって集光レンズ40に入射する入射光にケラレが生じることもない。また、ミラー70および1/4波長板71は、光路補正部である平行平板21の設置に支障をきたすこともない。
 なお、1/4波長板71は、単独で配置する場合に限らず、図7に示すように、偏光部50のパッケージの入射窓として設けることもできる。また、1/4波長板71は、高次のものを用いても良い。これにより、コストダウンが図れる。
 次に、光路補正部の他の構成について説明する。
 光路補正部は、上述した平行平板に限らず、種々の構成が可能である。例えば、上述した平行平板におけるように、光路を平行シフトさせる光路補正部は、図8A-図8Dに示すような構成も可能である。
 図8Aに示す光路補正部は、プリズム22を用いたもので、プリズム22を破線で示すように移動させることにより、プリズム22を透過する光路のシフト量Δxを調整することができる。図8Bに示す光路補正部は、2枚の楔状プリズム23a,23bを用いたもので、一方の楔状プリズム23aまたは23bを移動させて両者の間隔を調整することにより、2枚の楔状プリズム23a,23bを透過する光路のシフト量Δxを調整することができる。
 図8Cに示す光路補正部は、ミラー24を用いたもので、ミラー24を破線で示すように移動させることにより、光路のシフト量Δxを調整することができる。図8Dに示す光路補正部は、プリズム25を用い、該プリズム25の内部で光線を反射させて出射するもので、プリズム25を破線で示すように移動させることにより、光路のシフト量Δxを調整することができる。
 また、光路補正部は、光路を平行シフトする構成に限らず、光路の角度を調整して、分散光が偏向部50に入射する位置を、偏向部50上でシフトさせるように補正することも可能である。図9Aおよび図9Bは、光路の角度を調整する場合の光路補正部の構成を示すものである。
 図9Aに示す光路補正部は、プリズム27を用いたもので、プリズム27を破線で示すように、光線の入射位置を中心に回動させることにより、光路をΔθ傾けることができる。図9Bに示す光路補正部は、ミラー28を用いたもので、ミラー28を光線の入射位置を中心に破線で示すように回動させることにより、光路をΔθ傾けることができる。
 なお、第1および第2実施の形態において、集光レンズ40は、集光作用を奏すればよく、集光ミラーや、回折型集光素子等を用いることができる。
また、マイクロレンズアレイ12は、必ずしも配置されなくても構わない。
また、分散部は、透過型分散素子や、リットマン・メトカルフ構造に限られず、反射型回折格子、Grism、スーパープリズム等を用いることもできる。
(第3実施の形態)
 図10は、本発明の第3実施の形態に係る概略的な波長選択スイッチの構成図である。本実施形態の波長選択スイッチ111は、筐体201と、筐体201内に組み立てられた光学系203と、筐体201の外側に着脱可能に取り付けられた偏向部205とを有すものである。
 筐体201は、偏向部205の取付部分に設けられた光学的に透明な封止窓207を有し、密閉構造になっている。封止窓207は、光学面227を有する。また、封止窓207は、例えば、ガラスで構成され、筐体201の封止窓207以外の部分は、例えば、金属で構成されている。そして、筐体201全体は、例えば、ハーメチックシールされ、優れた気密性が実現されている。
 光学系203は、少なくとも1つの入力ポート209と、少なくとも1つの出力ポート210と、マイクロレンズアレイ211と、分散部213と、集光素子215と、ミラー217とを有する。光学系203の構成要素は、プレート219上に取り付けられるものであり、プレート219は、例えば、金属や石英からなるものである。プレート219は高温、低温中での光学部品の相対的な位置ずれを抑制することができる線膨張の小さな材質から構成されるとなお良い。なお、図10において、入力ポート209および出力ポート210を含む3つのポートが図示されているが、ポートの個数は3つに限定されない。
 入力ポート209は、波長多重された光を波長選択スイッチ111に入力するためのものである。また、出力ポート210は、入力ポート209から入射した光が、波長毎に経路が切り替えられた後、信号光として出射させるためのものである。入力ポート209及び出力ポート210は、光ファイバ又は光導波路などにより形成されるものである。そして、本願においては、当該光ファイバ又は光導波路の先端近傍を、特に、入力ポート209または出力ポート210として説明する。少なくとも1つの入力ポート209と少なくとも1つの出力ポート210とを組み合わせて、ポートアレイを形成することができ、組み合わせ方により、単ポートの入力ポート及び多ポートの出力ポートを有するポートアレイ、多ポートの入力ポート及び単ポートの出力ポートを有するポートアレイ及び多ポートの入力ポート及び多ポートの出力ポートを有するポートアレイを実現することができる。なお、図10では、光ファイバ又は光導波路のうち、先端近傍である入力ポート209または出力ポート210のみを図示している。実際には、図示された入力ポート209および出力ポート210からは、それぞれ光ファイバ又は光導波路が延出している。そして、当該光ファイバ又は光導波路は、ファイバアレイ、光導波路として、筐体201の外部に延出される。ここで、筐体201に形成されたファイバアレイを通すための貫通孔と、ファイバアレイとは、隙間がない状態で、配置されている。このため、ファイバアレイが筐体外部に延びているにもかかわらず、筐体201内部は、密閉状態が保たれている。
 マイクロレンズアレイ211は、入力ポート209及び出力ポート210と対になるマイクロレンズがアレイ状に配置されているものである。マイクロレンズアレイ211は、入力ポート209から入射された入力光を平行光束に変換するとともに、光偏向部205から帰ってきた光を出力ポート210に収束させる。
 分散部213は、マイクロレンズアレイ211により平行にされた光を、波長毎に分散するためのものであり、例えば、透過型の分散素子(グレーティング)で構成される。なお、分散部213としては、リットマン-メトカルフ型の構成を有する分散素子を用いても良い。また、本実施形態では透過型の分散素子を用いたが、これに限られるものではなく、反射型回折格子、Grism、スーパープリズム等を用いることもできる。
 集光素子215は、例えば集光レンズであり、分散部213により波長毎に分散された光(分散光)を、偏向部205上の波長毎の所定の位置に集光させる。集光素子215には、集光ミラー、回折形集光素子等も用いることができる。
 ミラー217は、集光素子215からの光を反射させて、プレート219及び封止窓207を経て偏向部205に導くものである。そのため、プレート219が金属で形成されている場合は、プレート219には、ミラー217と封止窓207との間の光路を形成するための孔が設けられる。なお、プレート219が光学的に透明な部材、例えば石英で形成されている場合は、プレート219に光路用の孔を形成することを省略できる。なお、集光素子215からの光の進行方向上に偏向部205が設けられているため、ミラー217が必要になるが、本実施形態はこの態様に限定されるわけではない。集光素子215からの光の進行方向上に偏向部205が設けられている場合には、ミラー217を省略することができる。
 偏向部205は、ミラー217により反射された各分散光を所定の出力ポート210に入射させるために、分散光の光路を偏向するものである。本実施形態では、光学系203からの光は、封止窓207を透過して偏向部205に入射され、偏向部205により向きが偏向され、再び光学系203に戻ることになる。つまり、光学系203と偏向部205との間の光路は、封止窓207を透過して形成されることになる。光学系203に戻った光は、ミラー217、集光素子215、分散部213、マイクロレンズアレイ211を順々に通って波長に対応する出力ポート210に入射されることになる。
 偏向部205は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーアレイや反射型の液晶表示パネルであるLOCS(Liquid crystal on silicon)である。偏向部205がMEMSミラーアレイである場合、偏向部205は、波長に対応する複数のマイクロミラーがアレイ状に配置されているものである。各マイクロミラーは、ケーブル221からの電力供給により駆動され、これにより、ミラー自体の傾きを変え、波長毎に光の進行方向を変更する。
 偏向部205は、筐体201の外側に取り付けられているものである。偏向部205は、例えば、筐体201に取り付けられる取付部材223に接着固定されたり、ねじにより固定される。この時、偏向部205は固定部223なしに直接筐体201に取り付けられてもかまわない。
 このように本実施形態では、偏向部205は、筐体201の外側に取り付けられ、筐体201内の光学系203と偏向部205との間の光路は、光学的に透明な封止窓207を透過して形成されている。つまり、波長選択スイッチ111を構成する偏向部205は、筐体201の外側に位置し、筐体201の気密封止を保ったままでの取り外しが可能であるため、偏向部205が故障した場合、光学系への湿気、埃によるダメージに考慮することなく偏向部205を取り替えることができる。また、偏向部205の取り付けを失敗したような場合にも、一度取り外し、再度調整、固定が可能となる。偏向部205のみの取替及び調整が可能であるため、波長選択スイッチ111の他の構成部品を廃棄する必要がない。つまり、本実施形態における波長選択スイッチ111は、コスト面や環境面で優れている。
 更に、偏向部205はねじ止めにより取付部材223に固定することができるので、波長選択スイッチ111の使用者は、容易に偏向部205を取り外して、取り替えることができる。
 なお、取付部材223は、筐体201と独立していても、また、図11のように、筐体201に予め取り付けられ、光学系203を内包する筐体201と共に波長選択スイッチ用光学ユニット225を形成していてもよい。
 また、図12に示されるように、取付部材223を介さずに、偏向部205を封止窓207に取り付けることもできる。偏向部205は、光を偏向させるためのデバイスを埃などから保護するためのカバーガラス等で封止されていることが多いので、この保護ガラスと筐体201を気密封止している封止窓207とを光学的に透明な接着剤により接合することで、筐体201に固定することができる。
 なお、本実施形態において、図10を参照すると、封止窓207の光学面227は、光学系203からの光束に対して、垂直になるように図示されているが、本実施形態は、この態様に限定されるわけではない。例えば、光学面227を光学系203からの光束に対して傾けることもできる。光学面227を光学系203からの光束に対して垂直に配置した場合、光学面227での反射光は、入力ポート209から封止窓207に到る光の光路を逆に通って入力ポート209または出力ポート210に迷光として入射する可能性がある。このような場合、光信号のSN比(信号雑音比)の低下やクロストークの増大を招くことになる。そこで、光学面227を光学系203からの光束に対して傾けることにより、反射光の方向を変え、反射光が入力ポート209や出力ポート210に入射することを防ぐことができる。
 上述の実施形態では、光学系203をプレート219に固定するような構成になっていたが、これに限られるものではなく、図13のような変形例も考えられる。図13に示した構成では、光学系203は、筐体201もしくは、封止窓207上に固定されている。その他の構成は図10の例と同様である。このような構成にすることにより、プレート219を省略することができ、部品点数の削減により低コスト化が期待できる。図13では偏向部205を、取付部材223を介して取り付けているが、図12で示したように封止窓207に直接取り付けてもかまわない。
(第4実施の形態)
 図14は、本発明の第4実施の形態に係る概略的な波長選択スイッチ構成図である。本実施形態の波長選択スイッチ121は、筐体251と、筐体251内に組み立てられた光学系253と、偏向部255とを有するものである。光学系253(少なくとも1つの入力ポート259と、少なくとも1つの出力ポート260と、マイクロレンズアレイ261と、分散部263と、集光素子265と、ミラー267を含む)と偏向部255とは、図10の光学系203(少なくとも1つの入力ポート209と、少なくとも1つの出力ポート210と、マイクロレンズアレイ211と、分散部213と、集光素子215と、ミラー217とを含む)と偏向部205と同じ機能を有するので、説明は省略する。
 筐体251は、その一部を光学的に透明なプレート269とするものであり、当該プレート上に組み立てられる光学系253を密閉するものである。プレート269は、例えば、石英からなるものである。
 入力ポート259から入射された入力光は、マイクロレンズアレイ261、分散部263及び集光素子265を通り、ミラー267により反射される。ミラー267により反射された光は、プレート269を透過して偏向部255に導かれ、偏向部255により向きが偏向され、再びミラー267(光学系253)に戻ることになる。つまり、光学系253と偏向部255との間の光路は、プレート269を透過して形成されることになる。光学系253に戻った光は、ミラー267、集光素子265、分散部263、マイクロレンズアレイ261、出力ポート260を順々に通って出力光として出射されることになる。
 プレート269は、光学系253と偏向部255との間の光路が通る領域部分に、反射防止膜(図示せず)を設けることができる。これにより、プレート269で反射した不要光が光学系253のミラー267等を経由して入力ポート259、出力ポート260に入射する光量を軽減し、クロストーク、S/N低下の問題を防止することができる。
