WO2012106932A1 - 数据交换建立方法和装置、数据交换方法和装置、承载节点 - Google Patents

数据交换建立方法和装置、数据交换方法和装置、承载节点 Download PDF

Info

Publication number
WO2012106932A1
WO2012106932A1 PCT/CN2011/077641 CN2011077641W WO2012106932A1 WO 2012106932 A1 WO2012106932 A1 WO 2012106932A1 CN 2011077641 W CN2011077641 W CN 2011077641W WO 2012106932 A1 WO2012106932 A1 WO 2012106932A1
Authority
WO
WIPO (PCT)
Prior art keywords
local
terminal
data
bearer
exchange
Prior art date
Application number
PCT/CN2011/077641
Other languages
English (en)
French (fr)
Inventor
郭小龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/077641 priority Critical patent/WO2012106932A1/zh
Priority to CN201180001168.9A priority patent/CN102870487B/zh
Publication of WO2012106932A1 publication Critical patent/WO2012106932A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data exchange establishing method and apparatus, a data exchange method and apparatus, and a bearer node. Background technique
  • EPS bearer In the EPS (Evolved Packet System) system, the basic granularity of QoS (Quality of Service) control is EPS bearer, that is, all data flows on the same bearer will receive the same QoS guarantee ( For example, scheduling policy, buffer queue management, link layer configuration, etc., different QoS guarantees need different types of EPS bearers to provide.
  • QoS Quality of Service
  • EPS bearers include default bearers and proprietary bearers. Unlike the default bearer, the establishment of a proprietary bearer is to meet the needs of the user's specific QoS. Before the proprietary bearer is established, there must be a corresponding default bearer.
  • the terminal In the existing SAE (Long Term Evolution) communication mode, the terminal (the UE or the MTC Dev ice machine-oriented terminal) accesses the network and then performs the network. At the same time of attachment, a default bearer with a non-fixed data rate is established for the user to ensure its basic service requirements; in general, each PDN (Packet t Da ta Ne twork packet data network) connection corresponds to a default bearer and An IP address.
  • PDN Packet t Da ta Ne twork packet data network
  • one or more dedicated bearers need to be established between the terminal and the PDN.
  • the base station establishes a mapping between the radio bearer and the S1 bearer by creating a binding between the radio bearer and the S1 bearer.
  • the S-GW establishes a binding between the S1 bearer and the S5/S8 bearer.
  • the mapping between the S1 bearer and the S5/S8 bearer is implemented.
  • the EPS bearer data supports the connection between the terminal and the PDN through the radio bearer, the S1 bearer, and the cascading of the S5/S8 bearer.
  • PDN refers to an external data network (as opposed to SAE/LTE operators), such as Interne t, enterprise-specific data networks, and so on.
  • the value of the APN (Aces s Point Name) is used as the identifier of the PDN network.
  • the terminal 1 When two terminals in the network, the terminal 1 communicates with another terminal 2, the data sent by the terminal 1 is sent along the bearer to the local P-GW; the local P-GW sends the data according to the IP address information of the terminal 2 carried by the data. Sending the P-GW to the terminal 2 (intermediately through the IP route); the P-GW filters the data and matches the data to the bearer established for the terminal 2; then the data is forwarded to the terminal 2 (if the terminal 2 is in the idle) Status, in the process of triggering paging).
  • the data transmission process from terminal 2 to terminal 1 is similar.
  • the data exchange path between the existing terminal 1 and the terminal 2 is complicated. If the two communicate frequently under the same P-GW or S-GW or even the eNB, the complicated data communication path wastes a large amount of communication resources. Summary of the invention
  • Embodiments of the present invention provide a data exchange establishment method and apparatus, a data exchange method and apparatus, and a bearer node.
  • Data exchange establishment methods including:
  • the local bearer node establishes a local switching path with the bearer node corresponding to the other party.
  • Data exchange methods including:
  • the local terminal sends the data extension bearer to the local bearer node
  • the local bearer node sends the data to the local switching path according to the bearer information of the data; the data reaches the counterpart terminal through the local switching path.
  • a data exchange establishing device comprising:
  • a location relationship obtaining module configured to acquire a local terminal and a location relationship of the counterpart terminal
  • a local switching path establishing module configured to establish, according to the location relationship, the local bearer node and the bearer node corresponding to the other party to establish a local switching path.
  • Data exchange device including:
  • a data receiving module configured to receive data sent by the local terminal
  • the data sending module sends the data to the local switching path according to the bearer information of the data; and the data transmitting module, the data reaches the counterpart terminal through the local switching path.
  • the bearer node includes: the above data exchange establishing device and the data switching device.
  • the node of the terminal 1 acts as the initiator and establishes a local switching path with the bearer node of the terminal 2.
  • the terminal 1 wants to send data to the terminal 2
  • the data is sent from the terminal 1 to the local bearer node, and then directly reaches the corresponding bearer node through the local exchange path; the data arrives at the terminal 2 via the bearer node.
  • the local bearer node is avoided to the local P-GW, and the local P-GW to the P-GW of the terminal 2; the P-GW of the terminal 2 to the bearer node of the terminal 2 completely transmit the waste resources that are transmitted through the transmission.
  • the bearer node of the terminal 1 acts as the initiator, and can also establish a local exchange path with the bearer node of the terminal 1.
  • the transmission path is also saved.
  • Figure 1 is a schematic diagram of a bearer connection between a terminal and a PDN
  • FIG. 2 is a flow chart of a method for establishing a data exchange
  • FIG. 3 is a schematic diagram of a scene in which the local terminal and the opposite terminal are in the same P-GW and different S-GWs;
  • FIG. 4 is a schematic diagram of the scenario where the local terminal and the opposite terminal are in the same S-GW and different eNBs;
  • FIG. 5 is a local terminal and A schematic diagram of a scenario in which the other terminal is in the same eNB;
  • FIG. 6 is a flow chart showing that a local terminal and a counterpart terminal are in the same P-GW, and different S-GWs establish a local switching path by default;
  • FIG. 7 is a flow chart of establishing a local switching path through a dedicated bearer between a local terminal and a counterpart terminal in the same P-GW and different S-GWs;
  • FIG. 8 is a flow chart showing that a local terminal and a counterpart terminal are in the same S-GW, and different local eNBs establish a local switching path by default;
  • Figure 9 shows that the local terminal and the opposite terminal are in the same S-GW, and the eNBs are under different eNBs.
  • 10 is a flowchart of establishing a local switching path by using a default load on the same eNB of the local terminal and the counterpart terminal;
  • 11 is a flow chart of establishing a local exchange path by a dedicated bearer under the same eNB as the local terminal and the counterpart terminal;
  • Figure 12 is a flow chart of a data exchange method
  • FIG. 13 is a flow chart of another embodiment of a data exchange establishing method
  • Figure 15 is a flow chart of filtering data by a local bearer node
  • 16 is a schematic structural diagram of a data exchange establishing apparatus
  • FIG. 17 is a schematic structural diagram of a data exchange device; and FIG. 18 is a schematic structural diagram of a bearer node.
  • the data exchange establishment method includes:
  • the terminal 1 wishes to establish communication with the terminal 2; the bearer of the terminal 1 to the PDN (hereinafter referred to as the second PDN for convenience of distinction) (for convenience of distinction, hereinafter referred to as: the second bearer) has been established; 1 is called a local terminal, and terminal 2 is called a counterpart terminal.
  • the bearer of the terminal 1 to the PDN hereinafter referred to as the second PDN for convenience of distinction
  • the second bearer for convenience of distinction
  • the mobility management entity or the packet data gateway where the terminal 1 is located determines the location information of the terminal 1.
  • the method for determining the location information of the terminal 1 includes: 1. Inferring the location of the terminal 2 according to the IP address of the terminal 2 (under S-GW1 or under eNB2, etc.); 2. The IMSI (International Mobile Subscriber Identity) of the terminal 1 is verified. Or inferring the location information of the terminal 2 by using a SIP URI (Session Initiated Protocol, a Uniform Resource Identifier, or a Fully Qualified Domain Name); 3. Carrying the terminal 2 according to the terminal 1 Information; 4, Either obtain this information from other entities such as contract, PCRF, IMS system, or MTC Server / MTC Application or use other means.
  • SIP URI Session Initiated Protocol, a Uniform Resource Identifier, or a Fully Qualified Domain Name
  • the mobility management entity or the packet data gateway determines the location relationship between the terminal 1 and the terminal 2.
  • the location relationship includes: 1.
  • the local terminal and the opposite terminal belong to the same packet data network gateway P-GW, but belong to different service gateways S-GW, as shown in FIG. 3; 1.
  • the local terminal and the opposite terminal belong to the same S. -GW, but belonging to different evolved base station eNBs, as shown in Figure 4; 3.
  • the local terminal and the opposite terminal belong to the same evolved base station eNB, as shown in Figure 5.
  • the local bearer node establishes a local switching path with the bearer node corresponding to the other party.
  • Terminal 1 may establish a local switched path when establishing or modifying a default bearer, or may establish a local switched path when establishing or modifying a dedicated bearer.
  • the process of establishing a local switching path according to different positional relationships between the terminal 1 and the terminal 2 is as follows:
  • the local terminal and the counterpart terminal belong to the same P-GW as the local terminal and the opposite terminal, they belong to different S-GWs.
  • the first case may be that the terminal 1 establishes a local switching path when establishing a default bearer.
  • the default bearer is generally initiated by the mobility management entity.
  • the process of establishing a local switched path by the mobility management entity by default bearer establishment is as follows:
  • the mobility management entity MME sends a session establishment request to the local serving gateway S-GW, where the request carries local exchange information, where the local exchange information includes: information of the counterpart terminal, such as the identity/identity of the counterpart terminal.
  • Information (such as IMSI or IP address) or location information, etc., may also include how to establish information of the local exchange bearer, such as whether the P-GW allocates its own user plane, and the P-GW provides the S5/S8 of the counterpart terminal to the S-GW. Instructions, etc.
  • the mobility management entity sets the local exchange information, which can be obtained in advance from the subscription or the service request of the terminal 1 or the PCRF or the IMS or the MTC Server or the MTC Application.
  • the local service gateway sends a session establishment request to the local packet data network gateway, where the request carries the local exchange information and the downlink user plane information (that is, the local service gateway allocates the GTP for the terminal 1).
  • Tunnel information such as IP and TEID).
  • the local exchange information is used to establish a local exchange path of the terminal 1 to the terminal 2;
  • the method of the invention can be applied to tunneling techniques.
  • the data transmitted using the tunnel may be data frames or packets of different protocols.
  • the tunneling protocol re-encapsulates the data frames or packets of these other protocols in a new header. Once the network endpoint is reached, the data will be unpacked and forwarded to the final destination. Ground.
  • the serving node is the upper layer bearer node of the base station.
  • the lower layer bearer node is selected according to the downlink user plane information. After the lower layer bearer node determines, the data is sent to the tunnel determined by the upper and lower layer bearer nodes. Similarly, the lower layer bearer node selects the upper layer bearer node according to the uplink user plane information; after the upper layer bearer node determines, the data is sent to the tunnel determined by the upper and lower layer bearer nodes.
  • the local packet data network gateway obtains information of the counterpart terminal, such as an identifier, from the local exchange information.
  • the downlink user plane IP address and TEID of the S5/S8 bearer (the information is recorded in the packet data network gateway), and possibly referring to the corresponding QoS information, so as to obtain the bearer information corresponding to the QoS ( That is, the downstream user plane IP address and TEID);
  • the local packet data network gateway is the packet data gateway where the terminal 1 is located; the other terminal is the terminal 2, and the information of the counterpart terminal is the identifier or IP address of the terminal 2 mentioned above; here is: the terminal 2 corresponds to the S5/S8 Downstream user plane IP address and TEID
