WO2012106893A1 - 处理光正交频分复用信号的方法、装置和系统 - Google Patents

处理光正交频分复用信号的方法、装置和系统 Download PDF

Info

Publication number
WO2012106893A1
WO2012106893A1 PCT/CN2011/077202 CN2011077202W WO2012106893A1 WO 2012106893 A1 WO2012106893 A1 WO 2012106893A1 CN 2011077202 W CN2011077202 W CN 2011077202W WO 2012106893 A1 WO2012106893 A1 WO 2012106893A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency division
sampling point
orthogonal frequency
signal
training sequence
Prior art date
Application number
PCT/CN2011/077202
Other languages
English (en)
French (fr)
Inventor
刘博�
忻向军
刘磊
Original Assignee
华为技术有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 北京邮电大学 filed Critical 华为技术有限公司
Priority to CN201180001550.XA priority Critical patent/CN102318305B/zh
Priority to PCT/CN2011/077202 priority patent/WO2012106893A1/zh
Publication of WO2012106893A1 publication Critical patent/WO2012106893A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, apparatus, and system for processing optical orthogonal frequency division multiplexed signals. Background technique
  • Orthogonal Frequency Diversation Mult Iplexing is a new technology that introduces OFDM technology in wireless into the field of optical communication. It can be regarded as a modulation technology or Doing is a multiplexing technique.
  • the basic principle of an optical OFDM signal is: dividing a high-speed serial signal in a time domain into a plurality of low-speed parallel signals, the frequency domain channel is divided into a number of orthogonal subchannels (ie, optical OFDM symbol subcarriers), and then the low-speed parallel signals are modulated to Transmission is performed on each subchannel.
  • optical OFDM is a multi-carrier modulation technique, it is much more sensitive to synchronization error than single-carrier systems. Therefore, in optical OFDM systems, how to deal with optical OFDM signals is very important, especially at the receiving end.
  • the symbol timing synchronization algorithm is very important, it can provide the correct symbol start position, so that the transmitted data can be correctly demodulated.
  • the receiving end uses a single-stage timing synchronization method to implement symbol synchronization with the transmitting end.
  • the single-stage timing synchronization method mainly utilizes the characteristics of the synchronous training sequence itself, and after performing the correlation operation, obtains the peak of the synchronous training sequence, thereby determining the starting point of the optical symbol.
  • a PN Pseudo-Noi se, Pseudo Noise
  • the transmitting end a PN (Pseudo-Noi se, Pseudo Noise) synchronization training sequence is generated, wherein if the length of an OFDM symbol is N, the length of the PN training sequence is also taken as N, and then the training sequence is equally divided.
  • each part is N/4 in length, and these 4 parts are named as B, C, D.
  • the embodiment of the present invention provides a method, device and system for processing an optical orthogonal frequency division multiplexing signal.
  • the technical solution is as follows -
  • a method for processing an optical orthogonal frequency division multiplexed signal is provided, the method comprising:
  • the optical orthogonal frequency division multiplexing signal receives an optical orthogonal frequency division multiplexing signal, and acquiring a sampling signal of the optical orthogonal frequency division multiplexing signal, where the optical orthogonal frequency division multiplexing signal carries a synchronization training sequence, and the synchronization training sequence includes at least four a part, wherein the first part is a constant envelope zero autocorrelation sequence, the second part is a conjugate symmetry body of the constant envelope zero autocorrelation sequence, and the third part is a repetition of the first part, the fourth part Is the repetition of the second part;
  • the sampling signal to obtain a first sampling point; acquiring a first according to a constant envelope and a zero cross-correlation characteristic of the first sampling point and the synchronous training sequence Two sampling points; obtaining a starting point of the optical orthogonal frequency division multiplexing symbol according to the conjugate symmetry and zero cross-correlation of the second sampling point and the first part and the second part of the synchronous training sequence.
  • an apparatus for processing an optical orthogonal frequency division multiplexed signal comprising:
  • a receiving module configured to receive an optical orthogonal frequency division multiplexing signal, and obtain a sampling signal of the optical orthogonal frequency division multiplexing signal, where the optical orthogonal frequency division multiplexing signal carries a synchronization training sequence, and the synchronization
  • the training sequence comprises at least four parts, wherein the first part is a constant envelope zero autocorrelation sequence, the second part is a conjugate symmetry body of the constant envelope zero autocorrelation sequence, and the third part is a repetition of the first part, The fourth portion is a repetition of the second portion;
  • a first acquiring module configured to process the sampling signal to obtain a first sampling point according to a repetition characteristic existing in the synchronous training sequence
  • a second acquiring module configured to acquire a second sampling point according to a constant envelope and a zero cross-correlation property of the first sampling point and the synchronous training sequence
  • a third acquiring module configured to acquire a starting point of the optical orthogonal frequency division multiplexing symbol according to the conjugate symmetry and zero cross-correlation between the second sampling point and the first part and the second part of the synchronous training sequence .
  • a system for receiving an optical orthogonal frequency division multiplexed signal comprising: the apparatus for processing an optical frequency division multiplexed signal, for receiving an optical orthogonal frequency division multiplexed signal And acquiring the sampling signal of the optical orthogonal frequency division multiplexing signal, where the optical orthogonal frequency division multiplexing signal carries a synchronization training sequence, and the synchronization training sequence includes at least four parts, wherein the first part is a constant packet a zero-zero autocorrelation sequence, a second part is a conjugate symmetry of the constant envelope zero autocorrelation sequence, a third part is a repetition of the first part, and a fourth part is a repetition of the second part; a repetition characteristic existing in the synchronization training sequence, processing the sampling signal to obtain a first sampling point; acquiring a second sampling according to a constant envelope and a zero cross-correlation property of the first sampling point and the synchronous training sequence point; Obtaining a starting point of the optical orthogon
  • a serial-to-parallel transform module configured to extract an optical orthogonal frequency division multiplexing symbol from the starting point after acquiring a starting point of the optical orthogonal frequency division multiplexing symbol, and orthogonally divide the optical frequency Reusing the symbol string and transforming it into N-way parallel data; the N is a natural number greater than 1;
  • a cyclic prefix module configured to remove a cyclic prefix added by the transmitting end to the optical orthogonal frequency division multiplexing symbol
  • a Fourier transform module configured to perform Fourier transform on the data processed by the de-cyclic prefix module , obtaining constellation mapping data data
  • a channel equalization module configured to perform dispersion compensation and phase correction processing on the obtained constellation mapping data
  • a constellation demodulation module configured to restore data processed by the channel equalization module into N parallel data
  • a transform module configured to restore the processed data of the constellation demodulation module to serial binary data.
  • a system for processing an optical orthogonal frequency division multiplexed signal comprising: a system for transmitting an optical orthogonal frequency division multiplexed signal and the above-mentioned received optical orthogonal frequency division multiplexed signal System, where
  • the system for transmitting an optical orthogonal frequency division multiplexed signal configured to generate a synchronous training sequence for optical orthogonal frequency division multiplexing symbol synchronization, and placing the synchronous training sequence in an orthogonal frequency division of optical signals to be transmitted
  • the front end of the multiplexed symbol is sent together to the apparatus for receiving the optical orthogonal frequency division multiplexed signal;
  • the synchronous training sequence includes at least four parts, wherein the first part is a constant envelope zero autocorrelation sequence, and the second part is a constant conjugate symmetry body of a zero autocorrelation sequence, a third portion being a repetition of the first portion, and a fourth portion being a repetition of the second portion;
  • a system for receiving an optical orthogonal frequency division multiplexing signal configured to receive an optical orthogonal frequency division multiplexing symbol and a synchronous training sequence sent by the apparatus for transmitting an optical orthogonal frequency division multiplexing signal, and according to the The synchronization training sequence finds a starting point of the optical orthogonal frequency division multiplexing symbol, thereby demodulating the optical frequency division multiplexing symbol.