 第3実施の形態と同様、偏向部255は、筐体251の外側に着脱可能に取り付けられているものである。偏向部255は、例えば、プレート269の外側に取り付けられる取付部材273に接着固定またはねじ止めされる。このとき、偏向部255は取り付け部273なしに直接筐体251に取り付けられてもかまわない。
 このように本実施形態では、偏向部255は、筐体251の外側に取り付けられ、筐体251内の光学系253と偏向部255との間の光路は、光学的に透明なプレート269を透過して形成されている。つまり、波長選択スイッチ121を構成する偏向部255は、筐体251の外側に位置し、筐体251の気密封止を保ったままでの取り外しが可能であるため、偏向部255が故障した場合、光学系への湿気、埃によるダメージに考慮することなく偏向部255を取り替えることができる。したがって偏向部255の取り付けを失敗したような場合にも、一度取り外し、再度調整、固定が可能となる。偏向部255のみの取替及び調整が可能であるため、波長選択スイッチ121の他の構成部品を廃棄する必要がない。つまり、本実施形態における波長選択スイッチ121は、コスト面や環境面で優れている。更に、筐体251内の光学系253と、筐体251外の偏向部255との間の光路を実現するために、光学系253を取り付けるためのプレート269が有効に使用される。よって、第3実施の形態で記載されるような透明な封止窓の設置を省くことができるので、容易に波長選択スイッチを製造することができる。さらに、プレート269に石英等、線膨張の小さなガラスを用いることにより、高温時、低温時の相対的な光学部品の位置ずれ抑制し、信頼性をより向上できる。
 また、偏向部255はねじ止めにより取付部材273に固定された場合、波長選択スイッチ121の使用者は、容易に偏向部255を取り外して、取り替えることができる。
 なお、取付部材273は、筐体251と独立していても、また、図15のように、筐体251に予め取り付けられ、光学系253を含む筐体251と共に波長選択スイッチ用光学ユニット275を形成していてもよい。
 また、図16に示されるように、取付部材273を介さずに、偏向部255をプレート269に取り付けることもできる。偏向部255は、光を偏向させるためのデバイスを埃などから保護するためのカバーガラス等で封止されていることが多いので、この保護ガラスとプレート269とを光学的に透明な接着剤により接合することで、プレート269に固定することができる。
 なお、本実施形態において、図14を参照すると、プレート269の光学面277は、光学系253からの光束に対して、垂直になるように図示されているが、本実施形態は、この態様に限定されるわけではない。例えば、光学面277の光路通過部分を部分的に、研磨により光学系253からの光束に対して傾けることもできる。光学面277を光学系253からの光束に対して垂直に配置した場合、光学面277での反射光は、入力ポート259からミラー267に到る光の光路を逆に通って入力ポート259、または出力ポート260に迷光として入射する可能性がある。このような場合、光信号のSN比(信号雑音比)の低下やクロストークの増大を招くことになる。そこで、光学面277を光学系253からの光束に対して傾けることにより、反射光の方向を変え、反射光が入力ポート259や出力ポート260に入射されることを防ぐことができる。
 上述の本発明の第3及び第4実施の形態においては、光学系は、少なくとも1つの入力ポートと、少なくとも1つの出力ポートと、マイクロレンズアレイと、分散部と、集光素子と、ミラーとを有するものとして説明したが、本発明の光学系は更なる構成要素を含むことができる点に留意すべきである。例えば、光学系は、シリンドリカルレンズ、光の光路を調整する光路調整板などを有することができる。マイクロレンズアレイは、必ずしも配置しなくても構わない。また、入力ポートから入力される光束が、平行光束であるならば、必ずしも、マイクロレンズアレイ等のコリメート素子により、光束を平行にしなくても構わない。
(第5実施の形態)
 図17Aおよび図17Bは、本発明の第5実施の形態に係る波長選択スイッチの概略構成図である。この波長選択スイッチは、4つの入力ポート310a-310d、1つの出力ポート310e、第1分散部330a,330b、第2分散部332、集光レンズ340、偏向部350を備え、4つの入力ポート310a-310dから入力されるそれぞれ異なる波長の光信号を選択的に多重して、1つの出力ポート310eから出射するものである。以下、説明の便宜上、入力ポート310a-310dおよび出力ポート310eを、適宜、入出力ポート310a-310eとまとめて表記する。
 入出力ポート310a-310eは、出力ポート310eを中央としてY方向に直線状に配列されている。入出力ポート310a-310eは、対応する光ファイバ311a-311eとそれらの後段に配置されたマイクロレンズアレイ312とを備える。マイクロレンズアレイ312は、光ファイバ311a-311eと対応する球面または非球面のマイクロレンズを備える。
 入力ポート310cの光ファイバ311cから入力される光信号(入力光)は、対応するマイクロレンズにより平行光に変換されて対応する第1分散部330bに入射される。第1分散部330bは、例えば透過型回折格子からなる第1分散素子331bを有し、入力ポート310cからの入力光を波長に応じて分散する。なお、入力ポート310dから光信号が入力される場合も、同様にして第1分散部330bの第1分散素子331bにより分散される。また、他の入力ポート310a,310bから光信号が入力される場合は、同様に、第1分散部330aの例えば透過型回折格子からなる第1分散素子331aにより波長に応じて分散される。図17Bは、第1分散部330bが、5つの波長の光信号を分散可能な場合を例示している。
 集光レンズ340は、その前側焦点位置が第1分散部330a,330bの分散基点にほぼ一致するように配置されて、第1分散部330a,330bで波長分散された光信号を偏向部350に集光する。ここで、入力光が複数の離散的な波長で波長分割多重されている場合は、波長分散された光信号は、偏向部350に波長毎に分離して集光する。また、集光レンズ340により集光される複数の光信号は、波長分散方向に対して垂直な方向から見たときに、偏向部350に対してほぼ垂直に入射することが好ましい。すなわち、集光レンズ340は、像側テレセントリックレンズとして構成されていることが好ましい。
 偏向部350は、第1分散部330a,330bの波長分散方向に直線状に配列された複数の偏向素子を備える。本実施形態では、偏向部350は、5つの偏向素子351a-351eを備える場合を例示しているがこの数に限定されない。偏向素子351a-351eは、第1分散部330a,330bにより分散されて集光される5波長に対応しており、各々独立して駆動可能に構成されている。これにより、偏向部350に入射する波長毎の光信号がそれぞれ偏向される。このようなアレイ状の偏向素子351a-351eを備える偏向部350は、例えば、MEMSミラー、液晶素子、光学結晶などを用いて構成される。
 偏向部350により偏向された波長毎の光信号は、集光レンズ340を経て第2分散部332に入射される。第2分散部332は、例えば透過型回折格子からなる第2分散素子333を有し、偏向部350により偏向された光信号を波長多重させて出力ポート310eに入射させる。これにより、4つの入力ポート310a-310dから入力されるそれぞれ異なる波長の光信号が選択的に1つの出力ポート310eから出力光として出力される。
 図17Aは、第1分散部330a,330bによる波長分散方向(X方向)から見た図であり、図17Bは、波長分散方向と直交する方向(Y方向)から見た図である。また、図中、Z方向は、X方向およびY方向と直交する方向を示している。
なお、現実の波長選択スイッチの光路中に、図示しないミラー、プリズム等の偏向部材が光路を折り曲げるために配置されている場合には、X方向及びY方向との説明は、このような偏向部材が無いものとした仮想的な光学系を前提として用いられることとする。
 次に、第1分散部330a,330bおよび第2分散部332について、さらに詳細に説明する。図18は、第1分散部330a,330b、第2分散部332、集光レンズ340および偏向部350の部分の概略斜視図である。第1分散部330aは、入力ポート310a,310bに対応する第1分散素子331aを有する。第1分散部330bは、入力ポート310c,310dに対応する第1分散素子331bを有する。第2分散部332は、出力ポート310eに対応する第2分散素子333を有する。そして、入力ポート310a,310bからの入力光は、往路において第1分散部330aの第1分散素子331aで分散される。同様に、入力ポート310c,310dからの入力光は、往路において第1分散部330bの第1分散素子331bで分散される。また、偏向部350により偏向された光は、復路において第2分散部332の第2分散素子333で波長多重される。
 なお、図18は、模式図であり、実際には、光が直線的に進行するわけではない。すなわち、XZ面内において、光は、第1分散部330a,330bに斜めに入射し、斜めに出射される。同様に、XZ面内において、光は、第2分散部332に斜めに入射し、斜めに出射される。
 ここで、第1分散部330a,330bの第1分散素子331a,331bは、例えば、図19Aに示すような波長λに対する回折効率Eの偏光特性を有する。また、第2分散部332の第2分散素子333は、第1分散素子331a,331bの偏光特性を相殺あるいは補償するような、すなわち打ち消すような、図19Bに示す偏光特性を有する。これにより、第1分散素子331aまたは331bと第2分散素子333とによる往復(合計)での偏光特性は、図19Cに示すようになり、使用波長帯域において、P偏光成分とS偏光成分との回折効率差を小さくでき、偏波依存性損失(PDL)を低減できる。
 このような第1分散素子331a,331bおよび第2分散素子333を有する第1分散部330a,330bおよび第2分散部332は、好ましくは、例えば、図20Aまたは図20Bに示すように構成される。図20Aは、同一の透明基板334上に、第1分散素子331a,331bと、第2分散素子333とを接着等により貼付して、第1分散部330a,330bおよび第2分散部332を構成した場合を例示している。
 また、図20Bは、同一の光学部材335に第1分散素子331a,331bおよび第2分散素子333をリソグラフィー等により一体に形成して、第1分散部330a,330bおよび第2分散部332を構成した場合を例示している。なお、第1分散素子331a,331bおよび第2分散素子333の偏光特性は、例えば格子の深さやデューティー比,格子材料の組成を変える等の公知の手法により、偏光特性を制御することが可能である。また、第1分散素子331a,331bおよび第2分散素子333は、第1分散部330a,330bおよび第2分散部332が同じ分散量を持つように、格子溝間隔が同一になるように構成されている。この点については、他の実施形態でも同様である。
 本実施の形態に係る波長選択スイッチによると、偏向部350により偏向された光を分散する第2分散部332の第2分散素子333が、入力ポートからの光を分散する第1分散部330a,330bの第1分散素子331a,331bの偏光特性を相殺するような偏光特性を有するので、偏波依存性損失を低減できる。また,回折格子の製造上のバラつき等により、回折格子の偏光特性にもバラつきが生じる場合がある。図20Aに示す構成ではバラついた偏光特性の回折格子の内からより良い組み合わせの第1分散素子331a,331bと第2分散素子333を選択できる。このため,回折格子を製造する際、製造上のバラつきの影響を受けにくいという利点がある。
 なお、図17Aには、4つの入力ポート310a-310dと1つの出力ポート310eとが例示されているが、出力ポート310eが入力ポートとなり、入力ポート310a-310dが出力ポートとなる場合もある。また、入力ポートおよび出力ポートの数は、例示に限らず適宜設定される。これらの点については、他の実施形態でも同様である。つまり、本発明に係る波長選択スイッチは、上述したように、波長毎の複数の入力光を分割多重して出力する場合に限らず、波長分割多重された入力光を波長毎に分散して出力するように使用される場合もある。また,図17Bには,偏向部350に5つの偏向素子351a-351eが例示されているが,実際には偏向素子の数は,伝播される信号の周波数間隔(チャネル間隔)および周波数帯域幅(チャネル数)により決められる.この点については、他の実施形態でも同様である。
 また、第1分散部330a,330bおよび第2分散部332において、入力光と出力光とを確実に分離できるように、入力ポートと出力ポートとのポート間隔を変えてもよい。例えば、図17Aにおいて、入力ポート310a,310bの間隔および入力ポート310c,310dの間隔をそれぞれd1とし、入力ポート310bと出力ポート310eとの間隔および入力ポート310cと出力ポート310eとの間隔をそれぞれd2とするとき、d2≧d1とすることができる。
(第6実施の形態)
 図21Aおよび図21Bは、本発明の第6実施の形態に係る波長選択スイッチの概略構成図である。この波長選択スイッチは、図17Aおよび図17Bに示した構成において、4つの入力ポート310a-310dおよび1つの出力ポート310eに代えて、4つの出力ポート315a-315dおよび1つの入力ポート315eを備え、入力ポート315eが一端に位置するようにY方向に直線状に配列されている。これら出力ポート315a-315dおよび入力ポート315eは、第5実施の形態と同様に、対応する光ファイバ311a-311eとそれらの端面に配置されたマイクロレンズアレイ312とを備える。また、入力ポート315eに対応する一つの第1分散部330と、出力ポート315a-315dに対応する一つの第2分散部332とを備える。
