WO2019037413A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019037413A1
WO2019037413A1 PCT/CN2018/079778 CN2018079778W WO2019037413A1 WO 2019037413 A1 WO2019037413 A1 WO 2019037413A1 CN 2018079778 W CN2018079778 W CN 2018079778W WO 2019037413 A1 WO2019037413 A1 WO 2019037413A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
satisfy
Prior art date
Application number
PCT/CN2018/079778
Other languages
English (en)
French (fr)
Inventor
胡亚斌
张凯元
宋博
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721047412.6U external-priority patent/CN207037206U/zh
Priority claimed from CN201710719642.0A external-priority patent/CN107290843B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/224,685 priority Critical patent/US10921560B2/en
Publication of WO2019037413A1 publication Critical patent/WO2019037413A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present application relates to an optical imaging lens, and more particularly to an optical imaging lens composed of five lenses.
  • the hardware conditions of the electric coupling device (CCD) or the complementary metal oxide semiconductor (CMOS) image sensor and the optical performance of the imaging lens are also A higher requirement was put forward.
  • the larger the field of view of the imaging lens the more images are taken, and the reduction of the sensor pixel size reduces the ability of the optical system to collect light, so the imaging lens needs to have A larger field of view and a larger aperture make the shooting performance even better.
  • the optical lens meets the imaging requirements, the number of lenses is small, and the optical length is shorter, which is more conducive to the development of electronic products toward miniaturization.
  • the present invention is directed to an optical system that is adaptable to portable electronic products, has an ultra-thin large field of view, and good image quality.
  • an optical imaging lens having an effective focal length f and an entrance pupil diameter EPD, the optical imaging lens sequentially including a first lens from an object side to an image side along an optical axis a second lens, a third lens, a fourth lens, and a fifth lens, wherein the first lens may have a positive power and the object side may be a convex surface; and the second lens may have a positive power or a negative power, The side of the object may be a concave surface; the third lens may have a positive power or a negative power; the fourth lens may have a positive power, and the image side may be a convex surface; the fifth lens may have a negative power, the object side and The image side may be a concave surface; and the center thickness CT3 of the third lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis satisfy: CT3/CT4 ⁇ 1.5.
  • an optical imaging lens having an effective focal length f and an entrance pupil diameter EPD, the optical imaging lens including the first from the object side to the image side along the optical axis a lens, a second lens, a third lens, a fourth lens, and a fifth lens, wherein the first lens and the fourth lens both have positive power; at least one of the second lens, the third lens, and the fifth lens Negative power; wherein, half of the maximum angle of view of the optical imaging lens HFOV satisfies: HFOV ⁇ 45°; and the center thickness CT3 of the third lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis Inter-satisfaction: CT3/CT4 ⁇ 1.5.
  • half of the maximum field of view of the optical imaging lens, HFOV satisfies: HFOV > 45°.
  • the radius of curvature R9 of the object side of the fifth lens and the radius of curvature R10 of the image side thereof may satisfy: -0.9 ⁇ R10 / R9 ⁇ -0.7, for example, -0.85 ⁇ R10 / R9 ⁇ -0.76.
  • the radius of curvature R9 of the object side of the fifth lens and the center thickness CT5 of the fifth lens on the optical axis may satisfy: -7 ⁇ R9 / CT5 ⁇ -5, for example, -6.04 ⁇ R9 / CT5 ⁇ -5.03.
  • the maximum inclination angle ⁇ 52 of the side of the fifth lens image may satisfy: 30° ⁇ ⁇ 52 ⁇ 58°, for example, 30.6° ⁇ ⁇ 52 ⁇ 57°.
  • the effective focal length f1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy: 8.0 ⁇ f1/CT1 ⁇ 11.0, for example, 8.52 ⁇ f1/CT1 ⁇ 10.66.
  • the effective focal length f1 of the first lens and the radius of curvature R1 of the first lens object side may satisfy: 1.0 ⁇ f1/R1 ⁇ 4.0, for example, 1.82 ⁇ f1/R1 ⁇ 2.91.
  • the effective focal length f of the optical imaging lens and the effective focal length f4 of the fourth lens may satisfy: 0.6 ⁇ f4 / f ⁇ 0.8, for example, 0.70 ⁇ f4 / f ⁇ 0.77.
  • the effective focal length f4 of the fourth lens and the center thickness CT4 of the fourth lens on the optical axis may satisfy: 4.0 ⁇ f4 / CT4 ⁇ 5.0, for example, 4.39 ⁇ f4 / CT4 ⁇ 4.71.
  • the effective focal length f4 of the fourth lens and the effective focal length f5 of the fifth lens may satisfy: -1.6 ⁇ f4 / f5 ⁇ -1.4, for example, -1.54 ⁇ f4 / f5 ⁇ - 1.47.
  • the radius of curvature R5 of the object side of the third lens and the radius of curvature R6 of the image side thereof may satisfy: 0 ⁇
  • the object side of the first lens is convex.
  • the object side of the second lens is concave.
  • the image side of the fourth lens is convex.
  • the fifth lens has a negative power with both the object side and the image side being concave.
  • optical imaging lens of the above configuration at least one advantageous effect of ultra-thinning, large angle of view, high resolution, miniaturization, high image quality, balance aberration, and the like can be further achieved.
  • FIG. 1 is a schematic structural view showing an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 1;
  • FIG. 3 is a schematic structural view showing an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 2;
  • FIG. 5 is a schematic structural view showing an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view showing an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view showing an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view showing an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view showing an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 7;
  • FIG. 15 is a schematic structural view showing an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 8.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis.
  • the first lens is the lens closest to the object and the fifth lens is the lens closest to the photosensitive element.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens has, for example, five lenses, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a positive power and a side of the object is a convex surface; the second lens may have a positive power or a negative power, the object side of which is a concave surface; and the third lens may have a positive power Or negative power; the fourth lens may have a positive power, the image side thereof is a convex surface; and the fifth lens may have a negative power, and both the object side and the image side may be concave.
  • half of the maximum field of view of the optical imaging lens, HFOV satisfies: HFOV > 45°.
  • the center thickness CT3 of the third lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy: CT3/CT4 ⁇ 1.5.
  • the radius of curvature R9 of the object side of the fifth lens and the radius of curvature R10 of the image side thereof may satisfy: -0.9 ⁇ R10 / R9 ⁇ -0.7, and more specifically, may further satisfy -0.85 ⁇ R10 /R9 ⁇ -0.76.
  • the radius of curvature R9 of the object side of the fifth lens and the center thickness CT5 of the fifth lens on the optical axis may satisfy: -7 ⁇ R9 / CT5 ⁇ -5, and more specifically, may further Satisfy -6.04 ⁇ R9 / CT5 ⁇ -5.03.
  • the distortion generated by the large angle of view system can be balanced, and at the same time, the angle of the chief ray of each field of view light reaching the imaging surface is large, matching the sensor chip having the angle of the large angle chief ray.
  • the maximum inclination angle ⁇ 52 of the side of the fifth lens image may satisfy: 30° ⁇ ⁇ 52 ⁇ 58°, and more specifically, may further satisfy 30.6° ⁇ ⁇ 52 ⁇ 57°.
  • the effective focal length f1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy: 8.0 ⁇ f1/CT1 ⁇ 11.0, and more specifically, may further satisfy 8.52 ⁇ f1/ CT1 ⁇ 10.66.
  • the effective focal length f1 of the first lens and the radius of curvature R1 of the first lens object side may satisfy: 1.0 ⁇ f1/R1 ⁇ 4.0, and more specifically, may further satisfy 1.82 ⁇ f1/R1 ⁇ 2.91.
  • the first lens controls the curvature radius of the object side to be too small while taking part of the positive power, and reduces the risk of ghosting due to the large tilt angle.
  • the effective focal length f of the optical imaging lens and the effective focal length f4 of the fourth lens may satisfy: 0.6 ⁇ f4 / f ⁇ 0.8, and more specifically, 0.70 ⁇ f4 / f ⁇ 0.77 may be further satisfied.
  • the effective focal length f4 of the fourth lens and the center thickness CT4 of the fourth lens on the optical axis may satisfy: 4.0 ⁇ f4 / CT4 ⁇ 5.0, and more specifically, may further satisfy 4.39 ⁇ f4 / CT4 ⁇ 4.71.
  • the center thickness of the lens affects the power value. By controlling the focal length of the fourth lens and the center thickness, the ratio is within a certain range. On the one hand, it helps to correct the distortion and astigmatism of the system, and also prevents the center thickness from being too large or too large. Small brings about technical problems.
  • the effective focal length f4 of the fourth lens and the effective focal length f5 of the fifth lens may satisfy: -1.6 ⁇ f4 / f5 ⁇ -1.4, and more specifically, may further satisfy -1.54 ⁇ f4 / f5 ⁇ -1.47.
  • the radius of curvature R5 of the object side of the third lens and the radius of curvature R6 of the image side thereof may satisfy: 0 ⁇
  • the optical imaging lens may also be provided with an aperture STO for limiting the beam, adjusting the amount of incoming light, and improving the imaging quality.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the five sheets described above.
  • a plurality of lenses such as the five sheets described above.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
  • the optical imaging lens is not limited to including five lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • an aperture STO provided between the object side and the first lens for limiting the light beam is further included.
  • the optical imaging lens according to Embodiment 1 may include a filter E6 having an object side S11 and an image side surface S12, and the filter E6 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1.
  • 0.21.
  • each lens is used as an example.
  • the aperture of the lens is effectively enlarged, the total length of the lens is shortened, the large aperture and miniaturization of the lens are ensured, and various aberrations are corrected at the same time.
  • the resolution and image quality of the lens is defined by the following formula:
  • x is the position of the aspherical surface at height h in the direction of the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 below shows the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each of the mirror faces S1 - S10 in Embodiment 1.
  • Table 3 shown below shows the effective focal lengths f1 to f5 of the lenses of Embodiment 1, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, and the first ImgH.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens according to Embodiment 2 includes first to fifth lenses E1-E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 4 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 2.
  • Table 5 shows the high order term coefficients of the respective aspherical mirrors in Example 2.
  • Table 6 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 2, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens according to Embodiment 3 includes first to fifth lenses E1-E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 7 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3.
  • Table 8 shows the high order term coefficients of the respective aspherical mirrors in the third embodiment.
  • Table 9 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 3, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens according to Embodiment 4 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 10 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4.
  • Table 11 shows the high order term coefficients of the respective aspherical mirrors in Example 4.
  • Table 12 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 4, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens according to Embodiment 5 includes first to fifth lenses E1-E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 13 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 5.
  • Table 14 shows the high order term coefficients of the respective aspherical mirrors in Example 5.
  • Table 15 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 5, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • Fig. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens according to Embodiment 6 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 16 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6.
  • Table 17 shows the high order term coefficients of the respective aspherical mirrors in Example 6.
  • Table 18 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 6, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • 12D is a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light is passed through the optical imaging lens.
  • the embodiment 6 gives The optical imaging lens enables good image quality.
  • Fig. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • the optical imaging lens according to Embodiment 7 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 19 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7.
  • Table 20 shows the high order term coefficients of the respective aspherical mirrors in Example 7.
  • Table 21 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 7, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • Fig. 15 is a view showing the configuration of an optical imaging lens according to Embodiment 8 of the present application.
  • the optical imaging lens according to Embodiment 8 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
  • the first lens E1 has a positive power
  • the object side surface S1 is a convex surface
  • the second lens E2 has a negative power
  • the object side surface S3 is a concave surface
  • the third lens E3 has a positive power
  • the lens E4 has a positive refractive power
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • Table 22 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 8.
  • Table 23 shows the high order term coefficients of the respective aspherical mirrors in Example 8.
  • Table 24 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 8, the effective focal length f of the optical imaging lens, the half of the diagonal length of the effective pixel area of the optical imaging lens electronic photosensitive element, ImgH, and the object of the first lens E1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens of Example 8, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
  • Fig. 16B shows an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens given in Embodiment 8 can achieve good imaging quality.
  • Embodiments 1 to 8 respectively satisfy the relationships shown in Table 25 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,沿着光轴由物侧至像侧依序可包括第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)和第五透镜(E5),其中,第一透镜(E1)可具有正光焦度,其物侧面(S1)可为凸面;第二透镜(E2)可具有正光焦度或负光焦度,其物侧面(S3)可为凹面;第三透镜(E3)可具有正光焦度或负光焦度;第四透镜(E4)可具有正光焦度,其像侧面(S8)可为凸面;第五透镜(E5)可具有负光焦度,其物侧面(S9)和像侧面(S10)都可为凹面;以及第三透镜(E3)在光轴上的中心厚度CT3与第四透镜(E4)在光轴上的中心厚度CT4之间满足:CT3/CT4≥1.5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年08月21日提交于中国国家知识产权局(SIPO)的、专利申请号为201710719642.0和201721047412.6的两个中国专利申请的优先权和权益,这两个中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,涉及一种由五片镜片组成的光学成像镜头。
背景技术
随着手机、平板电脑等小型化电子产品对成像功能的要求越来越高,对电耦合器件(CCD)或互补式金属氧化物半导体(CMOS)图像传感器的硬件条件以及成像镜头的光学性能也就提出了更高的要求。当在相同的传感器像面大小情况下,成像镜头的视场角越大,拍摄的画面也越多,而且传感器像元尺寸的减小会使光学系统光线采集的能力减弱,故成像镜头需要有更大的视场角以及大的光圈来使拍摄性能进一步提高。同时,光学镜头在满足成像要求下镜片数量少、光学长度越短,越有利于电子产品往小型化趋势发展。
因此,本发明旨在提供一种可适用于便携式电子产品,具有超薄大视场角,良好成像质量的光学系统。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种光学成像镜头,该光学成像镜头具有有效焦距f和入瞳直径EPD,该光学成像镜头沿着光轴 由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有正光焦度或负光焦度,其物侧面可为凹面;第三透镜可具有正光焦度或负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面和像侧面都可为凹面;以及第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4之间满足:CT3/CT4≥1.5。
根据本申请的另一个方面,还提供了这样一种光学成像镜头,该光学成像镜头具有有效焦距f和入瞳直径EPD,该光学成像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,第一透镜和第四透镜都具有正光焦度;第二透镜、第三透镜和第五透镜中的至少之一负光焦度;其中,光学成像镜头的最大视场角的一半HFOV满足:HFOV≥45°;以及第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4之间满足:CT3/CT4≥1.5。
在一个实施方式中,光学成像镜头的最大视场角的一半HFOV满足:HFOV≥45°。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与其像侧面的曲率半径R10之间可满足:-0.9<R10/R9<-0.7,例如,-0.85≤R10/R9≤-0.76。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜在光轴上的中心厚度CT5之间可满足:-7<R9/CT5≤-5,例如,-6.04≤R9/CT5≤-5.03。
在一个实施方式中,第五透镜像侧面的最大倾角β52可满足:30°<β52<58°,例如,30.6°≤β52≤57°。
在一个实施方式中,第一透镜的有效焦距f1与第一透镜在光轴上的中心厚度CT1之间可满足:8.0<f1/CT1<11.0,例如,8.52≤f1/CT1≤10.66。
在一个实施方式中,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间可满足:1.0<f1/R1<4.0,例如,1.82≤f1/R1≤2.91。
在一个实施方式中,光学成像镜头的有效焦距f与第四透镜的有效焦距f4之间可满足:0.6≤f4/f<0.8,例如,0.70≤f4/f≤0.77。
在一个实施方式中,第四透镜的有效焦距f4与第四透镜在光轴上的中心厚度CT4之间可满足:4.0<f4/CT4<5.0,例如,4.39≤f4/CT4≤4.71。
在一个实施方式中,第四透镜的有效焦距f4与第五透镜的有效焦距f5之间可满足:-1.6<f4/f5<-1.4,例如,-1.54≤f4/f5≤-1.47。
在一个实施方式中,第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间可满足:0<|R6/R5|<0.5,例如,0<|R6/R5|≤0.25。
在一个实施方式中,第一透镜的物侧面为凸面。
在一个实施方式中,第二透镜的物侧面为凹面。
在一个实施方式中,第四透镜的像侧面为凸面。
在一个实施方式中,第五透镜具有负光焦度,其物侧面和像侧面都为凹面。
通过上述配置的光学成像镜头,还可进一步具有超薄化、大视场角、高解像力、小型化、高成像品质、平衡像差等至少一个有益效果。
附图说明
通过参照以下附图所作出的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1为示出根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图3为示出根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图5为示出根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲 线、象散曲线、畸变曲线和倍率色差曲线;
图7为示出根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图9为示出根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11为示出根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图13为示出根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图15为示出根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅 为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的透镜而第五透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
根据本申请示例性实施方式的光学成像镜头具有例如五个透镜,即第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五个透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可具有正光焦度或负光焦度,其物侧面为凹面;第三透 镜可具有正光焦度或负光焦度;第四透镜可具有正光焦度,其像侧面为凸面;以及第五透镜可具有负光焦度,其物侧面和像侧面都可为凹面。通过合理的控制各个透镜的正负光焦度分配,不仅可有效地平衡控制系统的低阶像差,使得光学成像镜头获得较优的成像品质,而且可实现超薄大孔径的特性。
在示例性实施方式中,光学成像镜头的最大视场角的一半HFOV满足:HFOV≥45°。通过控制光学系统的最大视场角的一半大于45°,即全视场角大于90°,可保证系统成像的视野范围更广。
在示例性实施方式中,第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4之间可满足:CT3/CT4≥1.5。通过控制使得第三透镜在光轴上的中心厚度与第四透镜在光轴上的中心厚度的比值大于1.5,来调整两个镜片正光焦度的分配,使第四透镜承担更多的光焦度,这样的配置有利于大角度视场角入射的光线经过透镜最后会聚在光学成像镜头的成像面上。
在示例性实施方式中,第五透镜的物侧面的曲率半径R9与其像侧面的曲率半径R10之间可满足:-0.9<R10/R9<-0.7,更具体地,可进一步满足-0.85≤R10/R9≤-0.76。通过控制使得第五透镜物侧面和像侧面的曲率半径在合适的范围内,有利于有效矫正系统的子午慧差。
在示例性实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜在光轴上的中心厚度CT5之间可满足:-7<R9/CT5≤-5,更具体地,可进一步满足-6.04≤R9/CT5≤-5.03。通过这样的配置,可平衡大视场角系统产生的畸变,同时使各视场光线到达成像面的主光线夹角较大,与具有大角度主光线夹角的传感器芯片相匹配。
在示例性实施方式中,第五透镜像侧面的最大倾角β52可满足:30°<β52<58°,更具体地,可进一步满足30.6°≤β52≤57°。通过控制第五透镜像侧面的最大倾角,可避免由于倾角过大而导致镜片边缘镀膜的效果不理想,使系统工艺性变差。
在示例性实施方式中,第一透镜的有效焦距f1与第一透镜在光轴上的中心厚度CT1之间可满足:8.0<f1/CT1<11.0,更具体地,可进一步满足8.52≤f1/CT1≤10.66。通过合理平衡第一透镜的有效焦距和中 心厚度的比值,有利于矫正光学成像系统的像差,同时可保证成型加工工艺性的可行性。
在示例性实施方式中,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间可满足:1.0<f1/R1<4.0,更具体地,可进一步满足1.82≤f1/R1≤2.91。通过这样的配置,使得第一透镜在承担部分正光焦度的情况下控制其物侧面曲率半径不要过小,减小由于倾角大而产生鬼像的风险。
在示例性实施方式中,光学成像镜头的有效焦距f与第四透镜的有效焦距f4之间可满足:0.6≤f4/f<0.8,更具体地,可进一步满足0.70≤f4/f≤0.77。通过这样的配置,在TTL减小下控制光线偏折量带来的像差影响,同时使光线在第四透镜物侧面的入射角尽量减小,有利于光线的透过率。
在示例性实施方式中,第四透镜的有效焦距f4与第四透镜在光轴上的中心厚度CT4之间可满足:4.0<f4/CT4<5.0,更具体地,可进一步满足4.39≤f4/CT4≤4.71。镜片的中心厚度会影响光焦度值,通过控制第四透镜的焦距与中心厚度使其比值在一定范围内,一方面有利于矫正系统的畸变与像散,也可防止中心厚度过大或过小带来工艺性问题。
在示例性实施方式中,第四透镜的有效焦距f4与第五透镜的有效焦距f5之间可满足:-1.6<f4/f5<-1.4,更具体地,可进一步满足-1.54≤f4/f5≤-1.47。通过两片镜片一正一负光焦度的合理分配,有利于平衡系统产生的色差。
在示例性实施方式中,第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间可满足:0<|R6/R5|<0.5,更具体地,可进一步满足0<|R6/R5|≤0.25。通过控制第三透镜物侧面和像侧面的曲率半径使其在合适范围内,有利于有效矫正系统的像散。
在示例性实施方式中,光学成像镜头还可设置有用于限制光束的光圈STO,调节进光量,提高成像品质。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的 中心厚度以及各透镜之间的轴上间距等,可有效扩大光学成像镜头的孔径、降低系统敏感度、保证镜头的小型化并提高成像质量,从而使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:曲率从透镜中心到周边是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,光学成像镜头但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。
图1示出了根据本申请实施例1的光学成像镜头的结构示意图。如图1所示,光学成像镜头沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第 五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
在本实施例的光学成像镜头中,还包括用于限制光束的、设置在物侧与第一透镜之间的光圈STO。根据实施例1的光学成像镜头可包括具有物侧面S11和像侧面S12的滤光片E6,滤光片E6可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。
表1
Figure PCTCN2018079778-appb-000001
由表1可得,第三透镜E3在光轴上的中心厚度CT3与第四透镜E4在光轴上的中心厚度CT4满足CT3/CT4=1.5;第五透镜E5的物侧面S9的曲率半径R9与其像侧面S10的曲率半径R10满足R10/R9=-0.85;第五透镜E5的物侧面S9的曲率半径R9与第五透镜E5在光轴上的中心厚度CT5满足:R9/CT5=-6.04;以及第三透镜E3的物侧面S5的曲率半径R5与其像侧面S6的曲率半径R6满足|R6/R5|=0.21。
本实施例采用了五片透镜作为示例,通过合理分配各镜片的焦距与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的大孔径 与小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2018079778-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了实施例1中可用于各镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
表2
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.8555E-02 8.6024E-01 -1.1997E+01 9.2457E+01 -4.3589E+02 1.2664E+03 -2.2133E+03 2.1313E+03 -8.6883E+02
S2 2.8296E-02 -2.2745E+00 2.7480E+01 -2.0073E+02 8.9229E+02 -2.4547E+03 4.0742E+03 -3.7360E+03 1.4524E+03
S3 -2.0736E-01 1.0529E+00 -8.6469E+00 4.8400E+01 -1.8968E+02 4.8130E+02 -7.4700E+02 6.4277E+02 -2.3507E+02
S4 -1.5770E-01 1.4602E-01 6.7657E-01 -4.4322E+00 1.0498E+01 -1.3518E+01 1.0585E+01 -4.9644E+00 1.0789E+00
S5 -2.5081E-02 -7.0138E-01 3.4800E+00 -9.3165E+00 1.4395E+01 -1.2625E+01 6.0002E+00 -1.3196E+00 7.3809E-02
S6 1.7448E-01 -1.3020E+00 2.4663E+00 -2.8381E+00 2.1569E+00 -1.0130E+00 2.2258E-01 0.0000E+00 0.0000E+00
S7 3.9027E-01 -1.6664E+00 3.5613E+00 -6.6358E+00 1.0268E+01 -1.0462E+01 6.3400E+00 -2.0797E+00 2.8471E-01
S8 8.6878E-02 -3.7594E-01 6.8801E-01 -1.2486E+00 1.8577E+00 -1.5726E+00 7.2040E-01 -1.6927E-01 1.6099E-02
S9 2.5984E-01 -8.9731E-01 1.5984E+00 -1.6883E+00 1.1051E+00 -4.4707E-01 1.0887E-01 -1.4664E-02 8.4227E-04
S10 -2.3623E-01 1.7748E-01 -9.0375E-02 2.8762E-02 -5.5517E-03 6.3450E-04 -4.6846E-05 3.2829E-06 -1.8006E-07
以下所示出的表3示出了实施例1的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。
表3
f1(mm) 3.83 f(mm) 2.95
f2(mm) -5.06 TTL(mm) 4.12
f3(mm) 3.96 ImgH(mm) 3.01
f4(mm) 2.27    
f5(mm) -1.51    
根据表3可知,光学成像镜头的有效焦距f与第四透镜E4的有效焦距f4满足f4/f=0.77;以及第四透镜E4的有效焦距f4与第五透镜E5的有效焦距f5满足f4/f5=-1.5。
结合上表1、表3,在该实施例中,光学成像镜头的最大视场角的一半HFOV满足HFOV=45.5°;第五透镜E5像侧面S10的最大倾角β52满足β52=57°;第一透镜E1的有效焦距f1与第一透镜E1在光轴上的中心厚度CT1满足f1/CT1=9.59;第一透镜E1的有效焦距f1与第一透镜E1物侧面S1的曲率半径R1满足f1/R1=1.82;第四透镜E4的有效焦距f4与第四透镜E4在光轴上的中心厚度CT4满足f4/CT4=4.71。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的光学成像镜头。
图3示出了根据本申请实施例2的光学成像镜头的结构示意图。如图3所示,根据实施例2的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第 五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表5示出了实施例2中各非球面镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表4
Figure PCTCN2018079778-appb-000003
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.6729E-02 6.3341E-01 -5.7592E+00 3.1842E+01 -1.1053E+02 2.4248E+02 -3.2672E+02 2.4697E+02 -8.0480E+01
S2 1.9468E-01 -5.4890E-01 1.8660E+00 -5.9632E+00 1.1579E+01 -1.1589E+01 9.7014E-01 5.3507E+00 -2.2065E+00
S3 -2.4465E-01 4.9088E-01 -6.7769E+00 4.9422E+01 -2.2272E+02 6.0894E+02 -9.9405E+02 8.8818E+02 -3.3572E+02
S4 2.1837E-02 -1.9427E+00 9.7097E+00 -2.8065E+01 5.0398E+01 -5.4872E+01 3.4033E+01 -1.0373E+01 1.0164E+00
S5 1.8383E-01 -2.5236E+00 1.1372E+01 -3.1307E+01 5.5384E+01 -6.2070E+01 4.2503E+01 -1.6233E+01 2.6526E+00
S6 6.0199E-02 -5.4389E-01 1.9434E-01 9.9185E-01 -1.6566E+00 1.0544E+00 -2.3972E-01 0.0000E+00 0.0000E+00
S7 1.7648E-01 -3.2546E-01 -8.1130E-01 2.5727E+00 -2.7849E+00 1.5312E+00 -4.2391E-01 4.0605E-02 2.5780E-03
S8 8.9828E-03 9.8804E-02 -6.8025E-01 1.2111E+00 -9.6806E-01 4.1650E-01 -1.0057E-01 1.2879E-02 -6.8365E-04
S9 2.4202E-01 -9.2651E-01 1.6620E+00 -1.7276E+00 1.1070E+00 -4.3749E-01 1.0395E-01 -1.3659E-02 7.6617E-04
S10 -2.9784E-01 2.7344E-01 -1.7542E-01 7.8135E-02 -2.4402E-02 5.2549E-03 -7.4082E-04 6.1135E-05 -2.2229E-06
表6
f1(mm) 3.96 f(mm) 2.98
f2(mm) -5.96 TTL(mm) 4.02
f3(mm) 4.02 ImgH(mm) 3.01
f4(mm) 2.12    
f5(mm) -1.40    
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。
图5示出了根据本申请实施例3的光学成像镜头的结构示意图。如图5所示,根据实施例3的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表8示出了实施例3中各非球面镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域 对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
Figure PCTCN2018079778-appb-000004
表8
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.8537E-02 7.7621E-01 -7.6557E+00 4.5775E+01 -1.7148E+02 4.0526E+02 -5.8742E+02 4.7704E+02 -1.6687E+02
S2 2.0655E-01 -6.0241E-01 1.8245E+00 -3.2881E+00 -7.9348E+00 5.7717E+01 -1.3436E+02 1.4307E+02 -5.9557E+01
S3 -2.0145E-01 -3.8101E-01 2.4418E+00 -8.6972E+00 4.1258E+00 5.4160E+01 -1.6935E+02 2.0818E+02 -9.8514E+01
S4 6.5206E-02 -2.4146E+00 1.2330E+01 -3.6240E+01 6.6012E+01 -7.3372E+01 4.6976E+01 -1.5042E+01 1.6153E+00
S5 2.1023E-01 -2.8335E+00 1.2879E+01 -3.5216E+01 6.1533E+01 -6.8228E+01 4.6378E+01 -1.7635E+01 2.8749E+00
S6 5.5594E-02 -5.0529E-01 8.3808E-02 1.1961E+00 -1.9002E+00 1.2053E+00 -2.7552E-01 0.0000E+00 0.0000E+00
S7 1.6996E-01 -2.5469E-01 -1.0662E+00 3.1369E+00 -3.5785E+00 2.2178E+00 -7.7615E-01 1.3892E-01 -8.9261E-03
S8 1.1782E-02 9.0532E-02 -6.8732E-01 1.2488E+00 -1.0066E+00 4.3294E-01 -1.0308E-01 1.2689E-02 -6.1620E-04
S9 2.4183E-01 -9.2337E-01 1.6564E+00 -1.7256E+00 1.1092E+00 -4.4017E-01 1.0513E-01 -1.3900E-02 7.8528E-04
S10 -2.8536E-01 2.5669E-01 -1.6224E-01 7.1340E-02 -2.2076E-02 4.7276E-03 -6.6469E-04 5.4803E-05 -1.9933E-06
表9
f1(mm) 4.01 f(mm) 2.95
f2(mm) -5.80 TTL(mm) 4.00
f3(mm) 3.95 ImgH(mm) 3.01
f4(mm) 2.12    
f5(mm) -1.41    
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。
图7示出了根据本申请实施例4的光学成像镜头的结构示意图。如图7所示,根据实施例4的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表11示出了实施例4中各非球面镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表10
Figure PCTCN2018079778-appb-000005
表11
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.5026E-02 1.3504E+00 -1.4003E+01 8.7648E+01 -3.4254E+02 8.4227E+02 -1.2667E+03 1.0644E+03 -3.8361E+02
S2 2.0552E-01 -3.8805E-01 -1.6046E+00 2.5674E+01 -1.5232E+02 4.9682E+02 -9.3619E+02 9.5031E+02 -4.0422E+02
S3 -1.9953E-01 -3.5357E-01 1.0058E+00 6.0384E+00 -7.4877E+01 3.0282E+02 -6.3377E+02 6.8569E+02 -3.0809E+02
S4 6.2592E-02 -2.3416E+00 1.1447E+01 -3.1261E+01 5.0602E+01 -4.5223E+01 1.6551E+01 2.9945E+00 -2.9041E+00
S5 2.1163E-01 -2.8454E+00 1.2861E+01 -3.4733E+01 5.9786E+01 -6.5301E+01 4.3754E+01 -1.6409E+01 2.6394E+00
S6 6.8961E-02 -5.1854E-01 -3.0846E-02 1.5295E+00 -2.2853E+00 1.4115E+00 -3.1745E-01 0.0000E+00 0.0000E+00
S7 1.8042E-01 -2.6511E-01 -1.2392E+00 3.7514E+00 -4.5304E+00 3.0407E+00 -1.1892E+00 2.5189E-01 -2.1987E-02
S8 1.3044E-02 7.6387E-02 -6.5353E-01 1.2143E+00 -9.8358E-01 4.2097E-01 -9.8640E-02 1.1734E-02 -5.2997E-04
S9 2.4520E-01 -9.3274E-01 1.6726E+00 -1.7488E+00 1.1306E+00 -4.5208E-01 1.0899E-01 -1.4568E-02 8.3289E-04
S10 -2.7573E-01 2.3908E-01 -1.4593E-01 6.2035E-02 -1.8739E-02 3.9817E-03 -5.6508E-04 4.7647E-05 -1.7854E-06
表12
f1(mm) 4.10 f(mm) 2.87
f2(mm) -6.06 TTL(mm) 3.94
f3(mm) 3.97 ImgH(mm) 3.01
f4(mm) 2.10    
f5(mm) -1.43    
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像 面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。
图9示出了根据本申请实施例5的光学成像镜头的结构示意图。如图9所示,根据实施例5的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表14示出了实施例5中各非球面镜面的高次项系数。表15示出了实施例5的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表13
Figure PCTCN2018079778-appb-000006
Figure PCTCN2018079778-appb-000007
表14
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.0744E-02 6.6405E-01 -5.8135E+00 3.0974E+01 -1.0373E+02 2.2003E+02 -2.8711E+02 2.1040E+02 -6.6444E+01
S2 1.7698E-01 -2.8759E-01 -8.7077E-01 1.4187E+01 -7.9571E+01 2.4174E+02 -4.1981E+02 3.8932E+02 -1.5023E+02
S3 -2.0442E-01 -2.0544E-01 -1.0966E+00 2.2093E+01 -1.3996E+02 4.5252E+02 -8.1994E+02 7.9138E+02 -3.1960E+02
S4 8.8700E-03 -1.8524E+00 9.7330E+00 -2.9595E+01 5.6336E+01 -6.6480E+01 4.6678E+01 -1.7604E+01 2.6892E+00
S5 1.4032E-01 -1.9979E+00 8.5963E+00 -2.2680E+01 3.8477E+01 -4.1220E+01 2.6898E+01 -9.7690E+00 1.5157E+00
S6 7.6611E-02 -6.5097E-01 5.6294E-01 2.9859E-01 -9.0601E-01 6.2542E-01 -1.4173E-01 0.0000E+00 0.0000E+00
S7 1.8690E-01 -3.7776E-01 -6.7705E-01 2.3708E+00 -2.5870E+00 1.4088E+00 -3.8337E-01 3.6517E-02 1.9884E-03
S8 2.2595E-02 6.7838E-02 -6.6096E-01 1.2246E+00 -1.0055E+00 4.4832E-01 -1.1386E-01 1.5611E-02 -9.0278E-04
S9 2.4740E-01 -9.4729E-01 1.7101E+00 -1.7900E+00 1.1564E+00 -4.6183E-01 1.1115E-01 -1.4825E-02 8.4552E-04
S10 -2.9747E-01 2.7424E-01 -1.7579E-01 7.7955E-02 -2.4130E-02 5.1328E-03 -7.1335E-04 5.7985E-05 -2.0765E-06
表15
f1(mm) 4.06 f(mm) 3.02
f2(mm) -6.72 TTL(mm) 4.08
f3(mm) 4.17 ImgH(mm) 3.01
f4(mm) 2.12    
f5(mm) -1.39    
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。
图11示出了根据本申请实施例6的光学成像镜头的结构示意图。如图11所示,根据实施例6的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表17示出了实施例6中各非球面镜面的高次项系数。表18示出了实施例6的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表16
Figure PCTCN2018079778-appb-000008
表17
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.8577E-02 5.5611E-01 -5.2625E+00 3.0213E+01 -1.0811E+02 2.4208E+02 -3.2948E+02 2.4876E+02 -8.0307E+01
S2 2.1131E-01 -5.2761E-01 3.6905E-01 9.0052E+00 -7.1873E+01 2.6662E+02 -5.4991E+02 5.9959E+02 -2.7139E+02
S3 -1.9985E-01 -4.2155E-02 -1.0958E+00 9.9352E+00 -4.3212E+01 8.7781E+01 -6.0371E+01 -5.3316E+01 7.2490E+01
S4 8.6491E-03 -1.8027E+00 9.4105E+00 -2.9826E+01 6.1307E+01 -7.9695E+01 6.3056E+01 -2.7908E+01 5.4045E+00
S5 1.4731E-01 -1.9525E+00 8.2934E+00 -2.2293E+01 3.9263E+01 -4.3932E+01 2.9980E+01 -1.1389E+01 1.8493E+00
S6 6.9896E-02 -6.2367E-01 4.8006E-01 4.4120E-01 -1.0821E+00 7.4790E-01 -1.7421E-01 0.0000E+00 0.0000E+00
S7 1.7268E-01 -3.4982E-01 -6.5699E-01 2.1349E+00 -2.0979E+00 9.0844E-01 -9.8361E-02 -5.0848E-02 1.3304E-02
S8 -5.2021E-03 1.8134E-01 -8.9732E-01 1.5275E+00 -1.2409E+00 5.5917E-01 -1.4507E-01 2.0515E-02 -1.2395E-03
S9 2.3782E-01 -9.1092E-01 1.6269E+00 -1.6855E+00 1.0765E+00 -4.2363E-01 1.0009E-01 -1.3058E-02 7.2616E-04
S10 -3.1280E-01 2.9106E-01 -1.8857E-01 8.4367E-02 -2.6291E-02 5.6290E-03 -7.8905E-04 6.4922E-05 -2.3622E-06
表18
f1(mm) 3.99 f(mm) 2.99
f2(mm) -6.88 TTL(mm) 4.01
f3(mm) 4.27 ImgH(mm) 3.01
f4(mm) 2.12    
f5(mm) -1.38    
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。
图13示出了根据本申请实施例7的光学成像镜头的结构示意图。 如图13所示,根据实施例7的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表20示出了实施例7中各非球面镜面的高次项系数。表21示出了实施例7的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表19
Figure PCTCN2018079778-appb-000009
表20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.1461E-02 6.2191E-01 -5.8479E+00 3.3199E+01 -1.1723E+02 2.5907E+02 -3.4825E+02 2.6008E+02 -8.3102E+01
S2 1.9245E-01 -3.8999E-01 -6.4027E-01 1.4954E+01 -9.3745E+01 3.1411E+02 -6.0414E+02 6.2320E+02 -2.6858E+02
S3 -2.1945E-01 8.9703E-02 -2.9893E+00 2.4536E+01 -1.1703E+02 3.2417E+02 -5.2664E+02 4.6163E+02 -1.7116E+02
S4 -1.3835E-02 -1.4291E+00 7.3427E+00 -2.3093E+01 4.7066E+01 -6.0288E+01 4.6683E+01 -2.0091E+01 3.7605E+00
S5 1.2637E-01 -1.7406E+00 7.4193E+00 -2.0513E+01 3.7355E+01 -4.2868E+01 2.9704E+01 -1.1361E+01 1.8453E+00
S6 5.9016E-02 -5.8087E-01 4.0162E-01 5.1855E-01 -1.0927E+00 7.1350E-01 -1.5879E-01 0.0000E+00 0.0000E+00
S7 1.6915E-01 -2.6477E-01 -9.1663E-01 2.5985E+00 -2.6114E+00 1.2674E+00 -2.5628E-01 -9.8423E-03 8.4397E-03
S8 -1.2094E-04 1.8637E-01 -9.2169E-01 1.5468E+00 -1.2420E+00 5.5358E-01 -1.4195E-01 1.9783E-02 -1.1716E-03
S9 2.4561E-01 -9.3615E-01 1.6840E+00 -1.7554E+00 1.1276E+00 -4.4706E-01 1.0665E-01 -1.4081E-02 7.9432E-04
S10 -3.0660E-01 2.8577E-01 -1.8491E-01 8.2619E-02 -2.5807E-02 5.5585E-03 -7.8538E-04 6.5123E-05 -2.3858E-06
表21
f1(mm) 3.95 f(mm) 3.01
f2(mm) -7.06 TTL(mm) 4.06
f3(mm) 4.35 ImgH(mm) 3.01
f4(mm) 2.12    
f5(mm) -1.38    
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。
图15示出了根据本申请实施例8的光学成像镜头的结构示意图。如图15所示,根据实施例8的光学成像镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
在该实施例中,第一透镜E1具有正光焦度,其物侧面S1为凸面;第二透镜E2具有负光焦度,其物侧面S3为凹面;第三透镜E3具有正光焦度;第四透镜E4具有正光焦度,其像侧面S8为凸面;以及第 五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。
下表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表23示出了实施例8中各非球面镜面的高次项系数。表24示出了实施例8的各透镜的有效焦距f1至f5、光学成像镜头的有效焦距f、光学成像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表22
Figure PCTCN2018079778-appb-000010
表23
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.3545E-02 6.6529E-01 -6.5404E+00 3.8721E+01 -1.4300E+02 3.3217E+02 -4.7224E+02 3.7555E+02 -1.2842E+02
S2 1.9803E-01 -5.1344E-01 1.0177E+00 1.2197E+00 -2.3197E+01 8.9325E+01 -1.7295E+02 1.6845E+02 -6.6191E+01
S3 -2.0563E-01 -1.7914E-01 -1.1521E+00 2.1717E+01 -1.3871E+02 4.5258E+02 -8.2632E+02 7.9994E+02 -3.2274E+02
S4 5.7313E-02 -2.4396E+00 1.2964E+01 -4.0159E+01 7.8451E+01 -9.6254E+01 7.1626E+01 -2.9507E+01 5.1923E+00
S5 1.9586E-01 -2.6403E+00 1.1828E+01 -3.2167E+01 5.6115E+01 -6.2101E+01 4.2085E+01 -1.5941E+01 2.5874E+00
S6 5.4494E-02 -5.2604E-01 1.8217E-01 9.8320E-01 -1.6430E+00 1.0519E+00 -2.4146E-01 0.0000E+00 0.0000E+00
S7 1.6378E-01 -2.4127E-01 -1.0351E+00 2.9261E+00 -3.1476E+00 1.7749E+00 -5.2869E-01 6.7257E-02 -5.1452E-04
S8 8.0324E-03 1.2328E-01 -7.7270E-01 1.3664E+00 -1.1141E+00 4.9791E-01 -1.2718E-01 1.7580E-02 -1.0290E-03
S9 2.4903E-01 -9.6102E-01 1.7356E+00 -1.8135E+00 1.1681E+00 -4.6467E-01 1.1132E-01 -1.4769E-02 8.3754E-04
S10 -2.9569E-01 2.6810E-01 -1.6853E-01 7.3235E-02 -2.2284E-02 4.6829E-03 -6.4647E-04 5.2442E-05 -1.8807E-06
表24
f1(mm) 3.96 f(mm) 3.01
f2(mm) -5.91 TTL(mm) 4.05
f3(mm) 4.02 ImgH(mm) 3.01
f4(mm) 2.12    
f5(mm) -1.39    
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足以下表25所示的关系。
表25
条件式/实施例 1 2 3 4 5 6 7 8
HFOV 45.5 45.4 46.6 46.0 45.0 45.2 45.0 45.2
CT3/CT4 1.50 1.52 1.50 1.50 1.50 1.52 1.51 1.51
R10/R9 -0.85 -0.78 -0.79 -0.80 -0.77 -0.76 -0.76 -0.77
f1/CT1 9.59 8.52 10.03 10.66 8.75 9.41 9.22 9.11
f4/f 0.77 0.71 0.72 0.73 0.70 0.71 0.71 0.70
R9/CT5 -6.04 -5.26 -5.04 -5.51 -5.09 -6.03 -5.34 -5.03
β52 57.00 37.60 55.20 56.50 43.60 30.60 55.50 46.40
f4/CT4 4.71 4.51 4.48 4.39 4.47 4.56 4.52 4.49
|R6/R5| 0.21 0.20 0.24 0.25 0.15 0.11 0 0.20
f4/f5 -1.50 -1.52 -1.50 -1.47 -1.52 -1.54 -1.54 -1.53
f1/R1 1.82 2.81 2.86 2.91 2.87 2.86 2.81 2.82
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离 所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (25)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有正光焦度或负光焦度,其物侧面为凹面;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度,其像侧面为凸面;
    所述第五透镜具有负光焦度,其物侧面和像侧面都为凹面;以及
    所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4之间满足:CT3/CT4≥1.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的最大视场角的一半HFOV满足:HFOV≥45°。
  3. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与其像侧面的曲率半径R10之间满足:-0.9<R10/R9<-0.7。
  4. 根据权利要求3所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜在所述光轴上的中心厚度CT5之间满足:-7<R9/CT5≤-5。
  5. 根据权利要求4所述的光学成像镜头,其特征在于,所述第五透镜像侧面的最大倾角β52满足:30°<β52<58°。
  6. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜在所述光轴上的中心厚度CT1之间满足:8.0<f1/CT1<11.0。
  7. 根据权利要求6所述的光学成像镜头,其特征在于,所述第一透镜的所述有效焦距f1与所述第一透镜物侧面的曲率半径R1之间满足:1.0<f1/R1<4.0。
  8. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f与所述第四透镜的有效焦距f4之间满足:0.6≤f4/f<0.8。
  9. 根据权利要求8所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第四透镜在所述光轴上的中心厚度CT4之间满足:4.0<f4/CT4<5.0。
  10. 根据权利要求9所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第五透镜的有效焦距f5之间满足:-1.6<f4/f5<-1.4。
  11. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:0<|R6/R5|<0.5。
  12. 光学成像镜头,具有有效焦距f和入瞳直径EPD,所述光学成像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,
    其特征在于,
    所述第一透镜和所述第四透镜都具有正光焦度;
    所述第二透镜、所述第三透镜和所述第五透镜中的至少之一具有负光焦度,
    所述光学成像镜头的最大视场角的一半HFOV满足:HFOV≥45°;以及
    其中,所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4之间满足:CT3/CT4≥1.5。
  13. 根据权利要求12所述的光学成像镜头,其特征在于,所述第一透镜的物侧面为凸面。
  14. 根据权利要求12所述的光学成像镜头,其特征在于,所述第二透镜的物侧面为凹面。
  15. 根据权利要求12所述的光学成像镜头,其特征在于,所述第四透镜的像侧面为凸面。
  16. 根据权利要求12所述的光学成像镜头,其特征在于,所述第五透镜具有负光焦度,其物侧面和像侧面都为凹面。
  17. 根据权利要求12或16所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与其像侧面的曲率半径R10之间满足:-0.9<R10/R9<-0.7。
  18. 根据权利要求17所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜在所述光轴上的中心厚度CT5之间满足:-7<R9/CT5≤-5。
  19. 根据权利要求18所述的光学成像镜头,其特征在于,所述第五透镜像侧面的最大倾角β52满足:30°<β52<58°。
  20. 根据权利要求12或13所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜在所述光轴上的中心厚度CT1之间满足:8.0<f1/CT1<11.0。
  21. 根据权利要求20所述的光学成像镜头,其特征在于,所述第一透镜的所述有效焦距f1与所述第一透镜物侧面的曲率半径R1之间满足:1.0<f1/R1<4.0。
  22. 根据权利要求12所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f与所述第四透镜的有效焦距f4之间满足:0.6≤f4/f<0.8。
  23. 根据权利要求22所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第四透镜在所述光轴上的中心厚度CT4之间满足:4.0<f4/CT4<5.0。
  24. 根据权利要求23所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第五透镜的有效焦距f5之间满足:-1.6<f4/f5<-1.4。
  25. 根据权利要求12所述的光学成像镜头,其特征在于,所述第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:0<|R6/R5|<0.5。
PCT/CN2018/079778 2017-08-21 2018-03-21 光学成像镜头 WO2019037413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/224,685 US10921560B2 (en) 2017-08-21 2018-12-18 Optical imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721047412.6 2017-08-21
CN201710719642.0 2017-08-21
CN201721047412.6U CN207037206U (zh) 2017-08-21 2017-08-21 光学成像镜头
CN201710719642.0A CN107290843B (zh) 2017-08-21 2017-08-21 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/224,685 Continuation US10921560B2 (en) 2017-08-21 2018-12-18 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019037413A1 true WO2019037413A1 (zh) 2019-02-28

Family

ID=65439331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079778 WO2019037413A1 (zh) 2017-08-21 2018-03-21 光学成像镜头

Country Status (2)

Country Link
US (1) US10921560B2 (zh)
WO (1) WO2019037413A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116859565B (zh) * 2023-09-05 2024-01-05 江西联益光学有限公司 光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299229A (zh) * 2011-01-31 2013-09-11 索尼公司 光学单元和摄像单元
US20150062724A1 (en) * 2013-09-02 2015-03-05 Ability Opto-Electronics Technology Co., Ltd. Lens assembly
CN104570291A (zh) * 2013-10-09 2015-04-29 大立光电股份有限公司 光学结像镜头组、取像装置及可携装置
CN105467556A (zh) * 2015-07-24 2016-04-06 瑞声声学科技(深圳)有限公司 摄像镜头
CN106980171A (zh) * 2017-05-26 2017-07-25 浙江舜宇光学有限公司 摄像镜头
CN106990508A (zh) * 2017-05-26 2017-07-28 浙江舜宇光学有限公司 成像镜头
CN107290843A (zh) * 2017-08-21 2017-10-24 浙江舜宇光学有限公司 光学成像镜头
CN207037206U (zh) * 2017-08-21 2018-02-23 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004196A (ja) * 2014-06-18 2016-01-12 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI536067B (zh) * 2014-10-03 2016-06-01 先進光電科技股份有限公司 光學成像系統

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299229A (zh) * 2011-01-31 2013-09-11 索尼公司 光学单元和摄像单元
US20150062724A1 (en) * 2013-09-02 2015-03-05 Ability Opto-Electronics Technology Co., Ltd. Lens assembly
CN104570291A (zh) * 2013-10-09 2015-04-29 大立光电股份有限公司 光学结像镜头组、取像装置及可携装置
CN105467556A (zh) * 2015-07-24 2016-04-06 瑞声声学科技(深圳)有限公司 摄像镜头
CN106980171A (zh) * 2017-05-26 2017-07-25 浙江舜宇光学有限公司 摄像镜头
CN106990508A (zh) * 2017-05-26 2017-07-28 浙江舜宇光学有限公司 成像镜头
CN107290843A (zh) * 2017-08-21 2017-10-24 浙江舜宇光学有限公司 光学成像镜头
CN207037206U (zh) * 2017-08-21 2018-02-23 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20190121096A1 (en) 2019-04-25
US10921560B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
WO2020007080A1 (zh) 摄像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020093725A1 (zh) 摄像光学系统
WO2019100868A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2019134602A1 (zh) 光学成像镜头
WO2019223263A1 (zh) 摄像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像系统
WO2019091170A1 (zh) 摄像透镜组
WO2020007081A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2019210740A1 (zh) 光学成像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020024635A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020042799A1 (zh) 光学成像镜片组
WO2019233040A1 (zh) 摄像透镜组
WO2019237776A1 (zh) 光学成像系统
WO2019233142A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848328

Country of ref document: EP

Kind code of ref document: A1