WO2012105272A1 - 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ - Google Patents

共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ Download PDF

Info

Publication number
WO2012105272A1
WO2012105272A1 PCT/JP2012/000723 JP2012000723W WO2012105272A1 WO 2012105272 A1 WO2012105272 A1 WO 2012105272A1 JP 2012000723 W JP2012000723 W JP 2012000723W WO 2012105272 A1 WO2012105272 A1 WO 2012105272A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
copolymer
conjugated diene
diene compound
rubber composition
Prior art date
Application number
PCT/JP2012/000723
Other languages
English (en)
French (fr)
Inventor
堀川 泰郎
会田 昭二郎
オリビエ タルディフ
純子 松下
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN2012800144153A priority Critical patent/CN103443150A/zh
Priority to EP12742550.2A priority patent/EP2671898B1/en
Priority to US13/983,141 priority patent/US8962744B2/en
Publication of WO2012105272A1 publication Critical patent/WO2012105272A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a copolymer, a rubber composition, a crosslinked rubber composition, and a tire, and is particularly used for producing a rubber excellent in roll processability and wear resistance, and includes a conjugated diene compound and a nonconjugated olefin.
  • the present invention relates to a tire using the crosslinked rubber composition.
  • Patent Document 1 discloses a conjugated diene polymerization catalyst containing a Group IV transition metal compound having a cyclopentadiene ring structure, which is co-polymerized with the conjugated diene.
  • the polymerizable monomer include ⁇ -olefins such as ethylene, but there is no mention of the arrangement of monomer units in the copolymer.
  • Patent Document 2 discloses a copolymer of an ⁇ -olefin and a conjugated diene compound, but the arrangement of monomer units in the copolymer is completely different. Not mentioned.
  • Patent Document 3 discloses a copolymer of ethylene and butadiene synthesized by using a special organometallic complex as a catalyst component. Is only inserted into the copolymer in the form of trans-1,2-cyclohexane, and there is no mention of the sequence of monomer units in the copolymer. Patent Documents 1 to 3 also provide rubbers excellent in roll processability and wear resistance by using a copolymer whose content of the conjugated diene compound-derived portion in the copolymer is more than 30 mol%. There is no description or suggestion of manufacturing.
  • JP-A-11-228743 discloses an unsaturated elastomer composition comprising an unsaturated olefin copolymer and rubber, but the monomer in the copolymer.
  • the unit arrangement is merely described as being random, and a rubber excellent in roll processability and wear resistance (index) has not been obtained. It has been described and suggested to produce a rubber excellent in roll processability and wear resistance by using a copolymer in which the content of the conjugated diene compound-derived portion in the copolymer is more than 30 mol%. Absent.
  • an object of the present invention is to produce a rubber having excellent roll processability and wear resistance, and a random copolymer formed by irregularly arranging monomer units of a conjugated diene compound and a nonconjugated olefin.
  • a rubber composition containing the random copolymer, a crosslinked rubber composition obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition. is there.
  • the present inventors have conducted polymerization in the presence of a specific catalyst, whereby a random copolymer having a conjugated diene compound-derived content of more than 30 mol% is obtained.
  • the inventors have found that the present invention can be obtained and have completed the present invention.
  • the copolymer of the present invention is a random copolymer in which monomer units of a conjugated diene compound and a non-conjugated olefin are randomly arranged, and the content of the conjugated diene compound-derived portion exceeds 30 mol%. It is characterized by being.
  • the portion derived from the non-conjugated olefin contains 5 mol% or more of an alternating bond portion of the conjugated diene compound and the non-conjugated olefin.
  • the content of the conjugated diene compound-derived moiety is 50 mol% or more and less than 100 mol%.
  • the conjugated diene compound-derived part has a 1,2-adduct part (including 3,4-adduct part) content of 5% or less. preferable.
  • the copolymer of the present invention preferably has a polystyrene equivalent weight average molecular weight of 10,000 to 10,000,000.
  • the copolymer of the present invention preferably has a molecular weight distribution (Mw / Mn) of 10 or less.
  • the non-conjugated olefin is an acyclic olefin.
  • the non-conjugated olefin has 2 to 10 carbon atoms.
  • the non-conjugated olefin is preferably at least one selected from the group consisting of ethylene, propylene and 1-butene, more preferably ethylene.
  • the conjugated diene compound is at least one selected from the group consisting of 1,3-butadiene and isoprene.
  • the rubber composition of the present invention includes the copolymer of the present invention.
  • the rubber composition of the present invention preferably contains 5 to 200 parts by mass of a reinforcing filler and 0.1 to 20 parts by mass of a crosslinking agent with respect to 100 parts by mass of the rubber component.
  • the crosslinked rubber composition of the present invention is obtained by crosslinking the rubber composition of the present invention.
  • the tire of the present invention is characterized by using the rubber composition of the present invention or the crosslinked rubber composition of the present invention.
  • a random copolymer that is used to produce a rubber excellent in roll processability and wear resistance, and in which monomer units of a conjugated diene compound and a nonconjugated olefin are irregularly arranged,
  • a rubber composition containing the random copolymer, a crosslinked rubber composition obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition can be provided.
  • the DSC curve of the copolymer A is shown.
  • the 13 C-NMR spectrum of copolymer A is shown.
  • the present invention is described in detail below.
  • the copolymer of the present invention is a random copolymer obtained by irregularly arranging monomer units of a conjugated diene compound and a non-conjugated olefin, and the content of the conjugated diene compound-derived portion is more than 30 mol%. It is characterized by that.
  • the term “random copolymer” means a statistically irregular array, for example, a portion in which the alternating bond portion described later in the non-conjugated olefin-derived portion is close to 100 mol%, or a non-conjugated olefin-derived portion.
  • the content of the conjugated diene compound-derived moiety is not particularly limited as long as it is more than 30 mol%, and can be appropriately selected according to the purpose, but is preferably 50 mol% to 97 mol%, preferably 80 mol% to 97 mol%. More preferred. When the content of the conjugated diene compound-derived portion is 50 mol% to 97 mol%, it is advantageous in terms of blendability with diene rubber, breaking strength and elongation.
  • the copolymer of the present invention measurement by 13 C-NMR is used to confirm that the content of the conjugated diene compound-derived moiety is 30 mol% or more, and differential scanning calorimetry ( DSC) is used as the main measuring means.
  • the differential scanning calorimetry (DSC) is a measurement method performed according to JIS K 7121-1987. First, since the crystallization temperature derived from the block part which consists of a monomer unit of a nonconjugated olefin by DSC is not observed, it can identify with random.
  • the alternating bond portion of the conjugated diene compound and the non-conjugated olefin in the non-conjugated olefin-derived portion is preferably 5 mol% or more, and more preferably 90 mol% or less.
  • “the portion of the non-conjugated olefin-derived portion in which the conjugated diene compound and the non-conjugated olefin are alternately bonded is 5 mol% or more” means that in the portion of the non-conjugated olefin-derived portion, 5 mol% or more of the non-conjugated olefin is alternating. It means to exist as a binding moiety.
  • the proportion of the A part in which the conjugated diene compound B and the non-conjugated olefin A are bonded in the BAB bond form is 5 mol% with respect to the total non-conjugated olefin A (100 mol%) contained in the copolymer. That means that.
  • BBB conjugated diene compound
  • the alternating bond portion of the conjugated diene compound and the non-conjugated olefin in the non-conjugated olefin-derived portion is less than 5 mol%, the fracture strength is lowered, and the low loss (low heat generation) may be inferior.
  • the chain of alternating bonds of conjugated diene and non-conjugated olefin may be distributed continuously or discontinuously.
  • the copolymer of the present invention measurement by 13 C-NMR is used to confirm that the non-conjugated olefin-derived portion contains 5 mol% or more of an alternating bond portion of a conjugated diene compound and a non-conjugated olefin.
  • differential scanning calorimetry is used as a main measuring means.
  • the differential scanning calorimetry (DSC) is a measurement method performed according to JIS K 7121-1987.
  • the total weight of the non-conjugated olefin-derived portion and the carbon peak area corresponding to the amount of the alternating bond portion of the non-conjugated olefin are integrated.
  • the portion derived from the non-conjugated olefin contains 5 mol% or more of the alternating bond portion of the conjugated diene compound and the non-conjugated olefin.
  • the content of the non-conjugated olefin moiety is preferably more than 0 mol% and 50 mol% or less, more preferably more than 3 mol% and 20 mol% or less. If content of a nonconjugated olefin part exists in said specified range, fracture strength and elongation can be improved effectively, without causing phase separation.
  • the copolymer of the present invention does not cause a problem of lowering the molecular weight, and its weight average molecular weight (Mw) is not particularly limited, but from the viewpoint of application to a polymer structural material, the copolymer
  • the weight average molecular weight (Mw) in terms of polystyrene of the coalescence is preferably 10,000 to 10,000,000, preferably 10,000 to 1,000,000, and more preferably 50,000 to 600,000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 10 or less, and more preferably 5 or less.
  • the average molecular weight and the molecular weight distribution can be determined using polystyrene as a standard substance by gel permeation chromatography (GPC).
  • the conjugated diene compound used as the monomer preferably has 4 to 12 carbon atoms.
  • Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and among these, 1,3-butadiene and isoprene are preferable.
  • these conjugated diene compounds may be used independently and may be used in combination of 2 or more type.
  • the copolymer of the present invention can be prepared by the same mechanism using any of the specific examples of the conjugated diene compound described above.
  • the non-conjugated olefin used as the monomer is a non-conjugated olefin other than the conjugated diene compound, which reduces the crystallinity by reducing the heat resistance and the proportion of double bonds in the main chain of the copolymer. By doing so, it becomes possible to increase the degree of design freedom as an elastomer.
  • the non-conjugated olefin is preferably an acyclic olefin, and the non-conjugated olefin preferably has 2 to 10 carbon atoms.
  • non-conjugated olefin examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene.
  • ethylene, propylene And 1-butene are preferred, and ethylene is particularly preferred.
  • These non-conjugated olefins may be used alone or in combination of two or more.
  • the olefin refers to a compound that is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.
  • the copolymer of the present invention preferably has a conjugated diene compound-derived part having a 1,2-adduct part (including 3,4-adduct part) content (vinyl bond amount) of 5% or less in the conjugated diene compound. 3% or less is more preferable.
  • the 1,2-adduct portion (including 3,4-adduct portion) content of the conjugated diene compound in the conjugated diene compound-derived portion is 5% or less, the copolymer of the present invention further exhibits wear resistance. Can be improved.
  • the content of the 1,2-adduct portion (including the 3,4-adduct portion) and the amount of cis-1,4 bond are the amount in the portion derived from the conjugated diene compound, and not the ratio to the whole copolymer.
  • the 1,2-adduct portion (including 3,4-adduct portion) content of the conjugated diene compound portion (including the 3,4-adduct portion) Including) content) has the same meaning as the amount of 1,2-vinyl bonds when the conjugated diene compound is butadiene.
  • the first method for producing a copolymer of a conjugated diene compound and a non-conjugated olefin of the present invention is represented by the following formula (A): R a MX b QY b (A) [In the formula, each R independently represents unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium, and each X independently represents 1 to 20 represents a hydrocarbon group, X is ⁇ -coordinated to M and Q, Q represents a group 13 element in the periodic table, and Y is independently a hydrocarbon group having 1 to 20 carbon atoms or A hydrogen atom, wherein Y is coordinated to Q, and a and b are 2, preferably a metallocene composite catalyst represented by the following formula (I): [ Wherein , M 1