 図22は、第1分散部330、第2分散部332、集光レンズ340および偏向部350の部分の概略斜視図である。第5実施の形態の場合と同様に、入力ポート315eに対応する第1分散部330は、第1分散素子331を有する。また、出力ポート315a-315dに対応する第2分散部332は、第2分散素子333を有する。そして、第2分散素子333は、第1分散素子331の偏光特性を相殺あるいは補償するような、すなわち打ち消すような偏光特性を有する。これらの第1分散素子331を有する第1分散部330および第2分散素子333を有する第2分散部332は、図20Aや図20Bと同様に構成される。なお、図21Aは、図17Aと同様に、第1分散素子331による波長分散方向(X方向)から見た図であり、図21Bは、図17Bと同様に、波長分散方向と直交する方向(Y方向)から見た図である。その他の構成は、図17Aおよび図17Bと同様であるので、同一作用をなす構成要素には、同一参照符号を付して詳細な説明を省略する。
 かかる構成において、入力ポート315eから入力される波長多重された光信号(入力光)は、往路において、第1分散部330の第1分散素子331で波長分散された後、集光レンズ340により偏向部350の波長に対応する偏向素子351a-351eに入射して偏向される。そして、偏向部350により偏向された波長毎の光信号は、復路において、集光レンズ340を経て第2分散部332の第2分散素子333で分散される。この際、第5実施の形態の場合と同様に、往路における偏光特性が相殺される。そして、第2分散素子333により波長多重された光信号が、出力ポート315a-315dから選択的に出力される。なお、図21Aは、1つの出力ポート315cに光信号が入射される場合を例示している。
 したがって、本実施の形態に係る波長選択スイッチにおいても、第5実施の形態の場合と同様に、偏波依存性損失を低減できる。また、本実施の形態では、第5実施の形態と比較して、第1分散部330および第2分散部332がそれぞれ一つで済むので、構成を簡単にでき、コストダウンが図れる利点がある。なお、図21Aには、4つの出力ポート315a-315dと1つの入力ポート315eとが例示されているが、入力ポート315eが出力ポートとなり、出力ポート315a-315dが入力ポートとなる場合もある。
(第7実施の形態)
 図23は、本発明の第7実施の形態に係る波長選択スイッチの概略構成図である。この波長選択スイッチは、入射・出射端部が紙面垂直方向(Y方向)に直列に配列された、少なくとも一つの入力ポートと少なくとも一つの出力ポートとを有する。ここでは、説明の便宜上、第6実施の形態に示した4つの出力ポート315a-315dおよび1つの入力ポート315eを備え、入力ポート315eが一端に位置するようにY方向に配列されているものとする。
 入力ポート315eから入力される波長多重された光信号(入力光)は、往路において、一次集光レンズ360により集光された後、集光レンズ340により第1分散部330に入射される。集光レンズ340は、その前側焦点位置が一次集光レンズ360による集光点に位置するように配置される。
 第1分散部330は、透過型回折格子を有する第1分散素子331と、反射素子である折返しミラー336とを備え、第1分散素子331による分散光を折返しミラー336により反射させて再び第1分散素子331に入射させるリットマン・メトカルフ構造を有している。第1分散素子331は、その分散基点が、集光レンズ340の後側焦点位置近傍に位置するように配置される。
 集光レンズ340により第1分散部330に入射される入力ポート315eからの光信号は、第1分散素子331で分散された後、折返しミラー336で反射されて再び第1分散素子331で分散されて第1分散部330から出射される。第1分散部330から出射された光信号は、集光レンズ340により偏向部350の波長に対応する偏向素子351a-351eに集光されて、各々独立して偏向される。偏向部350は、集光レンズ340に関して、第1分散部330と反対側、つまり入出力ポート315a-315eと同一側に配置されている。
 そして、偏向部350により各々独立して偏向された光信号は、復路において、集光レンズ340を経て第2分散部332に入射される。第2分散部332は、透過型回折格子を有する第2分散素子333(図示せず)と、第1分散部330とともに使用される折返しミラー336とを備える。このように、折返しミラー336は、第1分散部330および第2分散部332に共用される。第2分散素子333は、第1分散素子331の偏光特性を相殺するような偏光特性を有し、第1分散素子331とともに、図23の紙面垂直方向において、図20Aや図20Bと同様に構成される。そして、偏向部350により偏向された光信号は、第2分散部332の第2分散素子333および折返しミラー336によりXZ平面において往路と逆順に作用して波長多重される。その後、光信号は、集光レンズ340および一次集光レンズ360を経て、所望の出力ポート315a-315dに出力光として出力される。なお、図23は、第1分散素子331による波長分散方向(X方向)と直交する方向から見た図であり、第1分散素子331により3つの波長に分散された場合を例示している。
 本実施の形態に係る波長選択スイッチによれば、上記実施の形態と同様に、偏波依存性損失を低減することができる。しかも、第1分散部330および第2分散部332は、折返しミラー336を有するリットマン・メトカルフ構造を有しているので、大きな分散を得ることができ、波長選択スイッチを小型化することが可能となる。
 なお、第5~7実施の形態において、分散素子は、透過型のものに限らず、反射型のものや、Grism、スーパープリズム等を用いる構成でも本発明を有効に適用することができる。
また、各実施の形態において、マイクロレンズアレイ312は、必ずしも配置されなくても構わない。
また、集光レンズ340および一次集光レンズ360は、集光作用を奏すればよく、集光ミラーや、回折型集光素子等を用いることができる。
(第8実施の形態)
 図24Aおよび図24Bは、それぞれ本発明の第8実施の形態に係る波長選択スイッチ401の構成を示す側面図および上面図である。
 波長選択スイッチ401は、入出力部410、レンズ412、シリンドリカルレンズ413、レンズ414、分散部を構成する分散素子415、集光素子であるレンズ416、偏向部を構成する偏向器417を含んで構成されている。
 入出力部410には光ファイバアレイ405の光ファイバの端部がアレイ状に(直列に)配列され、これに対応した複数のマイクロレンズがアレイ状に配置されたマイクロレンズアレイ411が設けられている。一組の光ファイバとマイクロレンズとは、入力ポート410aおよび出力ポート410b~410eのうちの一つのポートを構成する。この入力ポート410aおよび出力ポート410b~410eは、それぞれ、波長選択スイッチ401の外部からの波長多重された信号光を入力させ、また、外部へ信号光を出力させるものである。以下、説明の便宜上、入力ポート410aおよび出力ポート410b~410eを、適宜、入出力ポート410a~410eとまとめて表記する。入出力ポートの数は例えば10以上とし、出力ポートの数を入力ポートの数よりも多数設けることができるが、図24Aにおいては、説明の都合から、入出力ポート410cを中心とする5つの入出力ポート410a~410eのみを図示している。
 入出力用の光ファイバアレイ405の他端は、波長選択スイッチ401の外部と接続されている。マイクロレンズアレイ411のマイクロレンズは、光ファイバから入射する光を平行光束に変換し、また、波長選択スイッチ401内で各入出力ポート410b~410eに向けて出力される平行光束を光ファイバアレイ405の対応する光ファイバに結合させる。このように、入出力ポート410aから波長選択スイッチ401内に入射する入力光、および、波長選択スイッチ401内で各入出力ポート410b~410eに向かう出力光は、平行な光束となる。
 以下において、入出力ポート410aから入力された平行光の進行方向を光軸方向(z方向)とする。この光軸方向は、レンズ412およびレンズ414を含む光学系の光軸方向でもある。また、入出力ポート410a~410eの配列された方向を第1の方向(y方向)とする。光軸方向と第1の方向とは、互いに直交する。さらに、光軸方向および第1の方向(y方向)のそれぞれに直交する方向を第2の方向(x方向)と呼ぶ。なお、現実の波長選択スイッチの光路中に、図示しないミラー、プリズム等の偏向部材が光路を折り曲げるために配置されている場合には、x方向及びy方向との説明は、このような偏向部材が無いものとした仮想的な光学系を前提として用いられることとする。
 シリンドリカルレンズ413は、入射側と出射側の双方にシリンドリカル面を有し、第2の方向(x方向)に光束を縮める、すなわち、第2の方向(x方向)にのみ屈折力を有するレンズである。シリンドリカルレンズ413は、第1の方向(y方向)についてはレンズ412からの収束光をそのまま収束させ、第2の方向(x方向)についてはより大きな収束度で収束させる。このためレンズ412およびシリンドリカルレンズ413を透過した入力光は、レンズ412の焦点近傍の一次集光点420で第2の方向(x方向)により狭い楕円形のスポットを形成する。すなわち、本実施の形態では、シリンドリカルレンズ413は、光束を楕円化させる楕円化素子である。
 レンズ414とレンズ416とは、例えば、焦点距離fの等しいレンズであり、レンズ414、分散素子415、レンズ416および偏向器417は、一次集光点420、レンズ414、分散素子415の分散面、レンズ416、および、偏向器417の偏向素子(ミラー)418の形成する偏向素子面との距離がそれぞれ焦点距離fに等しくなるように配置される。これによって、一次集光点420を通った光束は、レンズ414で平行光となり、レンズ416により偏向器417の偏向素子418に集光される。なお、レンズ414とレンズ416の焦点距離は、異ならせる構成も可能である。
 分散素子415は、例えば、分散面上に第1の方向(y方向)に平行な格子が形成された回折格子である。分散素子としては、波長毎の光の分解性能が高くより分散角が大きいものが望ましい。図24Bに示すように、レンズ414を透過した入力光は、略平行光となって分散素子415に入射し、分散素子415の分散面上で第2の方向(x方向)に波長毎に異なる角度で分散される。すなわち、分散素子415は入力光を入力光に含まれる波長毎の光に分離する。なお、分散素子415には入力光を第2の方向(x方向)に斜めに入射させて回折させるが、図24Aおよび図24Bでは、簡単のために、入力部410から偏向器417に至る光路を、z方向に直線的に示している。
 図24Bに示すように、分散素子415で分散された波長毎の光は、レンズ416により互いに平行な光束となって、各波長に対応した偏向素子418に第2の方向(x方向)に略垂直に入射する。また、側面から見た場合には、図24Aに示すように、一次集光点を通過した入力光は、分散素子415で分散された後、yz平面内でレンズ416の光軸と偏向素子418の偏向素子面とが交わる高さ位置に集光する。
 偏向器417は、例えば、MEMSミラーアレイであり、偏向素子418は、MEMSミラーアレイを構成する複数の第1の方向(y方向)に長い矩形状のマイクロミラーである。偏向素子418は、分離されるそれぞれの波長の光に対応して、上述のレンズ416の光軸の高さ位置に、第2の方向(x方向)に並列に配置される。この偏向器417は、それぞれの偏向素子418を独立に制御して傾きを変えることができる。特に、図24Aにおけるyz平面内での傾きを変えることにより、入射した波長毎の光を入射方向とは異なる高さ方向へ反射する。なお、偏向器417は、MEMSミラーアレイに限られず、液晶素子や光学結晶を用いて構成することもできる。また、図24Bにおいて、偏向素子418は、9つのみ図示されているが、偏向素子418の数は、9つに限定されない。
 各偏向素子418により反射された波長毎の光は、それぞれレンズ416を通り分散素子415で回折され、入力光と反対方向の光路を経て、入出力部410のうち入力用に用いられた以外のいずれかの入出力ポート410b~410eまたは図示しない他の入出力ポートに正規光として出力される。
 なお、何れの入出力ポート410a~410eを入力用または出力用として用いるかは、適宜設計することが可能である。図24Aおよび図24Bでは、入出力ポート410aが入力ポートであり、入出力ポート410b~410eが出力ポートである場合において、入出力ポート410aから波長多重された入力光が入力され、特定の波長の出力光が入出力ポート410cから出力される場合を図示している。
 ここで、複数の偏向素子418に入射した光のうち、少なくとも1つの波長の光を入出力ポート410cから出力する場合は、対応する偏向素子418の偏向方向を制御して、図24Aに破線で示すように、所定の方向に特定の波長の光を反射させる。偏向素子418によって反射された特定波長の光は、レンズ416を通り、分散素子415、レンズ414、シリンドリカルレンズ413、レンズ412を経て、入出力ポート410cから出力される。同じ入出力ポート410cに出力する波長の光が複数ある場合は、それら複数の波長の光が分散素子415で合波される。
 次に、シリンドリカルレンズ413による入力光の反射について説明する。図25Aは、図24の波長選択スイッチ401の入出力ポート410aから一次集光点420までの入力光の光束を示す上面図である。この図では、入力光が、レンズ412およびシリンドリカルレンズ413で収束されて、一次集光点420に集光する様子を示している。また、入出力部410の光ファイバアレイ405とマイクロレンズアレイ411との間、マイクロレンズアレイ411とレンズ412との間、および、レンズ412とシリンドリカルレンズ413との間のそれぞれについて、入力光の波面Sa,SbおよびScを示している。