  • the local packet data network gateway sends a session establishment response to the serving gateway, where the response carries the uplink user plane information, and the uplink user plane information includes an IP address and a TEID, and the value of the IP address and the TEID is equal to the corresponding terminal S5/S8. Carrying the downstream user plane IP address and TEID without having to allocate its own uplink user plane IP address and TEID by the P-GW;
  • the local service gateway sets the uplink user plane of the local terminal S 5 / S 8 and the TE I D is equal to the downlink user plane IP address and TEID of the corresponding terminal corresponding to the S5/S8;
  • the uplink data sent from the local service gateway can directly reach the service of the other terminal.
  • the gateway shortens the communication transmission path without going through the local packet data network gateway.
  • the local service gateway sends a setup session response to the mobility management entity, where the response carries the uplink user plane IP address and TEID carried by the local terminal S1.
  • the second case may be that the terminal 1 establishes a local switching path when establishing a dedicated bearer.
  • the proprietary bearer is initiated by the packet data gateway.
  • the process of establishing a local switched path by a packet data gateway through a proprietary bearer setup/modification is as follows: (The local case is also applicable to modify the default bearer to establish a local switch path)
  • the packet data gateway acquires local exchange information, where the local exchange information includes information of the counterpart terminal, such as identity/identity information (such as IMSI or IP address) or location information of the counterpart terminal, and may also include how to establish Local exchange bearer information, such as whether the P-GW allocates its own user plane, and the P-GW provides instructions of the S5/S8 of the counterpart terminal to the S-GW.
  • the local exchange information is obtained in advance from the subscription or the request of the terminal 1 or the PCRF or the IMS or the MTC Server or the MTC Application or the pre-configured P-GW or the like.
  • the local packet data network gateway sends a setup or update bearer request to the serving gateway, where the request carries the uplink user plane information, and the uplink user plane information includes an IP address and a TEID, and the 701 step IP address and the TEID value are set to correspond to the counterpart terminal.
  • the downlink user plane IP address and TEID carried by the S5/S8, rather than the uplink user plane IP address and TEID of the local packet data network gateway; the downlink user plane IP address and TEID carried by the counterpart terminal corresponding to the S5/S8 are grouped by the packet data.
  • the network gateway obtains the information according to the information of the counterpart terminal in the local exchange information.
  • the local service gateway sets the uplink user plane IP address and TE ID of the local terminal S 5 /S 8 to be equal to the downlink user plane IP address and TEID of the corresponding terminal corresponding to the S5/S8; the local service gateway may not be aware of the user.
  • the face information is the local packet data network gateway itself or something else. Just set the data according to the normal process.
  • the data exchange method includes:
  • the local terminal sends data to the local bearer node.
  • the terminal 1 sends the data to the local service gateway;
  • the local bearer node sends data to the local switching path according to the bearer information (user plane IP address and TEID) of the data.
  • the local service gateway obtains the uplink IP and TEID of the data from the data. Due to the one-to-one relationship of the tunnel, the data directly from the tunnel is directly exchanged to the recorded uplink IP and the TEID (ie, the counterpart terminal corresponds to the S5/S8).
  • the downlink user plane IP address and TEID of the bearer are transmitted, and the bearer established by the peer service gateway after receiving the data is sent to the counterpart terminal.
  • the data reaches the opposite terminal through the local switching path.
  • the local service gateway is saved to the local P-GW, the local P-GW to the P-GW of the terminal 2, and the P-GW of the terminal 2 to the service gateway of the terminal 2.
  • the communication path from the terminal 2 to the terminal 1 is unchanged, and the data is sent from the terminal 2 to the base station where the terminal 2 is located, and then sent to the serving gateway where the terminal 2 is located, and is sent from the serving gateway where the terminal 2 is located to the packet data gateway where the terminal 2 is located.
  • the packet data gateway where the terminal 2 is located sends the data to the external network, and reaches the packet data gateway where the terminal 1 is located via the external network, and the packet data gateway where the terminal 1 is located sends the data to the service gateway where the terminal 1 is located, and the service gateway where the terminal 1 is located.
  • the data is sent to the base station where the terminal 1 is located, and the base station where the terminal 1 is located sends the data to the terminal 1.
  • the terminal 2 wants to shorten the communication path, the terminal 2 also establishes its own local switching path in accordance with the above data exchange establishing method.
  • the data sent by the terminal 1 to the terminal 1 arrives at the serving gateway where the terminal 1 is located, and directly reaches the serving gateway where the terminal 1 is located.
  • the P-GW where the service gateway where the terminal 2 is located is located to the P-GW where the terminal 2 is located, the P-GW where the terminal 2 is located to the P-GW where the terminal 1 is located, and the P-GW where the terminal 1 is located to the terminal 1 are saved.
  • the service gateway is located in this section.
  • the first case may be that the terminal 1 establishes a local switching path when establishing a default bearer.
  • the process of establishing a local switched path by the mobility management entity by default bearer setup is as follows: As shown in FIG. 8, 805, the mobility management entity sends an initial context setup request to the local base station or
  • the E-RAB establishes a request, the request carries the uplink user plane information, and the value of the uplink user plane information is set to the downlink user plane IP address and TEID of the counterpart terminal corresponding to the S1;
  • the mobile management entity sets the local exchange information, and the local exchange information may include the downlink user plane IP address and the TEID of the terminal 2 corresponding to the S1, and how to establish the information of the local exchange bearer.
  • the local base station sets the IP address and TEID of the uplink user plane carried by the local terminal S1 to be equal to the downlink user plane IP address and TEID of the S1 bearer corresponding to the peer terminal;
  • the local base station sends an initial context setup response or an E-RAB setup response to the mobility management entity, where the response carries the downlink user plane IP address and the TEID of the local terminal radio bearer.
  • the function of the downlink user plane IP address and TEID of the local terminal radio bearer is as follows: After the data of the terminal 2 is transmitted to the serving gateway of the terminal 1, the serving gateway of the terminal 1 can find the radio bearer used by the terminal 1 according to the TEID.
  • the method further includes: establishing a process of the radio bearer. This is prior art and will not be described again.
  • Steps 801 and 804 are not necessary steps for establishing a local switching path and will not be described in detail.
  • the second case may be that the terminal 1 establishes a local switching path when establishing a dedicated bearer.
  • the proprietary bearer setup or modification is initiated by the packet data gateway.
  • the process of establishing a local switched path by a packet data gateway through a proprietary bearer setup or modification is as follows:
  • the local packet data network gateway sends a setup bearer request or a update bearer request to the serving gateway, where the bearer request carries local exchange information, and the local exchange information acquisition manner or content is not described in the same manner;
  • the local service gateway sends a setup/update bearer request to the mobility management entity, where the bearer request carries local exchange information.
  • the local service gateway and the packet data gateway may not establish a bearer, such as a packet data gateway. Carry the uplink user plane information to the local service gateway;
  • the mobility management entity obtains the downlink user plane IP address and TEID of the terminal 2 corresponding to the S1 according to the local exchange information;
  • the mobility management entity sends an E-RAB setup/modification request to the local base station, where the request carries the uplink user plane information, where the uplink user plane information includes the IP address and the TEID, and the specific value of the 903 step IP address and the TEID is the counterpart terminal S1. 7 downlink user plane IP address and TEID;
  • the local base station sets the IP address and TEID of the uplink user plane carried by the local terminal S1 to be equal to the downlink user plane IP address and TEID of the S1 bearer.
  • the local base station sends an E-RAB setup/modification response to the mobility management entity.
  • the mobility management entity sends a setup/update bearer response to the serving gateway.
  • the serving gateway sends a setup/update bearer response to the packet data gateway, where the response does not carry the downlink user plane IP address and the TEID of the serving gateway.
  • the data exchange method includes:
  • the local terminal sends data to the local bearer node.
  • the terminal 1 sends the data to the local base station
  • the local bearer node sends data to the local switching path according to the bearer information of the data.
  • the local base station obtains the bearer information of the data from the data, and sends the data directly to the base station where the peer end is located (in step 806/904, the local base station has set the uplink user plane IP address and TE ID carried by the local terminal S1. It is equal to the downlink user plane IP address and TE ID of the corresponding terminal corresponding to S 1 .
  • the data reaches the opposite terminal through the local switching path.
  • the local base station to the local service gateway, the local service gateway to the local P-GW, the local P-GW to the P-GW of the terminal 2, and the P-GW of the terminal 2 to the terminal 2 of the terminal 2 are saved.
  • the service gateway of the terminal 2 goes to the base station of the terminal 2.
  • the communication path from the terminal 2 to the terminal 1 is unchanged, and the data is sent from the terminal 2 to the base station where the terminal 2 is located, and then sent to the serving gateway where the terminal 2 is located, and is sent from the serving gateway where the terminal 2 is located to the packet data gateway where the terminal 2 is located.
  • the packet data gateway where the terminal 2 is located sends the data to the external network, and reaches the packet data gateway where the terminal 1 is located via the external network, and the packet data gateway where the terminal 1 is located sends the data to the service gateway where the terminal 1 is located, and the service gateway where the terminal 1 is located.
  • the data is sent to the base station where the terminal 1 is located, and the base station where the terminal 1 is located sends the data to the terminal 1.
  • the terminal 2 wants to shorten the communication path, the terminal 2 also establishes its own local switching path in accordance with the above data exchange establishing method.
  • the data sent by the terminal 1 to the terminal 1 arrives at the base station where the terminal 1 is located, and directly reaches the base station where the terminal 1 is located.
  • the service gateway where the terminal 2 is located to the terminal 2 can be saved, the service gateway where the terminal 2 is located to the P-GW where the terminal 2 is located, the P-GW where the terminal 2 is located, and the P-GW where the terminal 1 is located.
  • the P-GW where the terminal 1 is located is the service gateway where the terminal 1 is located, and the service gateway where the terminal 1 is located to the base station where the terminal 1 is located.
  • two terminals under the same serving gateway establish a partial local switching path similar to that of FIG. 6 and FIG. 7, that is, data is sent from the terminal 1 to the base station where the terminal 1 is located, and then sent to the serving gateway where the terminal 1 is located, and the service is provided.
  • the gateway performs internal switching, that is, sends the downlink bearer where the terminal 2 is located, and then the serving gateway sends the data to the base station where the terminal 2 is located, and the base station where the terminal 2 is located sends the data to the terminal 2.
  • the local terminal and the opposite terminal belong to the same eNB, the local terminal and the opposite terminal.
  • the first case may be that the terminal 1 establishes a local switching path when establishing a default bearer.
  • the process of establishing a local switching path by using the default bearer setup mode is as follows: As shown in FIG. 10, the mobile management entity sends an initial context setup request or an E-RAB setup request to the local base station, where the request carries local exchange information; The acquisition and content of the exchange information are not repeated here. That is, the local terminal uplink RB corresponds to the downlink RB of the opposite terminal;