  • R A and R B are ⁇ -coordinated to M 1 and Al, and R C and R D each independently represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • the conjugated diene compound and the non-conjugated olefin are polymerized in the presence of the metallocene composite catalyst represented by the above or a polymerization catalyst composition containing the metallocene composite catalyst and a boron anion.
  • the conjugation which is a monomer is performed in the same manner as in the production method of a polymer using a normal coordination ion polymerization catalyst.
  • a diene compound and a non-conjugated olefin can be copolymerized, and the conjugated diene compound-non-conjugated olefin copolymer obtained in this way has monomer units of the non-conjugated olefin arranged completely irregularly. It has a random part.
  • any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used.
  • the solvent used should just be inactive in a polymerization reaction, For example, toluene, hexane, cyclohexane, mixtures thereof etc. are mentioned.
  • the metallocene composite catalyst is a compound having a lanthanoid element, a scandium or yttrium rare earth element and a Group 13 element of the periodic table, and is represented by the above formula (A), preferably the above formula (I). It is characterized by. Note that the ⁇ coordination is a coordination mode having a crosslinked structure.
  • the metal M in the formula (A) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • each R is independently an unsubstituted indenyl or a substituted indenyl, and the R is coordinated to the metal M.
  • the substituted indenyl group include 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group, and the like. It is done.
  • Q represents a group 13 element of the periodic table, and specific examples include boron, aluminum, gallium, indium, thallium and the like.
  • X independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is ⁇ -coordinated to M and Q.
  • the hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group.
  • each Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and the Y is coordinated to Q.
  • the hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group.
  • the metal M 1 in the formula (I) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferable examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • Cp R is unsubstituted indenyl or substituted indenyl.
  • Cp R of the indenyl ring as a basic skeleton, C 9 H 7-X R X or C 9 H 11 - can be shown by X R X.
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • hydrocarbyl group examples include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • substituted indenyl examples include 2-phenylindenyl, 2-methylindenyl and the like. Note that the two Cp Rs in formula (I) may be the same or different from each other.
  • R A and R B each independently represent a hydrocarbon group having 1 to 20 carbon atoms, and R A and R B are ⁇ -coordinated to M1 and Al.
  • the hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group.
  • R C and R D are each independently a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • the hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group.
  • the metallocene composite catalyst is, for example, in a solvent in the following formula (II):
  • M 2 represents a lanthanoid element, scandium or yttrium
  • Cp R each independently represents an unsubstituted or substituted indenyl group
  • R E to R J each independently represents a group having 1 to 3 carbon atoms.
  • L represents a neutral Lewis base
  • w represents an integer of 0 to 3
  • a metallocene complex represented by AlR K R L R M It is obtained by reacting with.
  • reaction temperature should just be about room temperature, it can manufacture on mild conditions.
  • the reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product.
  • a solvent that dissolves the raw material and the product For example, toluene or hexane may be used.
  • the structure of the metallocene composite catalyst is preferably determined by 1 H-NMR.
  • Cp R is a non-substituted indenyl or substituted indenyl, is synonymous with Cp R in the above formula (I).
  • the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (I).
  • the metallocene complex represented by the above formula (II) contains a silylamide ligand [—N (SiR 3 ) 2 ].
  • the R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Further, it is preferable that at least one of R E to R J is a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the synthesis of the catalyst becomes easy. Furthermore, a methyl group is preferable as the alkyl group.
  • the metallocene complex represented by the above formula (II) further contains 0 to 3, preferably 0 to 1 neutral Lewis base L.
  • the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the neutral Lewis bases L may be the same or different.
  • the metallocene complex represented by the above formula (II) may exist as a monomer, or may exist as a dimer or a higher multimer.
  • the organoaluminum compound used to produce the metallocene composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon atom having 1 to 20 carbon atoms. hydrogen group or a hydrogen atom, R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that, R M may be the same or different and the R K or R L.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • organoaluminum compound examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, tri Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminum Muzi hydride, isobutylaluminum dihydride and the like.
  • triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred.
  • these organoaluminum compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them.
  • the amount of the organoaluminum compound used for the production of the metallocene composite catalyst is preferably 2 to 50 times mol, more preferably about 3 to 5 times mol for the metallocene complex.
  • the polymerization catalyst composition (hereinafter also referred to as the first polymerization catalyst composition) includes the metallocene composite catalyst and a boron anion, and further includes a normal metallocene catalyst. It is preferable to include other components contained in the product, such as a promoter.
  • the metallocene composite catalyst and boron anion are also referred to as a two-component catalyst.
  • the conjugated diene compound-nonconjugated olefin copolymer having a random portion in which the monomer units of the nonconjugated olefin are completely irregularly arranged.
  • boron anion constituting the two-component catalyst in the first polymerization catalyst composition include a tetravalent boron anion.
  • tetraphenyl borate tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarboundecaborate Among
  • the boron anion can be used as an ionic compound combined with a cation.
  • the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation.
  • the tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl).
  • amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation.
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable.
  • the ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times, more preferably about 1 time, with respect to the metallocene composite catalyst.
  • aluminoxane can be preferably used.
  • the aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.
  • the usual coordination is performed except that the metallocene composite catalyst or the first polymerization catalyst composition is used.
  • Polymerization can be carried out in the same manner as in the method for producing a polymer using an ionic polymerization catalyst.
  • the method for producing a copolymer of the present invention uses the first polymerization catalyst composition, for example, (1) In a polymerization reaction system containing a conjugated diene compound and a non-conjugated olefin as monomers, 2
  • the component components of the component catalyst may be provided separately and used as the first polymerization catalyst composition in the polymerization reaction system, or (2) the first polymerization catalyst composition prepared in advance may be provided in the polymerization reaction system. Also good.
  • the amount of the metallocene composite catalyst used is preferably in the range of 0.0001 to 0.01-fold moles with respect to the total of the conjugated diene compound and the non-conjugated olefin.
  • the polymerization may be terminated using a polymerization terminator such as ethanol or isopropanol.
  • the polymerization reaction of the conjugated diene compound and the nonconjugated olefin is carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • an inert gas preferably nitrogen gas or argon gas.
  • the polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of ⁇ 100 ° C. to 200 ° C., for example, and can be about room temperature. When the polymerization temperature is raised, the cis-1,4 selectivity of the polymerization reaction may be lowered.
  • the pressure for the polymerization reaction is preferably in the range of 0.1 MPa to 10 MPa in order to sufficiently incorporate the conjugated diene compound and the non-conjugated olefin into the polymerization reaction system.
  • the reaction time of the polymerization reaction is not particularly limited, and is preferably in the range of, for example, 1 second to 10 days, but may be appropriately selected depending on conditions such as the type of monomer to be polymerized, the type of catalyst, and the polymerization temperature. it can.
  • the concentration (mol / l) of the conjugated diene compound at the start of polymerization during the polymerization of the conjugated diene compound and the nonconjugated olefin is the following formula: Non-conjugated olefin concentration / conjugated diene compound concentration ⁇ 1.0 It is preferable to satisfy the relationship: Non-conjugated olefin concentration / conjugated diene compound concentration ⁇ 1.3 And more preferably the following formula: Non-conjugated olefin concentration / conjugated diene compound concentration ⁇ 1.7 Satisfy the relationship.
  • the conjugated diene compound-nonconjugated olefin of the present invention can be prepared by adjusting how the monomer is charged into the polymerization reaction system without using the metallocene composite catalyst or the first polymerization catalyst composition.
  • Copolymers can be produced. That is, the second production method of the copolymer of the present invention is characterized in that the chain structure of the copolymer is controlled by controlling the introduction of the conjugated diene compound in the presence of the non-conjugated olefin. Can control the arrangement of monomer units in the copolymer.
  • a polymerization reaction system means the place where superposition
  • the input method of the conjugated diene compound may be either continuous input or split input, and may be a combination of continuous input and split input.
  • continuous injection means adding for a fixed time at a fixed addition rate, for example.
  • the concentration ratio of monomers in the polymerization reaction system can be controlled by dividing or continuously adding the conjugated diene compound to the polymerization reaction system for polymerizing the conjugated diene compound and the non-conjugated olefin.
  • the conjugated diene compound is added, the presence of the non-conjugated olefin in the polymerization reaction system can suppress the formation of a conjugated diene compound homopolymer.
  • the addition of the conjugated diene compound may be performed after the polymerization of the nonconjugated olefin is started.
  • a conjugated diene compound is newly added to a polymerization reaction system in which polymerization of a conjugated diene compound and a nonconjugated olefin is started in the presence of the nonconjugated olefin. It is effective to continuously charge the conjugated diene compound in the presence of the non-conjugated olefin in the polymerization reaction system in which the conjugated diene compound and the non-conjugated olefin are polymerized.
  • the second production method is not particularly limited as described above, except that the method of charging the monomer into the polymerization reaction system as described above.
  • the solution polymerization method, the suspension polymerization method, the liquid phase bulk polymerization method, Any polymerization method such as an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used.
  • the second production method is the same as the first production method, except that the method of charging the monomer into the polymerization reaction system as described above, and the conjugated diene compound as a monomer Non-conjugated olefins can be copolymerized.
  • the injection quantity of a conjugated diene compound and the injection frequency of a conjugated diene compound are not limited.
  • the method for controlling the introduction of the conjugated diene compound include a method of controlling by a program such as a computer and a method of controlling by analog using a timer or the like, but are not limited thereto.
  • the method for charging the conjugated diene compound is not particularly limited, and examples thereof include continuous charging and divided charging.
  • the conjugated diene compound is dividedly charged, the number of times the conjugated diene compound is charged is not particularly limited.
