WO2012105165A1 - 生体試料測定装置 - Google Patents

生体試料測定装置 Download PDF

Info

Publication number
WO2012105165A1
WO2012105165A1 PCT/JP2012/000204 JP2012000204W WO2012105165A1 WO 2012105165 A1 WO2012105165 A1 WO 2012105165A1 JP 2012000204 W JP2012000204 W JP 2012000204W WO 2012105165 A1 WO2012105165 A1 WO 2012105165A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological sample
amplifier
voltage
output
unit
Prior art date
Application number
PCT/JP2012/000204
Other languages
English (en)
French (fr)
Inventor
頌子 弘中
鉄平 新野
永吏子 吉岡
崇 三木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012555718A priority Critical patent/JP5487478B2/ja
Priority to EP12742192.3A priority patent/EP2672263B1/en
Priority to CN201280004088.3A priority patent/CN103261881B/zh
Priority to US13/993,171 priority patent/US9039974B2/en
Publication of WO2012105165A1 publication Critical patent/WO2012105165A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry

Definitions

  • the present invention relates to a biological sample measuring device that measures biological information such as blood glucose level.
  • the conventional biological sample measuring device has the following configuration.
  • the conventional biological sample measurement device includes a mounting unit on which a biological sample measurement sensor having a reagent provided on an electrode unit including at least a working electrode and a counter electrode is mounted, and a biological sample measurement sensor mounted on the mounting unit.
  • a voltage application unit that applies a voltage to the electrode unit, an amplifier connected to the electrode unit of the biological sample measurement sensor, a determination unit connected to the amplifier, a control unit that controls the voltage application unit, the amplifier, and the determination unit; It was equipped with.
  • the reagent and the blood react to output, for example, from the electrode unit according to the value of the blood glucose level contained in the blood.
  • the output current is amplified by an amplifier, and the blood glucose level is displayed according to the output current value.
  • a control liquid whose blood sugar level is known in advance is periodically spotted on the reagent part, and the blood sugar level corresponding to the control liquid is It is confirmed whether it is displayed correctly.
  • the determination unit determines whether the biological sample spotted on the sensor is blood or control liquid according to the output result from the amplifier, and based on the determination result, the amplifier Is used to calculate a blood sugar level based on the selected calculation formula (see, for example, Patent Document 1).
  • the determination unit it is determined whether the reagent spotted on the reagent by the determination unit is blood or control liquid by utilizing the fact that the reaction state of the reagent with respect to blood is different from the reaction state of the reagent with respect to the control liquid.
  • a blood glucose level is calculated based on the determination result.
  • the conventional biological sample measuring device has the following problems.
  • the biological sample measuring device disclosed in the above publication has an advantage that measurement accuracy can be maintained and managed by using a control liquid.
  • the reaction slows down in a low-temperature environment, the signal becomes minute and the control solution may be misidentified as whole blood.
  • the response current value at the time of measurement of a low concentration biological sample can be overlooked because only a minute response current can be obtained as in the measurement under a low temperature environment.
  • An object of the present invention is to provide a biological sample measurement apparatus that enables high-precision measurement to enable accurate measurement when a signal becomes minute.
  • the biological sample measurement apparatus includes a mounting part, a voltage application part, first and second amplifiers, and a control part.
  • a biological sample measurement sensor to which a biological sample that reacts with a reagent provided on an electrode part including at least a working electrode and a counter electrode is spotted is attached to the attachment part.
  • a voltage application part applies a voltage to the electrode part of the biological sample measurement sensor with which a mounting part is mounted
  • the first and second amplifiers are selectively connected to the electrode part of the biological sample measurement sensor, and amplify the signal output from the electrode part.
  • the first amplifier amplifies the signal with the first amplification degree.
  • the second amplifier amplifies the signal with a second amplification degree larger than the first amplification degree.
  • the control unit compares the value of the output signal output from the electrode unit with a preset threshold value and selectively uses the first amplifier or the second amplifier.
  • a biological sample measurement device that measures biological information such as blood glucose level by attaching a biological sample measurement sensor on which a biological sample such as blood is spotted and applying a voltage, a plurality of amplifiers having different amplification degrees (first amplifiers) 1 and a second amplifier). And a control part compares the output value from the electrode part of a biological sample measurement sensor with a predetermined threshold value, and selects and uses one amplifier from the amplifier which has a different amplification degree according to the comparison result.
  • the signal includes a current value output from the electrode part of the biological sample measurement sensor and a voltage value obtained by converting the current into a voltage.
  • the amplifier switching control (range switching control) is performed so that the second amplifier having the larger amplification degree is selected and used.
  • the amplifier switching control range switching control
  • a more amplified output value can be obtained.
  • amplification can be performed using an amplifier having an appropriate amplification degree even in environments with greatly different temperatures, so that the measurement can be performed with higher resolution and higher accuracy than in the past.
  • a biological sample measurement device is the biological sample measurement device according to the first invention, wherein the control unit is configured to generate a biological signal based on an output result output from the first amplifier or the second amplifier. Determine the type of sample.
  • an amplifier having an appropriate amplification degree according to the value of the output signal output from the biological sample measurement sensor is used. Amplification processing is performed using
  • the type determination of the biological sample includes, for example, discrimination between a blood sample and a control liquid.
  • the control liquid is used to adjust the measurement result using a sample whose measurement result is known in advance in order to maintain the measurement accuracy of the biological sample measurement device.
  • an amplification process is performed by selecting an amplifier having an appropriate amplification degree from a plurality of amplifiers according to the value of the output signal. By doing so, it is possible to improve the resolution and perform accurate type determination.
  • a biological sample measuring device is the biological sample measuring device according to the second invention, wherein the control unit detects an inclination in a predetermined time zone in the graph indicating the output result, and the biological sample measuring sensor It is determined whether the biological sample spotted on is a blood sample or a control solution.
  • the blood sample and the control liquid are determined.
  • the control liquid is faster than the blood sample in terms of the reaction speed with the reagent of the biological sample measurement sensor.
  • the output current peaks immediately after the reaction with the reagent, whereas in the case of a blood sample, the output current peaks after a predetermined time has elapsed since the reaction with the reagent gradually. Greet.
  • the type determination is performed by detecting the inclination of the graph indicating the output value after the elapse of a predetermined time by utilizing such a difference in characteristics between the blood sample and the control liquid.
  • a biological sample measurement device is the biological sample measurement device according to the first invention, wherein the control unit is configured to generate a biological signal based on an output result output from the first amplifier or the second amplifier. Measure the concentration of the sample.
  • the above-described switching control of the amplifier is used for concentration measurement (for example, blood glucose level measurement) of a biological sample.
  • a biological sample measuring device is the biological sample measuring device according to the fourth invention, wherein the control unit outputs the output result of the voltage pattern for detecting the biological sample applied before measuring the concentration of the biological sample. And the threshold value are compared, and the first and second amplifiers are selected.
  • the above-described amplifier switching control is performed by comparing the output signal of the voltage application pattern applied for sample detection in the biological sample measurement sensor with a predetermined threshold value.
  • the voltage application pattern for sample detection is for detecting whether or not the biological sample spotted on the biological sample measurement sensor is filled up to the region where the reagent is arranged before starting the measurement. Is the voltage applied to.
  • the switching control of a plurality of amplifiers can be performed after the threshold value determination is performed using the output signal of the voltage applied at the stage before the start of the measurement of the blood sugar level or the like.
  • the output signal from the electrode portion becomes small during measurement in a low-temperature environment, so the second amplifier having a high amplification degree is selected from the first and second amplifiers.
  • the amplified signal it is possible to improve the measurement accuracy of the blood sugar level and the like in a low temperature environment as compared with the conventional technique.
  • FIG. 2 is a control block diagram of the biological sample measurement device of FIG. 1.
  • FIG. 6 is a comparison diagram of operation waveform diagrams of FIG. 5.
  • FIG. 8 is a comparison diagram of operation waveform diagrams of FIG. 7.
  • (A) is a comparison figure which shows the discrimination
  • (B) is a figure which shows the discrimination
  • (A) is a graph which shows the voltage pattern applied in the biological sample measuring device which concerns on other embodiment of this invention, and the output result after the amplification process.
  • (B) is a graph showing the output result.
  • (A) is a graph which shows the reproducibility in the low temperature environment at the time of measuring glucose concentration with the biological sample measuring apparatus of FIG.
  • (B) is a figure which shows the comparison result of the reproducibility.
  • (A) is a graph which shows the voltage pattern applied in the biological sample measuring device which concerns on other embodiment of this invention.
  • (B) is a graph showing the output result.
  • (A) is a graph which shows the voltage application pattern applied in the biological sample measuring device which concerns on other embodiment of this invention.
  • (B) is a graph showing the output value.
  • (C) is explanatory drawing at the time of performing threshold determination.
  • the control block diagram of the biological sample measuring device which concerns on other embodiment of this invention.
  • control block diagram of the biological sample measuring device which concerns on other embodiment of this invention.
  • the control block diagram of the biological sample measuring device which concerns on other embodiment of this invention.
  • the control block diagram of the biological sample measuring device which concerns on other embodiment of this invention.
  • the control block diagram of the biological sample measuring device which concerns on other embodiment of this invention.
  • the control block diagram of the biological sample measuring device which concerns on other embodiment of this invention.
  • the biological sample measurement apparatus As shown in FIG. 1, the biological sample measurement apparatus according to the present embodiment is provided at the lower end of the main body case 1, the display unit 2 and the operation buttons 33 for operation provided on the surface of the main body case 1. And a mounting portion 4 for the biological sample measurement sensor 3.
  • FIG. 2A is a developed perspective view of the biological sample measurement sensor 3
  • FIG. 2B is a cross-sectional view of the biological sample measurement sensor 3 viewed from the side
  • FIG. The plan view of the sample measurement sensor 3 (however, the state without the cover 7 is shown) is shown.
  • a counter electrode 8 and a working electrode 9 included in the electrode portion are provided on the substrate 5.
  • the reagent 10 is provided on the counter electrode 8 and the working electrode 9.
  • a groove 11 is formed in the spacer 6.
  • the groove 11, the substrate 5, and the cover 7 form a capillary that is a blood supply path.
  • the substrate 5 is longer in the longitudinal direction than the spacer 6 and the cover 7 and is provided with portions of a counter electrode 8 and a working electrode 9 provided on the substrate 5 (FIG. 2 respectively). (Corresponding to portions A and B in (c)) are exposed. This is because when the biological sample measurement sensor 3 is attached to the attachment portion 4 of the main body case 1, the biological sample measurement sensor 3 and the electric circuit in the main body case 1 are electrically connected.
  • the cover 7 is provided with an air hole 7a for promoting capillary action in the capillary.
