WO2012102249A1 - 成形型、ウェハーレンズ及び光学レンズの製造方法 - Google Patents

成形型、ウェハーレンズ及び光学レンズの製造方法 Download PDF

Info

Publication number
WO2012102249A1
WO2012102249A1 PCT/JP2012/051375 JP2012051375W WO2012102249A1 WO 2012102249 A1 WO2012102249 A1 WO 2012102249A1 JP 2012051375 W JP2012051375 W JP 2012051375W WO 2012102249 A1 WO2012102249 A1 WO 2012102249A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
master
substrate
sub
molding
Prior art date
Application number
PCT/JP2012/051375
Other languages
English (en)
French (fr)
Inventor
藤本章弘
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012554790A priority Critical patent/JP5725042B2/ja
Priority to US13/981,013 priority patent/US20130300011A1/en
Publication of WO2012102249A1 publication Critical patent/WO2012102249A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00307Producing lens wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the mold having the above-described resin shape transfer layer is also required to be produced in consideration of this, and when the mold is manufactured, the molding substrate is required. It is necessary to perform molding with the master mold as close as possible. When the resin shape transfer layer of the mold becomes thick, the shape is also transferred to the molded product molded using this mold, and as a result, the resin layer cannot be thinned even in the finally obtained wafer lens. Because.
  • Another object of the present invention is to provide a highly accurate wafer lens and optical lens manufacturing method using a mold obtained by the above manufacturing method.
  • the dispenser 62 has a role of supplying a first resin material made of a photocurable resin material onto the master mold 30 in order to form the sub-master resin layer 41 of the sub-master substrate 42 shown in FIG. .
  • the light source 63 generates light having a wavelength for curing the resin material, such as a UV light source, for the first resin material sandwiched between the master mold 30 and the sub master substrate 42.
  • the solidified sub-master resin layer 41 is formed on the sub-master substrate 42.
  • step S31 in FIG. 12 When the prescribed resin layer portion 41d is formed on the sub master substrate 42 (NO in step S31 in FIG. 12), it is determined that the sub master mold 40 is completed. In this case, the XY stage 75 is returned to the reference position, the lid 76 is removed from the XY stage 75, and the completed sub master mold 40 is taken out (see step S32 in FIG. 12).
  • the area of the master mold 30 on the end face 30a side is A
  • the effective area of the master mold 30 is B
  • the area A includes not only the area of the first molding surface 31 of the master mold 30 but also the receding surface 32 a of the step 32.
  • the effective area B means only the area of the first molding surface 31 of the master die 30.
  • an unintended irregular shape for example, the protrusion 45
  • Such an irregular shape results in an excessively large height difference of the sub-submaster resin layer 51 when the sub-submaster mold 50 is molded, and the thickness of the first lens resin layer 12 of the wafer lens 10 becomes excessive.
  • the accuracy of the thickness will be reduced.
  • a release failure may occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

サブマスター基板42に形成された複数の凹部42cのうち1つの凹部42cとマスター型30の第1成形面31との間に第1の樹脂材料41bを満たすので、第1成形面31に対向する第1の樹脂材料41bの厚みを確保しつつサブマスター基板42の全体に形成されるサブサブマスター樹脂層51の厚みを比較的薄くすることができる。これにより、マスター型30の位置決め精度を簡易に高めつつサブサブマスター樹脂層51によるサブマスター基板42の反りを防止できる。なお、第1成形面31の周囲に環状の段差32を設けることで、段差32と凹部42cの周辺との間にサブサブマスター樹脂層51の外縁部である残膜部44を形成することができる。この残膜部44によってサブサブマスター樹脂層51の厚みが局所的に厚くなることを防止して結果的に得られウェハーレンズ10の厚みを薄くすることができる。