  • the technical solution provided by the embodiment of the present invention has the beneficial effects of: acquiring the first sampling point, the second sampling point, and then determining the optical OFDM signal synchronization method of the starting point of the optical OFDM symbol, thereby greatly increasing the positioning accuracy of the optical symbol. Sex, even in the case of low signal-to-noise ratio, accurate synchronization of signals can be achieved, and synchronization errors can be reduced. DRAWINGS
  • FIG. 1 is a flowchart of a method for processing an optical orthogonal frequency division multiplexing signal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for processing an optical orthogonal frequency division multiplexed signal according to another embodiment of the present invention
  • FIG. 3 is a structural diagram of a synchronous training sequence according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of an apparatus for transmitting an optical orthogonal frequency division multiplexed signal according to another embodiment of the present invention
  • FIG. 5 is a diagram of an apparatus for receiving an optical orthogonal frequency division multiplexed signal according to another embodiment of the present invention
  • schematic diagram is a diagram of an apparatus for receiving an optical orthogonal frequency division multiplexed signal according to another embodiment of the present invention
  • schematic diagram is a schematic diagram of an apparatus for processing an optical orthogonal frequency division multiplexing signal according to still another embodiment of the present invention
  • FIG. 7 is a schematic diagram of orthogonal optical frequency division multiplexing for receiving optical according to another embodiment of the present invention
  • FIG. 8 is a schematic diagram of a system for processing optical orthogonal frequency division multiplexed signals according to yet another embodiment of the present invention.
  • an embodiment of the present invention provides a method for processing an optical orthogonal frequency division multiplexing signal, including:
  • the synchronization training sequence is at least Including four parts, wherein the first part is a constant envelope zero autocorrelation sequence, the second part is a conjugate symmetry body of the constant envelope zero autocorrelation sequence, and the third part is a repetition of the first part, the The fourth part is the repetition of the second part;
  • Step 102 Process the sampling signal to obtain a first sampling point according to a repetition characteristic existing in the synchronous training sequence
  • the sampling signal is processed to obtain the first sampling point according to the repetition characteristic existing in the synchronous training sequence, and the method includes:
  • the first sampling point is acquired according to the coarse timing estimation function.
  • acquiring the first sampling point according to the coarse timing estimation function includes:
  • the second sampling point is obtained according to the constant envelope and zero cross-correlation characteristics of the first sampling point and the synchronous training sequence, including: starting from the first sampling point, The optical orthogonal frequency division multiplexing signal corresponding to the sampling point after the first sampling point is subjected to an autocorrelation operation to obtain a timing offset function;
  • the starting point of the optical orthogonal frequency division multiplexing symbol is obtained according to the conjugate symmetry and zero cross-correlation between the second sampling point and the first part and the second part of the synchronous training sequence. , including:
  • sampling point position at which the shift function takes the maximum value is the starting point of the optical orthogonal frequency division multiplexing symbol.
  • the technical solution provided by the embodiment of the present invention has the beneficial effects of: acquiring the first sampling point, the second sampling point, and then determining the optical OFDM signal synchronization method of the starting point of the optical OFDM symbol, thereby greatly increasing the positioning accuracy of the optical symbol. Sex, even in the case of low signal-to-noise ratio, accurate synchronization of signals can be achieved, and synchronization errors can be reduced.
  • another embodiment of the present invention provides a method for processing an optical orthogonal frequency division multiplexing signal, including: Step 201: Receive an optical OFDM signal, and obtain a sampling signal of the signal.
  • the receiving end receives the optical OFDM signal, wherein the optical OFDM signal includes a synchronous training sequence symbol and an optical OFDM symbol.
  • the optical OFDM symbol is the data that needs to be transmitted
  • the synchronous training sequence is the signal used for optical OFDM symbol synchronization.
  • the sending end generates a training sequence for optical OFDM symbol synchronization.
  • the training sequence generated by the transmitting end for optical OFDM symbol synchronization may be CAZAC (Const Amplitude Zero Auto-Corelation).
  • the sequence structure is shown in Figure 3. Among them, the first part is the CAZAC sequence, and the other three parts are the conjugated symmetry or repetition of the CAZAC sequence.
  • the first part of the training sequence is the time domain sequence generated by the IFFT of the above-mentioned length of the N/4 CAZAC sequence
  • the second part is the conjugate symmetry of the first part
  • the third part and the fourth part are the first and second parts. repeat.
  • the constant envelope sequence has good cross-correlation properties, low peak-to-average ratio, and is still a CAZAC sequence after IFFT.
  • the binary data is first sent to the optical OFDM transmitting module shown in FIG. 4 for modulation.
  • the serial binary data is converted into N parallel data after serial and parallel transformation; each parallel data is subjected to constellation mapping (such as m_QAM, m-PSK, etc.), and then the constellation mapped signal is subjected to inverse Fourier transform IFFT.
  • IFFT inverse Fourier transform
  • the training sequence is placed to be transmitted
  • the optical OFDM symbol front end adds a cyclic prefix (the length of the cyclic prefix is Ng) to the optical OFDM symbol with the training sequence, and then serially converts the serial signal to the serial signal for transmission.
  • the role of the cyclic prefix is to overcome intersymbol interference of optical OFDM signals due to delay spread of fiber dispersion.
  • the length of Ng is related to the transmission distance of the optical OFDM signal, and is generally greater than the maximum delay within the transmission distance. Alternatively, Ng is 1/8 /16 of N length.
  • the receiving end after receiving the optical OFDM signal, the receiving end first performs analog-to-digital conversion on the received signal to obtain a sampling signal, and then performs three-level synchronization to determine a starting point of the optical OFDM symbol. Specifically, the three-level synchronization is implemented by the following steps 203-205.
  • Step 202 Process the sampled signal to obtain the first sampling point according to the repetition characteristic existing in the synchronous training sequence.
  • the symbol synchronization between the receiving end and the transmitting end is implemented by using a three-level synchronization method, and the first step is to obtain an initial synchronization process of the first sampling point.
  • the signal performs an autocorrelation operation to obtain a coarse timing estimation function; and the first sampling point is acquired according to the coarse timing estimation function.
  • the preset time is generally an integer multiple of Ng. In order to ensure the accuracy of the coarse timing estimation function, it must be greater than or equal to Ng. If the time is too long, the calculation amount will be increased, preferably 2Ng. The embodiment does not specifically limit this.
  • obtaining the first sampling point according to the coarse timing function comprises: comparing M (d) with the set threshold value ,, if ⁇ ( ⁇ ) > ⁇ , considering that the signal arrives, achieving initial synchronization, the first one
  • the sampling point of M (d) greater than ⁇ is denoted by dl and is defined as the first sampling point.
  • the threshold value is selected according to the following method: After the 2*Ng delay of the received signal under ideal transmission conditions, an autocorrelation operation is performed to obtain an autocorrelation function M(d), which is selected. M (d) 75% of the maximum value, as the size of the threshold.
  • Step 203 Acquire a second sampling point according to a constant envelope and a zero cross-correlation property of the first sampling point and the synchronous training sequence.
  • the second sampling point is obtained according to the constant envelope and zero cross-correlation characteristics of the first sampling point and the synchronous training sequence to implement coarse synchronization.
  • the autocorrelation operation obtains a timing offset function; searching for the maximum value of the timing offset function starting from the first sampling point, and recording the sampling point at which the timing offset function obtains the maximum value as the second Sampling point.
  • the sampling point at which the timing offset function takes the maximum value is recorded as the second sampling point d2, and the coarse synchronization is completed.
  • the first half and the second half are the same, and the first part and the third part and the second part and the first part Four parts, or Part and fourth part with part two and part three.
  • Step 204 Acquire a starting point of the optical orthogonal frequency division multiplexing symbol according to the conjugate symmetry and zero cross-correlation between the second sampling point and the first part and the second part of the synchronous training sequence.
  • the starting point of the optical OFDM symbol is finally obtained according to the second sampling point, so as to implement a process of fine synchronization between the receiving end and the transmitting end. Specifically, searching for a position of a sampling point that is a preset ratio with a maximum value of the timing offset function is centered on the second sampling point, to obtain a first position and a second position; according to the synchronous training sequence Conjugation symmetry and zero cross-correlation of the first part and the second part, performing an autocorrelation operation on the optical orthogonal frequency division multiplexing signal between the first position and the second position to obtain a new timing offset a shift function; obtaining a sampling point that maximizes the new timing offset function, wherein the position of the sampling point at which the new timing offset function takes the maximum value is the starting point of the optical OFDM.
  • the lower the preset ratio the wider the range of fine synchronization, but since the position of the maximum value of the obtained timing offset function is already very close to the correct position during the coarse synchronization, it is preferable to preset
  • the ratio is 90%, which is not specifically limited in this embodiment.
  • the sampling point positions of the maximum value of 90% of the timing offset function M (d) are searched for d2 and d4, respectively.
  • the cross-correlation value of the CAZAC sequence is close to zero.
  • the timing offset function Ml (d) obtained from the autocorrelation calculation will be a very sharp graph with peaks only when properly synchronized. Therefore, the position at which Ml (d) takes the maximum value is the starting point of the optical OFDM symbol, denoted as d5, at which point the optical OFDM signal synchronization is completed.
  • the 0FDM symbol is extracted from d5, converted into N parallel data by serial concatenation, and the cyclic prefix added by the transmitting end is removed;
  • the transform FFT
  • the data mapped by m-QAM or m-PSK is obtained, and then the data is subjected to channel equalization processing such as dispersion compensation and phase correction.
  • the data after channel equalization is demodulated by the constellation and restored to N parallel data. It is then converted to serial binary data by a parallel and serial conversion.
  • the beneficial effects of the embodiments of the present invention are: a method for synchronizing the optical OFDM signals of the starting point of the optical OFDM symbol by acquiring the first sampling point and the second sampling point, thereby greatly increasing the positioning accuracy of the optical symbol, even if In the case of low signal-to-noise ratio, accurate synchronization of signals can be achieved, and synchronization errors can be reduced.
  • the present invention uses the CAZAC sequence as a training sequence, which reduces the peak-to-average ratio of the training sequence and further improves the synchronization performance. Referring to FIG.
  • another embodiment of the present invention provides an apparatus for processing an optical orthogonal frequency division multiplexing signal, including: a receiving module 301, a first obtaining module 302, a second obtaining module 303, and a third obtaining module 304.
  • the receiving module 301 is configured to receive an optical orthogonal frequency division multiplexing signal, and obtain a sampling signal of the optical orthogonal frequency division multiplexing signal, where the optical orthogonal frequency division multiplexing signal carries a synchronization training sequence, where the synchronization training sequence is at least Including four parts, wherein the first part is a constant envelope zero autocorrelation sequence, the second part is a conjugate symmetry body of the constant envelope zero autocorrelation sequence, and the third part is a repetition of the first part, the The fourth part is the repetition of the second part;
  • the first obtaining module 302 is configured to process, according to the repetition characteristic existing in the synchronous training sequence, the sampling signal to obtain a first sampling point;
  • a second acquiring module 303 configured to acquire a second sampling point according to the constant encapsulation and zero cross-correlation characteristics of the first sampling point and the synchronous training sequence
  • a third obtaining module 304 configured to acquire, according to the conjugate symmetry and zero cross-correlation between the second sampling point and the first part and the second part of the synchronous training sequence, an optical orthogonal frequency division multiplexing symbol Start point.
  • the first obtaining module 302 includes a delay unit, configured to delay the acquired sampling signal by a preset time to obtain a delayed sampling signal, and a first calculating unit, configured to Performing an autocorrelation operation on the sampled signal and the delayed sampled signal, and obtaining a coarse timing estimation function according to the repetition characteristic existing in the synchronous training sequence;
  • a first acquiring unit configured to acquire a first sampling point according to the coarse timing estimation function.
  • the obtaining unit is specifically configured to:
  • the second obtaining module 303 includes:
  • a second calculating unit configured to: according to the constant envelope and zero cross-correlation property of the synchronous training sequence, start from the first sampling point, and orthogonally divide the optical frequency corresponding to the sampling point after the first sampling point
  • the multiplexed signal is subjected to an autocorrelation operation to obtain a timing offset function
  • a second acquiring unit configured to search for a maximum value of the timing offset function by using the first sampling point as a starting point, and record a sampling point that causes the timing offset function to obtain a maximum value as a second sampling point.
  • the third obtaining module 304 includes:
  • a searching unit configured to search for a position of a sampling point that is proportional to a maximum of the timing offset function by using the second sampling point as a center, to obtain a first position and a second position;
  • a third calculating unit configured to perform orthogonal optical frequency between the first position and the second position according to conjugate symmetry and zero cross-correlation of the first part and the second part in the synchronous training sequence
  • the sub-multiplexed signal is subjected to an autocorrelation operation to obtain a new timing offset function
  • an embodiment of the present invention provides a system for receiving an optical orthogonal frequency division multiplexed signal, including: a device 401 for processing an optical frequency division multiplexed signal, a serial-to-parallel transform module 402, a de-cyclic prefix module 403, and a Fu.
  • the device 401 for processing the optical frequency division multiplexed signal may be any device for processing the optical frequency division multiplexed signal described in the foregoing embodiments.
  • a device 401 for processing an optical frequency division multiplexing signal configured to receive an optical orthogonal frequency division multiplexing signal, and acquire a sampling signal of the optical orthogonal frequency division multiplexing signal, where the optical orthogonal frequency division multiplexing signal band
  • the synchronization training sequence includes at least four parts, wherein the first part is a constant envelope zero autocorrelation sequence, and the second part is a conjugate symmetry body of the constant envelope zero autocorrelation sequence, the third part Is a repetition of the first portion, the fourth portion is a repetition of the second portion; processing the sampling signal to obtain a first sampling point according to a repetition characteristic existing in the synchronous training sequence; And obtaining a second sampling point according to the constant envelope and zero cross-correlation characteristics of the sampling point and the synchronous training sequence; and conjugate symmetry according to the second sampling point and the first part and the second part of the synchronous training sequence Zero cross-correlation, obtaining a starting point of the optical orthogonal frequency division multiple
  • the serial-to-parallel transform module 402 is configured to: after obtaining the starting point of the optical orthogonal frequency division multiplexing symbol, extract an optical orthogonal frequency division multiplexing symbol from the starting point, and orthogonalize the optical frequency Dividing the multiplexed symbol string into N parallel data; the N is a natural number greater than 1;
  • a de-cyclic prefix module 403 configured to remove a cyclic prefix added by the transmitting end to the optical orthogonal frequency division multiplexing symbol
  • a Fourier transform module 404 configured to perform Furi on the data processed by the de-cyclic prefix module Leaf transformation, obtaining constellation mapping data data
  • the channel equalization module 405 is configured to perform dispersion compensation and phase correction processing on the obtained constellation mapping data
  • the constellation demodulation module 406 is configured to restore the data processed by the channel equalization module into N parallel data.
  • the parallel-to-serial conversion module 407 is configured to restore the processed data of the constellation demodulation module to serial binary data.
  • an embodiment of the present invention further provides a system for processing an optical orthogonal frequency division multiplexed signal, where the system includes: a system 300 for transmitting an optical orthogonal frequency division multiplexed signal and a received optical orthogonal frequency division multiplexed signal System 400, wherein system 400 for receiving optical orthogonal frequency division multiplexed signals may be a system for receiving optical orthogonal frequency division multiplexed signals as described in the previous embodiments.
  • the system 300 for transmitting an optical orthogonal frequency division multiplexed signal is configured to generate a synchronous training sequence for optical orthogonal frequency division multiplexing symbol synchronization, and place the synchronous training sequence in an optical orthogonal frequency to be transmitted.
  • the front end of the multiplexed symbol is sent together to the apparatus for receiving the optical orthogonal frequency division multiplexed signal;
  • the synchronous training sequence includes at least four parts, wherein the first part is a constant envelope zero autocorrelation sequence, and the second part Is a conjugate symmetry of the constant envelope zero autocorrelation sequence, third Part is a repetition of the first portion, and the fourth portion is a repetition of the second portion;
  • the system 400 for receiving an optical orthogonal frequency division multiplexed signal configured to receive the optical orthogonal frequency division multiplexing symbol and the synchronous training sequence sent by the apparatus for transmitting the optical orthogonal frequency division multiplexing signal, and according to the The synchronization training sequence finds a starting point of the optical orthogonal frequency division multiplexing symbol, thereby demodulating the optical frequency division multiplexing symbol.
  • the device provided by the present invention provides the beneficial effects of: realizing the optical OFDM signal synchronization by acquiring the first sampling point, the second sampling point, and then determining the three-level timing of the starting point of the optical OFDM symbol, thereby greatly increasing the optical light.
  • the positioning accuracy of the symbol enables accurate synchronization of the signal and reduces synchronization error even in the case of low signal-to-noise ratio.
  • the device and the system provided in this embodiment may be the same as the method embodiment, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • Embodiments of the invention may be implemented in software, and the corresponding software program may be stored in a readable storage medium, such as a hard disk, a cache, or an optical disk of a computer.
  • a readable storage medium such as a hard disk, a cache, or an optical disk of a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明实施例提供了一种处理光正交频分复用信号的方法、装置的系统,涉及通信技术领域,所述方法包括:接收端接收光正交频分复用信号,并获取所述光正交频分复用信号的采样信号,所述光正交频分复用信号带有同步训练序列,用于实现所述接收端与发送端的同步;根据所述获取的采样信号获取第一采样点;根据所述第一采样点获取第二采样点;根据所述第二采样点获取光正交频分复用符号的起始点。本发明通过通过三级同步方法来确定光OFDM符号的起始点,大大增加了获取光OFDM符号的起始点的准确性,即使在信噪比较低的情况下,也能实现信号的准确同步,降低同步误差。

Description

处理光正交频分复用信号的方法、 装置和系统 技术领域
本发明涉及通信技术领域, 特别涉及一种处理光正交频分复用信号的方法、 装置和系 统。 背景技术
光 OFDM ( Orthogonal Frequency Divi s ion Mult iplexing, 正交频分复用) 是将无线 中的 OFDM技术引入到光通信领域的一种新型技术, 它既可以看做是一种调制技术, 也可以 看做是一种复用技术。 光 OFDM信号的基本原理是: 将时域中高速串行的信号划分为多个低 速并行信号, 频域信道分成若干正交子信道 (即光 OFDM符号子载波), 然后将低速并行信 号调制到每个子信道上进行传输。 但由于光 OFDM是一种多载波调制技术, 它对同步误差比 单载波系统要敏感得多, 所以在光 OFDM系统中, 如何对光 OFDM信号进行处理时非常重要 的, 尤其是接收端准确的符号定时同步算法非常重要, 它可以提供正确的符号起始位置, 以便传输数据可以正确的解调。
现有技术中, 接收端采用单级定时同步的方法来实现与发送端发送的符号同步。 单级 定时同步的方法主要利用同步训练序列自身的特性, 进行相关运算后, 得到同步训练序列 的峰值, 从而确定光符号的起始点。 具体的, 在发送端, 产生一 PN ( Pseudo-Noi se , 伪噪 声) 同步训练序列, 其中, 假设一个 OFDM符号长度为 N, 则 PN训练序列长度也取为 N, 然 后将训练序列等分为 4部分, 每部分长度为 N/4, 这 4部分分别命名为 、 B、 C, D。 在八、 B、 C, D中, A和 B的数据一样, C和 D的数据一样并且与 A、 B异号。 具有上述特征的序列 经过 IFFT ( Inverse Fast Fourier Transform, 逆傅里叶变换) 变换以后, 便得到了训练 序列对应的时域数据, 之后, 再将训练序列置于光 OFDM信号的前端, 送入信道传输一起发 送给接收端。 在接收端, 将接收到的光 OFDM信号进行相关处理后得到采样后的信号, 将采 样后的信号进行串并变换, 将进行串并变换后的信号延时后再与自身进行自相关运算, 得 到自相关函数 M (d),其中, d是指信号的第 d个采样点,如果 M (d)大于设定的阈值,则 M (d) 取最大值处则为光 OFDM信号的起始端, 完成同步。
但是, 现有技术至少存在以下问题: 采用单级定时同步的方法, 在信噪比较低的情况 下, 自相关函数定时尖峰不明显, 同步误差较大, 甚至无法实现同步, 严重制约系统性能。 发明内容
为了解决接收端与发送端同步误差较大的问题, 本发明实施例提供了一种处理光正交 频分复用信号的方法、 装置和系统。 所述技术方案如下- 一方面, 提供了一种处理光正交频分复用信号的方法, 所述方法包括:
接收光正交频分复用信号, 并获取所述光正交频分复用信号的采样信号, 所述光正交 频分复用信号带有同步训练序列, 所述同步训练序列至少包含四部分, 其中, 第一部分是 恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部分是所 述第一部分的重复, 所述第四部分是第二部分的重复;
根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处理获取第一采样点; 根据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取第二采样点; 根据所述第二采样点和所述同步训练序列中第一部分和第二部分的共轭对称性和零互 相关性, 获取光正交频分复用符号的起始点。
另一方面, 还提供了一种处理光正交频分复用信号的装置, 所述装置包括:
接收模块, 用于接收光正交频分复用信号, 并获取所述光正交频分复用信号的采样信 号, 所述光正交频分复用信号带有同步训练序列, 所述同步训练序列至少包含四部分, 其 中, 第一部分是恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部分是所述第一部分的重复, 所述第四部分是第二部分的重复;
第一获取模块, 用于根据所述同步训练序列中存在的重复特性, 对所述采样信号进行 处理获取第一采样点;
第二获取模块, 用于根据所述第一采样点和所述同步训练序列的恒包络和零互相关特 性, 获取第二采样点;
第三获取模块, 用于根据所述第二采样点和所述同步训练序列中第一部分和第二部分 的共轭对称性和零互相关性, 获取光正交频分复用符号的起始点。
另一发面, 还提供了一种接收光正交频分复用信号的系统, 所述系统包括- 上述的处理光频分复用信号的装置, 用于接收光正交频分复用信号, 并获取所述光正 交频分复用信号的采样信号, 所述光正交频分复用信号带有同步训练序列, 所述同步训练 序列至少包含四部分, 其中, 第一部分是恒包络零自相关序列, 第二部分是所述恒包络零 自相关序列的共轭对称体, 第三部分是所述第一部分的重复, 所述第四部分是第二部分的 重复; 根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处理获取第一采样 点; 根据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取第二采样点; 根据所述第二采样点和所述同步训练序列中第一部分和第二部分的共轭对称性和零互相关 性, 获取光正交频分复用符号的起始点;
串并变换模块, 用于在获取到所述光正交频分复用符号的起始点后, 从所述起始点开 始提取出光正交频分复用符号, 并将所述光正交频分复用符号串并变换为 N路并行数据; 所述 N为大于 1的自然数;
去循环前缀模块, 用于去掉发送端为所述光正交频分复用符号添加的循环前缀; 傅里叶变换模块, 用于对所述去循环前缀模块处理后的数据进行傅里叶变换, 得到星 座映射数据数据;
信道均衡模块, 用于对得到的所述星座映射数据进行色散补偿、 相位纠正处理; 星座解调模块, 用于将所述信道均衡模块处理后的数据恢复为 N路并行的二进制数据; 并串变换模块, 用于将所述星座解调模块处理后的数据还原为串行二进制数据。
另一发面, 还提供了一种处理光正交频分复用信号的系统, 所述系统包括: 发送光正 交频分复用信号的系统和上述的接收光正交频分复用信号的系统, 其中,
所述发送光正交频分复用信号的系统, 用于产生用于光正交频分复用符号同步的同步 训练序列, 并将所述同步训练序列置于所要传输的光正交频分复用符号的前端, 一起发送 给所述接收光正交频分复用信号的装置; 所述同步训练序列至少包含四部分, 其中, 第一 部分是恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部 分是所述第一部分的重复, 所述第四部分是第二部分的重复;
所述接收光正交频分复用信号的系统, 用于接收所述发送光正交频分复用信号的装置 发送的光正交频分复用符号和所述同步训练序列, 并根据所述同步训练序列找到所述光正 交频分复用符号的起始点, 从而解调所述光频分复用符号。
本发明实施例提供的技术方案的有益效果是: 通过获取第一采样点, 第二采样点, 从 而再确定光 OFDM符号的起始点的光 OFDM信号同步方法, 大大增加了对光符号的定位准确 性, 即使在信噪比较低的情况下, 也能实现信号的准确同步, 降低同步误差。 附图说明
图 1是本发明实施例提供的一种处理光正交频分复用信号的方法的流程图;
图 2是本发明的另 实施例提供的 种处理光正交频分复用信号的方法的流程图; 图 3是本发明的另 实施例提供的 种同步训练序列的结构图;
图 4是本发明的另 实施例提供的 种发送光正交频分复用信号的装置的示意图; 图 5是本发明的另 实施例提供的 种接收光正交频分复用信号的装置的示意图; 图 6是本发明的又一实施例提供的一种处理光正交频分复用信号的装置的示意图; 图 7是本发明的又一实施例提供的一种接收光正交频分复用信号的系统的示意图; 图 8是本发明的又一实施例提供的一种处理光正交频分复用信号的系统的示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
参见图 1, 本发明实施例提供了一种处理光正交频分复用信号的方法, 包括:
101: 接收光正交频分复用信号, 并获取所述光正交频分复用信号的采样信号, 所述光 正交频分复用信号带有同步训练序列, 所述同步训练序列至少包含四部分, 其中, 第一部 分是恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部分 是所述第一部分的重复, 所述第四部分是第二部分的重复;
102: 根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处理获取第一采 样点;
103: 根据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取第二采 样点;
104: 根据所述第二采样点和所述同步训练序列中第一部分和第二部分的共轭对称性和 零互相关性, 获取光正交频分复用符号的起始点。
优选地, 本实施例中, 根据所述同步训练序列中存在的重复特性, 对所述采样信号进 行处理获取第一采样点, 包括:
将所述获取的采样信号延时预设的时间, 得到延时后的采样信号;
将所述采样信号和所述延时后的采样信号进行自相关运算, 并根据所述同步训练序列 中存在的重复特性得到粗定时估计函数;
根据所述粗定时估计函数获取第一采样点。
优选地, 本实施例中, 根据所述粗定时估计函数获取第一采样点, 包括:
获取第一个使所述粗定时估计函数值大于预设门限值的采样点, 得到第一采样点。 优选地本实施例中, 根据所述第一采样点和所述同步训练序列的恒包络和零互相关特 性, 获取第二采样点, 包括- 从所述第一采样点开始, 对所述第一采样点以后的采样点对应的光正交频分复用信号 进行自相关运算, 得到定时偏移函数;
根据所述同步训练序列的恒包络和零互相关特性, 以所述第一采样点为起始点, 搜索 所述定时偏移函数的最大值, 将使所述定时偏移函数取得最大值的采样点记为第二采样点。 优选地本实施例中, 根据所述第二采样点和所述同步训练序列中第一部分和第二部分 的共轭对称性和零互相关性, 获取光正交频分复用符号的起始点, 包括:
以所述第二采样点为中心, 搜索使与所述定时偏移函数最大值成预设比例的采样点的 位置, 得到第一位置和第二位置;
对所述第一位置和所述第二位置之间的光正交频分复用信号进行自相关运算, 得到新 的定时偏移函数;
根据所述同步训练序列中第一部分和第二部分的共轭对称性和零互相关性, 获取使所 述新的定时偏移函数取得最大值的采样点, 所述使所述新的定时偏移函数取得最大值的采 样点位置就是光正交频分复用符号的起始点。
本发明实施例提供的技术方案的有益效果是: 通过获取第一采样点, 第二采样点, 从 而再确定光 OFDM符号的起始点的光 OFDM信号同步方法, 大大增加了对光符号的定位准确 性, 即使在信噪比较低的情况下, 也能实现信号的准确同步, 降低同步误差。 参见图 2, 本发明的另一实施例提供了一种处理光正交频分复用信号的方法, 包括: 步骤 201 : 接收光 OFDM信号, 获取该信号的采样信号。
本实施例中, 接收端接收光 OFDM信号, 其中光 OFDM信号包括同步训练序列符号和光 OFDM符号。 光 OFDM符号就是需要传输的数据, 同步训练序列是用于光 OFDM符号同步的信 号。
其中, 发送端产生用于光 0FDM符号同步的训练序列, 优选地, 发送端产生用于光 0FDM 符号同步的训练序列具体可以是 CAZAC (Const Amplitude Zero Auto-Corelation, 恒包络 序列), 其训练序列结构如图 3所示。 其中, 第一部分是 CAZAC序列, 其余三部分是 CAZAC 序列的共轭对称体或重复。具体的,训练序列长度等于 1个光 0FDM符号长度 N (通常取 N=2m, 其中 m大于 8), 训练序列由 4部分组成, 每部分长度为 N/4。 训练序列的第 1部分是上述 长度为 N/4的 CAZAC序列经 IFFT后生成的时域序列, 第 2部分是第 1部分的共轭对称体; 第 3、 4部分是第 1、 2部分的重复。 恒包络序列具有良好的互相关特性, 峰均比低, 并且 IFFT之后仍然是 CAZAC序列。
参见图 4, 本实施例中, 在产生同步训练序列之前, 首先将二进制数据送至图 4所示的 光 0FDM发送模块中进行调制。 串行的二进制数据经串并变换后, 变为 N路并行数据; 每一 路并行数据再进行星座映射 (如 m_QAM、 m-PSK等), 然后将星座映射后的信号进行逆傅里 叶变换 IFFT, 得到光 OFDM信号的时域信息。 在产生训练序列之后, 将训练序列置于要传输 的光 OFDM符号前端, 再对带有训练序列的光 OFDM符号添加循环前缀 (记循环前缀的长度 为 Ng), 然后再并串变换至串行信号, 进行传输。
本实施例中, 循环前缀的作用是用于克服由于光纤色散的时延扩展造成的光 OFDM信号 符号间干扰。 Ng的长度与光 OFDM信号的传输距离有关, 一般大于传输距离内的最大时延。 可选地地, Ng为 N长度的 1/8 /16。
参见图 5, 本实施例中, 接收端接收到光 OFDM信号后, 首先将接收到的信号进行模数 转换, 得到采样信号, 然后再进行三级同步, 确定光 OFDM符号的起始点。 其中, 具体的通 过下面步骤 203-205实现三级同步。