  • the air hole 7a only needs to be arranged on the back side (right side in FIG. 2) from the position on the biological sample measurement sensor 3 where the reagent 10 is placed. This is because blood or the like (biological sample) is spotted on the tip side of the capillary (left side in FIG. 2), and blood (biological sample) is smoothly introduced to the position of the reagent 10 by capillary action.
  • the counter electrode 8 is connected to the voltage application unit 12 as shown in the control block of FIG.
  • the working electrode 9 is connected to a current / voltage converter 13.
  • the amplifiers 14 and 15 are connected to the output side of the current-voltage converter 13 so as to be in parallel. Further, the amplifiers 14 and 15 are connected to the A / D conversion unit 18 via the switches 16 and 17 respectively, and perform amplification processing on the side selected by the control unit (control unit) 20 described later.
  • the amplifier 14 amplifies and outputs the signal (voltage value) received from the current-voltage conversion unit 13 using a predetermined amplification degree (first amplification degree).
  • the amplification degree set in the amplifier 14 is, for example, x1 (5 k ⁇ ).
  • the amplifier 15 receives a signal (voltage value) received from the current-voltage conversion unit 13 using a predetermined amplification degree (second amplification degree) larger than the amplification degree (first amplification degree) set in the amplifier 14. Is amplified and output.
  • the amplification degree set in the amplifier 15 is, for example, x4 (20 k ⁇ ).
  • Either one of the switches 16 and 17 is selected by the control unit 20 described later, and the amplifier 14 or the amplifier 15 and the A / D conversion unit 18 are connected to amplify the signal acquired from the biological sample measurement sensor 3. Switch the amplification level. It is assumed that the switch 16 side is in the ON state at the start of measurement, and the amplifier 14 and the A / D converter 18 are connected.
  • the A / D conversion unit 18 inputs signals amplified by the amplifiers 14 and 15 via the switches 16 and 17 and is connected to a determination unit (control unit) 19.
  • the determination unit 19 is controlled by the control unit 20 together with the voltage application unit 12, the amplifiers 14 and 15, and the switches 16 and 17.
  • the determination unit 19 includes a threshold determination unit 21, a sample determination unit 22, and an output unit (not shown). Further, the determination unit 19 is connected to the memory unit 23.
  • the threshold value determination unit 21 converts the current value into a voltage value in the current-voltage conversion unit 13, then amplifies in the amplifier 14 or amplifier 15, and further converts into a digital signal in the A / D conversion unit 18, The threshold is determined by comparing with a predetermined threshold.
  • the sample discriminating unit 22 is attached to the biological sample measurement sensor 3 based on the output values of the amplifiers 14 and 15 selectively connected to the working electrode 9 by the control unit 20 according to the determination result in the threshold determination unit 21. The type of the biological sample is determined.
  • the output unit (not shown) outputs the measured value (for example, blood glucose level) of the biological sample whose type has been determined to the display unit 2.
  • the memory unit 23 includes a threshold data storage memory 24, a control / blood discrimination data storage memory 25, a measurement value storage memory 26, an arithmetic expression storage memory 27, and the like.
  • the threshold data storage memory 24 stores threshold data used in the threshold determination unit 21.
  • the control / blood discrimination data storage memory 25 stores data for determining the type of biological sample in the sample discrimination unit 22.
  • the measured value storage memory 26 holds a value output from the output unit (not shown) to the display unit 2.
  • the arithmetic expression storage memory 27 stores an arithmetic expression for calculating a measurement result of a biological sample such as a blood glucose level.
  • FIG. 4 shows an example of a voltage application pattern applied to the counter electrode 8 from the voltage application unit 12.
  • the predetermined voltage V1 is applied during the time t0-t1 immediately after the start of measurement, and then the predetermined voltage V2 is applied during the time t2-t3.
  • the predetermined voltages V1 and V2 are, for example, 0.05 to 1V, preferably 0.1 to 0.8V, and more preferably 0.2 to 0.5V.
  • the predetermined voltage V1 applied between the times t0 and t1 is a pre-application voltage that is applied before the application of the glucose measurement voltage in order to assist the promotion of the reaction between the blood sample and the reagent.
  • the predetermined voltage V2 applied between the times t2 and t3 is a voltage for measuring glucose.
  • voltages (V1, V2) having different magnitudes are applied in two portions.
  • V1, V2 voltages having different magnitudes
  • the output current from the working electrode 9 is converted into a voltage by the current-voltage conversion unit 13, and then the A / D via the amplifier 14 or the amplifier 15.
  • the data is input to the conversion unit 18.
  • the voltage value shown in FIG. 5 is output from the A / D converter 18 in accordance with the magnitude of the input voltage.
  • the output of A / D conversion is a digital value of 8 bits to 16 bits, and each bit is “1” or “0”.
  • the change with time of the digital value is shown in an analog manner in order to easily understand the effect of the present embodiment.
  • the solid line is an output when a blood sample is spotted on the biological sample measurement sensor 3
  • the broken line is an output when a control liquid is spotted on the biological sample measurement sensor 3.
  • the characteristic point shown in this graph is that, as shown in FIG. 5, in the case of the blood sample, the value between the time axes cd increases continuously, whereas in the case of the control solution, The value between cd continuously decreases.
  • the reason why such a behavior appears is that the reaction between the blood sample and the reagent 10 gradually proceeds, whereas the reaction between the control solution and the reagent 10 occurs abruptly in the initial stage, and a time axis c after a predetermined time has elapsed. This is because it gradually declines between -d.
  • the change in the output voltage value between the time axes cd in the graph shown in FIG. 5 is detected by the sample discriminating unit 22, and is stored in the control / blood discrimination data storage memory 25. Based on the obtained information, it is possible to determine whether the substance spotted on the biological sample measurement sensor 3 is a blood sample or a control liquid.
  • an arithmetic expression corresponding to the determination result is selected from the arithmetic expression storage memory 27, and a measurement result such as a blood glucose level is calculated by the arithmetic expression.
  • the result is displayed on the display unit 2.
  • the voltage value (see FIG. 5) output from the amplifier 14 connected in the initial measurement state is determined as a threshold before performing the biological sample type determination as described above.
  • the amplifiers 14 and 15 to be used are selected depending on whether they are larger or smaller than a threshold value (for example, 125 mV) set in the unit 21.
  • a threshold value for example, 125 mV
  • the vertical axis maximum value Vx of the graph shown in FIG. 5 is, for example, 22.5 mV.
  • FIG. 5 is a graph showing characteristics when the amplifier 15 having a higher amplification degree than that of the amplifier 14 is selected.
  • the graph shown in FIG. 5 shows characteristics when various measurements are performed on a biological sample in a living space (for example, at a place of 25 ° C.). That is, in the present embodiment, even in such a room temperature environment, when the output value from the biological sample measurement sensor 3 is smaller than a predetermined threshold value, the output value is amplified, so that more accurate measurement can be performed. Can be implemented.
  • the vertical axis maximum value Vx of the graph shown in FIG. 6 is, for example, 5.6 mV.
  • the measurement range is narrower to 0 to 5.6 mV in FIG. 6 than 0 to 22.5 mV in FIG. Therefore, as described above, even in a room temperature environment, when the output value is small, the amplification process is performed using the amplifier 15 having a large amplification degree, so that measurement with higher accuracy can be performed.
  • the graph of FIG. 7 shows the measurement results in a low temperature environment of 5 ° C.
  • the vertical axis maximum value Vx of the graph shown in FIG. 7 is, for example, 0.7 mV.
  • the output value is small in a low temperature environment (5 ° C.), but the characteristics of the blood sample and the control liquid between time axes cd Is similar to FIG.
  • the reason why the condition of 5 ° C. was set in the low temperature environment is that the measurement range of a general biological sample measuring device is set to 5 to 45 ° C., and the lower limit value is 5 ° C. .
  • FIG. 8 is a graph showing an output value when amplification processing is performed using the amplifier 14 having a small amplification degree in a low temperature environment.
  • the vertical axis maximum value Vx of the graph shown in FIG. 8 is, for example, 0.7 mV.
  • both the blood and the control liquid are smooth between the time axes cd.
  • the graph does not rise or fall, and shows a characteristic that moves up and down.
  • the output current from the working electrode 9 is smaller than that in the room temperature environment, so that the amplifier 14 set to a normal amplification degree has a sufficient input to the A / D converter 18. Cannot output by level. For this reason, due to the limit of the resolution of the A / D conversion unit 18, the waveform becomes rattling as shown in FIG. As a result, with the output as shown in FIG. 8, the type determination in the sample determination unit 22 cannot be performed, and appropriate measurement cannot be performed.
  • the amplifier 15 having a higher amplification degree than the amplifier 14 is selected and used, as shown in FIG.
  • the characteristics of the blood sample and the control solution can be detected more accurately. Therefore, an appropriate type determination can be performed in the sample determination unit 22, and the detection accuracy in a low temperature environment can be improved as compared with the conventional case.
  • 9 (a) and 9 (b) show the results of verifying the discrimination results between the blood sample and the control liquid in a low temperature environment (5 ° C.) with respect to the detection accuracy by the switching control of the amplifiers 14 and 15 described above. ing.
  • the biological sample measuring apparatus of this embodiment Even if it judges from the above result, according to the biological sample measuring apparatus of this embodiment, the effect that it can discriminate
  • the S / N ratio can be improved and the measurement accuracy can be improved by improving the input signal level with the above-described configuration even in a environment other than a low-temperature environment. it can.
  • the switching control of the amplifiers 14 and 15 described in the first embodiment is applied to normal glucose concentration measurement.
  • a voltage pattern similar to that of the first embodiment applied at the time of glucose measurement is applied from the voltage application unit 12 to the counter electrode 8 in a low-temperature environment (5 ° C.), and the amplifier 14 and the amplifier 15 Compare the output results when using.
  • the biological sample measurement device of the present embodiment is assumed to have the same configuration as the biological sample measurement device of the first embodiment, and will be described with the same reference numerals.
  • FIGS. 10A and 10B are graphs showing the same voltage application pattern as in the first embodiment, and the lower stages of FIGS. 10A and 10B are the amplifier 15 and the amplifier 14. It is a graph which shows the result (current value) output using each.
  • the vertical axis maximum value Vx of the graphs shown in FIGS. 10A and 10B is, for example, 0.7 mV.
  • the voltage V1 is applied during the time t0-t1, and the voltage V2 is applied during the time t2-t3.
  • the glucose concentration is measured using the measured value obtained in (1).
  • the predetermined voltages V1 and V2 are, for example, 0.05 to 1V, preferably 0.1 to 0.8V, and more preferably 0.2 to 0.5V.
  • the result is a smooth curve. Thereby, the glucose concentration can be accurately calculated based on the output result.
  • the glucose concentration can be accurately determined by using the amplifier 14 connected at the start of measurement. Measurement may not be possible. For this reason, in the biological sample measuring apparatus of this embodiment, the output values at points ⁇ and ⁇ in FIG. 10A are compared with predetermined threshold values, and the amplifier 14 connected to the working electrode 9 in the initial state is used. Is less than a predetermined threshold value (here, 25 mV), the amplifier 15 having a large amplification degree is used. At this time, the controller 20 switches the switch 16 to the OFF state and switches the switch 17 to the ON state (see FIG. 3).
  • a predetermined threshold value here, 25 mV
  • the output result from the working electrode 9 is amplified by the amplifier 15 with a higher degree of amplification than the amplifier 14, and the graph shown in the lower part of FIG. 10A can be obtained.
  • the amplifiers 14 and 15 are used by switching in stages, thereby improving the resolution and measuring glucose with higher accuracy than before. Can be implemented.
  • 11 (a) and 11 (b) show the results of verifying the reproducibility by the switching control of the amplifiers 14 and 15 described above using blood samples having different glucose concentrations in a low temperature environment (5 ° C.). ing.
  • the blood samples used have two types of glucose concentration and Hct value: Sample A; 40 mg / dl, 42%, Sample B: 80 mg / dl, 42%.
  • the reproducibility is 3.5% for the sample A and the reproducibility is 2.5 for the sample B. It can be seen that the variation is very small compared to the case where the amplifier 14 is used.
  • the effect of obtaining an accurate and stable measurement result regardless of the increase or decrease in the glucose concentration is clear, such as in a low-temperature environment. It can be seen that this is particularly effective when the sensor output value is small.
  • the S / N ratio can be improved and the measurement accuracy can be improved by improving the input signal level with the above-described configuration even in a environment other than a low-temperature environment. it can.
  • the biological sample measurement apparatus of this embodiment is different in that hematocrit (Hct) is measured in addition to the glucose concentration by applying a voltage different from the voltage application pattern applied in the first and second embodiments. ing.
  • Hct hematocrit
  • the pre-application voltage V1 before the measurement is applied during the time t0-t1 and the glucose measurement is performed during the time t2-t3, as in the first and second embodiments.
  • Voltage V2 is applied, and the glucose concentration is measured at time t3.
  • the voltage V3 for Hct measurement is applied between the times t4 and t5.
  • the voltage V3 is preferably in the range of 1 to 10V, and more preferably in the range of 1 to 6.5V.
  • the MAX output of the A / D converter 18 in the period a shown in FIG. 12A is, for example, 100 mV in output voltage value, and the A / D converter 18 at time A as shown in FIG. 12B.
  • the measurement resolution in the period a is The measurement resolution at 0.0132 mV, time A is 0.0033 mV, and the measurement resolution in period b is 0.018 mV. That is, these output ratios are A: a: b ⁇ 1: 4: 11.
  • the voltage application pattern shown in FIG. 12A is adopted, and when the output value from the amplifier 14 is smaller than a predetermined threshold value, it is switched to the amplifier 15 and used.
  • the glucose concentration can be measured with high accuracy, and at the same time, Hct can also be measured.
  • the biological sample measurement of the present embodiment is different from the above-described embodiments in that a voltage application pattern for spotting detection of a blood sample is added as a stage before starting glucose measurement.
  • the present invention is not limited to the control for performing threshold determination using the spot application detection voltage application pattern as in the present embodiment, and the threshold determination is performed using the determination voltage application pattern. It may be.
  • a predetermined voltage V4 is applied during a period (t-2)-(t-1) before the glucose concentration measurement start time t0. Yes.
  • the voltage V4 is, for example, in the range of 0.05 to 1V, preferably 0.1 to 0.8V.
  • the predetermined voltage V4 in this period (t-2)-(t-1) has been conventionally applied to detect whether or not a blood sample has been deposited on the biological sample measurement sensor 3.
  • the above-described switching control (range switching control) of the amplifiers 14 and 15 is performed using the output result of the applied voltage for sample detection.
  • the output result of the applied voltage V4 for sample detection has a curved waveform as shown in FIG.
  • the vertical axis maximum value Vx of the graph shown in FIG. 13B is, for example, 30 mV. Therefore, in the present embodiment, as shown in FIG. 13C, the output value Vz (in the present embodiment, for example, 4.5 mV) at the center position between the periods (t ⁇ 2) ⁇ (t ⁇ 1) is obtained.
  • a predetermined threshold value stored in the memory unit 23 it is determined whether or not to perform switching control (range switching control) of the amplifiers 14 and 15.
  • the output value Vz (in this embodiment, for example, 4.5 mV) is larger than a predetermined threshold stored in the memory unit 23, it is determined that the output value need not be further amplified, The connection with the amplifier 14 is maintained. On the other hand, when the output value Vz is smaller than a predetermined threshold value, an output with a large amplification degree can be obtained by switching the connection from the amplifier 14 to the amplifier 15.
  • the threshold value is determined using the voltage applied before the measurement of the glucose concentration is started, and the switching control of the amplifiers 14 and 15 is performed according to the result. Even in an environment with a small output value such as an environment, it is possible to obtain an effect that the resolution can be improved and highly accurate measurement can be performed.
  • the S / N ratio can be improved and the measurement accuracy can be improved by improving the input signal level with the above-described configuration, even under a low temperature environment. it can.
  • the determination unit 19 that performs threshold determination and the control unit 20 that selects one of the switches 16 and 17 have been described as separate control blocks.
  • the present invention is not limited to this.
  • control unit including threshold determination and selection of the switches 16 and 17.
  • the threshold value may be determined in a control block such as a determination unit formed in the control unit.
  • the current value output from the working electrode 9 of the biological sample measurement sensor 3 is converted into a voltage value by the current-voltage converter 13 and then the amplification process is performed by one of the amplifiers 14 and 15. I gave it as an explanation.
  • the present invention is not limited to this.
  • the amplification process may be performed with the current value without converting the voltage value.
  • the biological sample measurement apparatus 101 provided with three amplifiers 114a, 114b, and 114c may be used as an amplifier that performs amplification processing. Alternatively, it may be a biological sample measuring device provided with three or more amplifiers.
  • the amplification degree is 1 ⁇ , 4 ⁇ , or 12 ⁇ 3 Amplification can be performed in stages.
  • the amplifiers 114a, 114b, and 114c are switched continuously at regular intervals, and the output values of the switched amplifiers are controlled and stored in the memory. Also good.
  • the optimum output value data stored in the memory is selected and adopted as regular data. Thereafter, calculation such as correction can be performed, and the measurement result can be displayed on the display unit 2 as a measurement value.
  • the fixed period may be in the range of 0.01 to 0.5 seconds, and more preferably in the range of 0.01 to 0.1 seconds. Even when two amplifiers are provided, the same processing can be performed.
  • the threshold value determination in the threshold value determination part 21 was demonstrated and demonstrated based on the example implemented based on the signal (digital voltage value) received from the A / D conversion part 18.
  • FIG. the present invention is not limited to this.
  • the output value from the working electrode 9 to be subjected to the threshold determination is not limited to the digital voltage value, but may be a current value before being converted by the current-voltage conversion unit 13 or A / D conversion.
  • An analog value before A / D conversion in the unit 18 may be used.
  • the type of each biological sample can be determined by detecting the properties specific to the biological sample.
  • the type determination of the biological sample spotted on the biological sample measurement sensor may be performed by utilizing the technical content of Patent Document 1 below.
  • the ratio between the measured current value and the time derivative of the current value is used as a sample discrimination parameter, and
  • a discrimination function having an independent variable as a discrimination parameter is defined. Then, a numerical value obtained by substituting the value of the discrimination parameter into this discrimination function is used as a discrimination index, and based on this discrimination index, the type of sample, that is, blood or control liquid is discriminated.
  • a biological sample measurement apparatus 201 provided with a first voltage application unit 212a and a second voltage application unit 212b may be used.
  • a voltage is applied to the biological sample measurement sensor 3 from the first voltage application unit 212a, and a reference voltage is applied from the second voltage application unit 212b to a terminal serving as a counter electrode portion of the biological sample measurement sensor 3. .
  • the voltage applied to both ends of the biological sample measurement sensor 3 is (applied voltage from the first voltage applying unit 212a ⁇ applied voltage from the second voltage applying unit 212b).
  • the current that flows when a voltage is applied to both ends of the biological sample measurement sensor 3 is replaced with a voltage by the current-voltage converter 13.
  • the amplifier 14 or the amplifier 15 amplifies the voltage and inputs it to the A / D conversion unit 18.
  • the second analog processing unit may be provided and the whole analog processing may be switched.
  • the voltage can be applied from the first analog processing unit by turning on the switches 316a and 316b. Furthermore, a voltage can be applied from the second analog processing unit by turning on the switch 316c and the switch 316d. In addition, by setting either the switch 316e or the switch 316f to the ON state, the output of either the first analog processing unit or the second analog processing unit is input to the A / D conversion unit 18 and the A / D conversion is performed. Can be converted.
  • the switches 316 a and 316 b and the switches 316 c and 316 d are described as examples that are individually connected to the connection electrodes 8 and 9 of the sensor 3. did.
  • the present invention is not limited to this.
  • the switch 316a and the switch 316c may be connected to the same connection electrode (for example, only the connection electrode 9).
  • the switch 316b and the switch 316d are the same connection electrode (for example, the connection electrode). 8 only).
  • FIG. 17 it may be a biological sample measuring device 401 provided with two current-voltage converters (first and second current-voltage converters 413a and 413b).
  • one amplifier 14 and 15 is provided for each of the first and second current-voltage converters 413a and 413b, and the amplifier to be used may be switched depending on these configurations.
  • the current / voltage conversion unit and the amplifier are set as one set, and the set is divided into two sets (first current / voltage conversion unit 413a and amplifier 14, second current / voltage conversion unit 413b and amplifier 15). Is provided. Therefore, when the amplifiers 14 and 15 to be used are switched, the switch 16 and the switch 416a or the switch 17 and the switch 416b may be controlled to be switched in synchronization with each other.
  • a current / voltage converter (first and second current / voltage converters 413a and 413b), an amplifier (amplifiers 14 and 15), and an A / D converter (A / D converters 518a and 518b).
  • a biological sample measuring device 501 May be a biological sample measuring device 501 provided in two series.
  • the whole can be switched by the current-voltage converter, amplifier, and A / D converter arranged in two lines. Furthermore, since the A / D converters are arranged at the subsequent stage of each amplifier, data can be acquired from two circuits simultaneously.
  • FIG. 19 it may be a biological sample measuring device 601 provided with A / D conversion units 618a and 618b in the subsequent stage of the first analog processing unit and the second analog processing unit described above.
  • the switches 316a to 316d for switching are also required on the sensor side of the analog processing unit. Become.
  • the switches 316 a, 316 b, 316 c, and 316 d are described as examples that are individually connected to the connection electrodes 8 and 9 of the sensor 3.
  • the present invention is not limited to this.
  • the switch 316a and the switch 316c may be connected to the same connection electrode (for example, only the connection electrode 9).
  • the switch 316b and the switch 316d are the same connection electrode (for example, the connection electrode 8). Only).
  • the threshold value determination, the biological sample type determination, the concentration measurement, and the like may be processed in a single function block. Or you may be comprised so that each process may be implemented in three or more functional blocks.
  • switching may be basically performed at an arbitrary timing during voltage application.
  • two amplifiers 714 and 715 are connected in series, and switches 716a and 716b for the amplifier 714 disposed on the upstream side and switches 717a and 717b for the amplifier 715 disposed on the downstream side.
  • the biological sample measurement device 701 may selectively use the amplifiers 714 and 715 by switching between them.
  • the biological sample measurement device of the present invention selects and outputs the second amplifier having a high amplification degree from the first and second amplifiers. By doing so, it is possible to improve the measurement accuracy of blood glucose level and the like in a low temperature environment compared to the prior art. For example, it is widely applied to biological sample measuring devices that measure biological information such as blood glucose level. Is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Diabetes (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本生体試料測定装置は、生体試料測定センサ(3)が装着される装着部(4)と、この装着部(4)に装着される生体試料測定センサ(3)の対極(8)に電圧を印加する電圧印加部(12)と、生体試料測定センサ(3)の作用極(9)に選択的に接続される増幅器(14,15)と、これらの増幅器(14,15)に接続された判定部(19)とを備えている。判定部(19)は、作用極(9)の電流値を電圧変換した電圧値を判定する閾値判定部(21)と、閾値判定部(21)の判定により、増幅器(14,15)を作用極(9)に選択的に接続し、この選択された増幅器(14または15)の出力により、生体試料測定センサ(3)に点着された試料の判別を行う試料判別部(22)と、この判別された試料に対応する測定値を出力する出力部とを有する。

Description

生体試料測定装置
 本発明は、例えば、血糖値等の生体情報を測定する生体試料測定装置に関するものである。
 従来の生体試料測定装置は、以下のような構成を備えていた。
 すなわち、従来の生体試料測定装置は、少なくとも作用極と対極とを含む電極部上に試薬が設けられた生体試料測定センサが装着される装着部と、装着部に装着される生体試料測定センサの電極部に電圧を印加する電圧印加部と、生体試料測定センサの電極部に接続された増幅器と、増幅器に接続された判定部と、電圧印加部、増幅器および判定部を制御する制御部と、を備えていた。
 そして、従来の生体試料測定装置では、生体試料測定センサに血液が点着されると、試薬と血液とが反応して、例えば、血液中に含まれる血糖値の値に応じて電極部から出力される出力電流を増幅器で増幅し、その出力電流値に応じて血糖値が表示される。
 また、従来の生体試料測定装置では、その測定精度を維持管理するために、定期的に試薬部分に、予め血糖値等が分かっているコントロール液を点着し、コントロール液に対応する血糖値が正しく表示されるか否かを確認している。
 よって、従来の生体試料測定装置では、増幅器からの出力結果に応じて、センサに点着された生体試料が血液なのかコントロール液なのかを判定部で判定し、この判定結果に基いて、増幅器の出力から血糖値を算出する算出式を選択し、選択された算出式に基づいて血糖値を算出している(例えば、特許文献1参照)。
 つまり、従来の生体試料測定装置では、血液に対する試薬の反応状態とコントロール液に対する試薬の反応状態とが異なることを利用して、判定部によって試薬に点着されたものが血液かコントロール液かを判定し、この判定結果に基づいて血糖値を算出する。
特開2001-153839号公報
 しかしながら、上記従来の生体試料測定装置では、以下に示すような問題点を有している。
 すなわち、上記公報に開示された生体試料測定装置では、コントロール液を用いることにより、測定精度の維持管理を行うことができるというメリットがある。しかし、低温環境下では反応が鈍化してしまうため、信号が微小になり、コントロール液を全血と誤判別をしてしまう可能性があった。また、低濃度の生体試料測定時の応答電流値は、低温環境下における測定と同様に微小な応答電流しか得られないために誤った値を看過してしまうおそれがあった。
 本発明の課題は、信号が微小になった際に正確な測定を可能にするための高精度な測定を可能にする生体試料測定装置を提供することにある。
(課題を解決するための手段)
 第1の発明に係る生体試料測定装置は、装着部と、電圧印加部と、第1・第2の増幅器と、制御部と、を備えている。装着部には、少なくとも作用極と対極とを含む電極部上に設けられた試薬に反応する生体試料が点着される生体試料測定センサが装着される。電圧印加部は、装着部に装着される生体試料測定センサの電極部に電圧を印加する。第1・第2の増幅器は、生体試料測定センサの電極部に選択的に接続され、電極部から出力された信号を増幅する。第1の増幅器は、第1の増幅度で信号を増幅する。第2の増幅器は、第1の増幅度よりも大きい第2の増幅度で信号を増幅する。制御部は、電極部から出力された出力信号の値と予め設定された閾値とを比較して、第1の増幅器または第2の増幅器を選択的に使用する。
 ここでは、血液等の生体試料が点着された生体試料測定センサを装着して電圧を印加し血糖値等の生体情報を測定する生体試料測定装置において、異なる増幅度を有する複数の増幅器(第1・第2の増幅器)を備えている。そして、制御部は、生体試料測定センサの電極部からの出力値を所定の閾値と比較して、その比較結果に応じて、異なる増幅度を有する増幅器から1つの増幅器を選択して使用する。
 なお、上記信号とは、生体試料測定センサの電極部から出力された電流値、およびその電流を電圧変換した電圧値を含む。
 これにより、例えば、低温環境下において閾値よりも出力信号の値が小さい場合には、増幅度の大きい方の第2の増幅器を選択して使用するように増幅器の切換え制御(レンジ切換え制御)を行うことで、より増幅された出力値を得ることができる。この結果、温度の大きく異なる環境下においても、適切な増幅度を有する増幅器を用いて増幅処理することができるため、従来よりも分解能を向上させて高精度な測定を実施することができる。
 第2の発明に係る生体試料測定装置は、第1の発明に係る生体試料測定装置であって、制御部は、第1の増幅器または第2の増幅器から出力される出力結果に基づいて、生体試料の種別の判定を行う。
 ここでは、例えば、センサに点着された生体試料が血液試料かコントロール液かを判別する際にも、生体試料測定センサから出力された出力信号の値に応じて適切な増幅度を有する増幅器を用いて増幅処理を行う。
 ここで、上記生体試料の種別判定とは、例えば、血液試料とコントロール液との判別を含む。なお、コントロール液とは、生体試料測定装置の測定精度を維持するために、予め測定結果が分かっている試料を用いて測定結果を調整するために用いられるものである。
 これにより、このような生体試料の種別判定を低温環境下において実施する場合でも、出力された信号の値に応じて、複数の増幅器の中から適切な増幅度を有する増幅器を選択して増幅処理することで、分解能を向上させて正確な種別判定を実施することができる。
 第3の発明に係る生体試料測定装置は、第2の発明に係る生体試料測定装置であって、制御部は、出力結果を示すグラフにおける所定時間帯における傾きを検出して、生体試料測定センサに点着された生体試料が血液試料であるか、コントロール液であるかの判別を行う。
 ここでは、上述した生体試料の種別判定において、血液試料とコントロール液との判別を行う。
 ここで、血液試料とコントロール液とを比較した場合、生体試料測定センサの試薬と反応する速度に関して、コントロール液の方が血液試料よりも早いという特性がある。つまり、コントロール液の場合には、試薬とすぐに反応して出力電流は初期段階でピークとなる一方、血液試料の場合には、試薬と徐々に反応して所定時間経過後に出力電流値がピークを迎える。
 本発明の生体試料測定装置では、このような血液試料とコントロール液との特性の違いを利用し、所定時間経過後の出力値を示すグラフの傾きを検出して種別判定を行う。
 具体的には、出力値を示すグラフにおける所定時間経過後の時間帯の傾きがプラスの場合には血液試料と判定し、傾きがマイナスの場合にはコントロール液と判定する。
 これにより、上述した増幅器の切換え制御と併せて実施することで、従来よりも分解能を向上させて高精度な種別判定を実施することができる。
 第4の発明に係る生体試料測定装置は、第1の発明に係る生体試料測定装置であって、制御部は、第1の増幅器または第2の増幅器から出力される出力結果に基づいて、生体試料の濃度測定を行う。
 ここでは、上述した増幅器の切換え制御を、生体試料の濃度測定(例えば、血糖値測定)に利用する。
 これにより、生体試料測定センサから出力された信号の値が小さい場合には、大きな増幅度を有する増幅器を選択して増幅処理を行うことができる。この結果、低温環境下等においても、生体試料測定装置の分解能を向上させて高精度な血糖値等の測定を実施することができる。
 第5の発明に係る生体試料測定装置は、第4の発明に係る生体試料測定装置であって、制御部は、生体試料の濃度測定前に印加される生体試料検知用の電圧パターンの出力結果と閾値とを比較して、第1・第2の増幅器の選択を行う。
 ここでは、生体試料測定センサにおける試料検知のために印加される電圧印加パターンの出力信号を所定の閾値と比較して上述した増幅器の切換え制御を実施する。
 ここで、上記試料検知用の電圧印加パターンとは、測定を開始する前に、生体試料測定センサに点着された生体試料が試薬の配置された領域まで充填されているか否かを検知するために印加される電圧である。
 これにより、血糖値等の測定を開始する前の段階で印加される電圧の出力信号を用いて、閾値判定を行った後、複数の増幅器の切換え制御を実施することができる。
(発明の効果)
 本発明に係る生体試料測定装置によれば、低温環境下における測定時には、電極部からの出力信号が小さくなるため、第1・第2の増幅器のうち、増幅度の大きい第2の増幅器を選択して増幅した信号を出力することで、低温環境下における血糖値等の測定精度を従来よりも向上させることができる。
本発明の一実施形態に係る生体試料測定装置の斜視図。 (a)は、図1の生体試料測定装置に用いる生体試料測定センサの分解斜視図。(b)はその側断面図。(c)はその平面図。 図1の生体試料測定装置の制御ブロック図。 図1の生体試料測定装置において印加される電圧パターンを示すグラフ。 図1の生体試料測定装置の常温環境下における動作波形図。 図5の動作波形図の比較図。 図1の生体試料測定装置の低温環境下における動作波形図。 図7の動作波形図の比較図。 (a)は、低温環境下において増幅度の小さい第1の増幅器(増幅器14)を使用した際のコントロール液と血液試料との判別結果を示す比較図。(b)は、低温環境下において増幅度の大きい第2の増幅器(増幅器15)を使用した際のコントロール液と血液試料との判別結果を示す図。 (a)は、本発明の他の実施形態に係る生体試料測定装置において印加される電圧パターンと増幅処理された出力結果を示すグラフ。(b)は、その出力結果を示すグラフ。 (a)は、図1の生体試料測定装置によってグルコース濃度を測定した際の低温環境下における再現性を示すグラフ。(b)は、その再現性の比較結果を示す図。 (a)は、本発明のさらに他の実施形態に係る生体試料測定装置において印加される電圧パターンを示すグラフ。(b)は、その出力結果を示すグラフ。 (a)は、本発明のさらに他の実施形態に係る生体試料測定装置において印加される電圧印加パターンを示すグラフ。(b)は、その出力値を示すグラフ。(c)は、閾値判定を行う際の説明図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。 本発明のさらに他の実施形態に係る生体試料測定装置の制御ブロック図。
 (実施形態1)
 本発明の一実施形態に係る生体試料測定装置について、図1~図9(b)を用いて説明すれば以下の通りである。
 [生体試料測定装置の構成]
 本実施形態に係る生体試料測定装置は、図1に示すように、本体ケース1と、その表面に設けられた表示部2および操作用の操作ボタン33と、本体ケース1の下端に設けられた生体試料測定センサ3の装着部4と、を備えている。
 生体試料測定センサ3は、図2(a)~図2(c)に示すように、基板5とスペーサ6とカバー7とを積層させて一体化されている。ここで、図2(a)は、生体試料測定センサ3の展開斜視図、図2(b)は、生体試料測定センサ3を側面から見た場合の断面図、図2(c)は、生体試料測定センサ3の平面図(ただし、カバー7がない状態を示す。)をそれぞれ示している。
 基板5上には、電極部に含まれる対極8と作用極9とが設けられている。
 対極8および作用極9上には、試薬10が設けられている。
 スペーサ6には、溝11が形成されている。そして、溝11と基板5とカバー7とによって、血液の供給路であるキャピラリが形成される。
 生体試料測定センサ3に点着された血液(生体試料の一例)は、キャピラリを形成する溝11内を毛細管現象によって進み、試薬10の部分まで到達すると、試薬10と血液中のグルコースとの間で反応が起きる。本実施形態の生体試料測定装置では、この反応値に基づいて血糖値等を求める。
 基板5は、図2(a)~図2(c)に示すように、スペーサ6およびカバー7よりも長手方向において長く、基板5に設けられた対極8、作用極9の部分(それぞれ図2(c)におけるA,Bの部分に相当)が露出するように形成されている。これは、本体ケース1の装着部4に対して、生体試料測定センサ3が装着された時に、生体試料測定センサ3と本体ケース1内の電気回路とを電気的に接続するためである。
 カバー7には、キャピラリ内の毛細管現象を促すための空気孔7aが設けられている。空気孔7aは、図2(b)に示すように、生体試料測定センサ3における試薬10が載置された位置よりも奥側(図2では右側))に配置されていればよい。これは、キャピラリの先端側(図2では左側)に血液等(生体試料)が点着され、毛細管現象により試薬10の位置まで血液(生体試料)をスムーズに導入するためである。
 対極8は、図3の制御ブロックに示すように、電圧印加部12に接続されている。また、作用極9には、電流電圧変換部13が接続されている。そして、電流電圧変換部13の出力側には、増幅器14,15が並列関係になるように接続されている。さらに、増幅器14,15は、それぞれスイッチ16,17を介して、A/D変換部18に接続されており、後述する制御部(制御部)20によって選択された側において増幅処理を行う。
 増幅器14は、所定の増幅度(第1の増幅度)を用いて、電流電圧変換部13から受信した信号(電圧値)を増幅して出力する。なお、増幅器14に設定される増幅度は、例えば、×1(5kΩ)である。
 増幅器15は、増幅器14に設定された増幅度(第1の増幅度)よりも大きい所定の増幅度(第2の増幅度)を用いて、電流電圧変換部13から受信した信号(電圧値)を増幅して出力する。なお、増幅器15に設定される増幅度は、例えば、×4(20kΩ)である。
 スイッチ16,17は、後述する制御部20によってどちらか一方が選択され、増幅器14または増幅器15とA/D変換部18とを接続することで、生体試料測定センサ3から取得した信号を増幅処理する際の増幅度を切り替える。なお、測定開始時点においては、スイッチ16側がON状態となっており、増幅器14とA/D変換部18とを接続しているものとする。
 なお、本実施形態の生体試料測定装置における電流電圧変換部13から増幅器14,15、スイッチ16,17まではアナログ信号を処理するアナログ処理部である。
 A/D変換部18は、スイッチ16,17を介して増幅器14,15において増幅処理された信号を入力するとともに、判定部(制御部)19に接続されている。
 判定部19は、電圧印加部12、増幅器14,15およびスイッチ16,17とともに、制御部20によって制御されている。また、判定部19は、閾値判定部21と、試料判別部22と、出力部(図示せず)と、を有している。さらに、判定部19は、メモリ部23と接続されている。
 閾値判定部21は、電流電圧変換部13において電流値から電圧値に変換された後、増幅器14または増幅器15において増幅され、さらにA/D変換部18においてデジタル信号に変換された出力信号と、所定の閾値とを比較して閾値判定を行う。
 試料判別部22は、閾値判定部21における判定結果に応じて、制御部20によって作用極9に選択的に接続された増幅器14,15の出力値に基づいて、生体試料測定センサ3に点着された生体試料の種別判定を行う。
 出力部(図示せず)は、種別判定された生体試料の測定値(例えば、血糖値)を、表示部2に出力する。
 メモリ部23は、閾値データ保存メモリ24、コントロール/血液判別データ保存メモリ25、測定値保存メモリ26、演算式保存メモリ27等を有する。
 閾値データ保存メモリ24は、閾値判定部21において用いられる閾値データを格納している。
 コントロール/血液判別データ保存メモリ25は、試料判別部22において生体試料の種別判定を行うためのデータを保存する。
 測定値保存メモリ26は、図示しない出力部から表示部2に出力される値を保持する。
 演算式保存メモリ27は、血糖値等の生体試料の測定結果を算出するための演算式を保存する。
 <生体試料の種別判定>
 ここで、本実施形態の生体試料測定装置における生体試料の種別の判定について、図4および図5を用いて以下で説明する。
 図4は、電圧印加部12から対極8に加えられる電圧の印加パターンの一例を示している。
 本実施形態では、測定開始直後の時間t0-t1間に所定電圧V1を印加し、その後、時間t2-t3間に所定電圧V2を印加する。ここで、上記所定電圧V1,V2としては、例えば、0.05~1V、好ましくは、0.1~0.8V、より好ましくは、0.2~0.5Vの範囲であることが好ましい。
 なお、時間t0-t1間に印加される所定電圧V1は、血液試料と試薬との反応促進を補助するためにグルコース測定用電圧の印加前に印加されるプリ印加電圧である。時間t2-t3間に印加される所定電圧V2は、グルコース測定用の電圧である。
 本実施形態では、大きさの異なる電圧(V1,V2)を2回に分けて印加している。このような印加パターンの電圧が対極8に印加されると、作用極9からの出力電流は電流電圧変換部13において電圧に変換された後、増幅器14または増幅器15を経由して、A/D変換部18に入力される。そして、その入力電圧の大きさに応じて、A/D変換部18から図5に示す電圧値が出力される。
 なお、A/D変換の出力は、8bits~16bitsのデジタル値であって、各ビットは“1”または“0”となっている。図5のグラフでは、本実施形態による効果を分かり易くするために、そのデジタル値の時間的な変化をアナログ的に示している。
 図5において、実線は、生体試料測定センサ3に血液試料を点着した際の出力であり、破線は、生体試料測定センサ3にコントロール液を点着した際の出力である。
 ここでこのグラフに表れた特徴的な点は、図5に示すように、血液試料の場合は、時間軸c-d間の値が連続的に上昇しているのに対し、コントロール液の場合には、c-d間の値が連続的に下降している。このような挙動が表れる理由は、血液試料と試薬10との反応は徐々に進行するのに対して、コントロール液と試薬10との反応は初期段階において急激に起こり、所定時間経過した時間軸c-d間においては、徐々に衰退しているからである。
 本実施形態の生体試料測定装置では、図5に示すグラフの時間軸c-d間における出力電圧値の変化を試料判別部22において検出することで、コントロール/血液判別データ保存メモリ25に保存された情報に基づいて、生体試料測定センサ3に点着されたものが、血液試料であるかコントロール液であるかを判定することができる。
 そして、本実施形態では、この判定結果に基づいて、演算式保存メモリ27からその判定結果に対応した演算式を選択し、その演算式により血糖値等の測定結果を算出し、最終的な測定結果を表示部2に表示させる。
 <増幅器14,15の切換え制御>
 ここで、本実施形態の生体試料測定装置における増幅器14,15の切換え制御について、以下で説明する。
 本実施形態の生体試料測定装置では、以上のような生体試料の種別判定を実施する前に、測定初期状態において接続されている増幅器14から出力された電圧値(図5参照)が、閾値判定部21に設定された閾値(例えば、125mV)よりも大きいか小さいかによって、使用する増幅器14,15を選択する。ここで、図5に示すグラフの縦軸最大値Vxは、例えば、22.5mVである。
 具体的には、図5に示すポイントαにおける出力値と閾値(125mV)とを比較すると、ポイントαにおける出力値は閾値よりも小さい(図5のポイントαは図4のポイントαに対応。)。このため、制御部20は、閾値判定部21の判定結果を踏まえて、図3に示すスイッチ16をON状態からOFF状態へと移行させるとともに、スイッチ17を閉じてOFF状態からON状態へ移行させる。これにより、スイッチ17が閉じられることにより、電流電圧変換部13の出力が増幅器15を経由して、A/D変換部18に接続される。すなわち、増幅器14よりも大きい増幅度が設定された増幅器15が選択された場合の特性が、図5に示すグラフである。
 図5に示すグラフは、居住空間内(例えば、25℃の場所)において、生体試料の各種測定を行った際の特性を示している。つまり、本実施形態では、このような室温環境下においても、生体試料測定センサ3からの出力値が所定の閾値よりも小さい場合には、出力値を増幅処理することで、より高精度な測定を実施することができる。
 なお、図5に示すグラフの比較例として、図6に、同じ室温環境下における出力値(図中ポイントαにおける出力値)が所定の閾値(125mV)以下の場合でも、通常の増幅度が設定された増幅器14を用いて増幅処理された結果を示している。ここで、図6に示すグラフの縦軸最大値Vxは、例えば、5.6mVである。この場合には、図5と同様の波形が表れるものの、測定レンジが、図5の0~22.5mVに対して、図6では0~5.6mVと狭くなっている。よって、上述したように、室温環境下においても、出力値が小さい場合には増幅度の大きい増幅器15を用いて増幅処理を行うことで、より精度の高い測定を実施することができる。
 これに対して、図7のグラフは、5℃の低温環境下における測定結果を示している。ここで、図7に示すグラフの縦軸最大値Vxは、例えば、0.7mVである。図7と図5とを比較すれば容易に理解されるように、低温環境下(5℃)では出力値が小さくなっているが、時間軸c-d間における血液試料とコントロール液との特性は図5と同様に表れている。
 しかしながら、5℃の低温環境下では、一般的に反応が遅くなり、それに伴って出力信号のレベルも低くなる傾向がある。このため、25℃の場合(図5に示す)と同様の信号ではあるものの、5℃の場合(図7)の方が、コントロール液でも血液でも、t0からの初期時間においては、立ち上がりが遅く、値が小さくなっている。
 なお、低温環境下として5℃の条件を設定したのは、一般的な生体試料測定装置の測定範囲が5~45℃に設定されており、その下限値が5℃となっているためである。
 すなわち、図7に示すグラフにおいても同様に、血液試料の場合は、時間軸c-d間の値が連続的に上昇しており、逆にコントロール液の場合には、時間軸c-d間の値が連続的に下降している。
 次に、図8は、低温環境下において増幅度の小さい増幅器14を使用して増幅処理された際の出力値を示すグラフである。ここで、図8に示すグラフの縦軸最大値Vxは、例えば、0.7mVである。低温環境下において測定する際には、室温環境下と同じ増幅器14を使用して増幅処理された場合には、図8に示すように、時間軸c-d間において、血液およびコントロール液ともにスムーズに、上昇、下降するグラフにはなっておらず、ガタガタと上下する特性を示している。
 すなわち、低温環境下における測定時には、作用極9からの出力電流が室温環境下よりも小さくなるため、通常の増幅度に設定された増幅器14では、A/D変換部18に対して十分な入力レベルで出力することができない。このため、A/D変換部18の分解能の限界によって、図8に示すように、ガタガタとした波形となってしまう。この結果、図8に示すような出力では、試料判別部22における種別判定を実施することができないとともに、適切な測定を実施することもできない。
 そこで、本実施形態の生体試料測定装置では、このような低温環境下における測定においても、増幅器14よりも大きい増幅度が設定された増幅器15を選択して使用することで、図7に示すように、血液試料およびコントロール液の特性をより正確に検出することができる。よって、試料判別部22において適切な種別判定を行うことができ、低温環境下における検出精度を従来よりも向上させることができる。
 図9(a)および図9(b)は、上述した増幅器14,15の切換え制御による検出精度について、低温環境下(5℃)における血液試料とコントロール液との判別結果について検証した結果を示している。
 その結果、図9(a)に示すように、低温環境下において増幅度の小さい増幅器14を使用した場合には、コントロール液を血液試料と誤って判定した回数が5回/1500回発生し、血液試料をコントロール液と誤って判定した回数が1回/4000回あったことが分かる。
 一方、上述のように閾値判定の結果、使用する増幅器を増幅器15を切り換えて使用した場合には、図9(b)に示すように、コントロール液および血液試料ともに誤って判定された回数は0であったことが分かる。
 以上の結果から判断しても、本実施形態の生体試料測定装置によれば、血液試料およびコントロール液ともに正確に判別することができるという効果は明らかであり、低温環境下等のセンサ出力値が小さい環境下においては特に有効であることが分かる。
 さらに、本実施形態の生体試料測定装置によれば、低温環境下以外であっても、上述した構成により、入力信号レベルの向上によってS/N比の向上、および測定精度の向上を図ることができる。
 (実施形態2)
 本発明の他の実施形態に係る生体試料測定装置について、図10(a)~図11(b)を用いて説明すれば以下の通りである。
 本実施形態の生体試料測定装置では、実施形態1において説明した増幅器14,15の切換え制御を、通常のグルコース濃度の測定に適用している。
 なお、本実施形態では、低温環境下(5℃)において、グルコース測定時に印加する上記実施形態1と同様の電圧パターンを、電圧印加部12から対極8に対して印加し、増幅器14、増幅器15を使用した場合の出力結果を比較している。また、本実施形態の生体試料測定装置は、上記実施形態1の生体試料測定装置と同じ構成を有しているものとし、同じ符号を付して説明する。
 図10(a)および図10(b)の上段は、上記実施形態1と同じ電圧印加パターンを示すグラフであり、図10(a)および図10(b)の下段は、増幅器15、増幅器14をそれぞれ使用して出力した結果(電流値)を示すグラフである。ここで、図10(a)および図10(b)に示すグラフの縦軸最大値Vxは、例えば、0.7mVである。
 すなわち、本実施形態では、上記実施形態1と同様に、時間t0-t1間に電圧V1を印加し、時間t2-t3間に電圧V2を印加しており、印加時間内における1つ以上のポイントで得られた測定値を用いてグルコース濃度を測定している。ここで、上記所定電圧V1,V2としては、例えば、0.05~1V、好ましくは、0.1~0.8V、より好ましくは、0.2~0.5Vの範囲であることが好ましい。
 本実施形態の生体試料測定装置では、図10(a)の下段のグラフに示すように、増幅度の大きい増幅器15を使用した場合には、時間t0-t1間、時間t2-t3間における出力結果とも、スムーズな曲線状となっている。これにより、出力結果に基づいて、グルコース濃度を正確に算出することができる。
 一方、図10(b)の下段のグラフに示すように、増幅度の小さい増幅器15を使用した場合には、時間t0-t1間、時間t2-t3間における出力結果とも、一部がガタガタしたグラフとなっている。このため、グルコース濃度を正確に算出することができない。
 以上のように、所定の電圧印加パターンの電圧(V1,V2)を印加した結果、得られた出力結果が小さい場合には、測定開始時に接続されている増幅器14を使用するとグルコース濃度を精度よく測定することができないおそれがある。このため、本実施形態の生体試料測定装置では、図10(a)中のポイントα,βにおける出力値と所定の閾値とを比較して、初期状態で作用極9に接続された増幅器14からの出力値が所定の閾値(ここでは、25mV)以下であった場合には、増幅度の大きい増幅器15を使用する。このとき、制御部20はスイッチ16をOFF状態へ移行させるとともに、スイッチ17をON状態へ移行させるように切り換える(図3参照)。
 これにより、作用極9からの出力結果は、増幅器15によって増幅器14よりも増幅度を高くして増幅処理され、図10(a)の下側に示すグラフを得ることができる。この結果、低温環境下において生体試料測定センサ3からの出力値が小さい場合でも、増幅器14,15を段階的に切り換えて使用することで、分解能を向上させて、従来よりも高精度なグルコース測定を実施することができる。
 図11(a)および図11(b)は、上述した増幅器14,15の切換え制御による再現性について、低温環境下(5℃)において、グルコース濃度の異なる血液試料を用いて検証した結果を示している。なお、使用した血液試料は、それぞれグルコース濃度、Hct値が、試料A;40mg/dl,42%、試料B;80mg/dl,42%の2種類である。
 その結果、図11(a)および図11(b)に示すように、低温環境下においても通常の通り、増幅度の小さい増幅器14を使用した場合には、試料Aでは再現性28.5%、試料Bでは再現性8.2%と、非常にバラつきが大きいことが分かる。その理由としては、低温環境下において増幅器14を使用した場合には、図8に示すように、出力値がガタガタとしたグラフとなってしまうため、正確な測定値を算出できないためであると考えられる。
 一方、上述のように閾値判定の結果、増幅器14および増幅器15を切り換えて増幅度の大きい増幅器15を使用した場合には、試料Aでは再現性3.5%、試料Bでは再現性2.5%と、増幅器14を用いた場合と比較してバラつきが非常に小さいことが分かる。
 以上の結果から判断しても、本実施形態の生体試料測定装置によれば、グルコース濃度の増減に関わらず、正確で安定した測定結果を得られるという効果は明らかであり、低温環境下等のセンサ出力値が小さい測定時には特に有効であることが分かる。
 さらに、本実施形態の生体試料測定装置によれば、低温環境下以外であっても、上述した構成により、入力信号レベルの向上によってS/N比の向上、および測定精度の向上を図ることができる。
 (実施形態3)
 本発明のさらに他の実施形態に係る生体試料測定装置について、図12(a)および図12(b)を用いて説明すれば以下の通りである。
 本実施形態の生体試料測定装置では、上記実施形態1,2で印加された電圧印加パターンとは異なる電圧を印加して、グルコース濃度に加えて、ヘマトクリット(Hct)の測定も実施する点で異なっている。
 本実施形態では、図12(a)に示すように、上記実施形態1,2と同様に、時間t0-t1間に測定前のプリ印加電圧V1を印加し、時間t2-t3間にグルコース測定用の電圧V2を印加し、時間t3時点においてグルコース濃度を測定する。さらに、本実施形態では、上記電圧に加えて、時間t4-t5間において、Hct測定用の電圧V3を印加している。ここで、電圧V3としては、好ましくは、1~10Vの範囲であり、より好ましくは、1~6.5Vの範囲であることが好ましい。
 また、図12(a)に示す期間aにおけるA/D変換部18のMAX出力は、図12(b)に示すように、例えば、出力電圧値で100mV、A時点におけるA/D変換部18のMAX出力は、例えば、出力電圧値で25mV、期間bにおけるA/D変換部18のMAX出力は、例えば、出力電圧値で266.7mVに設定されている場合において、期間aにおける測定分解能は0.0132mV、A時点における測定分解能は0.0033mV、期間bにおける測定分解能は0.018mVとなっている。つまり、これらの出力比は、A:a:b≒1:4:11となっている。
 なお、これらの出力電流値やそれに伴う測定分解能は、一例であり、ここで説明した値に限定されるものではない。また、出力比についても、A:a:b=1:4:8でもよく、A:a:b=1:3:12などであってもよい。
 本実施形態の生体試料測定装置では、図12(a)に示す電圧印加パターンを採用し、増幅器14からの出力値が所定の閾値よりも小さい場合には、増幅器15に切り換えて使用することで、上述した実施形態2と同様に、グルコース濃度の測定を高精度に実施することができると同時に、Hctも測定することができる。
 (実施形態4)
 本発明のさらに他の実施形態に係る生体試料測定装置について、図13(a)~図13(c)を用いて説明すれば以下の通りである。
 本実施形態の生体試料測定では、グルコース測定を開始する前段階として、血液試料の点着検知用の電圧印加パターンを追加している点で、上記各実施形態とは異なっている。なお、本発明では、本実施形態のような点着検知用の電圧印加パターンを用いて閾値判定を行う制御に限定されるものではなく、判定用の電圧印加パターンを用いて閾値判定を行うようにしてもよい。
 すなわち、本実施形態では、図13(a)に示すように、グルコース濃度の測定開始時点t0より前の期間(t-2)-(t-1)間において、所定の電圧V4を印加している。ここで、電圧V4としては、例えば、0.05~1V、好ましくは、0.1~0.8Vの範囲であることが好ましい。
 この期間(t-2)-(t-1)における所定の電圧V4は、生体試料測定センサ3に血液試料が点着されたか否かを検知するために従来から印加されてきたものであり、本実施形態では、この試料検知用の印加電圧の出力結果を用いて、上述した増幅器14,15の切換え制御(レンジ切換え制御)を実施する。
 具体的には、試料検知用の印加電圧V4の出力結果は、図13(b)に示すような曲線状の波形となる。ここで、図13(b)に示すグラフの縦軸最大値Vxは、例えば、30mVである。よって、本実施形態では、図13(c)に示すように、期間(t-2)-(t-1)間の中心位置における出力値Vz(本実施形態では、例えば、4.5mV)を、メモリ部23に格納されている所定の閾値と比較して、増幅器14,15の切換え制御(レンジ切換え制御)を実施するか否かを判断する。
 ここで、出力値Vz(本実施形態では、例えば、4.5mV)が、メモリ部23に格納された所定の閾値よりも大きい場合には、出力値をさらに増幅する必要なしと判断して、増幅器14との接続のまま維持される。一方、出力値Vzが所定の閾値よりも小さい場合には、増幅器14から増幅器15へ接続を切り換えることで、増幅度の大きい出力が得られる。
 これにより、グルコース濃度の測定が開始される前に印加される電圧を利用して閾値判定を行い、その結果に応じて増幅器14,15の切換え制御を実施することで、上述したように、低温環境下等の出力値の小さい環境においても、分解能を向上させて高精度な測定を実施することができるという効果を得ることができる。
 さらに、本実施形態の生体試料測定装置によれば、低温環境下以外であっても、上述した構成により、入力信号レベルの向上によってS/N比の向上、および測定精度の向上を図ることができる。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施形態では、閾値判定を行う判定部19(閾値判定部21)とスイッチ16,17のいずれか一方を選択する制御部20とを別々の制御ブロックとして説明した。しかし、本発明はこれに限定されるものではない。
 例えば、閾値判定やスイッチ16,17の選択を含めて、1つの制御部において実施するような構成であってもよい。
 あるいは、制御部内に形成される判定部等の制御ブロックにおいて閾値判定を実施するような構成であってもよい。
 (B)
 上記実施形態では、生体試料測定センサ3の作用極9から出力された電流値を、電流電圧変換部13において電圧値に変換した後、増幅器14,15のいずれか一方で増幅処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、電圧値に変換することなく、電流値のまま増幅処理を行ってもよい。
 (C)
 上記実施形態では、生体試料測定センサ3の作用極9からの出力値の大きさに応じて、2つの増幅器14,15を選択的に使用して増幅処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、増幅処理を行う増幅器として、図14に示すように、3つの増幅器114a,114b,114cが設けられた生体試料測定装置101であってもよい。あるいは、増幅器が3つ以上設けられた生体試料測定装置であってもよい。
 この場合には、生体試料測定センサからの出力の大きさに応じて、スイッチ116a,116b,116cのON/OFF状態を切り換えることで、例えば、増幅度を1倍、4倍、12倍の3段階で増幅処理を実施することができる。
 また、図14の構成の制御ブロック図において、一定周期ごとに連続的に、増幅器114a,114b,114cを切り換え、その切り換えた増幅器における出力値をメモリに格納・蓄積していくように制御してもよい。
 この場合には、測定終了時に、その測定時の温度データ、初期の出力値データ等に基づいて、メモリに蓄積した出力値データの中から最適なものを選択し、正規のデータとして採用する。その後、補正などの演算を行い、測定値として表示部2に測定結果を表示することができる。
 ここで、一定周期は、0.01~0.5秒の範囲であればよく、好ましくは0.01~0.1秒の範囲であることがより好ましい。また、増幅器が2つ設けられている場合でも、同様の処理を実施することができる。
 (D)
 上記実施形態では、閾値判定部21における閾値判定を、A/D変換部18から受信した信号(デジタル電圧値)に基づいて実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、閾値判定の対象となる作用極9からの出力値としては、上記デジタル電圧値に限らず、電流電圧変換部13において変換される前の電流値であってもよいし、A/D変換部18においてA/D変換される前のアナログ値であってもよい。
 (E)
 上記実施形態では、判定部19内に形成された試料判別部22において、血液試料とコントロール液との種別を判定する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、上記以外の生体試料であっても、その生体試料特有の性質を検出することで、各生体試料の種別の判定を実施することができる。
 (F)
 上記実施形態では、血液試料とコントロール液との種別判定を、図5に示すグラフの時間軸c-d間における電圧値の変化に基づいて判定する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、以下の特許文献1の技術内容を活用することで、生体試料測定センサに点着された生体試料の種別判定を実施してもよい。
 具体的には、電流を測定することによりサンプル中の分析対象物の濃度を定量するセンサシステムにおいて、測定した電流値と該電流値の時間微分値との比をサンプルの弁別パラメータとし、対象とする複数のサンプルの種類を弁別するための、弁別パラメータを独立変数とする弁別関数を定義する。そして、この弁別関数に、弁別パラメータの値を代入して得られる数値を弁別指標とし、この弁別指標に基づいてサンプルの種類、すなわち、血液かコントロール液かを弁別する。
 このような弁別方法によっても、上記実施形態と同様に、血液試料とコントロール液との種別判定を実施することが可能である。
 (G)
 上記実施形態では、生体試料測定センサ3に対して、電圧印加部12から所定の電圧を印加して測定を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図15に示すように、第1電圧印加部212aと第2電圧印加部212bとを設けた生体試料測定装置201であってもよい。
 この場合には、生体試料測定センサ3に第1電圧印加部212aから電圧を印加し、生体試料測定センサ3の対極部となる端子に対して、第2電圧印加部212bから基準電圧を印加する。このとき、生体試料測定センサ3の両端にかかる電圧は、(第1電圧印加部212aからの印加電圧-第2電圧印加部212bからの印加電圧)となる。そして、生体試料測定センサ3の両端に電圧を印加したときに流れた電流を、電流電圧変換部13にて電圧に置き換える。さらに、A/D変換部18に適した電圧にするために、増幅器14もしくは増幅器15において電圧を増幅してA/D変換部18に入力する。
 (H)
 上記実施形態では、生体試料測定センサ3の作用極9からの出力値の大きさに応じて、2つの増幅器14,15を選択的に使用して増幅処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、生体試料測定センサに複数の電極の組み合わせがある場合や、同時に複数の電極に電圧を印加したい場合には、図16に示す生体試料測定装置301のように、同じ構成を有する第1・第2アナログ処理部を備えており、アナログ処理全体を切り替えるような構成であってもよい。
 この場合には、スイッチ316aとスイッチ316bをON状態とすることで、第1アナログ処理部から電圧を印加することができる。さらに、スイッチ316cとスイッチ316dをON状態とすることで、第2アナログ処理部から電圧を印加することができる。また、スイッチ316eとスイッチ316fのどちらかをON状態とすることで、第1アナログ処理部、もしくは第2アナログ処理部のどちらかの出力を、A/D変換部18に入力してA/D変換することができる。
 なお、図16に示す例では、各アナログ処理部内に増幅器が2つずつ設けられているが、1つずつであってもよい。この場合には、スイッチSW1,SW2は不要となる。
 また、上記実施形態および図16に示す生体試料測定装置では、スイッチ316a,316bおよびスイッチ316c,316dが、センサ3の接続電極8,9等に、それぞれ個別に接続されている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、スイッチ316aとスイッチ316cとが、同一の接続電極(例えば、接続電極9のみ)に接続されていてもよいし、同様に、スイッチ316bとスイッチ316dとが同一の接続電極(例えば、接続電極8のみ)に接続されていてもよい。
 (I)
 上記実施形態では、1つの電流電圧変換部13を備えた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図17に示すように、2つの電流電圧変換部(第1・第2電流電圧変換部413a,413b)を備えた生体試料測定装置401であってもよい。
 この場合には、第1・第2電流電圧変換部413a,413bそれぞれに対して1つずつ増幅器14,15が設けられており、これらの構成によって、使用される増幅器を切り換えてもよい。
 つまり、図17に示す構成では、電流電圧変換部と増幅器とを一組として、その組が2つ(第1電流電圧変換部413aと増幅器14、第2電流電圧変換部413bと増幅器15)に設けられている。よって、使用される増幅器14,15を切り換える際には、スイッチ16とスイッチ416a、またはスイッチ17とスイッチ416bとをそれぞれ同期して切り換えるように制御すればよい。
 (J)
 上記実施形態では、生体試料測定センサ3の作用極9からの出力値の大きさに応じて、2つの増幅器14,15を選択的に使用して増幅処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図18に示すように、電流電圧変換部(第1・第2電流電圧変換部413a,413b)、増幅器(増幅器14,15)、A/D変換部(A/D変換部518a,518b)を2系列で備えた生体試料測定装置501であってもよい。
 この場合には、2系列で配置された電流電圧変換部、増幅器、A/D変換部によって、これら全体を切り換えることができる。さらに、各増幅器の後段にそれぞれA/D変換部が配置されているため、同時に2つの回路からデータを取得することができる。
 (K)
 上記実施形態では、生体試料測定センサ3の作用極9からの出力値の大きさに応じて、2つの増幅器14,15を選択的に使用して増幅処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図19に示すように、上述した第1アナログ処理部と第2アナログ処理部の後段に、それぞれA/D変換部618a,618bを備えた生体試料測定装置601であってもよい。
 この場合には、A/D変換部618a,618bまでの回路が2系列設けられているため、同時に、2箇所に電圧を印加し、かつ同時にA/D変換することができる。
 なお、図19に示す例では、各アナログ処理部内に2つずつ増幅器を有しているが、増幅器がそれぞれ1つずつ設けられている構成であってもよい。この場合には、スイッチSW1,SW2は、不要となる。
 また、上述した他の実施形態(H)と同様に、生体試料測定センサ3へ印加する電圧の切替も必要となるため、アナログ処理部のセンサ側にも切替用のスイッチ316a~316dが必要となる。
 上記実施形態および図19に示す構成では、スイッチ316a,316b,316c,316dがセンサ3の接続電極8,9等にそれぞれ個別に接続されている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、スイッチ316aとスイッチ316cとが同一の接続電極(例えば、接続電極9のみ)に接続されていてもよいし、同様に、スイッチ316bとスイッチ316dとが同一の接続電極(例えば、接続電極8のみ)に接続されていてもよい。
 (L)
 上記実施形態では、閾値判定や生体試料の種別判定、濃度測定等を判定部19、増幅器の選択的な切換え制御を制御部20において、それぞれ実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、これらの閾値判定、生体試料の種別判定、濃度測定等を、単体の機能ブロック内において処理するように構成されていてもよい。あるいは、3つ以上の機能ブロックにおいて、それぞれの処理を実施するように構成されていてもよい。
 (M)
 上記実施形態では、増幅度の異なる複数の増幅器(増幅器14,15等)を切り替えるタイミングとして、電圧印加開始時に切り替える例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、増幅度の異なる増幅器の切替えタイミングとして、基本的には、電圧印加中における任意のタイミングで切替えを実施してもよい。
 (N)
 上記実施形態では、生体試料測定センサ3の作用極9からの出力値の大きさに応じて、並列関係で配置された2つの増幅器14,15を選択的に使用して増幅処理を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図20に示すように、2つの増幅器714,715を直列接続して、上流側に配置された増幅器714用のスイッチ716a,716bおよび下流側に配置された増幅器715用のスイッチ717a,717bを切り換えることで、増幅器714,715を選択的に使用可能な生体試料測定装置701であってもよい。
 本発明の生体試料測定装置は、低温環境下における測定時には、作用極からの出力信号が小さくなるため、第1・第2の増幅器のうち、増幅度の大きい第2の増幅器を選択して出力することで、低温環境下における血糖値等の測定精度を従来よりも向上させることができるという効果を奏することから、例えば、血糖値等の生体情報を測定する生体試料測定装置に対して広く適用可能である。
 1   本体ケース
 2   表示部
 3   生体試料測定センサ
 4   装着部
 5   基板
 6   スペーサ
 7   カバー
 8   対極
 9   作用極
10   試薬
11   溝
12   電圧印加部
13   電流電圧変換部
14   増幅器(第1の増幅器)
15   増幅器(第2の増幅器)
16   スイッチ
17   スイッチ
18   A/D変換部
19   判定部(制御部)
20   制御部(制御部)
21   閾値判定部
22   試料判別部
23   メモリ部
24   閾値データ保存メモリ
25   コントロール/血液判別データ保存メモリ
26   測定値保存メモリ
27   演算式保存メモリ
101  生体試料測定装置
114a~114c 増幅器(第1・第2の増幅器)
116a~116c スイッチ
201  生体試料測定装置
212a 第1電圧印加部
212b 第2電圧印加部
301  生体試料測定装置
316a~316f スイッチ
401  生体試料測定装置
413a,413b 電流電圧変換部
501  生体試料測定装置
601  生体試料測定装置
701  生体試料測定装置
714,715 増幅器
716a,716b スイッチ
717a,717b スイッチ

