WO2012105787A2 - 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치 - Google Patents

원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치 Download PDF

Info

Publication number
WO2012105787A2
WO2012105787A2 PCT/KR2012/000717 KR2012000717W WO2012105787A2 WO 2012105787 A2 WO2012105787 A2 WO 2012105787A2 KR 2012000717 W KR2012000717 W KR 2012000717W WO 2012105787 A2 WO2012105787 A2 WO 2012105787A2
Authority
WO
WIPO (PCT)
Prior art keywords
far
heater
infrared
far infrared
unit
Prior art date
Application number
PCT/KR2012/000717
Other languages
English (en)
French (fr)
Other versions
WO2012105787A3 (ko
Inventor
서민희
Original Assignee
Seo Min Hee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seo Min Hee filed Critical Seo Min Hee
Publication of WO2012105787A2 publication Critical patent/WO2012105787A2/ko
Publication of WO2012105787A3 publication Critical patent/WO2012105787A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/06Arrangement or mounting of electric heating elements
    • F24C7/062Arrangement or mounting of electric heating elements on stoves
    • F24C7/065Arrangement or mounting of electric heating elements on stoves with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/02Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/002Air heaters using electric energy supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to a far-infrared heat dissipation panel, a manufacturing method thereof, and a heating apparatus using the same. More particularly, the far-infrared heat dissipation panel that can increase the thermal conductivity of the far-infrared heat dissipation panel according to the heating of the heater and increase the coupling force of the far-infrared heat dissipation panel and the heater. And it relates to a manufacturing method and a heating apparatus using the same.
  • infrared rays are classified into near-infrared, mid-infrared, and far-infrared rays according to the length of the wavelength, and have linearity, reflectivity, transmittance, and absorptivity, which are properties of electromagnetic waves, among physical characteristics.
  • infrared rays are characterized by generating heat by directly irradiating the object with respect to the properties of electromagnetic waves in the absence of a transmission medium.
  • Far infrared rays having long wavelength (normally 25 ⁇ m or more) among these infrared rays are invisible, have strong penetrating power, are well absorbed by materials, and have strong characteristics of resonance and resonance for organic compound molecules. It helps to get rid of the causative bacteria, and helps to expand the capillaries to help blood circulation and cell tissue generation.It is effective in preventing various adult diseases such as anti-aging, promoting metabolism and chronic fatigue by activating cell tissue. As known, various types of heating apparatuses having far-infrared radiation panels have been developed and used.
  • FIG. 1 is a schematic diagram of a conventional far-infrared radiation panel.
  • the conventional far-infrared heat dissipation panel is provided with a far-infrared radiation coating layer 12 on the front side and a heater coupling part 14 formed on the back side, and a heater of the far-infrared heat dissipation unit 10. It consists of a rod-shaped heater 20 coupled to the coupling portion 14.
  • such a conventional far-infrared heat dissipation panel heats up the far-infrared radiation by heat generated from the heater 20 after coupling the rod-shaped heater 20 to one heater coupling portion 14 formed at the rear center portion of the far infrared heat dissipation portion 10.
  • Adopting a structure for heating the unit 10 the heat of the heater 20 is moved from the high temperature portion of the heater coupling portion 14 to the low temperature portion, thereby a lot of time to heat the entire far infrared radiation radiating portion 10 was taken. It takes a long time for the heat of the heater 20 to be conducted to the entire far-infrared heat dissipation unit 10 means that the thermal conductivity of the far-infrared heat dissipation unit 10 is low.
  • the far-infrared radiator 10 is formed of aluminum and the heater 20 is formed to surround the surface of magnesium with stainless steel after wrapping the hot wire with magnesium, thermal expansion and contraction of the far-infrared radiator 10 and the heater 20. Since a gap is generated between the heater coupling unit 14 and the heater 20 due to the difference in viewpoints, there is a problem in that noise generation and coupling force are reduced due to the operation of the heater 20.
  • the technical problem of the present invention is to increase the thermal conductivity of the far-infrared heat radiation panel according to the heat of the heater while improving the heat dissipation effect, while increasing the bonding force of the far-infrared heat radiation panel and the heater to prevent operating noise, and a manufacturing method thereof and a heating apparatus using the same To provide.
  • the technical problem is a plate-shaped heat dissipation panel in which a heater formed by bending a linear heating unit at least once in a U-shape is mounted on one surface, and a far-infrared radiation coating layer is provided on a front surface, and the heater is coupled to a rear surface.
  • a far-infrared heat dissipation unit for receiving heat from the heater to radiate far-infrared rays to the front surface;
  • the far-infrared heat radiation panel may further include a plurality of reinforcing ribs protruded to be spaced apart from each other by a predetermined interval on the back surface of the far-infrared heat radiation to prevent the bending deformation caused by the heat transmitted from the heater.
  • the far-infrared radiation unit may be formed of the same material as the surface of the heater so that the thermal expansion and thermal contraction time of the surface of the heater may be the same when the heat is transferred from the heater.
  • the far-infrared heat radiating portion includes a curved portion that protrudes convexly toward both sides from the side portion to the center portion, wherein the curved portion has a plurality of diffusion protrusions having a sawtooth shape so as to diffuse and radiate far infrared rays.
  • the curved portion has a plurality of diffusion protrusions having a sawtooth shape so as to diffuse and radiate far infrared rays.
  • the heater coupling unit is configured to couple the heater to the far-infrared heat dissipation unit by deforming the coupling support piece to surround the surface of the heater according to the pressurization of the press after the heater is inserted into the coupling groove.
  • a method for manufacturing a far-infrared heat dissipation panel as described above comprising: forming a far-infrared radiation coating layer on the front surface after molding the far-infrared heat dissipation unit; And coupling the heater to the far-infrared heat dissipation unit by inserting the heater into the coupling groove and deforming the coupling support piece to closely contact the surface of the heater to fix the heater.
  • the above technical problem may be achieved by a manufacturing method.
  • the step of coupling the heater to the far-infrared heat radiating portion after supporting the entire surface of the far-infrared radiating portion with a silicon tip, by pressing the deformation of the coupling support piece by deforming the coupling support piece surface of the heater It can be configured to adhere to.
  • the case may include a heat discharge passage which is open to a predetermined width so as to discharge the high temperature heat reflected by the reflecting portion after being radiated to the rear surface of the far-infrared radiator on both sides of the front surface.
  • a heat discharge passage which is open to a predetermined width so as to discharge the high temperature heat reflected by the reflecting portion after being radiated to the rear surface of the far-infrared radiator on both sides of the front surface.
  • the reinforcing part may include a plurality of through-holes through the surface to cool the air heated by the high temperature heat radiated to the rear surface of the far-infrared radiation.
  • the reflector may include a first reflecting plate and a second reflecting plate disposed on the rear surface of the reinforcing part to be spaced apart from each other and provided to reflect the high temperature heat radiated in the rear direction of the far infrared radiation part.
  • the case may further include a control unit provided on the front surface to control the temperature and the operating time of the far-infrared heat radiating unit.
  • the present invention according to the heat distribution of the heater coupled to the heater coupling portion can quickly heat the far-infrared heat radiating portion to increase the thermal conductivity while improving the heat generating effect.
  • the far-infrared radiating unit and the heater made of the same material, it is possible to remove the play caused by thermal expansion and contraction of the heater coupled to the heater coupling unit to prevent the operation noise while increasing the coupling force.
  • FIG. 1 is a schematic diagram of a conventional far-infrared radiation panel.
  • FIG. 2 is a perspective view of a far-infrared radiation panel according to the present invention.
  • FIG. 3 is a cross-sectional plan view of the far-infrared radiation panel of FIG. 2.
  • 4 to 6 is a view showing a manufacturing process of the far-infrared heat radiation panel according to the present invention.
  • FIG. 7 is a perspective view of a heating apparatus using a far-infrared heat dissipation panel according to the present invention.
  • FIG. 8 is a plan sectional view of a heating apparatus using the far-infrared heat dissipation panel of FIG. 7.
  • FIG. 9 is a cross-sectional view illustrating an operating state of a heating apparatus using the far-infrared heat dissipation panel of FIG. 7.
  • FIG. 2 is a perspective view of a far-infrared heat dissipation panel according to an exemplary embodiment of the present invention
  • FIG. 3 is a plan sectional view of the far-infrared heat dissipation panel of FIG. 2
  • FIGS. 4 to 6 are views illustrating a manufacturing process of the far-infrared heat dissipation panel according to the present invention
  • 7 is a perspective view of a heating apparatus using a far infrared heat dissipation panel according to the present invention
  • FIG. 8 is a cross-sectional view of a heating apparatus using the far infrared heat dissipation panel of FIG. 7
  • FIG. 9 is a view of the heating apparatus using the far infrared heat dissipation panel of FIG. 7.
  • the far infrared heat dissipation panel As shown in FIGS. 2 and 3, the far infrared heat dissipation panel according to the present embodiment is provided such that the heater 108 is coupled to the far infrared heat dissipation part 100 and the far infrared heat dissipation part 100 provided to emit far infrared rays.
  • the heater coupling portion 106 is included.
  • the far infrared heat dissipation unit 100 is provided to form a main frame of the far infrared heat dissipation panel according to the present embodiment, and the front surface is formed of a curved portion 101 which protrudes convexly from both edges to the center in the longitudinal direction. It is.
  • the curved portion 101 is provided with a plurality of diffusion protrusions 102 having a sawtooth shape from the surface so as to diffuse and radiate high-temperature heat and far infrared rays.
  • the diffusion protrusion 102 may be formed to protrude so as to be regularly or irregularly arranged along the curved portion 101, and may be formed in various known irregularities through laser processing or etching processing in addition to the sawtooth shape.
  • the teeth forming the diffusion protrusion 102 are formed to have a smaller inclined surface angle than an inclined surface angle of the inner side with respect to the central portion of the far-infrared heat radiating part 100. That is, the diffusion protrusion 102 is formed in a sawtooth shape having a small inclined plane angle on the outside and a large inclined plane angle on the inner side to diffuse high temperature heat and far infrared rays. Accordingly, the diffusion protrusion 102 may diffuse high temperature heat and far infrared rays radiated from the far infrared heat radiating unit 100 in the front direction.
  • a far-infrared radiation coating layer 103 is formed which is applied to a predetermined thickness so as to emit far-infrared rays.
  • the far-infrared radiation coating layer 103 is to use a far-infrared radiation coating material excellent in heat resistance and far-infrared radiation effect.
  • the far-infrared heat dissipation unit 100 is capable of radiating by spreading high-temperature heat and far-infrared rays to the periphery of the front surface by the curved portion 101 and the diffusion protrusion 102.
  • a plurality of reinforcing ribs 104 protrude from the rear surface of the far-infrared heat dissipation unit 100 to prevent bending deformation caused by heating from the heater 108 in accordance with conduction of heat.
  • the reinforcing ribs 104 are spaced apart from each other at a predetermined interval to protrude from the surface. Accordingly, when the far-infrared heat radiating unit 100 is heated by the heater 108, the bending deformation may be suppressed through the reinforcing ribs 104.
  • the far-infrared heat dissipation part 100 has the locking groove 105 protrudingly formed in the both edges of the back surface in the longitudinal direction.
  • the locking groove 105 is inserted into the locking projection 122 is formed in the reinforcement portion 120 of the heating device to be described later.
  • the reinforcement part 120 provided in the far infrared heat dissipation part 100 and the heating device may be coupled to each other by the locking groove 105 and the locking protrusion 122.
  • the heater coupling part 106 is provided to couple the heater 108 which will be described later to the rear surface of the far infrared heat dissipation part 100, and the coupling support piece 106B protrudes in the longitudinal direction from the rear surface of the far infrared heat dissipation part 100. It is formed to have a coupling groove (106A) is opened in the rear direction by the. The coupling groove 106A is formed to be spaced apart from each other by at least two locations on the rear surface of the far infrared heat dissipation unit 100.
  • the heater coupling part 106 deforms the coupling support piece 106B so as to cover a part of the surface of the heater 108 by pressing after the heater 108 is inserted into the coupling groove 106A. Heater 108 is fixedly coupled to). Thus, the heater 108 may be firmly coupled to the far-infrared heat dissipation unit 100 by the heater coupling unit 106.
  • the coupling support piece 106B of the present embodiment is deformed to surround a part of the surface of the heater 108 according to the pressurization of the press after the heater 108 is inserted into the coupling groove 106A, but another embodiment of the present invention As a result, the coupling support piece 106B may be modified to completely surround the surface of the heater 108.
  • the far-infrared radiation unit 100 is formed of an aluminum material having high thermal conductivity so that heat generated from the heater 108 is easily conducted and heated.
  • the heater 108 is provided to heat the far-infrared heat radiating part 100, and is formed in substantially U-shape so that it may couple
  • the heater 108 is formed in a U-shape in which one end forms a free end and the other end is connected to each other, and is coupled to the heater coupling unit 106.
  • the heater 108 is formed to have one hot wire having a U-shape and wrap the hot wire with magnesium, and then wrap the surface of magnesium with aluminum.
  • the heater 108 is coupled to the heater coupling unit 106 to heat the far-infrared heat dissipation unit 100, the thermal expansion and contraction points of the far-infrared heat dissipation unit 100 proceed in the same manner to the heater coupling unit 106. It is possible to prevent the occurrence of play of the combined heater 108.
  • both ends thereof are exposed to the outside, and the exposed portion may be finished with a heat resistant cylinder.
  • the U-shaped heater 108 is coupled to the heater coupling part 106 formed on the rear surface of the far-infrared heat dissipation unit 100 at regular intervals.
  • the heat generated from the heater 108 is conducted to the entire far-infrared heat dissipation unit 100 through the heater coupling unit 106 to start heating the far-infrared heat dissipation unit 100. do.
  • the heating of the far-infrared heat dissipation unit 100 proceeds to the entire far-infrared heat dissipation unit 100 in accordance with the heat distribution by the U-shaped heater 108 coupled to the heater coupling unit 106, thereby increasing the thermal conductivity. It is possible to improve the heating effect.
  • the heater coupled to the heater coupling part 106 due to the difference in thermal expansion and contraction time of different materials. It is possible to prevent the occurrence of play of the 108 to prevent the operation noise due to the flow of the heater 108. This is possible because the far-infrared radiator 100 is formed of aluminum and the heater 108 is formed to surround the surface of aluminum.
  • the far-infrared heat dissipation panel may rapidly heat the far-infrared heat dissipation unit 100 according to the heat distribution of the heater 108 coupled to the heater coupling unit 106 to increase the thermal conductivity and improve the heating effect. Can be.
  • the far-infrared radiation unit 100 and the heater 108 are formed of the same material, and the heater 108 is inserted into the coupling groove 106A of the heater coupling unit 106, and then the coupling support piece 106B is deformed and fixed. As a result, the gap between the heater coupling part 106 and the heater 108 is eliminated due to thermal expansion and contraction, thereby preventing the operating noise of the heater 108 and increasing the coupling force.
  • the far-infrared heat dissipation unit 100 is formed by the reinforcement ribs 104 protruding at regular intervals in the longitudinal direction on the rear surface by bending the thermal expansion and contraction of the far-infrared heat dissipation unit 100 according to the heating of the heater 108.
  • the deformation can be suppressed by preventing it.
  • the far-infrared radiation panel of the present embodiment unlike the prior art that uses the rod-shaped heater 20 as a heating means of the far-infrared radiation unit 100, using the U-shaped heater 108, electromagnetic waves By significantly reducing the amount of generated, it is possible to eliminate the need to attach a separate device for the reduction of electromagnetic waves.
  • the heater 108 of the present embodiment is formed in a double U-shaped double line has a structure that can reduce the amount of electromagnetic waves generated, whereas the conventional rod-shaped heater 20 is formed in a single line to the heating Accordingly, since a large amount of electromagnetic waves are generated, a separate device is attached to the far-infrared radiation unit 10 to reduce the electromagnetic waves generated by the heater 20.
  • a far infrared radiation coating layer 103 is formed on the front surface of the far infrared heat dissipation part 100. Forming and coupling the heater 108 to the back of the far-infrared heat radiation (100).
  • the curved surface portion 101 and the diffusion protrusion 102 are formed on the front surface, and the reinforcing rib 104, the locking groove 105, and the heater coupling portion 106 are formed on the rear surface of the far infrared ray.
  • the far-infrared radiation coating layer 103 is formed on the front surface of the far-infrared heat dissipation unit 100 to a predetermined thickness.
  • the far-infrared radiation unit 100 is formed by die casting injecting aluminum molten metal into a mold, and the far-infrared radiation coating layer 103 is coupled to the heater coupling unit 106 to generate heat by the heater 108.
  • a far-infrared radiation coating having excellent heat resistance and far-infrared radiation effect is used to withstand high temperatures and to emit abundant amounts of far-infrared rays.
  • the front surface of the far-infrared heat dissipation unit 100 is supported by the support 10 made of silicon.
  • the surface of the support 10 to support the front surface of the far infrared radiation unit 100 is formed in a curved shape corresponding to the front surface of the far infrared radiation unit 100 to increase the adhesion.
  • the coupling support piece 106B of the present embodiment is deformed to surround a part of the surface of the heater 108 in accordance with the processing of the press 20 to fix the heater 108 inserted into the coupling groove 106A.
  • the coupling support piece 106B may be modified to completely surround the surface of the heater 108.
  • the process of forming the far-infrared radiation coating layer 103 on the front surface of the far-infrared heat radiation unit 100 must be preceded before the process of coupling the heater 108 to the heater coupling unit 106. do.
  • the heater 108 when the heater 108 is coupled to the heater coupling portion 106 of the far-infrared heat radiating part 100 to form the far-infrared radiation coating layer 103, the heating wire of the heater 108 due to the high temperature heat treatment generated during the coating operation. This is because it can be damaged.
  • the far-infrared radiation coating layer 103 on the far-infrared heat dissipating part 100 and then coupling the heater 108 to the heater coupling part 106, it is possible to prevent damage to the heater 108.
  • the front surface is open and the case 110 is provided such that the far-infrared heat dissipation unit 100 is coupled to the opening, and the far infrared ray.
  • the reinforcement part 120 provided to prevent deformation due to thermal expansion and contraction of the heat dissipation part 100 and the high temperature heat radiated to the rear surface of the far infrared heat dissipation part 100 are provided to reflect the front direction of the case 110. It includes a reflector 130.
  • the far-infrared radiation unit 100 has the same configuration and function as the above-described embodiment, and the same reference numerals will be used, and the description thereof will be omitted.
  • the case 110 forms the main frame of the heating apparatus according to the present embodiment, and is formed to open the front surface.
  • the far infrared heat dissipation unit 100 is coupled to the opening of the case 110.
  • the case 110 has a heat dissipation passage 112 that is opened to a predetermined width so as to reflect the high temperature heat radiated to the rear surface of the far-infrared heat dissipation unit 100 on both sides of the front side to the reflecting unit 130 and discharge in the front direction of the case. Is formed.
  • the heat discharge passage 112 may reflect the high-temperature heat radiated to the rear surface of the far-infrared radiation unit 100 when the heater 108 is coupled to the heater coupling unit 106 of the far-infrared radiation unit 100. Reflected by) provides a passage to discharge in the front direction of the case (110).
  • the case 110 is formed at the lower end of the front surface of the control unit 114 is provided to control the temperature and operating time of the far-infrared heat radiation unit 100. That is, the controller 114 controls the operation of the heater 108.
  • the control unit 114 operates according to wired / wireless signals input from the outside to control the temperature and operating time of the heater 108, and inputs a signal to the control unit 114 to control the temperature and time of the heater 108. Since the method of controlling is conventionally performed, a detailed description thereof will be omitted.
  • the reinforcement part 120 is provided to prevent deformation due to thermal expansion and contraction of the far infrared heat dissipation part 100 heated by the heater 108, and is coupled to the rear surface of the far infrared heat dissipation part 100 at a predetermined interval. have.
  • the reinforcement part 120 has a locking protrusion 122 having a shape corresponding to the locking groove 105 formed in the far-infrared radiation portion 100 at both rear edges of the rear surface in the longitudinal direction, and the locking protrusion 122 is The far-infrared heat dissipation part 100 and the reinforcement part 120 are firmly coupled to each other by being inserted into the locking groove 105.
  • the reinforcement part 120 has a plurality of through holes 124 disposed on the surface at regular intervals from each other.
  • the through hole 124 cools the air between the far-infrared radiation unit 100 and the reinforcement unit 120 and guides the heat of the heater 108 radiated in the rear direction of the far-infrared radiation unit 100 to the reflector 130. do.
  • the heating apparatus of the present embodiment guides the heat radiated in the rear direction of the far-infrared heat radiating unit 100 to the reflecting unit 130 through the through hole 124 of the reinforcing unit 120 and then reflects the reflecting unit 130 to the reflecting unit 130.
  • discharging toward the front of the case 110 has a structure that can reduce the loss of heat.
  • the reinforcement portion 120 serves to reinforce the deformation of the far-infrared heat dissipation portion 100 that is thermally expanded and contracted according to the heating of the heater 108.
  • the reflector 130 may include a first reflector disposed to be spaced apart from each other within the case 110 so as to reflect heat radiated in the rear direction of the far infrared ray radiating unit 100 in the front direction of the case 110. 132 and the second reflector 134.
  • the first reflecting plate 132 is disposed between the reinforcing portion 120 and the case 110 so as to reflect heat radiated in the rear direction of the far infrared ray radiating portion 100.
  • the first reflecting plate 132 plays a role of primarily reflecting heat radiated in the rear direction of the far-infrared heat radiating unit 100 and passing through the through hole 124 toward the front direction of the case 110.
  • the second reflecting plate 134 is disposed to be spaced apart from the first reflecting plate 132 by a predetermined distance between the reinforcing part 120 and the case 110 to reflect heat that is not reflected by the first reflecting plate 132. .
  • the second reflecting plate 134 is spaced by a plurality of interval maintaining blocks 135 interposed between the first reflecting plate 132.
  • the second reflector 134 plays a role of secondarily reflecting heat not reflected by the first reflector 132 to the front of the case 110 by conduction and passage of heat.
  • Such a reflector 130 has a double reflecting structure by the first reflecting plate 132 and the second reflecting plate 134 to radiate heat radiated in the rear direction of the far-infrared heat radiating part 100 to the front direction of the case 110. By reflecting to have a structure that can minimize the loss of heat radiated in the rear direction of the far-infrared radiating unit 100.
  • Reference numeral '136' represents an insulating block interposed between the second reflecting plate 134 and the case 110, the insulating block 136 is a high-temperature heat radiated in the rear direction of the far infrared radiation unit 100 It is to block the transfer to the case 110 through the second reflector 134.
  • the heating device using the far-infrared heat radiation panel of the present embodiment is installed to be fixed by a fixing screw penetrating the case 110 to the ceiling or to be suspended by a chain on the ceiling.
  • the heater 108 when the heater 108 is operated by the controller 114 provided in the case 110 to radiate high temperature heat and far infrared rays, the heater 108 starts to generate heat.
  • the heat of the heater 108 is quickly conducted to the far-infrared radiation unit 100 according to the heat distribution generated by the heater 108 coupled to the heater coupling unit 106, thereby distributing the far-infrared radiation unit 100. ) The whole is heated in a short time.
  • the far-infrared heat dissipation unit 100 may improve the heat generation effect by increasing the thermal conductivity according to the heat distribution of the heater 108 having a U shape.
  • the far-infrared heat radiating unit 100 may not only maximize the radiation area by the curved portion 101 when radiating high-temperature heat and far-infrared rays, but may also be widely spread to the surroundings by the tooth-shaped diffusion protrusion 102. Will be.
  • the heating apparatus using the far-infrared radiation panel increases the thermal conductivity of the far-infrared radiation unit 100 according to the heat distribution of the heater 108 and heats the whole quickly to reduce power consumption while heating. The effect can be improved.
  • the radiation efficiency can be improved by diffusing high temperature heat and far infrared rays to the periphery by the curved portion 101 and the diffusion protrusion 102 formed on the front surface of the far infrared radiation dissipating unit 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Heating Systems (AREA)
  • Electric Stoves And Ranges (AREA)
  • Resistance Heating (AREA)

Abstract

원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치가 개시된다. 여기서, 원적외선 방열패널은 선형의 발열유닛이 한 번 이상 유(U)자형으로 굴곡져 형성된 히터가 일면에 장착되는 플레이트 형상의 방열패널로서, 전면에는 원적외선 방사 코팅층이 마련되고 배면에는 상기 히터가 결합되어, 상기 히터로부터 열을 전달받아 전면으로 원적외선을 방사시키는 원적외선 방열부; 및 상기 히터를 상기 원적외선 방열부에 결합시키기 위해, 상기 원적외선 방열부의 배면으로부터 돌출 형성된 결합지지편에 의해 형성되는 배면 방향으로 개방된 결합홈을 구비하되, 상기 결합홈은 상기 히터의 발열유닛의 간격만큼 이격되어 마련되는 히터 결합부;를 포함하여 구성된다.

Description

원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치
본 발명은 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치에 관한 것으로, 보다 상세하게는, 히터의 발열에 따라 원적외선 방열패널의 열전도율을 높이고 원적외선 방열패널과 히터의 결합력을 높일 수 있는 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치에 관한 것이다.
일반적으로, 적외선은 파장의 길이에 따라 근적외선, 중적외선 및 원적외선으로 구분되고, 물리적인 특징 중 전자기파의 성질인 직진성, 반사성, 투과성 및 흡수성을 갖는다. 그리고 이와 같은 적외선은 전달 매질이 없는 상태에서 전자기파의 성질에 대해 피 대상물에 직접 조사되어 열을 발생하게 되는 특징이 있다.
이와 같은 적외선 중 긴 파장(통상 25㎛ 이상)을 갖는 원적외선은 눈에 보이지 않고 침투력이 강해 물질에 잘 흡수되며 유기화합물 분자에 대한 공진 및 공명 작용이 강한 특성이 있기 때문에 열 작용에 의한 각종 질병의 원인이 되는 세균을 없애는데 도움이 되고, 모세혈관을 확장시켜 혈액순환과 세포조직 생성에 도움을 주게 되어 세포조직의 활성화를 통한 노화방지, 신진대사 촉진, 만성피로 등 각종 성인병 예방에 효과가 있는 것으로 알려지면서 원적외선 방열패널을 갖는 다양한 형태의 난방장치가 개발되어 사용되고 있다.
도 1은 종래의 원적외선 방열패널의 모식도이다.
도 1을 참조하면, 종래의 원적외선 방열패널은 전면에 원적외선 방사 코팅층(12)이 마련되어 있고 배면에 히터 결합부(14)가 형성되는 원적외선 방열부(10)와, 원적외선 방열부(10)의 히터 결합부(14)에 결합되는 봉 형상의 히터(20)로 이루어진다.
이러한 구성에 따라, 히터(20)가 발열되면 히터(20)로부터 발생된 열은 원적외선 방열부(10)로 전도되어 원적외선 방열부(10)를 가열시키게 되며, 원적외선 방열부(10)를 가열하는 열은 설치공간 주변의 공기와 열 교환되어 주변을 따뜻하게 함과 동시에 원적외선 방사 코팅층(12)으로부터 풍부한 양의 원적외선이 주변으로 방사되는 것이다.
하지만, 이러한 종래의 원적외선 방열패널은 원적외선 방열부(10)의 배면 중앙부에 형성되는 하나의 히터 결합부(14)에 봉 형상의 히터(20)를 결합한 뒤 히터(20)로부터 발생하는 열로 원적외선 방열부(10)를 가열하는 구조를 채택하고 있고, 이에 따라 히터(20)의 열이 히터 결합부(14)인 고온 부분에서 저온 부분으로 이동하여 원적외선 방열부(10) 전체를 가열하는데 많은 시간이 소요되었다. 히터(20)의 열이 원적외선 방열부(10) 전체로 전도되는데 많은 시간이 걸리는 것은 원적외선 방열부(10)에 대한 열전도율이 낮음을 의미하므로 방열효과가 저하되는 문제가 있다.
또한, 원적외선 방열부(10)는 알루미늄으로 형성되며 히터(20)는 열선을 마그네슘으로 감싼 뒤 마그네슘의 표면을 스테인리스로 감싸도록 형성되는데, 원적외선 방열부(10)와 히터(20)의 열팽창 및 수축 시점의 차이로 인해 히터 결합부(14)와 히터(20) 사이에 유격이 발생하게 되므로 히터(20)의 작동에 따른 소음 발생과 결합력이 떨어지게 되는 문제가 있다.
이에 원적외선 방열부에 대한 열전도율을 높여 발열효과를 향상시키면서도 작동 소음을 방지할 수 있는 원적외선 방열패널에 관한 연구개발이 요구되고 있는 실정이다.
본 발명의 기술적 과제는, 히터의 발열에 따라 원적외선 방열패널의 열전도율을 높여 방열효과를 향상시키면서도 원적외선 방열패널과 히터의 결합력을 높여 작동 소음을 방지하는 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제는, 선형의 발열유닛이 한 번 이상 유(U)자형으로 굴곡져 형성된 히터가 일면에 장착되는 플레이트 형상의 방열패널로서, 전면에는 원적외선 방사 코팅층이 마련되고 배면에는 상기 히터가 결합되어, 상기 히터로부터 열을 전달받아 전면으로 원적외선을 방사시키는 원적외선 방열부; 및 상기 히터를 상기 원적외선 방열부에 결합시키기 위해, 상기 원적외선 방열부의 배면으로부터 돌출 형성된 결합지지편에 의해 형성되는 배면 방향으로 개방된 결합홈을 구비하되, 상기 결합홈은 상기 히터의 발열유닛의 간격만큼 이격되어 마련되는 히터 결합부;를 포함하는, 원적외선 방열패널에 의해 달성된다.
이때, 원적외선 방열패널은 상기 히터로부터 전달되는 열에 의한 휨 변형을 방지하기 위해, 상기 원적외선 방열부의 배면에 상호 일정 간격 이격되어 돌출 형성되는 다수의 보강리브를 더 포함하여 구성될 수 있다.
이러한 원적외선 방열패널에 있어서, 상기 원적외선 방열부는, 상기 히터로부터 열을 전달받을 때 상기 히터의 표면의 열팽창 및 열수축 시점이 동일하게 진행될 수 있도록, 상기 히터의 표면과 동일한 소재로 형성될 수 있다.
또한, 상기 원적외선 방열부는, 양측부에서 중앙부로 향할수록 볼록하게 돌출 형성되는 곡면부를 전면부에 포함하되, 상기 곡면부에는 원적외선을 확산시켜 방사하도록 톱니 형상을 갖는 다수의 확산 돌기가 돌출 형성되어 있을 수 있다.
뿐만 아니라, 상기 히터 결합부는, 상기 히터가 상기 결합홈에 삽입된 뒤 프레스의 가압에 따라 상기 결합지지편이 상기 히터의 표면을 감싸도록 변형됨으로써, 상기 히터를 상기 원적외선 방열부에 결합시키도록 구성될 수 있다.
한편, 전술한 바와 같은 원적외선 방열패널을 제조하는 방법으로서, 상기 원적외선 방열부를 성형한 뒤 전면에 원적외선 방사 코팅층을 형성하는 단계; 및 상기 히터를 상기 결합홈에 삽입시킨 뒤 상기 결합지지편을 변형시켜 상기 히터의 표면에 밀착시켜 상기 히터를 고정함으로써, 상기 히터를 상기 원적외선 방열부에 결합시키는 단계;를 포함하는 원적외선 방열패널의 제조방법에 의해 상기 기술적 과제가 달성될 수도 있다.
이때, 상기 히터를 상기 원적외선 방열부에 결합시키는 단계는, 상기 원적외선 방열부의 전면을 실리콘 재질의 바침부로 지지한 이후에, 상기 결합지지편을 프레스 가공하여 변형시킴으로써 상기 결합지지편을 상기 히터의 표면에 밀착시키도록 구성될 수 있다.
한편, 상기 기술적 과제는, 전술한 바와 같은 원적외선 방열패널; 전면이 개방되며 개방부에 상기 원적외선 방열부가 결합되도록 마련되는 케이스; 상기 원적외선 방열부의 배면에 일정간격 이격되어 결합되며 상기 원적외선 방열부의 열팽창 및 수축에 의한 변형을 방지하도록 마련되는 보강부; 및 상기 보강부의 배면에 배치되도록 상기 케이스에 결합되며 상기 원적외선 방열부의 배면 방향으로 방사되는 고온의 열을 상기 케이스의 전면 방향으로 반사하도록 마련되는 반사부;를 포함하는 원적외선 방열패널을 이용한 난방장치에 의해서도 달성될 수 있다.
이때, 상기 케이스는, 전면 양측에 상기 원적외선 방열부의 배면으로 방사된 뒤 상기 반사부로 반사되는 고온의 열을 상기 케이스의 전면 방향으로 배출할 수 있도록, 일정한 폭으로 개방 형성되는 열 배출통로를 포함할 수 있다.
또한, 상기 보강부는, 상기 원적외선 방열부의 배면으로 방사되는 고온의 열에 의해 가열되는 공기를 냉각시키도록 표면을 관통하는 다수의 통공을 포함할 수 있다.
뿐만 아니라, 상기 반사부는, 상기 보강부의 배면에 상호 일정간격 이격 배치되며 상기 원적외선 방열부의 배면 방향으로 방사되는 고온의 열을 이중 반사하도록 마련되는 제1 반사판 및 제2 반사판을 포함할 수 있다.
나아가, 상기 케이스는, 전면에 상기 원적외선 방열부의 온도 및 작동시간을 제어하도록 마련되는 제어부를 더 포함할 수 있다.
본 발명은, 히터 결합부에 결합되는 히터의 열분포에 따라 원적외선 방열부를 신속하게 가열하여 열전도율을 높이면서도 발열효과를 향상시킬 수 있다.
또한, 원적외선 방열부와 히터를 동일한 재질로 형성함으로써 히터 결합부에 결합된 히터의 열팽창 및 수축에 의한 유격을 없애 작동 소음을 방지하면서도 결합력을 높일 수 있다.
또한, 원적외선 방열부는 배면에 다수의 보강리브를 형성함으로써 히터의 가열에 따른 원적외선 방열부의 열팽창 및 수축에 의한 휨 변형을 방지할 수 있다.
도 1은 종래의 원적외선 방열패널의 모식도이다.
도 2는 본 발명에 따른 원적외선 방열패널의 사시도이다.
도 3은 도 2의 원적외선 방열패널의 평단면도이다.
도 4 내지 도 6은 본 발명에 따른 원적외선 방열패널의 제조과정을 나타낸 도면이다.
도 7은 본 발명에 따른 원적외선 방열패널을 이용한 난방장치의 사시도이다.
도 8은 도 7의 원적외선 방열패널을 이용한 난방장치의 평단면도이다.
도 9는 도 7의 원적외선 방열패널을 이용한 난방장치의 작동상태를 나타낸 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
도 2는 본 발명예에 따른 원적외선 방열패널의 사시도이며, 도 3은 도 2의 원적외선 방열패널의 평단면도이고, 도 4 내지 도 6은 본 발명에 따른 원적외선 방열패널의 제조과정을 나타낸 도면이며, 도 7은 본 발명에 따른 원적외선 방열패널을 이용한 난방장치의 사시도이고, 도 8은 도 7의 원적외선 방열패널을 이용한 난방장치의 평단면도이며, 도 9는 도 7의 원적외선 방열패널을 이용한 난방장치의 작동상태를 나타낸 단면도이다.
본 실시예에 따른 원적외선 방열패널은, 도 2 및 도 3에 도시된 바와 같이, 원적외선을 방사하도록 마련되는 원적외선 방열부(100)와, 원적외선 방열부(100)에 히터(108)가 결합되도록 마련되는 히터 결합부(106)를 포함한다.
원적외선 방열부(100)는, 본 실시예에 따른 원적외선 방열패널의 메인 프레임을 형성하도록 마련되는 것이며, 전면은 종 방향을 기준으로 양측 가장자리로부터 중앙부로 갈수록 볼록하게 돌출되는 곡면부(101)로 형성되어 있다. 곡면부(101)에는 고온의 열 및 원적외선을 확산시켜 방사하도록 표면으로부터 톱니형상을 갖는 다수의 확산돌기(102)가 돌출 형성되어 있다. 이때, 확산돌기(102)는 곡면부(101)를 따라 규칙적 또는 불규칙적으로 배열되도록 돌출 형성될 수 있으며, 톱니형상 이외에도 레이저가공 또는 에칭가공을 통해 공지된 다양한 요철형상으로 형성될 수도 있다.
확산돌기(102)를 형성하는 톱니는 원적외선 방열부(100)의 중앙부를 기준으로 내측의 경사면 각도보다 외측의 경사면 각도가 작게 형성된다. 즉, 확산돌기(102)는 고온의 열 및 원적외선을 확산시키도록 외측의 경사면 각도가 작고 내측의 경사면 각도가 큰 톱니형상으로 형성된다. 이에 확산돌기(102)는 원적외선 방열부(100)로부터 방사되는 고온의 열 및 원적외선을 전면 방향으로 확산시킬 수 있게 된다.
원적외선 방열부(100)의 곡면부(101)에는, 원적외선을 방사하도록 일정두께로 도포되는 원적외선 방사 코팅층(103)이 형성되어 있다. 이때, 원적외선 방사 코팅층(103)은 내열성 및 원적외선 방사효과가 우수한 원적외선 방사 코팅재를 사용하도록 한다.
이러한 원적외선 방열부(100)는 곡면부(101) 및 확산돌기(102)에 의해 고온의 열 및 원적외선을 전면의 주변으로 넓게 확산시켜 방사할 수 있게 된다.
원적외선 방열부(100)는, 히터(108)로부터 열의 전도에 따라 가열되어 발생하는 휨 변형을 방지하도록 배면으로부터 다수의 보강리브(104)가 돌출 형성되어 있다. 보강리브(104)는 상호 일정간격 이격되어 표면으로부터 돌출 형성된다. 이에 따라 원적외선 방열부(100)는 히터(108)에 의해 가열되는 경우 보강리브(104)를 통해 휨 변형이 억제될 수 있게 된다.
원적외선 방열부(100)는, 종 방향으로 배면의 양측 가장자리에 걸림홈(105)이 돌출 형성되어 있다. 걸림홈(105)은 후술하는 난방장치의 보강부(120)에 형성되는 걸림돌기(122)가 삽입되어 걸림된다.
즉, 원적외선 방열부(100)와 난방장치에 마련되는 보강부(120)는 걸림홈(105) 및 걸림돌기(122)의 상호 걸림에 따라 결합될 수 있게 된다.
히터 결합부(106)는, 원적외선 방열부(100)의 배면에 후술하는 히터(108)를 결합하도록 마련되는 것이며, 원적외선 방열부(100)의 배면으로부터 종방향으로 돌출되는 결합지지편(106B)에 의해 배면 방향으로 개방되는 결합홈(106A)을 갖도록 형성되어 있다. 결합홈(106A)은 원적외선 방열부(100)의 배면 적어도 두 곳에 상호 일정간격 이격되어 형성된다.
히터 결합부(106)는, 히터(108)가 결합홈(106A) 내로 삽입된 뒤 결합지지편(106B)을 프레스 가공에 따라 히터(108)의 표면 일부를 감싸도록 변형시켜 원적외선 방열부(100)에 히터(108)가 고정 결합되도록 한다. 이에 히터(108)는 히터 결합부(106)에 의해 원적외선 방열부(100)에 견고하게 결합될 수 있게 된다.
여기서 본 실시예의 결합지지편(106B)은, 히터(108)가 결합홈(106A)에 삽입된 뒤 프레스의 가압에 따라 히터(108)의 표면 일부를 감싸도록 변형되나, 본 발명의 다른 실시예로써 결합지지편(106B)은 히터(108)의 표면을 완전히 감싸도록 변형될 수도 있다.
이와 같은 원적외선 방열부(100)는 히터(108)로부터 발생하는 열이 쉽게 전도되어 가열되도록 열전도율이 높은 알루미늄 재질로 형성된다.
히터(108)는, 원적외선 방열부(100)를 가열하도록 마련되는 것이며, 히터 결합부(106)에 결합되도록 대략 유(U)자 형상으로 형성되어 있다. 즉, 히터(108)는 일단부가 자유단을 형성하고 타단부는 상호 연결되는 유(U)자 형상으로 형성되어 히터 결합부(106)에 결합된다.
히터(108)는, 유(U)자 형상을 갖는 하나의 열선을 가지며 이 열선을 마그네슘으로 감싼 뒤 마그네슘의 표면을 알루미늄으로 감싸도록 형성된다. 이에, 히터(108)는 히터 결합부(106)에 결합된 뒤 원적외선 방열부(100)를 가열하는 경우 원적외선 방열부(100)와 열팽창 및 수축 시점이 동일하게 진행되어 히터 결합부(106)에 결합된 히터(108)의 유격 발생을 방지할 수 있게 된다.
여기서 본 발명의 실시예에 따른 히터(108)는 히터 결합부(106)에 결합되는 경우 양단부가 외부로 노출되는데, 이러한 노출부분은 내열실린더로 마감처리될 수 있다.
이하, 본 실시예에 따른 원적외선 방열패널의 작용을 설명한다.
본 실시예의 원적외선 방열패널은, 앞서 설명한 바와 같이 원적외선 방열부(100)의 배면에 상호 일정간격 이격되어 형성되는 히터 결합부(106)에 유(U)자 형상의 히터(108)가 결합된다.
히터(108)가 외부로부터 전원에 의해 발열되면, 히터(108)로부터 발열되는 열은 히터 결합부(106)를 통해 원적외선 방열부(100) 전체로 전도되어 원적외선 방열부(100)를 가열하기 시작한다.
이러한 원적외선 방열부(100)의 가열은 히터 결합부(106)에 결합된 유(U)자 형상의 히터(108)에 의한 열분포에 따라 원적외선 방열부(100) 전체로 신속하게 진행되므로 열전도율을 높여 발열효과를 향상시킬 수 있게 된다.
이때, 원적외선 방열부(100)가 히터(108)에 의해 가열되는 과정에서 열팽창 및 수축 시점이 동일하게 진행되므로 서로 다른 재질의 열팽창 및 수축 시점의 차이로 인한 히터 결합부(106)에 결합된 히터(108)의 유격 발생을 방지하여 히터(108)의 유동에 의한 작동 소음을 방지할 수 있게 된다. 이는 원적외선 방열부(100)가 알루미늄으로 형성되고 히터(108)는 표면을 알루미늄으로 감싸도록 형성됨으로써 가능하다.
원적외선 방열부(100)가 가열되면, 원적외선 방열부(100)를 가열하는 열은 곡면부(101)와 확산돌기(102)를 통해 전면 방향으로 확산되도록 방사된 뒤 설치공간 주변의 공기와 열 교환되어 주변을 따뜻하게 함과 동시에 원적외선 방사 코팅층(103)으로부터 원적외선이 주변으로 확산되도록 방사되는 것이다.
이상 설명한 바와 같이, 본 실시예의 원적외선 방열패널은, 히터 결합부(106)에 결합되는 히터(108)의 열분포에 따라 원적외선 방열부(100)를 신속하게 가열하여 열전도율을 높이면서도 발열효과를 향상시킬 수 있다.
또한, 원적외선 방열부(100)와 히터(108)를 동일한 재질로 형성하며 히터 결합부(106)의 결합홈(106A)에 히터(108)를 삽입한 뒤 결합지지편(106B)을 변형시켜 고정함으로써 히터 결합부(106)와 히터(108)의 열팽창 및 수축에 의한 유격을 없애 히터(108)의 작동 소음을 방지하면서도 결합력을 높일 수 있다.
또한, 원적외선 방열부(100)는 배면에 종 방향으로 상호 일정간격 이격되어 돌출되는 보강리브(104)를 형성함으로써 히터(108)의 가열에 따른 원적외선 방열부(100)의 열팽창 및 수축에 의한 휨 변형을 억제하여 방지할 수 있다.
아울러, 본 실시예의 원적외선 방열패널은, 원적외선 방열부(100)의 가열수단으로 봉 형상의 히터(20)를 사용하는 종래기술과 달리, 유(U)자 형상의 히터(108)를 사용하여 전자파의 발생량을 현저하게 줄임으로써 전자파의 저감을 위한 별도 기기의 부착 필요성을 해소할 수 있다.
즉, 본 실시예의 히터(108)는 유(U)자 형상의 복선으로 형성되어 전자파의 발생량을 줄일 수 있는 구조를 갖는 반면에, 종래의 봉 형상의 히터(20)는 단선으로 형성되어 가열에 따라 많은 량의 전자파를 발생하게 되므로, 히터(20)에서 발생하는 전자파의 저감을 위해 원적외선 방열부(10)에 별도의 기기를 부착하였다.
본 실시예에 따른 원적외선 방열패널의 제조과정은, 도 4 내지 도 6에 도시된 바와 같이, 원적외선 방열부(100)를 성형한 뒤 원적외선 방열부(100)의 전면에 원적외선 방사 코팅층(103)을 형성하는 단계와, 원적외선 방열부(100)의 배면에 히터(108)를 결합하는 단계를 포함한다.
먼저, 도 4에 도시된 바와 같이, 전면에 곡면부(101) 및 확산돌기(102)가 형성되고 배면에 보강리브(104), 걸림홈(105) 및 히터 결합부(106)가 형성되도록 원적외선 방열부(100)를 일체로 성형한 뒤 원적외선 방열부(100)의 전면에 원적외선 방사 코팅층(103)을 일정한 두께로 도포하여 형성한다.
여기서 원적외선 방열부(100)는 알루미늄 용융금속을 금형에 주입하는 다이캐스팅에 의해 성형되며, 원적외선 방사 코팅층(103)은 히터 결합부(106)에 결합되어 발열되는 히터(108)에 의해 원적외선 방열부(100)가 가열되는 경우 고온에서 견딜 수 있고 풍부한 양의 원적외선을 방사하도록 내열성 및 원적외선 방사효과가 우수한 원적외선 방사 코팅재를 사용한다.
도 5에 도시된 바와 같이, 원적외선 방열부(100)의 전면에 원적외선 방사 코팅층(103)이 형성되면, 원적외선 방열부(100)의 전면을 실리콘 재질의 받침부(10)로 지지한다. 이때, 원적외선 방열부(100)의 전면을 지지하는 받침부(10)의 표면은 원적외선 방열부(100)의 전면과 대응되는 곡면형상으로 형성하여 밀착성을 높이도록 한다.
도 6에 도시된 바와 같이, 원적외선 방열부(100)의 전면이 받침부(10)로 지지되면, 히터 결합부(106)의 결합홈(106A)에 유(U)자 형상의 히터를 삽입한 뒤 결합지지편(106B)의 자유단을 프레스(20) 가공에 의해 변형시켜 결합홈(106A)에 삽입된 히터(108)를 고정한다.
여기서, 본 실시예의 결합지지편(106B)은, 결합홈(106A)에 삽입된 히터(108)를 고정하도록 프레스(20)의 가공에 따라 히터(108)의 표면 일부를 감싸도록 변형되나, 본 발명의 다른 실시예로써 결합지지편(106B)은 히터(108)의 표면을 완전히 감싸도록 변형될 수도 있다.
이후, 히터(108)가 히터 결합부(106)에 고정되도록 결합되면, 히터(108)의 노출된 양단부를 내열실린더로 마감 처리함으로써 본 실시예의 원적외선 방열패널이 완성되는 것이다.
이와 같은 원적외선 방열패널의 제조과정에서, 원적외선 방열부(100)의 전면에 원적외선 방사 코팅층(103)을 형성하는 과정이 히터 결합부(106)에 히터(108)를 결합하는 과정보다 반드시 먼저 선행되어야 한다.
즉, 원적외선 방열부(100)의 히터 결합부(106)에 히터(108)를 결합한 뒤 원적외선 방사 코팅층(103)을 형성하게 되면, 코팅 작업시 발생하는 고온의 열처리로 인하여 히터(108)의 열선이 손상될 수 있기 때문이다.
이에 원적외선 방열부(100)에 원적외선 방사 코팅층(103)을 먼저 형성한 뒤 히터 결합부(106)에 히터(108)를 결합함으로써 히터(108)의 손상을 방지할 수 있게 된다.
본 실시예에 따른 원적외선 방열패널을 이용한 난방장치는, 도 7 및 도 8에 도시된 바와 같이, 전면이 개방되며 개방부에 원적외선 방열부(100)가 결합되도록 마련되는 케이스(110)와, 원적외선 방열부(100)의 열팽창 및 수축에 의한 변형을 방지하도록 마련되는 보강부(120)와, 원적외선 방열부(100)의 배면으로 방사되는 고온의 열을 케이스(110)의 전면 방향으로 반사하도록 마련되는 반사부(130)를 포함한다.
여기서 원적외선 방열부(100)는 전술한 실시예와 동일한 구성 및 기능을 갖는 것으로 동일한 부호를 부여하며 이하에서의 설명은 생략하기로 한다.
케이스(110)는, 본 실시예에 따른 난방 장치의 메인 프레임을 형성하는 것이며, 전면이 개방되도록 형성되어 있다. 케이스(110)의 개방부에는 원적외선 방열부(100)가 결합되어 있다.
케이스(110)는, 전면 양측에 원적외선 방열부(100)의 배면으로 방사되는 고온의 열을 반사부(130)로 반사하여 케이스의 전면 방향으로 배출하도록 일정한 폭으로 개방되는 열 배출통로(112)가 형성되어 있다.
열 배출통로(112)는, 원적외선 방열부(100)의 히터 결합부(106)에 결합된 히터(108)의 발열시 원적외선 방열부(100)의 배면으로 방사되는 고온의 열을 반사부(130)로 반사하여 케이스(110)의 전면 방향으로 배출하는 통로를 제공한다.
케이스(110)는, 전면의 하단부에 원적외선 방열부(100)의 온도 및 작동시간을 제어하도록 마련되는 제어부(114)가 형성되어 있다. 즉, 제어부(114)는 히터(108)의 작동을 제어한다.
여기서 제어부(114)는 외부로부터 입력되는 유·무선신호에 따라 작동되어 히터(108)의 온도 및 작동시간을 제어하는 것이며, 이러한 제어부(114)에 신호를 입력하여 히터(108)의 온도 및 시간을 제어하는 방식은 통상적으로 실시하고 있는 것이므로 이에 대한 상세한 설명은 생략하기로 한다.
보강부(120)는, 히터(108)에 의해 가열되는 원적외선 방열부(100)의 열팽창 및 수축에 의한 변형을 방지하도록 마련되는 것이며, 원적외선 방열부(100)의 배면에 일정간격 이격되어 결합되어 있다.
즉, 보강부(120)는 종 방향으로 배면 양측 가장자리에 원적외선 방열부(100)에 형성되는 걸림홈(105)과 대응되는 형상을 갖는 걸림돌기(122)가 형성되며, 걸림돌기(122)는 걸림홈(105)에 삽입되어 걸림됨으로써 원적외선 방열부(100)와 보강부(120)는 상호 견고하게 결합되게 된다.
보강부(120)는, 표면에 상하좌우로 상호 일정간격 이격 배치되는 다수의 통공(124)이 형성되어 있다. 통공(124)은 원적외선 방열부(100)와 보강부(120) 사이의 공기를 냉각시키고, 원적외선 방열부(100)의 배면 방향으로 방사되는 히터(108)의 열을 반사부(130)로 유도한다.
여기서 본 실시예의 난방장치는 원적외선 방열부(100)의 배면 방향으로 방사되는 열을 보강부(120)의 통공(124)을 통해 반사부(130)로 유도한 뒤 반사부(130)로 반사하여 케이스(110)의 전면 방향으로 배출되도록 함으로써 열의 손실을 줄일 수 있는 구조를 갖는다.
이러한 보강부(120)는 히터(108)의 가열에 따라 열팽창 및 수축되는 원적외선 방열부(100)의 변형이 최소화되도록 보강하는 역할을 담당한다.
반사부(130)는, 원적외선 방열부(100)의 배면 방향으로 방사되는 열을 케이스(110)의 전면 방향으로 반사하기 위해 케이스(110)의 내부에 상호 일정간격 이격 배치되어 마련되는 제1 반사판(132)과 제2 반사판(134)을 포함한다.
*제1 반사판(132)은, 원적외선 방열부(100)의 배면 방향으로 방사되는 열을 반사할 수 있도록 보강부(120)와 케이스(110) 사이에 배치되어 있다. 이러한 제1 반사판(132)은 원적외선 방열부(100)의 배면 방향으로 방사되고 통공(124)을 통과하는 열을 케이스(110)의 전면 방향으로 1차적으로 반사하는 역할을 담당한다.
제2 반사판(134)은, 제1 반사판(132)에 의해 반사되지 않은 열을 반사할 수 있도록 보강부(120)와 케이스(110) 사이에 제1 반사판(132)과 일정간격 이격 배치되어 있다. 이때, 제2 반사판(134)은 제1 반사판(132) 사이에 개재되는 다수의 간격유지블록(135)에 의해 일정간격 이격된다.
이러한 제2 반사판(134)은 열의 전도 및 통과에 의해 제1 반사판(132)으로 반사되지 않은 열을 케이스(110)의 전면 방향으로 2차적으로 반사하는 역할을 담당한다.
이와 같은 반사부(130)는, 원적외선 방열부(100)의 배면 방향으로 방사되는 열을 제1 반사판(132) 및 제2 반사판(134)에 의한 이중 반사구조에 의해 케이스(110)의 전면 방향으로 반사함으로써 원적외선 방열부(100)의 배면 방향으로 방사되는 열의 손실을 최소화할 수 있는 구조를 갖는다.
미설명 부호 ‘136’는 제2 반사판(134)과 케이스(110) 사이에 개재되는 단열블록을 나타낸 것이며, 단열블록(136)은 원적외선 방열부(100)의 배면 방향으로 방사되는 고온의 열이 제2 반사판(134)을 통해 케이스(110)로 전달되지 않도록 차단하기 위한 것이다.
이하, 도 9를 참조하여 본 실시예에 따른 원적외선 방열패널을 이용한 난방장치의 작용을 설명한다.
본 실시예의 원적외선 방열패널을 이용한 난방장치는 천장에 케이스(110)를 관통하는 고정나사로 고정 설치되거나 또는 천장에 체인에 의해 매달리도록 설치된다.
도 9에 도시된 바와 같이, 고온의 열 및 원적외선을 방사하도록 케이스(110)에 마련된 제어부(114)로 히터(108)를 작동시키면, 히터(108)가 발열되기 시작한다.
히터(108)가 발열되면, 히터 결합부(106)에 결합된 히터(108)에서 발생하는 열분포에 따라 히터(108)의 열이 원적외선 방열부(100)로 신속하게 전도되어 원적외선 방열부(100) 전체를 짧은 시간에 가열하게 된다.
즉, 원적외선 방열부(100)는 유(U)자 형상을 갖는 히터(108)의 열분포에 따라 열전도율을 높여 발열효과를 향상시킬 수 있게 된다.
원적외선 방열부(100)가 가열되면, 원적외선 방열부(100)를 가열하는 열은 곡면부(101) 및 확산돌기(102)를 통해 케이스(110)의 전면 방향으로 확산되도록 방사되어 설치공간 주변의 공기와 열 교환되어 주변을 따뜻함과 동시에 원적외선 방열부(100)의 전면에 형성된 원적외선 방사 코팅층(103)으로부터 풍부한 양의 원적외선이 주변으로 방사되게 된다.
즉, 원적외선 방열부(100)는 고온의 열 및 원적외선을 방사시 곡면부(101)에 의해 방사면적을 극대화할 수 있을 뿐만 아니라, 톱니형상의 확산돌기(102)에 의해 주변으로 넓게 확산시킬 수 있게 된다.
이상 설명한 바와 같이, 본 실시예에 따른 원적외선 방열패널을 이용한 난방장치는, 히터(108)의 열분포에 따라 원적외선 방열부(100)에 대한 열전도율을 높이고 전체를 신속하게 가열하여 전력소비를 줄이면서도 난방효과를 향상시킬 수 있다.
또한, 원적외선 방열부(100)의 전면에 형성된 곡면부(101) 및 확산돌기(102)에 의해 고온의 열 및 원적외선을 주변으로 확산시킴으로써 방사효율을 향상시킬 수 있다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안 되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.

Claims (12)

  1. 선형의 발열유닛이 한 번 이상 유(U)자형으로 굴곡져 형성된 히터가 일면에 장착되는 플레이트 형상의 방열패널로서,
    전면에는 원적외선 방사 코팅층이 마련되고 배면에는 상기 히터가 결합되어, 상기 히터로부터 열을 전달받아 전면으로 원적외선을 방사시키는 원적외선 방열부; 및
    상기 히터를 상기 원적외선 방열부에 결합시키기 위해, 상기 원적외선 방열부의 배면으로부터 돌출 형성된 결합지지편에 의해 형성되는 배면 방향으로 개방된 결합홈을 구비하되, 상기 결합홈은 상기 히터의 발열유닛의 간격만큼 이격되어 마련되는 히터 결합부;를 포함하는,
    원적외선 방열패널.
  2. 제1항에 있어서,
    상기 히터로부터 전달되는 열에 의한 휨 변형을 방지하기 위해, 상기 원적외선 방열부의 배면에 상호 일정 간격 이격되어 돌출 형성되는 다수의 보강리브를 더 포함하는,
    원적외선 방열패널.
  3. 제1항에 있어서,
    상기 원적외선 방열부는,
    상기 히터로부터 열을 전달받을 때 상기 히터의 표면의 열팽창 및 열수축 시점이 동일하게 진행될 수 있도록, 상기 히터의 표면과 동일한 소재로 형성되는 것을 특징으로 하는,
    원적외선 방열패널.
  4. 제1항에 있어서,
    상기 원적외선 방열부는,
    양측부에서 중앙부로 향할수록 볼록하게 돌출 형성되는 곡면부를 전면부에 포함하되, 상기 곡면부에는 원적외선을 확산시켜 방사하도록 톱니 형상을 갖는 다수의 확산 돌기가 돌출 형성되어 있는 것을 특징으로 하는,
    원적외선 방열패널.
  5. 제1항에 있어서,
    상기 히터 결합부는,
    상기 히터가 상기 결합홈에 삽입된 뒤 프레스의 가압에 따라 상기 결합지지편이 상기 히터의 표면을 감싸도록 변형됨으로써, 상기 히터를 상기 원적외선 방열부에 결합시키는 것을 특징으로 하는,
    원적외선 방열패널.
  6. 제1항 내지 제5항 중 어느 한 항의 원적외선 방열패널을 제조하는 방법으로서,
    상기 원적외선 방열부를 성형한 뒤 전면에 원적외선 방사 코팅층을 형성하는 단계; 및
    상기 히터를 상기 결합홈에 삽입시킨 뒤 상기 결합지지편을 변형시켜 상기 히터의 표면에 밀착시켜 상기 히터를 고정함으로써, 상기 히터를 상기 원적외선 방열부에 결합시키는 단계;를 포함하는,
    원적외선 방열패널의 제조방법.
  7. 제6항에 있어서,
    상기 히터를 상기 원적외선 방열부에 결합시키는 단계는,
    상기 원적외선 방열부의 전면을 실리콘 재질의 바침부로 지지한 이후에, 상기 결합지지편을 프레스 가공하여 변형시킴으로써 상기 결합지지편을 상기 히터의 표면에 밀착시키는 것을 특징으로 하는,
    원적외선 방열패널의 제조방법.
  8. 제1항 내지 제5항 중 어느 한 항의 원적외선 방열패널;
    전면이 개방되며 개방부에 상기 원적외선 방열부가 결합되도록 마련되는 케이스;
    상기 원적외선 방열부의 배면에 일정간격 이격되어 결합되며 상기 원적외선 방열부의 열팽창 및 수축에 의한 변형을 방지하도록 마련되는 보강부; 및
    상기 보강부의 배면에 배치되도록 상기 케이스에 결합되며 상기 원적외선 방열부의 배면 방향으로 방사되는 고온의 열을 상기 케이스의 전면 방향으로 반사하도록 마련되는 반사부;를 포함하는,
    원적외선 방열패널을 이용한 난방장치.
  9. 제8항에 있어서,
    상기 케이스는,
    전면 양측에 상기 원적외선 방열부의 배면으로 방사된 뒤 상기 반사부로 반사되는 고온의 열을 상기 케이스의 전면 방향으로 배출할 수 있도록, 일정한 폭으로 개방 형성되는 열 배출통로를 포함하는 것을 특징으로 하는,
    원적외선 방열패널을 이용한 난방장치.
  10. 제8항에 있어서,
    상기 보강부는,
    상기 원적외선 방열부의 배면으로 방사되는 고온의 열에 의해 가열되는 공기를 냉각시키도록 표면을 관통하는 다수의 통공을 포함하는 것을 특징으로 하는,
    원적외선 방열패널을 이용한 원적외선 난방장치.
  11. 제8항에 있어서,
    상기 반사부는,
    상기 보강부의 배면에 상호 일정간격 이격 배치되며 상기 원적외선 방열부의 배면 방향으로 방사되는 고온의 열을 이중 반사하도록 마련되는 제1 반사판 및 제2 반사판을 포함하는 것을 특징으로 하는,
    원적외선 방열패널을 이용한 난방장치.
  12. 제8항에 있어서,
    상기 케이스는,
    전면에 상기 원적외선 방열부의 온도 및 작동시간을 제어하도록 마련되는 제어부를 더 포함하는 것을 특징으로 하는,
    원적외선 방열패널을 이용한 난방장치.
PCT/KR2012/000717 2011-02-01 2012-01-31 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치 WO2012105787A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0009951 2011-02-01
KR1020110009951A KR101043542B1 (ko) 2011-02-01 2011-02-01 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치

Publications (2)

Publication Number Publication Date
WO2012105787A2 true WO2012105787A2 (ko) 2012-08-09
WO2012105787A3 WO2012105787A3 (ko) 2012-11-29

Family

ID=44405941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000717 WO2012105787A2 (ko) 2011-02-01 2012-01-31 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치

Country Status (2)

Country Link
KR (1) KR101043542B1 (ko)
WO (1) WO2012105787A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043474A1 (ko) * 2014-09-15 2016-03-24 주식회사 오알지비 텐트용 난방장치
EP3236162A1 (en) * 2016-04-22 2017-10-25 Caloray Pty Ltd An electric suspended radiant disk heater apparatus
EP3985324A1 (en) * 2020-10-16 2022-04-20 Smart Comfort, S.L. Far infrared heater

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200460142Y1 (ko) * 2011-08-25 2012-05-04 (주)금강티앤에이 잠열재를 포함하는 세라믹 바닥패널
KR101212305B1 (ko) 2012-08-13 2012-12-14 김용은 일체형 구조의 원적외선 히터용 방열패널
KR101348690B1 (ko) 2013-05-09 2014-01-10 전성훈 온수 순환형 황토매트
KR101651925B1 (ko) * 2015-10-22 2016-08-29 (주)썬레이텍 원적외선 방열패널 코팅용 조성물 및 이를 이용하여 제조된 원적외선 방열 패널
KR101804981B1 (ko) * 2017-03-21 2017-12-06 주식회사 에너지코리아 원적외선 복사난방장치
KR101936717B1 (ko) * 2018-07-03 2019-01-09 주식회사 에너지코리아 원적외선 인덕션 난방장치
CN109579117A (zh) * 2018-12-11 2019-04-05 长江润发中科(张家港)纳米科技有限公司 一种踢脚线式电取暖器
KR102230541B1 (ko) * 2019-06-12 2021-03-22 조승철 난방용 벽판넬
KR102113720B1 (ko) * 2019-11-29 2020-05-20 (주)블루오션코리아 열효율이 개선된 원적외선 난방장치
KR102342641B1 (ko) * 2020-08-21 2021-12-23 주식회사 보성산업 처짐방지 기능을 갖는 복사난방장치
KR20230140852A (ko) * 2022-03-30 2023-10-10 김정호 히터 교체가 용이한 고온형 난방기기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900011263Y1 (ko) * 1988-02-27 1990-12-22 김병훈 전기 구이기
KR200424376Y1 (ko) * 2006-06-07 2006-08-22 헤스본주식회사 전열기기용 원적외선 히팅 플레이트
KR100907284B1 (ko) * 2009-02-04 2009-07-13 이경욱 원적외선 난방장치
KR20100099003A (ko) * 2009-03-02 2010-09-10 이경욱 책상용 원적외선 난방장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470056B1 (ko) * 2000-11-25 2005-02-04 주식회사 포스코 법랑 밀착성이 우수한 직접 법랑용 냉연강판
KR200241027Y1 (ko) 2001-04-04 2001-10-11 상도전기공업 주식회사 난방용 히터 간격유지구
KR100842520B1 (ko) * 2002-09-14 2008-07-01 오리온피디피주식회사 대화면 디스플레이 장치 및 그 조립 방법
KR20090009170A (ko) * 2008-10-24 2009-01-22 주식회사 한국엠아이씨 알루미늄 피복 방식의 히팅 케이블 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900011263Y1 (ko) * 1988-02-27 1990-12-22 김병훈 전기 구이기
KR200424376Y1 (ko) * 2006-06-07 2006-08-22 헤스본주식회사 전열기기용 원적외선 히팅 플레이트
KR100907284B1 (ko) * 2009-02-04 2009-07-13 이경욱 원적외선 난방장치
KR20100099003A (ko) * 2009-03-02 2010-09-10 이경욱 책상용 원적외선 난방장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043474A1 (ko) * 2014-09-15 2016-03-24 주식회사 오알지비 텐트용 난방장치
EP3236162A1 (en) * 2016-04-22 2017-10-25 Caloray Pty Ltd An electric suspended radiant disk heater apparatus
US20170311386A1 (en) * 2016-04-22 2017-10-26 Caloray Pty Ltd Electric suspended radiant disk heater apparatus
US10743373B2 (en) 2016-04-22 2020-08-11 Caloray Pty Ltd Electric suspended radiant disk heater apparatus
EP3985324A1 (en) * 2020-10-16 2022-04-20 Smart Comfort, S.L. Far infrared heater

Also Published As

Publication number Publication date
WO2012105787A3 (ko) 2012-11-29
KR101043542B1 (ko) 2011-06-21

Similar Documents

Publication Publication Date Title
WO2012105787A2 (ko) 원적외선 방열패널 및 그 제조방법 및 이를 이용한 난방장치
WO2018164400A1 (en) Display device
KR100832990B1 (ko) 백라이트 모듈
WO2013075351A1 (zh) 一种背板、背光模组及液晶显示装置
WO2013037158A1 (zh) 复合型背光板、背光模组及液晶显示器
WO2013152512A1 (zh) 背光模组及液晶显示装置
WO2013103220A1 (ko) 디스플레이 장치용 백라이트 유닛의 광원장치
WO2013010365A1 (zh) 液晶显示装置的背光模组及液晶显示装置
TWI322301B (en) Backlight module and heat-dissipating structure thereof
WO2018072475A1 (zh) 电烤机
KR100886300B1 (ko) 가열 조리기
WO2020022558A1 (ko) 헤어드라이어
KR101028910B1 (ko) 원적외선 난방장치
JPH05212066A (ja) 歯科用炉
KR102230541B1 (ko) 난방용 벽판넬
CN219374416U (zh) 一种门体以及烹饪设备
EP0930466A3 (de) Zusatz-Heizeinrichtung
CN102057217A (zh) 照明器具
KR20070088096A (ko) 열전소자를 이용한 램프 반사 장치
TW533301B (en) Heating device
CN218178707U (zh) 一种可高效散热的投光灯
JP2797038B2 (ja) 液晶用照明装置
JP7237112B2 (ja) 熱処理オーブンの排気ダクト一体型ヒーターユニット
ITMI960608A1 (it) Pannello di riscaldo a struttura perfezionata in particolare per la realizzazione dei forni impiegati nelle stazioni di riscaldo di
WO2018230783A1 (ko) 압연 이송라인의 가열소재 보열설비 및 보열방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742316

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742316

Country of ref document: EP

Kind code of ref document: A2