  • the non-conjugated olefin is continuously supplied to the polymerization reaction system. Is preferred. Moreover, the supply method of a nonconjugated olefin is not specifically limited.
  • the second production method it is preferable to carry out the polymerization of the conjugated diene compound and the non-conjugated olefin in the presence of the polymerization catalyst composition shown below from the viewpoint of efficiently proceeding the polymerization.
  • the solvent used should just be inactive in a polymerization reaction, For example, toluene etc. are mentioned.
  • the polymerization catalyst composition includes the following general formula (III): (wherein M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms.
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R each independently represents an unsubstituted or substituted indenyl group
  • X ′ represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group.
  • a silyl group or a hydrocarbon group having 1 to 20 carbon atoms L represents a neutral Lewis base, and w represents an integer of 0 to 3, and the following general formula (V ):
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl
  • X represents a hydrogen atom, a halogen atom, an alkoxide group or a thiolate group.
  • a polymerization catalyst composition (hereinafter also referred to as a second polymerization catalyst composition) containing at least one complex selected from the group consisting of half metallocene cation complexes represented by The catalyst composition may further contain other components such as a cocatalyst contained in a polymerization catalyst composition containing a normal metallocene complex.
  • the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal.
  • a certain metallocene complex may be called a half metallocene complex.
  • the concentration of the complex contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
  • Cp R in the formula is an unsubstituted indenyl or substituted indenyl.
  • Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-X R X or C 9 H 11-X R X.
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • hydrocarbyl group examples include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • substituted indenyl examples include 2-phenylindenyl, 2-methylindenyl and the like. Note that the two Cp Rs in the general formulas (III) and (IV) may be the same as or different from each other.
  • Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl It is preferable that Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-X R X. Here, X is an integer of 0 to 5.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following. (In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)
  • Cp R ′ having the above indenyl ring as a basic skeleton is defined in the same manner as Cp R in the general formula (III), and preferred examples thereof are also the same.
  • Cp R 'having a basic skeleton of the above fluorenyl ring may be represented by C 13 H 9-X R X or C 13 H 17-X R X .
  • X is an integer of 0 to 9 or 0 to 17.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • the central metal M in the general formula (III), formula (IV) and formula (V) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • the metallocene complex represented by the general formula (III) includes a silylamide ligand [—N (SiR 3 ) 2 ].
  • the R groups contained in the silylamide ligand (R a to R f in the general formula (I)) are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom.
  • R a to R f is a hydrogen atom.
  • the alkyl group is preferably a methyl group.
  • the metallocene complex represented by the general formula (IV) includes a silyl ligand [—SiX ′ 3 ].
  • X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (V) described below, and preferred groups are also the same.
  • X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, and a hydrocarbon group having 1 to 20 carbon atoms.
  • examples of the alkoxide group include aliphatic alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group; phenoxy group, 2,6-dioxy -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples include aryloxide groups (aromatic alkoxy groups) such as 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di-tert-butylphenoxy group is preferable.
  • aliphatic alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group
  • the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group and the like Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group,
  • examples of the amide group represented by X include aliphatic amide groups such as dimethylamide group, diethylamide group, and diisopropylamide group; phenylamide group, 2,6-di-tert-butylphenylamide group, 2 , 6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl- Arylamido groups such as 6-neopentylphenylamide group and 2,4,6-tri-tert-butylphenylamide group; bistrialkylsilylamide groups such as bistrimethylsilylamide group, among them bistrimethylsilylamide Groups are preferred.
  • examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like.
  • a tris (trimethylsilyl) silyl group is preferable.
  • the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferred.
  • Specific examples of the hydrocarbon group having 1 to 20 carbon atoms represented by X include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • Linear or branched aliphatic hydrocarbon groups such as butyl group, neopentyl group, hexyl group, octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group, naphthyl group; aralkyl groups such as benzyl group, etc.
  • Others include hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.
  • X is preferably a bistrimethylsilylamide group or a hydrocarbon group having 1 to 20 carbon atoms.
  • the non-coordinating anion represented by, for example, a tetravalent boron anion.
  • tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbound
  • the metallocene complex represented by the above general formulas (III) and (IV) and the half metallocene cation complex represented by the above general formula (V) are further 0 to 3, preferably 0 to 1 neutral.
  • examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the neutral Lewis bases L may be the same or different.
  • the metallocene complex represented by the general formula (III) and the formula (IV) and the half metallocene cation complex represented by the general formula (V) may exist as a monomer, It may exist as a body or higher multimer.
  • the metallocene complex represented by the general formula (III) includes, for example, a lanthanide trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt) and bis (trialkylsilyl). It can be obtained by reacting with an amide salt (for example, potassium salt or lithium salt).
  • reaction temperature should just be about room temperature, it can manufacture on mild conditions.
  • the reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used.
  • the reaction example for obtaining the metallocene complex represented by general formula (III) is shown. (In the formula, X ′′ represents a halide.)
  • the metallocene complex represented by the general formula (IV) includes, for example, a lanthanide trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt), and a silyl salt (for example, potassium). Salt or lithium salt).
  • reaction temperature should just be about room temperature, it can manufacture on mild conditions.
  • the reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used.
  • the example of reaction for obtaining the metallocene complex represented by general formula (IV) is shown. (In the formula, X ′′ represents a halide.)
  • the half metallocene cation complex represented by the general formula (V) can be obtained, for example, by the following reaction.
  • M represents a lanthanoid element, scandium or yttrium, and Cp R ′ independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl.
  • X represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms
  • L represents a neutral Lewis base
  • w represents 0 to 3 Indicates an integer.
  • [A] + [B] ⁇ [A] + represents a cation
  • [B] ⁇ represents a non-coordinating anion.
  • Examples of the cation represented by + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation.
  • the tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like.
  • amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.
  • the ionic compound represented by the general formula [A] + [B] ⁇ used in the above reaction is a compound selected and combined from the above non-coordinating anions and cations, and is an N, N-dimethylaniline. Preference is given to nium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like.
  • general formula [A] + [B] - ionic compounds represented by is preferably added from 0.1 to 10 mols per mol of the metallocene complex, more preferably added about 1 molar.
  • the half metallocene cation complex represented by the general formula (V) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (VI) and formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (V You may form the half metallocene cation complex represented by this.
  • the structures of the metallocene complex represented by general formula (III) and formula (IV) and the half metallocene cation complex represented by general formula (V) are preferably determined by X-ray structural analysis.
  • the co-catalyst that can be used in the second polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex.
  • suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.
  • the aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable.
  • the content of the aluminoxane in the second polymerization catalyst composition is such that the element ratio Al / M between the central metal M of the metallocene complex and the aluminum element Al of the aluminoxane is about 10 to 1000, preferably about 100. It is preferable to make it.
  • the organoaluminum compound the general formula AlRR′R ′′ (wherein R and R ′ are each independently a C 1 to C 10 hydrocarbon group or a hydrogen atom, and R ′′ is C 1 an organoaluminum compound represented by a hydrocarbon group) of ⁇ C 10 are preferred.
  • the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable.
  • examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum.
  • the content of the organoaluminum compound in the polymerization catalyst composition is preferably 1 to 50 times mol, and more preferably about 10 times mol to the metallocene complex.
  • the metallocene complex represented by the general formula (III) and the formula (IV) and the half metallocene cation complex represented by the general formula (V) are respectively used as appropriate promoters. By combining them, the amount of cis-1,4 bonds and the molecular weight of the resulting copolymer can be increased.
  • (A) component a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon
  • B-1 ionic compound composed of non-coordinating anion and cation
  • aluminoxane (B-2) aluminoxane
  • Lewis acid complex compound of metal halide and Lewis base
  • active halogen A polymerization catalyst composition (hereinafter also referred to as a third polymerization catalyst composition) containing at least one selected from the group consisting of at least one halogen compound (B-3) among organic compounds can also be suitably exemplified.
  • the polymerization catalyst composition contains at least one of the ionic compound (B-1) and the halogen compound (B-3), the polymerization catalyst composition further comprises: (C) Component: The following general formula (i): YR 1 a R 2 b R 3 c (i) [Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms.
  • the ionic compound (B-1) and the halogen compound (B-3) do not have a carbon atom to be supplied to the component (A), the above (A) as a carbon supply source to the component (A) Component C) is required.
  • the polymerization catalyst composition contains the aluminoxane (B-2), the polymerization catalyst composition can contain the component (C).
  • the polymerization catalyst composition may contain other components such as a co-catalyst contained in a normal rare earth element compound-based polymerization catalyst composition.
  • the concentration of the component (A) contained in the third polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
  • the component (A) used in the third polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base.
  • the rare earth element compound and the rare earth element compound and a Lewis base The reactant does not have a bond between a rare earth element and carbon.
  • the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle.
  • the rare earth element compound is a compound containing a lanthanoid element or scandium or yttrium composed of the elements of atomic numbers 57 to 71 in the periodic table.
  • the lanthanoid element examples include lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the said (A) component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the rare earth element compound is preferably a divalent or trivalent salt or complex compound of a rare earth metal, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child.
  • reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (XI) or (XII): M 11 X 11 2 ⁇ L 11 w (XI) M 11 X 11 3 ⁇ L 11 w (XII) [Wherein M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, an aldehyde residue, a ketone residue. Represents a group, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 represents a Lewis base, and w represents 0 to 3.