Claims (5)

  1.  少なくとも作用極と対極とを含む電極部上に設けられた試薬に反応する生体試料が点着される生体試料測定センサが装着される装着部と、
     前記装着部に装着される前記生体試料測定センサの前記電極部に電圧を印加する電圧印加部と、
     前記生体試料測定センサの前記電極部に選択的に接続され、前記電極部から出力された信号を増幅するとともに、第1の増幅度で前記信号を増幅する第1の増幅器と、前記第1の増幅度よりも大きい第2の増幅度で前記信号を増幅する第2の増幅器と、
     前記電極部から出力された出力信号の値と予め設定された閾値とを比較して、前記第1の増幅器または前記第2の増幅器を選択的に使用する制御部と、
    を備えている生体試料測定装置。
  2.  前記制御部は、前記第1の増幅器または第2の増幅器から出力される出力結果に基づいて、前記生体試料の種別の判定を行う、
    請求項1に記載の生体試料測定装置。
  3.  前記制御部は、前記出力結果を示すグラフにおける所定時間帯における傾きを検出して、前記生体試料測定センサに点着された生体試料が血液試料であるか、コントロール液であるかの判別を行う、
    請求項2に記載の生体試料測定装置。
  4.  前記制御部は、前記第1の増幅器または前記第2の増幅器から出力される出力結果に基づいて、前記生体試料の濃度測定を行う、
    請求項1に記載の生体試料測定装置。
  5.  前記制御部は、前記生体試料の濃度測定前に印加される生体試料検知用の電圧パターンの出力結果と前記閾値とを比較して、前記第1・第2の増幅器の選択を行う、
    請求項4に記載の生体試料測定装置。
PCT/JP2012/000204 2011-02-02 2012-01-16 生体試料測定装置 WO2012105165A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012555718A JP5487478B2 (ja) 2011-02-02 2012-01-16 生体試料測定装置
EP12742192.3A EP2672263B1 (en) 2011-02-02 2012-01-16 Biological sample measuring device
CN201280004088.3A CN103261881B (zh) 2011-02-02 2012-01-16 生物体样品测量装置
US13/993,171 US9039974B2 (en) 2011-02-02 2012-01-16 Biological sample measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020728 2011-02-02
JP2011-020728 2011-02-02

Publications (1)

Publication Number Publication Date
WO2012105165A1 true WO2012105165A1 (ja) 2012-08-09

Family

ID=46602395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000204 WO2012105165A1 (ja) 2011-02-02 2012-01-16 生体試料測定装置

Country Status (5)

Country Link
US (1) US9039974B2 (ja)
EP (1) EP2672263B1 (ja)
JP (2) JP5487478B2 (ja)
CN (1) CN103261881B (ja)
WO (1) WO2012105165A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702846B2 (en) 2013-11-08 2017-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Biosensor device and related method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294755A (ja) * 1993-04-08 1994-10-21 Sharp Corp 自動画質補償制御方法及び補償制御回路
JPH09201337A (ja) * 1996-01-25 1997-08-05 Casio Comput Co Ltd グルコース測定装置
JP2001153839A (ja) 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd サンプルの弁別方法
JP2002062341A (ja) * 2000-08-21 2002-02-28 Sanyo Electric Co Ltd 電気自動車用バッテリシステムの電流検出方式
JP2004256293A (ja) * 2003-02-28 2004-09-16 Hitachi Printing Solutions Ltd 重送検出装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026737A (ja) * 1988-06-22 1990-01-10 Bridgestone Corp 糖分測定装置
JPH0820412B2 (ja) * 1990-07-20 1996-03-04 松下電器産業株式会社 使い捨てセンサを用いた定量分析方法、及び装置
GB9107193D0 (en) * 1991-04-05 1991-05-22 Wilson Robert Analytical devices
JP3135959B2 (ja) 1991-12-12 2001-02-19 アークレイ株式会社 バイオセンサーおよびそれを用いた分離定量方法
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
EP1452854B1 (en) 2001-11-20 2015-02-25 ARKRAY, Inc. Fail judging method for analysis and analyzer
TW559660B (en) * 2002-06-21 2003-11-01 Apex Biotechnology Corp Portable multifunctional electrochemical bio-analyzer
US7964146B2 (en) * 2004-05-30 2011-06-21 Agamatrix, Inc. Measuring device and methods for use therewith
US7344626B2 (en) * 2005-04-15 2008-03-18 Agamatrix, Inc. Method and apparatus for detection of abnormal traces during electrochemical analyte detection
US7964089B2 (en) * 2005-04-15 2011-06-21 Agamatrix, Inc. Analyte determination method and analyte meter
WO2008051804A2 (en) * 2006-10-19 2008-05-02 Agamatrix, Inc. Method and apparatus for providing a stable voltage to an analytical system
KR20100041697A (ko) * 2007-01-23 2010-04-22 아크레이 가부시키가이샤 컨트롤 액의 판별 방법 및 분석 장치
JP5041488B2 (ja) 2008-09-19 2012-10-03 日本特殊陶業株式会社 センサ制御装置
JP5073629B2 (ja) * 2008-09-26 2012-11-14 グンゼ株式会社 バイオセンサが取り付けられる計測表示装置および測定方法
TWI391655B (zh) * 2009-04-01 2013-04-01 Apex Biotechnology Corp 決定電化學感測系統效能之品管控制液及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294755A (ja) * 1993-04-08 1994-10-21 Sharp Corp 自動画質補償制御方法及び補償制御回路
JPH09201337A (ja) * 1996-01-25 1997-08-05 Casio Comput Co Ltd グルコース測定装置
JP2001153839A (ja) 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd サンプルの弁別方法
JP2002062341A (ja) * 2000-08-21 2002-02-28 Sanyo Electric Co Ltd 電気自動車用バッテリシステムの電流検出方式
JP2004256293A (ja) * 2003-02-28 2004-09-16 Hitachi Printing Solutions Ltd 重送検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672263A4

Also Published As

Publication number Publication date
US20130266482A1 (en) 2013-10-10
EP2672263A1 (en) 2013-12-11
EP2672263B1 (en) 2022-05-04
CN103261881A (zh) 2013-08-21
EP2672263A4 (en) 2015-12-16
JP2014077807A (ja) 2014-05-01
US9039974B2 (en) 2015-05-26
JP5487478B2 (ja) 2014-05-07
JPWO2012105165A1 (ja) 2014-07-03
CN103261881B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5065518B2 (ja) 試料測定装置、試料測定システム及び試料測定方法
US7638033B2 (en) Biosensor system
EP2261646B1 (en) Measurement device, measurement system, and concentration measurement method
JP5270780B2 (ja) センサチップ、バイオセンサシステム、生体試料の温度測定方法、血液試料の温度測定方法、血液試料中の分析物の濃度測定方法
JP5239860B2 (ja) バイオセンサ測定システム、および測定方法
KR100712380B1 (ko) 전기 화학 어세이의 타이밍을 개시하는 샘플 검출 방법
JP5056755B2 (ja) バイオセンサ測定システム、およびバイオセンサにおける異常波形検出方法
WO2005103669A1 (ja) 血液成分の測定方法、それに用いるバイオセンサおよび測定装置
KR101299275B1 (ko) 바이오센서 측정기, 바이오센서 측정 시스템 및 바이오센서측정 방법
JP2019521343A (ja) 2つの電極からの交替する出力信号の使用による電気化学分析のための方法
US9482636B2 (en) Vital information measurement device and vital information measurement method employing same
JP5487478B2 (ja) 生体試料測定装置
CN113049652B (zh) 一种电化学测量方法
WO2013168390A1 (ja) 生体情報測定装置とそれを用いた生体情報測定方法
JP2007240419A (ja) 濃度測定装置
KR102068145B1 (ko) 오프셋 보상이 가능한 차동증폭기 및 이의 구동방법
KR20190038426A (ko) 전기화학 바이오센서 에러 판별 장치 및 방법
JP2004108926A (ja) 濃度測定器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555718

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993171

Country of ref document: US

Ref document number: 2012742192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE