WO2012105365A1 - 光学ユニットおよび撮像装置 - Google Patents

光学ユニットおよび撮像装置 Download PDF

Info

Publication number
WO2012105365A1
WO2012105365A1 PCT/JP2012/051404 JP2012051404W WO2012105365A1 WO 2012105365 A1 WO2012105365 A1 WO 2012105365A1 JP 2012051404 W JP2012051404 W JP 2012051404W WO 2012105365 A1 WO2012105365 A1 WO 2012105365A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
optical unit
positive power
image
Prior art date
Application number
PCT/JP2012/051404
Other languages
English (en)
French (fr)
Inventor
馬場 友彦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP12741614.7A priority Critical patent/EP2672305B1/en
Priority to CN201280004599.5A priority patent/CN103299229B/zh
Priority to KR1020137017275A priority patent/KR20130141633A/ko
Priority to US13/982,310 priority patent/US8953263B2/en
Publication of WO2012105365A1 publication Critical patent/WO2012105365A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • This technology relates to an optical unit and an imaging apparatus applied to an imaging device.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • All three examples have a first lens with a positive power and a high Abbe number, a second lens with a negative power and a low Abbe number, a third lens with a positive power and a high Abbe number, a negative power on the axis, In addition, it is composed of a fourth lens having a high Abbe number having a positive power off the axis.
  • a triplet type power arrangement is adopted from the first lens to the third lens, and the fourth lens functions to correct distortion and off-axis aberrations, and to keep the angle of light incident on the image sensor low.
  • Patent Documents 1, 2, and 3 have a high imaging performance, characterized by very small axial chromatic aberration, but have the widest angle and a total angle of view of 65 degrees. It is difficult to widen the angle.
  • the present technology is to provide an optical unit and an image pickup apparatus that can widen the entire angle of view while being small and low-cost.
  • the optical unit according to the first aspect of the present technology includes a first lens having a positive power, a second lens having a positive power, and a second lens having a positive power, which are sequentially arranged from the object side to the image plane side. 3 lenses and a negative power fourth lens.
  • An imaging apparatus includes an imaging element and an optical unit that forms a subject image on the imaging element, and the optical unit sequentially from the object side to the image plane side.
  • a positive power first lens, a positive power second lens, a positive power third lens, and a negative power fourth lens are disposed.
  • Example 1 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration. It is a figure which shows the structural example of the imaging lens which concerns on 2nd Embodiment. In Example 2, it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration. It is a block diagram which shows the structural example of the imaging device by which the imaging lens which concerns on this embodiment is employ
  • FIG. 1 is a diagram illustrating a configuration example of an imaging lens employing the optical unit according to the first embodiment.
  • the imaging lens 100 of the first embodiment includes a first lens 111, an aperture 112, a second lens 113, and a third lens arranged in order from the object side OBJS toward the image plane side.
  • a lens 114 and a fourth lens 115 are included.
  • the imaging lens 100 further includes a cover glass 120 and an imaging plane (hereinafter referred to as an image plane) 130 that are sequentially arranged from the object side OBJS toward the image plane side.
  • the imaging lens 100 is formed as a single focus lens.
  • a diaphragm 112 is disposed between the first lens 111 and the second lens 113.
  • the imaging surface 130 is an imaging surface (image receiving surface) of a solid-state imaging device such as a CCD sensor or a CMOS sensor.
  • the cover glass 120 is disposed between the image surface side surface of the fourth lens 115 and the image surface 130.
  • an optical member may be disposed in addition to a cover glass 120 formed of resin or glass, an infrared cut filter, a low-pass filter, or the like.
  • optical components such as a phase mask, a coded aperture, a liquid crystal shutter, and a variable aperture may be disposed near the aperture.
  • the left side is the object side (front)
  • the right side is the image plane side (rear).
  • a light beam incident from the object side forms an image on the image plane 130.
  • the imaging lens 100 is formed by a lens having a four-group four-lens configuration.
  • the first lens 111 is a positive power lens.
  • the second lens 113 is a positive power lens.
  • the third lens 114 is formed of a positive power lens.
  • the fourth lens 115 is formed by a negative power lens.
  • the first lens 111 has a shape in which the curvature radius of the object side surface is smaller than the absolute value of the curvature radius of the image side surface.
  • the stop 112 it is an intermediate stop and the stop comes closer to the object side, thereby taking an optimum configuration for aberration correction and suppressing the incident angle to the sensor.
  • the second lens 113 has a positive power
  • the first lens 111 and the second lens 113 have a shape close to the target with respect to the stop 112, and correct the spherical aberration, off-axis coma, astigmatism, and distortion to wide angle. Take the best shape for the lens.
  • the third lens 114 and the fourth lens 115 correct the chromatic aberration.
  • the third lens 114 has positive power
  • the fourth lens 115 has negative power
  • the Abbe number ⁇ dL3 of the third lens 114 is larger than the Abbe number ⁇ dL4 of the fourth lens 115 ( ⁇ dL4 ⁇ ⁇ dL3).
  • the third lens 114 and the fourth lens 115 are reversed in sign, but the power is the same.
  • the imaging lens 100 of the present embodiment can realize an optical system that can widen the entire field angle to about 80 degrees while having a high imaging performance with a four-group configuration.
  • the imaging lens 100 of the present embodiment which is a single focus lens, is configured to satisfy the following conditional expressions (1) to (4).
  • Conditional expression (1) is a conditional expression related to bending of the first lens 111.
  • the lens becomes close to a biconvex lens, and off-axis coma and astigmatism become large, and desirable camera performance cannot be obtained.
  • the upper limit is exceeded, the spherical aberration increases and the desired camera performance cannot be obtained.
  • Conditional expression (2) is a conditional expression related to the power of the second lens 113. If the lower limit is exceeded, the power becomes too strong, the manufacturing tolerance becomes narrower, the productivity is deteriorated, and spherical aberration is generated and desirable camera characteristics are obtained. It becomes impossible to take. If the upper limit is exceeded, the objectivity with the first lens 111 will be lost, and off-axis coma and astigmatism will increase, making it impossible to achieve desirable camera performance.
  • Conditional expression (3) is a conditional expression regarding the ratio of the power of the third lens 114 and the fourth lens 115. If the lower limit is exceeded, correction of chromatic aberration is weakened, and distortion occurs and desired camera characteristics cannot be obtained. If the upper limit is exceeded, the power of the third lens 114 becomes too strong, the manufacturing tolerance becomes narrow and the productivity deteriorates, and at the same time, spherical aberration and distortion occur, and the desired camera characteristics cannot be obtained.
  • Conditional expression (4) is a conditional expression related to the Abbe number of the second lens 113, and when the lower limit is exceeded, off-axis coma and astigmatism increase and desired camera performance cannot be obtained.
  • the upper limit is determined because there is no lens material that can be manufactured by a mold manufacturing method with an Abbe number exceeding 70.
  • conditional expression (5) is satisfied.
  • the third lens 114 has positive power
  • the fourth lens 115 has negative power
  • the conditional expression (5) indicates that the Abbe number ⁇ dL3 of the third lens 114 is larger than the Abbe number ⁇ dL4 of the fourth lens 115. Is required to be large. This condition becomes an achromatic condition and corrects chromatic aberration.
  • conditional expressions (1) to (5) are common to the first and second embodiments, which will be described below, and by adopting them as necessary, more preferable results suitable for individual imaging elements or imaging apparatuses. Image performance and a compact optical system are realized.