 図25Bは、シリンドリカルレンズ413の入射側の面(入射面)413aで反射された反射光の光束を示す上面図である。図25Bに示すように、入射面413aは入射側に凸に湾曲した曲面であるのに対して、この入射面413aに入射する直前の入力光の波面Scは略平面に近い形状をしている。このため、入射面413aで入力光の一部が反射されると、その反射光は入出力ポート410a~410eに向けて第1の方向(x方向)に径の広がった光束となる。そのため、この反射光は、入出力ポート410cの出射面すなわち、マイクロレンズアレイ411の位置で、この出射面の径よりも広い光束を形成する。また、マイクロレンズアレイ411に入射する反射光は、マイクロレンズアレイ411を構成するマイクロレンズの径に制限されるため、その広い光束の一部しかマイクロレンズに入射しない。このため、光ファイバアレイ405を構成する光ファイバに入射する、入射面413aにより反射された光の反射光の光量は小さくなる。さらに、進行方向に径の広がる反射光は、その反射光の一部がマイクロレンズアレイ411を通過しても光ファイバアレイ405の端面に結像しないので、光ファイバ内にもほとんど入射しない。従って、この反射光によって生じるクロストークの大きさを低減することができる。
 また、図25Cは、入力光がシリンドリカルレンズ413の出射側の面(出射面)413bで反射された反射光の光束を示す上面図である。この場合、出射面413bは入射側に凹に湾曲した曲面であるのに対して、この出射面413bに入射する直前の入力光の波面Sdは入射面413aで屈折を受けて、進行方向に凹面形状となっている。このため、出射面413bで入力光の一部が反射されると、その反射光は入出力ポート410a~410eに向けて第1の方向(x方向)に径を狭める方向の光束となる。この反射光は、第1の方向(x方向)に一旦収束した後発散し、入出力ポート410cの出射面すなわち、マイクロレンズアレイ411の対応するマイクロレンズのレンズ面の位置で、このレンズの径よりも広い光束を形成する。したがって、図25Bの場合と同様に、マイクロレンズに入射する反射光の光量は小さくなる。また、図25Bの場合と同様に、この反射光によって生じるクロストークの大きさを低減することができる。
 図26は、図24Aおよび図24Bのシリンドリカルレンズの形状の一例を説明する上面図である。シリンドリカルレンズ413は、共通の中心軸線(図26において中心Cを通り紙面に垂直な直線)を有して対向する2つの曲率半径Rのシリンドリカル面を有するように構成される。すなわち、このシリンドリカルレンズ413は、一つの円柱状のガラス等の透明部材から、切り出して作成することができる。
図27は、本実施の形態の変形例としての、シリンドリカルレンズの他の形状を説明する上面図である。この図のシリンドリカルレンズ423は、入射側の面423aが凸面のシリンドリカル面であり、出射側の面423bが、入射側のシリンドリカル面よりも曲率半径が大きい、すなわち、曲率の小さい凹面のシリンドリカル面である。このようなレンズを用いると、入射側の面423aの屈折力と出射側の面423bの屈折力とを合成した屈折力は正の屈折力を有するシリンドリカルレンズと同等となる。さらに、入射側の面423aと出射側の面423bとは、双方ともに曲面により形成されているので、シリンドリカルレンズ413を用いた場合と同様に反射光によるクロストークの発生を抑制することができる。
 以上説明したように、本実施の形態によれば、波長選択スイッチ401において楕円形状のスポットを形成するために配置されるシリンドリカルレンズ413を、入力光が通過する入射側と出射側の双方にシリンドリカル面を有するように構成したので、これら入射側の面413aと出射側の面413bとのいずれで反射された入力光の反射光も、出力ポートの出射面の位置において径の広がった光束となるので、クロストークの発生を抑制することができる。
 特に、本実施の形態では入力光は略平行光としてシリンドリカルレンズ413に入射するので、シリンドリカルレンズ413の入射側の面413aと出射側の面413bとのいずれも平面ではなく曲面として形成したことにより、反射光がマイクロレンズアレイ411により光ファイバアレイ405の端面に結像して、光ファイバに入射してクロストークを発生させることを抑制することができる。
 また、シリンドリカルレンズ413の2つの面を、共通の中心軸線を有して対向するシリンドリカル面としたことにより、シリンドリカルレンズを一つの円柱状の部材から切り出して容易に製造することが可能になる。
 なお、上記第8実施の形態において、楕円化素子は入力光の通過する2つの面をシリンドリカル面とするシリンドリカルレンズとしたが、これに限られない。例えば、シリンドリカル面の何れか一方または双方に代えて、フレネル形状を設けてシリンドリカル面と同様の屈折面を形成してもよい。あるいは、楕円化素子は、第2の方向(x方向)にのみ屈折力を有するレンズに限られず、例えば、第1の方向(y方向)と第2の方向(x方向)の双方に屈折力を有するが、第1の方向(y方向)により大きな屈折力を有するレンズとすることもできる。
 また、第8実施の形態において、入出力ポートから出力された入力光の光軸方向(z方向)に直交する鉛直方向を第1の方向(y方向)、水平方向を第2の方向(x方向)方向としたが、第1の方向(y方向)は鉛直方向に限られず、第2の方向(x方向)は水平方向に限られない。第1の方向(y方向)および第2の方向(x方向)は、入力光の進行方向に略直交し且つ互いに略直交する2方向であれば良い。また、本実施の形態において、マイクロレンズアレイ411は、必ずしも配置されなくても構わない。この場合、出力ポートの出射面とは、入出力ポート410のうち出力ポートとして機能するポートにおける、光ファイバの端面を指す。また、レンズ412、レンズ414、レンズ417は、集光作用を奏すればよく、集光ミラーや、回折型集光素子等を用いることができる。また、分散素子415は、分散素子と反射面とを組み合わせたリットマン-メトカルフ型の構成であってもよい。この場合、レンズ414およびレンズ416を共通化させることができる。また、分散素子415は、透過型に限られず、反射型回折格子、Grism、スーパープリズム等を用いることもできる。
(第9実施の形態)
 図28および図29は、それぞれ、第9実施の形態に係る波長選択スイッチの構成を示す側面図および上面図である。
 波長選択スイッチ501は、入出力部510、第1のレンズ512、第2のレンズ514、分散部を構成する分散素子515、第1の集光素子である第3のレンズ516、偏向部を構成する偏向器517を含んで構成されている。ここで、第1のレンズ512と第2のレンズ514とは、リレー光学系を構成するリレー光学素子である。また、図28,29において、実線の矢印は、入出力部510から偏向器517に至るまでの光の光路を示し、破線の矢印は偏向器517から入出力部510へ戻る光の光路を示す。実線および破線の矢印は、以下の図においても同様とする。
 入出力部510には複数の光ファイバから成る光ファイバアレイの端部が直列に配列され、これに対応する複数のマイクロレンズから成るマイクロレンズアレイ511が設けられている。一組の光ファイバとマイクロレンズとは、入力ポート510a,510b,510d,510eおよび出力ポート510cのうち一つのポートを構成する。この入力ポート510a,510b,510d,510eおよび出力ポート510cは、それぞれ、波長選択スイッチ501の外部からの波長多重された信号光を入力させ、また、外部へ信号光を出力させるものである。以下、説明の便宜上、入力ポート510a,510b,510d,510eおよび出力ポート510cを、適宜、入出力ポート510a~510eとまとめて表記する。入出力ポートの数は例えば6以上とし、出力ポートおよび入力ポートをそれぞれ任意の配置で複数設けることができるが、図28においては、説明の都合から、出力ポート510cを中心とする5つの入出力ポート510a~510eのみを図示している。また、図28および図29においては、入力ポート510bから入力された光が、出力ポート510cに出力される例を示している。
なお、入力光の光束の強度は、図30に示すようにガウス分布を持ち、光束の中心位置が最も光強度が強い。このように、マイクロレンズアレイ511から離れた位置にある第1のレンズ512上では光束径がマイクロレンズアレイ511近傍より広がるため、隣接する入力ポート510a,510b,510d,510eからの、または、隣接する出力ポート510cへの光束の光路との間で重なりが発生する。
 ここで、入力光の重なりを決める入力光の光束の幅は、入力光の光強度が最も高い値を100とした場合の、光強度が1になる光束径により定義する。光強度のピーク値の1%程度未満の強度の光であれば、その一部が反射され隣接するポートに入射してもそれほど大きなクロストークの原因にならない。なお、光束の大きさは、上記の定義に限定されるものではなく、例えば、光強度のピーク値の5%や13.5%となる光束径等を用いて定義することもできる。
 マイクロレンズアレイ511のそれぞれのマイクロレンズは、各入力ポート510a,510b,510d,510eの光ファイバから入射する光を略平行なコリメート光に変換し、また、波長選択スイッチ501内で入出力ポート510cに向けて出力される略平行なコリメート光を光ファイバアレイの対応する光ファイバに結合させる。このように、入力ポート510a,510b,510d,510eから波長選択スイッチ501内に入射する入力光、および、波長選択スイッチ501内で出力ポート510cに向かう出力光は、互いに略平行なコリメート光となるように設計される。
 以下の各実施の形態において、入出力ポート510a~510eは、入力光の方向(z方向)と直交する第1の方向(y方向)に配列されるものとする。また、入力光の方向(z方向)及び第1の方向(y方向)と直交する方向を第2の方向(x方向)とする。また、入力光(正規光)の光路が、xz面内で方向を変える場合、各光路上の位置で光路に沿う方向をz方向とし、これと第1の方向(y方向)に直交する方向を第2の方向(x方向)とする。なお、現実の波長選択スイッチの光路中に、図示しないミラー、プリズム等の偏向部材が光路を折り曲げるために配置されている場合には、x方向及びy方向との説明は、このような偏向部材が無いものとした仮想的な光学系を前提として用いられることとする。
 第1のレンズ512は、両側に凸面を有するレンズである。第1のレンズ512を透過した入力光は、一次集光点520で第1のレンズ512によって集光されたスポットを形成する。この一次集光点520は、複数の入力ポートからの入力光が交わる位置である。また、第1のレンズ512は、入力光の進行方向に対して、光軸がxz面内で第2の方向に傾きを有するように配置されている。このため、第1のレンズ512を含むリレー光学系は、共軸光学系ではなく、光軸に対して非対称な光学系となっている。
 図31は、第1のレンズ(リレーレンズ)512を透過する光の光路の一例を説明する上面図である。図31によれば、第1のレンズ512は、入出力部510側の面512aと分散素子515側の面512bとの2面を有している。入力ポート510a,510b,510d,510eから入射された入力光は、第1の方向(y方向)から見たとき、第1のレンズ512の入力部側の面512aの略中央に、第1のレンズ512の光軸Oに対して、角度αで入射し分散素子側の面512bから角度βで出射する。角度αと角度βとは、一般には等しくならない。
 第2のレンズ514と第3のレンズ516とは、例えば焦点距離fがほぼ等しいレンズである。この場合、第2のレンズ514、分散素子515、第3のレンズ516および偏向器517は、一次集光点520、第2のレンズ514、分散素子515の分散面、第3のレンズ516、および、偏向器517の偏向素子(ミラー)518のそれぞれの間の距離が焦点距離fに略等しくなるように配置される。これによって、一次集光点520を通った光束は、第2のレンズ514でコリメート光となり、第3のレンズ516により偏向器517の偏向素子518a~518eに集光される。なお、第2のレンズ514と第3のレンズ516の焦点距離は異ならせる構成も可能である。
 分散素子515は、例えば、分散面上に第1の方向(y方向)に平行な格子が形成された回折格子である。分散素子515としては、波長毎の光の分解性能が高くより分散角が大きいものが望ましい。第2のレンズ514を透過した入力光は、各入力ポートの光の第1の方向(y方向)に対して互いに略平行なコリメート光となって分散素子515に入射する。図32に、分散素子515の分散面上での入力ポート510a,510b,510d,510eから入射した入力光のスポット515a,515b,515d,515eを示す。それぞれの入力光は、分散素子515の分散面上で第2の方向(x方向)に波長毎に異なる角度で分散される。すなわち、分散素子515は入力光を入力光に含まれる波長毎の光に分離する。
 前述のように、分散素子515と第3レンズ516とは焦点距離fだけ離れているので、図29に示すように、分散素子515で分散された波長毎の光は、第3のレンズ516により波長毎の光の第2の方向(x方向)に対して、互いに平行な収束光となって、各波長に対応した偏向素子518に入射する。また、波長毎の個々の光は、第3のレンズ516によって、偏向器517の各波長に対応した偏向素子518上に集光されたスポットを形成する。さらに、側面から見た場合、図28に示すように、一次集光点520を通過した入力光は、分散素子515で分散された後、yz平面内で第3のレンズ516の光軸と偏向器517の偏向素子518の偏向素子面とが交わる高さ位置(y方向の位置)に集光する。