  • the local base station sends an initial context setup response or an E-RAB setup to the mobility management entity.
  • the response carries the downstream user plane IP address and TEID of the local terminal radio bearer.
  • Steps 1001 through 1004 are not necessary steps for establishing a local switching path and will not be described in detail.
  • the second case may be that the terminal 1 establishes a local switching path when establishing a dedicated bearer.
  • the proprietary bearer setup or modification is initiated by the packet data gateway.
  • the process of establishing a local switched path by a packet data gateway through a proprietary bearer setup/modification method is as follows:
  • the local packet data network gateway sends a setup/update bearer request to the serving gateway, where the bearer request carries local exchange information.
  • the local service gateway sends a setup/update bearer request to the mobility management entity, where the bearer request carries local exchange information;
  • the mobility management entity sends an E-RAB setup/modification request to the local base station, where the request carries local exchange information.
  • the local base station sets a downlink of the radio bearer of the local terminal radio bearer corresponding to the radio bearer of the opposite end terminal (in the case of QoS, all cases are similar);
  • the local base station sends an E-RAB setup/modification response to the mobility management entity.
  • the mobility management entity sends a setup/update bearer response to the local service gateway.
  • the local service gateway sends a setup/modify bearer response to the packet data gateway.
  • the data exchange method includes:
  • the local terminal sends data to the local bearer node.
  • the terminal 1 sends the data to the local base station
  • the local bearer node sends data to the local switching path according to the bearer information of the data.
  • the local base station obtains the bearer information of the data from the data, and sends the data directly to the radio bearer corresponding to the terminal 2.
  • the data reaches the opposite terminal through the local switching path.
  • the local base station After the data sent by the terminal 1 to the terminal 2 reaches the local base station, the local base station directly sends the data to the counterpart terminal.
  • the local base station to the local service gateway is saved, and the local service gateway is Local P-GW, local P-GW to P-GW of terminal 2; P-GW of terminal 2 to service gateway of terminal 2, service gateway of terminal 2 to base station of terminal 2, base station to terminal 2 of terminal 2 Road.
  • the communication path from the terminal 2 to the terminal 1 is unchanged, and the data is sent from the terminal 2 to the base station where the terminal 2 is located, and then sent to the serving gateway where the terminal 2 is located, and is sent from the serving gateway where the terminal 2 is located to the packet data gateway where the terminal 2 is located.
  • the packet data gateway where the terminal 2 is located sends the data to the external network, and reaches the packet data gateway where the terminal 1 is located via the external network, and the packet data gateway where the terminal 1 is located sends the data to the service gateway where the terminal 1 is located, and the service gateway where the terminal 1 is located.
  • the data is sent to the base station where the terminal 1 is located, and the base station where the terminal 1 is located sends the data to the terminal 1.
  • the terminal 2 wants to shorten the communication path, the terminal 2 also establishes its own local switching path in accordance with the above data exchange establishing method.
  • the service gateway where the terminal 2 is located to the terminal 2 can be saved, the service gateway where the terminal 2 is located to the P-GW where the terminal 2 is located, the P-GW where the terminal 2 is located, and the P-GW where the terminal 1 is located.
  • the P-GW where the terminal 1 is located to the service gateway where the terminal 1 is located, the service gateway where the terminal 1 is located to the base station where the terminal 1 is located, and the base station where the terminal 1 is located to the terminal 1 is the path.
  • the bearer arriving at the terminal 2 is an independent bearer. Although there are other QoS-related data, if other data arrives at other purposes, the bearers must be separated and multi-bearers are used.
  • the same bearer can be used for data having the same QOS parameter under the same PDN connection; the present invention further improves the above data exchange establishment method:
  • the data exchange establishment method includes:
  • the local bearer node establishes a local exchange path with the bearer node corresponding to the other party;
  • Steps 1 301 and 1 302 are the same as steps 201 and 202 and are not mentioned again.
  • the local bearer node sets a data forwarding filter.
  • the service where the terminal 1 is located a gateway setting filter; the filter is provided with an import, two outlets; the import is for receiving data having the same QOS parameter, and the egress is for transmitting data to the packet data gateway where the terminal 1 is located (normal path
  • the P-GW uplink user plane information is recorded, and the other is used to send data to the serving gateway where the terminal 1 is located (local switching path, recording the S-GW downlink user plane information of the counterpart terminal);
  • the filter is based on the data of five yuan
  • the group information such as the destination address, the destination port number, the source address, or the source port number determines which output the data is output from.
  • the local terminal and the counterpart terminal are in the same S-GW, and the base station where the terminal 1 is located sets a filter under different eNBs; the filter is provided with an import and two outlets; and the import is used for receiving data having the same Q0S parameter.
  • the egress is used to send data to the serving gateway (normal path) where the terminal 1 is located, and the other is used to send data to the base station where the terminal 2 is located (local switching path); the filter is based on the destination address and destination port of the data. The number, source address, or source port number, etc., determine which output the data is exported from.
  • the local terminal and the counterpart terminal are under the same eNB, and the base station where the terminal 1 is located sets a filter; the filter is provided with an import and two outlets; the import is used for receiving data having the same QOS parameter, and the outlet is used for one
  • the data is sent to the serving gateway where the terminal 1 is located (normal path), and the other is used to send data directly to the radio bearer (local switching path) corresponding to the terminal 2; the filter is based on the destination address of the data, the destination port number, and the source. The address, source port number, etc., determine which output the data is exported from.
  • the present invention further provides a data exchange method, as shown in FIG. 14, the method includes:
  • the local terminal sends data to the local bearer node.
  • the step includes: 1501: The local bearer node sends data to the filter; when the local terminal and the counterpart terminal are in the same P-GW and different S-GWs, the service gateway where the terminal 1 is located will data. Sent to the filter;
  • the local terminal and the opposite terminal are in the same S-GW, and the base station where the terminal 1 is located sends data to the filter under different eNBs;
  • the local terminal and the counterpart terminal are under the same eNB, and the base station where the terminal 1 is located sends data to filter;
  • the filter determines, according to the quintuple information of the data, whether a current switching path is established between the current bearer node and the other bearer node.
  • terminal 1 and terminal 2 are in the same P-GW, different S-GW; terminal 1 and terminal 3, V are in the same S-GW, different eNBs; terminal 1 is in the same terminal 4, 4' Under one eNB; terminal 1 and terminals 5, 5' are under different P-GWs; the QoS of the data they send is the same bearer.
  • the filter of the base station where the terminal 1 is located determines according to the destination address of the data: the base station where the terminal 1 is located and the terminal 4, 4' establish a local switching path; the base station where the terminal 1 is located is established with the terminal 3 and the base station where the terminal is located Have a local exchange path;
  • the filter of the service gateway of the terminal 1 determines according to the destination address of the data: the service gateway where the terminal 1 is located establishes a local exchange path with the service gateway where the terminal 2, 1' is located;
  • the filter of the base station where the terminal 1 is located sends the terminals 2, 2', 5 and the sent data to the serving gateway where the terminal 1 is located;
  • the filter of the serving gateway where the terminal 1 is located sends the terminal 5 and the sent data to the packet data gateway where the terminal 1 is located;
  • the local bearer node sends data to the local switching path according to the bearer information of the data.
  • the filter of the base station where the terminal 1 is located transmits the data of the terminal 3, V to the base station where the terminal 3 and the V are located; and the data of the terminal 4, 4' is sent to the terminal 4, 4';
  • the filter of the serving gateway where the terminal 1 is located sends the data of the terminal 2 and the V to the terminal 2, and the V is in the serving gateway;
  • the data reaches the opposite terminal through the local switching path.
  • the terminal 1 communicates with thousands of terminals; in the prior art, the terminal 1 needs to establish a bearer with all terminals; using the method described above, the terminal 1 needs to establish a local with all terminals.
  • the present invention further provides a data exchange establishing apparatus 1 60.
  • the apparatus includes: a location relationship acquiring module 1601, configured to acquire a location relationship between a local terminal and a counterpart terminal; and a local switching path establishing module 1 603 And, according to the location relationship, the local bearer node establishes a local switching path with the bearer node corresponding to the other party;
  • the filter is provided with an inlet, at least two outlets; the inlet is for receiving data having the same QOS parameter, the outlet is for transmitting data to the next bearer node, and the other is for data Send to the local exchange path.
  • the location relationship between the local terminal and the counterpart terminal includes:
  • the local terminal and the opposite terminal belong to the same packet data network gateway P-GW, but belong to different service gateways S-GW; or
  • the local terminal and the opposite terminal belong to the same serving gateway S-GW, but belong to different evolved base station eNBs; or
  • the local terminal and the opposite terminal belong to the same evolved base station eNB.
  • the local bearer node includes: a packet data gateway, a serving gateway, and a base station.
  • the present invention further provides a data exchange device 170, the device comprising: a data receiving module 1701, configured to receive data sent by a local terminal;
  • the data sending module 1702 sends the data to the local switching path according to the bearer information of the data.
  • Data Transfer Module ⁇ 03 Data arrives at the other terminal through the local exchange path.
  • the data sending module sends the data to the filter;
  • the filter determines, according to the destination address of the data, whether the current local bearer node and the counterpart bearer node establish a local exchange path;
  • the local bearer node includes: a packet data gateway, a serving gateway, and a base station.
  • the present invention further provides a bearer node 180, which includes: a data exchange establishing device 16G and a data switching device 170.
  • the data exchange establishing device 16G includes: a location relationship obtaining module 1601, configured to acquire a location relationship between the local terminal and the counterpart terminal;
  • the local switching path establishing module 1603 is configured to establish, according to the location relationship, the local bearer node and the bearer node corresponding to the other party to establish a local switching path;
  • the filter is provided with an inlet, at least two outlets; the inlet is for receiving data having the same QOS parameter, the outlet is for transmitting data to the next bearer node, and the other is for data Send to the local exchange path.
  • the data exchange device 170 includes: a data receiving module 1701, configured to receive data sent by the local terminal;
  • the data sending module 1702 sends the data to the local switching path according to the bearer information of the data.
  • Data Transfer Module ⁇ 03 Data arrives at the other terminal through the local exchange path.
  • the bearer node of the terminal 1 acts as an initiator and establishes a local exchange path with the bearer node of the terminal 2.
  • the terminal 1 wants to send data to the terminal 2
  • the data is sent from the terminal 1 to the local bearer node, and then directly reaches the corresponding bearer node through the local switching path; the data arrives at the terminal 2 via the bearer node.
  • the local bearer node is saved to the local P-GW, the local P-GW to the P-GW of the terminal 2, and the P-GW of the terminal 2 to the bearer node of the terminal 2.
  • the bearer node of the terminal 2 acts as the initiator, and can also establish a local exchange path with the bearer node of the terminal 1.
  • the same path is also saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

数据交换建立方法和装置、 数据交换方法和装置、 承栽节点 技术领域
本发明涉及通信技术领域, 尤其涉及一种数据交换建立方法和装置、 数 据交换方法和装置、 承载节点。 背景技术
EPS ( Evolved Packet Sys tem, 演进分组系统) 系统中, QoS ( Qua l i ty of Service业务质量)控制的基本粒度是 EPS承载(Bearer) , 即相同承载上的 所有数据流将获得相同的 QoS保障(如调度策略, 緩冲队列管理, 链路层配 置等), 不同的 QoS保障需要不同类型的 EPS承载来提供。
EPS承载包括默认承载和专有承载。 与默认承载不同, 专有承载的建立, 是为了满足用户特定 QoS 的需求。 专有承载建立之前, 必须存在相应的默认 承载。
现有 SAE ( Sys tem Archi tecture Evo lut ion系统架构演进) /LTE ( Long Term Evolut ion长期演进)通信方式中, 终端 ( UE或 MTC Dev ice 能够面向 机器通信的终端)接入网络后, 进行网络附着的同时, 为该用户建立一个非 固定数据速率的默认承载, 保证其基本的业务需求; 一般来说, 每个 PDN ( Packe t Da ta Ne twork 分组数据网络)连接都对应着一个默认承载和一个 IP 地址。
为了给相同 IP地址的终端提供具有不同 QoS保障的业务, 如视频通话, 语音业务, 数据业务等, 需要在终端和 PDN之间再建立一个或多个专有承载。
如图 1所示, 基站通过创建无线承载与 S1承载之间的绑定, 实现无线 承载与 S1承载之间的——映射; S-GW通过创建 S1承载与 S5/S8承载之间的 绑定, 实现 S1承载与 S5/S8承载之间的——映射。 最终, EPS承载数据通过 无线承载、 S1承载以及 S5/S8承载的级联, 实现了终端与 PDN之间连接业务 的支持。 PDN 指的是外部的数据网络 (相对于 SAE/LTE 运营商而言), 例如 Interne t , 企业专用数据网等。 APN ( Acces s Point Name接入点名称) 的值 作为 PDN网络的标识。
当网络中的两个终端, 终端 1与另一终端 2通信时, 终端 1发送的数据 会沿承载发往本地 P-GW; 本地 P-GW根据数据携带的终端 2的 IP地址信息, 将数据发送到达终端 2的 P-GW (中间通过 IP路由); P-GW对数据进行过滤, 将数据匹配到为终端 2建立的承载上; 然后数据延承载下发到终端 2 (如果终 端 2处于 idle状态, 其间还有触发寻呼的过程)。
终端 2到终端 1的数据发送过程类似。
现有终端 1与终端 2的数据交换路径复杂 ,如果二者在相同的 P-GW或 S-GW 甚至 eNB下频繁的通信, 复杂的数据通信路径会浪费大量的通信资源。 发明内容
本发明的实施例提供一种数据交换建立方法和装置、 数据交换方法和装 置、 承载节点。
本发明的实施例釆用如下技术方案:
数据交换建立方法, 包括:
确定本地终端与对方终端的位置关系;
根据所述位置关系, 本地承载节点与对方对应的承载节点建立本地交换 路径。
数据交换方法, 包括:
本地终端将数据延承载发送给本地承载节点;
本地承载节点根据所述数据的承载信息, 将数据发送到本地交换路径; 数据通过本地交换路径到达对方终端。
数据交换建立装置, 包括:
位置关系获取模块, 用于获取本地终端与对方终端的位置关系; 本地交换路径建立模块, 用于根据所述位置关系, 本地承载节点与对方 对应的承载节点建立本地交换路径。 数据交换装置, 包括:
数据接收模块, 用于接收本地终端发送的数据;
数据发送模块, 根据所述数据的承载信息, 将数据发送到本地交换路径; 数据传送模块, 数据通过本地交换路径到达对方终端。
承载节点, 包括: 上述数据交换建立装置和数据交换装置。
终端 1 的节点作为发起方, 与终端 2的承载节点建立本地交换路径。 终 端 1要将数据发送到终端 2时, 数据从终端 1发送到本地承载节点后, 经本 地交换路径直接到达对方对应的承载节点; 数据经该承载节点到达终端 2。避 免了本地承载节点到本地 P-GW, 本地 P-GW到终端 2的 P-GW; 终端 2的 P-GW 到终端 2的承载节点完整传输路经传输而浪费的资源。
同理, 终端 1的承载节点作为发起方, 也可以与终端 1的承载节点建立 本地交换路径。 终端 2的数据发送到终端 1时, 也会节省传输路径。
当相互通信的终端 1与终端 1在本地都建立有本地交换路径后, 缩短了 双向的通信路径, 节省了通信资源。 附图说明
图 1为终端与 PDN之间承载连接示意图;
图 2为数据交换建立方法流程图;
图 3为本地终端与对方终端在同一个 P-GW, 不同 S-GW下场景示意图; 图 4为本地终端与对方终端在同一个 S-GW, 不同 eNB下场景示意图; 图 5为本地终端与对方终端在同一个 eNB下场景示意图;
图 6为本地终端与对方终端在同一个 P-GW, 不同 S-GW下, 通过默认^载 建立本地交换路径的流程图;
图 7为本地终端与对方终端在同一个 P-GW, 不同 S-GW下, 通过专有承载 建立本地交换路径的流程图;
图 8为本地终端与对方终端在同一个 S-GW, 不同 eNB下, 通过默认 载 建立本地交换路径的流程图;
图 9为本地终端与对方终端在同一个 S-GW, 不同 eNB下, 通过专有承载 建立本地交换路径的流程图;
图 10为本地终端与对方终端在同一个 eNB下, 通过默认^载建立本地交 换路径的流程图;
图 11为本地终端与对方终端在同一个 eNB下, 通过专有承载建立本地交 换路径的流程图;
图 12为数据交换方法流程图;
图 13为数据交换建立方法另一实施例流程图;
图 14为数据交换方法另一实施例流程图;
图 15本地承载节点过滤数据的流程图;
图 16为数据交换建立装置的结构示意图;
图 17为数据交换装置的结构示意图; 图 18为承载节点的结构示意图。
具体实施方式
下面结合附图对本发明实施例数据交换建立方法和数据交换方法进行详 细描述。
如图 2所示, 数据交换建立方法, 包括:
201、 确定本地终端与对方终端的位置关系;
本发明应用场景: 终端 1希望与终端 2建立通信; 终端 1到 PDN (为了便 于区分, 下面称为: 第二 PDN)的承载(为了便于区分, 下面称为: 第二承载) 已建立; 终端 1称为本地终端, 终端 2称为对方终端。
终端 1所在移动管理实体或分组数据网关确定终端 1的位置信息。终端 1 位置信息的确定方法包括: 1、 根据终端 2的 IP地址推断终端 2的位置(处 于 S-GW1下或 eNB2下等); 2、 才艮据终端 1的 IMSI (国际移动用户识别码)或 SIP URI ( Session Initiated Protocol, 会话发起十办议, Uniform Resource Identifier, 通用资源标识)或 FQDN ( Fully Qualified Domain Name, 全称 域名 )等推断出终端 2的位置信息; 3、 根据终端 1携带终端 2的信息; 4、 或者从签约, PCRF, IMS系统,或者 MTC Server / MTC Appl ica t ion等其他实 体获得该信息或使用其他方式获知。
终端 2 的位置确定后, 移动管理实体或分组数据网关确定就可以确定终 端 1与终端 2的位置关系。 该位置关系包括: 1、 本地终端与对方终端归属同 一个分组数据网络网关 P-GW, 但归属不同的服务网关 S-GW, 如图 3所示; 1、 本地终端与对方终端归属同一个 S-GW, 但归属于不同的演进型基站 eNB, 如 图 4所示; 3、 本地终端与对方终端归属同一个演进型基站 eNB下, 如图 5所 示。
202、 根据所述位置关系, 本地承载节点与对方对应的承载节点建立本地 交换路径
终端 1 可以在建立或修改默认承载时建立本地交换路径, 也可以在建立 或修改专有承载时建立本地交换路径。 根据终端 1与终端 2的不同位置关系 建立本地交换路径的过程如下:
首先,本地终端与对方终端如果为本地终端与对方终端归属同一个 P-GW, 但归属不同的 S-GW。
第一种情况可以为终端 1在建立默认承载时建立本地交换路径。
默认承载一般由移动管理实体发起, 移动管理实体通过默认承载建立的 方式建立本地交换路径过程如下:
如图 6所示, 601、 移动管理实体 MME发送会话建立请求给本地服务网关 S-GW, 该请求携带本地交换信息, 所述本地交换信息包括: 对方终端的信息, 如对方终端的标识 /身份信息(如 IMSI或 IP地址)或位置信息等, 还可能包 括如何建立本地交换承载的信息, 如 P-GW是否分配自己的用户面, P-GW提供 对方终端的 S5/S8给 S-GW的指令等;
移动管理实体设置本地交换信息, 本地交换信息可以从签约或终端 1 的 业务请求或 PCRF或 IMS或 MTC Server或 MTC Appl ica t ion等事先获取。
602、 本地服务网关发送会话建立请求给本地分组数据网络网关, 该请求 携带本地交换信息和下行用户面信息 (即本地服务网关为终端 1 分配的 GTP 隧道信息, 如 IP和 TEID )。
本地交换信息用于建立终端 1到终端 2的本地交换路径;
本发明的方法可以应用在隧道技术。 使用隧道传递的数据可以是不同协 议的数据帧或包, 隧道协议将这些其它协议的数据帧或包重新封装在新的包 头中发送, 一旦到达网络终点, 数据将被解包并转发到最终目的地。
隧道上设置有若干个承载节点; 上层承载节点 (上、 下层承载节点是相 对的: 基站是服务网关的下层承载节点; 服务网关是分组数据网关的下层承 载节点; 分组数据网关是服务网关的上层承载节点; 服务网关是基站的上层 承载节点)根据下行用户面信息选择下层承载节点; 下层承载节点确定后, 将数据发送到上、 下层承载节点确定的隧道。 同理, 下层承载节点根据上行 用户面信息选择上层承载节点; 上层承载节点确定后, 将数据发送到上、 下 层承载节点确定的隧道。
603、本地分组数据网络网关从所述本地交换信息,得到对方终端的信息, 如标识;
根据对方终端的信息获取对方终端对应 S5/S8承载的下行用户面 IP地址 和 TEID (该信息记录在分组数据网络网关中), 还可能参考对应的 QoS信息, 以使得获取对应 QoS的承载信息 (即下行用户面 IP地址和 TEID );
本地分组数据网络网关即终端 1所在的分组数据网关;对方终端即终端 2 , 对方终端的信息即上文提到的终端 2的标识或 IP地址; 在此处是指: 终端 2 对应 S5/S8 载的下行用户面 IP地址和 TEID
604、 本地分组数据网络网关向服务网关发送建立会话响应, 该响应携带 上行用户面信息, 上行用户面信息包括 IP地址和 TEID, 具体到 604步骤 IP 地址和 TEID的值等于对方终端对应 S5/S8承载的下行用户面 IP地址和 TEID, 而不必由 P-GW分配自己的上行用户面 IP地址和 TEID;
605、本地服务网关设置本地终端 S 5 / S 8承载的上行用户面 I P地址和 TE I D 等于对方终端对应 S5/S8承载的下行用户面 IP地址和 TEID;
这样, 从本地服务网关发送的上行数据就可以直接到达对方终端的服务 网关, 而不需经过本地分组数据网络网关, 缩短了通信传输路径。
606、 本地服务网关向移动管理实体发送建立会话响应, 该响应携带有本 地终端 S1 载的上行用户面 IP地址和 TEID。
建立无线接入承载的过程忽略。
移动管理实体作为发起方, 通过默认承载建立的方式建立本地交换路径 的过程介绍完毕。
第二种情况可以为终端 1在建立专有承载时建立本地交换路径。
专有承载由分组数据网关发起。 分组数据网关通过专有承载建立 /修改的 方式建立本地交换路径的过程如下: (本地案也适用于修改默认承载来建立 本地交换路径 )
如图 7 所示, 分组数据网关获取本地交换信息, 所述本地交换信息包括 对方终端的信息, 如对方终端的标识 /身份信息(如 IMSI或 IP地址)或位置 信息等, 还可能包括如何建立本地交换承载的信息, 如 P-GW是否分配自己的 用户面, P-GW提供对方终端的 S5/S8给 S-GW的指令等。 该本地交换信息从签 约或终端 1的请求或 PCRF或 IMS或 MTC Server或 MTC Appl i ca t ion或预先 配置在 P-GW等事先获取。
701、 本地分组数据网络网关向服务网关发送建立或更新承载请求, 该请 求携带上行用户面信息, 上行用户面信息包括 IP地址和 TEID, 具体到 701步 骤 IP地址和 TEID的数值设置为对方终端对应 S5/S8承载的下行用户面 IP地 址和 TEID, 而非本地分组数据网络网关自己的上行用户面 IP地址和 TEID; 所述对方终端对应 S5/S8承载的下行用户面 IP地址和 TEID由分组数据网络 网关根据本地交换信息中的对方终端的信息查询获得。
702、本地服务网关设置本地终端 S 5 / S 8承载的上行用户面 I P地址和 TE I D 等于对方终端对应 S5/S8承载的下行用户面 IP地址和 TEID;本地服务网关可 能并不清楚所述用户面信息是本地分组数据网络网关自己的还是其他的。 只 要按照正常流程设置数据即可。
其他流程不是本发明重点, 此为现有技术, 不再赘述。 第三种情况可以为本地交换路径建立后, 就可以进行本地数据交换。 如图 12所示, 数据交换方法包括:
1201、 本地终端将数据发送给本地承载节点;
终端 1将数据发送给本地服务网关;
1202、本地承载节点根据所述数据的承载信息(用户面 IP地址和 TEID ), 将数据发送到本地交换路径;
本地服务网关从所述数据中获得该数据的上行 IP与 TEID,由于隧道的一 对一关系,直接将从此隧道过来的数据交换到纪录的上行 IP与 TEID中去(即 对方终端对应 S5/S8承载的下行用户面 IP地址和 TEID ), 对方服务网关收到 数据后延建立的承载发送到对方终端。
1203、 数据通过本地交换路径到达对方终端。
终端 1发往终端 2的数据到达本地服务网关后, 直接到达对方对应的服 务网关。 与现有技术相比节省了本地服务网关到本地 P-GW, 本地 P-GW到终端 2的 P-GW; 终端 2的 P-GW到终端 2的服务网关这段路经。
终端 2到终端 1的通信路径不变, 数据从终端 2发送到终端 2所在的基 站, 再发送到终端 2所在的服务网关, 从终端 2所在的服务网关发送到终端 2 所在的分组数据网关, 终端 2 所在的分组数据网关将数据发到外网, 经外网 到达终端 1所在的分组数据网关, 终端 1所在的分组数据网关将数据发到终 端 1所在的服务网关, 终端 1所在的服务网关将数据发到终端 1所在的基站, 终端 1所在的基站将数据发到终端 1。
终端 2如果想缩短通信路径, 终端 2也要按照上述数据交换建立方法建 立自己的本地交换路径。
终端 1的本地交换路径建立后, 终端 1发往终端 1的数据到达终端 1所 在的服务网关后, 直接到达终端 1 所在的服务网关。 与现有技术相比节省了 终端 2所在的服务网关到终端 2所在的 P-GW,终端 2所在的 P-GW到终端 1所 在的 P-GW; 终端 1所在的的 P-GW到终端 1所在的服务网关这段路经。
1、 本地终端与对方终端如果为本地终端与对方终端归属同一个 S-GW, 但 归属不同的 e氣
第一种情况可以为终端 1在建立默认承载时建立本地交换路径
移动管理实体通过默认承载建立方式建立本地交换路径过程如下: 如图 8所示, 805、 移动管理实体向本地基站发送初始上下文建立请求或
E-RAB建立请求, 该请求携带有上行用户面信息, 而上行用户面信息的数值设 置为对方终端对应 S1承载的下行用户面 IP地址和 TEID;
移动管理实体设置本地交换信息, 本地交换信息可以包括终端 2对应 S1 承载的下行用户面 IP地址和 TEID, 如何建立本地交换承载的信息等。
806、 本地基站设置本地终端 S1承载的上行用户面 IP地址和 TEID等于 对方终端对应 S1承载的下行用户面 IP地址和 TEID;
807、 本地基站向移动管理实体发送初始上下文建立响应或 E-RAB建立响 应, 该响应携带有本地终端无线承载的下行用户面 IP地址和 TEID。
本地终端无线承载的下行用户面 IP地址和 TEID的作用在于: 终端 2的 数据传到终端 1的服务网关后, 终端 1的服务网关根据该 TEID可以找到终端 1所使用的无线承载。
在步骤 806和 807之间还包括: 建立无线承载的流程。 此为现有技术, 不再赘述。
步骤 801和 804不是建立本地交换路径的必要步骤, 不再详述。
第二种情况可以为终端 1在建立专有承载时建立本地交换路径。
专有承载建立或修改由分组数据网关发起。 分组数据网关通过专有承载 建立或修改方式建立本地交换路径的过程如下:
如图 9所示, 901、 本地分组数据网络网关向服务网关发送建立承载请求 或更新承载请求, 该承载请求携带本地交换信息, 所述本地交换信息获取方 式或内容同上不再赘述;
902、 本地服务网关向移动管理实体发送建立 /更新承载请求, 该承载请 求携带本地交换信息;
本地服务网关与分组数据网关之间可以不建立承载, 如分组数据网关不 携带上行用户面信息给本地服务网关;
移动管理实体根据所述本地交换信息获取终端 2对应 S1承载的下行用户 面 IP地址和 TEID;
903、 移动管理实体向本地基站发送 E-RAB建立 /修改请求, 该请求携带 上行用户面信息, 上行用户面信息包括 IP地址和 TEID, 具体到 903步骤 IP 地址和 TEID的值为对方终端对应 S1 7 载的下行用户面 IP地址和 TEID;
904、 本地基站设置本地终端 S1承载的上行用户面 IP地址和 TEID等于 对方终端对应 S1承载的下行用户面 IP地址和 TEID;
907、 本地基站向移动管理实体发送 E-RAB建立 /修改响应;
908、 移动管理实体向服务网关发送建立 /更新承载响应;
909、 服务网关向分组数据网关发送建立 /更新承载响应, 该响应可不携 带服务网关的下行用户面 IP地址和 TEID。
其他步骤为现有技术, 不再赘述。
第三种情况可以为本地交换路径建立后, 就可以进行本地数据交换。 如图 12所示, 数据交换方法包括:
1201、 本地终端将数据发送给本地承载节点;
终端 1将数据发送给本地基站;
1202、 本地承载节点根据所述数据的承载信息, 将数据发送到本地交换 路径;
本地基站从所述数据中获得该数据的承载信息, 将所述数据直接发到对 端所在的基站(在步骤 806/904、 本地基站已设置本地终端 S1承载的上行用 户面 I P地址和 TE I D等于对方终端对应 S 1 载的下行用户面 I P地址和 TE I D )。
1203、 数据通过本地交换路径到达对方终端。
终端 1发往终端 2的数据到达本地基站后, 直接到达对方对应的基站。 与现有技术相比节省了本地基站到本地服务网关,本地服务网关到本地 P-GW, 本地 P-GW到终端 2的 P-GW; 终端 2的 P-GW到终端 2的 Λ良务网关, 终端 2的 服务网关到终端 2的基站这段路经。 终端 2到终端 1的通信路径不变, 数据从终端 2发送到终端 2所在的基 站, 再发送到终端 2所在的服务网关, 从终端 2所在的服务网关发送到终端 2 所在的分组数据网关, 终端 2 所在的分组数据网关将数据发到外网, 经外网 到达终端 1所在的分组数据网关, 终端 1所在的分组数据网关将数据发到终 端 1所在的服务网关, 终端 1所在的服务网关将数据发到终端 1所在的基站, 终端 1所在的基站将数据发到终端 1。
终端 2如果想缩短通信路径, 终端 2也要按照上述数据交换建立方法建 立自己的本地交换路径。
终端 1的本地交换路径建立后, 终端 1发往终端 1的数据到达终端 1所 在的基站后, 直接到达终端 1 所在的基站。 与现有技术相比可以节省终端 2 所在基站到终端 2所在的服务网关, 终端 2所在的服务网关到终端 2所在的 P-GW, 终端 2所在的 P-GW到终端 1所在的 P-GW; 终端 1所在的 P-GW到终端 1所在的服务网关, 终端 1所在的服务网关到终端 1所在的基站这段路经。
当然也不排除在同一服务网关下的两个终端建立类似图 6 ,图 7的部分本 地交换路径, 即数据从终端 1发送到终端 1所在的基站, 再发送到终端 1所 在的服务网关, 服务网关做内部交换即发送到终端 2 所在的下行承载, 然后 服务网关将数据发到发到终端 2所在的基站, 终端 2所在的基站将数据发到 终端 2。
3、 本地终端与对方终端如果为本地终端与对方终端归属同一个 eNB。 第一种情况可以为终端 1在建立默认承载时建立本地交换路径。
移动管理实体通过默认承载建立方式建立本地交换路径过程如下: 如图 10所示, 1005、 移动管理实体向本地基站发送初始上下文建立请求 或 E-RAB建立请求, 该请求携带有本地交换信息; 本地交换信息的获取和内 容同上不再赘述。 即本地终端上行 RB对应对方终端下行 RB;
1007、 本地基站向移动管理实体发送初始上下文建立响应或 E-RAB建立 响应, 该响应携带有本地终端无线承载的下行用户面 IP地址和 TEID。
步骤 1001至 1004不是建立本地交换路径的必要步骤, 不再详述。
第二种情况可以为终端 1在建立专有承载时建立本地交换路径。
专有承载建立或修改由分组数据网关发起。 分组数据网关通过专有承载 建立 /修改方式建立本地交换路径的过程如下:
如图 11 所示, 1101、 本地分组数据网络网关向服务网关发送建立 /更新 承载请求, 该承载请求携带本地交换信息;
1102、 本地服务网关向移动管理实体发送建立 /更新承载请求, 该承载请 求携带本地交换信息;
1103、 移动管理实体向本地基站发送 E-RAB建立 /修改请求, 该请求携带 有本地交换信息;
1104、 本地基站设置本地终端无线承载的上行对应对方终端的无线承载 的下行(QoS —致的情况下, 所有情况都类似);
1107、 本地基站向移动管理实体发送 E-RAB建立 /修改响应;
1108、 移动管理实体向本地服务网关发送建立 /更新承载响应;
1109、 本地服务网关向分组数据网关发送建立 /修改承载响应。
本地交换路径建立后, 就可以进行本地数据交换。
如图 12所示, 数据交换方法包括:
1201、 本地终端将数据发送给本地承载节点;
终端 1将数据发送给本地基站;
1202、 本地承载节点根据所述数据的承载信息, 将数据发送到本地交换 路径;
本地基站从所述数据中获得该数据的承载信息, 将所述数据直接发给终 端 2对应的无线承载。
1203、 数据通过本地交换路径到达对方终端。
终端 1发往终端 2的数据到达本地基站后, 本地基站直接将数据发给对 方终端。 与现有技术相比节省了本地基站到本地服务网关, 本地服务网关到 本地 P-GW,本地 P-GW到终端 2的 P-GW;终端 2的 P-GW到终端 2的服务网关, 终端 2的服务网关到终端 2的基站, 终端 2的基站到终端 2这段路经。
终端 2到终端 1的通信路径不变, 数据从终端 2发送到终端 2所在的基 站, 再发送到终端 2所在的服务网关, 从终端 2所在的服务网关发送到终端 2 所在的分组数据网关, 终端 2 所在的分组数据网关将数据发到外网, 经外网 到达终端 1所在的分组数据网关, 终端 1所在的分组数据网关将数据发到终 端 1所在的服务网关, 终端 1所在的服务网关将数据发到终端 1所在的基站, 终端 1所在的基站将数据发到终端 1。
终端 2如果想缩短通信路径, 终端 2也要按照上述数据交换建立方法建 立自己的本地交换路径。
终端 1的本地交换路径建立后, 终端 1发往终端 1的数据到达终端 1所 在的基站后, 直接到达终端 1。 与现有技术相比可以节省终端 2所在基站到终 端 2所在的服务网关, 终端 2所在的服务网关到终端 2所在的 P-GW, 终端 2 所在的 P-GW到终端 1所在的 P-GW; 终端 1所在的 P-GW到终端 1所在的服务 网关, 终端 1所在的服务网关到终端 1所在的基站, 终端 1所在的基站到终 端 1这段路经。
以上实施例中, 到达终端 2的承载是独立承载, 尽管有其他 QoS—致的 数据, 其它数据如果是到达其他目的, 那么承载必须分开, 使用多承载。
为了节省资源, 同一 PDN连接下具有相同 Q0S参数的数据可以使用同一 个承载; 本发明对上述数据交换建立方法作了进一步的改进:
如图 3所示, 数据交换建立方法, 包括:
1 301、 确定本地终端与对方终端的位置关系;
1 302、 根据所述位置关系, 本地承载节点与对方对应的承载节点建立本 地交换路径;
步骤 1 301、 1 302与步骤 201、 202相同, 不再赞述。
1 304、 本地承载节点设置数据转发过滤器。
当本地终端与对方终端在同一个 P-GW, 不同 S-GW下, 终端 1所在的服务 网关设置过滤器; 该过滤器设置有一个进口, 两个出口; 所述进口用于接收 具有相同 Q0S参数的数据, 所述出口一个用于将数据发送到终端 1所在的分 组数据网关(正常路径, 记录 P-GW上行用户面信息), 另一个用于将数据发 送到终端 1所在的服务网关(本地交换路径, 记录对方终端的 S-GW下行用户 面信息); 过滤器根据数据的五元组信息如目的地址、 目的端口号、 源地址、 或源端口号等判断将数据从哪个出口输出。
本地终端与对方终端在同一个 S-GW, 不同 eNB下, 终端 1所在的基站设 置过滤器; 该过滤器设置有一个进口, 两个出口; 所述进口用于接收具有相 同 Q0S参数的数据, 所述出口一个用于将数据发送到终端 1所在的服务网关 (正常路径), 另一个用于将数据发送到终端 2所在的基站(本地交换路径); 过滤器根据数据的目的地址、 目的端口号、 源地址、 或源端口号等判断将数 据从哪个出口输出。
本地终端与对方终端在同一个 eNB下, 终端 1所在的基站设置过滤器; 该过滤器设置有一个进口, 两个出口; 所述进口用于接收具有相同 Q0S参数 的数据,所述出口一个用于将数据发送到终端 1所在的服务网关 (正常路径 ), 另一个用于将数据直接发送到终端 2对应的无线承载(本地交换路径 ); 过滤 器根据数据的目的地址、 目的端口号、 源地址、 或源端口号等判断将数据从 哪个出口输出。
与该数据交换建立方法对应, 本发明还提供一种数据交换方法, 如图 14 所示, 该方法包括:
1401、 本地终端将数据发送给本地承载节点;
如图 1 5所示, 该步骤包括: 1501、 本地承载节点将数据发送给过滤器; 当本地终端与对方终端在同一个 P-GW, 不同 S-GW下, 终端 1所在的服务 网关将数据发送给过滤器;
本地终端与对方终端在同一个 S-GW, 不同 eNB下, 终端 1所在的基站将 数据发送给过滤器;
本地终端与对方终端在同一个 eNB下, 终端 1所在的基站将数据发送给 过滤器;
1502、 过滤器根据所述数据的五元组信息, 确定当前承载节点与对方承 载节点是否建立有本地交换路径;
假设: 终端 1与终端 2、 V 在同一个 P-GW, 不同 S-GW下; 终端 1与终 端 3、 V 在同一个 S-GW, 不同 eNB下; 终端 1与终端 4、 4' 在同一个 eNB下; 终端 1与终端 5、 5' 在不同 P-GW下; 他们发送的数据的 QoS—致, 建立了同 一承载。
终端 1 所在基站的过滤器接收到数据后, 根据数据的目的地址判断: 终 端 1所在的基站与终端 4、 4' 建立有本地交换路径; 终端 1所在的基站与终 端 3、 Ύ 所在的基站建立有本地交换路径;
终端 1所在服务网关的过滤器接收到数据后, 根据数据的目的地址判断: 终端 1所在的服务网关与终端 2、 1' 所在的服务网关建立有本地交换路径;
1503、 如果没有, 将所述数据发送到下一个邻近的本地承载节点; 终端 1所在基站的过滤器将终端 2、 2' 、 5和 发送的数据, 发送到终 端 1所在服务网关;
终端 1所在服务网关的过滤器将终端 5和 发送的数据, 发送到终端 1 所在分组数据网关;
1402、 本地承载节点根据所述数据的承载信息, 将数据发送到本地交换 路径;
1504、 如果有, 将所述数据发送到本地交换路径;
终端 1所在基站的过滤器将终端 3、 V 的数据发送到终端 3、 V 所在基 站; 将终端 4、 4' 的数据发送到终端 4、 4' ;
终端 1所在服务网关的过滤器将终端 2、 V 的数据发送到终端 2、 V 所 在服务网关;
1403、 数据通过本地交换路径到达对方终端。
在实际操作中, 终端 1 与成千上万个终端通信; 在现有技术中, 终端 1 要与所有终端建立承载; 使用上文所述方法, 终端 1要与所有终端建立本地 交换路径, 每个本地交换路径对应一个承载, 与现有技术相比节省了通信路 径(具体分析参见上文); 使用如图 14所示的方法, 终端 1与成千上万个终 端建立成千上万条本地交换路径; 不同的本地交换路径可以共用同一个承载 (前提条件是: 1、 终端 1与其它终端在同一 PDN连接下的; 2、 所有终端发 送的参数具有相同 Q0S参数), 通过过滤器来区分数据, 路由到不同的路径。 使用本发明提供的方法, 数据能够延最优化的路径传递, 节省了网络资源, 加快了数据传递速度。
如图 1 6所示, 本发明还提供了一种数据交换建立装置 1 60 , 该装置包括: 位置关系获取模块 1601 , 用于获取本地终端与对方终端的位置关系; 本地交换路径建立模块 1 603 , 用于根据所述位置关系, 本地承载节点与 对方对应的承载节点建立本地交换路径;
过滤器 1605 , 该过滤器设置有一个进口, 至少两个出口; 所述进口用于 接收具有相同 Q0S参数的数据, 所述出口一个用于将数据发送到下一个承载 节点, 其他用于将数据发送到本地交换路径。
所述本地终端与对方终端的位置关系包括:
本地终端与对方终端归属同一个分组数据网络网关 P-GW, 但归属不同的 服务网关 S-GW; 或
本地终端与对方终端归属同一个服务网关 S-GW, 但归属于不同的演进型 基站 eNB; 或
本地终端与对方终端归属同一个演进型基站 eNB。
所述本地承载节点包括: 分组数据网关、 服务网关和基站。
如图 17所示, 本发明还提供了一种数据交换装置 170 , 该装置包括: 数据接收模块 1701 , 用于接收本地终端发送的数据;
数据发送模块 1702 , 根据所述数据的承载信息, 将数据发送到本地交换 路径;
数据传送模块 Π 03 , 数据通过本地交换路径到达对方终端。
所述数据发送模块将数据发送给过滤器; 过滤器根据所述数据的目的地址, 确定当前本地承载节点与对方承载节 点是否建立有本地交换路径;
如果没有, 将所述数据发送到下一个邻近的本地承载节点;
如果有, 将所述数据发送到本地交换路径。
所述本地承载节点包括: 分组数据网关、 服务网关和基站。
如图 18所示, 本发明还提供了一种承载节点 180 , 该承载节点 180包括: 数据交换建立装置 16 G和数据交换装置 170。所述数据交换建立装置 16 G包括: 位置关系获取模块 1601 , 用于获取本地终端与对方终端的位置关系;
本地交换路径建立模块 1603 , 用于根据所述位置关系, 本地承载节点与 对方对应的承载节点建立本地交换路径;
过滤器 1605 , 该过滤器设置有一个进口, 至少两个出口; 所述进口用于 接收具有相同 Q0S参数的数据, 所述出口一个用于将数据发送到下一个承载 节点, 其他用于将数据发送到本地交换路径。
所述数据交换装置 170包括: 数据接收模块 1701 , 用于接收本地终端发 送的数据;
数据发送模块 1702 , 根据所述数据的承载信息, 将数据发送到本地交换 路径;
数据传送模块 Π 03 , 数据通过本地交换路径到达对方终端。
终端 1的承载节点作为发起方, 与终端 2的承载节点建立本地交换路径。 终端 1要将数据发送到终端 2时, 数据从终端 1发送到本地承载节点后, 经 本地交换路径直接到达对方对应的承载节点; 数据经该承载节点到达终端 2。 节省了本地承载节点到本地 P-GW,本地 P-GW到终端 2的 P-GW;终端 2的 P-GW 到终端 2的承载节点这段路经。 终端 2的承载节点作为发起方, 也可以与终 端 1的承载节点建立本地交换路径。 终端 2的数据发送到终端 1时, 也会节 省相同的路径。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一计算机可 读存储介质中, 如 ROM/RAM、 磁碟或光盘等。