  • the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom; a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert- Aliphatic alkoxy groups such as butoxy group; phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6- Aromatic alkoxy groups such as isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, Fats such as thioisobutoxy group, thiosec-butoxy group
  • aldehyde residues such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc.
  • examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, And neutral diolefins.
  • the rare earth element compound reacts with a plurality of Lewis bases (in the formulas (XI) and (XII), when w is 2 or 3), the Lewis base L 11 is the same or different. It may be.
  • Component (B) used in the third polymerization catalyst composition is at least one compound selected from the group consisting of ionic compound (B-1), aluminoxane (B-2) and halogen compound (B-3). It is.
  • the total content of the component (B) in the third polymerization catalyst composition is preferably 0.1 to 50 times mol of the component (A).
  • the ionic compound represented by (B-1) is composed of a non-coordinating anion and a cation, and reacts with the rare earth element compound which is the component (A) or a reaction product thereof with a Lewis base to become cationic.
  • Examples thereof include ionic compounds capable of generating a transition metal compound.
  • non-coordinating anion for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaound decaborate and the like.
  • examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like.
  • ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cation such as cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation and dicyclohexylammonium cation Is mentioned.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl)
  • the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate.
  • these ionic compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them.
  • the content of the ionic compound in the third polymerization catalyst composition is preferably 0.1 to 10-fold mol, more preferably about 1-fold mol with respect to component (A).
  • the aluminoxane represented by the above (B-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other.
  • R ′ is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group
  • the degree of polymerization of the unit is preferably 5 or more, and more preferably 10 or more.
  • R ′ examples include a methyl group, an ethyl group, a propyl group, and an isobutyl group. Among these, a methyl group is preferable.
  • the organoaluminum compound used as an aluminoxane raw material include trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable.
  • an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used.
  • the aluminoxane content in the third polymerization catalyst composition is such that the element ratio Al / M between the rare earth element M constituting the component (A) and the aluminum element Al of the aluminoxane is about 10 to 1000. It is preferable to make it.
  • the halogen compound represented by (B-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and is, for example, the component (A).
  • a halogenated transition metal compound or a compound having a transition metal center with insufficient charge can be produced.
  • the total content of halogen compounds in the third polymerization catalyst composition is preferably 1 to 5 moles compared to the component (A).
  • boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used, as well as III, IV,
  • a halogen compound containing an element belonging to the group V, VI or VIII can also be used.
  • aluminum halide or organometallic halide is used.
  • chlorine or bromine is preferable.
  • the Lewis acid examples include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride,
  • the metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine.
  • a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol, and the like are preferable.
  • tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol, lauryl alcohol are preferred.
  • the Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide.
  • the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
  • organic compound containing the active halogen examples include benzyl chloride. .
  • the component (C) used in the third polymerization catalyst composition is represented by the following general formula (i): YR 1 a R 2 b R 3 c (i) [Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms.
  • R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2, and Y is a periodic table;
  • a is 1 and b and c are 0, and when Y is a metal selected from Groups 2 and 12 of the Periodic Table, a and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the Periodic Table, a, b and c are 1].
  • organoaluminum compound of the formula (X) examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Trihexylaluminum, tricyclohexylaluminum, tri-BR> I cutylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexylaluminum hydride, hydrogen Diisohexyl aluminum, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum Examples include mud hydride and isobutylalum
  • the organometallic compound as the component (C) described above can be used alone or in combination of two or more.
  • the content of the organoaluminum compound in the third polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol for the component (A).
  • the rubber composition of the present invention is not particularly limited as long as it contains the copolymer of the present invention, and can be appropriately selected according to the purpose.
  • rubber components other than the copolymer of the present invention inorganic fillers , Carbon black, a crosslinking agent, and the like are preferable.
  • the rubber component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the copolymer of the present invention natural rubber, various butadiene rubbers, various styrene-butadiene copolymer rubbers, isoprene rubber, Butyl rubber, isobutylene and p-methylstyrene copolymer bromide, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-isoprene copolymer Polymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, urethan
  • a reinforcing filler can be blended with the rubber composition as necessary.
  • the reinforcing filler include carbon black and inorganic filler, and at least one selected from carbon black and inorganic filler is preferable.
  • the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose.For example, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, Examples thereof include magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide, titanium oxide, potassium titanate, and barium sulfate. These may be used individually by 1 type and may use 2 or more types together. In addition, when using an inorganic filler, you may use a silane coupling agent suitably.
  • the content of the reinforcing filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 parts by mass to 200 parts by mass with respect to 100 parts by mass of the rubber component. If the content of the reinforcing filler is less than 5 parts by mass, the effect of adding the reinforcing filler may not be seen so much, and if it exceeds 200 parts by mass, the rubber filler is mixed with the reinforcing filler. There is a tendency that it does not get caught, and the performance as a rubber composition may be reduced.
  • ⁇ Crosslinking agent> There is no restriction
  • the content of the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the cross-linking agent is less than 0.1 parts by mass, the cross-linking hardly proceeds, and when the content exceeds 20 parts by mass, the cross-linking tends to progress during kneading with a part of the cross-linking agent.
  • the physical properties of the sulfide may be impaired.
  • vulcanization accelerators can be used in combination.
  • vulcanization accelerators include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, Dithiocarbamate and xanthate compounds can be used.
  • Known materials such as ultraviolet ray inhibitors, antistatic agents, anti-coloring agents, and other compounding agents can be used depending on the intended use.
  • the crosslinked rubber composition of the present invention is not particularly limited as long as it is obtained by crosslinking the rubber composition of the present invention, and can be appropriately selected according to the purpose.
  • the crosslinking conditions are not particularly limited and may be appropriately selected depending on the intended purpose. However, a temperature of 120 ° C. to 200 ° C. and a heating time of 1 minute to 900 minutes are preferable.
  • the tire of the present invention is not particularly limited as long as the rubber composition of the present invention or the crosslinked rubber composition of the present invention is used, and can be appropriately selected according to the purpose.
  • Examples of the application site in the tire of the rubber composition of the present invention or the crosslinked rubber composition of the present invention include, but are not limited to, a tread, a base tread, a sidewall, a side reinforcing rubber, and a bead filler. .
  • a method for manufacturing the tire a conventional method can be used. For example, on a tire molding drum, members usually used for manufacturing a tire such as a carcass layer, a belt layer, and a tread layer made of unvulcanized rubber are sequentially laminated, and the drum is removed to obtain a green tire. Next, the desired tire can be manufactured by heat vulcanizing the green tire according to a conventional method.
  • the rubber composition of the present invention or the crosslinked rubber composition of the present invention may be used for anti-vibration rubber, seismic isolation rubber, belts (conveyor belts), rubber crawlers, various hoses, Moran and the like. it can.
  • Example 1 After adding 700 ml of a toluene solution containing 28.0 g (0.52 mol) of 1,3-butadiene to a sufficiently dry 2 L stainless steel reactor, ethylene was introduced at 0.8 MPa. On the other hand, dimethylaluminum ( ⁇ -dimethyl) bis (2-phenylindenyl) neodium [(2-PhC 9 H 6 ) 2 Nd ( ⁇ -Me) 2 AlMe 2 is placed in a glass container in a glove box under a nitrogen atmosphere.
  • Example 2 In Example 1, a similar experiment was conducted except that the polymerization temperature was set to 60 ° C. and the polymerization time was set to 60 minutes. As a result, a copolymer B (random copolymer) was obtained. The yield of the obtained copolymer B was 17.00 g.
  • Example 3 In Example 2, an experiment was performed in the same manner except that the pressure at the time of first introducing ethylene was 1.5 MPa, and copolymer C (random copolymer) was obtained. The yield of the obtained copolymer C was 19.50 g.
  • the butadiene rubber of Comparative Example 1 and the copolymer D of Comparative Example 2 the conjugated diene-derived partial content and the weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), DSC curve, alternating bond component content (mol%), and 1,2-vinyl bond content (%) were measured and evaluated by the following methods.
  • the content (mol%) of the diene-derived moiety in the copolymer was determined by 13 C-NMR spectrum (100 ° C, d-tetrachloroethane standard: 73.8 ppm) as a whole. It was determined from the integral ratio of the component (28.5-30.0 ppm) and the total butadiene bond component (26.5-27.5 ppm + 31.5-32.5 ppm). Table 1 shows the content (mol%) of the conjugated diene-derived moiety.
  • the content (mol%) of the alternating bond component (alternate bond portion) in the ethylene-derived portion in the copolymer is the entire ethylene-derived portion of the 13 C-NMR spectrum. Peak area (28.5-30.0 ppm) and the area corresponding to the ethylene alternate bond portion (more precisely, the peak area derived from carbon adjacent to the ethylene alternate bond portion: 26.9-27.0 ppm + 31. 8-32.1 ppm). Table 1 shows the content (mol%) of the alternating bond component (alternate bond part) in the ethylene-derived part.
  • 1,2-vinyl bond content 1,2-vinyl bond content of the butadiene moiety in the copolymer was determined by 1 H-NMR spectrum (100 ° C., d-tetrachloroethane standard: 6 ppm). It was determined from the integral ratio of the binding component (5.0 ppm-5.1 ppm) and the total butadiene binding component (5 ppm-5.6 ppm).
  • the chain distribution was analyzed by applying the ozonolysis-GPC method of the literature (“Science of Polymer Science Vol. 42, No. 4, Page 1347”).
  • Gel permeation chromatography was measured based on [GPC: Tosoh HLC-8121GPC / HT, column: Showa Denko GPC HT-803 ⁇ 2, detector: differential refractometer (RI), monodisperse polystyrene The temperature was measured using 140 ° C.].
  • the block ethylene component that is, the polyethylene component having a number average molecular weight (Mn) of 1000 or more is 10% by mass or less, that is, the randomness is high with respect to all ethylene components.
  • the copolymers B and C were confirmed to be random copolymers formed by irregularly arranging monomers of 1,3-butadiene and ethylene. From the peak positions of the butadiene bond components (26.5-27.5 ppm and 31.5-32.5 ppm) in the 13 C-NMR spectrum, it was confirmed that butadiene was randomly arranged in polyethylene.
  • Rubber compounds having the compounding recipe shown in Table 2 were prepared, roll processability was evaluated according to the following method, and vulcanized at 160 ° C. for 20 minutes. Abrasion resistance (index) was measured for the vulcanized rubber according to the following method.
  • the copolymer of the present invention can be used for elastomer products in general, particularly for tire members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)

Abstract

 ロール加工性及び耐摩耗性に優れたタイヤを製造するのに用いられ、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体、該ランダム共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供する。共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体であって、前記共役ジエン化合物由来部分の含有量が30mol%超であることを特徴とする。

Description

共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
 本発明は、共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤに関し、特に、ロール加工性及び耐摩耗性に優れたゴムを製造するのに用いられ、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体、該ランダム共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤに関するものである。
 2種類以上の単量体を同一の反応系で重合すると、1本の重合体鎖中にそれらの単量体単位を繰り返し単位として含む共重合体が生成され、該共重合体は、単量体単位の配列によってランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等に分けられる。しかしながら、共役ジエン化合物と非共役オレフィンとの重合反応における単量体単位の配列については、報告されていない。
 例えば、特開2000-154210号公報(特許文献1)には、シクロペンタジエン環構造を有する周期律表第IV族遷移金属化合物を含む共役ジエン重合用触媒が開示されており、該共役ジエンと共重合可能な単量体として、エチレン等のα-オレフィンが例示されているが、共重合体中の単量体単位の配列については、全く言及されていない。また、特開2006-249442号公報(特許文献2)には、α-オレフィンと共役ジエン化合物との共重合体が開示されるものの、共重合体中の単量体単位の配列については、全く言及されていない。更に、特表2006-503141号公報(特許文献3)には、特殊な有機金属錯体を触媒成分として用いて合成したエチレンとブタジエンとの共重合体が開示されるものの、単量体であるブタジエンがトランス-1,2-シクロヘキサンの形態で共重合体中に挿入されることのみが記載されており、共重合体中の単量体単位の配列については、全く言及されていない。
 また、特許文献1~3には、共重合体中の共役ジエン化合物由来部分の含有量が30mol%超)である共重合体を用いることで、ロール加工性及び耐摩耗性に優れたゴムを製造することについては記載も示唆もされていない。
 更に、特開平11-228743号公報(特許文献4)には、不飽和性オレフィン系共重合体とゴムとからなる不飽和性エラストマー組成物が開示されるものの、共重合体中の単量体単位の配列については、ランダムであると記載されているに過ぎず、ロール加工性及び耐摩耗性(指数)に優れたゴムは得られていない。
 共重合体中の共役ジエン化合物由来部分の含有量が30mol%超である共重合体を用いることで、ロール加工性及び耐摩耗性に優れたゴムを製造することについては記載も示唆もされていない。
特開2000-154210号公報 特開2006-249442号公報 特表2006-503141号公報 特開平11-228743号公報
 そこで、本発明の目的は、ロール加工性及び耐摩耗性に優れたゴムを製造するのに用いられ、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体、該ランダム共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供することにある。
 本発明者らは、上記目的を達成するために鋭意検討した結果、特定の触媒の存在下で重合を行うことにより、共役ジエン化合物由来部分の含有量が30mol%超であるランダム共重合体が得られることを見出し、本発明を完成させるに至った。
 即ち、本発明の共重合体は、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体であって、共役ジエン化合物由来部分の含有量が30mol%超であることを特徴とする。
 本発明の共重合体の好適例においては、非共役オレフィン由来部分において、前記共役ジエン化合物と前記非共役オレフィンとの交互結合部分を5mol%以上含む。
 本発明の共重合体の他の好適例においては、共役ジエン化合物由来部分の含有量が50mol%以上100mol%未満である。
 本発明の共重合体の他の好適例においては、共役ジエン化合物由来部分における前記共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であることが好ましい。
 本発明の共重合体は、ポリスチレン換算重量平均分子量が10,000~10,000,000であることが好ましい。
 本発明の共重合体は、分子量分布(Mw/Mn)が10以下であることが好ましい。
 本発明の共重合体の好適例においては、前記非共役オレフィンが非環状オレフィンである。
 本発明の共重合体の他の好適例において、前記非共役オレフィンは、炭素数が2~10である。
 本発明の共重合体としては、前記非共役オレフィンが、エチレン、プロピレン及び1-ブテンよりなる群から選択される少なくとも一種が好ましく、エチレンが更に好ましい。
 本発明の共重合体の他の好適例においては、前記共役ジエン化合物が、1,3-ブタジエン及びイソプレンよりなる群から選択される少なくとも一種である。
 本発明のゴム組成物は、本発明の共重合体を含むことを特徴とする。
 本発明のゴム組成物は、ゴム成分100質量部に対し、補強性充填剤5質量部~200質量部と、架橋剤0.1質量部~20質量部とを含むことが好ましい。
 本発明の架橋ゴム組成物は、本発明のゴム組成物を架橋して得られたことを特徴とする。
 本発明のタイヤは、本発明のゴム組成物、又は、本発明の架橋ゴム組成物を用いたことを特徴とする。
 本発明によれば、ロール加工性及び耐摩耗性に優れたゴムを製造するのに用いられ、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体、該ランダム共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供することができる。
共重合体AのDSC曲線を示す。 共重合体Aの13C-NMRスペクトルを示す。
(共重合体)
 以下に、本発明を詳細に説明する。本発明の共重合体は、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体であって、共役ジエン化合物由来部分の含有量が30mol%超であることを特徴とする。
 なお、「ランダム共重合体」とは、統計学的に不規則に配列したもの意味し、例えば、非共役オレフィン由来部分における後述する交互結合部分が100mol%に近いものや、非共役オレフィン由来部分におけるブロック共重合体部分が100mol%に近いものはランダム共重合体ではない。
 後述する実施例において、重合体A,B,Cはランダムとみなす。
 前記共役ジエン化合物由来部分の含有量としては、30mol%超である限り、特に制限はなく、目的に応じて適宜選択することができるが、50mol%~97mol%が好ましく、80mol%~97mol%がより好ましい。
 前記共役ジエン化合物由来部分の含有量が50mol%~97mol%であると、ジエンゴムとのブレンド性、破壊強度や伸びの点で有利である。
 ここで、本発明の共重合体について、共役ジエン化合物由来部分の含有量が30mol%以上含むことの確認には、13C-NMRによる測定が用いられ、ランダムの判定には示差走査熱量測定(DSC)が主要な測定手段として用いられる。
 なお、示差走査熱量測定(DSC)とは、JIS K 7121-1987に準拠して行われる測定方法である。
 まず、DSCで非共役オレフィンの単量体単位からなるブロック部分に由来する結晶化温度が観測されないことからランダムと特定できる。
 非共役オレフィン由来部分における、共役ジエン化合物と非共役オレフィンとの交互結合部分は、5mol%以上であることが好ましく、90mol%以下であることがより好ましい。
 ここで、「非共役オレフィン由来部分における、共役ジエン化合物と非共役オレフィンとの交互結合部分は、5mol%以上である」とは、非共役オレフィン由来部分において、5mol%以上の非共役オレフィンが交互結合部分として存在することを意味する。即ち、その共重合体に含まれる全体の非共役オレフィンA(100mol%)に対して、共役ジエン化合物Bと非共役オレフィンAがBABの結合形態で結合しているAの部分の割合が5mol%以上であることを意味する。
 ブタジエン(共役ジエン化合物)BBBを水添すると、BAABとなり、Aの両端にBが来ることはない。Aの両端にBがくるオレフィン-ジエンは水添で合成することはできない。
 非共役オレフィン由来部分における、共役ジエン化合物と非共役オレフィンとの交互結合部分が5mol%未満であると、破壊強度が低くなり、低ロス性(低発熱性)が劣ることがある。一方、非共役オレフィン由来部分における、共役ジエン化合物と非共役オレフィンとの交互結合部分が前記より好ましい範囲内であると、破壊強度や伸び、ロール加工性の点で有利である。
 なお、共役ジエン-非共役オレフィンの交互結合の連鎖は、連続的又は不連続的に分布があってもよい。
 ここで、本発明の共重合体について、非共役オレフィン由来部分において、共役ジエン化合物と非共役オレフィンとの交互結合部分を5mol%以上含むことの確認には、13C-NMRによる測定が用いられ、ランダムの判定には示差走査熱量測定(DSC)が主要な測定手段として用いられる。
 なお、示差走査熱量測定(DSC)とは、JIS K 7121-1987に準拠して行われる測定方法である。
 具体的には、H-NMRスペクトルにおける、非共役オレフィン由来部分全体のピーク面積と、非共役オレフィンの交互結合部分の量に相当する炭素のピーク面積との積分比により、本発明の共重合体について、非共役オレフィン由来部分において、共役ジエン化合物と非共役オレフィンとの交互結合部分を5mol%以上含むことを確認することができる。
 本発明の共重合体は、非共役オレフィン部分の含有量が0mol%を超え且つ50mol%以下であることが好ましく、3mol%を超え且つ20mol%以下であることが更に好ましい。非共役オレフィン部分の含有量が上記の特定した範囲内にあれば、相分離を起こすことなく、破壊強度や伸びを効果的に向上させることができる。
 本発明の共重合体は、低分子量化の問題が起こることも無く、その重量平均分子量(Mw)は特に限定されるものでもないが、高分子構造材料への適用の観点から、該共重合体のポリスチレン換算重量平均分子量(Mw)は10,000~10,000,000が好ましく、10,000~1,000,000が好ましく、50,000~600,000が更に好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、10以下が好ましく、5以下が更に好ましい。ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。
 なお、単量体として用いる共役ジエン化合物は、炭素数が4~12であることが好ましい。該共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで本発明の共重合体を調製することができる。
 一方、単量体として用いる非共役オレフィンは、共役ジエン化合物以外の非共役オレフィンであり、優れた耐熱性や、共重合体の主鎖中に占める二重結合の割合を減らし、結晶性を低下させることでエラストマーとしての設計自由度を高めることが可能となる。また、非共役オレフィンとしては、非環状オレフィンであることが好ましく、また、該非共役オレフィンの炭素数は2~10であることが好ましい。従って、上記非共役オレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1-ブテンが好ましく、エチレンが特に好ましい。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する化合物を指す。
 本発明の共重合体は、共役ジエン化合物由来部分における前記共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量(ビニル結合量)が5%以下であることが好ましく、3%以下が更に好ましい。
 共役ジエン化合物由来部分における前記共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であると、本発明の共重合体は、さらに耐磨耗性を向上することができる。
 前記1,2付加体部分(3,4付加体部分を含む)含量及びシス-1,4結合量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
 なお、前記共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量(共役ジエン化合物由来部分の共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量)は、共役ジエン化合物がブタジエンの場合、1,2-ビニル結合量と同じ意味である。
 次に、本発明の共重合体の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。本発明の共役ジエン化合物と非共役オレフィンとの共重合体の第一の製造方法は、下記式(A):
   RMXQY ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1~20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1~20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されるメタロセン系複合触媒、好ましくは下記式(I):
Figure JPOXMLDOC01-appb-C000001
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R及びRは、それぞれ独立して炭素数1~20の炭化水素基を示し、該R及びRは、M及びAlにμ配位しており、R及びRは、それぞれ独立して炭素数1~20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒、又は該メタロセン系複合触媒とホウ素アニオンとを含む重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させることを特徴とする。
 上記第一製造方法によれば、上記メタロセン系複合触媒又は上記重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができ、更に、このようにして得られる共役ジエン化合物-非共役オレフィン共重合体は、非共役オレフィンの単量体単位が完全に不規則に配列してなるランダム部分を有する。
 なお、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、ヘキサン、シクロヘキサン、またそれらの混合物等が挙げられる。
 上記メタロセン系複合触媒とは、ランタノイド元素、スカンジウム又はイットリウムの希土類元素と周期律表第13族元素とを有する化合物であり、上記式(A)、好ましくは上記式(I)で表されることを特徴とする。なお、μ配位とは、架橋構造をとる配位様式のことである。
 上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
 上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3-トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7-ヘキサメチルインデニル基等が挙げられる。
 上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
 上記式(A)において、Xはそれぞれ独立して炭素数1~20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
 上記式(A)において、Yはそれぞれ独立して炭素数1~20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
 一方、上記メタロセン系複合触媒において、上記式(I)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
 上記式(I)において、Cpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7-X又はC11で示され得る。ここで、Xは0~7又は0~11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、式(I)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
 上記式(I)において、R及びRは、それぞれ独立して炭素数1~20の炭化水素基を示し、該R及びRは、M1及びAlにμ配位している。ここで、炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
 上記式(I)において、R及びRは、それぞれ独立して炭素数1~20の炭化水素基又は水素原子である。ここで、炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
 なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(II):
Figure JPOXMLDOC01-appb-C000002
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R~Rは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体を、AlRで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、H-NMRにより決定することが好ましい。
 上記式(II)で表されるメタロセン錯体において、Cpは、無置換インデニル又は置換インデニルであり、上記式(I)中のCpと同義である。また、上記式(II)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(I)中の金属Mと同義である。
 上記式(II)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR]を含む。シリルアミド配位子に含まれるR基(R~R基)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、R~Rのうち少なくとも一つが水素原子であることが好ましい。R~Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
 上記式(II)で表されるメタロセン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
 また、上記式(II)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