 図33は、偏向器517を第3のレンズ516側から見た斜視図である。偏向器517は、例えば、MEMSミラーアレイであり、偏向素子518は、MEMSミラーアレイを構成する個々の第1の方向(Y方向)に長い矩形状のマイクロミラーを有している。この図では、xz面内方向のうち、特にMEMSミラーアレイが配列されている方向を第2の方向(X方向)として説明する。なお、ここでは、第2の方向が入出力ポートでの第2の方向(x方向)と異なっているので、X方向、Y方向と表記している。偏向素子518は第2の方向(X方向)に少なくとも波長の数だけ配列されている。この偏向器517においては、各偏向素子518はX軸を中心に回転するXθと、Y軸を中心に回転するYθの2回転自由度を有している。波長毎の光はXθおよびYθの回転により、それぞれ、第1の方向(Y方向)および第2の方向(X方向)に偏向される。第1の方向(Y方向)に波長毎の光を偏向させることにより、出力ポート510cに出射される波長毎の入力ポートの光を選択し、第2の方向(X方向)に波長毎の光を偏向させることにより、出力ポート510cに出射される波長毎の入力ポートの光の強度を調整することができる。この第2の方向への偏向は、後述するアッテネーションに用いられる。
 図28,29において破線で示すように、各偏向素子518上に集光し反射された波長毎の光は、拡散光となって第3のレンズ516を通り、この第3のレンズ516によりコリメート光となって、分散素子515に入射する。各偏向素子518のYθの回転角が等しい場合には、図29に示すように、第3のレンズ516を透過した波長毎の光は、第1の方向(y方向)から見たとき分散素子515の分散素子面上の同一の点に集まる。一方、各偏向素子518のXθの回転角を変えることによって、波長毎の光は分散素子515の第1の方向に異なる位置に入射する。図28では、出力ポート510cに出力される波長の光を破線で示しているが、同じ出力ポート510cに出力する波長の光が複数ある場合は、異なる波長に対応する偏向素子518のX軸周りの回転角を調整して、分散素子515によって波長多重して、同一の出力ポート510cから出射させることができる。
 分散素子515を透過した光は、コリメート状態を保ったまま第2のレンズ514に入射して、一次集光点520に集光された後、第1のレンズ512によりコリメートされ、出力ポート510cに対応するマイクロレンズアレイ511のマイクロレンズに入射する。出力光は、このマイクロレンズによって、対応する出力ポート510cに集光され正規光として出力される。
 本実施の形態では、前述のように、第1のレンズ512の光軸が、入力光の進行方向に対して、第2の方向(x方向)に傾いている。図34A、図34Bは、それぞれ、第1のレンズ512の入出力ポート510a~510e側の面512aによる、入力光の反射による迷光の光束の一例を説明する側面図および上面図である。また、図35A、図35Bは、それぞれ、第1のレンズ512の分散素子側の面512bによる入力光の反射による迷光の光束の一例を説明する側面図および上面図である。
 図34Aおよび図34Bに示すように、入力ポート510bを出射した入力光は、第1のレンズ512の入出力ポート側の面512aで、その一部が僅かに反射され迷光となる。この迷光の光束は、レンズの凸面での反射により拡散する光となって、図34Aに示すように、マイクロレンズアレイ511の例えば、入力ポート510a、510bおよび出力ポート510cの一部と重なる高さの拡散光となって、入出力部510側に戻る。しかし、入力光の進行方向に対して、第1のレンズ512の光軸を第2の方向(x方向)に図31の角度α傾けたので、図34Bに示すように、入力光が反射されて発生した迷光は、第2の方向(x方向)に外れるため、マイクロレンズアレイ511に入射すること抑制することができる。したがって、戻り光が、出力ポート510cに入射することを抑制することができる。
 また、図35A,図35Bに示すように、入力ポート510bから入射した入力光は、第1のレンズ512の分散素子側の面512aで、その一部が僅かに反射され迷光となる。この迷光の光束は、レンズの凸面の内部反射により集光された後拡散光となって、図35Aに示すように、マイクロレンズアレイ511の例えば、入力ポート510dおよび出力ポート510cと重なる高さの光となって、入出力部510側に戻る。しかし、入力光の進行方向に対して、第1のレンズ512の光軸を第2の方向(x方向)に図31の角度α傾けたので、図35Bに示すように、入力光が反射されて発生した迷光は、第2の方向に外れるため、マイクロレンズアレイ511に入射することを抑制することができる。したがって、戻り光が、出力ポート510cに入射することを抑制することができる。
 なお、角度αは、入力光のレンズ面での反射による迷光が、マイクロレンズアレイ511に入射しないように決定される。また、図34A,図34B,図35Aおよび図35Bで示す反射による迷光の光束は一例を示すものであって、入力光の第1のレンズ512のレンズ面による反射による迷光の形態はこれだけに限られない。例えば、図34においては、マイクロレンズアレイ511の近傍に到達する迷光は、第1のレンズ512の形状により、光束の径の広がりがより大きい場合も小さい場合も発生し得る。また、図35A,図35Bにおいて、第1のレンズ512の分散素子側のレンズ面512bでの反射により発生する迷光は、一旦収束された後、発散する光束となってマイクロレンズアレイ511の近傍に到達しているが、これに限られず、第1のレンズ512の形状に応じて、集光する光束のままマイクロレンズアレイ511の近傍に到達する場合もあり得る。
 次に、図36は、図28,29の波長選択スイッチにおける光強度の調節方法を説明する上面図である。入出力部510の各入力ポート510a,510b,510d,510eから入力される波長多重された光は、一般的に波長ごとに入力される光強度が異なる。波長選択スイッチには、波長ごとに異なる強度を揃えて、波長多重し、出力ポートから出力するという機能(アッテネーション)を有することができる。アッテネーションは、光強度をそろえる対象となる複数の波長の光のうち、最も光強度値が小さいものに、他の波長の光の光強度を減少させて揃えることにより行う。
 次に本実施の形態のアッテネーション方法について説明する。本実施の形態の波長選択スイッチ501は偏向器(ミラーアレイ)517の偏向素子(ミラー)518a~518eを第2の方向(X方向)に振ってアッテネーションを行う。図36は偏向器517の偏向素子518cのみ第2の方向(X方向)にミラーを振った場合のミラーから反射された光Lがどのように出力ポート510cに出力されるかを示している。偏向器517の偏向素子518a,518b,518d,518eはミラーを第2方向(X方向)に振っていないため、偏向器517から入出力部510に戻る光Lは、第1方向(y方向)から見たとき、入出力部510からミラーまでの光と同じ光路を逆方向に通る。
 一方、偏向素子518cによって反射された光Lは、xz面内において、偏向素子518a、518b、518d、518eで反射された光Lとは異なった角度で第3のレンズ516に入射し、第3レンズ516から出射した後は、分散素子515により回折され、第1の方向(y方向)から見た場合、偏向素子518a、518b、518d、518eで反射された光Lと一定の距離離れた平行な光Lとなって、第2のレンズ514で一次集光点520に集光された後、第1のレンズ512に入射する。
 図37は、図36の第1のレンズ512近傍における光路を説明する図であり、図38は、図36の入出力ポート510c近傍における光路を説明する図である。図37に示すように、一次集光点520を通った偏向素子518cにより反射された光Lは、第1のレンズ512を通って再び偏向素子518a、518b、518d、518eで反射された光Lと平行な光となる。さらに、この光Lは、マイクロレンズアレイ511の出力ポート510cに対応するマイクロレンズに、当該マイクロレンズの光軸から離れた位置に光軸に平行に入射し、図38のようにθだけ傾いて該出力ポート510cのファイバ端部に入射する。
 角度θだけ斜めに入った場合の出力ポート510cの結合効率ηは次式(1)で表され、角度θが大きくなると、結合効率ηは小さくなる事がこの式(1)から分かる。
    η=exp(-πωθ/λ)         (1)
ここで、ωは出力ポート510cのファイバ端部に入射するスポットサイズ、λは出力ポート510cに出力される光の波長を示している。
 したがって、第9実施の形態の波長選択スイッチ501では、偏向素子518をY軸周りに回転させる(第2の方向に振る)ことによって、偏向素子518で反射される波長毎の光のxz平面内での出射方向を変えることができる。これによって、出力ポート510cに入る光の入射角θも同様に変化させることができる。その結果、式(1)からも分かるように出力ポート510cに出力される光強度を自由に変えることができる。
 アッテネーションを行うには偏向器517の偏向素子518を振る方向は、入射光を垂直反射する方向から、図33のY軸回りに時計回り側または反時計回り側のいずれかとすることができる。しかし、本実施の形態では、第1のレンズ512の光軸が傾いていることから、偏向器517で反射された光Lが第1のレンズ512に入る入射角が、偏向素子518を振る前と比べて大きくなる方向に偏向素子518を振ることが望ましい。偏向素子518を、第1のレンズ512の入射角が偏向素子518を振る前と比べて大きくなる方向に振ると、光が、第1のレンズ512の分散素子515側の面512bを通過する際、傾いて入射する。その結果、第1のレンズ512の面512bで、僅かに発生した反射光が偏向器517と入出力部510との間を行き交うことを抑制することができるため、クロストークの発生を抑制することができる。また、偏向素子518の第2の方向(X方向)の偏向の方向が決まっている場合は、それに応じて、第1のレンズ512の傾きの方向を決めることで、クロストークの発生を抑制することができる。
 以上説明したように、本実施の形態による波長選択スイッチ501は、入力光の進行方向に対して、光軸が傾きを有するように第1のレンズ(リレー光学素子)512を配置し、入力光が第1のレンズ512のいずれかの面で反射され発生した迷光も、出力ポート510cに入射しないように構成しているので、第1のレンズ512による不所望な反射により発生する迷光によるクロストークの発生を低減することができる。
 特に、入出力部510を構成する入出力ポートの数が約20以上の場合、第1のレンズ512の焦点距離が長くなり、第1のレンズ512における光束の重なりがより大きくなる場合がある。また、第1のレンズ512を構成する面の少なくとも一方が、略平面に近くなる場合がある。このような場合に、本実施の形態による波長選択スイッチ501を採用すると、レンズ面による入力光の反射によるクロストークの発生を低減する観点で、特に好ましい。
 また、入出力ポート510a~510eは、第1の方向(y方向)に直列に配列され、第1のレンズ512の光軸は、第1のレンズ512に入射する入力光の進行方向に対して、第1の方向(y方向)と直交する第2の方向(x方向)に傾いていることによって、第1のレンズ512の光軸を、入力光の進行方向に対して傾ける角度が小さくとも、入力光の反射光による迷光が、入出力ポート510a~510eに入射することを避けることができる。なお、第1のレンズ512の光軸は、第1の方向(y方向)に傾けることも可能である。その場合、入力光の第1のレンズ512での反射による迷光が、入出力ポート510a~510eに入射しないようにするために、傾ける角度は大きくなる。また、第1のレンズ512の光軸を傾ける方向は、必ずしも、第1の方向(y方向)と厳密に直交する第2の方向(x方向)である必要はなく、第1の方向(y方向)に略直交する方向であっても、同様の効果を奏する。
 さらに、第1のレンズ512に入射する入力ポート510a,510b,510d,510eからの入力光の光束および出力ポート510cへ向かう出力光の光束が、隣接する他の入力ポート510a,510b,510d,510eからの入力光または出力ポート510cへの出力光の光束に対して重なりを有しているので、より入出力ポートの密度を高めることができる。このとき、第1のレンズ512の光軸を傾けていることによって、光束が重なりを有していても、入力光の反射によるクロストークの発生を抑制することができる。
 また、偏向素子518による第2の方向(X方向)への波長毎の光の偏向は、波長毎の光が偏向素子518により第2の方向(X方向)に垂直に反射されるときよりも、第1のレンズ512に対する波長毎の光の入射角が大きくなる向きに行うように構成したので、偏向器517で反射され戻ってきた正規光が、第1のレンズ512の分散素子側の面512bで外部反射することによるクロストークの発生を抑制することができる。
 なお、本実施の形態では、第1のレンズ512を入力光が透過する場合の反射光によるクロストークを除去するために、入力光の進行方向に対して、第1のレンズ512の光軸が傾きを有するように配置した。しかし、クロストークは、第1のレンズ512のみならず、例えば第2のレンズ514や、入力ポートと分散素子との間に配置された他の透過型の光学素子による反射や反射型の光学素子による透過などによっても発生し得る。その場合も、これら光学素子に入射する入力光の進行方向と当該光学素子の光軸とを傾けることによって、迷光を出力ポートに入射しないようにし、クロストークを除去ないし低減することができる。
(第10実施の形態)
 図39は、第10実施の形態に係る波長選択スイッチ501の構成を示す上面図である。本実施の形態は、第9実施の形態に係る波長選択スイッチにおいて、特に、第1のレンズ512へ入射する入力光の進行方向と第1のレンズ512を出射する入力光の進行方向とが、一致するように、第1のレンズ512を配置したものである。すなわち、図31における角度αと角度βが等しい角度となる。
 図39の破線で囲まれた部分に対応する図40Aおよび図40Bを用いて、本実施の形態の第1レンズ512の配置方法について説明する。まず、図40Aに示すように、第1の方向(y方向)から見たとき、入力光の光路と第1のレンズ512の光軸とが一致するように、第1のレンズ512を配置する。このとき、角度αは0度である。次に、図40Bに示すように、第1のレンズ512の前側主点512cを通る第1の方向(y方向)の軸を中心として、第1のレンズ512を、調整ジグなどを用いて回転させる。これによって、角度αと角度βとは等しい角度となる。このとき、第2の方向のシフト量であるΔXは次式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
ここで、tは第1のレンズ512の厚み、nは第1のレンズ512の屈折率、nは、第1のレンズ512の周りの空気あるいは真空の屈折率である。αおよびtが微小な場合は、ΔXも微小となるので、第1のレンズ512による光路の第2の方向へのシフトが、波長選択スイッチ501の全体の光学系に与える影響も小さくなる。
 その他の構成・作用は、第9実施の形態と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。なお、第1のレンズ512へ入射する入力光の進行方向と第1のレンズ512を出射する入力光の進行方向とが、厳密に一致せず、略一致する場合であっても同様の効果を奏する。
 以上説明したうように、本実施の形態によれば、第1のレンズ512へ入射する入力光の進行方向と第1のレンズ512を出射する入力光の進行方向とが略一致するので、装置全体の組み立て性が向上し、装置の性能も出しやすい。
(第11実施の形態)
 第11実施の形態に係る波長選択スイッチは、図28、図29に示した第9実施の形態の波長選択スイッチ501において、第1のレンズ512の光軸を入出力部510からの入力光の進行方向と平行とし、且つ、第1の方向から見たとき、入力光の光路と第1のレンズ512の光軸とをずらして配置したものである。図41A、図41Bは、それぞれ、第1のレンズ512の入出力ポート510a~510e側の面512aによる、入力光の反射光の光束の一例を説明する側面図および上面図である。また、図42A、図42Bは、それぞれ、第1のレンズ512の分散素子側の面512bによる入力光の反射光の光束の一例を説明する側面図および上面図である。
 図41Aおよび図41Bに示すように、入力ポート510bから入射した入力光は、第1のレンズ512の入出力ポート510a~510e側の面512aで、その一部が僅かに反射され迷光となる。この迷光の光束は、レンズの凸面での反射により拡散する光となって、図41Aに示すように、マイクロレンズアレイ511の例えば、入力ポート510a、510bおよび出力ポート510cの一部と重なる高さの拡散光となって、入出力部510側に戻る。しかし、第1の方向(y方向)から見たとき、入力光の光路と第1のレンズ512の光軸とをずらして配置したので、図41Bに示すように、入力光が反射されて発生した迷光は、第2の方向に外れてマイクロレンズアレイ511には入射せず、したがって、出力ポート510cに戻り光となって戻ることがない。
 また、図42A,図42Bに示すように、入力ポート510bから入射した入力光は、第1のレンズ512の分散素子側の面512bで、その一部が僅かに反射され迷光となる。この迷光の光束は、第1のレンズ512の凸面の内部反射により集光された後拡散光となって、図42Aに示すように、マイクロレンズアレイ511の例えば、入力ポート510dおよび出力ポート510cと重なる高さの光となって、入出力部510側に戻る。しかし、第1の方向から見たとき、入力光の光路と第1のレンズ512の光軸とをずらして配置したので、図42Bに示すように、入力光が反射されて発生した迷光は、マイクロレンズアレイ511には入射せず、したがって、出力ポート510cに戻り光となって戻ることがない。
 なお、入力光の光路と第1のレンズ512の光軸との第1の方向(y方向)から見たときのずれは、入力光の第1のレンズ512のレンズ面での反射による戻り光が、マイクロレンズアレイ511に入射しないように決定される。また、図41A,図41B,図42Aおよび図42Bで示す光束は一例を示すものであって、入力光の第1のレンズ512のレンズ面による反射による迷光の形態はこれだけに限られない。
 なお、第1の方向(y方向)から見たとき、第1のレンズ512を透過した入力光の光路は、レンズ512による屈折を受けるので、図41B、図42Bの紙面上で右斜め下方向に折り曲げられる。その他の構成・作用は、第9実施の形態と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。
 本実施の形態による波長選択スイッチ501は、第1の方向(y方向)から見たとき、入力光の光路と第1のレンズ512の光軸とをずらして配置し、入力光が第1のレンズ512のいずれかの面で反射され発生した迷光が、出力ポート510cに入射しないように構成しているので、第1のレンズ512での不所望な反射によるクロストークの発生を低減することができる。
 なお、第9実施の形態および本実施の形態では、第1の方向(y方向)に見たとき、いずれの入力光の光束のいずれの部分も第1のレンズ512の入出力ポート側の面512aおよび分散素子側の面512bに、斜めに入射する。これによって、入力ポート510a,510b,510d,510eからの入力光のレンズ面での反射による迷光が、マイクロレンズアレイ511の位置に戻らないようにしている。
 (第12実施の形態)
 図43Aおよび図43Bは、それぞれ第12実施の形態に係る波長選択スイッチの構成を示す側面図および上面図である。なお、本実施の形態の波長選択スイッチも、第9実施の形態と同様な透過型の分散素子を用い、当該分散素子で光路が偏向されているが、図43Bでは、簡単のため入出力部510から偏向器517までを直線的に示している。また、第9実施の形態の波長選択スイッチでは、4つの入力ポート510a,510b,510d,510eと1つの出力ポート510cを有していたが、本実施の形態では、510aを入力ポート、510b~510dを出力ポートとする、1つの入力ポートと4つの出力ポートを有する波長選択スイッチ501を例示する。
 波長選択スイッチ501は、入出力部510、第2の集光素子である第1のレンズ512、リレー光学素子であるシリンドリカルレンズ513、第2のレンズ514、分散部を構成する分散素子515、第1の集光素子である第3のレンズ516、偏向部を構成する偏向器517を含んで構成されている。第9~第11実施の形態では、第1のレンズ512に着目して説明がなされてきた。しかし、第1のレンズ512を構成する面が特殊な形状である場合や、入出力部510を構成する入出力ポートの数がそれほど多くない場合には、第1のレンズ512を構成するいずれの面も、略平面形状でない形状にすることも可能である。このような場合、第1のレンズ512に起因するクロストークは、問題となりにくい。一方で、シリンドリカルレンズ513の平面側での反射による迷光が問題となるような場合がある。
 入出力部510には複数の光ファイバアレイ505の端部がアレイ状に(直列に)配列され、これに対応した複数のマイクロレンズがアレイ状に配置されたマイクロレンズアレイ511が設けられている。一組の光ファイバとマイクロレンズとは、入力ポート510aおよび出力ポート510b~510eのうち一つのポートを構成する。この入力ポート510aおよび出力ポート510b~510eは、それぞれ、波長選択スイッチ501の外部からの波長多重された信号光を入力させ、また、外部へ信号光を出力させるものである。以下、説明の便宜上、入力ポート510aおよび出力ポート510b~510eを、適宜、入出力ポート510a~510eとまとめて表記する。入出力ポートの数は例えば6以上とし、出力ポートの数を入力ポートの数よりも多数設けることができるが、図43Aにおいては、説明の都合から、出力ポート510cを中心とする5つの入出力ポート510a~510eのみを図示している。
 入出力用の光ファイバアレイ505の他端は、波長選択スイッチ501の外部と接続されている。マイクロレンズアレイ511のマイクロレンズは、光ファイバから入射する光をコリメート光に変換し、また、波長選択スイッチ501内で各入出力ポート510b~510eに向けて出力されるコリメート光を光ファイバアレイ505の対応する光ファイバに結合させる。このように、入力ポート510aから波長選択スイッチ501内に入射する入力光、および、波長選択スイッチ501内で各入出力ポート510b~510eに向かう出力光は、コリメート光となるように設計される。
 シリンドリカルレンズ513は、入出力部510側が平面であり分散素子515側にシリンドリカル面を有し、第2の方向(x方向)に光束を縮める、すなわち、第2の方向(x方向)にのみ屈折力を有するレンズである。シリンドリカルレンズ513は、第1の方向(y方向)については第1のレンズ512からの収束光をそのまま収束させ、第2の方向(x方向)についてはより大きな収束度で収束させる。このため第1のレンズ512およびシリンドリカルレンズ513を透過した入力光は、第1のレンズ512の焦点近傍の一次集光点520で第2の方向(x方向)により狭い楕円形のスポットを形成する。すなわち、本実施の形態では、シリンドリカルレンズ513は、光束を楕円化させる楕円化素子である。また、シリンドリカルレンズ513の入出力部510側の平面は、入力光の光束が垂直入射しないように傾けて配置されている。別の言い方をすれば、シリンドリカルレンズ513は、シリンドリカルレンズ513の入射側の平面が、第1のレンズ512の光軸に対して傾けて配置されている。あるいは、シリンドリカルレンズ513は、シリンドリカルレンズ513の入射側の平面が、第1のレンズ512の光軸に垂直な面に対して、非平行に配置されている。よって、リレー光学系を構成する第1のレンズ512、シリンドリカルレンズ513および第2のレンズ514は、光軸に関して非対称な光学系となっている。
 第2のレンズ514と第3のレンズ516とは、第9実施の形態と同様に、例えば焦点距離fの等しいレンズである。この場合、第2のレンズ514、分散素子515、第3のレンズ516および偏向器517は、第9実施の形態と同様に配置される。また、分散素子515および偏向器517は、第9実施の形態と同様の構成のものを用いるものとする。
 以上のような構成により、入力ポート510aから入射した入力光は、第1のレンズ512、シリンドリカルレンズ513および第2のレンズ514を経て分散素子515で波長毎に分散され、第3のレンズ516により偏向器517の各偏向素子518に集光される。各偏向素子518により反射された波長毎の光は、それぞれ第3のレンズ516を通り分散素子515で回折され、入力光と反対方向の光路を経て、入出力部510のうち入力用に用いられた以外のいずれかの出力ポート510b~510eまたは図示しない他の出力ポートに正規光として出力される。図43Aおよび図43Bでは、入力ポート510aから波長多重された入力光が入力され、特定の波長の出力光が出力ポート510cから出力される場合を図示している。
 次に、シリンドリカルレンズ513による入力光の反射について説明する。図43Bに示すように、シリンドリカルレンズ513は、第1の方向(y方向)に直交するxz面内において、入力光の進行方向に対して入射側の平面を第2の方向(x方向)に傾けて配置する。この第2の方向(x方向)の傾きは、シリンドリカルレンズ513の入射側の平面で入力光の一部が反射されると、その反射による迷光Lsがx方向に光軸から外れ、出力ポート510b~510eに実質的に入射しないように設定する。すなわち、入力光は、シリンドリカルレンズ513の入射側の平面に対して傾いて入射するため、クロストークの発生を抑制することができる。
 なお、シリンドリカルレンズ513を波長選択スイッチ501内に固定する場合には、例えば紫外線硬化樹脂等を用いる。まず、シリンドリカルレンズ513の入射側平面を、入力光の光束に直交するように冶具等を用いて仮に固定する。そして、光学系の性能を落とさず、且つ、クロストークが小さくなるようにシリンドリカルレンズ513を回転させて微調整を行って、最終的な固定位置を決定する。その際、シリンドリカルレンズ513の回転前後において、シリンドリカルレンズ513から出射する光(正規光)の出射角度の変化が小さくなるようにシリンドリカルレンズ513の配置を調整する事が望ましい。仮にシリンドリカルレンズ513を回転する前後において、シリンドリカルレンズ513から出射する光(正規光)の出射角度が大きく変化してしまうと、第2のレンズ514への光の入射位置が、第2のレンズ514の中心位置から第2の方向(x方向)に大きくずれてしまう。この結果、光学系の性能が大きく変化してしまう。
ここで、シリンドリカルレンズ513を回転する前において、図44Aの上面図に示すように、光がシリンドリカルレンズ513の面頂の点Pを通過していたとする。そして、図44Bの上面図に示すように、シリンドリカルレンズ513の面頂の点Pを光が通過するように、シリンドリカルレンズ513を回転させると同時に、シリンドリカルレンズ513をx方向とz方向に移動させる。そうすると、シリンドリカルレンズ513から出射する光の出射角度を、シリンドリカルレンズ513の回転前後で揃えることが可能である。
