WO2012104809A1 - Procede de fabrication d'une monocouche autoassemblee d'injection - Google Patents

Procede de fabrication d'une monocouche autoassemblee d'injection Download PDF

Info

Publication number
WO2012104809A1
WO2012104809A1 PCT/IB2012/050491 IB2012050491W WO2012104809A1 WO 2012104809 A1 WO2012104809 A1 WO 2012104809A1 IB 2012050491 W IB2012050491 W IB 2012050491W WO 2012104809 A1 WO2012104809 A1 WO 2012104809A1
Authority
WO
WIPO (PCT)
Prior art keywords
sam
buffer
support
molecules
heating
Prior art date
Application number
PCT/IB2012/050491
Other languages
English (en)
Inventor
Mohammed Benwadih
Jamal TALLAL
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to KR1020137023344A priority Critical patent/KR101946287B1/ko
Priority to JP2013552311A priority patent/JP6018584B2/ja
Priority to EP12704322.2A priority patent/EP2671268A1/fr
Priority to US13/983,159 priority patent/US9459526B2/en
Publication of WO2012104809A1 publication Critical patent/WO2012104809A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the invention relates to a method for manufacturing an injection self-assembled monolayer (SAM) comprising molecules comprising a terminal thiol group on the surface of a metal support.
  • SAM injection self-assembled monolayer
  • the self-containing monolayers of molecules having a terminal thiol, grafted onto a metal support such as gold, silver, copper, nickel, platinum, palladium and aluminum, are used in the manufacture of organic electronic transistors to optimize the electronic transfer between the electrodes and the semiconductor material of the transistor. These are injection SAMs.
  • Meirav Cohen-Atiya et al describe the adsorption of alkanethiols on different metal surfaces, such as gold, silver and mercury, by immersing the metal surface in a solution and adding the alkanethiols in this solution then that the metal surface is submerged.
  • the metal surface is covered by up to 60%, which, on the contrary, means that 40% of the metal surface is not covered.
  • holes i.e., empty surfaces, without grafted molecules, and other defects may exist in these monolayers deposited by liquid means.
  • metal surfaces such as, for example, copper, chromium, aluminum and silver.
  • This method was used for SAM training.
  • a solution of octadecyltrichlorosilane (OTS) in anhydrous hexane is applied to the surface of poly (dimethylsiloxane) (PDMS) buffers.
  • OTS octadecyltrichlorosilane
  • the buffers are then dried by centrifugation.
  • the "inked” pad is then contacted with the surface of the ITO substrate and a slight pressure is applied at 80 ° C, which facilitates the spontaneous formation of Si-O bonds and forms dense and very well localized SAMs.
  • SAMs are regions terminated by methyl functionality.
  • the molecules used to form the SAM are trichlorosilanes
  • the substrate is made of ITO
  • the applied pressure is called “light”
  • the temperature used is 80 ° C.
  • the improvement obtained in the performance of organic light emitting diodes (OLEDs) is said to be “subtle”, compared to OLEDs having no monoassembled layers.
  • a pentacene-based thin film transistor was fabricated on the surface of a dielectric material by micro-contact printing.
  • a 7-octenyltrichlorosilane (7-OTS) SAM was printed on a dielectric oxide material, A10 x , to modify the surface of the A10 x dielectric material or the pentacene / dielectric material interface.
  • a polydimethylsiloxane (PDMS) buffer was selectively treated with a solution of 7-octenyltrichlorosilane (7-OTS) and the 7-OTS monolayer on the PDMS buffer was transferred to the prepared structure (A10 x ) using no specific pressure and at room temperature.
  • PDMS polydimethylsiloxane
  • the difference between the inverter comprising the SAM obtained from the microcontact formed 7-OTS and an inverter without such a monoassembled layer was that the voltage gain of the modified inverter with the 7-OTS molecules was lower than that of the inverter. of the unmodified inverter with the 7-OTS SAM and that the inverter with the 7-OTS SAM exhibited an effective transition voltage of between 0 and -5 volts while the 7-OTS SAM-free inverter exhibited a very marginal transition voltage close to 0 volts.
  • the microswitched monoassembly technique was applied only for the formation of 7-octenyltrichlorosilane monoassembled layers and on dielectric materials such as A10 x or ITO.
  • the bonds involved are bonds between a silane group and a metal oxide.
  • the grafting can actually be done by a simple contact.
  • the bonds to be created in the invention are bonds between a sulfur atom and a metal. In this case, a simple pressure is not enough for the grafting.
  • the invention proposes to use a method of forming a self-assembled monolayer of molecules comprising a thiol group, on the surface of a metal substrate.
  • the invention provides a method for manufacturing an injection self-assembled monolayer (SAM) comprising molecules with a thiol end group, on the surface of a metal-based support, characterized in that it comprises the steps following:
  • step b) is carried out at a temperature above 90 ° C and below the melting temperature of the material constituting the buffer and at a pressure greater than or equal to 1000 N and less than or equal to 40 000 N, for between one and twenty minutes, inclusive.
  • step b) is carried out at a temperature between 95 ° C and 115 ° C at a pressure of 1000 N for between five and ten minutes, inclusive.
  • the SAM of step a) was obtained from at least one of the following molecules:
  • CT - cysteamine
  • PFBT pentafluorobenzenethiol
  • the support it is preferably a metal chosen from gold, silver, copper, nickel, platinum, palladium and aluminum, or a metal oxide such as I ⁇ . (tin oxide and indium).
  • the buffer is preferably made of silicone or poly (dimethylsiloxane).
  • step b) the heating to the desired temperature can be obtained by a heating plate placed under the support.
  • the heating in step b) can also be obtained by heating resistors inserted in the buffer.
  • step b) when the method according to the invention, characterized in that the support is placed between the source and drain electrodes of an organic electronic circuit transistor, and the heating of step b) is advantageously obtained by passing a electrical current between these source and drain electrodes.
  • step a The deposition of the SAM on the buffer, in step a), is advantageously carried out in a liquid route and the buffer and the SAM are dried, before carrying out step b).
  • the method for manufacturing a self-assembled monolayer (injection SAM), constituted from molecules comprising a terminal thiol group, on the surface of a metal support, according to the invention, is done by transfer of the SAM onto the surface of the metal support by hot pressing a buffer on which the SAM has been deposited.
  • injection SAM self-assembled monolayer
  • the SAM was deposited on a raised area of the buffer.
  • the grafting of the SAM on the surface of the support is done via the terminal thiol group of the molecules.
  • the metal support is preferably selected from gold, silver, copper, nickel, platinum, palladium and aluminum. It is most preferably gold.
  • the preferred terminal thiol group molecules used in the process of the invention are the following molecules: - 4- (methylsulfanyl) -thiophenol (MeSTP), which when forming a monoassembled layer is used to modify the work function, particularly gold, for an n-type semiconductor.
  • the output work is 4.19 eV for the n-type semiconductor
  • MeOTP 4-methoxythiophenol
  • ATP 4-aminothiophenol
  • DT - 1 -decanethiol
  • cysteamine which is used to modify the output work, in particular gold, for an n-type semiconductor.
  • the output work is then 4.68 eV
  • PFDT perffuorodecanethiol
  • PFOT perfluorooctanethiol
  • PFBT pentafluorobenzenethiol
  • the output of virgin gold is 4.75 eV.
  • the method of the invention consists in using both a pressure and a heating during the transfer of the SAM on the surface of the support by printing by microcontact to improve the electrical performance, especially the injection between the metal, more particularly gold, silver, copper, nickel, platinum, palladium and aluminum (a thickness between nm and 100 nm, inclusive) and the organic semiconductor, for example pentacene, which is a p-type semiconductor or perylene diimide which is an n-type semiconductor.
  • the step of transfer of the SAM by microcontact printing is carried out at a temperature greater than 90 ° C and below the melting temperature of the material constituting the buffer on the surface of which the SAM has been deposited. , and at a pressure greater than or equal to 1000 N and less than or equal to 40 000 N for between one and twenty minutes, inclusive.
  • the SAM transfer step is preferably carried out at a temperature between 95 ° C and 115 ° C, inclusive, at a pressure of 1000 N, for between five and ten minutes, inclusive. .
  • the heating during the transfer of the SAM can be carried out using a hot plate placed under the metal support.
  • the heating can still be obtained, when the support is already in place between the source and drain electrodes of an organic electronic circuit transistor, by passing an electric current between these source and drain electrodes.
  • a buffer for example silicone or poly (dimethylsiloxane) (PDMS), on which the SAM has been deposited.
  • PDMS poly (dimethylsiloxane)
  • the method of the invention may also include a step of depositing the desired SAM on a raised area of a buffer.
  • This deposition can be carried out wet, in a manner known in the art.
  • the pad covered with the SAM is then dried before transferring the SAM to the metal surface of the support.
  • the sample and the silicone mold are then placed face to face and the mold is pressed onto the surface of the gold sample at 60 ° C. using a pressure of 1000 N for one minute.
  • the sample is a gold electrode.
  • This electrode was previously treated with an oxygen plasma. It can be, or mechanically treated or ozone under UV. This treatment serves to restore uniformity to the metal surface, before the implementation of the method of the invention.
  • the electrode can also be brought to the desired surface by using a rinsing for a few minutes with a piranha solution (sulfuric acid + hydrogen peroxide), then with water, before undergoing a restructuring in water. sulfuric acid, which allows stripping of the surface.
  • a piranha solution sulfuric acid + hydrogen peroxide
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of five minutes.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of fifteen minutes.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of five minutes and a printing temperature of 80 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of ten minutes and a printing temperature of 80 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of fifteen minutes and a printing temperature of 80 ° C.
  • Example 2 The procedure is as in Example 1 but using a printing temperature of 100 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of five minutes and a printing temperature of 100 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of fifteen minutes and a printing temperature of 100 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of one minute and a printing temperature of 115 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of five minutes and a printing temperature of 115 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of ten minutes and a printing temperature of 115 ° C.
  • the procedure is as in Examples 1, 2 and 3 respectively but using a printing time of fifteen minutes and a printing temperature of 115 ° C.
  • the measurement of the contact angle of the water on the surface treated with the process according to the invention is used.
  • the measurement of the drop angle gives access to the free energy of the surface.
  • the surface energy of SAM-free virgin gold is 42 mN / cm 2 and the contact angle of water on virgin gold is 70 degrees.
  • the electrical contact has also been tested.
  • a test was also performed by not heating during microcontact printing.
  • This test was carried out at a pressure of 10,000 N using a printing time of five minutes.
  • Example 2 The procedure was as in Example 1 but using a printing temperature of 115 ° C.
  • the SAM is well grafted and the electrical contact is good.
  • CT - cysteamine
  • the grafted molecule is PFBT and the sample on which the PFBT molecule has been grafted, by the process of the invention, was an ITO zone of a support.
  • the sample was first pretreated with a 1% acetic acid solution.
  • a solution of another acid or even a base may also be used.
  • the PFBT was dispersed in ethanol and the resulting solution was dispersed on a silicone mold.
  • the ethanol was then evaporated to leave on the mold only the molecule alone.
  • the sample or, more exactly, the ITO zone of the sample and the silicone mold were then placed face to face and the mold was pressed onto the surface of the ITO zone at a temperature of 115 ° C. using a pressure of 35,000 N for 10 minutes.
  • the sample obtained was tested as before.
  • the droplet angle of the water was 95 °, which shows that grafting of PFBT to the ITO zone was performed.
  • the process of the invention makes it possible to form a dense, compact and efficient monolayer for the production of organic transistors by microcontact printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une monocouche autoassemblée (SAM) d'injection comprenant des molécules comprenant un groupement terminal thiol, à la surface d'un support en métal. Le procédé de fabrication de l'invention comprend les étapes suivantes : a) dépôt de la SAM de molécules voulues sur une zone en relief d'un tampon, et b) transfert de la SAM, sur la surface du support, par pressage à chaud de la zone en relief du tampon obtenu à l'étape a). L'invention trouve application dans le domaine de l'électronique, en particulier.

Description

PROCEDE DE FABRICATION D'UNE MONO COUCHE AUTOASSEMBLEE D'INJECTION.
L'invention concerne un procédé de fabrication d'une monocouche autoassemblée (SAM) d'injection comprenant des molécules comprenant un groupement terminal thiol, à la surface d'un support en métal.
Les monocouches auto as semblées de molécules (SAM) comportant un thiol terminal, greffées sur un support en métal tel que l'or, l'argent, le cuivre, le nickel, le platine, le palladium et l'aluminium, sont utilisées dans la fabrication de transistors électroniques organiques pour optimiser le transfert électronique entre les électrodes et le matériau semi-conducteur du transistor. Ce sont des SAM d'injection.
Dans l'art antérieur, la formation de ces SAM d'injection est obtenue par des méthodes utilisant une solution des molécules destinées à former la SAM, en général des alcanethiols.
Ainsi, Meirav Cohen- Atiya et al décrivent l'adsorption d' alcanethiols sur différentes surfaces métalliques, telles que l'or, l'argent et le mercure, par immersion de la surface métallique dans une solution et ajout des alcanethiols dans cette solution alors que la surface métallique est immergée.
C'est la liaison S-H du groupement thiol de la molécule qui se clive pendant la formation de la SAM et permet le greffage de la SAM.
Cependant, lorsqu'une solution liquide des molécules est utilisée, lors du greffage de la SAM sur le métal, le solvant perturbe et diminue la surface de greffage.
En effet, avec cette méthode, on mesure, après évaporation du solvant, un recouvrement de la surface en métal de jusqu'à 60%, ce qui, a contrario, signifie que 40% de la surface du métal n'est pas recouverte.
Cela se traduit par des diminutions des performances électriques du transistor.
De plus, des trous (pinholes), c'est-à-dire des surfaces vides, sans molécules greffées, et d'autres défauts peuvent exister dans ces monocouches déposées par voie liquide.
Ainsi, on peut obtenir à la surface du métal des domaines plus ou moins denses de molécules greffées, séparées par des domaines sans molécules greffées. D'autre part, cette méthode ne permet pas une localisation précise de la SAM, en particulier lorsque les dimensions de la surface métallique sont faibles (de Tordre de 100 μηι).
De plus, lorsqu'une SAM pour le semi-conducteur n est différente de la SAM pour le semi-conducteur p, sont côte à côte, il y a une contamination croisée.
Les SAM s'étalent et se mélangent.
On peut également constater une oxydation du métal lors de la formation de la SAM par voie liquide.
Cela se produit dans le cas des surfaces en un métal tel que, par exemple, le cuivre, le chrome, raluminium et l'argent.
Par ailleurs, il peut y avoir une répulsion du solvant par le métal de la surface, ce qui a pour conséquence la présence de trous dans la SAM greffée.
On connaît d'autre part la méthode d'impression par microcontact.
Cette méthode a été utilisée pour la formation de SAM.
Ainsi, Park et al, Applied Physics Letters, 95, 113310 (2009), propose une méthode pour modifier localement l'énergie de surface d'électrodes en indium-étain-oxyde (ITO) en utilisant des monocouches autoassemblées hydrophobes terminées par des méthyles.
Dans cette méthode, une solution d'octadécyltrichlorosilane (OTS) dans de l'hexane anhydre est appliquée à la surface de tampons en poly(diméthylsiloxane) (PDMS)
Les tampons sont ensuite séchés par centrifugation.
Le tampon « encré » est ensuite mis en contact avec la surface du substrat en ITO et une légère pression est appliquée à 80°C, ce qui facilite la formation spontanée de liaisons Si-0 et forme des SAMs denses et très bien localisés.
Les SAM forment des régions terminées par des fonctionnalités méthyle.
Ainsi, dans ce procédé, les molécules utilisées pour former la SAM sont des trichlorosilanes, le substrat est en ITO, la pression appliquée est dite « légère » et la température utilisée est de 80°C. De plus, l'amélioration obtenue de la performance des diodes organiques à émission de lumière (OLEDs) est dite "subtile", par rapport à des OLEDs ne comportant pas de couches monoassemblées.
Lee et al, J. Mater. Chem., 2010, 20, 663-665, ont, eux, proposé des inverseurs de transistors à base de pentacène à faible voltage obtenus en utilisant des nanocouches imprimées par microcontact.
Dans ce document, un transistor à couche mince à base de pentacène (PFT) a été fabriqué sur la surface d'un matériau diélectrique par impression par micro contact.
Dans ce dispositif, une SAM de 7-octényltrichlorosilane (7-OTS) a été imprimée sur un matériau oxyde diélectrique, A10x, pour modifier la surface du matériau diélectrique A10x ou de l'interface pentacène/matériau diélectrique.
Dans ce document, un tampon en polydiméthylsiloxane (PDMS) a été traité sélectivement avec une solution de 7-octenyltrichlorosilane (7-OTS) et la monocouche de 7-OTS sur le tampon de PDMS a été transférée sur la structure préparée (A10x) en utilisant aucune pression spécifique et à température ambiante.
La différence entre l'inverseur comprenant la SAM obtenue à partir du 7-OTS formé par microcontact et un inverseur sans une telle couche monoassemblée était que le gain en tension de l'inverseur modifié avec les molécules de 7-OTS était plus faible que celui de l'inverseur non modifié avec la SAM de 7-OTS et que l'inverseur avec la SAM de 7-OTS présentait une tension de transition efficace située entre 0 et - 5 Volts alors que l'inverseur sans SAM de 7-OTS présentait une tension de transition très marginale proche de 0 Volt.
En résumé, la technique de formation de couches monoassemblées par microcontact n'a été appliquée que pour la formation de couches monoassemblées de 7-octényltrichlorosilane et sur des matériaux diélectriques tels que A10x ou ITO. Dans ces cas, les liaisons mises en jeu sont des liaisons entre un groupe silane avec un oxyde métallique. Pour ce type de liaisons, le greffage peut effectivement se faire par un simple contact. Mais, les liaisons qui doivent être créées dans l'invention sont des liaisons entre un atome de soufre et un métal. Dans ce cas, une simple pression ne suffit pas pour le greffage. De plus, dans l'art antérieur, c'est la croissance d'un semiconducteur qui est recherchée alors que dans l'invention, c'est l'amélioration de l'injection des électrons dans une électrode qui est recherchée. En contraste avec cet art antérieur, et pour remédier au problème lié à la formation de SAM à base de molécules comprenant des groupes thiols, sur une surface en métal, par la voie liquide, l'invention propose d'utiliser un procédé de formation d'une monocouche autoassemblée de molécules comprenant un groupement thiol, sur la surface d'un substrat en métal.
Ainsi, l'invention propose un procédé de fabrication d'une monocouche autoassemblée (SAM) d'injection comprenant des molécules à groupement terminal thiol, à la surface d'un support à base de métal, caractérisé en ce qu'il comprend les étapes suivantes :
a) dépôt de la SAM de molécules voulues sur une zone en relief d'un tampon, et
b) transfert de la SAM, sur la surface du support, par pressage à chaud de la zone en relief du tampon sur laquelle la SAM a été déposée sur la surface du support.
De préférence, l'étape b) est mise en œuvre à une température supérieure à 90°C et inférieure à la température de fusion du matériau constituant le tampon et à une pression supérieure ou égale à 1 000 N et inférieure ou égale à 40 000 N, pendant entre une et vingt minutes, inclus.
Plus préférablement, l'étape b) est mise en œuvre à une température comprise entre 95°C et 115°C à une pression de 1 000 N pendant entre cinq et dix minutes, inclus.
La SAM de l'étape a) a été obtenue à partir d'au moins une des molécules suivantes :
- 4-(méthylsulfanyl)-thiophénol (MeSTP),
- 4-méthoxythiophénol (MeOTP),
- 4-méthylthiophénol (MeTP),
- 4-aminothiophénol (ATP),
- 4-nitrothiophénol (NOTP),
- cysteamine (CT),
- 1-décanethiol (DT),
- 1H, 1H, 2H, 2H-perfiuorodécanethiol (PFDT),
- 1H} 1H, 2H, 2H-perfluorooctanethiol (PFOT),
- pentafluorobenzènethiol (PFBT). Quant au support, il est de préférence en un métal choisi parmi l'or, l'argent, le cuivre, le nickel, le platine, le palladium et l'aluminium, ou en un oxyde métallique comme l'IΤΟ. (oxyde d'étain et d'indium).
Le tampon, lui, est de préférence en silicone, ou en poly(diméthylsiloxane).
A l'étape b) le chauffage à la température voulue peut être obtenu par une plaque chauffante placée sous le support.
Mais, le chauffage à l'étape b) peut également être obtenu par des résistances chauffantes insérées dans le tampon.
Cependant, lorsque le procédé selon l'invention, caractérisé en ce que le support est placé entre les électrodes source et drain d'un transistor de circuit électronique organique, et le chauffage de l'étape b) est avantageusement obtenu par passage d'un courant électrique entre ces électrodes source et drain.
Le dépôt de la SAM sur le tampon, à l'étape a), est avantageusement effectué en voie liquide et le tampon et la SAM sont séchés, avant de mettre en œuvre l'étape b).
L'invention sera mieux comprise et d'autres caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lecture de la description explicative qui suit.
Le procédé de fabrication d'une monocouche autoassemblée (SAM d'injection), constituée à partir de molécules comprenant un groupement thiol terminal, à la surface d'un support en métal, selon l'invention, se fait par transfert de la SAM sur la surface du support en métal par pressage à chaud d'un tampon sur lequel la SAM a été déposée.
Plus précisément, la SAM a été déposée sur une zone en relief du tampon.
Le greffage de la SAM sur la surface du support se fait par l'intermédiaire du groupement thiol terminal des molécules.
Le support en métal est de préférence choisi parmi l'or, l'argent, le cuivre, le nickel, le platine, le palladium et l'aluminium. Il est le plus préférablement en or.
Les molécules à groupement thiol terminal préférées utilisées dans le procédé de l'invention sont les molécules suivantes : - 4-(méthylsulfanyl)-thiophénol (MeSTP), qui lorsque formant une couche monoassemblée sont utilisées pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type n. Dans ce cas, le travail de sortie est de 4,19 eV pour le semi- conducteur de type n,
- 4-méthoxythiophénol (MeOTP), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type n. Dans ce cas, le travail de sortie est de 4,24 eV pour le semi-conducteur de type n,
- 4-méthylthiophénol (MeTP), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type n. Dans ce cas, le travail de sortie est de 4,28 eV,
- 4-aminothiophénol (ATP), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type n. Dans ce cas, le travail de sortie est de 4,64 eV,
- 1 -décanethiol (DT), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type n. Dans ce cas, le travail de sortie est de 4,29 eV,
- cysteamine (CT), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type n. Dans ce cas, le travail de sortie est alors de 4,68 eV,
- 4-nitrothiophénol (NOTP), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type p. Dans ce cas, le travail de sortie est de 4,84 eV,
- 1H, 1H, 2H, 2H-perffuorodécanethiol (PFDT), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type p,
- 1H, 1H, 2H, 2H-perfluorooctanethiol (PFOT), qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type p, et
- pentafluorobenzènethiol (PFBT) qui est utilisée pour modifier le travail de sortie, en particulier de l'or, pour un semi-conducteur de type p. Dans ce cas, le travail de sortie est de 5,5 eV.
A titre de référence, le travail de sortie de l'or vierge est de 4,75 eV. Le procédé de l'invention consiste à utiliser à la fois une pression et un chauffage lors du transfert de la SAM sur la surface du support par impression par microcontact afin d'améliorer les performances électriques, notamment l'injection entre le métal, plus particulièrement l'or, l'argent, le cuivre, le nickel, le platine, le palladium et l'aluminium (d'une épaisseur comprise entre 20 nm et 100 nm, compris) et le semi-conducteur organique, par exemple le pentacène, qui est un semi- conducteur de type p ou le pérylène diimide qui est un semi-conducteur de type n.
Ainsi, de préférence, l'étape de transfert de la SAM par impression par microcontact est mise en œuvre à une température supérieure à 90°C et inférieure à la température de fusion du matériau constituant le tampon à la surface duquel la SAM a été déposée, et à une pression supérieure ou égale à 1 000 N et inférieure ou égale à 40 000 N pendant entre une et vingt minutes, inclus.
Cependant, de préférence, des temps d'impression compris entre cinq et dix minutes sont préférables, pour des raisons d'industrialisation du procédé.
Ainsi, dans ce cas, l'étape de transfert de la SAM est de préférence réalisé à une température comprise entre 95 °C et 1 15°C, inclus, à une pression de 1 000 N, pendant entre cinq et dix minutes, inclus.
Le chauffage lors du transfert de la SAM peut être effectué à l'aide d'une plaque chauffante placée sous le support en métal.
Mais il peut être également réalisé par insertion de résistances chauffantes dans le tampon sur lequel la SAM à été déposée.
Le chauffage peut encore être obtenu, lorsque le support est déjà en place entre les électrodes source et drain d'un transistor de circuit électronique organique, par passage d'un courant électrique entre ces électrodes source et drain.
Pour réaliser le transfert, on utilise un tampon, par exemple en silicone ou en poly(diméthylsiloxane) (PDMS), sur lequel la SAM a été déposée.
On préfère, dans l'invention, utiliser un tampon en silicone.
Ainsi, le procédé de l'invention peut également comprendre une étape de dépôt de la SAM voulue sur une zone en relief d'un tampon.
Ce dépôt peut être effectué par voie humide, de manière connue dans l'art.
Le tampon recouvert de la SAM est ensuite séché avant de procéder au transfert de la SAM sur la surface en métal du support. Afin de mieux faire comprendre l'invention, on va en décrire maintenant, à titre d'exemples purement illustratifs et non limitatifs, plusieurs modes de mise en œuvre.
Exemple 1 (comparatif)
Du 4-(méthylsulfanyl)-thiophénol (MeSTP) est dispersé dans de l'éthanol. Puis, cette solution est dispersée sur un moule en silicone. L'éthanol est alors évaporé à 60°C pour ne laisser sur le moule que la molécule seule.
On met ensuite en vis-à-vis l'échantillon et le moule en silicone et Ton presse le moule sur la surface de l'échantillon en or à 60°C en utilisant une pression de 1 000 N, pendant une minute.
Plus précisément, l'échantillon est une électrode en or. Cette électrode a été préalablement traitée par un plasma oxygène. Elle peut être, ou traitée mécaniquement ou par de l'ozone sous UV. Ce traitement sert à redonner une uniformité à la surface métallique, avant la mise en œuvre du procédé de l'invention.
Cependant, l'électrode peut également être mise à l'état de surface voulu en utilisant un rinçage pendant quelques minutes par une solution piranha (acide sulfurique + eau oxygénée), puis par de l'eau, avant de subir une restructuration dans de l'acide sulfurique, ce qui permet le décapage de la surface.
Cette restructuration détruit les oxydes d'or formés en surface des électrodes, ces oxydes d'or ne permettant pas Fadsorption et le greffage de thiols.
Exemple 2 (comparatif)
On procède comme à l'exemple 1, mais en utilisant une pression de de 10 000 N.
Exemple 3 (comparatif)
On procède comme à l'exemple 1, mais en utilisant une pression de de 40 000 N.
Exemples 4 à 6 (comparatifs)
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de cinq minutes.
Exemples 7 à 9 (comparatifs)
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de dix minutes. Exemples 10 à 12 (comparatifs)
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de quinze minutes.
Exemples 13 à 15 (comparatifs)
On procède comme aux exemples 1 , 2 et 3 respectivement mais en utilisant une température lors de l'impression de 80°C.
Exemples 16 à 18 (comparatifs)
On procède comme aux exemples 1 , 2 et 3 respectivement mais en utilisant un temps d'impression de cinq minutes et une température d'impression de 80°C.
Exemples 19 à 21 (comparatifs)
On procède comme aux exemples 1 , 2 et 3 respectivement mais en utilisant un temps d'impression de dix minutes et une température d'impression de 80°C.
Exemples 22 à 24 (comparatifs)
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de quinze minutes et une température d'impression de 80°C.
Exemple 25 (comparatif)
On procède comme à l'exemple 1 mais en utilisant une température d'impression de 100°C.
Exemples 26 à 27
On procède comme aux exemples 2 et 3 respectivement mais en utilisant une température d'impression de 100°C.
Exemples 28 à 30
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de cinq minutes et une température d'impression de 100°C.
Exemples 31 à 33
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de dix minutes et une température d'impression de Exemples 34 à 36
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de quinze minutes et une température d'impression de 100°C.
Exemples 37 à 39
On procède comme aux exemples 1 , 2 et 3 respectivement mais en utilisant un temps d'impression de une minute et une température d'impression de 115°C.
Exemples 40 à 42
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de cinq minutes et une température d'impression de 115°C.
Exemples 43 à 45
On procède comme aux exemples 1 , 2 et 3 respectivement mais en utilisant un temps d'impression de dix minutes et une température d'impression de 115°C.
Exemples 46 à 48
On procède comme aux exemples 1, 2 et 3 respectivement mais en utilisant un temps d'impression de quinze minutes et une température d'impression de 115°C.
Pour déterminer si la SAM est effectivement greffée, on utilise la mesure de l'angle de contact de l'eau sur la surface traitée par le procédé selon l'invention.
La mesure de l'angle de goutte permet d'accéder à l'énergie libre de la surface.
Elle permet d'avoir une indication sur l'évolution de la surface et la discrimination de la nature polaire ou apolaire de la surface greffée ou non.
A titre de référence, l'énergie de surface de l'or vierge sans greffage de la SAM est de 42 mN/cm2 et l'angle de contact de l'eau sur l'or vierge est de 70 degrés.
Le contact électrique a également été testé.
Les résultats de ces mesures pour les exemples 1 à 48 ci-dessus sont reportés au tableau 1 ci-après :
Figure imgf000012_0001
A partir de ce tableau on note une nette différence d'angle de goutte entre la surface d'or vierge et celle où la SAM est greffée sur l'or (exemples 26 à 45).
Exemple 49
Un essai a été également effectué en ne chauffant pas lors de l'impression par microcontact.
Cet essai à été effectué à une pression de 10 000 N en utilisant un temps d'impression de cinq minutes.
Dans ce cas, le contact électrique est très mauvais.
Exemple 50
On a procédé comme à l'exemple 1 mais en utilisant une température d'impression de 115°C.
La SAM est bien greffée et le contact électrique est bon.
Exemples 51 à 59
On a procédé comme à l'exemple 46 mais en utilisant respectivement les molécules suivantes :
- 4-méthoxythiophénol (MeOTP),
- 4-méthylthiophénol (MeTP),
- 4-aminothiophénol (ATP),
- 4-nitrothiophénol (NOTP),
- cysteamine (CT),
- 1-décanethiol (DT), - 1H, 1H, 2H, 2H-perfluorodécanethiol (PFDT),
- 1H; 1H, 2H, 2H-perfluorooctanethiol (PFOT),
- pentafluorobenzènethiol (PFBT).
Les résultats obtenus sont identiques à ceux obtenus avec le MeSTP utilisé à l'exemple 46.
Exemple 60
Dans cet exemple la molécule greffée est du PFBT et l'échantillon sur lequel a été greffée la molécule de PFBT, par le procédé de l'invention, était une zone en ITO d'un support.
L'échantillon a d'abord été préalablement traité par décapage par une solution d'acide acétique à 1%.
Une solution d'un autre acide ou même d'une base peut également être utilisée.
Le PFBT a été dispersé dans de l'éthanol puis la solution obtenue a été dispersée sur un moule en silicone.
L'éthanol a ensuite été évaporé pour ne laisser sur le moule que la molécule seule.
On a mis ensuite en vis-à-vis l'échantillon ou plus exactement la zone en ITO de l'échantillon et le moule en silicone et on a pressé le moule sur la surface de la zone en ITO à une température de 115°C en utilisant une pression de 35 000 N pendant 10 minutes.
L'échantillon obtenu a été testé comme précédemment.
L'angle de goutte de l'eau était de 95°, ce qui montre que le greffage du PFBT sur la zone en ITO était réalisé.
En conclusion, le procédé de l'invention permet de former une monocouche dense, compacte et performante pour la réalisation de transistors organiques par impression par microcontact.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une monocouche autoassemblée d'injection (SAM) comprenant des molécules à groupement terminal thiol, à la surface d'un support à base de métal, caractérisé en ce qu'il comprend les étapes suivantes :
a) dépôt de la SAM de molécules voulues sur une zone en relief d'un tampon, et
b) transfert de la SAM, sur la surface du support, par pressage à chaud de la zone en relief du tampon obtenu à l'étape a).
2. Procédé selon la revendication 1, caractérisé en ce que l'étape b) est mise en œuvre à une température supérieure à 90°C et inférieure à la température de fusion du matériau constituant le tampon et à une pression supérieure ou égale à 1 000 N et inférieure ou égale à 40 000 N, entre une et vingt minutes, inclus.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape b) est mise en œuvre à une température comprise entre 95°C et 115°C à une pression de 1 000 N pendant entre cinq et dix minutes, inclus.
4. Procédé selon Tune quelconque des revendications précédentes, caractérisé en ce que la SAM est obtenue à partir d'au moins une des molécules suivantes :
- 4-(méthylsulfanyl)-thiophénoI (MeSTP),
- 4-méthoxythiophénol (MeOTP),
- 4-méthylthiophénol (MeTP),
- 4-aminothiophénol (ATP),
- 4-nitrothïophénol (NOTP),
- cysteamine (CT),
- 1-décanethiol (DT),
- 1H, 1H, 2H, 2H-perfluorodécanethiol (PFDT),
- 1H, 1H, 2H, 2H-perfluorooctanethiol (PFOT),
- pentafluorobenzènethiol (PFBT).
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le support est en un métal choisi parmi l'or, l'argent, le cuivre, le nickel, le platine, le palladium et l'aluminium, ou en un oxyde métallique, de préférence l'IΤΟ.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le tampon est en silicone, de préférence en poly (diméthy lsiloxane) .
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, à l'étape b), le chauffage à la température voulue est obtenu par une plaque chauffante placée sous le support.
8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le chauffage à l'étape b) est obtenu par des résistances chauffantes insérées dans le tampon.
9. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le support est placé entre les électrodes source et drain d'un transistor de circuit électronique organique et en ce que le chauffage de l'étape b) est obtenu par passage d'un courant électrique entre ces électrodes source et drain.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, à l'étape a), le dépôt de la SAM est effectué par voie humide, puis le tampon et la SAM sont séchés.
PCT/IB2012/050491 2011-02-04 2012-02-02 Procede de fabrication d'une monocouche autoassemblee d'injection WO2012104809A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137023344A KR101946287B1 (ko) 2011-02-04 2012-02-02 자기조립 주입 단분자막의 제조방법
JP2013552311A JP6018584B2 (ja) 2011-02-04 2012-02-02 注入自己組織化単分子層を製造するための方法
EP12704322.2A EP2671268A1 (fr) 2011-02-04 2012-02-02 Procede de fabrication d'une monocouche autoassemblee d'injection
US13/983,159 US9459526B2 (en) 2011-02-04 2012-02-02 Process for manufacturing a self-assembled injection monolayer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1100349 2011-02-04
FR1100349A FR2971369B1 (fr) 2011-02-04 2011-02-04 Procede de fabrication d'une monocouche autoassemblee d'injection

Publications (1)

Publication Number Publication Date
WO2012104809A1 true WO2012104809A1 (fr) 2012-08-09

Family

ID=45607796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/050491 WO2012104809A1 (fr) 2011-02-04 2012-02-02 Procede de fabrication d'une monocouche autoassemblee d'injection

Country Status (6)

Country Link
US (1) US9459526B2 (fr)
EP (1) EP2671268A1 (fr)
JP (1) JP6018584B2 (fr)
KR (1) KR101946287B1 (fr)
FR (1) FR2971369B1 (fr)
WO (1) WO2012104809A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10163629B2 (en) 2015-11-16 2018-12-25 Applied Materials, Inc. Low vapor pressure aerosol-assisted CVD
US10273577B2 (en) 2015-11-16 2019-04-30 Applied Materials, Inc. Low vapor pressure aerosol-assisted CVD
US9875907B2 (en) 2015-11-20 2018-01-23 Applied Materials, Inc. Self-aligned shielding of silicon oxide
US9859128B2 (en) 2015-11-20 2018-01-02 Applied Materials, Inc. Self-aligned shielding of silicon oxide
US10074559B1 (en) 2017-03-07 2018-09-11 Applied Materials, Inc. Selective poreseal deposition prevention and residue removal using SAM
KR102091427B1 (ko) * 2018-10-08 2020-04-23 한밭대학교 산학협력단 유기반도체의 전하 주입과 추출 향상을 위한 비대칭 유기반도체층과 전극의 결합 구조와 그 유기전자소자 제조방법
KR102434781B1 (ko) * 2020-11-30 2022-08-22 한국과학기술원 초박형 하이드로젤 스킨 3d 플라즈모닉 복합 구조체

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100219401A1 (en) * 2007-01-31 2010-09-02 Donal Bradley Deposition of Organic Layers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3032931C2 (de) * 1980-09-02 1982-07-29 Robert Bürkle GmbH & Co, 7290 Freudenstadt Verfahren und Anordnung zur Herstellung von Mehrschicht-Leiterplatten
GB0309355D0 (en) * 2003-04-24 2003-06-04 Univ Cambridge Tech Organic electronic devices incorporating semiconducting polymer
JP2005135975A (ja) * 2003-10-28 2005-05-26 Seiko Epson Corp 電極の形成方法、並びに圧電体デバイス、強誘電体デバイス、及び電子機器
WO2006049976A2 (fr) * 2004-10-28 2006-05-11 University Of Iowa Research Foundation Procedes de generation, dans des conditions moderees, de surfaces au silicium façonnees
JP5407242B2 (ja) * 2007-09-28 2014-02-05 大日本印刷株式会社 エレクトロルミネッセンス素子
US9027480B2 (en) * 2007-12-19 2015-05-12 3M Innovative Properties Company Ink solutions for microcontact printing
JP2009218295A (ja) * 2008-03-07 2009-09-24 Ricoh Co Ltd 薄膜トランジスタ、その製造方法、アクティブマトリクス型薄膜トランジスタアレイ及びアクティブマトリクス駆動表示装置
JP2010080467A (ja) * 2008-09-24 2010-04-08 Ricoh Co Ltd 薄膜トランジスタ、薄膜トランジスタの製造方法、アクティブマトリクス型薄膜トランジスタアレイ、及びアクティブマトリクス駆動表示装置
JP5481893B2 (ja) * 2009-03-18 2014-04-23 株式会社リコー 有機トランジスタアクティブ基板、有機トランジスタアクティブ基板の製造方法および有機トランジスタアクティブ基板を用いた電気泳動ディスプレイ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100219401A1 (en) * 2007-01-31 2010-09-02 Donal Bradley Deposition of Organic Layers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRONDIJK J J ET AL: "Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes", APPLIED PHYSICS A; MATERIALS SCIENCE & PROCESSING, SPRINGER, BERLIN, DE, vol. 95, no. 1, 18 December 2008 (2008-12-18), pages 1 - 5, XP019710500, ISSN: 1432-0630 *
LEE ET AL., J MATER. CHEM., vol. 20, 2010, pages 663 - 665
PARK ET AL., APPLIED PHYSICS LETTERS, vol. 95, 2009, pages 113310

Also Published As

Publication number Publication date
KR101946287B1 (ko) 2019-02-11
US20130316541A1 (en) 2013-11-28
FR2971369A1 (fr) 2012-08-10
US9459526B2 (en) 2016-10-04
KR20140026374A (ko) 2014-03-05
FR2971369B1 (fr) 2013-03-08
JP6018584B2 (ja) 2016-11-02
JP2014511022A (ja) 2014-05-01
EP2671268A1 (fr) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2012104809A1 (fr) Procede de fabrication d'une monocouche autoassemblee d'injection
Shinde et al. Surface‐functionalization‐mediated direct transfer of molybdenum disulfide for large‐area flexible devices
Schranghamer et al. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications
JP5249196B2 (ja) 基板上への金属、金属酸化物および/または半導体材料のパターンの形成方法
US20120058350A1 (en) Modified graphene structures and methods of manufacture thereof
Azuma et al. Robust nanogap electrodes by self-terminating electroless gold plating
US20150181704A1 (en) Circuit board including aligned nanostructures
Duan et al. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film
JP5226715B2 (ja) 有機薄膜トランジスタ、その作製方法、および、それに使用されるゲート絶縁層
EP2022816A2 (fr) Couche d'accroche sur des polymères fluorés
EP2351048B1 (fr) Fibres a conductivite electrique pour systemes bioelectrochimiques, electrodes realisees avec de telles fibres et systemes comportant une ou plusieurs de telles electrodes
WO2011114968A1 (fr) Procédé de fabrication de moule, et moule formé selon ce procédé
Zan et al. Effect of surface energy on pentacene thin-film growth and organic thin film transistor characteristics
FR2959353A1 (fr) Dispositif electronique organique comprenant une couche favorisant la segregation verticale d'un materiau carbone present dans la couche active electriquement
EP2842179B1 (fr) Procédé de dépôt de nanoparticules sur un substrat d'oxyde métallique nanostructuré
TWI548448B (zh) 製備二維材料的方法
Quiñones et al. Graphene transfer implementations to micro and nano electronic
FR3027155A1 (fr) Procede de fabrication d'un dispositif electronique, en particulier a base de nanotubes de carbone
Rasouli et al. Critical Point Drying of Graphene Field‐Effect Transistors Improves Their Electric Transport Characteristics
WO2011001123A2 (fr) Fonctionnalisation de surfaces à base de carbone, de silicium et/ou de germanium hybridés sp3
WO2018148659A1 (fr) Modèle de damasquinage destiné à une impression par nanoéléments fabriqué sans planarisation chimio-mécanique
EP2883255A2 (fr) Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile
Wyndaele et al. Enabling high quality dielectric passivation on Monolayer WS2 using a sacrificial Graphene Oxide template
Rahman et al. Effects of solvent on the formation of the MUA monolayer on Si and its diffusion barrier properties for Cu metallization
Han Functionalization of field effect transistors based on transition metal dichalcogenides: towards high-performance devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12704322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13983159

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137023344

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012704322

Country of ref document: EP