  • the aspherical shape of the lens is as follows when the direction from the object side to the image plane side is positive, k is a conical coefficient, A, B, C, and D are aspherical coefficients, and r is a central radius of curvature. It is represented by y represents the height of the light beam from the optical axis, and c represents the reciprocal (1 / r) of the central curvature radius r.
  • X is the distance from the tangent plane to the aspheric vertex
  • A is the fourth-order aspheric coefficient
  • B is the sixth-order aspheric coefficient
  • C is the eighth-order aspheric coefficient
  • D is the tenth-order aspheric coefficient. Each aspheric coefficient is shown.
  • FIG. 2 is a diagram showing surface numbers given to the lenses constituting each lens group of the imaging lens according to the present embodiment and the cover glass constituting the imaging unit.
  • the diaphragm 112 is not considered.
  • No. 1 is assigned to the object side surface (convex surface) of the first lens 111
  • No. 2 surface number is assigned to the image side surface of the first lens 111
  • a third surface number is assigned to the object side surface of the second lens 113
  • a fourth surface number is assigned to the image surface side surface of the second lens 113.
  • the fifth lens number is assigned to the object side surface of the third lens 114
  • the sixth surface number is assigned to the image surface side surface of the third lens 114.
  • No. 7 is assigned to the object side surface of the fourth lens 115 and No. 8 is assigned to the image side surface of the fourth lens 115.
  • No. 9 is assigned to the object side surface of the cover glass 120
  • No. 10 is assigned to the image side.
  • the central curvature radius of the object side surface (first) 1 (L1S1) of the first lens 111 is set to R1 (RL1S1).
  • the center curvature radius of the image surface side surface 2 (L1S2) of the first lens 111 is set to R2 (RL1S2).
  • the center curvature radius of the object side surface of the second lens 113 is set to R3, and the curvature radius of the image surface side surface of the second lens 113 is set to R4.
  • the center curvature radius of the object side surface of the third lens 114 is set to R5, and the curvature radius of the image surface side surface of the third lens 114 is set to R6.
  • the center radius of curvature of the object side surface of the fourth lens 115 is set to R7, and the radius of curvature of the image side surface of the fourth lens 115 is set to R8.
  • the center curvature radius of the object side surface 9 of the cover glass 120 is set to R9, and the center curvature radius of the image side surface is set to r10.
  • the central curvature radii R9 and R10 of the surface 9 and the surface 10 are infinite (INFINITY).
  • the distance on the optical axis OX between the surface 1 and the surface 2 that is the thickness of the first lens 111 is d1
  • the object surface side surface 2 of the first lens 111 and the object of the second lens 113 The distance on the optical axis OX between the side surfaces 3 is set to d2.
  • the distance on the optical axis OX between the surface 3 and the surface 4 that is the thickness of the second lens 113 is d3, and on the optical axis OX between the image surface side surface 4 of the second lens 113 and the object side surface 5 of the third lens 114.
  • the distance is set to d4.
  • the distance on the optical axis OX between the surface 5 and the surface 6 serving as the thickness of the third lens 114 is d5
  • the distance between the image side surface 6 of the third lens 114 and the object side surface 7 of the fourth lens 115 is on the optical axis OX.
  • the distance is set to d6.
  • the distance on the optical axis OX between the surface 7 and the surface 8 that is the thickness of the fourth lens 115 is d7
  • the distance on the optical axis OX between the image surface side surface 8 of the fourth lens 115 and the object side surface 9 of the cover glass 120 is set to d8.
  • the distance on the optical axis OX between the surface 9 and the surface 10 that is the thickness of the cover glass 120 is set to d9.
  • Examples 1 and 2 are shown below. Examples 1 and 2 are design examples of an imaging lens for a 3M CMOS imager having a 1/5 size and a pitch of 1.4 ⁇ m.
  • Example 1 Example 1 according to specific numerical values of the imaging lens will be described below.
  • surface numbers as shown in FIG. 2 are given to the lenses of the imaging lens 100 and the cover glass 120 constituting the imaging unit.
  • the first embodiment of the imaging lens 100 is a design example of an imaging lens for a 3M CMOS imager having a 1/5 size and a 1.4 ⁇ m pitch as described above.
  • the first lens 111 having a positive power
  • the aperture 112 having a positive power
  • the third lens 114 having a positive power
  • the negative power in order from the object side.
  • the fourth lens 115 is used.
  • the first lens 111 is a positive meniscus lens having a convex surface facing the object side, has a bending factor of 1.24, has a principal point position close to the stop, and has a shape that well corrects off-axis coma and astigmatism. .
  • the paraxial focal length of the second lens 113 is 5.34 mm, which is substantially equivalent to the paraxial focal length of 5.33 mm of the first lens 111, and the target system is formed by the first lens 111 and the second lens 113. Correct off-axis coma and astigmatism.
  • the paraxial focal length of the third lens 114 is 1.14 mm, the d-line Abbe number is 40.1, the paraxial focal length of the fourth lens 115 is ⁇ 0.94 mm, and the Abbe number is 29.0. Thus, since the absolute values of the power are almost equal, the occurrence of distortion is suppressed.
  • the lens has a large aberration correction capability and realizes a wide angle of 78 degrees in total angle of view while being a bright lens of Fno 2.8.
  • the first lens 111 is made of plastic
  • the second lens 113 is made of plastic
  • the third lens 114 is made of glass
  • the fourth lens 115 is made of plastic, so that the temperature dependence of the focal length is small and the temperature characteristics are also excellent. Thereby, it becomes a lens suitable for a fixed focus camera module.
  • Table 1 Table 2, Table 3, and Table 4 show the numerical values of Example 1. Each numerical value in the first embodiment corresponds to the imaging lens 100 in FIG.
  • Table 1 shows each lens corresponding to each surface number of the imaging lens in Example 1, a cover glass constituting the imaging unit, a radius of curvature (R: mm), an interval (d: mm), and a refractive index (nd) of the image surface. ) And the dispersion value ( ⁇ d).
  • Table 2 shows four of the surfaces 1 and 2 of the first lens 111, the surfaces 3 and 4 of the second lens 113, the surfaces 5 and 6 of the third lens 114, and the surfaces 7 and 8 of the fourth lens 115 in Example 1. Next, 6th, 8th and 10th order aspherical coefficients are shown.
  • K is the conic constant
  • A is the fourth-order aspheric coefficient
  • B is the sixth-order aspheric coefficient
  • C is the eighth-order aspheric coefficient
  • D is the tenth-order aspheric coefficient. Represents.
  • Table 3 specifically shows the focal length f, the numerical aperture F, the half angle of view ⁇ , and the lens length H of the imaging lens 100 according to the first embodiment.
  • the focal length f is set to 2.25 [mm]
  • the numerical aperture F is set to 2.8
  • the half angle of view ⁇ is set to 39.0 deg
  • the lens length H is set to 4.0 [mm].
  • Table 4 shows that, in Example 1, the above conditional expressions (1) to (4) are satisfied.
  • the bending factor qL1 of the first lens 111 is set to 1.24, which satisfies the condition defined by the conditional expression (1).
  • the power f2 / f of the second lens 113 is set to 2.37, which satisfies the condition defined by the conditional expression (2).
  • the power ratio f3 / f4 of the third lens 114 and the fourth lens 115 is set to ⁇ 1.12, which satisfies the condition defined by the conditional expression (3).
  • the Abbe number ⁇ dL2 of the second lens 113 is set to 56.0, which satisfies the condition defined by the conditional expression (4).
  • FIG. 3 is an aberration diagram showing spherical aberration (chromatic aberration), astigmatism, and distortion in Example 1.
  • 3A shows spherical aberration (chromatic aberration)
  • FIG. 3B shows astigmatism
  • FIG. 3C shows distortion.
  • an imaging lens including an optical unit excellent in imaging performance can be obtained in which various spherical, astigmatism, and distortion aberrations are well corrected.
  • FIG. 4 is a diagram illustrating a configuration example of the imaging lens according to the second embodiment.
  • the imaging lens 100A according to the second embodiment shown in FIG. 4 and the imaging lens 100 according to the first embodiment shown in FIG. 1 have the same basic configuration, and as shown as Example 2 below.
  • the setting values of the parameters of each component are different. Therefore, detailed description of the imaging lens 100A is omitted here.
  • Example 2 according to specific numerical values of the imaging lens is shown below.
  • surface numbers as shown in FIG. 2 are assigned to the lenses of the imaging lens 100A and the cover glass 120 constituting the imaging unit.
  • the second embodiment of the imaging lens 100A is a design example of an imaging lens for a 3M CMOS imager having a 1/5 size and a 1.4 ⁇ m pitch as described above.
  • a first lens 111 having a positive power
  • an aperture 112 a second lens 113 having a positive power
  • a third lens 114 having a positive power
  • a fourth lens having a negative power. It is formed by the lens 115.
  • the first lens 111 is a positive meniscus lens having a convex surface toward the object side, and has a bending factor of 1.004.
  • the principal point is close to the stop and has a shape that well corrects off-axis coma and astigmatism.
  • the paraxial focal length of the second lens 113 is 4.27 mm, which is substantially equivalent to the paraxial focal length of 5.29 mm of the first lens 111, and the target system is formed by the first lens 111 and the second lens 113. Correct off-axis coma and astigmatism.
  • the paraxial focal length of the third lens 114 is 1.17 mm, the d-line Abbe number is 37.3, the paraxial focal length of the fourth lens 115 is ⁇ 0.91 mm, and the Abbe number is 29.0. Thus, since the absolute values of the power are almost equal, the occurrence of distortion is suppressed.
  • the first lens 111 is made of plastic
  • the second lens 113 is made of plastic
  • the third lens 114 is made of glass
  • the fourth lens 115 is made of plastic, so that the temperature dependence of the focal length is small and the temperature characteristics are also excellent. Thereby, it becomes a lens suitable for a fixed focus camera module.
  • Table 5, Table 6, Table 7, and Table 8 show the numerical values of Example 2. Each numerical value of Example 2 corresponds to the imaging lens 100A of FIG.
  • Table 5 shows each lens corresponding to each surface number of the imaging lens in Example 2, the cover glass constituting the imaging unit, the curvature radius (R: mm), the interval (d: mm), and the refractive index (nd) of the image surface. ) And the dispersion value ( ⁇ d).
  • Table 6 shows 4 of the surfaces 1 and 2 of the first lens 111, the surfaces 3 and 4 of the second lens 113, the surfaces 5 and 6 of the third lens 114, and the surfaces 7 and 8 of the fourth lens 115 in Example 2. Next, 6th, 8th and 10th order aspherical coefficients are shown.
  • K is a conic constant
  • A is a fourth-order aspheric coefficient
  • B is a sixth-order aspheric coefficient
  • C is an eighth-order aspheric coefficient
  • D is a tenth-order aspheric coefficient. Represents.
  • Table 7 specifically shows the focal length f, the numerical aperture F, the half angle of view ⁇ , and the lens length H of the imaging lens 100A in the second embodiment.
  • the focal length f is set to 2.26 [mm]
  • the numerical aperture F is set to 2.8
  • the half angle of view ⁇ is set to 38.7 deg
  • the lens length H is set to 4.0 [mm].
  • Table 8 shows that, in Example 2, the above conditional expressions (1) to (4) are satisfied.
  • the bending factor qL1 of the first lens 111 is set to 1.004, which satisfies the condition defined by the conditional expression (1).
  • the power f2 / f of the second lens 113 is set to 1.89, which satisfies the condition defined by conditional expression (2).
  • the power ratio f3 / f4 between the third lens 114 and the fourth lens 115 is set to -1.29, which satisfies the condition defined by the conditional expression (3).
  • the Abbe number ⁇ dL2 of the second lens 113 is set to 56.0, which satisfies the condition defined by the conditional expression (4).
  • FIG. 5 is an aberration diagram showing spherical aberration (chromatic aberration), astigmatism, and distortion in Example 2.
  • 5A shows spherical aberration (chromatic aberration)
  • FIG. 5B shows astigmatism
  • FIG. 5C shows distortion.
  • an imaging lens including an optical unit in which various aberrations such as spherical surface, astigmatism, and distortion are well corrected and excellent in imaging performance.
  • the fourth lens 115 having a negative power is formed.
  • the first lens 111 and the second lens 113 have a shape close to the target with respect to the stop 112, and correct for spherical aberration, off-axis coma, astigmatism, and distortion to obtain an optimum shape for a wide-angle lens.
  • the third lens 114 has a positive power
  • the fourth lens 115 has a negative power
  • the Abbe number of the third lens is larger than that of the fourth lens. to correct.
  • the positive and negative of the third lens 114 and the fourth lens 115 are reversed, but the power is the same. As a whole, it is possible to realize a bright lens that has a large aberration correction capability that is optimal for a wide-angle lens and that has an optimal light incident angle for a CMOS sensor or CCD sensor.
  • an optical system capable of widening up to an entire field angle of about 80 degrees while having high imaging performance with a four-group configuration, and a compact and compact wide-angle lens can be realized.
  • the angle up to about 23 mm per single lens.
  • the optical distortion can be suppressed to about 2.2 [%].
  • temperature defocusing can be suppressed.
  • Axial chromatic aberration can be reduced. Deep depth of field and no temperature defocus, ideal for barcode reading.
  • the imaging lenses 100 and 100A having the characteristics as described above can be applied as digital cameras using imaging elements such as CCDs and CMOS sensors, particularly as camera lenses mounted on small electronic devices such as mobile phones. .
  • FIG. 6 is a block diagram illustrating a configuration example of an imaging apparatus in which an imaging lens including the optical unit according to the present embodiment is employed.
  • the imaging apparatus 200 includes an optical system 210 to which the imaging lenses 100 and 100A according to the present embodiment are applied, and an imaging device 220 to which a CCD or a CMOS image sensor (solid-state imaging device) can be applied.
  • the optical system 210 guides incident light to an imaging surface including a pixel region of the imaging device 220 and forms a subject image.
  • the imaging apparatus 200 further includes a drive circuit (DRV) 230 that drives the imaging device 220 and a signal processing circuit (PRC) 240 that processes an output signal of the imaging device 220.
  • DDV drive circuit
  • PRC signal processing circuit
  • the drive circuit 230 includes a timing generator (not shown) that generates various timing signals including a start pulse and a clock pulse that drive a circuit in the imaging device 220, and drives the imaging device 220 with a predetermined timing signal. .
  • the signal processing circuit 240 performs predetermined signal processing on the output signal of the imaging device 220.
  • the image signal processed by the signal processing circuit 240 is recorded on a recording medium such as a memory.
  • the image information recorded on the recording medium is hard copied by a printer or the like. Further, the image signal processed by the signal processing circuit 240 is displayed as a moving image on a monitor including a liquid crystal display or the like.
  • the above-described imaging lenses 100 and 100A are mounted as the optical system 210, thereby realizing a highly accurate camera with low power consumption.
  • this technique can also take the following structures.
  • [1] Arranged in order from the object side to the image plane side, A first lens of positive power; A second lens of positive power; A third lens with positive power; A negative fourth lens, An optical unit.
  • f3 Focal length of the third lens
  • f4 Focal length of the fourth lens
  • the Abbe number ⁇ dL2 of the second lens satisfies the following conditional expression.
  • the first lens is made of plastic
  • the second lens is made of plastic
  • the third lens is made of a glass lens
  • the fourth lens is made of plastic
  • Optical unit. [7] The optical unit according to any one of [1] to [6], wherein a diaphragm is disposed between the first lens and the second lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 小型かつ低コストでありながら、全画角を広くすることができる光学ユニットおよび撮像装置を提供する。撮像レンズ100は、物体側OBJSから像面側に向かって順番に配置された、物体側から像面側に向かって順番に配置された、正のパワーの第1レンズ111と、正のパワーの第2レンズ113と、正のパワーの第3レンズ114と、負のパワーの第4レンズ115と、を有する。