 この場合、シリンドリカルレンズ513から出射する光の位置は、回転前後でΔX移動する。そうすると、その移動量ΔXは、シリンドリカルレンズ513の厚さをd、シリンドリカルレンズ513外部の屈折率をn、シリンドリカルレンズ513の屈折率をn、シリンドリカルレンズ513の回転角をθとすると次式で表される。
   Δx=d×n×θ/n             (3)
 この移動量ΔXは回転角θに対して、微小であるため、第2のレンズ514の中心位置から第2の方向(x方向)に大きくずれてしまうことは無い。また、シリンドリカルレンズ513の別の回転方法としては、図44Cに上面図を示すように、シリンドリカル面の弧の中心を回転中心Cとして、シリンドリカルレンズ513を回転させることもできる。
 また、シリンドリカルレンズ513は、図44Dの上面図に示すように入力光の出射側の面を平面となるように配置しても良い。その場合も、入射側の面を透過して、出射側の平面で反射された入力光の一部が迷光となって出力ポートに入射しないように、傾きを調整することができる。
 ここで、シリンドリカルレンズ513を回転する前において、図44Dに示すように、光がシリンドリカルレンズ513の面頂の点Pを通過していたとする。そして、シリンドリカルレンズ513を回転する際の回転基準位置を点Pにすると、図44Eのように、回転後も必ず光は面頂の点Pを通過する。この場合、シリンドリカルレンズ513の回転後に、光を面頂の点Pを通過させるように、シリンドリカルレンズ513をx方向とz方向に移動させる作業が不用である。
 以上説明したように、本実施の形態によれば、シリンドリカルレンズ513の入射側の平面を、入力光の光束に対して傾けて配置し、その反射による迷光Lsがx方向に光軸から外れ、出力ポート510b~510eに入射しないようにしたので、クロストークの発生を低減することができる。
 (第13実施の形態)
 図45Aおよび図45Bは、それぞれ第13実施の形態に係る波長選択スイッチの構成を示す側面図および上面図である。本実施の形態は、第12実施の形態において、シリンドリカルレンズ513の傾きの方向を第2の方向(x方向)ではなく、第1の方向(y方向)としたものである。この第1の方向(y方向)の傾きは、シリンドリカルレンズ513の入射側の平面で入力光の一部が反射されると、その反射による迷光Lsがy方向に光軸から外れ、出力ポート510b~510eに実質的に入射しないように設定する。これによって、クロストークの発生を低減することができる。その他の構成、作用は第12実施の形態と同様なので、同一構成要素には同一の参照符号を付して説明を省略する。
 なお、第9~第13実施の形態において、入出力ポートから出力された入力光の光軸方向(z方向)に直交する鉛直方向を第1の方向(y方向)、水平方向を第2の方向(x方向)としたが、第1の方向(y方向)は鉛直方向に限られず、第2の方向(x方向)は水平方向に限られない。第1の方向(y方向)および第2の方向(x方向)は、入力光の進行方向に直交し且つ互いに直交する2方向であれば良い。
 また、分散素子515は、分散素子と反射面とを組み合わせたリットマン-メトカルフ型の構成であってもよい。この場合、レンズ514およびレンズ516を共通化させることができる。また、分散素子515は、透過型に限られず、反射型回折格子、Grism、スーパープリズム等を用いることもできる。
 また、一組の光ファイバとマイクロレンズとは、入力ポート510a,510b,510d,510eおよび出力ポート510cのうち一つのポートを構成するとしたが、各入出力ポートは、マイクロレンズを含まなくてもよい。
 また、第12および第13実施の形態において、楕円化素子は入力光の通過する一方の面をシリンドリカル面とするシリンドリカルレンズとしたが、これに限られない。例えば、楕円化素子は、第2の方向(x方向)にのみ屈折力を有するレンズに限られず、第1の方向(y方向)と第2の方向(x方向)の双方に屈折力を有するが、第1の方向(y方向)により大きな屈折力を有するレンズとすることもできる。
 さらに、第12および第13実施の形態の楕円化素子のいずれかの面は平面としたが、楕円化素子の両面が非平面で構成されている場合も、入力光の楕円化素子への入射面または出射面を傾けることにより、反射による迷光が出力ポートに入射することを抑制、または、低減することが期待できる。さらに、シリンドリカルレンズ513は、シリンドリカルレンズ513の入射側の平面が、xz面内において、レンズ512の光軸に対して傾いていると同時に、yz面内において、レンズ512の光軸に対して傾いて配置されていてもよい。
 また、第12および第13実施の形態では、第1のレンズ512および第2レンズ514の光軸は、入力光の進行方向に対して傾いていないが、これらのレンズの一方または双方を傾けた構成とすることも可能である。
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
 例えば、各部材、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
 10a-10e 入出力ポート
 11a-11e 光ファイバ
 12 マイクロレンズアレイ
 13a-13e マイクロレンズ
 20 光路補正部
 21 平行平板
 30 分散部
 31 分散素子
 32 折返しミラー
 40 集光レンズ(集光素子)
 50 偏向部
 51a-51e 偏向素子
 60 レンズ(集光点形成素子)
 70 ミラー
 71 1/4波長板
 111、121 波長選択スイッチ
 201、251 筐体
 203、253 光学系
 205、255 偏向部
 207 封止窓
 209、259 入力ポート
 210、260 出力ポート
 211、261 マイクロレンズアレイ
 213、263 分散部
 215、265 集光素子
 217、267 ミラー
 219、269 プレート
 221、271 ケーブル
 223、273 取付部材
 225、275 波長選択スイッチ用光学ユニット
 227、277 光学面
 310a-310d 入力ポート
 310e 出力ポート
 311a-311e 光ファイバ
 312 マイクロレンズアレイ
 315a-315d 出力ポート
 315e 入力ポート
 330,330a,330b 第1分散部
 331,331a,331b 第1分散素子
 332 第2分散部
 333 第2分散素子
 334 透明基板
 335 光学部材
 336 折返しミラー
 340 集光レンズ(集光素子)
 350 偏向部
 351a-351e 偏向素子
 360 一次集光レンズ
 401  波長選択スイッチ
 405  光ファイバアレイ
 410  入出力部
 410a~410e 入出力ポート
 411  マイクロレンズアレイ
 412  レンズ
 413  シリンドリカルレンズ
 414  レンズ
 415  分散素子
 416  レンズ
 417  偏向器
 418  偏向素子
 420  一次集光点
 501  波長選択スイッチ
 505  光ファイバアレイ
 510  入出力部
 510a~510e 入出力ポート
 511  マイクロレンズアレイ
 512  第1のレンズ
 513  シリンドリカルレンズ
 514  第2のレンズ
 515  分散素子
 516  第3のレンズ
 517  偏向器
 518  偏向素子
 520  一次集光点
 O 光軸

Claims (40)

  1.  少なくとも一つの入力ポートと、
     該入力ポートから入射される入力光を波長分散する分散部と、
     該分散部により波長分散される光を集光する集光素子と、
     該集光素子により集光される光を偏向する偏向部と、
     該偏向部で偏向された光を出力光として出射する少なくとも一つの出力ポートと、
     前記入力ポートと前記分散部との間の光路中に配置され、前記分散部により波長分散される光の前記偏向部に対する入射位置をシフトさせる光路補正部と、
     を備えることを特徴とする波長選択スイッチ。
  2.  前記入力ポートおよび前記出力ポートは直線状に配列されており、
     前記入力ポートおよび前記出力ポートと前記分散部との間の光路中には、前記入力光の集光点を形成する集光点形成素子が配置されている、
     ことを特徴とする請求項1に記載の波長選択スイッチ。
  3.  前記集光素子は、当該集光素子の前側焦点面が前記集光点近傍に位置するように配置され、
     前記入力光は、前記集光点形成素子および前記集光素子を経て前記分散部に入射され、前記分散部により波長分散される光は、前記集光素子を経て前記偏向部に入射され、前記偏向部で偏向される前記出力光は、前記集光素子、前記分散部、前記集光素子および前記集光点形成素子を経て前記出力ポートへ入射されるように構成されている、
     ことを特徴とする請求項2に記載の波長選択スイッチ。
  4.  前記分散部は、透過型の分散素子と反射素子とを備え、前記分散素子により波長分散される光を前記反射素子により反射させて再び前記分散素子に入射させるリットマン・メトカルフ構造からなる、
     ことを特徴とする請求項3に記載の波長選択スイッチ。
  5.  前記光路補正部は、前記集光点形成素子と前記集光素子との間の光路中に配置されている、
     ことを特徴とする請求項3または4に記載の波長選択スイッチ。
  6.  前記光路補正部は、前記集光点の近傍に配置されている、
     ことを特徴とする請求項5に記載の波長選択スイッチ。
  7.  前記光路補正部は、前記入力光に対して透明な平行平板からなり、
     前記平行平板は、前記入力光を前記分散部により波長分散される光の波長分散方向にシフトさせるように、前記入力光の光路に対して傾斜して配置されている、
     ことを特徴とする請求項1から6のいずれか一項に記載の波長選択スイッチ。
  8.  少なくとも一つの入力ポートと、
     該入力ポートから入力された入力光を波長分散させる分散部と、
     該分散部により分散される光を集光する集光素子と、
     少なくとも一つの出力ポートと、
     前記入力ポート、前記分散部、前記集光素子及び前記出力ポートを密閉する筐体と
    を備え、
     前記筐体は、前記集光素子により集光された光が入射する位置に光学的に透明な透明部が形成されている波長選択スイッチ用光学ユニット。
  9.  前記透明部は、前記集光素子からの光束に対して傾いている請求項8に記載の波長選択スイッチ用光学ユニット。
  10.  前記透明部は、前記筐体に形成された封止窓である請求項8または9に記載の波長選択スイッチ用光学ユニット。
  11.  前記透明部は、前記筐体に形成されたプレートであり、
     前記入力ポート、前記分散部、前記集光素子及び前記出力ポートは、前記プレート上に配置されている請求項8または9に記載の波長選択スイッチ用光学ユニット。
  12.  前記プレートは、石英からなる請求項11に記載の波長選択スイッチ用光学ユニット。
  13.  前記筐体の外側に設けられ、光を偏向する偏向部を取り付けるための取付部材を備える請求項8から12に記載の波長選択スイッチ用光学ユニット。
  14.  請求項8から12に記載の波長選択スイッチ用光学ユニットと、
     前記筐体の外側に取り付けられ、前記集光素子により集光される光を前記集光素子に向けて偏向する偏向部と、
    を備えた波長選択スイッチ。
  15.  請求項13に記載の波長選択スイッチ用光学ユニットと、
     前記偏向部と、を備え
     前記偏向部は、前記筐体の外側に取り付けられ、前記集光素子により集光される光を前記集光素子に向けて偏向する波長選択スイッチ。
  16.  前記偏向部は、光束が通過する部位が透明部材で構成されたパッケージに、光偏向機能を有した素子がマウントされて構成され、前記筐体の前記透明部に前記パッケージの透明部材が取り付けられている請求項14または請求項15に記載の波長選択スイッチ。
  17.  前記筐体の前記透明部と前記偏向部の透明部材とは、使用波長において光学的に透明な接着剤で取り付けられている請求項16に記載の波長選択スイッチ。
  18.  前記偏向部は、前記筐体にねじ止めされている請求項14から17に記載波長選択スイッチ。
  19.  少なくとも一つの入力ポートと、
     該入力ポートから入力される光を分散する第1分散部と、
     該第1分散部により分散される光を偏向する偏向部と、
     該偏向部で偏向された光を波長多重する第2分散部と、
     該第2分散部で波長多重された光を出力する少なくとも一つの出力ポートと、を備え、
     前記第1分散部は、前記入力ポートからの光を分散する第1分散素子を備え、前記第2分散部は、前記偏向部により偏向された光を波長多重して前記出力ポートに入射させる第2分散素子を備え、前記第2分散素子は、前記第1分散素子の偏光特性を相殺するような偏光特性を有する、
     ことを特徴とする波長選択スイッチ。
  20.  前記第1および第2分散素子は、同一の基板上に設けられている、
     ことを特徴とする請求項19に記載の波長選択スイッチ。
  21.  前記第1および第2分散素子は、同一の光学部材に形成されている、
     ことを特徴とする請求項19に記載の波長選択スイッチ。
  22.  前記第1および第2分散素子は、透過型の分散素子からなり、
     前記第1および第2分散部は、透過型の前記分散素子と反射素子とを備え、前記分散素子により分散される光を前記反射素子により反射させて再び前記分散素子に入射させるリットマン・メトカルフ構造からなる、
     ことを特徴とする請求項19から21のいずれかに記載の波長選択スイッチ。
  23.  少なくとも一つの入力ポートおよび少なくとも一つの出力ポートを含む入出力部と、
     前記入力ポートから入射される波長多重された入力光を、波長毎の光に分散する分散部と、