Description

成形型、ウェハーレンズ及び光学レンズの製造方法
 この発明は、複数の光学レンズを有するウェハーレンズを製造する際に用いられる成形型並びにこの成形型を利用するウェハーレンズ及び光学レンズの製造方法に関し、特に基板上に転写によって樹脂製の形状転写層を形成することによって得られる成形型の製造方法並びにこの成形型を利用するウェハーレンズ及び光学レンズの製造方法に関する。
 近年、多数の光学レンズが形成されたウェハー状の板状部材(ウェハーレンズ)を作製し、個片化することで個々の光学レンズを得ることが検討されている。微小光学部品をウェハー規模で転写する方法として、小さなマスター型を繰り返し使用して転写することで樹脂等からなる第1世代複製ツールを作製し、続いて第1世代複製ツールから複数のサブマスター型を作製し、サブマスター型から多数の微小光学素子を設けた複数の第2世代複製ツールを製造するものが知られている(特許文献1参照)。この方法によって得られるウェハー状の第1世代複製ツールは、次の成形物を作製するための成形型であり、基板上に樹脂製の形状転写層を形成したものとなる。
 また、ウェハーレンズを作製するために用いる成形型であって、基板上に樹脂製の形状転写層の設けられた成形型を製造する方法として、成形物をマスター基板から離型する際の離型不良の防止などを目的として、成形型用基板に内部が閉じた形状の凹部を複数形成し、各凹部に樹脂材料を吐出しマスター型でプレスするようにした成形用型の製造方法も提案されている(特許文献2参照)。
 最近、小型の光学レンズの用途が増大しており、所期の光学性能が発揮されるように、光学レンズには意図したレンズ形状が正確に実現されていることが求められる。また、光学性能を高めるために複数の光学レンズを積層する場合がある。これらの観点から、ウェハーレンズの樹脂層を厚くしすぎないことが求められる。ウェハーレンズの樹脂層が厚すぎると、所期の光学性能が得られなかったり、樹脂層の応力増大によりウェハーレンズに反りや変形等を生じたりするおそれがある。また、光学レンズを積層した際に全体サイズが大きくなるおそれがある。さらに、材料コストの増大や硬化時間の増加を招くという問題もある。
 ウェハーレンズの樹脂層が厚くなり過ぎないようにするために、上述した樹脂製の形状転写層を有する成形型もこれに配慮して作製することが求められ、成形型の製造時に、成形用基板にできるだけマスター型を近づけて成形を行う必要がある。成形型の樹脂製の形状転写層が厚くなると、この成形型を用いて成形された成形物にも形状が転写される結果、最終的に得られるウェハーレンズにおいても樹脂層の厚みを薄くできなくなるからである。
 一般的に、樹脂材料が介在した状態でマスター型を成形型用基板の表面に近づけるには、マスター型を大きな圧力で基板側に押し付けることが必要であり、製造装置が大掛かりになってマスター型の位置決め精度の確保が容易でなくなる。また、マスター型が何らかの原因で傾いているとサブマスター用基板に接触してサブマスター用基板やマスター型を破損するおそれもある。さらに、成形時に樹脂材料がマスター型からはみ出してしまい、はみ出した部分が意図しない形状となることも考えられる。特に、特許文献2のように成形型用基板に内部が閉じた形状の凹部を設けている場合は、成形時に凹部の周縁部とマスター型の周端部との間が非常に狭い空間となる結果、凹部へ吐出する樹脂量のばらつきやマスター型と成形型用基板との距離の僅かな誤差等により、樹脂がはみ出すおそれがより高くなる。ウェハーレンズ1枚当たりの光学レンズの取り数を多くするためにマスター型による各成形位置の間隔を近づけると、はみ出した樹脂同士がくっついて盛り上がり、突起物が形成されて、ますます意図しない形状を生じる可能性が高くなる。また、特許文献2のように成形型用基板に内部が閉じた形状の凹部を設けている場合は、樹脂がはみ出さないように樹脂量を少なくすると、樹脂不足が生じて凹部に空間が残る結果、この成形型を用いて次の成形物を得ると、上記空間に対応する箇所が意図しない突起形状となってしまう。このような異形状は離型不良などの不都合を招くため、好ましくないものである。結局、従来のものでは、成形時の不都合をなくそうとすれば、ウェハーレンズの樹脂層を薄くすることが難しいという問題があった。
 このような問題は、量産性を高めたりマスター型の寿命を延ばしたりする等の観点から、マスター型として光学レンズ形状に対応する形状が複数配列されたものを用いる場合により顕著となる。これは、マスター型のサイズが大きくなるために、成形型用基板に対する傾き調整により高い精度が求められることや、樹脂の使用量が多くなるなどの理由による。
米国特許出願公開第2006/0259546号公報 特開2010-102312号公報
 本発明は、意図した形状を持つ成形型を得ることができ、所期の光学性能が発揮される光学レンズが形成されたウェハーレンズを製造することができる成形型の製造方法を提供することを目的とする。
 また、本発明は、上記製造方法によって得られる成形型を利用した高精度のウェハーレンズ及び光学レンズの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明に係る成形型の製造方法では、光学レンズに対応する形状が複数配列された成形面を有し当該成形面の周囲に環状の段差が設けられているマスター型を、成形面より大きいサイズの凹部であって内部が閉じた形状の凹部が平坦面上に複数形成された成形型用の第1基板に、成形面全体が複数の凹部のうち1つの凹部に対向するように配置する第1の工程と、マスター型と第1基板とを相対的に接近させ、かつ、凹部及び段差が覆われるように成形面と第1基板(凹部)との間に第1の樹脂材料を満たす第2の工程と、成形面と第1基板との間の第1の樹脂材料を硬化させる第3の工程と、マスター型を離型する第4の工程とを備え、マスター型を複数の凹部のうち他の凹部に向けて移動させて、第1の工程から第4の工程までを繰り返し実行することにより、樹脂製の形状転写層を有する成形型を得る。
 上記製造方法によれば、成形面の周囲に環状の段差を設けることで、段差と凹部の周辺との間に樹脂材料が広がり得る空間を形成することができる。これにより、マスター型の成形面を第1基板の平坦面の高さに近づけても、上記空間が樹脂材料によって満たされることで、樹脂材料のはみ出しや不足に起因する異形状の発生を回避することができる。
 本発明の具体的な側面又は観点によれば、マスター型によって第1基板上に成形面に対応する矩形の複数の成形領域が設定され、複数の成形領域のうち隣り合う2つの成形領域におけるマスター型の間隔Xについて、段差の後退面及び成形面を含めたマスター型の面積をAとし、成形面に対応するマスター型の有効面積をBとし、第3の工程時における段差の後退面と第1基板の平坦面との距離に対応する残膜部厚みをCとし、第3の工程時における成形面と当該成形面に対向する凹部の底面との平均的距離に対応する有効構造部厚みをDとしたときに、以下の関係式
X≧√{B+(0.05×〔B×D+[A-B]×C〕+0.005×A)/C}-√A
を満たす。この場合、隣り合う2つの成形領域が近づいて両成形領域間において樹脂層が盛り上がって突起が形成されることを防止できる。
 本発明の別の側面によれば、第3の工程において、段差の後退面と第1基板の平坦面との距離に対応する残膜部厚みは、成形面における第1基板から最も遠い部位と第1基板の平坦面との平坦面に垂直な方向における距離よりも小さい。この場合、残膜部自体の厚みを小さくすることができる。
 本発明のさらに別の側面によれば、第3の工程において、成形面の最も第1基板側の部位と、第1基板の平坦面とは、平坦面に垂直な方向における位置が略一致するものとなっている。この場合、凹部の深さを最小限に抑えて成形面に対向する樹脂材料の厚みを適切なものにできる。
 本発明のさらに別の側面によれば、マスター型の成形面が、光学レンズに対応する形状の周囲に設けられた平坦なフランジ転写面を含む。
 本発明のさらに別の側面によれば、マスター型の成形面には、例えば凹の光学転写面が形成されている。
 本発明のさらに別の側面によれば、第2の工程において、マスター型及び第1基板のうち少なくとも一方に配置された第1の樹脂材料を、マスター型と第1基板とを相対的に接近させることにより、凹部及び段差部が覆われるように成形面と第1基板との間に第1の樹脂材料を満たす。
 本発明のさらに別の側面によれば、上述の成形型の製造方法により得られた樹脂製の成形型を第1の成形型とし、当該第1の成形型と成形型用の第2基板との間に第2の樹脂材料を満たし、当該第2の樹脂材料を硬化させ、第1の成形型を離型することにより、第2の成形型を得る。この場合、第2の成形型は、ウェハーレンズ等を形成するための、一括転写用の成形型となっている。
 本発明に係るウェハーレンズの製造方法は、上述の成形型の製造方法により得られた第1又は第2の成形型(つまり、サブ又はサブサブマスター型)と、第3基板の表面との間に第3の樹脂材料を満たし、当該第3の樹脂材料を硬化させ、第1又は第2の成形型を離型することにより、第3基板の表面に複数のレンズ要素が形成されたウェハーレンズを得る第5の工程を有する。この場合、第1又は第2の成形型の転写を利用した複製によって第3基板の片側に複数のレンズ要素を設けたウェハーレンズを得ることができる。
 本発明の具体的な側面又は観点によれば、上述の成形型の製造方法により得られた第1又は第2の成形型(つまり、サブ又はサブサブマスター型)と、第3基板の裏面との間に第4の樹脂材料を満たし、当該第4の樹脂材料を硬化させ、第1又は第2の成形型を離型することにより、第3基板の裏面に複数の光学レンズが形成されたウェハーレンズを得る第6の工程を有する。この場合、第1又は第2の成形型の転写を利用した複製によって第3基板の両側に複数のレンズ要素を設けたウェハーレンズを得ることができる。
 本発明の別の側面によれば、第5の工程における第1又は第2の成形型の離型前に、第6の工程を開始する。これにより、ウェハーレンズの反り等を抑える効果がある。
 本発明に係る光学レンズの製造方法は、上述のウェハーレンズの製造方法により得られたウェハーレンズを切断して個片化する工程を備える。この場合、ウェハーレンズから個片化した多数の高性能の光学レンズを一括して得ることができる。
第1実施形態の成形方法によって得られるウェハーレンズ(レンズ基板)の側面図であり、表裏の部分拡大斜視図を含む。 図1のウェハーレンズから得た光学レンズの側方断面図である。 3(A)は、ウェハーレンズの製造のために用いるマスター型を説明する斜視図であり、3(B)は、マスター型によって作製されるべきサブマスター型のうちサブマスター基板の斜視図である。 4(A)は、マスター型の一部を切り出して説明する斜視図であり、4(B)は、サブマスター型の一部を切り出して説明する斜視図であり、4(C)は、サブサブマスター型の一部を切り出して説明する斜視図である。 サブマスター型40等を作製するための加工装置を回路的に説明するブロック図である。 図5の加工装置の外観を説明する斜視図である。 図5の加工装置を説明する平面図である。 図5の加工装置を説明する側方断面図である。 9(A)~9(E)は、ウェハーレンズの製造工程を説明するための図である。 10(A)~10(D)は、ウェハーレンズの製造工程を説明するための図である。 ウェハーレンズの製造工程を概念的に説明するフローチャートである。 サブマスター型の製造工程を概念的に説明するフローチャートである。 サブマスター型の製造時の寸法条件を説明する部分拡大断面図である。
 図面を参照して、本発明の一実施形態に係る成形型の製造方法を利用することによって最終的に得られるウェハーレンズについて説明し、かかるウェハーレンズを作製するための成形型の構造や製造方法について説明する。
 ウェハーレンズ等の構造
 図1に示すように、ウェハーレンズ10は、円盤状の外形を有しており、基板11と、第1レンズ樹脂層12と、第2レンズ樹脂層13とを有する。本実施形態においては、ウェハーレンズ10をレンズ基板とも称する場合がある。なお、図1において、第1レンズ樹脂層12や第2レンズ樹脂層13の表面を部分的に拡大して斜視図として示している。
 ウェハーレンズ(レンズ基板)10のうち基板11は、ウェハーレンズ10の中心に埋め込まれた円形の平板(後述する第3基板)であり、光透過性を有するガラスで形成されている。基板(第3基板)11の外径は、第1及び第2レンズ樹脂層12,13の外径と略同じである。基板11の厚さは、基本的には光学的仕様によって決定されるが、少なくとも成形物を離型してウェハーレンズ10を得るに際して破損しない程度の厚さとなっている。
 第1レンズ樹脂層12は、光透過性を有し、基板11の一方の面11a上に形成されている。第1レンズ樹脂層12は、部分的な拡大斜視図に示すように、第1レンズ本体1aと第1フランジ部1bとを一組とする多数の第1レンズ要素L1をXY面内で2次元的に配列している。これらの第1レンズ要素L1は、連結部1cを介して一体に成形されている。各第1レンズ要素L1と連結部1cとを合わせた表面は、転写によって一括成形される第1被転写面12aとなっている。第1レンズ本体1aは、図2にも示すように、例えば凸形状の非球面型又は球面型のレンズ部であり、第1光学面OS1を有している。周囲の第1フランジ部1bは、第1光学面OS1の周囲に広がる平坦な第1フランジ面FP1を有し、第1フランジ面FP1の外周は、連結部1cの表面ともなっている。第1フランジ面FP1は、光軸OAに垂直なXY面に対して平行に配置されている。
 なお、図1に示すように、第1レンズ樹脂層12は、製造工程に由来して多数のアレイユニットAUに区分されており、これらのアレイユニットAUは、詳細な図示を省略するが、矩形の輪郭を有し、基板11上でマトリックス状に配列されている。各アレイユニットAUは、後述するマスター型30の端面30aを反転したような表面形状を有しており、等間隔でマトリクス状に配列された多数の第1レンズ本体1aを有している。
 第1レンズ樹脂層12は、例えば光硬化性樹脂で構成される。光硬化性樹脂は、主成分である重合性単量体などの重合性組成物と、重合性組成物の重合硬化を開始させるための光重合開始剤と、必要に応じて用いられる各種添加剤とを含む光硬化性樹脂材料を硬化させることにより得られる。このような光硬化性樹脂材料は、硬化前の状態では流動性を有している。光硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、アリルエステル樹脂、ビニル樹脂等がある。エポキシ樹脂は、光重合開始剤のカチオン重合により重合性組成物を反応硬化させて得ることができ、アクリル樹脂、アリルエステル樹脂、及びビニル樹脂は、光重合開始剤のラジカル重合により重合性組成物を反応硬化させて得ることができる。
 第2レンズ樹脂層13は、第1レンズ樹脂層12と同様に、光透過性を有し、基板11の他方の面11b上に形成されている。第2レンズ樹脂層13は、部分的な拡大斜視図に示すように、第2レンズ本体2aと第2フランジ部2bとを一組とする多数の第2レンズ要素L2をXY面内で2次元的に配列している。これらの第2レンズ要素L2は、連結部2cを介して一体に成形されている。各第2レンズ要素L2と連結部2cとを合わせた表面は、転写によって一括成形される第2被転写面13aとなっている。第2レンズ本体2aは、図2にも示すように、例えば凸形状の非球面型又は球面型のレンズ部であり、第2光学面OS2を有している。周囲の第2フランジ部2bは、第2光学面OS2の周囲に広がる平坦な第2フランジ面FP2を有し、第2フランジ面FP2の外周は、連結部2cの表面ともなっている。第2フランジ面FP2は、光軸OAに垂直なXY面に対して平行に配置されている。
 なお、第2レンズ樹脂層13も、製造工程に由来して多数のアレイユニットAUに区分されており、これらのアレイユニットAUは、矩形の輪郭を有し、基板11上でマトリックス状に配列されている。
 第2レンズ樹脂層13に用いられる光硬化性樹脂は、第1レンズ樹脂層12に用いられるものと同様の光硬化性樹脂である。ただし、両レンズ樹脂層12,13を同一の光硬化性樹脂で形成する必要はなく、別の光硬化性樹脂で形成することができる。
 なお、第1レンズ樹脂層12と第2レンズ樹脂層13とのうち一方を省略することができる。つまり、基板11の一方の面11a又は他方の面11bにのみレンズ樹脂層を設けてもよい。
 図2に示すように、第1レンズ樹脂層12に設けたいずれか1つの第1レンズ要素L1と、これに対向する第2レンズ樹脂層13の第2レンズ要素L2と、これらのレンズ要素L1,L2間に挟まれた基板11の部分11pとは、1つの光学レンズ4に相当する。光学レンズ4は、ウェハーレンズ10を連結部1c,2cの位置でダイシングすることによって個片化して得られる平面視正方形の複合レンズとなっている。
 形状転写用の成形型の構造
 図1のウェハーレンズ10は、図3(A)に示すマスター型30を原版として3段階の転写を行うことによって作製される。以下、マスター型30やこれから得られる樹脂製の形状転写面を持つ成形型の構造について説明する。
 図3(A)及び4(A)に示すように、マスター型30は、直方体状のブロック部材であり、その端面30a上に、図4(B)のサブマスター型40の第2成形面43を形成するための第1成形面31と、第1成形面31の周囲に設けられた環状の段差32(例えば矩形の枠部)とを有する。マスター型30は、サブマスター型40の作製のため繰返し使用されるものであり、サブマスター基板42上にマトリックス状の配列で一様に形成された浅い矩形の凹部42cに対向するように2次元的に移動しながら転写を繰り返すステップ&リピート方式の転写によって、サブマスター基板42上に分離して配列された単位(後述する樹脂層部分)をまとめたサブマスター樹脂層41を形成することができる。マスター型30の第1成形面31は、最終的に得られるウェハーレンズ10の第1レンズ樹脂層12の第1被転写面12aを部分的に反転した形状を有する。第1成形面31は、第1被転写面12aのうち第1光学面OS1を形成するための第1光学転写面31aと、第1フランジ面FP1を形成するための平坦な第1フランジ転写面31bとを含む。第1光学転写面31aは、例えば等間隔の格子点上に多数個配置されており、各々が最終的に得られる光学レンズに対応する形状、ここでは、略半球の凹形状に形成されている。一方、段差32は、樹脂材料を充填する際にサブマスター基板42に形成された凹部42cの周囲の表面との間に隙間を形成するための後退面32aを有している。段差32は、サブマスター型40のサブマスター樹脂層41に後に詳述する残膜部を形成するための部分である。後退面32aから端面30aに至る側面部には、成形物の離型性向上のために、端面30aに近づくほど第1成形面31の中央に向かって傾斜するテーパーを設けてもよい。
 マスター型30は、一般に金属材料で形成される。金属材料としては、例えば鉄系材料、鉄系合金、非鉄系合金等が挙げられる。なお、マスター型30は、金属ガラスやアモルファス合金で形成されてもよい。マスター型30は、単一の材料で形成されるものに限らず、適当な基材上に上記のような金属材料等を被覆したものとすることもできる。
 図4(B)に部分的に拡大して示すように、第1の成形型であるサブマスター型40は、サブマスター樹脂層41とサブマスター基板42とを有する。なお、図4(B)においては、理解を容易にするために、サブマスター型40の一部を切り出した状態を模式的に示している。サブマスター樹脂層41とサブマスター基板42とは、積層構造となっている。サブマスター樹脂層41は、形状転写層であり、その端面41a上に、後述するサブサブマスター型50の第3成形面53を形成するための第2成形面43を有する。この第2成形面43は、最終的に得られるウェハーレンズ10の第1レンズ樹脂層12の第1被転写面12aのポジ型に対応し、第1被転写面12aのうち第1光学面OS1を形成するための第2光学転写面43aと、第1フランジ面FP1を形成するための第2フランジ転写面43bとを含む。第2光学転写面43aは、第1光学転写面31aによって転写され、格子点上に多数個配置されており、略半球の凸形状に形成されている。
 サブマスター樹脂層41は、第1の樹脂材料を用いて形成されている。第1の樹脂材料としては、光硬化性樹脂材料が挙げられ、上記ウェハーレンズ10の第1レンズ樹脂層12と同様の、硬化後に、エポキシ樹脂、アクリル樹脂、アリルエステル樹脂、ビニル樹脂等になる光硬化性樹脂材料が使用可能である。また、第1の樹脂材料としては、硬化後に良好な離型性を示す樹脂材料、特に硬化波長で十分な光透過性を有し、離型剤を塗布しなくても離型できる樹脂材料が好ましい。
 サブマスター基板42は、光透過性を有し十分な剛性を有する材料、例えばガラス等で形成されている第1基板である。サブマスター基板(第1基板)42の表面42a上には、図3(B)に示すように、略全面に亘ってマトリックス状に配列された多数の浅い矩形の凹部42cが形成されている。各凹部42cは、一般に200μm以下の深さを有し、底面42dと側面42eとを有し内部が閉じた形状を持つ窪みである。凹部42cは、マスター型30の端面30aとサブマスター基板42の表面42aとの間に第1の樹脂材料を挟んで転写を行う際に、第1の樹脂材料が極端に薄くなることを防止している。これにより、マスター型30を大きな圧力でサブマスター基板42側に押し付けることなく、マスター型30をサブマスター基板42の表面42aに対して適所まで近づけることができる。凹部42cは、サブマスター基板42に対する切削加工やエッチング等、各種の方法によって形成することができる。凹部42cの側面42eは、底面42dに近づくほど凹部42cの開口面積が小さくなるように傾斜していたり曲面になっていたりしてもよい。このようにすると凹部42cを比較的容易に形成できる。あるいは、底面42dに近づくほど広くなるように側面42eを傾斜させたり、側面42eを粗面化してもよい。このようにすると、マスター型30からの離型時における離型不良を低減することができる。
 図4(C)に部分的に拡大して示すように、第2の成形型であるサブサブマスター型50は、サブサブマスター樹脂層51とサブサブマスター基板52とを有する。なお、図4(C)においては、理解を容易にするために、サブサブマスター型50の一部を切り出した状態を模式的に示している。サブサブマスター樹脂層51とサブサブマスター基板52とは、積層構造となっている。サブサブマスター樹脂層51は、形状転写層であり、その端面51a上に、ウェハーレンズ10の第1レンズ樹脂層12を転写によって形成するための第3成形面53を有する。この第3成形面53は、ウェハーレンズ10の第1レンズ樹脂層12の第1被転写面12aを反転した形状を有し、第1被転写面12aのうち第1光学面OS1を形成するための第3光学転写面53aと、第1フランジ面FP1を形成するための第3フランジ転写面53bとを含む。第3光学転写面53aは、上述のように第2光学転写面43aによって転写され、マトリクス状に複数個配置されており、略半球の凹形状に形成されている。
 サブサブマスター樹脂層51は、サブマスター樹脂層41の第1の樹脂材料と同様の第2の樹脂材料で形成され、第2基板としてのサブサブマスター基板52は、サブマスター基板42と同様の材料で形成される。すなわち、サブサブマスター樹脂層51の第2の樹脂材料としては、硬化後に、エポキシ樹脂、アクリル樹脂、アリルエステル樹脂、ビニル樹脂等になる光硬化性樹脂材料が使用可能である。また、サブサブマスター基板(第2基板)52としては、光透過性を有し十分な剛性を有する材料、例えばガラス等で形成されている。
 なお、サブマスター樹脂層41とサブサブマスター樹脂層51とは、必ずしも同一の材料で形成される必要はなく、異なる光硬化性樹脂等で形成されてもよい。また、サブマスター基板42とサブサブマスター基板52も、必ずしも同一の材料で形成される必要はなく、異なる材料で形成されてもよい。
 マスター型30、サブマスター型40、及びサブサブマスター型50には、成形物の離型を容易にするため、離型剤を塗布するなどして離形層を形成してもよい。
 サブマスター型等の加工装置
 以下、図5、6等を参照して、図4(B)に示すサブマスター型40等を作製するための加工装置について説明する。
 図5に示すように、加工装置100は、アライメント駆動部61と、ディスペンサー62と、光源63と、制御装置65とを備える。ここで、アライメント駆動部61は、図3(A)に示すマスター型30を図3(B)に示すサブマスター基板42に設けた各凹部42cに対して精密に位置決めして配置するためのものである。アライメント駆動部61は、サブマスター基板42をX軸方向の所望位置に移動させためのX軸移動機構61aと、サブマスター基板42をY軸方向の所望位置に移動させるY軸移動機構61bと、マスター型30をZ軸方向の所望位置に移動させるZ軸移動機構61cと、移動機構61a,61b,61c等の滑らかな動作を可能にするエアスライド駆動機構61dと、マスター型30の傾斜や回転姿勢を調整するアクチュエーター61eと、マスター型30の周辺空間を適当なタイミングで減圧するための減圧機構61gと、マスター型30のサブマスター基板42に対する3次元的な位置又は姿勢を検出する位置センサー61iと、アライメント状態を観察するための顕微鏡61jと、マスター型30のサブマスター基板42への押し付け圧力を検出する圧力センサー61hとを備える。
 ディスペンサー62は、図3(B)に示すサブマスター基板42のサブマスター樹脂層41を形成するために、マスター型30上に光硬化性樹脂材料からなる第1の樹脂材料を供給する役割を有する。光源63は、マスター型30とサブマスター基板42との間に挟まれた第1の樹脂材料に対して、例えばUV光源などの、樹脂材料を硬化させる波長の光を発生するものであり、光を照射することにより、サブマスター基板42上に固化したサブマスター樹脂層41を形成する。
 なお、制御装置65は、アライメント駆動部61の各部、ディスペンサー62、光源63等の動作を統括的に制御する部分である。
 図6、7に示すように、加工装置100のアライメント駆動部61において、XY駆動機構71は、定盤73上に設置されており、Z駆動機構72は、定盤73内に埋め込むように設置されている。XY駆動機構71の上方には、定盤73から延びる支持部(不図示)を介して光源63が支持されている。また、Z駆動機構72の上部には、金型部74が支持されている。この加工装置100により、金型部74にセットされた型部材81すなわちマスター型30を、XY駆動機構71にセットされた基板部材83すなわちサブマスター基板42に対して空間的に所望の配置状態とすることができる。
 XY駆動機構71は、定盤73の上方で2次元的に移動可能なXYステージ75と、XYステージ75をX軸方向に移動させるX軸移動機構61aと、XYステージ75をY軸方向に移動させる一対のY軸移動機構61b,61bとを備える。
 XYステージ75は、定盤73の上面73aに近接して対向配置されている。XYステージ75には、その上下面を貫通する平面視円形の貫通孔75aが形成されている。貫通孔75aの周囲には、基板部材83を支持する座75c及びこれを固定するチャック(不図示)が設けられている。XYステージ75上には、貫通孔75aを塞ぐように平面視四角状の蓋部76が設けられている。 蓋部76は、石英板その他の光透過性を有する平板部材で形成されている。なお、XYステージ75の下部には、XYステージ75に付随するエアスライドガイド機構として、エアを噴出する多数の噴出口(不図示)が設けられており、エアスライド駆動機構61d(図5参照)を適宜動作させてこれらの噴出口から定盤73の上面73aに向けて制御されたエアを噴出させることにより、XYステージ75を非接触で相対移動可能に支持する。また、XYステージ75の貫通孔75aから離れた位置には、ディスペンサー62(図5参照)から延びる吐出用の針部(不図示)を金型部74の上方に導入するための開口部75dが形成されている。
 X軸移動機構61aは、XYステージ75に駆動力を与えてX軸方向に沿って移動させるリニアモーター77aと、XYステージ75の移動を案内するエアスライドガイド機構77bとを有している。リニアモーター77aは、図示を省略するが、固定子、可動子、スケール、センサー等で構成され、制御装置65の制御下で動作するエアスライド駆動機構61d(図5参照)によって、XYステージ75をX軸ガイド77cに沿ってX軸方向の所望位置に移動させることができる。エアスライドガイド機構77bは、図示を省略するが、XYステージ75から延びる突条部77dの内面に開口する多数の噴出孔を有しており、X軸ガイド77cに対してXYステージ75を非接触で相対移動可能に案内する。
 一対のY軸移動機構61bは、X軸ガイド77cを介してX軸移動機構61aを支持している。各Y軸移動機構61bは、X軸移動機構61aに駆動力を与えてXYステージ75をY軸方向に沿って移動させるリニアモーター78aと、リニアモーター78aを保持する移動体78dに支持されたX軸移動機構61a等の移動を案内するエアスライドガイド機構78bとを有している。リニアモーター78aは、図示を省略するが、固定子、可動子、スケール、センサー等で構成され、制御装置65の制御下で動作するエアスライド駆動機構61d(図5参照)によって、X軸移動機構61aやXYステージ75をY軸ガイド78cに沿ってY軸方向の所望位置に移動させることができる。エアスライドガイド機構78bは、図示を省略するが、リニアモーター78aを組み込んだ移動体78dの内面に開口する多数の噴出孔を有しており、Y軸ガイド78cに対してX軸移動機構61a等を非接触で相対移動可能に支持する。
 図8に示すZ駆動機構72は、Z軸ガイド79aと、Zステージ79bと、モーター79cと、エアスライドガイド機構79dとを有している。モーター79cからはシャフト79eが伸縮可能に延びており、シャフト79eに支持されたZステージ79bは、Z軸ガイド79aに案内されて上下のZ軸方向に昇降する。エアスライドガイド機構79dは、図示を省略するが、Z軸ガイド79aの内面に開口する多数の噴出孔を有しており、エアスライド駆動機構61d(図5参照)を適宜動作させることにより、Z軸ガイド79aに対してZステージ79bを非接触で相対移動可能に案内する。
 Z軸ガイド79a上部には、シーリング部材79fが環状に設けられており、金型部74の周辺の処理空間CA1内を減圧できるようになっている。この処理空間CA1は、Zステージ79bやZ軸ガイド79aの上面、定盤73の開口73cの内面、XYステージ75の貫通孔75aの内面、基板部材83等によって画成される空間であり、XYステージ75に設けた通気口79gを介して上部空間CA2に連通している。この上部空間CA2は、基板部材83、XYステージ75の貫通孔75aの内面、蓋部76等によって画成される空間である。処理空間CA1内延いては上部空間CA2内は、真空ポンプ等を備える減圧機構61gに連結されて随時減圧可能になっている。
 Z軸ガイド79aの上端に設けた金型部74は、詳細な説明を省略するが、型部材81の回転姿勢や傾斜姿勢を調整するための姿勢調整機構84を備えている。姿勢調整機構84を適宜動作させることにより、金型部74にセットされた型部材81をZ軸のまわりに適宜回転させたりZ軸に対して適宜傾斜させたりすることができ、マスター型30のサブマスター基板42に対する回転や傾斜に関する姿勢を精密に調整することができる。なお、金型部74は、制御装置65やアクチュエーター61e(図5参照)によって駆動される。 
 ウェハーレンズの製造工程
 図9(A)~9(E)、10(A)~10(D)等を参照しつつ、上述のマスター型30、サブマスター型40、サブサブマスター型50を使用して行われるウェハーレンズ10の製造工程の概要について説明する。なお、以下では第1レンズ樹脂層12の成形について説明するが、第2レンズ樹脂層13の成形についても同様の工程が行われる。
 まず、研削加工等によって、ウェハーレンズ10の第1レンズ樹脂層12を構成する各アレイユニットAUのネガ型に対応するマスター型30を作製する(図11のステップS1参照)。
 次に、図9(A)に示すように、図5等に示す加工装置100を用いて、マスター型30の第1成形面31上に第1の樹脂材料41bを配置する。その後、図9(B)に示すように、図5等に示す加工装置100を用いて、マスター型30の端面30aをサブマスター基板42の表面42aに形成された特定の凹部42cに対向するようにアライメントして配置し、サブマスター基板42の下方からマスター型30を押圧して、第1成形面31と凹部42cとが適当な間隔となるまで近接させる。ここで、樹脂材料41bはマスター型30によって押圧され、凹部42cと、マスター型30の段差32の後退面32aとサブマスター基板42との対向部(隙間部分)とを満たす。この状態で、光源63によりUV光などの所定波長の光を照射し、間に挟まれた第1の樹脂材料41bを硬化させる。結果的に、第1の樹脂材料41bにマスター型30の第1成形面31が転写され、第1の樹脂材料41bに第2成形面43を分割した転写面要素43dを有する樹脂層部分41dが形成される。次に、図9(C)に示すように、マスター型30から樹脂層部分41dとサブマスター基板42とを一体として離型する。これにより、マスター型30の端面30aを対向させた凹部42cを含む矩形領域において樹脂層部分41dが露出する。この樹脂層部分41dは、マスター型30の段差32を転写したものとして、本体の周囲に残膜部44を有する。また、樹脂層部分41dは、その表面として、第2成形面43の一部を構成する転写面要素43dを有する。この転写面要素43dは、マスター型30の第1成形面31上にn個の第1光学転写面31aが形成されている場合、これに対応してn個の第2光学転写面43aを有する。
 次に、図9(A)に戻って、マスター型30の第1成形面31上に第1の樹脂材料41bを配置する。その後、図9(B)に示すように、マスター型30の端面30aをサブマスター基板42の表面42aに形成された次の凹部42cに対向するようにアライメントして配置し、サブマスター基板42の下方からマスター型30を押圧して第1成形面31と凹部42cとが適当な間隔となるまで近接させる。ここで、樹脂材料41bはマスター型30によって押圧され、凹部42cと、マスター型30の段差32の後退面32aとサブマスター基板42との対向部(隙間部分)とを満たす。この状態で、光源63によりUV光などの所定波長の光を照射し、間に挟まれた第1の樹脂材料41bを硬化させる。結果的に、第1の樹脂材料41bにマスター型30の第1成形面31が転写され、第1の樹脂材料41bに第2成形面43を分割した転写面要素43dを有する樹脂層部分41dが形成される。この樹脂層部分41dは、マスター型30の段差32を転写したものとして、本体の周囲に残膜部44を有する。マスター型30の段差32の後退面32aとサブマスター基板42との対向部が樹脂材料41bで満たされることにより、マスター型30の成形面をサブマスター基板42の凹部42cに十分近づけても、過剰の樹脂材料41bが上記対向部において吸収される結果、マスター型30から樹脂がはみ出して意図しない異形状を発生することが防止される。また、凹部42cに充填されるべき樹脂材料41bが不足することが防止され、樹脂材料が不足した場合に次工程のサブサブマスター型の成形時にこの不足部分に起因する突起などの異形状の発生を防止することができる。このような異形状は、結果的にサブサブマスター型50の成形時にサブサブマスター樹脂層51の高低差を過剰に大きくすることにつながり、ウェハーレンズ10の第1レンズ樹脂層12の厚みが過剰になったり厚みの精度が低下したりする可能性も生じてしまう。また、意図しない異形状が形成される結果、離型不良を生じるおそれもある。
 以上の工程を繰り返すことにより、サブマスター基板42上に形成されたすべての凹部42cにおいて樹脂層部分41dが形成され、マトリックス状に配列された多数の樹脂層部分41dを含むサブマスター樹脂層41が形成され、結果としてサブマスター型40が完成する(図11のステップS2参照)。サブマスター樹脂層41は、サブマスター基板42上にm個の凹部42cが形成されている場合、これに対応してm個の樹脂層部分41dを有する。つまり、サブマスター型40上には、n×m個の第2光学転写面43aが形成されている。
 次に、図9(D)に示すように、図5等に示す加工装置100と同様の加工装置を用いて、サブマスター型40の第2成形面43上に第2の樹脂材料51bを広範囲に配置する。その後、図9(E)に示すように、図5等に示す加工装置100と同様の加工装置を用いて、サブサブマスター基板52の下方からサブマスター型40を押圧して第2成形面43とサブサブマスター基板52の表面52aとが近接して適当な間隔となるまで移動させる。この状態で、光源によりUV光などの所定波長の光を照射し、間に挟まれた第2の樹脂材料51bを硬化させる。結果的に、サブマスター型40の第2成形面43が転写されかつ硬化した樹脂によって構成されるサブサブマスター樹脂層51が形成される。つまり、サブサブマスター樹脂層51上に第3成形面53(図4(C)に示す第3光学転写面53a及び第3フランジ転写面53bを含む)が形成される。なお、本実施形態においては、サブサブマスター基板52側から光を照射しているが、サブマスター型40側から光を照射してもよいし、サブサブマスター基板52側とサブマスター型との両方から光を照射してもよい。
 次に、図10(A)に示すように、サブマスター型40からサブサブマスター樹脂層51とサブサブマスター基板52とを一体として離型し、独立したサブサブマスター型50が完成する(図11のステップS3参照)。なお、サブサブマスター型50のサブサブマスター樹脂層51は、サブマスター型40の樹脂層部分41dに対応して多数の樹脂層部分51dに区分されており、これらの樹脂層部分51dは、マトリックス状に配列されている。各樹脂層部分51dの外側には、サブマスター型40の残膜部44に挟まれた凹部の形状に対応する突起部54が形成される。この突起部54は、サブサブマスター型50の表面において格子パターン状に延びる。
 次に、ウェハーレンズ10の作製を開始する。図10(B)に示すように、図5等に示す加工装置100と同様の加工装置を用いて、サブサブマスター型50の第3成形面53上に第3の樹脂材料12b(第1レンズ樹脂層12を形成するための光硬化性樹脂材料)を広範囲に配置する。その後、図10(C)に示すように、図5等に示す加工装置100と同様の加工装置を用いて、基板11の下方からサブサブマスター型50を押圧して第3成形面53と基板11の表面(一方の面)11aとが近接して適当な間隔となるまで移動させる。この状態で、光源によりUV光等の所定波長の光を照射し、間に挟まれた第3の樹脂材料12bを硬化させる。結果的に、サブサブマスター型50の第3成形面53が転写されかつ硬化した樹脂によって構成される第1レンズ樹脂層12が形成される。つまり、第1レンズ樹脂層12上に第1被転写面12a(図1に示す第1光学面OS1及び第1フランジ面FP1を含む)が形成される。なお、本実施形態においては、基板11側から光を照射しているが、サブサブマスター基板52側から光を照射してもよいし、基板11側とサブサブマスター基板52側との両方から光を照射してもよい。
 その後、図10(D)に示すように、サブサブマスター型50から第1レンズ樹脂層12と基板11とを一体として離型する。既に第2レンズ樹脂層13が形成されている場合、ウェハーレンズ10が完成する(図11のステップS4参照)。第2レンズ樹脂層13が形成されていない場合、第1レンズ樹脂層12と同様の工程を行うことで第4の樹脂材料からなる第2レンズ樹脂層13が形成され、第2レンズ樹脂層13用のサブサブマスター型50から第2レンズ樹脂層13と基板11とを一体として離型することで、ウェハーレンズ10が完成する(図11のステップS4参照)。なお、第1レンズ樹脂層12を得るためにサブサブマスター型50を離型する前に、第2レンズ樹脂層13を形成するための工程を開始するようにしてもよい。基板11の一方の面に成形型を残した状態で、基板11の他方の面に成形を始めることで、成形物に反りが発生するのを抑えやすくなる。
 ウェハーレンズ10の第1レンズ樹脂層12は、サブサブマスター型50の樹脂層部分51dに対応してマトリックス状に配列された多数のアレイユニットAUに区分されている。各アレイユニットAUの外縁には、サブサブマスター型50のサブサブマスター樹脂層51に形成された突起部54に隣接する窪み、すなわちサブマスター型40の残膜部44に対応するものとして、突起14が形成される。
 ウェハーレンズ10は、例えば上記と同様の工程で複数種類作製され、これらが適宜積層され、ダイシングラインLに沿って、第1レンズ本体1a等を中心とする四角柱状にダイシングによって切り出されることにより、複数の分割された複合レンズすなわち光学レンズ4(図2参照)となる。
 以上で説明したマスター型30、サブマスター型40、及びサブサブマスター型50は、複数回使用される(図11のステップS5参照)。つまり、これらの型30,40,50が劣化して型交換又は型変更が必要となった場合、マスター型30、サブマスター型40及びサブサブマスター型50のいずれかを新たなものと交換又は別のものを再利用しつつ、図11のステップS1~S4が適当な上限回数まで実行される。結果的に、例えばマスター型30がi回転写され、サブマスター型40がj回転写され、サブサブマスター型50がk回転写されることで、計i×j×k個のウェハーレンズ10を得ることができる。
 サブマスター型の製造工程
 以下、図12を参照して、図5,6等に示す加工装置100を用いたサブマスター型40の製造方法の詳細について説明する。まず、サブマスター基板42(基板部材83)をXYステージ75に設置し(ウェハーロード工程、図12のステップS21参照)、XYステージ75の貫通孔75aを蓋部76で覆う。
 その後、X軸移動機構61a、Y軸移動機構61b等を制御して、XYステージ75をX軸方向及びY軸方向にエアでスライド移動させ、開口部75dから導入されたディスペンサー62の針部(不図示)がマスター型30の上方に位置するように位置合わせを行う(プリアライメント工程、図12のステップS22参照)。この場合において、金型部74やXYステージ75にはアライメントマークが付されており、プリアライメント工程では、顕微鏡61jにより、上記のアライメントマークを確認しながら、ディスペンサー62の吐出用の針部の位置合わせを行う。
 次に、ディスペンサー62の吐出用の針部の先端から金型部74の上部に固定されたマスター型30(型部材81)上に所定量の樹脂を吐出する(ディスペンス工程、図12のステップS23参照)。
 その後、X軸移動機構61a、Y軸移動機構61b、姿勢調整機構84等を制御して、XYステージ75をX軸方向及びY軸方向にエアでスライド移動させ、予め設置しておいたサブマスター基板42が金型部74のマスター型30の上方に適正に位置するように位置合わせを行う(アライメント工程、図12のステップS24参照)。このアライメント工程(ステップS24)は、図9(A)に対応している。
 この際、位置センサー61iに設けた不図示のレーザ測長器等を利用して、XYステージ75の位置を基準位置に精密に配置する。また、位置センサー61iによって、マスター型30の上面の傾きと、マスター型30の高さ位置を算出し、その算出結果に基づき、姿勢調整機構84を動作させて、サブマスター基板42に対するマスター型30の傾斜や高さを精密に調整する。結果的に、マスター型30の第1成形面31がサブマスター基板42の凹部42cに対向し、凹部42cの底面と第1成形面31の第1フランジ転写面31bとが平行になる。さらに、位置センサー61iによって、マスター型30の上面に形成された複数のアライメントマークを検出し、サブマスター基板42に対するマスター型30の位置を回転角とともに精密に調整する。
 このようにマスター型30をアライメントした状態で、Z駆動機構72によってZステージ79bを上昇させて、サブマスター基板42に対してマスター型30を規定の位置まで接近させ、マスター型30をその位置に保持する(インプリント工程、図12のステップS25参照)。その結果、マスター型30上の第1の樹脂材料41bがマスター型30とサブマスター基板42との間に挟まれて徐々に広がり、凹部42cが充填される。この際、圧力センサー61hの出力を監視することで、マスター型30のサブマスター基板42への押し付け圧力が調整される。
 以上のインプリント工程(ステップS25)では、減圧機構61gによって、マスター型30とサブマスター基板42との間の処理空間CA1の内部が減圧されており、第1の樹脂材料41b内への気泡の巻き込みを防止することができる。
 その後、Zステージ79bの位置を保持したまま、光源63を動作させて第1の樹脂材料41bに規定の時間だけUV光等の所定波長の光を照射することで、第1の樹脂材料41bを硬化させて樹脂層部分41dを得る(硬化工程、図12のステップS26参照)。この際、処理空間CA1の内部は減圧機構61gによって減圧状態に維持されており、第1の樹脂材料41bへの酸素阻害を防止でき、第1の樹脂材料41bを確実に硬化させることができる。
 その後、Z駆動機構72によってZステージ79bを降下させて、硬化させた樹脂層部分41dをサブマスター基板42とともにマスター型30から離型する(離型工程、図12のステップS27参照)。このときも、減圧機構61gを動作させて処理空間CA1の内部を減圧状態としておくことによって、樹脂層部分41dの離型が容易になる。
 以後、プリアライメント工程(ステップS22)、ディスペンス工程(ステップS23)、アライメント工程(ステップS24)、インプリント工程(ステップS25)、硬化工程(ステップS26)、離型工程(ステップS27)を必要回数繰り返すことで、サブマスター基板42上に各凹部42cに対応させて樹脂層部分41dを順次形成する。
 サブマスター基板42上に規定の樹脂層部分41dが形成された場合(図12のステップS31でNO)、サブマスター型40が完成したものと判断する。この場合、XYステージ75を基準位置に戻し、XYステージ75から蓋部76を外して完成したサブマスター型40を取り出す(取り出し工程、図12のステップS32参照)。
 サブマスター型を形成する際の寸法条件
 図13を参照して、サブマスター型40を成形する際のマスター型30の形状や配置に関する条件について説明する。
 マスター型30の端面30a側の面積はAであり、マスター型30の有効面積をBであるとする。ここで、面積Aは、マスター型30の第1成形面31の面積だけでなく、段差32の後退面32aも含んだものとなっている。一方、有効面積Bは、マスター型30の第1成形面31の面積だけを意味する。硬化時における凹部42cの底面42dから第1成形面31までの平均的距離(凹部42cとの間に形成される空間の容積が同等となるように第1光学転写面31aと第1フランジ転写面31bとを平均して得られる仮想的な平面の位置までの距離)すなわち樹脂層部分41dの標準厚みはDであるものとし、樹脂層部分41dの外周の残膜部44の厚みはCであるものとする。樹脂層部分41dの標準厚みDや残膜部44の厚みCは、サブマスター型40の樹脂層部分41dを形成する際に、マスター型30をサブマスター基板42にどれだけ近づけるかに依存している。つまり、マスター型30の第1成形面31における最高ラインLA2とサブマスター基板42の表面42aとの距離をEとした場合に、サブマスター型40に設けた凹部42cの深さ(ザグリ量)がTであるとして、樹脂層部分41dの標準的な厚みである有効構造部厚みDは、和T+Eで与えられる。また、残膜部44の厚みCは、マスター型30の段差32の段差量をSとして、和S+Eで与えられる。
 残膜部44は、マスター型30とサブマスター基板42とで樹脂材料を押圧することによって、マスター型30の段差32の後退面32aとサブマスター基板42との対向部を樹脂材料41bが満たす結果、得られる部位である。サブマスター基板42の凹部42cへの樹脂不足が生じることなく、また、マスター型30から樹脂材料41bがはみ出して意図しない異形状を生じることのないように成形される結果、残膜部44は、サブマスター基板42の表面に沿って所定の厚みで所定の幅に広がって形成される。残膜部44の形成により、サブマスター基板42に密着する樹脂層の面積が増すため、マスター型30を離型する際に離型不良が生じることを防止することにも寄与する。残膜部44の体積は、全体の樹脂層部分41dの体積に対して一定以上の割合を有することが必要である。具体的には、残膜部44の体積は、マスター型30の段差32の段差量Sや段差32の幅wをある程度確保することによって、樹脂層部分41dの体積の2%程度かそれ以上とする。なお、残膜部44の体積が全体の2%未満であると、残膜部44に樹脂が満たされないか残膜部44の外側に樹脂がはみ出す可能性が高まり、樹脂層部分41dの周辺に意図しない異形状(例えば突起45)が形成されてしまうおそれがある。このような異形状は、結果的にサブサブマスター型50の成形時にサブサブマスター樹脂層51の高低差を過剰に大きくすることにつながり、ウェハーレンズ10の第1レンズ樹脂層12の厚みが過剰になったり厚みの精度が低下したりする可能性も生じてしまう。また、意図しない異形状が形成される結果、離型不良を生じるおそれもある。
 一方、残膜部44が薄くなると、段差32の幅wを増やさざるを得なくなるが、この場合、樹脂層部分41dの占有面積が残膜部44によって必要以上に増加してサブマスター基板42上に形成できる樹脂層部分41dの個数が減ってしまうという問題がある。なお、段差32の幅wを狭くしたままで残膜部44を薄くすると、樹脂層部分41dの体積比を減少させることになるので、例えばマスター型30の後退面32aとサブマスター基板42の表面42aと間の空間から第1の樹脂材料41bが外側にあふれて、樹脂層部分41dの周辺に意図しない突起45が形成されてしまう。このような突起45は、既に説明したように、結果的にウェハーレンズ10の第1レンズ樹脂層12の厚みの制御を困難にしたり、離型不良が生じたりすることにつながる。以上の観点から、マスター型30の後退面32aとサブマスター基板42の表面42aとのギャップ、すなわち残膜部44の厚みCを一定以上にすることが望ましく、例えば残膜部44の厚みCを10μm以上とする。
 また、残膜部44については、ウェハーレンズ10の第1レンズ樹脂層12の厚みを抑える観点からは、残膜部44の突起高さが樹脂層部分41dの本体部分の突起高さを超えないことが望ましい。このため、マスター型30の後退面32aは、第1成形面31における最低ラインLA1(サブマスター基板42から最も遠い側の部位のZ方向の位置)よりもサブマスター基板42に近い先端側にあることが望ましい。本発明者の検討によれば、残膜部44を上のような厚みに抑えたとしても、過剰の樹脂材料を吸収し得るように設計することが可能であることを確認している。従って、残膜部44をさほど厚くしなくてもよいので、残膜部44自体も含めて樹脂層を薄くすることができ、最終的に得られるウェハーレンズ10の樹脂層の厚みを薄くすることに繋げることができる。
 マスター型30の第1成形面31における最高ラインLA2(最もサブマスター基板42側の部位のZ方向の位置)とサブマスター基板42の表面42aとの距離Eについては、特に下限がなく、マイナスの値(第1成形面31が凹部42c内に入り込む状態)となってもよい。ただし、距離Eについては、成形時のマスター型30の配置に依存するものであり、残膜部44の厚みCがその下限の10μm未満にならないように調整される。一方、距離Eの上限は、サブマスター基板42に凹部42cを設けた意味を鑑みて100μm以下とする。具体例では、第1成形面31の最高ラインLA2のZ軸方向に沿った上下位置は、サブマスター基板42の表面42aの上下位置と略一致しており、距離Eはゼロに近いものとなっている。
 サブマスター基板42に凹部42cの深さTは、第1の樹脂材料41bが薄くなることを防止するとともに第1の樹脂材料41bの広がりを制御する意味で一定以上の値とする必要があり、例えば10μm以上とする。また、深さTは、残膜部44を有効に機能させるため一定の上限があり、既に説明したように、深さTから算出される樹脂層部分41dの体積に対して、残膜部44の体積が2%程度かそれ以上となるようにする。
 以下では、サブマスター基板42上で隣接する一対の樹脂層部分41dを成形する際の移動の前後におけるマスター型30の型間隔Xについて考える。この型間隔Xは、近ければ近いほどサブマスター基板42上に形成できる樹脂層部分41dの数を大きくすることができ、ウェハーレンズ10から取り出せる光学レンズ4の数を増加させることができる点で望ましい。一方で、型間隔Xを狭くすると、上記のように樹脂層部分41dの周辺に意図しない突起45が形成される可能を高める。このため、まずサブマスター基板42において単一の樹脂層部分41dが最大占有可能な最大領域MAを考える。この最大領域MAの面積SAは、マスター型30のY軸方向の幅aから
SA=(X+a)=(X+√A)
で与えられる。よって、残膜部44を形成可能な面積(以下、非有効部面積NA)は、
NA=SA-B=(X+√A)-B
となるので、残膜部44に許容される最大体積(以下、バッファ項TB)は、
TB=NA×C=〔(X+√A)-B〕×C
となる。ここで、単一の樹脂層部分41dを形成するための第1の樹脂材料41bの体積RVは、RV=B×D+(A-B)×Cであるから、第1の樹脂材料41bの供給体積の誤差(以下、樹脂バラツキ項TD1)は、例えば
TD1=0.05×〔B×D+(A-B)×C〕
程度以下となる。また、サブマスター基板42の凹部42cの深さに関する誤差(以下、深さバラツキ項TD2)は、例えば
TD2=0.005×A
程度以下となる。よって、バッファ項TBは、樹脂バラツキ項TD1や深さバラツキ項TD2を吸収できる程度の容量に設定されるべきであり、以下の関係式
TB≧TD1+TD2   …   (1)
〔(X+√A)-B〕×C≧0.05×〔B×D+(A-B)×C〕
            +0.005×A   …   (2)
が成り立つ。関係式(2)を型間隔Xについて整理すると、以下の関係式
X≧√{B+(0.05×〔B×D+[A-B]×C〕+0.005×A)/C}-√A   …   (3)
が得られる。
 以下、具体例について説明する。マスター型30の端面30aの面積Aは、例えば396mm(=19.9mm×19.9mm)であり、マスター型30の有効面積Bは、例えば334.9mm(=18.3mm×18.3mm)である。また、残膜部44の厚みCは、例えば0.04mm程度であり、樹脂層部分41dの有効構造部厚みDは、例えば0.1mm程度である。よって、
X≧0.83mm
となる。つまり、移動の前後におけるマスター型30の型間隔Xは0.83mmあれば足りることになり、型間隔Xを不必要に増大させることは望ましくなく、型間隔Xは、0.85mm程度とする。
 本実施形態の記製造方法によれば、サブマスター基板(第1基板)42に形成された複数の凹部42cのうち1つの凹部42cとマスター型30の第1成形面31との間に第1の樹脂材料41bを満たすので、第1成形面31に対向する第1の樹脂材料41bの厚みが確保され、比較的容易にマスター型30をサブマスター基板42に近づけることができる。しかも、第1成形面31の周囲に環状の段差32を設け、段差32と凹部42cの周辺との間に第1の樹脂材料41bを満たすようにすることで、サブマスター基板42の凹部42cへ充填する樹脂材料に不足を生じたり、過剰の樹脂材料がマスター型30からはみ出したりすることを防止し、異形状が発生することを防ぐことができる。
 なお、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
 例えば、ウェハーレンズ10の輪郭形状や、レンズ要素L1,L2の形状及び配列は、図示のものに限らず、用途に応じて様々な形状とすることができる。
 同様に、サブマスター型40に形成されるサブマスター樹脂層41、サブサブマスター型50に形成されるサブサブマスター樹脂層51等の形状も図示のものに限らず、用途に応じて様々な形状とすることができる。
 以上の説明では、樹脂層12,13,41,51が光硬化性樹脂で形成されるものとし、光照射で樹脂材料を硬化させたが、光照射に加えて加熱により硬化を促進させてもよい。また、光硬化性樹脂に代えて、熱硬化性樹脂等の他のエネルギー硬化性樹脂で形成することもできる。
 サブマスター基板42に対するマスター型30の移動方法については、特に制限はないが、なるべく隣接する凹部42cに移動する経路とすることが処理速度上は望ましい。マスター型30に対してサブマスター基板42を移動させてもよいし、両者を移動させてもよい。両者で樹脂を押圧する際も同様であり、マスター型30をサブマスター基板42に押圧する代わりに、サブマスター基板42をマスター型30に押圧してもよいし、両者を移動して近づけてもよい。
 上記実施形態においては、最終的に得られるウェハーレンズとして、基板上に光学レンズとして機能する樹脂層を設けたものについて説明したが、これに限らず、特に基板を有しておらず、光学レンズとして機能する部分とその周囲の平坦部、及び、それらを連結する部分が樹脂で一体的に構成されたものであってもよい。
 上記実施形態においては、サブサブマスター型を用いてウェハーレンズを作製する例について説明したが、これに限るものではなく、サブマスター型を用いてウェハーレンズを作製するようにしてもよい。この場合、原版となるマスター型は、最終成形物であるウェハーレンズのレンズ要素のポジ型とする。第1レンズ樹脂層12と第2レンズ樹脂層13ともに、サブサブマスター型を用いて成形を行ってもよいし、両者ともにサブマスター型を用いて成形を行ってもよいし、一方をサブサブマスター型、他方をサブマスター型で成形してもよい。

Claims (11)

  1.  光学レンズに対応する形状が複数配列された成形面を有し該成形面の周囲に環状の段差が設けられているマスター型を、前記成形面より大きいサイズの凹部であって内部が閉じた形状の凹部が平坦面上に複数形成された成形型用の第1基板に、前記成形面全体が前記複数の凹部のうち1つの凹部に対向するように配置する第1の工程と、
     前記マスター型と前記第1基板とを相対的に接近させ、かつ、前記凹部及び前記段差が覆われるように前記成形面と前記第1基板との間に第1の樹脂材料を満たす第2の工程と、
     前記成形面と前記第1基板との間の前記第1の樹脂材料を硬化させる第3の工程と、
     前記マスター型を離型する第4の工程とを備え、
     前記マスター型を前記複数の凹部のうち他の凹部に向けて移動させて、前記第1の工程から前記第4の工程までを繰り返し実行することにより、樹脂製の形状転写層を有する成形型を得る成形型の製造方法。
  2.  前記マスター型によって前記第1基板上に前記成形面に対応する矩形の複数の成形領域が設定され、前記複数の成形領域のうち隣り合う2つの成形領域における前記マスター型の間隔Xについて、前記段差の後退面及び前記成形面を含めた前記マスター型の面積をAとし、前記成形面に対応する前記マスター型の有効面積をBとし、前記第3の工程時における前記段差の前記後退面と前記第1基板の前記平坦面との距離に対応する残膜部厚みをCとし、前記第3の工程時における前記成形面と該成形面に対向する凹部の底面との平均的距離に対応する有効構造部厚みをDとしたときに、以下の関係式
    X≧√{B+(0.05×〔B×D+[A-B]×C〕+0.005×A)/C}-√A
    満たす、請求項1に記載の成形型の製造方法。
  3.  前記第3の工程において、前記段差の前記後退面と前記第1基板の前記平坦面との距離に対応する残膜部厚みは、前記成形面における前記第1基板から最も遠い部位と前記第1基板の前記平坦面との前記平坦面に垂直な方向における距離よりも小さい、請求項1及び請求項2のいずれか一項に記載の成形型の製造方法。
  4. 前記第3の工程において、前記成形面の最も前記第1基板側の部位と、前記第1基板の前記平坦面とは、前記平坦面に垂直な方向における位置が略一致する、請求項1に記載の成形型の製造方法。
  5.  前記マスター型の前記成形面は、光学レンズに対応する形状の周囲に設けられた平坦なフランジ転写面を含む、請求項1に記載の成形型の製造方法。
  6.  前記第2の工程において、前記マスター型及び前記第1基板のうち少なくとも一方に配置された前記第1の樹脂材料を、前記マスター型と前記第1基板とを相対的に接近させることにより、前記凹部及び前記段差部が覆われるように前記成形面と前記第1基板との間に前記第1の樹脂材料を満たす、請求項1に記載の成形型の製造方法。
  7.  請求項1に記載の成形型の製造方法により得られた前記樹脂製の成形型を第1の成形型とし、該第1の成形型と成形型用の第2基板との間に第2の樹脂材料を満たし、該第2の樹脂材料を硬化させ、前記第1の成形型を離型することにより、第2の成形型を得る成形型の製造方法。
  8.  請求項7に記載の成形型の製造方法により得られた前記第2の成形型と請求項1に記載の成形型の製造方法により得られた第1の成形型との少なくとも一方と、第3基板の表面との間に第3の樹脂材料を満たし、該第3の樹脂材料を硬化させ、前記第1又は第2の成形型を離型することにより、前記第3基板の表面に複数のレンズ要素が形成されたウェハーレンズを得る第5の工程を有するウェハーレンズの製造方法。
  9.  請求項7に記載の成形型の製造方法により得られた前記第2の成形型と請求項1に記載の成形型の製造方法により得られた第1の成形型との少なくとも一方と、前記第3基板の裏面との間に第4の樹脂材料を満たし、該第4の樹脂材料を硬化させ、前記第1又は第2の成形型を離型することにより、前記第3基板の裏面に複数の光学レンズが形成されたウェハーレンズを得る第6の工程を有する、請求項8に記載のウェハーレンズの製造方法。
  10.  前記第5の工程における前記第1又は第2の成形型の離型前に、前記第6の工程を開始する、請求項9に記載のウェハーレンズの製造方法。
  11.  請求項8から請求項10までのいずれか一項に記載のウェハーレンズの製造方法により得られた前記ウェハーレンズを切断して個片化する工程を備える光学レンズの製造方法。
PCT/JP2012/051375 2011-01-25 2012-01-23 成形型、ウェハーレンズ及び光学レンズの製造方法 WO2012102249A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012554790A JP5725042B2 (ja) 2011-01-25 2012-01-23 成形型、ウェハーレンズ及び光学レンズの製造方法
US13/981,013 US20130300011A1 (en) 2011-01-25 2012-01-23 Method for producing molding die, wafer lens, and optical lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011013323 2011-01-25
JP2011-013323 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012102249A1 true WO2012102249A1 (ja) 2012-08-02

Family

ID=46580815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051375 WO2012102249A1 (ja) 2011-01-25 2012-01-23 成形型、ウェハーレンズ及び光学レンズの製造方法

Country Status (4)

Country Link
US (1) US20130300011A1 (ja)
JP (1) JP5725042B2 (ja)
TW (1) TWI503580B (ja)
WO (1) WO2012102249A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328224A1 (en) * 2011-03-07 2013-12-12 Konica Minolta, Inc. Methods for producing molding die, wafer lens, and optical lens

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935807B2 (ja) * 2017-02-02 2021-09-15 昭和電工マテリアルズ株式会社 電子部品の製造方法、仮保護用樹脂組成物及び仮保護用樹脂フィルム
CN111010871B (zh) * 2017-03-16 2024-07-30 分子印记公司 光学聚合物膜及其铸造方法
JP7142691B2 (ja) 2017-10-17 2022-09-27 マジック リープ, インコーポレイテッド ポリマー製品を成型する方法および装置
CN113167969B (zh) 2018-10-16 2023-08-08 奇跃公司 用于浇铸聚合物产品的方法和装置
CN111138074B (zh) * 2020-01-09 2021-07-30 诚瑞光学(常州)股份有限公司 玻璃产品成型模具、成型设备及加工方法
CN113777829A (zh) * 2021-08-26 2021-12-10 惠州视维新技术有限公司 光学透镜、背光模组以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245072A (ja) * 2005-02-28 2006-09-14 Canon Inc パターン転写用モールドおよび転写装置
JP2010102312A (ja) * 2008-09-26 2010-05-06 Sharp Corp 光学素子ウエハおよびその製造方法、光学素子、光学素子モジュール、電子素子ウエハモジュール、電子素子モジュール、電子情報機器
JP2010251601A (ja) * 2009-04-17 2010-11-04 Toshiba Corp テンプレート及びその製造方法、並びにパターン形成方法
WO2010137368A1 (ja) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 ウエハレンズの製造方法及びウエハレンズ積層体の製造方法並びに製造装置
WO2010143466A1 (ja) * 2009-06-12 2010-12-16 コニカミノルタオプト株式会社 ウエハレンズの製造方法、中間型、光学部品、成形型及び成形型の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201609A (ja) * 2000-01-19 2001-07-27 Nippon Sheet Glass Co Ltd 平板状マイクロレンズの製造方法及びこの方法で製造された平板状マイクロレンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245072A (ja) * 2005-02-28 2006-09-14 Canon Inc パターン転写用モールドおよび転写装置
JP2010102312A (ja) * 2008-09-26 2010-05-06 Sharp Corp 光学素子ウエハおよびその製造方法、光学素子、光学素子モジュール、電子素子ウエハモジュール、電子素子モジュール、電子情報機器
JP2010251601A (ja) * 2009-04-17 2010-11-04 Toshiba Corp テンプレート及びその製造方法、並びにパターン形成方法
WO2010137368A1 (ja) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 ウエハレンズの製造方法及びウエハレンズ積層体の製造方法並びに製造装置
WO2010143466A1 (ja) * 2009-06-12 2010-12-16 コニカミノルタオプト株式会社 ウエハレンズの製造方法、中間型、光学部品、成形型及び成形型の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328224A1 (en) * 2011-03-07 2013-12-12 Konica Minolta, Inc. Methods for producing molding die, wafer lens, and optical lens
JP5725153B2 (ja) * 2011-03-07 2015-05-27 コニカミノルタ株式会社 成形型、ウェハーレンズ及び光学レンズの製造方法
US9789656B2 (en) * 2011-03-07 2017-10-17 Konica Minolta, Inc. Methods for producing molding die, wafer lens, and optical lens

Also Published As

Publication number Publication date
JPWO2012102249A1 (ja) 2014-06-30
JP5725042B2 (ja) 2015-05-27
TWI503580B (zh) 2015-10-11
US20130300011A1 (en) 2013-11-14
TW201303376A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5725042B2 (ja) 成形型、ウェハーレンズ及び光学レンズの製造方法
CN103048878B (zh) 压印方法、压印装置和设备制造方法
WO2010143466A1 (ja) ウエハレンズの製造方法、中間型、光学部品、成形型及び成形型の製造方法
EP2650705B1 (en) Lens plate for wafer-level camera and method of manufacturing same
JP2010240928A (ja) 微細構造転写スタンパ及び微細構造転写装置
WO2010137368A1 (ja) ウエハレンズの製造方法及びウエハレンズ積層体の製造方法並びに製造装置
JP2012529069A (ja) レンズ及びその製造方法
JP2006337985A (ja) ハイサグレンズの製作方法及びこれを利用し製作されたレンズ
JP2009018578A (ja) 造形方法、レンズの製造方法、及び造形装置
US20170274418A1 (en) Imprint apparatus, operation method of imprint apparatus, and article manufacturing method
CN105892230B (zh) 模具、压印设备和制造物品的方法
KR102602905B1 (ko) 성형 장치 및 물품 제조 방법
WO2010087083A1 (ja) ウエハレンズの製造方法及びウエハレンズ製造装置
JP5883447B2 (ja) レンズウエハーを製造するための方法および装置
JP5725153B2 (ja) 成形型、ウェハーレンズ及び光学レンズの製造方法
US20230091051A1 (en) Imprint apparatus, imprint method, and article manufacturing method
JP2019165091A (ja) インプリント装置、および、物品の製造方法
JP2012183777A (ja) 成形型、ウェハレンズ及び光学レンズの製造方法
KR100983043B1 (ko) 마이크로 렌즈용 마스터 및 마이크로 렌즈 제조방법
JP2021061328A (ja) 型を用いて基板上の組成物を成形する成形装置、成形方法、及び、物品製造方法
JP2012158098A (ja) 成形型等の製造方法並びに成形型の製造装置
JP2024090241A (ja) インプリント方法、インプリント装置、および物品の製造方法
JP2023156163A (ja) インプリント装置、インプリント方法及び物品の製造方法
JP2021184441A (ja) モールド、インプリント装置、および物品製造方法
WO2020185162A1 (en) Method of manufacturing a plurality of optical elements and product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554790

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738932

Country of ref document: EP

Kind code of ref document: A1