Description

光学ユニットおよび撮像装置
 本技術は、撮像機器に適用される光学ユニットおよび撮像装置に関するものである。
 近年の携帯電話やパーソナルコンピュータ(PC)等に搭載される撮像機器には、高解像度・ローコスト・小型化が強く求められている。
 CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子のセルピッチが劇的に小さくなり、光学系には通常光学系よりも光学収差、特に軸上色収差を抑えた高い結像性能が要求される。
 現在、携帯電話用のハイエンド機種には4群4枚構成の光学系が採用されている場合が多い。
 そのようなカメラモジュールのレンズ設計例は、特許文献1,2,3等に開示されている。
 3例とも、正のパワーで高いアッベ数の第1レンズ、負のパワーで低いアッベ数の第2レンズ、正のパワーで高いアッベ数の第3レンズ、軸上で負のパワーを有し、かつ軸外で正のパワーを有する高いアッベ数の第4レンズより構成される。
 第1レンズから第3レンズでトリプレット型パワー配置を取り、第4レンズが歪曲収差および軸外収差を補正して、撮像素子に入射する光線の角度を低く抑える働きをしている。
特開2007‐219079号公報 特開2008‐33376号公報 特開2008‐185807号公報
 ところが、特許文献1,2,3に開示されている技術では、軸上色収差が非常に小さいことが特徴で高い結像性能を有しているが、最も広角のもので全画角が65度程度であり、広角化が困難である。
 本技術は、小型かつ低コストでありながら、全画角を広くすることができる光学ユニットおよび撮像装置を提供することにある。
 本技術の第1の観点の光学ユニットは、物体側から像面側に向かって順番に配置された、正のパワーの第1レンズと、正のパワーの第2レンズと、正のパワーの第3レンズと、負のパワーの第4レンズと、を有する。
 本技術の第2の観点の撮像装置は、撮像素子と、上記撮像素子に被写体像を結像する光学ユニットと、を有し、上記光学ユニットは、物体側から像面側に向かって順番に配置された、正のパワーの第1レンズと、正のパワーの第2レンズと、正のパワーの第3レンズと、負のパワーの第4レンズと、を含む。
 本技術によれば、小型かつ低コストでありながら、全画角を広くすることができる利点がある。
第1の実施形態に係る撮像レンズの構成例を示す図である。 本実施形態に係る撮像レンズの各レンズ群を構成する各レンズ、撮像部を構成するカバーガラス、像面に対して付与した面番号を示す図である。 実施例1において、球面収差、非点収差、および歪曲収差を示す収差図である。 第2の実施形態に係る撮像レンズの構成例を示す図である。 実施例2において、球面収差、非点収差、および歪曲収差を示す収差図である。 本実施形態に係る撮像レンズが採用される撮像装置の構成例を示すブロック図である。
 以下、本技術の実施形態を添付図面に関連付けて説明する。
 なお、説明は以下の順序で行う。
1.第1の実施形態(光学ユニットを採用した撮像レンズの第1の構成例)
2.第2の実施形態(光学ユニットを採用した撮像レンズの第2の構成例)
3.第3の実施形態(撮像装置の構成例)
<1.第1の実施形態>
 図1は、本第1の実施形態に係る光学ユニットを採用した撮像レンズの構成例を示す図である。
 本第1の実施形態の撮像レンズ100は、図1に示すように、物体側OBJSから像面側に向かって順番に配置された、第1レンズ111、絞り112、第2レンズ113、第3レンズ114、および第4レンズ115を有する。
 撮像レンズ100は、さらに、物体側OBJSから像面側に向かって順番に配置された、カバーガラス120、および結像面(以下、像面という)130を有する。
 この撮像レンズ100は、単焦点レンズとして形成されている。
 そして、本実施形態では、第1レンズ111と第2レンズ113との間に、絞り112が配置されている。
 単焦点レンズである撮像レンズ100において、像面130は、CCDセンサやCMOSセンサ等の固体撮像素子の撮像面(受像面)が配置されることを想定している。
 カバーガラス120は、第4レンズ115の像面側面と像面130との間に配置されている。第4レンズ115の像面側面と像面130との間には、樹脂またはガラスで形成されるカバーガラス120や赤外カットフィルタやローパスフィルタなどの他、光学部材が配置されていてもよい。
 また、絞り近傍には、位相マスク(phasemask)やコーディッドアパーチャー(Coded aperture)や液晶シャッタや可変絞り等の光学部品が配置されてもよい。
 なお、本実施形態では、図1において、左側が物体側(前方)であり、右側が像面側(後方)である。
 そして、物体側から入射した光束は像面130上に結像される。
以下、本実施形態の撮像レンズの構成とその作用について説明する。
 本撮像レンズ100は、4群4枚構成のレンズで形成されている。
 第1レンズ111は、正のパワーのレンズにより形成されている。
 第2レンズ113は、正のパワーのレンズにより形成されている。
 第3レンズ114は、正のパワーのレンズにより形成されている。
 第4レンズ115は、負のパワーレンズにより形成されている。
 ここで、第1レンズ111は、物体側の面の曲率半径が像側の面の曲率半径の絶対値よりも小さくなる形状になる。次に、絞り112が配置されることにより、中絞りであることと絞りが物体側にくることにより、収差補正とセンサに対する入射角を抑えるのに最適な構成をとる。
 第2レンズ113は正のパワーとなり、第1レンズ111と第2レンズ113が絞り112に対して対象に近い形状となり、球面収差と軸外のコマ収差と非点収差およびディストーションを補正して広角レンズに最適な形状をとる。
 しかしこのままでは、色収差は補正できないので、近年の微細化したピクセルピッチに対応できないことから、第3レンズ114と第4レンズ115で色収差を補正する。
 第3レンズ114は正のパワー、第4レンズ115は負のパワーで第3レンズ114のアッベ数νdL3は第4レンズ115のアッベ数νdL4に比べて大きく(νdL4≦νdL3)、色消し条件となり色収差を補正する。
 また、ディストーションを押さえるために、第3レンズ114と第4レンズ115は正負が反転するが、パワーは同じくらいになる。
 これらの作用で全体として、広角レンズに最適な大きな収差の補正能力を持ち、CMOSセンサやCCDセンサに最適な光線入射角度を有し、明るいレンズを実現する。
 本実施形態の撮像レンズ100は、4群構成で高い結像性能を有しながら、全画角80度程度まで広くできる光学系を実現可能である。
 そして、単焦点レンズである本実施形態の撮像レンズ100は、以下の条件式(1)~(4)を満足するように構成されている。
 条件式(1)は、第1レンズ111のベンディングに関する条件式である。
 条件式(1)の下限を超えると、両凸レンズに近くなり、軸外のコマ収差と非点収差が大きくなり望ましいカメラ性能をとれなくなる。上限を超えると球面収差が大きくなり望ましいカメラ性能をとれなくなる。
[数1]
  0.66 ≦ qL1 ≦ 50        (1)
   qL1 : 第1レンズのベンディングファクター
   qL1=(RL1S2+RL1S1)/(RL1S2-RL1S1)
 RL1S1 : 第1レンズ111の第1面L1S1の曲率半径
 RL1S2 : 第1レンズ111の第2面L1S2の曲率半径
 条件式(2)は、第2レンズ113のパワーに関する条件式で、下限を超えるとパワーが強くなりすぎて製造トレランスが狭くなり生産性が悪くなりかつ、球面収差が発生して望ましいカメラ特性がとれなくなる。上限を超えると第1レンズ111との対象性がくずれ、軸外のコマ収差と非点収差が大きくなり望ましいカメラ性能をとれなくなる。
[数2]
   1.0 ≦ f2/f ≦ 1000     (2)
     f : レンズ系全体の焦点距離
      f2: 第2レンズの焦点距離
 条件式(3)は、第3レンズ114と第4レンズ115のパワーの比率に関する条件式で、下限を超えると色収差の補正が弱くなり、かつ、ディストーションが発生し望ましいカメラ特性が得られない。上限を超えると第3レンズ114のパワーが強くなりすぎて製造トレランスが狭くなり生産性が悪くなると同時に球面収差とディストーションが発生して望ましいカメラ特性が得られない。
[数3]
    -5 ≦ f3/f4 ≦ -0.4   (3)
     f3: 第3レンズの焦点距離
     f4: 第4レンズの焦点距離
 条件式(4)は、第2レンズ113のアッベ数に関する条件式で、下限を超えると、軸外のコマ収差と非点収差が大きくなり望ましいカメラ性能をとれなくなる。上限は、アッベ数70を超えるモールド製法で製作できるレンズ材料がないので、値が決まる。
[数4]
    40 ≦ νdL2 ≦ 70      (4)
  νdL2 : 第2レンズのアッベ数
 条件式(1)~(4)に加えて、下記の条件式(5)を満足する。