     該分散部により分散される前記波長毎の光を集光する集光素子と、
     該集光素子により集光される前記波長毎の光をそれぞれ偏向して、前記出力ポートに出射させる偏向部と、
     前記入出力部と前記分散部との間に配置され、前記偏向部に集光する前記波長毎の光のスポットを楕円形状にする楕円化素子と、
    を備え、
     前記楕円化素子は、少なくとも前記入力光が通過する2つの面を有し、該2つの面のそれぞれにより反射される前記入力光の一部が、前記出力ポートの前記波長毎の光を出射させる出射面の位置において該出射面より径の広い光束を形成する波長選択スイッチ。
  24.  前記入力ポートは、前記波長多重された光を平行光として入射させ、前記楕円化素子の前記2つの面は、何れも曲面である請求項23に記載の波長選択スイッチ。
  25.  前記楕円化素子の前記2つの面は、シリンドリカル面である請求項23または24に記載の波長選択スイッチ。
  26.  前記シリンドリカル面は、共通の中心軸線を有する請求項25に記載の波長選択スイッチ。
  27.  少なくとも一つの入力ポートおよび少なくとも一つの出力ポートを含む入出力部と、
     前記入力ポートから入射される波長多重された入力光を、波長毎の光に分散する分散部と、
     前記入力ポートから入射される前記入力光を前記分散部へと導く、少なくとも1つの透過型のリレー光学素子を含むリレー光学系と、
     前記分散部により分散された前記波長毎の光を集光する第1の集光素子と、
     前記第1の集光素子により集光された前記波長毎の光をそれぞれ偏向して、前記出力ポートに出射させる偏向部と、を備え、
     前記リレー光学素子は、前記入力光が該リレー光学素子のいずれかの面で反射され発生した迷光が、前記出力ポートに入射しないように、前記入力光に対して傾け、または、ずらして配置されていることを特徴とする波長選択スイッチ。
  28.  前記リレー光学素子は、前記入力光の進行方向に対して、光軸が傾きを有するように配置されるリレーレンズであることを特徴とする請求項27に記載の波長選択スイッチ。
  29.  前記入力ポートと前記出力ポートとは、第1の方向に配列され、前記リレーレンズの光軸は、該リレーレンズへ入射する前記入力光の進行方向に対して、前記第1の方向と直交する第2の方向に傾いていることを特徴とする請求項28に記載の波長選択スイッチ。
  30.  前記リレーレンズは、該リレーレンズへ入射する前記入力光の進行方向と該リレーレンズを出射する前記入力光の進行方向とが、一致するように配置されることを特徴とする請求項28または29に記載の波長選択スイッチ。
  31.  前記リレー光学素子は、リレーレンズであり、前記入力ポートと前記出力ポートとは、第1の方向に配列され、前記リレーレンズは、前記第1の方向から見たとき、前記入力光が、該リレーレンズの光軸から前記第1の方向と略直交する第2の方向にずれて入射するように配置されていることを特徴とする請求項27に記載の波長選択スイッチ。
  32.  複数の前記入力ポートを備え、前記リレーレンズに入射する少なくとも一つの入力ポートからの入力光の光束が、隣接する他の入力ポートからの入力光または出力ポートへの出力光の光束に対して重なりを有していることを特徴とする請求項28~31のいずれかに記載の波長選択スイッチ。
  33.  前記偏向部は、前記波長毎の光を、前記リレー光学系を経て前記入出力部に向けて折り返す複数の偏向素子を備え、該偏向素子は前記第1の方向に前記波長毎の光を偏向させることにより該波長毎の光が出射する出力ポートを選択し、前記第2の方向に前記波長毎の光を偏向させることにより、前記出力ポートに出射される前記波長毎の光の強度を調整し、前記第2の方向への前記波長毎の光の偏向は、前記波長毎の光が前記偏向素子により前記第2の方向に垂直に反射されるときよりも、前記リレーレンズに対する前記波長毎の光の入射角が大きくなる向きに行うように構成されることを特徴とする請求項29または30に記載の波長選択スイッチ。
  34.  前記リレー光学素子は、前記偏向部に集光する前記波長毎の光のスポットを楕円形状にする楕円化素子であり、該楕円化素子は、少なくとも前記入力光が通過する2つの面を有し、該2つの面のいずれか一方の面は平面であり、前記楕円化素子により反射された前記入力光の一部が前記出力ポートに入射しないように、前記楕円化素子は、前記入力光が前記楕円化素子の前記平面に対して傾いて入射するように配置されている請求項27に記載の波長選択スイッチ。
  35.  前記リレー光学系は、第2の集光素子を備え、前記楕円化素子は、前記平面が前記第2の集光素子の光軸に対して傾いて配置されている請求項34に記載の波長選択スイッチ。
  36.  前記入力ポートと前記出力ポートとは、第1の方向に配列され、前記第1の方向に直交する面内において、前記平面は前記入力光の進行方向に対して傾いている請求項34または35に記載の波長選択スイッチ。
  37.  前記入力ポートと前記出力ポートとは、第1の方向に配列され、前記楕円化素子の前記平面は前記入力光の進行方向に対して前記第1の方向に傾いている請求項34または35に記載の波長選択スイッチ。
  38.  前記楕円化素子は、シリンドリカル面を有するシリンドリカルレンズである請求項34~37のいずれか一項に記載の波長選択スイッチ。
  39.  前記シリンドリカルレンズは、前記入力ポートから入射される波長多重された入力光が前記シリンドリカル面の面頂を通過するように配置されていることを特徴とする請求項38に記載の波長選択スイッチ。
  40.  前記シリンドリカルレンズは、前記シリンドリカル面が前記入出力部側に向いて配置されている請求項38または39に記載の波長選択スイッチ。
     
PCT/JP2012/000822 2011-02-10 2012-02-08 波長選択スイッチ及び波長選択スイッチ用光学ユニット WO2012108189A1 (ja)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-027859 2011-02-10
JP2011-027751 2011-02-10
JP2011-027829 2011-02-10
JP2011027751A JP2012168285A (ja) 2011-02-10 2011-02-10 波長選択スイッチ
JP2011027856A JP2012168290A (ja) 2011-02-10 2011-02-10 波長選択スイッチ
JP2011027829A JP2012168287A (ja) 2011-02-10 2011-02-10 波長選択スイッチ及び波長選択スイッチ用光学ユニット
JP2011-027833 2011-02-10
JP2011-027856 2011-02-10
JP2011027859 2011-02-10
JP2011027833A JP2012168288A (ja) 2011-02-10 2011-02-10 波長選択スイッチ
JP2011255411A JP2012181497A (ja) 2011-02-10 2011-11-22 波長選択スイッチ
JP2011-255411 2011-11-22

Publications (1)

Publication Number Publication Date
WO2012108189A1 true WO2012108189A1 (ja) 2012-08-16

Family

ID=46638410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000822 WO2012108189A1 (ja) 2011-02-10 2012-02-08 波長選択スイッチ及び波長選択スイッチ用光学ユニット

Country Status (1)

Country Link
WO (1) WO2012108189A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199841A (zh) * 2016-08-30 2016-12-07 武汉光迅科技股份有限公司 一种液晶型波长选择开关
WO2023221535A1 (zh) * 2022-05-20 2023-11-23 华为技术有限公司 光通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843764A (ja) * 1994-07-29 1996-02-16 Sharp Corp 投影型画像表示装置
JPH10300976A (ja) * 1997-02-14 1998-11-13 Photonetics Sa 光ファイバ波長マルチプレクサおよびデマルチプレクサ
WO2006110297A2 (en) * 2005-04-11 2006-10-19 Capella Photonics, Inc. Optimized reconfigurable optical add-drop multiplexer architecture with mems-based attenuation or power management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843764A (ja) * 1994-07-29 1996-02-16 Sharp Corp 投影型画像表示装置
JPH10300976A (ja) * 1997-02-14 1998-11-13 Photonetics Sa 光ファイバ波長マルチプレクサおよびデマルチプレクサ
WO2006110297A2 (en) * 2005-04-11 2006-10-19 Capella Photonics, Inc. Optimized reconfigurable optical add-drop multiplexer architecture with mems-based attenuation or power management

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199841A (zh) * 2016-08-30 2016-12-07 武汉光迅科技股份有限公司 一种液晶型波长选择开关
CN106199841B (zh) * 2016-08-30 2019-02-01 武汉光迅科技股份有限公司 一种液晶型波长选择开关
WO2023221535A1 (zh) * 2022-05-20 2023-11-23 华为技术有限公司 光通信设备

Similar Documents

Publication Publication Date Title
US11422238B2 (en) Optical beam director
US7233716B2 (en) Optical switch
USRE39525E1 (en) Reconfigurable optical add and drop modules with servo control and dynamic spectral power management capabilities
US20140072302A1 (en) Optical switch
US8391654B2 (en) Wavelength selection switch
WO2012108139A1 (ja) 波長選択スイッチ
KR20040036929A (ko) 인터리브된 채널들을 갖는 자유공간 파장 라우팅 시스템
US8346084B2 (en) Optical device with stable optical configuration
JP2009134294A (ja) 光デバイスおよび波長選択スイッチ
JP6172928B2 (ja) デジタルマイクロミラーデバイス(dmd)を用い、波長依存損失が低減した光学処理デバイス
WO2012117714A1 (ja) 波長選択スイッチ用光学ユニットおよび波長選択スイッチ
US7162115B2 (en) Multiport wavelength-selective optical switch
JP4942775B2 (ja) コンパクトな分散システムを備える光学デバイス
JP4967847B2 (ja) 光スイッチおよびmemsパッケージ
JP4945475B2 (ja) 可変分散補償器
WO2012108189A1 (ja) 波長選択スイッチ及び波長選択スイッチ用光学ユニット
WO2012115077A1 (ja) 波長選択スイッチ
JP2011064721A (ja) 光スイッチ
US9454002B2 (en) Wavelength selection switch
JP2012168287A (ja) 波長選択スイッチ及び波長選択スイッチ用光学ユニット
JP2012168285A (ja) 波長選択スイッチ
US6798951B2 (en) Wavelength router with a transmissive dispersive element
US7336907B2 (en) Optical assembly having cylindrical lenses and related method of modulating optical signals
US6970618B1 (en) Wavelength division multiplexer and fiber arrangement thereof
WO2012053449A1 (ja) 波長選択スイッチおよびその組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745332

Country of ref document: EP

Kind code of ref document: A1