Claims

权利要求 书
1、 一种数据交换建立方法, 其特征在于, 包括:
获取本地终端与对方终端的位置关系;
根据所述位置关系, 本地承载节点与对方对应的承载节点建立本地交换路 径。
2、 根据权利要求 1所述的数据交换建立方法, 其特征在于, 所述本地终端 与对方终端的位置关系包括以下一种或多种情况:
本地终端与对方终端归属同一个分组数据网络网关 P-GW, 但归属不同的服 务网关 S-GW; 或
本地终端与对方终端归属同一个服务网关 S-GW, 但归属于不同的演进型基 站 eNB; 或
本地终端与对方终端归属同一个演进型基站 eNB。
3、 根据权利要求 2所述的数据交换建立方法, 其特征在于, 当本地终端与 对方终端归属同一个分组数据网络网关 P-GW, 但归属不同的服务网关 S-GW, 根 据所述位置关系, 本地承载节点与对方对应的承载节点建立本地交换路径包括: 本地服务网关接收移动管理实体丽 E发送的会话建立请求, 该请求携带本 地交换信息, 所述本地交换信息包括: 对方终端的标识信息或对方终端的位置 信息;
本地服务网关发送会话建立请求给本地分组数据网络网关, 该请求携带本 地交换信息和本地 S-GW为本地终端分配的隧道信息, 所述隧道信息包括本地 S-GW的下行用户面 IP地址和隧道端点标识 TEID;
本地服务网关接收分组数据网络网关发送的建立会话请求, 该请求携带对 方终端对应服务网关到分组数据网关承载的下行用户面 IP地址和 TEID,该对方 终端对应服务网关到分组数据网关承载的下行用户面 IP地址和 TEID是分组数 据网络网关根据对方终端的身份信息获取;
本地服务网关设置本地终端 S5/S8承载的上行用户面 IP地址和 TEID等于 对方终端对应 S5/S8 载的下行用户面 IP地址和 TEID; 本地服务网关向移动管理实体发送建立会话响应。
4、 根据权利要求 2所述的数据交换建立方法, 其特征在于, 当本地终端与 对方终端归属同一个分组数据网络网关 P-GW, 但归属不同的服务网关 S-GW, 根 据所述位置关系, 本地承载节点与对方对应的承载节点建立本地交换路径包括: 本地服务网关接收分组数据网络网关发送的建立承载请求或更新承载请 求, 该请求携带本地交换信息和对方终端对应 S5/S8承载的下行用户面 IP地址 和 TEID;
本地服务网关设置本地终端 S5/S8承载的上行用户面 IP地址和 TEID等于 对方终端对应 S5/S8 载的下行用户面 IP地址和 TEID;
本地服务网关向分组数据网络网关发送建立承载响应或更新承载响应。
5、 根据权利要求 2所述的数据交换建立方法, 其特征在于, 当本地终端与 对方终端归属同一个 S-GW, 但归属于不同的演进型基站 eNB, 根据所述位置关 系, 本地承载节点与对方对应的承载节点建立本地交换路径包括:
本地基站接收移动管理实体发送的初始上下文建立请求或演进网络无线接 入承载 E-RAB建立请求或 E-RAB修改请求, 该请求携带有对方终端对应 S1承载 的下行用户面 IP地址和 TEID;
本地基站设置本地终端 S1承载的上行用户面 IP地址和 TEID等于对方终端 对应 S1 载的下行用户面 IP地址和 TEID;
本地基站向移动管理实体发送初始上下文建立响应或 E-RAB 建立响应或 E-RAB修改响应。
6、 根据权利要求 2所述的数据交换建立方法, 其特征在于, 当本地终端与 对方终端归属同一个服务网关 S-GW, 但归属于不同的演进型基站 eNB, 根据所 述位置关系, 本地承载节点与对方对应的承载节点建立本地交换路径包括: 本地分组数据网络网关向本地服务网关发送建立承载请求或更新承载请 求, 该请求携带本地交换信息;
本地 S-GW向移动管理实体发送建立承载请求或更新承载请求, 该请求携带 本地交换信息; 移动管理实体根据所述本地交换信息获取对方终端对应 S1承载的下行用户 面 IP地址和 TEID;
移动管理实体向本地基站发送 E-RAB建立请求或 E-RAB修改请求, 该请求 携带有对方终端对应 S1承载的下行用户面 IP地址和 TEID;
本地基站设置本地终端 S1承载的上行用户面 IP地址和 TEID等于对方终端 对应 S1 载的下行用户面 IP地址和 TEID;
本地基站向移动管理实体发送 E-RAB建立响应或 E-RAB修改响应。
7、 根据权利要求 6所述的数据交换建立方法, 其特征在于, 本地 P-GW向 本地 S-GW发送建立承载请求或更新承载请求不携带 S5/S8上行 IP和 TEID, 本 地 S-GW向本地 P-GW返回的建立承载响应或更新承载响应不携带 S5/S8下行 IP 和 TEID, 不建立对应的 S5/S8 7 载。
8、 根据权利要求 2所述的数据交换建立方法, 其特征在于, 当本地终端与 对方终端归属同一个演进型基站 eNB,本地承载节点与对方对应的承载节点建立 本地交换路径包括:
本地基站接收移动管理实体发送的初始上下文建立请求或 E-RAB建立请求 或 E-RAB修改请求, 该请求携带有本地交换信息;
本地基站设置本地终端无线承载的上行与对方终端无线承载的下行对应关 系;
本地基站向移动管理实体发送初始上下文建立响应或 E-RAB 建立响应或 E-RAB修改响应。
9、 根据权利要求 2所述的数据交换建立方法, 其特征在于, 当本地终端与 对方终端归属同一个演进型基站 eNB,本地承载节点与对方对应的承载节点建立 本地交换路径包括:
本地 P-GW向 S-GW发送建立承载请求或更新承载请求, 该承载请求携带本 地交换信息;
本地 S-GW向移动管理实体发送建立承载请求或更新承载请求, 该请求携带 本地交换信息; 本地基站接收移动管理实体发送的 E-RAB建立请求或 E-RAB修改请求, 该 请求携带有本地交换信息;
本地基站设置本地终端无线承载的上行与对方终端无线承载的下行对应关 系。
10、 根据权利要求 4或 6所述的数据交换建立方法, 其特征在于, 所述本 地 P-GW向本地 S-GW发送建立承载请求或更新承载请求之前还包括:
本地 P-GW通过签约信息或 PCRF或 MTC Server获取本地交换信息, 所述本 地交换信息包括: 对方终端的标识信息或对方终端的位置信息。
11、 根据权利要求 1所述的数据交换建立方法, 其特征在于, 还包括: 本地承载节点设置数据转发过滤器, 该过滤器设置有一个进口, 至少两个 出口; 所述进口用于接收具有相同 Q0S 参数的数据, 所述出口一个用于将数据 发送到下一个承载节点, 其他用于将数据发送到本地交换路径。
12、 一种数据交换方法, 其特征在于, 包括:
本地终端将数据发送给本地承载节点;
本地承载节点根据所述数据的承载信息, 将数据发送到本地交换路径; 数据通过本地交换路径到达对方终端。
1 3、 根据权利要求 12所述的本地数据交换交换方法, 其特征在于, 本地终 端将数据发送给本地承载节点之后还包括:
本地承载节点将数据发送给过滤器;
过滤器根据所述数据的五元组信息, 确定当前本地承载节点与对方承载节 点是否建立有本地交换路径;
如果没有, 将所述数据发送到下一个邻近的本地承载节点;
如果有, 将所述数据发送到本地交换路径。
14、 根据权利要求 12所述的本地数据交换交换方法, 其特征在于, 所述本 地承载节点包括: 分组数据网关、 S-GW和基站。
15、 一种数据交换建立装置, 其特征在于, 包括:
位置关系获取模块, 用于获取本地终端与对方终端的位置关系; 本地交换路径建立模块, 用于根据所述位置关系, 本地承载节点与对方对 应的承载节点建立本地交换路径。
16、 根据权利要求 15所述的数据交换建立装置, 其特征在于, 所述本地终 端与对方终端的位置关系包括以下一种或几种:
本地终端与对方终端归属同一个分组数据网络网关 P-GW, 但归属不同的服 务网关 S-GW; 或
本地终端与对方终端归属同一个服务网关 S-GW, 但归属于不同的演进型基 站 eNB; 或
本地终端与对方终端归属同一个演进型基站 eNB。
17、 根据权利要求 15所述的本地数据交换交换建立装置, 其特征在于, 所 述本地承载节点包括: 分组数据网关、 服务网关和基站。
18、 根据权利要求 15所述的数据交换建立装置, 其特征在于, 还包括: 过滤器, 该过滤器设置有一个进口, 至少两个出口; 所述进口用于接收具 有相同 Q0S参数的数据, 所述出口一个用于将数据发送到下一个承载节点, 其 他用于将数据发送到本地交换路径。