 一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRで表され、ここで、R及びRは、それぞれ独立して炭素数1~20の1価の炭化水素基又は水素原子で、Rは炭素数1~20の1価の炭化水素基であり、但し、Rは上記R又はRと同一でも異なっていてもよい。炭素数1~20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
 上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して2~50倍モルであることが好ましく、約3~5倍モルであることが更に好ましい。
 また、上記重合触媒組成物(以下、第一重合触媒組成物ともいう)は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。上記第一重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、非共役オレフィンの単量体単位が完全に不規則に配列してなるランダム部分を有する共役ジエン化合物-非共役オレフィン共重合体を製造することが可能であるが、更にホウ素アニオンを含有するため、各単量体成分の共重合体中での含有量を任意に制御することが可能となる。
 上記第一重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
 なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1~10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。
 上記第一重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 なお、本発明の共役ジエン化合物-非共役オレフィン共重合体の第一製造方法においては、上述の通り、上記メタロセン系複合触媒又は上記第一重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、重合を行うことができる。ここで、本発明の共重合体の製造方法が上記第一重合触媒組成物を用いる場合は、例えば、(1)単量体として共役ジエン化合物及び非共役オレフィンを含む重合反応系中に、2成分触媒の構成成分を別個に提供し、該重合反応系中において第一重合触媒組成物としてもよいし、(2)予め調製された第一重合触媒組成物を重合反応系中に提供してもよい。なお、上記メタロセン系複合触媒の使用量は、共役ジエン化合物及び非共役オレフィンの合計に対して、0.0001~0.01倍モルの範囲が好ましい。
 また、本発明の共役ジエン化合物-非共役オレフィン共重合体の第一製造方法においては、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
 本発明の共役ジエン化合物-非共役オレフィン共重合体の第一製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば-100℃~200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス-1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1 MPa~10MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒~10日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によって適宜選択することができる。
 また、本発明の共役ジエン化合物-非共役オレフィン共重合体の第一製造方法において、共役ジエン化合物と非共役オレフィンとの重合の際、重合開始時における共役ジエン化合物の濃度(mol/l)と非共役オレフィンの濃度(mol/l)とは、下記式:
     非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.0
の関係を満たすことが好ましく、更に好ましくは下記式:
     非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
の関係を満たし、一層好ましくは下記式:
     非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
の関係を満たす。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とすることで、反応混合物中に非共役オレフィンを効率的に導入することができる。
 また、上記メタロセン系複合触媒又は上記第一重合触媒組成物を使用しなくても、重合反応系中への単量体の仕込み方を調整することで、本発明の共役ジエン化合物-非共役オレフィン共重合体を製造することができる。即ち、本発明の共重合体の第二の製造方法は、非共役オレフィンの存在下において、共役ジエン化合物の投入を制御することで、共重合体の連鎖構造を制御することを特徴とし、これによって、共重合体中の単量体単位の配列を制御することができる。なお、本発明において、重合反応系とは、共役ジエン化合物と非共役オレフィンとの重合が行われる場所を意味し、具体例としては、反応容器等が挙げられる。
 ここで、共役ジエン化合物の投入方法は、連続投入、分割投入のいずれであってもよく、更には、連続投入及び分割投入を組み合わせてもよい。また、連続投入とは、例えば、一定の添加速度で一定の時間添加することをいう。
 具体的には、共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に共役ジエン化合物を分割又は連続投入することで、該重合反応系内の単量体の濃度比を制御することが可能となり、その結果、得られる共重合体中の連鎖構造(即ち、単量体単位の配列)を特徴づけることが可能となる。また、共役ジエン化合物の投入の際に、非共役オレフィンが重合反応系中に存在することで、共役ジエン化合物単独重合体の生成を抑制することができる。なお、共役ジエン化合物の投入は、非共役オレフィンの重合を開始した後に行ってもよい。
 例えば、上記第二製造方法によってランダム共重合体を製造する場合には、共役ジエン化合物と非共役オレフィンの重合を開始した重合反応系に、非共役オレフィンの存在下、共役ジエン化合物を新たに1回以上投入するか、又は共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に、非共役オレフィンの存在下、共役ジエン化合物を連続的に投入することが有効となる。
 上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は特に限定されず、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は、上記第一製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。
 なお、上記第二製造方法においては、共役ジエン化合物の投入を制御する必要があるが、具体的には、共役ジエン化合物の投入量や共役ジエン化合物の投入回数を制御することが好ましい。また、共役ジエン化合物の投入の制御方法は、例えば、コンピュータ等のプログラムで制御する方法や、タイマー等を用いてアナログで制御する方法が挙げられるが、これらに限定されるものではない。また、上述のように、共役ジエン化合物の投入方法は、特に限定されず、連続投入、分割投入等が挙げられる。ここで、共役ジエン化合物を分割投入する場合、該共役ジエン化合物の投入回数は、特に限定されるものではない。
 また、上記第二製造方法においては、共役ジエン化合物の投入時に、非共役オレフィンが重合反応系に存在していることが必要であるため、非共役オレフィンを重合反応系へ連続的に供給することが好ましい。また、非共役オレフィンの供給方法は、特に限定されるものではない。
 また、上記第二製造方法は、効率よく重合を進行させる観点から、共役ジエン化合物と非共役オレフィンとの重合を、下記に示す重合触媒組成物の存在下で行うことが好ましい。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン等が挙げられる。
 上記重合触媒組成物としては、下記一般式(III):
Figure JPOXMLDOC01-appb-C000003
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R~Rは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体、及び下記一般式(IV):
Figure JPOXMLDOC01-appb-C000004
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、X'は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1~20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(V):
Figure JPOXMLDOC01-appb-C000005
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp'は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1~20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物(以下、第二重合触媒組成物ともいう)が好適に挙げられ、該重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は0.1~0.0001mol/lの範囲であることが好ましい。
 上記一般式(III)及び式(IV)で表されるメタロセン錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7-X又はC11-Xで示され得る。ここで、Xは0~7又は0~11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、一般式(III)及び式(IV)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
 上記一般式(V)で表されるハーフメタロセンカチオン錯体において、式中のCp'は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCp'は、C5-Xで示される。ここで、Xは0~5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCp'として、具体的には、以下のものが例示される。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子、メチル基又はエチル基を示す。)
 一般式(V)において、上記インデニル環を基本骨格とするCp'は、一般式(III)のCpと同様に定義され、好ましい例も同様である。
 一般式(V)において、上記フルオレニル環を基本骨格とするCp'は、C139-X又はC1317-Xで示され得る。ここで、Xは0~9又は0~17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
 一般式(III)、式(IV)及び式(V)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
 一般式(III)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるR~R)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、R~Rのうち少なくとも一つが水素原子であることが好ましい。R~Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、R~Rのうち少なくとも一つが水素原子であり、R~Rのうち少なくとも一つが水素原子であることが更に好ましい。なお、アルキル基としては、メチル基が好ましい。
 一般式(IV)で表されるメタロセン錯体は、シリル配位子[-SiX']を含む。シリル配位子[-SiX']に含まれるX'は、下記で説明される一般式(V)のXと同様に定義される基であり、好ましい基も同様である。
 一般式(V)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1~20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシド基(芳香族アルコキシ基)が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。
 一般式(V)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。
 一般式(V)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオペンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオペンチルフェニルアミド基、2-イソプロピル-6-ネオペンチルフェニルアミド基、2,4,6-トリ-tert-ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
 一般式(V)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
 一般式(V)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1~20の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
 一般式(V)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1~20の炭化水素基が好ましい。
 一般式(V)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
 上記一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
 また、上記一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
 上記一般式(III)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(III)で表されるメタロセン錯体を得るための反応例を示す。
Figure JPOXMLDOC01-appb-C000007
(式中、X''はハライドを示す。)
 上記一般式(IV)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(IV)で表されるメタロセン錯体を得るための反応例を示す。
Figure JPOXMLDOC01-appb-C000008
(式中、X''はハライドを示す。)
 上記一般式(V)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
Figure JPOXMLDOC01-appb-C000009
 ここで、一般式(VI)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp'は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1~20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。また、一般式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。
 [A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。
 上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1~10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(V)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(V)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(VI)で表される化合物と一般式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(V)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(III)又は式(IV)で表されるメタロセン錯体と一般式[A][B]で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(V)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
 一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
 上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10~1000程度、好ましくは100程度となるようにすることが好ましい。
 一方、上記有機アルミニウム化合物としては、一般式AlRR'R''(式中、R及びR'はそれぞれ独立してC~C10の炭化水素基又は水素原子であり、R''はC~C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。また、上記有機アルミニウム化合物の具体例としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。更に、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1~50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
 更に、上記重合触媒組成物においては、一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス-1,4結合量や得られる共重合体の分子量を増大できる。
 また、上記重合触媒組成物としては、
 (A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
 (B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B-1)、アルミノキサン(B-2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B-3)よりなる群から選択される少なくとも一種とを含む重合触媒組成物(以下、第三重合触媒組成物ともいう)を好適に挙げることもでき、該重合触媒組成物が、イオン性化合物(B-1)及びハロゲン化合物(B-3)の少なくとも一種を含む場合、該重合触媒組成物は、更に、
 (C)成分:下記一般式(i):
     YR  ・・・ (i)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、同一又は異なり、炭素数1~10の炭化水素基又は水素原子で、Rは炭素数1~10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される有機金属化合物を含むことを特徴とする。上記イオン性化合物(B-1)及び上記ハロゲン化合物(B-3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B-2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。なお、重合反応系において、第三重合触媒組成物に含まれる(A)成分の濃度は0.1~0.0001mol/lの範囲であることが好ましい。
 上記第三重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素-炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57~71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
     M1111 ・L11w ・・・ (XI)
     M1111 ・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0~3を示す]で表されることができる。
 上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等の芳香族アルコキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオペンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオペンチルフェニルアミド基、2-イソプロピル-6-ネオペンチルフェニルアミド基、2,4,6-tert-ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、2-ヒドロキシ-3-ナフトアルデヒド等のアルデヒドの残基;2'-ヒドロキシアセトフェノン、2'-ヒドロキシブチロフェノン、2'-ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2-ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2-ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(ブチル)(2-エチルヘキシル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)等のリン酸エステルの残基;2-エチルヘキシルホスホン酸モノブチル、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、フェニルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ホスホン酸モノ-2-エチルヘキシル、ホスホン酸モノ-1-メチルヘプチル、ホスホン酸モノ-p-ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、ブチル(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(1-メチルヘプチル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2-エチルヘキシルホスフィン酸、1-メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p-ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。これらの中でも、助触媒と反応して活性種を形成しやすい点で、アミド基が好ましい。
 上記第三重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
 上記第三重合触媒組成物に用いる(B)成分は、イオン性化合物(B-1)、アルミノキサン(B-2)及びハロゲン化合物(B-3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第三重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1~50倍モルであることが好ましい。
 上記(B-1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第三重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1~10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
 上記(B-2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(-Al(R')O-)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R'は炭素数1~10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R'として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第三重合触媒組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10~1000程度となるようにすることが好ましい。
 上記(B-3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、ハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第三重合触媒組成物におけるハロゲン化合物の合計の含有量は、(A)成分に対して1~5倍モルであることが好ましい。
 上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
 上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
 また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01~30モル、好ましくは0.5~10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
 上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。    
 上記第三重合触媒組成物に用いる(C)成分は、下記一般式(i):
     YR  ・・・ (i)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、同一又は異なり、炭素数1~10の炭化水素基又は水素原子で、Rは炭素数1~10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される有機金属化合物であり、下記一般式(X):
     AlR111213 ・・・ (X)
[式中、R11及びR12は、同一又は異なり、炭素数1~10の炭化水素基又は水素原子で、R13は炭素数1~10の炭化水素基であり、但し、R13は上記R11又はR12と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリ・BR>Iクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機金属化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第三重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1~50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
(ゴム組成物)
 本発明のゴム組成物としては、本発明の共重合体を含む限り、特に制限はなく、目的に応じて適宜選択することができるが、本発明の共重合体以外のゴム成分、無機充填剤、カーボンブラック、架橋剤、などを含むことが好ましい。
<共重合体>
 本発明の共重合体のゴム成分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%以上が好ましい。
 前記共重合体のゴム成分中の含有量が、3質量%未満であると、本発明の特徴が小さかったり、またはその特徴を発揮しなかったりすることがある。
<ゴム成分>
 前記ゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の共重合体、天然ゴム、各種ブタジエンゴム、各種スチレン-ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、イソブチレンとp-メチルスチレンの共重合体の臭化物、ハロゲン化ブチルゴム、アクリロニトリロブタジエンゴム、クロロプレンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン共重合体ゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記ゴム組成物には、必要に応じて補強性充填剤を配合することができる。前記補強性充填剤としては、カーボンブラック、無機充填剤、などを挙げることができ、カーボンブラック及び無機充填剤から選択される少なくとも一種が好ましい。
<無機充填剤>
 前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 なお、無機充填剤を用いる時は適宜シランカップリング剤を使用してもよい。
 前記補強性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、5質量部~200質量部が好ましい。
 前記補強性充填剤の含有量が、5質量部未満であると、補強性充填剤を入れる効果があまりみられないことがあり、200質量部を超えると前記ゴム成分に補強性充填剤が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させることがある。
<架橋剤>
 前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム-ニトロソアミン系架橋剤硫黄などが挙げられるが、中でもタイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
 前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1質量部~20質量部が好ましい。
 前記架橋剤の含有量が0.1質量部未満では、架橋がほとんど進行しなかったり、20質量部を超えると一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、加硫物の物性が損なわれたりすることがある。
<その他の成分>
 その他に加硫促進剤を併用することも可能であり、加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
 また必要に応じて、補強剤、軟化剤、充填剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
(架橋ゴム組成物)
 本発明の架橋ゴム組成物は、本発明のゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
 前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120℃~200℃、加温時間1分間~900分間が好ましい。
(タイヤ)
 本発明のタイヤは、本発明のゴム組成物、又は、本発明の架橋ゴム組成物を用いたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
 本発明のゴム組成物、又は、本発明の架橋ゴム組成物のタイヤにおける適用部位としては、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラーなどが挙げられるが、これに限定されない。
 前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴムからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤを製造することができる。
(タイヤ以外の用途)
 タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、モランなどに本発明のゴム組成物、又は、本発明の架橋ゴム組成物を使用することができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
 十分に乾燥した2Lステンレス反応器に、1,3-ブタジエン28.0g(0.52mol)を含むトルエン溶液700mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にジメチルアルミニウム(μ-ジメチル)ビス(2-フェニルインデニル)ネオジウム[(2-PhCNd(μ-Me)AlMe]400.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)200.0μmolを仕込み、トルエン80mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ネオジウム換算で390.0μmolとなる量をモノマー溶液へ添加し、室温で90分間重合を行った。重合後、2,2´-メチレンービス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し共重合体A(ランダム共重合体)を得た。得られた共重合体Aの収量は16.00gであった。
(実施例2)
 実施例1において、重合温度を60℃とし、重合時間を60分間とすること以外は同様に実験を行ったところ、共重合体B(ランダム共重合体)を得た。得られた共重合体Bの収量は17.00gであった。
(実施例3)
 実施例2において、最初にエチレンを導入する際の圧力を1.5MPaにすること以外は同様の方法で実験を行ったところ、共重合体C(ランダム共重合体)を得た。得られた共重合体Cの収量は19.50gであった。
(比較例1)
 比較例サンプルとして、ブタジエンゴム(BR01、JSR製)を準備した。
(比較例2)
 特開2006-249442号公報(出願人:三井化学株式会社)の実施例(段落「0554」に記載)と同様にして、共重合体D(ランダム共重合体)を得た。
 上記のようにして製造乃至入手した実施例1~3のランダム共重合体A~C、比較例1のブタジエンゴム、比較例2の共重合体Dについて、共役ジエン由来部分含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、DSC曲線、交互結合成分含有量(mol%)、及び1,2-ビニル結合量(%)を下記の方法で測定・評価した。
(1)共役ジエン由来部分の含有率
 共重合体中のジエン由来部分の含有率(mol%)を13C-NMRスペクトル(100℃、d-テトラクロロエタン標準:73.8ppm)により全体のエチレン結合成分(28.5-30.0ppm)と全体のブタジエン結合成分(26.5-27.5ppm+31.5-32.5ppm)の積分比より求めた。共役ジエン由来部分の含有率(mol%)を表1に示す。
(2)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC-8121GPC/HT、カラム:東ソー製GMHHR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
(3)DSC曲線
 JIS K 7121-1987に準拠して示差走査熱量測定(DSC)を行い、DSC曲線を描いた。
(4)交互結合成分(交互結合部分)の含有率
 共重合体中のエチレン由来部分における交互結合成分(交互結合部分)の含有率(mol%)を、13C-NMRスペクトルのエチレン由来部分全体のピーク面積(28.5-30.0ppm)と、エチレンの交互結合部分に相当する面積(正確にはエチレンの交互結合部分の隣の炭素に由来するピーク面積:26.9-27.0ppm+31.8-32.1ppm)との積分比より求めた。エチレン由来部分における交互結合成分(交互結合部分)の含有率(mol%)を表1に示す。
(5)1,2-ビニル結合量
 共重合体中のブタジエン部分の1,2-ビニル結合量を、H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)により1,2-ビニル結合成分(5.0ppm-5.1ppm)と全体のブタジエン結合成分(5ppm-5.6ppm)の積分比より求めた。
Figure JPOXMLDOC01-appb-T000001
 また共重合体Aについて、文献(「高分子学会予稿集Vol.42, No.4, Page1347」)のオゾン分解-GPC法を応用して、連鎖分布の解析を行った。なお、ゲルパーミエーションクロマトグラフィーは[GPC:東ソー製HLC-8121GPC/HT、カラム:昭和電工製GPC HT-803×2本、検出器:示差屈折率計(RI)、単分散ポリスチレンを基準、測定温度は140℃]を用いて測定した。その結果、全エチレン成分に対しブロックエチレン成分、即ち、数平均分子量(Mn)が1000以上のポリエチレン成分が10質量%以下であること、即ち、ランダム性が高いことが分かった。
 さらに、図1の共重合体AのDSC曲線では、ポリエチレンのブロックに由来する120℃以上の融点ピークが明確に認められないことからも、ランダム共重合体であることが分かった。
 また、共重合体B,Cについても、同様に、1,3-ブタジエン及びエチレンの単量体が不規則に配列してなるランダム共重合体であることを確認し、共重合体Dについては、13C-NMRスペクトルのブタジエン結合成分(26.5-27.5ppmと31.5-32.5ppm)のピーク位置によりブタジエンがポリエチレン中にランダムに配列していることを確認した。
 実施例1~3および比較例1~2については表2に示す配合処方のゴム配合物を調製し、下記の方法に従って、ロール加工性を評価し、160℃で20分間加硫して得た加硫ゴムに対し、下記の方法に従って、耐摩耗性(指数)を測定した。
Figure JPOXMLDOC01-appb-T000002
※1:N-(1,3-ジメチルブチル)-N’-p-フェニレンジアミン、大内新興化学(株)製、ノックラック6C
※2:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製、ノクセラーCZ-G
※3:ジベンゾチアジルジスルフィド、大内新興化学(株)製、ノクセラーDM-P
《ロール加工性》
 未加硫のゴム配合物を60℃の8インチオープンロールに巻き付け、その巻き付き状態を目視で観察して、ロール加工性をつぎの3段階で評価した。
◎:ロール投入時から粘着し、ロール加工性良好
○:ロール投入時から、ロールに巻き付き加工可能
×:粘着性がなくロールに巻き付かず、ロール加工できない(粉、粒状)
《耐摩耗性(指数)》
 JIS K 6264-2:2005に準拠し、ランボーン型摩擦試験機を用い、室温におけるスリップ率60%で摩擦量を測定し、比較例1の逆数を100とする指数で表示した。指数値が大きい程、磨耗量が少なく、耐摩耗性が良好であることを示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、共役ジエン化合物由来部分の含有量が30mol%超である共重合体は、ロール加工性及び耐摩耗性に優れることが分かる。
 本発明の共重合体は、エラストマー製品全般、特にタイヤ部材に用いることができる。 
 

Claims (15)

  1.  共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム共重合体であって、共役ジエン化合物由来部分の含有量が30mol%超であることを特徴とする共重合体。
  2.  非共役オレフィン由来部分において、前記共役ジエン化合物と前記非共役オレフィンとの交互結合部分を5mol%以上含むことを特徴とする請求項1に記載の共重合体。
  3.  共役ジエン化合物由来部分の含有量が50mol%以上100mol%未満であることを特徴とする請求項1に記載の共重合体。
  4.  共役ジエン化合物由来部分における前記共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であることを特徴とする請求項1に記載の共重合体。
  5.  前記ポリスチレン換算重量平均分子量が10,000~10,000,000であることを特徴とする請求項1に記載の共重合体。
  6.  分子量分布(Mw/Mn)が10以下であることを特徴とする請求項1に記載の共重合体。
  7.  前記非共役オレフィンが非環状オレフィンであることを特徴とする請求項1に記載の共重合体。
  8.  前記非共役オレフィンは、炭素数が2~10であることを特徴とする請求項1に記載の共重合体。
  9.  前記非共役オレフィンが、エチレン、プロピレン及び1-ブテンよりなる群から選択される少なくとも一種であることを特徴とする請求項7又は8に記載の共重合体。
  10.  前記非共役オレフィンが、エチレンであることを特徴とする請求項9に記載の共重合体。
  11.  前記共役ジエン化合物が、1,3-ブタジエン及びイソプレンよりなる群から選択される少なくとも一種であることを特徴とする請求項1に記載の共重合体。
  12.  請求項1に記載の共重合体を含むことを特徴とするゴム組成物。
  13.  ゴム成分100質量部に対し、補強性充填剤5質量部~200質量部と、架橋剤0.1質量部~20質量部とを含むことを特徴とする請求項12に記載のゴム組成物。
  14.  請求項12に記載のゴム組成物を架橋して得られたことを特徴とする架橋ゴム組成物。
  15.  請求項12に記載のゴム組成物、又は、請求項14に記載の架橋ゴム組成物を用いたことを特徴とするタイヤ。 
     
PCT/JP2012/000723 2011-02-04 2012-02-02 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ WO2012105272A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800144153A CN103443150A (zh) 2011-02-04 2012-02-02 共聚物、橡胶组合物、交联橡胶组合物和轮胎
EP12742550.2A EP2671898B1 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, crosslinked rubber composition, and tire
US13/983,141 US8962744B2 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, crosslinked rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-023405 2011-02-04
JP2011023405A JP5731217B2 (ja) 2011-02-04 2011-02-04 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ

Publications (1)

Publication Number Publication Date
WO2012105272A1 true WO2012105272A1 (ja) 2012-08-09

Family

ID=46602493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000723 WO2012105272A1 (ja) 2011-02-04 2012-02-02 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ

Country Status (5)

Country Link
US (1) US8962744B2 (ja)
EP (1) EP2671898B1 (ja)
JP (1) JP5731217B2 (ja)
CN (1) CN103443150A (ja)
WO (1) WO2012105272A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932224B2 (ja) 2011-02-04 2016-06-08 株式会社ブリヂストン 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
BR112016027987B1 (pt) 2014-05-31 2022-04-19 Bridgestone Corporation Catalisador complexo metálico, métodos de polimerização utilizando os mesmos e seus produtos de polímero
RU2663660C2 (ru) * 2014-06-12 2018-08-08 Бриджстоун Корпорейшн Способ получения многокомпонентного сополимера
WO2015190072A1 (ja) * 2014-06-12 2015-12-17 株式会社ブリヂストン 多元共重合体、ゴム組成物及びタイヤ
FR3024154B1 (fr) * 2014-07-22 2016-07-22 Michelin & Cie Pneumatique pour avion
CN107849193B (zh) * 2015-03-04 2020-03-06 Jsr株式会社 共聚物、聚合物组合物和交联聚合物
US9879104B2 (en) 2015-04-28 2018-01-30 Exxonmobil Chemical Patents Inc. Process to produce ethylene conjugated diene copolymers and copolymers therefrom
EP3363832B1 (en) * 2015-10-16 2023-01-25 Bridgestone Corporation Multi-component copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
US9982003B2 (en) 2016-09-12 2018-05-29 Exxonmobil Chemical Patents Inc. Group 3 metal catalyst system and process to produce ethylene polymers therewith
CN108690167B (zh) 2017-04-11 2021-07-23 中国科学院长春应用化学研究所 一种乙烯与共轭二烯的共聚物及其制备方法
FR3090659A3 (fr) * 2018-12-21 2020-06-26 Michelin & Cie Bande de roulement pour pneumatique
CN112794964B (zh) * 2021-01-19 2021-07-30 天津大学 一种丙烯-共轭二烯共聚物及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291121A (ja) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd ブテン・ブタジエン共重合体、その製造方法及び加硫ゴム
JPH11228743A (ja) 1997-07-18 1999-08-24 Mitsui Chem Inc 不飽和性エラストマー組成物およびその加硫ゴム
JPH11315119A (ja) * 1998-03-06 1999-11-16 Sumitomo Chem Co Ltd エチレン―イソプレンランダム共重合体、エラストマ―組成物及び架橋エラストマ―組成物
JP2000095903A (ja) * 1998-07-21 2000-04-04 Mitsui Chemicals Inc シンジオタクティックポリプロピレン組成物およびその成形体
JP2000154210A (ja) 1998-09-15 2000-06-06 Agency Of Ind Science & Technol 共役ジエン重合用触媒、共役ジエン系重合体の製造方法、イソプレン系重合体およびブタジエン系共重合体
JP2001294607A (ja) * 1999-10-12 2001-10-23 Soc De Technol Michelin 触媒系、その調製方法、およびエチレンと共役ジエンとのコポリマーの調製方法
JP2006503141A (ja) 2002-10-16 2006-01-26 ソシエテ ド テクノロジー ミシュラン エチレン/ブタジエンコポリマー、触媒系及びその合成方法
JP2006249442A (ja) 1997-04-25 2006-09-21 Mitsui Chemicals Inc α−オレフィン・共役ジエン共重合体
JP2008280384A (ja) * 2007-05-08 2008-11-20 Bridgestone Corp 共重合体及びその製造方法
WO2009148140A1 (ja) * 2008-06-04 2009-12-10 株式会社ブリヂストン 芳香族ビニル化合物-共役ジエン化合物共重合体及びその製造方法、並びにゴム組成物及びタイヤ
WO2012014456A1 (ja) * 2010-07-30 2012-02-02 株式会社ブリヂストン 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2012031314A (ja) * 2010-07-30 2012-02-16 Bridgestone Corp メタロセン系複合触媒、触媒組成物及び共重合体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288191B1 (en) * 1998-03-06 2001-09-11 Sumitomo Chemical Company, Limited Ethylene-isoprene random copolymer
BR112012002746B1 (pt) * 2009-08-07 2019-06-11 Bridgestone Corporation Método para produção de copolímero
WO2012014463A1 (ja) * 2010-07-30 2012-02-02 株式会社ブリヂストン 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ
JP5918131B2 (ja) * 2010-07-30 2016-05-18 株式会社ブリヂストン 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
AU2010219331C1 (en) * 2010-09-07 2022-02-17 David Axelrod System for identification of a lost animal

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291121A (ja) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd ブテン・ブタジエン共重合体、その製造方法及び加硫ゴム
JP2006249442A (ja) 1997-04-25 2006-09-21 Mitsui Chemicals Inc α−オレフィン・共役ジエン共重合体
JPH11228743A (ja) 1997-07-18 1999-08-24 Mitsui Chem Inc 不飽和性エラストマー組成物およびその加硫ゴム
JPH11315119A (ja) * 1998-03-06 1999-11-16 Sumitomo Chem Co Ltd エチレン―イソプレンランダム共重合体、エラストマ―組成物及び架橋エラストマ―組成物
JP2000095903A (ja) * 1998-07-21 2000-04-04 Mitsui Chemicals Inc シンジオタクティックポリプロピレン組成物およびその成形体
JP2000154210A (ja) 1998-09-15 2000-06-06 Agency Of Ind Science & Technol 共役ジエン重合用触媒、共役ジエン系重合体の製造方法、イソプレン系重合体およびブタジエン系共重合体
JP2001294607A (ja) * 1999-10-12 2001-10-23 Soc De Technol Michelin 触媒系、その調製方法、およびエチレンと共役ジエンとのコポリマーの調製方法
JP2006503141A (ja) 2002-10-16 2006-01-26 ソシエテ ド テクノロジー ミシュラン エチレン/ブタジエンコポリマー、触媒系及びその合成方法
JP2008280384A (ja) * 2007-05-08 2008-11-20 Bridgestone Corp 共重合体及びその製造方法
WO2009148140A1 (ja) * 2008-06-04 2009-12-10 株式会社ブリヂストン 芳香族ビニル化合物-共役ジエン化合物共重合体及びその製造方法、並びにゴム組成物及びタイヤ
WO2012014456A1 (ja) * 2010-07-30 2012-02-02 株式会社ブリヂストン 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2012031314A (ja) * 2010-07-30 2012-02-16 Bridgestone Corp メタロセン系複合触媒、触媒組成物及び共重合体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER PREPRINTS, JAPAN, vol. 42, no. 4, pages 1347
See also references of EP2671898A4

Also Published As

Publication number Publication date
EP2671898B1 (en) 2017-03-29
JP5731217B2 (ja) 2015-06-10
EP2671898A1 (en) 2013-12-11
JP2012162630A (ja) 2012-08-30
US20140018493A1 (en) 2014-01-16
US8962744B2 (en) 2015-02-24
CN103443150A (zh) 2013-12-11
EP2671898A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5918131B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5918132B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5918134B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ
JP5731217B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012014457A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012014459A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5739991B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5909121B2 (ja) タイヤ用ゴム組成物
WO2012105258A1 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5932224B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012105271A1 (ja) 共重合体、ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5917810B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5612511B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5612512B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2013151583A (ja) ゴム組成物、ビードフィラー、チェーファー及びタイヤ
JP5675434B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5656687B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5917808B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5922874B2 (ja) ガスバリア材
JP5917814B2 (ja) ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2012180456A (ja) ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5656686B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5639506B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2012162628A (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2012197423A (ja) ゴム組成物及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742550

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012742550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012742550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13983141

Country of ref document: US