 前述したように、第3レンズ114は正のパワー、第4レンズ115は負のパワーで、条件式(5)は、第3レンズ114のアッベ数νdL3は第4レンズ115のアッベ数νdL4に比べて大きいことを条件としている。この条件は、色消し条件となり色収差を補正する。
[数5]
   νdL4 ≦ νdL3          (5)
 上記の条件式(1)~(5)は、以下で取り扱う実施例1,2に共通するものであり、必要に応じて適宜採用することで、個々の撮像素子または撮像装置に適したより好ましい結像性能とコンパクトな光学系が実現される。
 なお、レンズの非球面の形状は、物体側から像面側へ向かう方向を正とし、kを円錐係数、A、B、C、Dを非球面係数、rを中心曲率半径としたとき次式で表される。yは光軸からの光線の高さ、cは中心曲率半径rの逆数(1/r)をそれぞれ表している。
 ただし、Xは非球面頂点に対する接平面からの距離を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
Figure JPOXMLDOC01-appb-M000001
 図2は、本実施形態に係る撮像レンズの各レンズ群を構成する各レンズ、撮像部を構成するカバーガラスに対して付与した面番号を示す図である。
 なお、ここでは絞り112については考慮されていない。
 具体的には、第1レンズ111の物体側面(凸面)に第1番、第1レンズ111の像面側面に第2番の面番号が付与されている。
 第2レンズ113の物体側面に第3番、第2レンズ113の像面側面に第4番の面番号が付与されている。
 第3レンズ114の物体側面に第5番、第3レンズ114の像面側面に第6番の面番号が付与されている。
 第4レンズ115の物体側面に第7番、第4レンズ115の像面側面に第8番の面番号が付与されている。
 カバーガラス120の物体側面に第9番、像面側に第10番の面番号が付与されている。
 また、図2に示すように、本実施形態の撮像レンズ100において、第1レンズ111の物体側面(第1番)1(L1S1)の中心曲率半径はR1(RL1S1)に設定される。第1レンズ111の像面側面2(L1S2)の中心曲率半径はR2(RL1S2)に設定される。
 第2レンズ113の物体側面の中心曲率半径はR3に設定され、第2レンズ113の像面側面の曲率半径はR4に設定される。
 第3レンズ114の物体側面の中心曲率半径はR5に設定され、第3レンズ114の像面側面の曲率半径はR6に設定される。
 第4レンズ115の物体側面の中心曲率半径はR7に設定され、第4レンズ115の像面側面の曲率半径はR8に設定される。
 カバーガラス120の物体側面9の中心曲率半径はR9に設定され、像面側面の中心曲率半径はr10に設定される。
 なお、面9および面10の中心曲率半径R9およびR10は無限(INFINITY)である。
 また、図2に示すように、第1レンズ111の厚さとなる面1と面2間の光軸OX上の距離がd1に、第1レンズ111の像面側面2と第2レンズ113の物体側面3間の光軸OX上の距離がd2に設定される。
 第2レンズ113の厚さとなる面3と面4間の光軸OX上の距離がd3に、第2レンズ113の像面側面4と第3レンズ114の物体側面5間の光軸OX上の距離がd4に設定される。
 第3レンズ114の厚さとなる面5と面6間の光軸OX上の距離がd5に、第3レンズ114の像面側面6と第4レンズ115の物体側面7間の光軸OX上の距離がd6に設定される。
 第4レンズ115の厚さとなる面7と面8間の光軸OX上の距離がd7に、第4レンズ115の像面側面8とカバーガラス120の物体側面9間の光軸OX上の距離がd8に設定される。
 カバーガラス120の厚さとなる面9と面10間の光軸OX上の距離がd9に設定される。
 以下に、実施例1,2を示す。実施例1,2は、1/5サイズ・1.4μmピッチの3M用CMOSイメージャ用撮像レンズの設計例である。
[実施例1]
 以下に、撮像レンズの具体的な数値による実施例1を示す。なお、実施例1においては、撮像レンズ100の各レンズ、撮像部を構成するカバーガラス120に対して、図2に示すような面番号が付与されている。
 撮像レンズ100における実施例1は、前述したように、1/5サイズ・1.4μmピッチの3M用CMOSイメージャ用撮像レンズの設計例である。
 図1および図2に示すように、物体側から順に物体側に正のパワーの第1レンズ111、絞り112、正のパワーの第2レンズ113、正のパワーの第3レンズ114、負のパワーの第4レンズ115により構成されることを特徴とする。
 第1レンズ111は、物体側に凸を向けた正のメニスカスレンズでベンディングファクターは1.24となり、主点位置が絞りに近づき、軸外のコマ収差と非点収差をよく補正する形状となる。
 第2レンズ113の近軸焦点距離は5.34mmとなり第1レンズ111の近軸焦点距離5.33mmとほぼ等価な値となり、第1レンズ111と第2レンズ113で対象系を形成して、軸外のコマ収差と非点収差をよく補正する。
 第3レンズ114の近軸焦点距離は1.14mm、d線アッベ数は40.1、第4レンズ115の近軸焦点距離は-0.94mm、アッベ数は29.0であり、色消し条件となり、パワーの絶対値がほぼ等しいことにより、ディストーションの発生を抑えている。
 これらの作用で全体として大きな収差の補正能力を持ち、Fno2.8という明るいレンズでありながら、全画角78度という広角を実現する。
 また、第1レンズ111をプラスチック、第2レンズ113をプラスチック、第3レンズ114をガラス、第4レンズ115をプラスチックにより形成して焦点距離の温度依存性が少なく温度特性も優れている。これにより、固定焦点カメラモジュールに適したレンズとなる。
 表1、表2、表3、および表4に実施例1の各数値が示されている。実施例1の各数値は図1の撮像レンズ100に対応している。
 表1は、実施例1における撮像レンズの各面番号に対応した各レンズ、撮像部を構成するカバーガラス、像面の曲率半径(R:mm),間隔(d:mm)、屈折率(nd)、および分散値(νd)を示している。
Figure JPOXMLDOC01-appb-T000002
 表2は、実施例1における第1レンズ111の面1,2、第2レンズ113の面3,4、第3レンズ114の面5,6、および第4レンズ115の面7,8の4次、6次、8次、10次の非球面係数を示す。
 表2において、Kは円錐定数を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
Figure JPOXMLDOC01-appb-T000003
 表3は、実施例1における撮像レンズ100の焦点距離f、開口数F、半画角ω、レンズ長Hが具体的に示されている。
 ここで、焦点距離fは2.25[mm]に、開口数Fは2.8に、半画角ωは39.0degに、レンズ長Hは4.0[mm]に設定されている。
Figure JPOXMLDOC01-appb-T000004
 表4は、実施例1においては、上記各条件式(1)~(4)を満足することを示す。
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、実施例1では、第1レンズ111のベンディングファクターqL1が1.24に設定され、条件式(1)で規定される条件を満足している。
 第2レンズ113のパワーf2/fが2.37に設定され、条件式(2)で規定される条件を満足している。
 第3レンズ114と第4レンズ115のパワーの比率f3/f4が-1.12に設定され、条件式(3)で規定される条件を満足している。
 第2レンズ113のアッベ数νdL2が56.0に設定され、条件式(4)で規定される条件を満足している。
 図3は、実施例1において、球面収差(色収差)、非点収差、および歪曲収差を示す収差図である。図3(A)が球面収差(色収差)、図3(B)が非点収差を、図3(C)が歪曲収差をそれぞれ示している。
 図3からわかるように、実施例1によれば、球面、非点、歪曲の諸収差が良好に補正され、結像性能に優れた光学ユニットを含む撮像レンズが得られる。
<2.第2の実施形態>
 図4は、本第2の実施形態に係る撮像レンズの構成例を示す図である。
 図4に示す第2の実施形態に係る撮像レンズ100Aと図1に示す第1の実施形態に係る撮像レンズ100とは、基本的な構成は同じであり、以下に実施例2として示すように、各構成要素のパラメータ等の設定値が異なる。
 したがって、ここでは、撮像レンズ100Aの詳細な説明は省略する。
 以下に、撮像レンズの具体的な数値による実施例2を示す。なお、実施例2においては、撮像レンズ100Aの各レンズ、撮像部を構成するカバーガラス120に対して、図2に示すような面番号が付与されている。
[実施例2]
 撮像レンズ100Aにおける実施例2は、前述したように、1/5サイズ・1.4μmピッチの3M用CMOSイメージャ用撮像レンズの設計例である。
 図4に示すように、物体側から順に物体側に正のパワーの第1レンズ111、絞り112、正のパワーの第2レンズ113、正のパワーの第3レンズ114、負のパワーの第4レンズ115により形成されることを特徴とする。
 第1レンズ111は、物体側に凸を向けた正のメニスカスレンズでベンディングファクターは1.004となり、主点位置が絞りに近づき、軸外のコマ収差と非点収差をよく補正する形状となる。
 第2レンズ113の近軸焦点距離は4.27mmとなり第1レンズ111の近軸焦点距離5.29mmとほぼ等価な値となり、第1レンズ111と第2レンズ113で対象系を形成して、軸外のコマ収差と非点収差をよく補正する。
 第3レンズ114の近軸焦点距離は1.17mm、d線アッベ数は37.3、第4レンズ115の近軸焦点距離は-0.91mm、アッベ数は29.0であり、色消し条件となり、パワーの絶対値がほぼ等しいことにより、ディストーションの発生を抑えている。
 これらの作用で全体として大きな収差の補正能力を持ち、Fno2.8という明るいレンズでありながら、全画角77.4度という広角を実現する。
 また、第1レンズ111をプラスチック、第2レンズ113をプラスチック、第3レンズ114をガラス、第4レンズ115をプラスチックにより形成して焦点距離の温度依存性が少なく温度特性も優れている。これにより、固定焦点カメラモジュールに適したレンズとなる。
 表5、表6、表7、および表8に実施例2の各数値が示されている。実施例2の各数値は図5の撮像レンズ100Aに対応している。
 表5は、実施例2における撮像レンズの各面番号に対応した各レンズ、撮像部を構成するカバーガラス、像面の曲率半径(R:mm),間隔(d:mm)、屈折率(nd)、および分散値(νd)を示している。
Figure JPOXMLDOC01-appb-T000006
 表6は、実施例2における第1レンズ111の面1,2、第2レンズ113の面3,4、第3レンズ114の面5,6、および第4レンズ115の面7,8の4次、6次、8次、10次の非球面係数を示す。
 表6において、Kは円錐定数を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
Figure JPOXMLDOC01-appb-T000007
 表7は、実施例2における撮像レンズ100Aの焦点距離f、開口数F、半画角ω、レンズ長Hが具体的に示されている。
 ここで、焦点距離fは2.26[mm]に、開口数Fは2.8に、半画角ωは38.7degに、レンズ長Hは4.0[mm]に設定されている。
Figure JPOXMLDOC01-appb-T000008
  表8は、実施例2においては、上記各条件式(1)~(4)を満足することを示す。
Figure JPOXMLDOC01-appb-T000009
 表8に示すように、実施例2では、第1レンズ111のベンディングファクターqL1が1.004に設定され、条件式(1)で規定される条件を満足している。
 第2レンズ113のパワーf2/fが1.89に設定され、条件式(2)で規定される条件を満足している。
 第3レンズ114と第4レンズ115のパワーの比率f3/f4が-1.29に設定され、条件式(3)で規定される条件を満足している。
 第2レンズ113のアッベ数νdL2が56.0に設定され、条件式(4)で規定される条件を満足している。
 図5は、実施例2において、球面収差(色収差)、非点収差、および歪曲収差を示す収差図である。図5(A)が球面収差(色収差)、図5(B)が非点収差を、図5(C)が歪曲収差をそれぞれ示している。
 図5からわかるように、実施例2によれば、球面、非点、歪曲の諸収差が良好に補正され、結像性能に優れた光学ユニットを含む撮像レンズが得られる。
 以上説明した本実施形態によれば、以下の効果を得ることができる。
 本実施形態の撮像レンズ100,100Aによれば、物体側から順に物体側に正のパワーの第1レンズ111、絞り112、正のパワーの第2レンズ113、正のパワーの第3レンズ114、負のパワーの第4レンズ115により形成されることを特徴とする。
 第1レンズ111と第2レンズ113が絞り112に対して対象に近い形状となり、球面収差と軸外のコマ収差と非点収差およびディストーションを補正して広角レンズに最適な形状をとる。
 しかしこのままでは、色収差は補正できないことから、第3レンズ114は正のパワー、第4レンズ115は負のパワーで第3レンズのアッベ数は第4レンズに比べて大きく、色消し条件となり色収差を補正する。
 また、ディストーションを抑えるために、第3レンズ114と第4レンズ115は正負が反転するが、パワーは同じくらいになる。
 これらの作用で全体として、広角レンズに最適な大きな収差の補正能力を持ち、CMOSセンサやCCDセンサに最適な光線入射角度を有し、明るいレンズを実現することができる。
 そして、4群構成で高い結像性能を有しながら、全画角80度程度まで広くできる光学系を実現することが可能で、小型でコンパクトな、広角レンズを実現できる。
 たとえば一眼換算23mm程度まで広角化可能である。
 また、光学ディストーションを2.2[%]程度に抑えられる。
 PPGP構成で、温度デフォーカスを抑えられる。
 軸上色収差を小さく抑えることができる。
  被写界深度が深く、温度デフォーカスがないため、バーコード読み取りに最適である。
 以上説明したような特徴を有する撮像レンズ100,100Aは、CCDやCMOSセンサ等の撮像素子を用いたデジタルカメラ、特に、携帯電話等の小型電子機器に搭載されるカメラ用レンズとして適用可能である。
<3.第3の実施形態>
 図6は、本実施形態に係る光学ユニットを含む撮像レンズが採用される撮像装置の構成例を示すブロック図である。
 本撮像装置200は、図6に示すように、本実施形態に係る撮像レンズ100,100Aが適用される光学系210、およびCCDやCMOSイメージセンサ(固体撮像素子)が適用可能な撮像デバイス220を有する。
 光学系210は、撮像デバイス220の画素領域を含む撮像面に入射光を導き、被写体像を結像する。
 撮像装置200は、さらに、撮像デバイス220を駆動する駆動回路(DRV)230、および撮像デバイス220の出力信号を処理する信号処理回路(PRC)240を有する。
 駆動回路230は、撮像デバイス220内の回路を駆動するスタートパルスやクロックパルスを含む各種のタイミング信号を生成するタイミングジェネレータ(図示せず)を有し、所定のタイミング信号で撮像デバイス220を駆動する。
 また、信号処理回路240は、撮像デバイス220の出力信号に対して所定の信号処理を施す。
 信号処理回路240で処理された画像信号は、たとえばメモリなどの記録媒体に記録される。記録媒体に記録された画像情報は、プリンタなどによってハードコピーされる。また、信号処理回路240で処理された画像信号を液晶ディスプレイ等からなるモニターに動画として映し出される。
 上述したように、デジタルスチルカメラ等の撮像装置において、光学系210として、先述した撮像レンズ100,100Aを搭載することで、低消費電力で、高精度なカメラが実現できる。
 なお、本技術は、以下のような構成もとることができる。
[1]物体側から像面側に向かって順番に配置された、
  正のパワーの第1レンズと、
  正のパワーの第2レンズと、
  正のパワーの第3レンズと、
  負のパワーの第4レンズと、
 を有する光学ユニット。
[2]上記第1レンズのベンディングファクターqL1=(RL1S2+RL1S1)/(RL1S2-RL1S1)および上記第2レンズが下記条件式を満足する
 上記[1]記載の光学ユニット。
  0.66 ≦ qL1  ≦ 50       (1)
  1.0  ≦ f2/f ≦ 1000     (2)
   qL1 : 第1レンズのベンディングファクター
 RL1S1 : 第1レンズ111の第1面L1S1の曲率半径
 RL1S2 : 第1レンズ111の第2面L1S2の曲率半径
    f2 : 第2レンズの焦点距離
     f : 光学系の焦点距離
[3]上記第3レンズおよび上記第4レンズが下記条件式を満足する
 上記[1]または[2]に記載の光学ユニット。
    -5 ≦ f3/f4 ≦ -0.5   (3)
    f3 : 第3レンズの焦点距離
    f4 : 第4レンズの焦点距離
[4]上記第2レンズのアッベ数νdL2が下記条件式を満足する
 上記[1]から[3]のいずれか一に記載の光学ユニット。
    40 ≦ νdL2 ≦ 70      (4)
[5]上記第3レンズのアッベ数νdL3と上記第4レンズのアッベ数νdL4が下記条件式を満足する
 上記[1]から[4]のいずれか一に記載の光学ユニット。
   νdL3 ≦ νdL4          (5)
[6]上記第1レンズがプラスチック、上記第2レンズがプラスチック、上記第3レンズがガラスレンズ、上記第4レンズがプラスチックにより形成されている
 上記[1]から[5]のいずれか一に記載の光学ユニット。
[7]絞りが、上記第1レンズと上記第2レンズとの間に配置されている
 上記[1]から[6]のいずれか一に記載の光学ユニット。
 

Claims (8)

  1.  物体側から像面側に向かって順番に配置された、
      正のパワーの第1レンズと、
      正のパワーの第2レンズと、
      正のパワーの第3レンズと、
      負のパワーの第4レンズと、
     を有する光学ユニット。
  2.  上記第1レンズのベンディングファクターqL1=(RL1S2+RL1S1)/(RL1S2-RL1S1)および上記第2レンズが下記条件式を満足する
     請求項1記載の光学ユニット。
      0.66 ≦ qL1  ≦ 50       (1)
      1.0  ≦ f2/f ≦ 1000     (2)
       qL1 : 第1レンズのベンディングファクター
     RL1S1 : 第1レンズ111の第1面L1S1の曲率半径
     RL1S2 : 第1レンズ111の第2面L1S2の曲率半径
        f2 : 第2レンズの焦点距離
         f : 光学系の焦点距離
  3.  上記第3レンズおよび上記第4レンズが下記条件式を満足する
     請求項2記載の光学ユニット。
        -5 ≦ f3/f4 ≦ -0.5   (3)
        f3 : 第3レンズの焦点距離
        f4 : 第4レンズの焦点距離
  4.  上記第2レンズのアッベ数νdL2が下記条件式を満足する
     請求項3記載の光学ユニット。
        40 ≦ νdL2 ≦ 70      (4)
  5.  上記第3レンズのアッベ数νdL3と上記第4レンズのアッベ数νdL4が下記条件式を満足する
     請求項4記載の光学ユニット。
       νdL4 ≦ νdL3          (5)
  6.  上記第1レンズがプラスチック、上記第2レンズがプラスチック、上記第3レンズがガラスレンズ、上記第4レンズがプラスチックにより形成されている
     請求項5記載の光学ユニット。
  7.  絞りが、上記第1レンズと上記第2レンズとの間に配置されている
     請求項1記載の光学ユニット。
  8.  撮像素子と、
     上記撮像素子に被写体像を結像する光学ユニットと、を有し、
     上記光学ユニットは、
      物体側から像面側に向かって順番に配置された、
      正のパワーの第1レンズと、
      正のパワーの第2レンズと、
      正のパワーの第3レンズと、
      負のパワーの第4レンズと、を含む
      撮像装置。
     