19、 一种数据交换装置, 其特征在于, 包括:
数据接收模块, 用于接收本地终端发送的数据;
数据发送模块, 根据所述数据的承载信息, 将数据发送到本地交换路径; 数据传送模块, 数据通过本地交换路径到达对方终端。
20、 根据权利要求 19所述的数据交换装置, 其特征在于, 所述数据发送模 块将数据发送给过滤器;
过滤器根据所述数据的包头信息, 确定当前本地承载节点与对方承载节点 是否建立有本地交换路径;
如果没有, 将所述数据发送到下一个邻近的本地承载节点;
如果有, 将所述数据发送到本地交换路径。
21、 根据权利要求 20所述的数据交换装置, 其特征在于, 所述本地承载节 点包括: 分组数据网关、 服务网关和基站。
22、 一种承载节点, 其特征在于, 包括: 如权利要求 14至 17任一项所述 的数据交换建立装置, 以及如权利要求 18至 20任一项所述的数据交换装置。
PCT/CN2011/077641 2011-07-26 2011-07-26 数据交换建立方法和装置、数据交换方法和装置、承载节点 WO2012106932A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/077641 WO2012106932A1 (zh) 2011-07-26 2011-07-26 数据交换建立方法和装置、数据交换方法和装置、承载节点
CN201180001168.9A CN102870487B (zh) 2011-07-26 2011-07-26 数据交换建立方法和装置、数据交换方法和装置、承载节点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077641 WO2012106932A1 (zh) 2011-07-26 2011-07-26 数据交换建立方法和装置、数据交换方法和装置、承载节点

Publications (1)

Publication Number Publication Date
WO2012106932A1 true WO2012106932A1 (zh) 2012-08-16

Family

ID=46638135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077641 WO2012106932A1 (zh) 2011-07-26 2011-07-26 数据交换建立方法和装置、数据交换方法和装置、承载节点

Country Status (2)

Country Link
CN (1) CN102870487B (zh)
WO (1) WO2012106932A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062287A1 (zh) * 2013-11-01 2015-05-07 中兴通讯股份有限公司 终端的本地交换方法及系统
CN107920378A (zh) * 2016-10-11 2018-04-17 中国移动通信有限公司研究院 本地路由处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800911A (zh) * 2009-02-06 2010-08-11 华为技术有限公司 实现本地交换的方法及系统
CN101965064A (zh) * 2009-07-23 2011-02-02 中兴通讯股份有限公司 分组数据聚合协议数据的传输方法与装置
CN102045867A (zh) * 2009-10-19 2011-05-04 中兴通讯股份有限公司 网络连接建立方法及装置、pcc策略制定方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800911A (zh) * 2009-02-06 2010-08-11 华为技术有限公司 实现本地交换的方法及系统
CN101965064A (zh) * 2009-07-23 2011-02-02 中兴通讯股份有限公司 分组数据聚合协议数据的传输方法与装置
CN102045867A (zh) * 2009-10-19 2011-05-04 中兴通讯股份有限公司 网络连接建立方法及装置、pcc策略制定方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062287A1 (zh) * 2013-11-01 2015-05-07 中兴通讯股份有限公司 终端的本地交换方法及系统
CN104618849A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 终端的本地交换方法及系统
CN107920378A (zh) * 2016-10-11 2018-04-17 中国移动通信有限公司研究院 本地路由处理方法及装置

Also Published As

Publication number Publication date
CN102870487B (zh) 2016-11-16
CN102870487A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
US9357571B2 (en) Local network and method for establishing connection between local gateway and home base station
WO2019214729A1 (zh) 数据处理的方法和设备
WO2014005536A1 (zh) 临近终端的通信方法及装置、系统
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2010015189A1 (zh) 移动网络高速接入公网的节点、方法及系统
US10735085B2 (en) Multi-core communication system to serve wireless relays and user equipment
CN103188617A (zh) 实现集群业务的方法、实体及系统
WO2015052917A1 (ja) 通信システム、通信装置および通信制御方法
JP2017511981A (ja) 被中継ueへのトラヒック及び被中継ueからのトラヒックを中継するue(ue−r)でのデータレート制御
WO2011140898A1 (zh) 一种在接入网对互联网访问数据进行分流的方法及装置
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
WO2017162121A1 (zh) 用户面服务网关选择方法及系统
WO2016107404A1 (zh) 业务流传输路径优化方法、装置及mme
WO2013183405A1 (ja) 無線通信システム、サービングゲートウェイ、ネットワークおよび論理経路確立方法
US11375408B2 (en) Local breakout architecture
WO2016180113A1 (zh) WiFi语音业务发起的方法、LTE通信设备、终端及通信系统
WO2016141545A1 (zh) 业务流分流的方法和装置
TW201709757A (zh) 基地台及其回程網路的頻寬管理方法及系統
WO2011054264A1 (zh) 一种建立本地ip访问下行数据通道的方法及系统
WO2015120685A1 (zh) 一种选择分流网关的方法和控制器
WO2014067371A1 (zh) 集群业务实现方法、系统及网元
WO2016169015A1 (zh) 网络通信和直接通信之间的切换方法和装置
WO2011109999A1 (zh) 信息的指示方法及移动管理网元
WO2011134408A1 (zh) 选择性ip数据分流激活的通知及输出方法、系统和设备
JPWO2021160105A5 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001168.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858340

Country of ref document: EP

Kind code of ref document: A1