步骤 202:根据同步训练序列中存在的重复特性,对采样信号进行处理获取第一采样点。 本实施例中, 采用三级同步的方法实现接收端与发射端的符号同步, 其中第一步就是 获取第一采样点的初始同步过程。 具体的: 将所述获取的采样信号延时预设的时间, 得到 延时后的采样信号; 根据所述同步训练序列中存在的重复特性, 将所述采样信号和所述延 时后的采样信号进行自相关运算, 得到粗定时估计函数; 根据所述粗定时估计函数获取第 一采样点。 其中 d为采样点, 预设时间一般为 Ng的整数倍, 为了保证粗定时估计函数的准 确性, 必须大于或等于 Ng, 如果时间过长, 将增加运算量, 优选地为 2Ng, 对此本实施例 对此不做具体限定。
具体的, 根据粗定时函数获取第一采样点包括: 将 M (d)与设定的门限值 ζ比较, 如果 Μ (ά) > ζ , 则认为信号到来, 实现初始同步, 将第一个大于 ζ的 M (d)的采样点记为 dl,定义 为第一采样点。
进一步地, 本实施例中, 门限值 ζ按照如下方法选取: 在理想传输条件下对接收到的 信号进行 2*Ng延时后进行自相关运算,得到一个自相关函数 M (d),选取 M (d)最大值的 75%, 作为门限值的大小。
步骤 203:根据第一采样点和同步训练序列的恒包络和零互相关特性,获取第二采样点。 本实施例中, 根据第一采样点和同步训练序列的恒包络和零互相关特性, 获取第二采 样点, 以实现粗同步。 具体的, 根据所述同步训练序列的恒包络和零互相关特性, 从所述 第一采样点开始, 对所述第一采样点以后的采样点对应的光正交频分复用信号进行自相关 运算, 得到定时偏移函数; 以所述第一采样点为起始点, 搜索所述定时偏移函数的最大值, 将使所述定时偏移函数取得最大值的采样点记为第二采样点。 本实施例中, 将使定时偏移 函数取得最大值的采样点记为第二采样点 d2, 完成粗同步。
本实施例中, 如果发送端产生的同步训练序列是恒包络序列, 则由于四部分的结构特 性, 也是前半段和后半段相同的, 及第一部分和第三部分与第二部分和第四部分, 或是第 一部分和第四部分与第二部分和第三部分。
步骤 204:根据第二采样点和同步训练序列中第一部分和第二部分的共轭对称性和零互 相关性, 获取光正交频分复用符号的起始点。
本实施例中, 根据第二采样点最终获取光 OFDM符号的起始点, 以实现接收端与发送端 细同步的过程。 具体的, 以所述第二采样点为中心, 搜索使与所述定时偏移函数最大值成 预设比例的采样点的位置, 得到第一位置和第二位置; 根据所述同步训练序列中第一部分 和第二部分的共轭对称性和零互相关性, 对所述第一位置和所述第二位置之间的光正交频 分复用信号进行自相关运算, 得到新的定时偏移函数; 获取使所述新的定时偏移函数取得 最大值的采样点, 其中, 使新的定时偏移函数取得最大值的采样点的位置就是光 OFDM的起 始点。 本实施例中, 预设比例越低, 细同步的范围就越宽, 但由于在粗同步的时候, 得到 的定时偏移函数最大值的位置已经十分接近正确位置了, 因此优选地, 预设比例为 90%, 对 此本实施例不做具体限定。
本实施例中, 以 d2为中心, 搜索定时偏移函数 M (d)最大值 90%的采样点位置, 分别记 为 d3和 d4。 在 [d3, d4]范围内计算新的定时偏移函数 Ml (d), 即将 [d3, d4]范围内的信号 进行自相关运算。 根据 CAZAC训练序列的共轭对称性, 在自相关运算中, 由于训练序列与 延时 n ( n不等于训练序列的符号长度) 的训练序列不相关, 而 CAZAC序列互相关值接近于 零, 因此自相关计算得到的定时偏移函数 Ml (d)将是一个十分尖锐的曲线图, 仅在正确同步 时会出现峰值。 因此, Ml (d)取最大值的位置便是光 OFDM符号的起始点, 记为 d5, 此时便 完成了光 OFDM信号同步。
参见图 5, 本实施例中, 在找到光 0FDM的起始点 d5后, 从 d5开始提取出 0FDM符号, 经过串并变换为 N路并行数据, 并去掉发送端添加的循环前缀; 经傅里叶变换 (FFT ) 后, 得到 m-QAM或 m-PSK映射的数据, 然后对数据进行色散补偿、 相位纠正等信道均衡处理。 最后, 将信道均衡之后的数据通过星座解调, 恢复为 N路并行的二进制数据。 然后经并串 变换, 还原为串行二进制数据。
本发明实施例的有益效果是: 通过获取第一采样点, 第二采样点, 从而再确定光 0FDM 符号的起始点的光 OFDM信号同步的方法, 大大增加了对光符号的定位准确性, 即使在信噪 比较低的情况下, 也能实现信号的准确同步, 降低同步误差。 此外, 本发明采用 CAZAC序 列作为训练序列, 降低了训练序列的峰均比, 进一步提升了同步性能。 参见图 6, 本发明的又一实施例提供了一种处理光正交频分复用信号的装置, 包括: 接 收模块 301、 第一获取模块 302、 第二获取模块 303、 第三获取模块 304。 接收模块 301,用于接收光正交频分复用信号,并获取光正交频分复用信号的采样信号, 光正交频分复用信号带有同步训练序列, 所述同步训练序列至少包含四部分, 其中, 第一 部分是恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部 分是所述第一部分的重复, 所述第四部分是第二部分的重复;
第一获取模块 302, 用于根据所述同步训练序列中存在的重复特性, 对所述采样信号进 行处理获取第一采样点;
第二获取模块 303,用于根据所述第一采样点和所述同步训练序列的恒包络和零互相关 特性, 获取第二采样点;
第三获取模块 304,用于根据所述第二采样点和所述同步训练序列中第一部分和第二部 分的共轭对称性和零互相关性, 获取光正交频分复用符号的起始点。
其中, 优选地, 第一获取模块 302, 包括- 延时单元, 用于将所述获取的采样信号延时预设的时间, 得到延时后的采样信号; 第一计算单元, 用于将所述采样信号和所述延时后的采样信号进行自相关运算, 并根 据所述同步训练序列中存在的重复特性得到粗定时估计函数;
第一获取单元, 用于根据所述粗定时估计函数获取第一采样点。
优选地, 获取单元, 具体用于:
获取第一个使所述粗定时估计函数值大于预设门限值的采样点, 得到第一采样点。 本实施例中优选地, 第二获取模块 303, 包括:
第二计算单元, 用于根据所述同步训练序列的恒包络和零互相关特性, 从所述第一采 样点开始, 对所述第一采样点以后的采样点对应的光正交频分复用信号进行自相关运算, 得到定时偏移函数;
第二获取单元, 用于以所述第一采样点为起始点, 搜索所述定时偏移函数的最大值, 将使所述定时偏移函数取得最大值的采样点记为第二采样点。
优选地, 第三获取模块 304, 包括:
搜索单元, 用于以所述第二采样点为中心, 搜索使与所述定时偏移函数最大值成预设 比例的采样点的位置, 得到第一位置和第二位置;
第三计算单元, 用于根据所述同步训练序列中第一部分和第二部分的共轭对称性和零 互相关性, 对所述第一位置和所述第二位置之间的光正交频分复用信号进行自相关运算, 得到新的定时偏移函数;
第三获取单元, 用于获取使所述新的定时偏移函数取得最大值的采样点, 所述使所述 新的定时偏移函数取得最大值的采样点位置就是光正交频分复用符号的起始点。 参见图 7, 本发明实施例提供了一种接收光正交频分复用信号的系统, 包括: 处理光频 分复用信号的装置 401、 串并变换模块 402、 去循环前缀模块 403、 傅里叶变换模块 404、 信道均衡模块 405、 星座解调模块 406、 并串变换模块 407。 其中, 处理光频分复用信号的 装置 401可以为前文实施例中描述的任一处理光频分复用信号的装置。
处理光频分复用信号的装置 401, 用于接收光正交频分复用信号, 并获取所述光正交频 分复用信号的采样信号, 所述光正交频分复用信号带有同步训练序列, 所述同步训练序列 至少包含四部分, 其中, 第一部分是恒包络零自相关序列, 第二部分是所述恒包络零自相 关序列的共轭对称体, 第三部分是所述第一部分的重复, 所述第四部分是第二部分的重复; 根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处理获取第一采样点; 根 据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取第二采样点; 根据 所述第二采样点和所述同步训练序列中第一部分和第二部分的共轭对称性和零互相关性, 获取光正交频分复用符号的起始点;
串并变换模块 402, 用于在获取到所述光正交频分复用符号的起始点后, 从所述起始点 开始提取出光正交频分复用符号, 并将所述光正交频分复用符号串并变换为 N路并行数据; 所述 N为大于 1的自然数;
去循环前缀模块 403, 用于去掉发送端为所述光正交频分复用符号添加的循环前缀; 傅里叶变换模块 404, 用于对所述去循环前缀模块处理后的数据进行傅里叶变换, 得到 星座映射数据数据;
信道均衡模块 405, 用于对得到的所述星座映射数据进行色散补偿、 相位纠正处理; 星座解调模块 406,用于将所述信道均衡模块处理后的数据恢复为 N路并行的二进制数 据;
并串变换模块 407, 用于将所述星座解调模块处理后的数据还原为串行二进制数据。 参见图 8, 本发明实施例还提供了一种处理光正交频分复用信号的系统, 系统包括: 发 送光正交频分复用信号的系统 300和接收光正交频分复用信号的系统 400, 其中, 接收光正 交频分复用信号的系统 400可以是前文实施例中描述的接收光正交频分复用信号的系统。
所述发送光正交频分复用信号的系统 300,用于产生用于光正交频分复用符号同步的同 步训练序列, 并将所述同步训练序列置于所要传输的光正交频分复用符号的前端, 一起发 送给所述接收光正交频分复用信号的装置; 所述同步训练序列至少包含四部分, 其中, 第 一部分是恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三 部分是所述第一部分的重复, 所述第四部分是第二部分的重复;
所述接收光正交频分复用信号的系统 400,用于接收所述发送光正交频分复用信号的装 置发送的光正交频分复用符号和所述同步训练序列, 并根据所述同步训练序列找到所述光 正交频分复用符号的起始点, 从而解调所述光频分复用符号。
本发明提供的装置实施例提供的有益效果是: 通过获取第一采样点, 第二采样点, 从 而再确定光 OFDM符号的起始点的三级定时来实现光 OFDM信号同步, 大大增加了对光符号 的定位准确性, 即使在信噪比较低的情况下, 也能实现信号的准确同步, 降低同步误差。 本实施例提供的装置、 系统, 具体可以与方法实施例属于同一构思, 其具体实现过程 详见方法实施例, 这里不再赘述。 本发明实施例可以利用软件实现, 相应的软件程序可以存储在可读取的存储介质中, 例如, 计算机的硬盘、 缓存或光盘中。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种处理光正交频分复用信号的方法, 其特征在于, 所述方法包括:
接收光正交频分复用信号, 并获取所述光正交频分复用信号的采样信号, 所述光正交频 分复用信号带有同步训练序列, 所述同步训练序列至少包含四部分, 其中, 第一部分是恒包 络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部分是所述第一 部分的重复, 所述第四部分是第二部分的重复;
根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处理获取第一采样点; 根据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取第二采样点; 根据所述第二采样点和所述同步训练序列中第一部分和第二部分的共轭对称性和零互相 关性, 获取光正交频分复用符号的起始点。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述同步训练序列中存在的重复 特性, 对所述采样信号进行处理获取第一采样点, 包括- 将所述获取的采样信号延时预设的时间, 得到延时后的采样信号;
根据所述同步训练序列中存在的重复特性, 将所述采样信号和所述延时后的采样信号进 行自相关运算, 得到粗定时估计函数;
根据所述粗定时估计函数获取第一采样点。 3、 根据权利要求 2所述的方法, 其特征在于, 所述根据所述粗定时估计函数获取第一采 样点, 包括:
获取第一个使所述粗定时估计函数值大于预设门限值的采样点, 得到第一采样点。
4、 根据权利要求 1到 3任一项所述的方法, 其特征在于, 所述根据所述第一采样点和所 述同步训练序列的恒包络和零互相关特性, 获取第二采样点, 包括:
根据所述同步训练序列的恒包络和零互相关特性, 从所述第一采样点开始, 对所述第一 采样点以后的采样点对应的光正交频分复用信号进行自相关运算, 得到定时偏移函数; 以所述第一采样点为起始点, 搜索所述定时偏移函数的最大值, 将使所述定时偏移函数 取得最大值的采样点记为第二采样点。 5、根据权利要求 1到 3任一项所述的方法, 所述根据所述第二采样点和所述同步训练序 列中第一部分和第二部分的共轭对称性和零互相关性, 获取光正交频分复用符号的起始点, 包括:
以所述第二采样点为中心, 搜索使与所述定时偏移函数最大值成预设比例的采样点的位 置, 得到第一位置和第二位置;
根据所述同步训练序列中第一部分和第二部分的共轭对称性和零互相关性, 对所述第一 位置和所述第二位置之间的光正交频分复用信号进行自相关运算, 得到新的定时偏移函数; 获取使所述新的定时偏移函数取得最大值的采样点, 所述使所述新的定时偏移函数取得 最大值的采样点位置就是光正交频分复用符号的起始点。
6、 一种处理光正交频分复用信号的装置, 其特征在于, 所述装置包括:
接收模块, 用于接收光正交频分复用信号, 并获取所述光正交频分复用信号的采样信号, 所述光正交频分复用信号带有同步训练序列, 所述同步训练序列至少包含四部分, 其中, 第 一部分是恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部 分是所述第一部分的重复, 所述第四部分是第二部分的重复;
第一获取模块, 用于根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处 理获取第一采样点;
第二获取模块,用于根据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取第二采样点;
第三获取模块, 用于根据所述第二采样点和所述同步训练序列中第一部分和第二部分的 共轭对称性和零互相关性, 获取光正交频分复用符号的起始点。
7、 根据权利要求 6所述的装置, 其特征在于, 所述第一获取模块, 包括:
延时单元, 用于将所述获取的采样信号延时预设的时间, 得到延时后的采样信号; 第一计算单元, 用于将所述采样信号和所述延时后的采样信号进行自相关运算, 并根据 所述同步训练序列中存在的重复特性得到粗定时估计函数;
第一获取单元, 用于根据所述粗定时估计函数获取第一采样点。
8、 根据权利要求 7所述的装置, 其特征在于, 所述获取单元, 具体用于:
获取第一个使所述粗定时估计函数值大于预设门限值的采样点, 得到第一采样点。 9、 根据权利要求 6至 8任一项所述的装置, 其特征在于, 所述第二获取模块, 包括: 第二计算单元, 用于根据所述同步训练序列的恒包络和零互相关特性, 从所述第一采样 点开始, 对所述第一采样点以后的采样点对应的光正交频分复用信号进行自相关运算, 得到 定时偏移函数;
第二获取单元, 用于以所述第一采样点为起始点, 搜索所述定时偏移函数的最大值, 将 使所述定时偏移函数取得最大值的采样点记为第二采样点。
10、 根据权利要求 6到 8任一项所述的装置, 所述第三获取模块, 包括:
搜索单元, 用于以所述第二采样点为中心, 搜索使与所述定时偏移函数最大值成预设比 例的采样点的位置, 得到第一位置和第二位置;
第三计算单元, 用于根据所述同步训练序列中第一部分和第二部分的共轭对称性和零互 相关性, 对所述第一位置和所述第二位置之间的光正交频分复用信号进行自相关运算, 得到 新的定时偏移函数;
第三获取单元, 用于获取使所述新的定时偏移函数取得最大值的采样点, 所述使所述新 的定时偏移函数取得最大值的采样点位置就是光正交频分复用符号的起始点。
12、 一种接收光正交频分复用信号的系统, 其特征在于, 所述系统包括- 如权利要求 6到 10任一项所述的处理光频分复用信号的装置,用于接收光正交频分复用 信号, 并获取所述光正交频分复用信号的采样信号, 所述光正交频分复用信号带有同步训练 序列, 所述同步训练序列至少包含四部分, 其中, 第一部分是恒包络零自相关序列, 第二部 分是所述恒包络零自相关序列的共轭对称体, 第三部分是所述第一部分的重复, 所述第四部 分是第二部分的重复; 根据所述同步训练序列中存在的重复特性, 对所述采样信号进行处理 获取第一采样点; 根据所述第一采样点和所述同步训练序列的恒包络和零互相关特性, 获取 第二采样点; 根据所述第二采样点和所述同步训练序列中第一部分和第二部分的共轭对称性 和零互相关性, 获取光正交频分复用符号的起始点;
串并变换模块, 用于在获取到所述光正交频分复用符号的起始点后, 从所述起始点开始 提取出光正交频分复用符号, 并将所述光正交频分复用符号串并变换为 N路并行数据; 所述 N为大于 1的自然数;
去循环前缀模块, 用于去掉发送端为所述光正交频分复用符号添加的循环前缀; 傅里叶变换模块, 用于对所述去循环前缀模块处理后的数据进行傅里叶变换, 得到星座 映射数据;
信道均衡模块, 用于对得到的所述星座映射数据进行色散补偿、 相位纠正处理; 星座解调模块, 用于将所述信道均衡模块处理后的数据恢复为 N路并行的二进制数据; 并串变换模块, 用于将所述星座解调模块处理后的数据还原为串行二进制数据。
13、 一种处理光正交频分复用信号的系统, 其特征在于, 所述系统包括: 发送光正交频 分复用信号的系统和如权利要求 12所述的接收光正交频分复用信号的系统, 其中,
所述发送光正交频分复用信号的系统, 用于产生用于光正交频分复用符号同步的同步训 练序列, 并将所述同步训练序列置于所要传输的光正交频分复用符号的前端, 一起发送给所 述接收光正交频分复用信号的装置; 所述同步训练序列至少包含四部分, 其中, 第一部分是 恒包络零自相关序列, 第二部分是所述恒包络零自相关序列的共轭对称体, 第三部分是所述 第一部分的重复, 所述第四部分是第二部分的重复;
所述接收光正交频分复用信号的系统, 用于接收所述发送光正交频分复用信号的装置发 送的光正交频分复用符号和所述同步训练序列, 并根据所述同步训练序列找到所述光正交频 分复用符号的起始点, 从而解调所述光频分复用符号。
PCT/CN2011/077202 2011-07-15 2011-07-15 处理光正交频分复用信号的方法、装置和系统 WO2012106893A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001550.XA CN102318305B (zh) 2011-07-15 2011-07-15 处理光正交频分复用信号的方法、装置和系统
PCT/CN2011/077202 WO2012106893A1 (zh) 2011-07-15 2011-07-15 处理光正交频分复用信号的方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077202 WO2012106893A1 (zh) 2011-07-15 2011-07-15 处理光正交频分复用信号的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2012106893A1 true WO2012106893A1 (zh) 2012-08-16

Family

ID=45429445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077202 WO2012106893A1 (zh) 2011-07-15 2011-07-15 处理光正交频分复用信号的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN102318305B (zh)
WO (1) WO2012106893A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106893A1 (zh) * 2011-07-15 2012-08-16 华为技术有限公司 处理光正交频分复用信号的方法、装置和系统
CN104270333B (zh) * 2014-06-13 2017-06-20 电子科技大学 产生ofdm同步训练序列的方法及ofdm同步方法
EP3145145A1 (en) * 2015-09-15 2017-03-22 Nxp B.V. Receiver controller
CN105578316B (zh) * 2016-02-01 2022-12-27 广西师范大学 一种ocdma和ofdm混合的无源光网络系统
CN107204944B (zh) * 2016-03-18 2020-11-03 富士通株式会社 发送序列产生装置、训练序列同步装置、信道间隔估计装置、方法和系统
US10305621B2 (en) 2016-07-26 2019-05-28 Futurewei Technologies, Inc. Burst-mode discrete multi-tone for networks
CN108712262B (zh) * 2018-05-21 2020-10-13 深圳大学 自相关约束为1、互相关约束为2的光正交签名图形码的构造方法
CN110519195B (zh) * 2019-08-02 2020-12-01 北京科技大学 穿钢数能同传系统中数据传输链路符号定时同步的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731594B1 (en) * 1997-09-04 2004-05-04 Sony International (Europe) Gmbh Transmission system for OFDM-signals with optimized synchronisation
CN101409700A (zh) * 2008-11-27 2009-04-15 北京邮电大学 一种多载波通信系统同步方法及设备
CN101882968A (zh) * 2010-06-25 2010-11-10 电子科技大学 基于oofdm的无源光网络接入系统的时间同步方法
CN102318305A (zh) * 2011-07-15 2012-01-11 华为技术有限公司 处理光正交频分复用信号的方法、装置和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924722B (zh) * 2009-06-15 2013-06-26 华为技术有限公司 Oofdm信号的产生和接收方法、装置和波分复用系统
CN101692626A (zh) * 2009-09-17 2010-04-07 复旦大学 一种产生和接收光ofdm-msk信号的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731594B1 (en) * 1997-09-04 2004-05-04 Sony International (Europe) Gmbh Transmission system for OFDM-signals with optimized synchronisation
CN101409700A (zh) * 2008-11-27 2009-04-15 北京邮电大学 一种多载波通信系统同步方法及设备
CN101882968A (zh) * 2010-06-25 2010-11-10 电子科技大学 基于oofdm的无源光网络接入系统的时间同步方法
CN102318305A (zh) * 2011-07-15 2012-01-11 华为技术有限公司 处理光正交频分复用信号的方法、装置和系统

Also Published As

Publication number Publication date
CN102318305B (zh) 2014-03-12
CN102318305A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012106893A1 (zh) 处理光正交频分复用信号的方法、装置和系统
CN102185822B (zh) 一种ofdm/oqam系统及其时频同步方法
CN110636024B (zh) 一种基于索引调制的5g波形系统同步方法
EP2329630B1 (en) OFDM frame synchronisation method and system
US7684501B2 (en) Apparatus and method for carrier frequency offset and phase compensation in communication system
CN102215204B (zh) 基于反馈迭代的ofdm/oqam系统及其时频同步方法
CN102215205A (zh) 一种ofdm/oqam系统及其时频同步方法
WO2007112681A1 (fr) Procédé d'estimation de décalage de fréquence multiple entier ofdm
CN112910805A (zh) 基于5g新空口系统的频偏估计方法
CN101119350A (zh) 正交频分复用系统、快速同步的方法和发送端设备
CN104836770B (zh) 一种基于相关平均与加窗的定时估计方法
CN102377726B (zh) Ofdm系统的定时同步方法
CN113438730B (zh) 一种基于gfdm信号的无线定位方法
CN113162882B (zh) 一种基于共轭反对称训练序列的自相关ofdm符号同步方法
KR100626644B1 (ko) 직교 주파수 분할 다중화 통신시스템에서 주파수 및 시간옵셋 추정 방법과 그를 이용한 장치
WO2013010484A1 (zh) 一种进行色散补偿的方法及装置
JP3544147B2 (ja) Ofdm信号受信装置、ofdm信号通信システム及びその通信制御方法
CN115208725B (zh) 一种联合ofdm同步与信息调制的方法、装置及介质
WO2012109928A1 (zh) 信号处理方法、装置及系统
US8649255B2 (en) Device and method for fast fourier transform
CN103095627B (zh) 一种正交频分复用技术系统同步方法和电子设备
JP4440655B2 (ja) 直交波周波数分割多重システムの搬送波周波数オフセットと位相の補償装置及び方法
CN101039300A (zh) 一种同步定时的方法
CN103532896A (zh) 可变带宽系统的定时估计方法和装置
Zhang et al. Improved timing synchronization algorithm for OFDM system based on ZC sequence

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001550.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858133

Country of ref document: EP

Kind code of ref document: A1