PCT/JP2012/051404 2011-01-31 2012-01-24 光学ユニットおよび撮像装置 WO2012105365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12741614.7A EP2672305B1 (en) 2011-01-31 2012-01-24 Optical unit and imaging device
CN201280004599.5A CN103299229B (zh) 2011-01-31 2012-01-24 光学单元和摄像单元
KR1020137017275A KR20130141633A (ko) 2011-01-31 2012-01-24 광학 유닛 및 촬상 장치
US13/982,310 US8953263B2 (en) 2011-01-31 2012-01-24 Optical unit and image pickup unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011018269A JP5699636B2 (ja) 2011-01-31 2011-01-31 光学ユニットおよび撮像装置
JP2011-018269 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105365A1 true WO2012105365A1 (ja) 2012-08-09

Family

ID=46602584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051404 WO2012105365A1 (ja) 2011-01-31 2012-01-24 光学ユニットおよび撮像装置

Country Status (7)

Country Link
US (1) US8953263B2 (ja)
EP (1) EP2672305B1 (ja)
JP (1) JP5699636B2 (ja)
KR (1) KR20130141633A (ja)
CN (1) CN103299229B (ja)
TW (1) TWI479180B (ja)
WO (1) WO2012105365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977697A (zh) * 2014-04-08 2015-10-14 大立光电股份有限公司 成像光学镜组、取像装置及电子装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973240B2 (ja) * 2012-05-30 2016-08-23 カンタツ株式会社 撮像レンズ
JP5992868B2 (ja) * 2012-07-31 2016-09-14 カンタツ株式会社 撮像装置
TWI471587B (zh) * 2012-08-27 2015-02-01 玉晶光電股份有限公司 Four-piece optical imaging lens and the application of the lens of the electronic device
KR101425792B1 (ko) * 2012-12-31 2014-08-06 주식회사 코렌 촬영 렌즈 광학계
KR101412627B1 (ko) 2013-09-24 2014-06-27 주식회사 세코닉스 왜곡이 보정된 광각 촬영 렌즈 시스템
TWI556005B (zh) * 2014-11-25 2016-11-01 大立光電股份有限公司 光學攝影透鏡組、取像裝置及電子裝置
TWI587000B (zh) 2016-02-02 2017-06-11 大立光電股份有限公司 取像系統鏡組、取像裝置及電子裝置
CN106094169B (zh) * 2016-08-05 2019-03-12 嘉兴中润光学科技有限公司 一种光学镜头
TWI604218B (zh) * 2016-09-30 2017-11-01 大立光電股份有限公司 光學影像擷取系統鏡組、取像裝置及電子裝置
WO2019037413A1 (zh) * 2017-08-21 2019-02-28 浙江舜宇光学有限公司 光学成像镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251116A (ja) * 1988-08-12 1990-02-21 Olympus Optical Co Ltd ズームレンズ
JPH0921951A (ja) * 1995-07-05 1997-01-21 Minolta Co Ltd ズームレンズ
JP2004341512A (ja) * 2003-04-23 2004-12-02 Olympus Corp 結像光学系及びそれを用いた電子機器
JP2005025023A (ja) * 2003-07-04 2005-01-27 Nagano Kogaku Kenkyusho:Kk 3群4枚構成の撮像レンズ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810424Y1 (ja) * 1968-06-04 1973-03-19
JPS6048729B2 (ja) * 1980-12-25 1985-10-29 株式会社ニコン 接眼レンズ
JPH01319723A (ja) * 1988-06-22 1989-12-26 Canon Inc 変倍ファインダー光学系
JPH01319725A (ja) * 1988-06-22 1989-12-26 Canon Inc 変倍ファインダー光学系
JP3424030B2 (ja) * 2001-01-31 2003-07-07 カシオ計算機株式会社 撮影レンズ
JP2004226725A (ja) * 2003-01-23 2004-08-12 Olympus Corp 接眼レンズ及びそれを備えた一眼レフカメラ
US6950246B2 (en) * 2003-04-23 2005-09-27 Olympus Corporation Imaging optical system and apparatus using the same
JP4747645B2 (ja) * 2005-04-11 2011-08-17 コニカミノルタオプト株式会社 広角レンズ、及び、撮像装置
JP2009098505A (ja) * 2007-10-18 2009-05-07 Sony Corp 撮像レンズ及び撮像装置
JP5043710B2 (ja) * 2008-02-14 2012-10-10 富士フイルム株式会社 撮像レンズおよび撮像装置
JP4556148B2 (ja) * 2008-07-23 2010-10-06 ソニー株式会社 撮像レンズ及び撮像装置
TWI406004B (zh) * 2009-02-19 2013-08-21 Largan Precision Co Ltd 成像光學透鏡組

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251116A (ja) * 1988-08-12 1990-02-21 Olympus Optical Co Ltd ズームレンズ
JPH0921951A (ja) * 1995-07-05 1997-01-21 Minolta Co Ltd ズームレンズ
JP2004341512A (ja) * 2003-04-23 2004-12-02 Olympus Corp 結像光学系及びそれを用いた電子機器
JP2005025023A (ja) * 2003-07-04 2005-01-27 Nagano Kogaku Kenkyusho:Kk 3群4枚構成の撮像レンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672305A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977697A (zh) * 2014-04-08 2015-10-14 大立光电股份有限公司 成像光学镜组、取像装置及电子装置

Also Published As

Publication number Publication date
JP5699636B2 (ja) 2015-04-15
KR20130141633A (ko) 2013-12-26
US8953263B2 (en) 2015-02-10
JP2012159620A (ja) 2012-08-23
TW201234036A (en) 2012-08-16
CN103299229B (zh) 2015-11-25
EP2672305B1 (en) 2019-12-04
TWI479180B (zh) 2015-04-01
EP2672305A4 (en) 2016-11-23
EP2672305A1 (en) 2013-12-11
US20130308209A1 (en) 2013-11-21
CN103299229A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5560699B2 (ja) 光学ユニットおよび撮像装置
CN106896473B (zh) 摄像镜头
JP5699636B2 (ja) 光学ユニットおよび撮像装置
US9557536B2 (en) Zoom lens and image pickup device
TW202144846A (zh) 攝像用光學鏡頭組、取像裝置及電子裝置
JP6209308B2 (ja) 撮像装置および電子機器
CN203773138U (zh) 摄像镜头
JP2011133600A (ja) 光学ユニットおよび撮像装置
KR20130016223A (ko) 광학 유닛 및 촬상 장치
CN206440879U (zh) 摄像镜头
KR20100092880A (ko) 광학 유닛 및 촬상 장치
CN208521054U (zh) 摄像镜头
TWI703364B (zh) 攝影用光學鏡片組及電子裝置
TW202144847A (zh) 攝像用光學鏡頭組、取像裝置及電子裝置
JP6288168B2 (ja) 撮像装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012741614

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017275

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE