WO2012101807A1 - 無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム - Google Patents

無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム Download PDF

Info

Publication number
WO2012101807A1
WO2012101807A1 PCT/JP2011/051668 JP2011051668W WO2012101807A1 WO 2012101807 A1 WO2012101807 A1 WO 2012101807A1 JP 2011051668 W JP2011051668 W JP 2011051668W WO 2012101807 A1 WO2012101807 A1 WO 2012101807A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
reception quality
unit
serving cell
sir
Prior art date
Application number
PCT/JP2011/051668
Other languages
English (en)
French (fr)
Inventor
哲也 沖
夏彦 中谷内
誠 栗本
真介 岡添
佐藤 孝
雄二 細川
洋二 菅原
孝行 若林
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/051668 priority Critical patent/WO2012101807A1/ja
Publication of WO2012101807A1 publication Critical patent/WO2012101807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to a wireless communication device, a wireless communication device control method, and a wireless communication device control program.
  • a plurality of base stations and a plurality of mobile devices use the same frequency band without interfering with each other, from the base station to the mobile device.
  • Downstream transmission power control is performed.
  • the mobile station measures SIR (Signal to Interference Ratio), which is one of the reception qualities of radio signals transmitted from the base station, and the measured SIR and a predetermined SIR Is compared with the target SIR, which is the target value.
  • SIR Signal to Interference Ratio
  • the mobile station transmits a transmission power control (TPC) signal that controls increase / decrease in transmission power at the base station so that the measured SIR approaches the target SIR based on the comparison result between the measured SIR and the target SIR.
  • TPC transmission power control
  • the mobile station transmits a TPC signal instructing a decrease in transmission power to the base station, and when the measured SIR is smaller than the target SIR, the transmission power A TPC signal instructing an increase in the frequency is transmitted to the base station.
  • the base station that has received the TPC signal increases or decreases the transmission power according to the TPC signal. Thereby, interference between base stations can be prevented, communication capacity can be increased, and frequency resources can be used effectively.
  • the mobile device has a so-called soft hand-over (SHO) function.
  • the SHO function includes a plurality of base stations that accommodate a serving cell and a non-serving cell when moving from a cell where a mobile station is currently located (hereinafter referred to as a “serving cell”) to an adjacent cell (hereinafter referred to as a “non-serving cell”). It is a function to communicate at the same time.
  • it is desirable to perform transmission power control so that the downlink transmission power is equal in all base stations including base stations accommodating non-serving cells as well as base stations accommodating serving cells.
  • the following conventional techniques are known as techniques for improving the communication quality of non-serving cells when the SHO function is executed. That is, in the conventional technique, a base station having the worst BER (Bit Error Rate) of a downlink TPC signal among a plurality of base stations is searched as a non-serving cell, and a target SIR corresponding to the searched non-serving cell is increased. By increasing the target SIR, a TPC signal instructing an increase in transmission power in the base station that accommodates the non-serving cell is transmitted to the base station, and as a result, the communication quality of the non-serving cell is improved.
  • BER Bit Error Rate
  • the target SIR corresponding to the non-serving cell having the worst BER of the TPC signal in the downlink is increased regardless of the difference between the communication quality of the serving cell and the communication quality of the non-serving cell. For this reason, when the communication quality of the non-serving cell is poor compared with the communication quality of the serving cell and the difference amount of the communication quality between both cells is excessive, the target BER for the best BER of the downlink TPC signal is obtained. SIR becomes excessively high. As a result, the transmission power at the base station that accommodates the serving cell increases excessively, and the accuracy of transmission power control as a whole deteriorates.
  • the disclosed technique has been made to solve the above-described problems of the prior art, and can improve the accuracy of transmission power control during execution of the SHO function, a wireless communication apparatus control method, and a wireless communication apparatus.
  • An object is to provide a communication device control program.
  • the wireless communication device disclosed in the present application has a function of communicating simultaneously with a plurality of base stations in one aspect.
  • the wireless communication apparatus includes a reception unit, a measurement unit, a target value determination unit, and a transmission power control signal transmission unit.
  • the receiving unit receives radio signals transmitted from the plurality of base stations.
  • the measurement unit based on the received radio signal, a first reception quality that is a reception quality for the first base station among the plurality of base stations, and a second base other than the first base station
  • the second reception quality that is the reception quality for the station is measured.
  • the target value determination unit determines a target value for transmission power in the first base station and the second base station based on a difference amount between the first reception quality and the second reception quality.
  • the transmission power control signal transmission unit is configured to determine transmission power of the first base station and the second base station based on the determined target value and the first reception quality and / or the second reception quality.
  • a control signal for controlling the increase / decrease is generated and transmitted to the first base station and the second base station.
  • the wireless communication device disclosed in the present application it is possible to improve the accuracy of transmission power control when the SHO function is executed.
  • FIG. 1 is a diagram for explaining transmission power control processing by the mobile device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a frame configuration example of F-DPCH.
  • FIG. 3 is a diagram for explaining a process in which a mobile device determines a target SIR based on a difference amount between the SIR of a serving cell and the SIR of a non-serving cell.
  • FIG. 4 is a block diagram illustrating the configuration of the mobile device according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the conversion table stored in the conversion table storage unit.
  • FIG. 6 is a flowchart illustrating a processing procedure performed by the mobile device according to the first embodiment.
  • FIG. 7 is a flowchart showing a processing procedure of normal transmission power control processing.
  • FIG. 1 is a diagram for explaining transmission power control processing by the mobile device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a frame configuration example of F-DPCH.
  • FIG. 3 is
  • FIG. 8 is a flowchart showing the processing procedure of the SHO transmission power control processing.
  • FIG. 9 is a flowchart showing the processing procedure of the SHO transmission power control processing.
  • FIG. 10 is a block diagram illustrating the configuration of the mobile device according to the second embodiment.
  • FIG. 11 is a diagram illustrating an example of an internal table included in the target value determination unit.
  • FIG. 12 is a diagram illustrating an example of a conversion table stored in the conversion table storage unit.
  • FIG. 13 is a flowchart showing a processing procedure of SHO transmission power control processing.
  • FIG. 14 is a flowchart illustrating a processing procedure of SHO transmission power control processing.
  • FIG. 15 is a diagram illustrating a computer that executes a wireless communication device control program.
  • a wireless communication apparatus such as a mobile phone
  • UE User Equipment
  • a cell used by a mobile station where it is currently located is referred to as a “serving cell”
  • a cell adjacent to or overlapping the serving cell is referred to as a “non-serving cell”.
  • FIG. 1 is a diagram for explaining transmission power control processing by the mobile device 100 according to the first embodiment.
  • the mobile device 100 according to the first embodiment has a soft handover (SHO: Soft Hand-Over) function for simultaneous communication with a plurality of base stations 10 and 20.
  • SHO Soft Hand-Over
  • the mobile device 100 performs an SHO function to perform communication simultaneously with the base station 10 that accommodates the serving cell 1 and the base station 20 that accommodates the non-serving cell 2.
  • the base station 10 that accommodates the serving cell 1 is sometimes referred to as “serving cell base station 10”
  • the base station 20 that accommodates the non-serving cell 2 is sometimes referred to as “non-serving cell base station 20”.
  • 1 shows one non-serving cell base station 20, but the number of non-serving cell base stations 20 may be two or more.
  • the mobile device 100 receives a radio signal transmitted from the base stations 10 and 20 that are simultaneously communicating by executing the SHO function (see (1) in FIG. 1).
  • the mobile device 100 receives radio signals transmitted from the base stations 10 and 20 through F-DPCH (Fractional Dedicated Physical Channel) which is one of the downlink communication channels.
  • F-DPCH Fractional Dedicated Physical Channel
  • the mobile device 100 measures the reception quality of the serving cell 1 that is the reception quality for the base station 10 and the reception quality of the non-serving cell 2 that is the reception quality for the base station 20 based on the received radio signal. (See (2) in FIG. 1).
  • the mobile device 100 uses a transmission power control (TPC) signal included in a radio signal received from the base station 10 through the F-DPCH, which is one of the reception qualities of the serving cell 1 SIR (Signal Signal). to Interference Ratio).
  • SIR Signal
  • the mobile device 100 measures SIR, which is one of the reception qualities of the non-serving cell 2, using a TPC signal included in a radio signal received from the base station 20 through the F-DPCH.
  • the TPC signal is a control signal for instructing the transmission side to increase or decrease the transmission power from the transmission side, and the reception side increases or decreases its own transmission power according to this TPC signal.
  • FIG. 2 shows an example of an F-DPCH frame structure including a TPC signal.
  • the F-DPCH is a communication channel for transmitting only a TPC signal to a user who does not have data to be transmitted on a dedicated channel.
  • the F-DPCH has 15 slots of Slots # 0 to # 14 per frame. Each slot transmits only the TPC signal, and transmission other than the TPC signal is turned off.
  • the mobile device 100 measures the SIR of the TPC signal received through the F-DPCH, takes a moving average of the measured SIR, and measures the averaged SIR as the SIR of the serving cell 1 or the SIR of the non-serving cell 2.
  • the mobile device 100 determines a target value for transmission power in the serving cell base station 10 and the non-serving cell base station 20 based on the difference amount between the first reception quality and the second reception quality (FIG. 1). (See (3)). For example, the mobile device 100 sets a target SIR (Target SIR) that is a target value for transmission power in the serving cell base station 10 and the non-serving cell base station 20 based on the difference amount between the SIR of the serving cell 1 and the SIR of the non-serving cell 2. decide.
  • the initial value of the target SIR is acquired by referring to a conversion table in which information about reception quality that can be acquired based on a signal received from the base station is associated with the initial value of the target SIR.
  • the initial value of the target SIR corresponding to the TPC Error Rate (example of reception quality acquired based on the signal received from the base station) indicated by the L3 message from the serving base station at the time of connection is selected from the conversion table.
  • FIG. 3 is a diagram for explaining a process in which the mobile device 100 determines a target SIR based on a difference amount between the SIR of the serving cell 1 and the SIR of the non-serving cell 2.
  • mobile device 100 calculates difference amount
  • the mobile device 100 uses the initial value of the target SIR as it is because the communication quality of the non-serving cell 2 is not deteriorated compared to the serving cell 1.
  • the target SIR is determined.
  • the mobile device 100 has a communication quality of the non-serving cell 2 that is deteriorated as compared with the serving cell 1, so that the initial value of the target SIR is predetermined.
  • An update value obtained by adding the offset values is determined as a new target SIR.
  • the mobile device 100 Based on the determined target value and the measured reception quality of the serving cell 1, the mobile device 100 generates a TPC signal that controls increase / decrease in transmission power in the base station 10 and the base station 20, and Transmit to the base station 20 (see (4) in FIG. 1). For example, the mobile device 100 compares the target SIR determined as the target value with the measured SIR of the serving cell 1, and determines a TPC signal that controls increase / decrease in transmission power in the base station 10 and the base station 20 according to the comparison result. Generate.
  • the mobile device 100 determines the target SIR based on the difference amount between the reception quality of the serving cell 1 and the reception quality of the non-serving cell 2. Then, the mobile device 100 generates and transmits a TPC signal for controlling increase / decrease in transmission power in the serving cell base station 10 and the non-serving cell base station 20 based on the determined target SIR and the reception quality of the serving cell 1. For this reason, the mobile device 100 can improve the communication quality of the non-serving cell 2 while suppressing an excessive increase in the transmission power in the serving cell base station 10 when the SHO function is executed. Accuracy can be improved.
  • FIG. 4 is a block diagram illustrating the configuration of the mobile device 100 according to the first embodiment.
  • the mobile device 100 includes an antenna duplexer 110, an RF (Radio Frequency) unit 120, an ABB (Analog Base-Band) unit 130, a DBB (Digital Base-Band) unit 140, a control unit 150, and a conversion unit.
  • a table storage unit 160 is included.
  • the antenna duplexer 110 transmits the signal amplified by the RF unit 120 to the base stations 10 and 20 via the antenna 110a. Further, the antenna duplexer 110 sends a signal received from the base stations 10 and 20 via the antenna 110 a to the RF unit 120.
  • the RF unit 120 includes a transmission unit 121 and a reception unit 122.
  • Transmitting section 121 converts the signal input from ABB section 130 into a high-frequency signal by orthogonal modulation, amplifies the converted high-frequency signal so as to have a predetermined transmission power, and transmits the amplified signal to antenna duplexer 110. Send it out.
  • the receiving unit 122 amplifies the signal input from the RF unit 120 and sends the amplified signal to the ABB unit 130.
  • the ABB unit 130 includes a DAC (Digital to Analog Converter) unit 131 and an ADC (Analog to Digital Converter) unit 132.
  • the DAC unit 131 converts the signal input from the DBB unit 140 into an analog signal, and sends the converted signal to the RF unit 120.
  • the ADC unit 132 converts the signal input from the RF unit 120 into a digital signal, and sends the converted signal to the DBB unit 140.
  • the DBB unit 140 performs various types of baseband processing such as error correction code addition impossible, framing, data modulation, and spread modulation on the signal input from the control unit 150, and the baseband processed signal is output to the ABB unit 130. To send. Further, the DBB unit 140 performs various baseband processing such as despreading, chip synchronization, error correction decoding, data demultiplexing, and handover combining on the signal input from the ABB unit 130, and the signal after the baseband processing Is sent to the control unit 150.
  • baseband processing such as error correction code addition impossible, framing, data modulation, and spread modulation
  • the control unit 150 includes an internal memory for storing a program that defines various processing procedures and the necessary data, and executes various processes using these programs.
  • the control unit 150 includes an SHO execution unit 151, a determination unit 152, a reception unit 153, a measurement unit 154, an acquisition unit 155, a target value determination unit 156, and a TPC signal transmission unit 157.
  • the SHO execution unit 151 executes the SHO function. For example, the SHO execution unit 151 monitors cells around the serving cell 1 and transmits the monitoring result to the base station of the serving cell 1. The SHO execution unit 151 executes the SHO function when a handover instruction according to the transmitted monitoring result is received from the base station. In the example illustrated in FIG. 1, the SHO execution unit 151 monitors the non-serving cell 2 around the serving cell 1 and transmits the monitoring result to the serving cell base station 10. The SHO execution unit 151 executes the SHO function when a handover instruction corresponding to the monitoring result is received from the serving cell base station 10. As a result, the SHO execution unit 151 performs simultaneous communication between the serving cell base station 10 and the non-serving cell base station 20. In addition, the SHO execution unit 151 notifies the determination unit 152 of information indicating whether or not the SHO function can be executed. *
  • the SHO execution unit 151 receives the Target Quality indicating the target value of the error rate of the TPC signal notified from the serving cell base station 10 and delivers it to the acquisition unit 155.
  • the determination unit 152 determines whether or not the SHO function is being executed according to the information received from the SHO execution unit 151 and indicating whether or not the SHO function can be executed. Then, the determination unit 152 notifies the reception unit 153 of the determination result as to whether or not the SHO function is being executed.
  • the receiving unit 153 When receiving the determination result that the SHO function is being executed from the determination unit 152, the receiving unit 153 includes a plurality of bases including the serving cell base station 10 and the non-serving cell base station 20 that are simultaneously communicating by the SHO function. A radio signal transmitted from the station is received. Note that radio signals transmitted from a plurality of base stations are received by the receiving unit 153 via the antenna duplexer 110, the RF unit 120, the ABB unit 130, and the DBB unit 140.
  • the reception unit 153 receives a radio signal transmitted from the serving cell base station 10.
  • a radio signal transmitted from the serving cell base station 10 is received by the receiving unit 153 via the antenna duplexer 110, the RF unit 120, the ABB unit 130, and the DBB unit 140.
  • the measuring unit 154 measures the reception quality for the base station based on the radio signal received by the receiving unit 153. For example, the measurement unit 154 measures the SIR of the serving cell 1 and the non-serving cell 2 using the TPC signal included in the radio signal received by the reception unit 153 when the SHO function is executed. On the other hand, the measurement unit 154 measures the SIR of the serving cell using the TPC signal included in the radio signal received by the reception unit 153 when the SHO function is not executed.
  • CPICH_RSCP Common Pilot Channel Received Signal Code Power
  • CPICH_Ec / No CPICH received Energy per chip divided by the power density in the band
  • Passloss may be measured as reception quality other than SIR.
  • CPICH_RSCP is the signal code power after despreading of the common pilot channel (CPICH).
  • CPICH_Ec / No is the ratio of the power per chip of CPICH to the total power per chip.
  • Passloss is a parameter obtained by subtracting CPICH_RSCP from the transmission power of CPICH.
  • the acquisition unit 155 acquires the initial value of the target SIR. For example, the acquisition unit 155 receives the Target Quality from the SHO execution unit 151. Then, the acquisition unit 155 acquires a target SIR corresponding to the received Target Quality as an initial value of the target SIR from a target SIR initial value table described later of the conversion table storage unit 160.
  • the Target Quality corresponds to the TPC Error Rate indicated by the L3 message from the serving base station.
  • the target value determination unit 156 determines a target SIR for transmission power in the base station based on the reception quality measured by the measurement unit 154. For example, the target value determination unit 156 calculates the difference amount between the SIR of the serving cell 1 measured by the measurement unit 154 and the SIR of the non-serving cell 2 when the SHO function is executed. Then, the target value determination unit 156 compares the calculated difference amount with a predetermined threshold value. Then, when the difference amount is less than the threshold value, the target value determination unit 156 determines the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR as it is.
  • the target value determination unit 156 acquires the target SIR update value corresponding to the Target Quality from the target SIR update value table (to be described later) of the conversion table storage unit 160 when the difference amount is equal to or greater than the threshold.
  • the update value is determined as a new target SIR.
  • the target value determination unit 156 determines the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR as it is when the SHO function is not executed.
  • the TPC signal transmission unit 157 generates a TPC signal that controls increase / decrease in transmission power of the serving cell base station 10 based on the target SIR determined by the target value determination unit 156 and the SIR of the serving cell 1 measured by the measurement unit 154. Then send. For example, the TPC signal transmission unit 157 calculates a difference amount between the target SIR determined by the target value determination unit 156 and the SIR of the serving cell 1 measured by the measurement unit 154, and the calculated difference amount is equal to or less than a predetermined threshold value. It is determined whether or not there is. Then, when the calculated difference amount is equal to or smaller than the threshold, the TPC signal transmission unit 157 generates an uplink TPC signal instructing maintenance of transmission power, and transmits the generated TPC signal.
  • the TPC signal transmission unit 157 compares the target SIR determined by the target value determination unit 156 with the SIR of the serving cell 1 measured by the measurement unit 154. Then, when the SIR of the serving cell 1 measured by the measurement unit 154 is smaller than the target SIR, the TPC signal transmission unit 157 generates an uplink TPC signal instructing an increase in transmission power, and the generated TPC signal Send. On the other hand, when the SIR of serving cell 1 is equal to or greater than the target SIR, TPC signal transmission section 157 generates an uplink TPC signal that instructs a decrease in transmission power, and transmits the generated TPC signal.
  • the TPC signal is transmitted to both the serving cell base station 10 and the non-serving cell base station 20 when the SHO function is executed, and is transmitted only to the serving cell base station 10 when the SHO function is not executed.
  • the conversion table storage unit 160 stores a plurality of conversion tables for converting the error rate of the TPC signal into the target SIR.
  • An example of the conversion table stored in the conversion table storage unit 160 is shown in FIG.
  • the conversion table storage unit 160 includes a target SIR initial value table and a target SIR which are conversion tables in which a TPC signal error rate (TPC Error Rate) and a target SIR (Target-SIR) are associated in advance. Stores the update value table.
  • the target SIR initial value table is a conversion table having information to be referred to when the acquisition unit 155 acquires the initial value of the target SIR corresponding to the error rate of the TPC signal.
  • the acquisition unit 155 acquires the target SIR “2.5 dB” corresponding to the error rate “0.01” of the TPC signal as the initial value of the target SIR from the target SIR initial value table.
  • the target SIR update value table is a conversion table having information that is referred to when the target value determination unit 156 determines the update value of the target SIR as a new target SIR.
  • the update value of the target SIR included in the target SIR update value table is obtained by adding a predetermined offset value to the initial value of the target SIR corresponding to the error rate of the predetermined TPC signal in the target SIR initial value table.
  • the offset value depends on at least one of parameters such as the quality difference between the serving cell and the non-serving cell, the transmission power of the F-DPCH, and the error rate of the downlink TPC signal by the designer of the mobile device 100 or the like. Is set as appropriate.
  • the target value determination unit 156 performs the following process when the difference amount between the SIR of the serving cell 1 and the SIR of the non-serving cell 2 measured by the measurement unit 154 is greater than or equal to the threshold value. That is, the target value determination unit 156 acquires the target SIR update value “3.5 dB” corresponding to the error rate “0.01” of the TPC signal from the target SIR update value table, and acquires the acquired update value “3.5”.
  • FIG. 6 is a flowchart illustrating a processing procedure performed by the mobile device 100 according to the first embodiment.
  • mobile station 100 sets F-DPCH with serving cell base station 10 shown in FIG. 1, and performs communication with serving cell base station 10 through the set F-DPCH. To do.
  • the SHO execution unit 151 waits until the Target Quality is notified from the F-DPCH (No in step S101).
  • the SHO execution unit 151 receives the Target Quality from the F-DPCH (Yes in Step S101)
  • the SHO execution unit 151 delivers the received Target Quality to the acquisition unit 155.
  • the acquisition unit 155 receives the Target Quality from the SHO execution unit 151. Then, the acquiring unit 155 acquires the target SIR corresponding to the received Target Quality as the initial value of the target SIR from the target SIR initial value table of the conversion table storage unit 160 (step S102).
  • the determination unit 152 determines whether or not the SHO function by the SHO execution unit 151 is being executed (step S103). When the determination unit 152 determines that the SHO function is not being executed (No at Step S103), a normal transmission power control process is executed (Step S104). On the other hand, if the determination unit 152 determines that the SHO function is being executed (Yes at step S103), the SHO transmission power control process is executed (step S105). The normal transmission power control process and the SHO transmission power control process will be described in detail later.
  • the control unit 150 determines whether or not a communication end operation by the user has been received (step S106). Then, if the control unit 150 has not received a communication end operation by the user (No at Step S106), the control unit 150 returns the process to Step S103, and if the user has received a communication end operation by the user (Yes at Step S106). Then, the process shown in FIG.
  • FIG. 7 is a flowchart showing a processing procedure of normal transmission power control processing.
  • the normal transmission power control process shown in FIG. 7 corresponds to step S104 shown in FIG.
  • the reception unit 153 receives a radio signal transmitted from the serving cell base station 10 (step S111), and the measurement unit 154 uses the TPC signal included in the received radio signal to serve the serving cell 1. Is measured (step S112). Then, the target value determination unit 156 determines the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR as it is.
  • the TPC signal transmission unit 157 calculates a difference amount between the target SIR determined by the target value determination unit 156 and the SIR of the serving cell 1 measured by the measurement unit 154.
  • the target SIR determined by the target value determination unit 156 is referred to as “target SIR”
  • the SIR of the serving cell 1 measured by the measurement unit 154 is referred to as “measurement SIR”.
  • the TPC signal transmission unit 157 determines whether or not the calculated difference amount
  • the TPC signal transmission unit 157 when the calculated difference amount
  • the TPC signal transmission unit 157 compares the target SIR with the measurement SIR (step S115). Then, when the measurement SIR is smaller than the target SIR (Yes at Step S115), the TPC signal transmission unit 157 generates an uplink TPC signal instructing an increase in transmission power, and the generated TPC signal is used as the serving cell base station. 10 (step S116). On the other hand, when the measured SIR is equal to or greater than the target SIR (No at Step S115), the TPC signal transmission unit 157 generates an uplink TPC signal instructing a decrease in transmission power, and the generated TPC signal is used as the serving cell base station. 10 (step S117).
  • FIG. 8 is a flowchart showing the processing procedure of the SHO transmission power control processing.
  • the SHO transmission power control process shown in FIG. 8 corresponds to step S105 shown in FIG.
  • the receiving unit 153 receives radio signals from the serving cell base station 10 and the non-serving cell base station 20 (step S121). And the measurement part 154 measures SIR of all the cells including the serving cell 1 and the non-serving cell 2 using the TPC signal contained in the received radio signal (step S122).
  • the target value determination unit 156 calculates a difference amount between the SIR of the serving cell 1 and the SIR of the non-serving cell 2 measured by the measurement unit 154.
  • the SIR of the serving cell 1 measured by the measurement unit 154 is denoted as “X”
  • the SIR of the non-serving cell 2 measured by the measurement unit 154 is denoted as “Y”.
  • the target value determination unit 156 compares the calculated difference amount
  • the target value determination unit 156 determines the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR as it is. (Step S124).
  • the target value determination unit 156 sends the updated value of the target SIR corresponding to the Target Quality to the target SIR of the conversion table storage unit 160. Obtained from the update value table (step S125). Then, the target value determination unit 156 determines the acquired update value as a new target SIR (step S126).
  • the TPC signal transmission unit 157 calculates a difference amount between the target SIR determined by the target value determination unit 156 and the SIR of the serving cell 1 measured by the measurement unit 154.
  • the target SIR determined by the target value determination unit 156 is referred to as “target SIR”
  • the SIR of the serving cell 1 measured by the measurement unit 154 is referred to as “measurement SIR”.
  • the TPC signal transmission unit 157 determines whether or not the calculated difference amount
  • the TPC signal transmission unit 157 when the calculated difference amount
  • the TPC signal transmission unit 157 compares the target SIR with the measurement SIR (Step S129). Then, when the measurement SIR is smaller than the target SIR (Yes at Step S129), the TPC signal transmission unit 157 generates an uplink TPC signal instructing an increase in transmission power. Then, the TPC signal transmission unit 157 transmits the generated TPC signal to the serving cell base station 10 and the non-serving cell base station 20 (step S130).
  • the TPC signal transmission unit 157 when the measurement SIR is equal to or greater than the target SIR (No at Step S129), the TPC signal transmission unit 157 generates an uplink TPC signal instructing a decrease in transmission power. Then, the TPC signal transmission unit 157 transmits the generated TPC signal to the serving cell base station 10 and the non-serving cell base station 20 (step S131).
  • the target value determining unit 156 calculates the SIR difference amount between the serving cell 1 and the non-serving cell 2 and compares the calculated SIR difference amount with a predetermined threshold value. .
  • the target value determination unit 156 may calculate a difference amount of reception quality other than SIR and compare the calculated difference amount of reception quality other than SIR with a predetermined threshold. .
  • the measurement unit 154 performs the same processing as that illustrated in FIG. 8, and includes all of the serving cell 1 and the non-serving cell 2 using the TPC signal included in the received radio signal.
  • the SIRs of the cells are measured (steps S141 to S142).
  • the measurement unit 154 measures CPICH_RSCP, CPICH_Ec / No, or Passloss of all cells including the serving cell 1 and the non-serving cell 2 as reception quality other than SIR (step S142).
  • CPICH_RSCP, CPICH_Ec / No, or Passloss is simply expressed as “CPICH_RSCP, etc.”.
  • the target value determination unit 156 calculates the difference amount between the CPICH_RSCP of the serving cell 1 and the CPICH_RSCP of the non-serving cell 2 measured by the measurement unit 154.
  • CPICH_RSCP of the serving cell 1 measured by the measurement unit 154 is denoted as “X ′”
  • CPICH_RSCP of the non-serving cell 2 measured by the measurement unit 154 is denoted as “Y ′”.
  • the target value determination unit 156 compares the calculated difference amount
  • the target value determination unit 156 directly uses the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR. (Step S144).
  • the target value determination unit 156 sets the update value of the target SIR corresponding to the Target Quality to the target SIR update value table. (Step S145). Then, the target value determination unit 156 determines the acquired update value as a new target SIR (step S146).
  • the TPC signal transmission unit 157 performs processing similar to the processing described in FIG. 8, generates an uplink TPC signal, and transmits the generated TPC signal to the serving cell base station 10 and the non-serving cell base station 20. (Steps S147 to S151).
  • the mobile device 100 determines the target SIR based on the difference amount between the reception quality of the serving cell 1 and the reception quality of the non-serving cell 2. Then, the mobile device 100 generates and transmits a TPC signal for controlling increase / decrease in transmission power in the serving cell base station 10 and the non-serving cell base station 20 based on the determined target SIR and the reception quality of the serving cell 1.
  • the first embodiment it is possible to improve the communication quality of the non-serving cell 2 while suppressing an excessive increase in the transmission power in the serving cell base station 10 at the time of executing the SHO function.
  • the accuracy of control can be improved.
  • the acquisition unit 155 acquires an initial value of the target SIR that is determined in advance corresponding to the error rate of the TPC signal included in the radio signal. Then, when the difference amount between the reception quality of the serving cell 1 and the reception quality of the non-serving cell 2 is less than the threshold value, the target value determination unit 156 determines the initial value acquired by the acquisition unit 155 as the target SIR as it is. . On the other hand, when the difference amount between the reception quality of the serving cell 1 and the reception quality of the non-serving cell 2 is equal to or greater than the threshold value, the target value determination unit 156 adds the predetermined offset value to the initial value. Is determined as the target SIR.
  • the target SIR can be increased only when the reception quality of the non-serving cell is excessively degraded as compared with the serving cell, and as a result, the communication quality of the non-serving cell is improved. Can do. As a result, the reliability of the TPC signal in the downlink direction on the non-serving cell side can be increased, and a situation in which the transmission power of the mobile device is excessively increased or decreased when the TPC signal is combined can be avoided.
  • an update value obtained by adding a predetermined offset value to the initial value of the target SIR is obtained.
  • the case where the target SIR is determined has been described. However, it is obtained by adding an offset value corresponding to the amount of difference between the reception quality of the serving cell 1 and the reception quality of the non-serving cell 2 (for example, an offset value that differs depending on the difference amount) to the initial value of the target SIR.
  • the updated value to be obtained may be determined as the target SIR. Therefore, in the following, such a case will be described as a second embodiment.
  • FIG. 10 is a block diagram illustrating the configuration of the mobile device 200 according to the second embodiment.
  • the detailed description is abbreviate
  • the mobile device 200 includes an antenna duplexer 110, an RF unit 120, an ABB unit 130, a DBB unit 140, a control unit 250, and a conversion table storage unit 260.
  • the control unit 250 includes an SHO execution unit 151, a determination unit 152, a reception unit 153, a measurement unit 154, an acquisition unit 155, a target value determination unit 256, and a TPC signal transmission unit 157.
  • the target value determination unit 256 calculates the difference amount between the SIR of the serving cell 1 and the SIR of the non-serving cell 2 measured by the measurement unit 154 when the SHO function is executed. Then, the target value determination unit 256 compares the calculated difference amount with the first threshold value Nth1. Then, when the difference amount is less than the first threshold value Nth1, the target value determination unit 256 determines the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR as it is.
  • the target value determination unit 256 calculates an update value obtained by adding an offset value corresponding to the magnitude of the difference amount to the initial value of the target SIR.
  • the target SIR is determined.
  • the target value determination unit 256 has an internal table that associates the magnitude of the difference amount with the identification number of the target SIR update value table in the conversion table storage unit 260, and refers to this internal table to determine the difference amount.
  • a corresponding target SIR update value table is selected. Then, the target value determination unit 256 acquires an update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table, and determines the acquired update value as a new target SIR.
  • FIG. 11 shows an example of an internal table that the target value determination unit 256 has.
  • the internal table is a table of the target SIR update value table in association with the difference amount
  • the table number is an identification number of the target SIR update value table.
  • the target value determination unit 256 uses information stored in the internal table shown in FIG. Referring to the table, the target SIR update value table # 1 with the table number “# 1” is selected. Then, the target value determination unit 256 acquires the update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table # 1, and determines the acquired update value as a new target SIR. For example, the target value determination unit 256 refers to the internal table shown in FIG. 11 when the difference amount
  • the target SIR update value table # 2 with the table number “# 2” is selected. Then, the target value determination unit 256 acquires an update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table # 2, and determines the acquired update value as a new target SIR.
  • the conversion table storage unit 260 stores a plurality of conversion tables for converting the error rate of the TPC signal into the target SIR.
  • An example of the conversion table stored in the conversion table storage unit 260 is shown in FIG.
  • the conversion table storage unit 260 stores a target SIR initial value table, a target SIR update value table # 1, and a target SIR update value table # 2.
  • the target SIR initial value table is the same as the description of the target SIR initial value table shown in FIG.
  • the target SIR update value table # 1 and the target SIR update value table # 2 are conversion tables having information that is referred to when the target value determination unit 256 newly determines the update value of the target SIR as the target SIR.
  • the update value of the target SIR included in the target SIR update value table # 1 is obtained by adding the offset value a to the initial value of the target SIR corresponding to the error rate of the predetermined TPC signal in the target SIR initial value table.
  • the update value of the target SIR included in the target SIR update value table # 2 is obtained by adding an offset value b larger than the offset value a to the initial value of the target SIR corresponding to the error rate of the predetermined TPC signal in the target SIR initial value table. Can be obtained.
  • the offset values a and b are set to at least one of parameters such as a quality difference between a serving cell and a non-serving cell, a transmission power of the F-DPCH, and an error rate of a downlink TPC signal by a designer of the mobile device 200 and the like. It is set accordingly.
  • the offset values a and b are set so as to be values according to the difference amount between the reception quality of the serving cell 1 and the reception quality of the non-serving cell 2, and preferably, the larger the difference amount, the greater the difference amount. Set to increase.
  • the target value determination unit 256 performs the following process when the difference amount between the SIR of the serving cell 1 and the SIR of the non-serving cell 2 measured by the measurement unit 154 is greater than or equal to the first threshold Nth1. That is, the target value determination unit 256 selects the target SIR update value table # 1 shown in FIG. 12 when the difference amount is not less than the first threshold value Nth1 and less than the second threshold value Nth2.
  • the target value determination unit 256 acquires the target SIR update value “3.5 dB” corresponding to the error rate “0.01” of the TPC signal from the target SIR update value table # 1, and acquires the acquired update value “3”. .5 ”is determined as a new target SIR larger than the initial value“ 3 dB ”. In addition, the target value determination unit 256 selects the target SIR update value table # 2 illustrated in FIG. 12 when the difference amount is equal to or greater than the second threshold value Nth2 and less than the third threshold value Nth3.
  • the target value determining unit 256 acquires the target SIR update value “4.5 dB” corresponding to the error rate “0.01” of the TPC signal from the target SIR update value table # 1, and acquires the acquired update value “3”. .5 ”is determined as a new target SIR larger than the initial value“ 3 dB ”. Thereby, since the target SIR is determined more precisely, a TPC signal instructing an increase in transmission power is appropriately generated, and transmission power control for the serving cell base station 10 and the non-serving cell base station 20 is performed with higher accuracy. .
  • FIG. 13 is a flowchart showing a processing procedure of SHO transmission power control processing.
  • the SHO transmission power control process shown in FIG. 13 corresponds to step S105 shown in FIG.
  • Steps S201 and S202 and steps S210 to S214 are the same as steps S121, S122 and steps S127 to S131 shown in FIG.
  • the target value determination unit 256 determines the SIR of the serving cell 1 and the non-serving cell 2 The amount of difference from the SIR is calculated.
  • the SIR of the serving cell 1 measured by the measurement unit 154 is denoted as “X”
  • the SIR of the non-serving cell 2 measured by the measurement unit 154 is denoted as “Y”.
  • the target value determining unit 256 compares the calculated difference amount
  • the target value determination unit 256 uses the initial value of the target SIR acquired by the acquisition unit 155 as it is as the target SIR. (Step S204).
  • step S203 when the difference amount
  • the target value determination unit 256 refers to the internal table and corresponds to the corresponding target SIR update value table # 1. Select. Then, the target value determination unit 256 acquires an update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table # 1 (Step S206), and determines the acquired update value as a new target SIR. (Step S207).
  • the target value determination unit 256 refers to the internal table and corresponds to the target SIR update value table # 2. Select. Then, the target value determination unit 256 acquires an update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table # 2 (Step S208), and determines the acquired update value as a new target SIR. (Step S209).
  • the target value determination unit 256 calculates the SIR difference amount between the serving cell 1 and the non-serving cell 2, and sets the update value according to the calculated SIR difference amount as the target. The case where the SIR is determined has been described. However, as shown in FIG. 14, the target value determination unit 256 calculates the difference amount of the reception quality other than the SIR, and uses the update value corresponding to the magnitude of the difference amount of the reception quality other than the calculated SIR as the target SIR. It may be determined.
  • the measurement unit 154 performs the same process as the process described with reference to FIG. 13, and measures the SIR of all the cells including the serving cell 1 and the non-serving cell 2 (steps S221 to S222). . Furthermore, the measurement unit 154 measures CPICH_RSCP, CPICH_Ec / No, or Passloss of all cells including the serving cell 1 and the non-serving cell 2 as reception quality other than SIR (step S222).
  • CPICH_RSCP, CPICH_Ec / No, or Passloss is simply expressed as “CPICH_RSCP, etc.”.
  • the target value determination unit 256 calculates a difference amount between CPICH_RSCP and the like of the serving cell 1 measured by the measurement unit 154 and CPICH_RSCP and the like of the non-serving cell 2.
  • CPICH_RSCP of the serving cell 1 measured by the measurement unit 154 is denoted as “X ′”
  • CPICH_RSCP of the non-serving cell 2 measured by the measurement unit 154 is denoted as “Y ′”.
  • the target value determining unit 256 compares the calculated difference amount
  • the target value determination unit 256 directly uses the initial value of the target SIR acquired by the acquisition unit 155 as the target SIR. (Step S224).
  • the target value determination unit 256 determines that the difference amount
  • the target value determination unit 256 refers to the internal table and corresponds to the corresponding target SIR update value. Select table # 1. Then, the target value determination unit 256 acquires an update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table # 1 (Step S226), and determines the acquired update value as a new target SIR. (Step S227).
  • the target value determination unit 256 refers to the internal table and updates the corresponding target SIR update value. Select table # 2. Then, the target value determination unit 256 acquires an update value of the target SIR corresponding to the Target Quality from the selected target SIR update value table # 2 (Step S228), and determines the acquired update value as a new target SIR. (Step S229).
  • the TPC signal transmission unit 157 performs processing similar to the processing described in FIG. 13 to generate an uplink TPC signal, and transmits the generated TPC signal to the serving cell base station 10 and the non-serving cell base station 20. (Steps S230 to S234).
  • the target value determination unit 256 responds to the magnitude of the difference amount when the difference amount of the reception quality between the serving cell 1 and the non-serving cell 2 is equal to or greater than the first threshold value.
  • An update value obtained by adding the offset value to the initial value is determined as the target SIR.
  • the target SIR according to the difference in reception quality between the serving cell 1 and the non-serving cell 2 can be determined more precisely, and the communication quality of the non-serving cell 2 can be improved step by step. it can. As a result, it is possible to further improve the accuracy of transmission power control when the SHO function is executed.
  • the various processes described in the first and second embodiments can be realized by executing a program prepared in advance on a computer.
  • a program prepared in advance on a computer.
  • an example of a computer that executes a program for realizing the mobile device 100 according to the first embodiment will be described with reference to FIG.
  • FIG. 15 is a diagram illustrating a computer that executes a wireless communication device control program.
  • the computer 500 is configured by connecting a communication unit 510, an HDD (Hard Disk Drive) 520, a RAM (Random Access Memory) 530, and a CPU (Central Processing Unit) 540 through a bus 600.
  • a communication unit 510 an HDD (Hard Disk Drive) 520
  • a RAM Random Access Memory
  • CPU Central Processing Unit
  • the communication unit 510 is a communication interface for performing wireless communication.
  • the HDD 520 stores information necessary for the CPU 540 to execute various processes.
  • the RAM 530 temporarily stores various information.
  • the CPU 540 executes various arithmetic processes.
  • Communication unit 510 corresponds to antenna duplexer 110, RF unit 120, ABB unit 130, and DBB unit 140 shown in FIG.
  • the HDD 520 includes a wireless communication device control program 521 that exhibits the same function as each functional unit included in the mobile device 100 described in the above embodiment, and wireless communication device control data 522. Is stored in advance. Note that the wireless communication device control program 521 may be appropriately distributed and stored in a storage unit of another computer that is communicably connected via a network.
  • the CPU 540 reads out the wireless communication device control program 521 from the HDD 520 and develops it in the RAM 530, whereby the wireless communication device control program 521 functions as a wireless communication device control process 531 as shown in FIG. . That is, the wireless communication device control process 531 reads the wireless communication device control data 522 and the like from the HDD 520, expands them in an area allocated to itself in the RAM 530, and executes various processes based on the expanded data and the like.
  • the wireless communication device control process 531 corresponds to the control unit 150 illustrated in FIG.
  • the above-described wireless communication device control program 521 is not necessarily stored in the HDD 520 from the beginning.
  • the computer 500 reads and executes a program stored in a storage medium such as a CD-ROM. It may be.
  • each program is stored in another computer (or server) connected to the computer 500 via a public line, the Internet, a LAN, a WAN, or the like, and the computer 500 reads out and executes each program from these. It may be.
  • serving cell base station 20 non-serving cell base station 100, 200 mobile station 110a antenna 110 antenna duplexer 120 RF unit 121 transmitting unit 122 receiving unit 130 ABB unit 131 DAC unit 132 ADC unit 140 DBB unit 150, 250 control unit 151 SHO execution unit 152 determination unit 153 reception unit 154 measurement unit 155 acquisition unit 156, 256 target value determination unit 157 TPC signal transmission unit 160, 260 conversion table storage unit

Abstract

 SHO機能の実行時の送信電力制御の精度を向上することを課題とする。この課題を解決するため、無線通信装置は、受信部、測定部、目標値決定部および送信電力制御信号送信部を備える。受信部は、複数の基地局から送信される無線信号を受信する。測定部は、受信される無線信号に基づいて、複数の基地局のうち第1の基地局に対する受信品質である第1の受信品質と、第1の基地局以外の第2の基地局に対する受信品質である第2の受信品質とを測定する。目標値決定部は、第1の受信品質と第2の受信品質との差分量に基づいて、第1の基地局および第2の基地局における送信電力に対する目標値を決定する。送信電力制御信号送信部は、決定した目標値と前記第1の受信品質及び/又は前記第2の受信品質とに基づいて第1の基地局および第2の基地局における送信電力の増減を制御する制御信号を生成して第1の基地局および第2の基地局へ送信する。

Description

無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム
 本発明は、無線通信装置、無線通信装置制御方法および無線通信装置制御プログラムに関する。
 従来、移動機などの無線通信装置を含む移動通信システムでは、複数の基地局と複数の移動機とが互いに干渉することなく同一の周波数帯域を利用することを目的として、基地局から移動機へ至る下り方向の送信電力制御が行われる。下り方向の送信電力制御が行われると、移動機が基地局から送信される無線信号の受信品質の一つであるSIR(Signal to Interference Ratio)を測定し、測定したSIRと予め定められたSIRの目標値である目標SIRとを比較する。そして、移動機は、測定したSIRと目標SIRとの比較結果に基づいて測定したSIRが目標SIRに近づくように基地局における送信電力の増減を制御する送信電力制御(TPC:Transmission Power Control)信号を基地局へ送信する。すなわち、移動機は、測定したSIRが目標SIRよりも大きい場合には、送信電力の減少を指示するTPC信号を基地局へ送信し、測定したSIRが目標SIRよりも小さい場合には、送信電力の増加を指示するTPC信号を基地局へ送信する。TPC信号を受信した基地局は、このTPC信号に従って送信電力を増減する。これにより、基地局どうしの干渉を防止することができ、通信容量を増大させ周波数資源を有効に利用することができる。
 ところで、この種の移動通信システムでは、移動機がいわゆるソフトハンドオーバ(SHO:Soft Hand-Over)機能を有している。SHO機能は、移動機が現在位置しているセル(以下「サービングセル」という)から隣接セル(以下「非サービングセル」という)へと移動する際にサービングセルおよび非サービングセルを夫々収容する複数の基地局と同時に通信する機能である。SHO機能の実行時には、サービングセルを収容する基地局だけなく非サービングセルを収容する基地局を含む全ての基地局における下り方向の送信電力が等しくなるように送信電力制御が行われることが望ましい。これは、サービングセルを収容する基地局のみに対して送信電力制御が行われた場合には、サービングセルを収容する基地局の通信品質のみが改善される一方で、非サービングセルを収容する基地局の通信品質が劣化してしまうためである。
 SHO機能の実行時に非サービングセルの通信品質を改善する技術として、以下のような従来技術が知られている。すなわち、従来技術では、複数の基地局のうち下り方向のTPC信号のBER(Bit Error Rate)が最も悪い基地局を非サービングセルとして探索し、探索した非サービングセルに対応する目標SIRを増加させる。目標SIRを増加させることにより、非サービングセルを収容する基地局における送信電力の増加を指示するTPC信号が該基地局へ送信され、その結果、非サービングセルの通信品質が改善される。
特表2008-529369号公報
 しかしながら、上記した従来技術では、SHO機能の実行時に非サービングセルの通信品質を改善することができるものの、全体として送信電力制御の精度が悪化するという問題がある。
 例えば、上記した従来技術では、サービングセルの通信品質と非サービングセルの通信品質との差分量の大小に関わらず、下り方向のTPC信号のBERが最も悪い非サービングセルに対応する目標SIRを増加させる。このため、サービングセルの通信品質と比して非サービングセルの通信品質が悪く両セル間の通信品質の差分量が過大となる場合には、下り方向のTPC信号のBERが最も良いサービングセルに対して目標SIRが過剰に高くなる。その結果、サービングセルを収容する基地局における送信電力が過剰に増加してしまい、全体として送信電力制御の精度が悪化する。
 開示の技術は、上述した従来技術の課題を解決するためになされたものであり、SHO機能の実行時の送信電力制御の精度を向上することができる無線通信装置、無線通信装置制御方法および無線通信装置制御プログラムを提供することを目的とする。
 本願の開示する無線通信装置は、一つの態様において、複数の基地局と同時に通信する機能を有する。そして、無線通信装置は、受信部、測定部、目標値決定部および送信電力制御信号送信部を備える。受信部は、前記複数の基地局から送信される無線信号を受信する。測定部は、前記受信される無線信号に基づいて、前記複数の基地局のうち第1の基地局に対する受信品質である第1の受信品質と、前記第1の基地局以外の第2の基地局に対する受信品質である第2の受信品質とを測定する。目標値決定部は、前記第1の受信品質と前記第2の受信品質との差分量に基づいて、前記第1の基地局および前記第2の基地局における送信電力に対する目標値を決定する。送信電力制御信号送信部は、前記決定した目標値と前記第1の受信品質及び/又は前記第2の受信品質とに基づいて前記第1の基地局および前記第2の基地局における送信電力の増減を制御する制御信号を生成して前記第1の基地局および前記第2の基地局へ送信する。
 本願の開示する無線通信装置の一つの態様によれば、SHO機能の実行時の送信電力制御の精度を向上することができるという効果を奏する。
図1は、実施例1に係る移動機による送信電力制御処理を説明するための図である。 図2は、F-DPCHのフレーム構成例を示す図である。 図3は、移動機がサービングセルのSIRと非サービングセルのSIRとの差分量に基づいて目標SIRを決定する処理を説明するための図である。 図4は、実施例1に係る移動機の構成を示すブロック図である。 図5は、変換テーブル記憶部に記憶された変換テーブルの一例を示す図である。 図6は、実施例1に係る移動機による処理手順を示すフローチャートである。 図7は、通常時送信電力制御処理の処理手順を示すフローチャートである。 図8は、SHO時送信電力制御処理の処理手順を示すフローチャートである。 図9は、SHO時送信電力制御処理の処理手順を示すフローチャートである。 図10は、実施例2に係る移動機の構成を示すブロック図である。 図11は、目標値決定部が有する内部テーブルの一例を示す図である。 図12は、変換テーブル記憶部に記憶された変換テーブルの一例を示す図である。 図13は、SHO時送信電力制御処理の処理手順を示すフローチャートである。 図14は、SHO時送信電力制御処理の処理手順を示すフローチャートである。 図15は、無線通信装置制御プログラムを実行するコンピュータを示す図である。
 以下に、本願の開示する無線通信装置、無線通信装置制御方法および無線通信装置制御プログラムの実施例を図面に基づいて詳細に説明する。なお、以下の実施例では、本願の開示する無線通信装置を携帯電話機などの移動機(UE:User Equipment)に適用する例について説明する。また、以下の実施例では、移動機が現在位置しており通信に用いるセルを「サービングセル」と呼び、サービングセルに隣接又は重複するセルを「非サービングセル」と呼ぶものとする。
 まず、図1を参照して、実施例1に係る移動機100による送信電力制御処理を説明する。図1は、実施例1に係る移動機100による送信電力制御処理を説明するための図である。図1に示すように、実施例1に係る移動機100は、複数の基地局10、20と同時に通信するソフトハンドオーバ(SHO:Soft Hand-Over)機能を有する。図1に示す例では、移動機100は、SHO機能を実行することにより、サービングセル1を収容する基地局10および非サービングセル2を収容する基地局20と同時に通信する態様を示している。なお、以下では、サービングセル1を収容する基地局10を「サービングセル基地局10」と呼び、非サービングセル2を収容する基地局20を「非サービングセル基地局20」と呼ぶことがあるものとする。また、図1では、1台の非サービングセル基地局20を示しているが、非サービングセル基地局20の台数は2台以上であってもよい。
 まず、移動機100は、SHO機能を実行することで同時に通信している基地局10、20から送信される無線信号を受信する(図1の(1)参照)。例えば、移動機100は、下り方向の通信チャネルの一つであるF-DPCH(Fractional Dedicated Physical Channel)を通じて、基地局10、20から送信される無線信号を受信する。
 続いて、移動機100は、受信される無線信号に基づいて、基地局10に対する受信品質であるサービングセル1の受信品質と、基地局20に対する受信品質である非サービングセル2の受信品質とを測定する(図1の(2)参照)。例えば、移動機100は、F-DPCHを通じて基地局10から受信される無線信号に含まれる送信電力制御(TPC:Transmit Power Control)信号を用いてサービングセル1の受信品質の一つであるSIR(Signal to Interference Ratio)を測定する。また、移動機100は、F-DPCHを通じて基地局20から受信される無線信号に含まれるTPC信号を用いて非サービングセル2の受信品質の一つであるSIRを測定する。なお、TPC信号は、送信側から受信側に対して送信電力の増減を指示する制御信号であり、受信側ではこのTPC信号に従って自身の送信電力を増減する。
 ここで、TPC信号を含むF-DPCHのフレーム構成例を図2に示す。F-DPCHは、個別チャネルで伝送するデータが無いユーザに対してTPC信号のみを送信するための通信チャネルである。図2に示すように、F-DPCHは、1フレーム当たりSlot#0~#14の15スロットを有する。各スロットは、TPC信号のみを送信し、TPC信号以外は、送信OFFとなる。移動機100は、F-DPCHを通じて受信されるTPC信号のSIRを測定し、測定したSIRの移動平均をとり、平均化したSIRをサービングセル1のSIRまたは非サービングセル2のSIRとして測定する。
 続いて、移動機100は、第1の受信品質と第2の受信品質との差分量に基づいて、サービングセル基地局10および非サービングセル基地局20における送信電力に対する目標値を決定する(図1の(3)参照)。例えば、移動機100は、サービングセル1のSIRと非サービングセル2のSIRとの差分量に基づいて、サービングセル基地局10および非サービングセル基地局20における送信電力に対する目標値である目標SIR(Target SIR)を決定する。なお、目標SIRの初期値は、基地局から受信される信号に基づいて取得され得る受信品質に関する情報と目標SIRの初期値とを対応付けた変換テーブルを参照することにより取得される。例えば、接続時にサービング基地局からL3メッセージで指示されるTPC Error Rate(基地局から受信される信号に基づいて取得される受信品質の例)に対応する目標SIRの初期値を変換テーブルから選択する。
 ここで、移動機100がサービングセル1のSIRと非サービングセル2のSIRとの差分量に基づいて目標SIRを決定する処理について説明する。図3は、移動機100がサービングセル1のSIRと非サービングセル2のSIRとの差分量に基づいて目標SIRを決定する処理を説明するための図である。同図に示すように、移動機100は、サービングセル1のSIRをX(dB)とし、非サービングセル2のSIRをY(dB)とすると、差分量|X-Y|を算出する。そして、移動機100は、差分量|X-Y|と所定の閾値Nthとを比較する。そして、移動機100は、差分量|X-Y|が閾値Nth未満である場合には、サービングセル1に比して非サービングセル2の通信品質が劣化していないため、目標SIRの初期値をそのまま目標SIRとして決定する。一方、移動機100は、差分量|X-Y|が閾値Nth以上である場合には、サービングセル1に比して非サービングセル2の通信品質が劣化しているため、目標SIRの初期値に所定のオフセット値を加算した更新値を新たな目標SIRとして決定する。
 続いて、移動機100は、決定した目標値と測定したサービングセル1の受信品質とに基づいて、基地局10および基地局20における送信電力の増減を制御するTPC信号を生成して基地局10および基地局20へ送信する(図1の(4)参照)。例えば、移動機100は、目標値として決定した目標SIRと測定したサービングセル1のSIRとを比較し、その比較結果に応じて基地局10および基地局20における送信電力の増減を制御するTPC信号を生成する。
 このように、移動機100は、サービングセル1の受信品質と非サービングセル2の受信品質との差分量に基づいて目標SIRを決定する。そして、移動機100は、決定した目標SIRとサービングセル1の受信品質とに基づいてサービングセル基地局10および非サービングセル基地局20における送信電力の増減を制御するTPC信号を生成して送信する。このため、移動機100は、SHO機能の実行時にサービングセル基地局10における送信電力の過剰な増加を抑制しつつ非サービングセル2の通信品質を改善することができ、その結果、全体として送信電力制御の精度を向上することができる。
 次に、図4を参照して、実施例1に係る移動機100の構成について説明する。図4は、実施例1に係る移動機100の構成を示すブロック図である。同図に示すように、移動機100は、アンテナ共用器110、RF(Radio Frequency)部120、ABB(Analog Base-Band)部130、DBB(Digital Base-Band)部140、制御部150および変換テーブル記憶部160を有する。
 アンテナ共用器110は、RF部120により増幅された信号をアンテナ110aを介して基地局10、20へ送信する。また、アンテナ共用器110は、基地局10、20からアンテナ110aを介して受信した信号をRF部120へ送出する。
 RF部120は、送信部121および受信部122を有する。送信部121は、ABB部130から入力される信号を直交変調により高周波信号に変換し、変換後の高周波信号を所定の送信電力となるように増幅し、増幅後の信号をアンテナ共用器110へ送出する。受信部122は、RF部120から入力される信号を増幅し、増幅後の信号をABB部130へ送出する。
 ABB部130は、DAC(Digital to Analog Converter)部131およびADC(Analog to Digital Converter)部132を有する。DAC部131は、DBB部140から入力される信号をアナログ信号に変換し、変換後の信号をRF部120へ送出する。ADC部132は、RF部120から入力される信号をディジタル信号に変換し、変換後の信号をDBB部140へ送出する。
 DBB部140は、制御部150から入力される信号に対して誤り訂正符号付加不可、フレーム化、データ変調、拡散変調などの各種のベースバンド処理を行い、ベースバンド処理後の信号をABB部130へ送出する。また、DBB部140は、ABB部130から入力される信号に対して逆拡散、チップ同期、誤り訂正復号、データ多重分離、ハンドオーバ合成等の各種のベースバンド処理を行い、ベースバンド処理後の信号を制御部150へ送出する。
 制御部150は、各種の処理手順などを規定したプログラムおよび所要データを格納するための内部メモリを有し、これらによって種々の処理を実行する。特に、制御部150は、SHO実行部151、判定部152、受信部153、測定部154、取得部155、目標値決定部156およびTPC信号送信部157を有する。
 SHO実行部151は、SHO機能を実行する。例えば、SHO実行部151は、サービングセル1周辺のセルをモニタし、モニタ結果をサービングセル1の基地局に送信する。そして、SHO実行部151は、送信されたモニタ結果に応じたハンドオーバ指示を基地局から受信した場合にSHO機能を実行する。図1に示した例では、SHO実行部151は、サービングセル1周辺の非サービングセル2をモニタし、モニタ結果をサービングセル基地局10に送信する。そして、SHO実行部151は、モニタ結果に応じたハンドオーバ指示をサービングセル基地局10から受信した場合にSHO機能を実行する。これにより、SHO実行部151は、サービングセル基地局10および非サービングセル基地局20との間で同時に通信を行う。また、SHO実行部151は、SHO機能の実行の可否を示す情報を判定部152へ通知する。 
 また、SHO実行部151は、サービングセル基地局10から通知されるTPC信号のエラーレートの目標値を示すTarget Qualityを受信して取得部155へ引き渡す。
 判定部152は、SHO実行部151から受信したSHO機能の実行の可否を示す情報に応じてSHO機能が実行されているか否かを判定する。そして、判定部152は、SHO機能が実行されているか否かの判定結果を受信部153へ通知する。
 受信部153は、SHO機能が実行されている旨の判定結果を判定部152から受け取った場合には、SHO機能により同時に通信しているサービングセル基地局10および非サービングセル基地局20を含む複数の基地局から送信される無線信号を受信する。なお、複数の基地局から送信される無線信号は、アンテナ共用器110、RF部120、ABB部130およびDBB部140を経由して受信部153により受信される。
 また、受信部153は、SHO機能が実行されていない旨の判定結果を判定部152から受け取った場合には、サービングセル基地局10から送信される無線信号を受信する。なお、サービングセル基地局10から送信される無線信号は、アンテナ共用器110、RF部120、ABB部130およびDBB部140を経由して受信部153により受信される。
 測定部154は、受信部153により受信される無線信号に基づいて基地局に対する受信品質を測定する。例えば、測定部154は、SHO機能が実行されている場合に、受信部153により受信される無線信号に含まれるTPC信号を用いてサービングセル1および非サービングセル2のSIRを測定する。一方、測定部154は、SHO機能が実行されていない場合に、受信部153により受信される無線信号に含まれるTPC信号を用いてサービングセルのSIRを測定する。
 なお、SIR以外の受信品質としてCPICH_RSCP(Common Pilot Channel Received Signal Code Power)、CPICH_Ec/No(CPICH received Energy per chip divided by the power density in the band)又はPasslossを測定してもよい。CPICH_RSCPは、共通パイロットチャネル(CPICH)の逆拡散後の信号コードパワーである。CPICH_Ec/Noは、CPICHのチップあたりの電力とチップあたりの全電力との比率である。Passlossは、CPICHの送信電力からCPICH_RSCPを減算することにより得られるパラメータである。
 取得部155は、目標SIRの初期値を取得する。例えば、取得部155は、Target QualityをSHO実行部151から受信する。そして、取得部155は、受信したTarget Qualityに対応する目標SIRを変換テーブル記憶部160の後述する目標SIR初期値テーブルから目標SIRの初期値として取得する。なお、Target Qualityは、サービング基地局からL3メッセージで指示されるTPC Error Rateに相当する。
 目標値決定部156は、測定部154により測定された受信品質に基づいて基地局における送信電力に対する目標SIRを決定する。例えば、目標値決定部156は、SHO機能が実行されている場合に、測定部154により測定されたサービングセル1のSIRと非サービングセル2のSIRとの差分量を算出する。そして、目標値決定部156は、算出した差分量と所定の閾値とを比較する。そして、目標値決定部156は、差分量が閾値未満である場合には、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する。一方、目標値決定部156は、差分量が閾値以上である場合には、Target Qualityに対応する目標SIRの更新値を変換テーブル記憶部160の後述する目標SIR更新値テーブルから取得し、取得した更新値を新たな目標SIRとして決定する。
 なお、目標値決定部156は、SHO機能が実行されていない場合には、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する。
 TPC信号送信部157は、目標値決定部156により決定された目標SIRと測定部154により測定されたサービングセル1のSIRとに基づいてサービングセル基地局10の送信電力の増減を制御するTPC信号を生成して送信する。例えば、TPC信号送信部157は、目標値決定部156により決定された目標SIRと測定部154により測定されたサービングセル1のSIRとの差分量を算出し、算出した差分量が所定の閾値以下であるか否かを判定する。そして、TPC信号送信部157は、算出した差分量が閾値以下である場合には、送信電力の維持を指示する上り方向のTPC信号を生成し、生成したTPC信号を送信する。
 一方、TPC信号送信部157は、算出した差分量が閾値を超える場合には、目標値決定部156により決定された目標SIRと測定部154により測定されたサービングセル1のSIRとを比較する。そして、TPC信号送信部157は、測定部154により測定されたサービングセル1のSIRが目標SIRよりも小さい場合には、送信電力の増加を指示する上り方向のTPC信号を生成し、生成したTPC信号を送信する。一方、TPC信号送信部157は、サービングセル1のSIRが目標SIR以上である場合には、送信電力の減少を指示する上り方向のTPC信号を生成し、生成したTPC信号を送信する。
 なお、TPC信号は、SHO機能が実行されている場合にはサービングセル基地局10および非サービングセル基地局20の両方に送信され、SHO機能が実行されていない場合にはサービングセル基地局10のみに送信される。
 変換テーブル記憶部160は、TPC信号のエラーレートを目標SIRに変換するための複数の変換テーブルを格納する。変換テーブル記憶部160に記憶された変換テーブルの一例を図5に示す。同図に示すように、変換テーブル記憶部160は、TPC信号のエラーレート(TPC Error Rate)と目標SIR(Target-SIR)とを予め対応付けた変換テーブルである目標SIR初期値テーブルおよび目標SIR更新値テーブルを格納する。
 このうち、目標SIR初期値テーブルは、取得部155がTPC信号のエラーレートに対応する目標SIRの初期値を取得する際に参照する情報を有する変換テーブルである。
 ここで、図5に示した目標SIR初期値テーブルを用いて実行される取得部155の処理の一例について説明する。ここでは、TPC信号のエラーレートの目標値を示すTarget Qualityが「0.01」であるものとする。例えば、取得部155は、TPC信号のエラーレート「0.01」に対応する目標SIR「2.5dB」を目標SIR初期値テーブルから目標SIRの初期値として取得する。
 また、目標SIR更新値テーブルは、目標値決定部156が目標SIRの更新値を新たな目標SIRとして決定する際に参照する情報を有する変換テーブルである。目標SIR更新値テーブルに含まれる目標SIRの更新値は、目標SIR初期値テーブルにおいて所定のTPC信号のエラーレートに対応する目標SIRの初期値に所定のオフセット値を加算することにより得られる。なお、オフセット値は、移動機100の設計者等によって、サービングセルと非サービングセル間の品質差、F-DPCHの送信電力および下り方向のTPC信号のエラーレートなどのパラメータのうち少なくとも一つのパラメータに応じて適宜設定される。
 ここで、図5に示した目標SIR更新値テーブルを用いて実行される目標値決定部156の処理の一例について説明する。ここでは、TPC信号のエラーレートの目標値を示すTarget Qualityが「0.01」であるものとする。例えば、目標値決定部156は、測定部154により測定されたサービングセル1のSIRと非サービングセル2のSIRとの差分量が閾値以上である場合に、以下の処理を行う。すなわち、目標値決定部156は、TPC信号のエラーレート「0.01」に対応する目標SIRの更新値「3.5dB」を目標SIR更新値テーブルから取得し、取得した更新値「3.5」を初期値「2.5dB」よりも大きい新たな目標SIRとして決定する。これにより、目標SIRがオフセット値分だけ増加するため、送信電力の増加を指示するTPC信号が適切に生成され、サービングセル基地局10や非サービングセル基地局20に対する送信電力制御が高精度に行われる。
 次に、図6を参照して、実施例1に係る移動機100による処理手順について説明する。図6は、実施例1に係る移動機100による処理手順を示すフローチャートである。なお、ここでは、移動機100が図1に示したサービングセル基地局10との間でF-DPCHを設定し、設定したF-DPCHを通じてサービングセル基地局10との間で通信を行っているものとする。
 図6に示すように、SHO実行部151は、F-DPCHからのTarget Qualityが通知されるまで待機する(ステップS101否定)。そして、SHO実行部151は、F-DPCHからのTarget Qualityを受信すると(ステップS101肯定)、受信したTarget Qualityを取得部155へ引き渡す。
 続いて、取得部155は、Target QualityをSHO実行部151から受信する。そして、取得部155は、受信したTarget Qualityに対応する目標SIRを変換テーブル記憶部160の目標SIR初期値テーブルから目標SIRの初期値として取得する(ステップS102)。
 続いて、判定部152は、SHO実行部151によるSHO機能が実行されているか否かを判定する(ステップS103)。判定部152によりSHO機能が実行されていないと判定された場合には(ステップS103否定)、通常時送信電力制御処理が実行される(ステップS104)。一方、判定部152によりSHO機能が実行されていると判定された場合には(ステップS103肯定)、SHO時送信電力制御処理が実行される(ステップS105)。なお、通常時送信電力制御処理およびSHO時送信電力制御処理については後に詳述する。
 そして、制御部150は、通常時送信電力制御処理またはSHO時送信電力制御処理を実行した後に、ユーザによる通信の終了操作を受け付けたか否かを判定する(ステップS106)。そして、制御部150は、ユーザによる通信の終了操作を受け付けていない場合には(ステップS106否定)、ステップS103に処理を戻し、ユーザによる通信の終了操作を受け付けた場合には(ステップS106肯定)、図6に示す処理を終了する。
 次に、図7を参照して、通常時送信電力制御処理について説明する。図7は、通常時送信電力制御処理の処理手順を示すフローチャートである。なお、図7に示した通常時送信電力制御処理は、図6に示したステップS104に対応する。
 図7に示すように、受信部153は、サービングセル基地局10から送信される無線信号を受信し(ステップS111)、測定部154は、受信された無線信号に含まれるTPC信号を用いてサービングセル1のSIRを測定する(ステップS112)。そして、目標値決定部156は、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する。
 続いて、TPC信号送信部157は、目標値決定部156により決定された目標SIRと測定部154により測定されたサービングセル1のSIRとの差分量を算出する。なお、以下では、目標値決定部156により決定された目標SIRを「目標SIR」と表記し、測定部154により測定されたサービングセル1のSIRを「測定SIR」と表記する。そして、TPC信号送信部157は、算出した差分量|目標SIR-測定SIR|が所定の閾値α以下であるか否かを判定する(ステップS113)。
 そして、TPC信号送信部157は、算出した差分量|目標SIR-測定SIR|が閾値α以下である場合には(ステップS113肯定)、送信電力の維持を指示する上り方向のTPC信号を生成する。そして、TPC信号送信部157は、生成したTPC信号をサービングセル基地局10に送信する(ステップS114)。
 一方、TPC信号送信部157は、算出した差分量|目標SIR-測定SIR|が閾値αを超える場合には(ステップS113否定)、目標SIRと測定SIRとを比較する(ステップS115)。そして、TPC信号送信部157は、測定SIRが目標SIRよりも小さい場合には(ステップS115肯定)、送信電力の増加を指示する上り方向のTPC信号を生成し、生成したTPC信号をサービングセル基地局10に送信する(ステップS116)。一方、TPC信号送信部157は、測定SIRが目標SIR以上である場合には(ステップS115否定)、送信電力の減少を指示する上り方向のTPC信号を生成し、生成したTPC信号をサービングセル基地局10に送信する(ステップS117)。
 次に、図8を参照して、SHO時送信電力制御処理について説明する。図8は、SHO時送信電力制御処理の処理手順を示すフローチャートである。なお、図8に示したSHO時送信電力制御処理は、図6に示したステップS105に対応する。
 図8に示すように、受信部153は、サービングセル基地局10および非サービングセル基地局20からの無線信号を受信する(ステップS121)。そして、測定部154は、受信される無線信号に含まれるTPC信号を用いてサービングセル1および非サービングセル2を含む全てのセルのSIRを測定する(ステップS122)。
 続いて、目標値決定部156は、測定部154により測定されたサービングセル1のSIRと非サービングセル2のSIRとの差分量を算出する。以下では、測定部154により測定されたサービングセル1のSIRを「X」と表記し、測定部154により測定された非サービングセル2のSIRを「Y」と表記する。そして、目標値決定部156は、算出した差分量|X-Y|と所定の閾値Nthとを比較する(ステップS123)。
 そして、目標値決定部156は、差分量|X-Y|が閾値Nth未満である場合には(ステップS123否定)、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する(ステップS124)。
 一方、目標値決定部156は、差分量|X-Y|が閾値Nth以上である場合には(ステップS123肯定)、Target Qualityに対応する目標SIRの更新値を変換テーブル記憶部160の目標SIR更新値テーブルから取得する(ステップS125)。そして、目標値決定部156は、取得した更新値を新たな目標SIRとして決定する(ステップS126)。
 続いて、TPC信号送信部157は、目標値決定部156により決定された目標SIRと測定部154により測定されたサービングセル1のSIRとの差分量を算出する。なお、以下では、目標値決定部156により決定された目標SIRを「目標SIR」と表記し、測定部154により測定されたサービングセル1のSIRを「測定SIR」と表記する。そして、TPC信号送信部157は、算出した差分量|目標SIR-測定SIR|が所定の閾値α以下であるか否かを判定する(ステップS127)。
 そして、TPC信号送信部157は、算出した差分量|目標SIR-測定SIR|が閾値α以下である場合には(ステップS127肯定)、送信電力の維持を指示する上り方向のTPC信号を生成する。そして、TPC信号送信部157は、生成したTPC信号をサービングセル基地局10および非サービングセル基地局20に送信する(ステップS128)。
 一方、TPC信号送信部157は、算出した差分量|目標SIR-測定SIR|が閾値αを超える場合には(ステップS127否定)、目標SIRと測定SIRとを比較する(ステップS129)。そして、TPC信号送信部157は、測定SIRが目標SIRよりも小さい場合には(ステップS129肯定)、送信電力の増加を指示する上り方向のTPC信号を生成する。そして、TPC信号送信部157は、生成したTPC信号をサービングセル基地局10および非サービングセル基地局20に送信する(ステップS130)。一方、TPC信号送信部157は、測定SIRが目標SIR以上である場合には(ステップS129否定)、送信電力の減少を指示する上り方向のTPC信号を生成する。そして、TPC信号送信部157は、生成したTPC信号をサービングセル基地局10および非サービングセル基地局20に送信する(ステップS131)。
 また、上記の図8の説明では、目標値決定部156が、サービングセル1と非サービングセル2とのSIRの差分量を算出し、算出したSIRの差分量と所定の閾値を比較する場合を説明した。しかし、図9に示すように、目標値決定部156が、SIR以外の受信品質の差分量を算出し、算出したSIR以外の受信品質の差分量と所定の閾値を比較するようにしてもよい。
 つまり、図9に示すように、測定部154は、図8で説明した処理と同様の処理を行って、受信される無線信号に含まれるTPC信号を用いてサービングセル1および非サービングセル2を含む全てのセルのSIRを測定する(ステップS141~S142)。さらに、測定部154は、SIR以外の受信品質として、サービングセル1および非サービングセル2を含む全てのセルのCPICH_RSCP、CPICH_Ec/No又はPasslossを測定する(ステップS142)。ここでは、CPICH_RSCP、CPICH_Ec/No又はPasslossを単に「CPICH_RSCP等」と表記する。
 その後、目標値決定部156は、測定部154により測定されたサービングセル1のCPICH_RSCP等と非サービングセル2のCPICH_RSCP等との差分量を算出する。ここでは、測定部154により測定されたサービングセル1のCPICH_RSCP等を「X´」と表記し、測定部154により測定された非サービングセル2のCPICH_RSCP等を「Y´」と表記する。そして、目標値決定部156は、算出した差分量|X´-Y´|と所定の閾値Nth´とを比較する(ステップS143)。
 そして、目標値決定部156は、差分量|X´-Y´|が閾値Nth´未満である場合には(ステップS143否定)、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する(ステップS144)。
 一方、目標値決定部156は、差分量|X´-Y´|が閾値Nth´以上である場合には(ステップS143肯定)、Target Qualityに対応する目標SIRの更新値を目標SIR更新値テーブルから取得する(ステップS145)。そして、目標値決定部156は、取得した更新値を新たな目標SIRとして決定する(ステップS146)。
 その後、TPC信号送信部157は、図8で説明した処理と同様の処理を行って、上り方向のTPC信号を生成し、生成したTPC信号をサービングセル基地局10および非サービングセル基地局20に送信する(ステップS147~S151)。
 上述してきたように、実施例1に係る移動機100は、サービングセル1の受信品質と非サービングセル2の受信品質との差分量に基づいて目標SIRを決定する。そして、移動機100は、決定した目標SIRとサービングセル1の受信品質とに基づいてサービングセル基地局10および非サービングセル基地局20における送信電力の増減を制御するTPC信号を生成して送信する。
 このため、実施例1によれば、SHO機能の実行時にサービングセル基地局10における送信電力の過剰な増加を抑制しつつ非サービングセル2の通信品質を改善することができ、その結果、全体として送信電力制御の精度を向上することができる。
 また、実施例1に係る移動機100では、取得部155が、無線信号に含まれるTPC信号のエラーレートに対応して予め定められた目標SIRの初期値を取得する。そして、目標値決定部156は、サービングセル1の受信品質と非サービングセル2の受信品質との差分量が閾値未満である場合には、取得部155により取得された初期値をそのまま目標SIRとして決定する。一方、目標値決定部156は、サービングセル1の受信品質と非サービングセル2の受信品質との差分量が閾値以上である場合には、初期値に所定のオフセット値を加算することにより得られる更新値を目標SIRとして決定する。
 このため、実施例1によれば、サービングセルと比して非サービングセルの受信品質が過度に劣化した場合にのみ、目標SIRを増加することができ、その結果、非サービングセルの通信品質を向上することができる。ひいては、非サービングセル側における下り方向のTPC信号の信頼度を上げることができ、TPC信号の合成時などに移動機の送信電力が過剰に増加又は減少する事態を回避することができる。
 上記実施例1では、サービングセル1の受信品質と非サービングセル2の受信品質との差分量が閾値以上である場合に、所定のオフセット値を目標SIRの初期値に加算することにより得られる更新値を目標SIRとして決定する場合について説明した。しかしながら、サービングセル1の受信品質と非サービングセル2の受信品質との差分量の大きさに応じたオフセット値(例えば、差分量に応じて異なるオフセット値)を目標SIRの初期値に加算することにより得られる更新値を目標SIRとして決定してもよい。そこで、以下では、このような場合を実施例2として説明する。
 まず、図10を参照して、実施例2に係る移動機200の構成について説明する。図10は、実施例2に係る移動機200の構成を示すブロック図である。なお、ここでは、図4に示した各部と同様の役割を果たす機能部については、同一の符号を付すこととしてその詳細な説明を省略する。
 図10に示すように、移動機200は、アンテナ共用器110、RF部120、ABB部130、DBB部140、制御部250および変換テーブル記憶部260を有する。制御部250は、SHO実行部151、判定部152、受信部153、測定部154、取得部155、目標値決定部256およびTPC信号送信部157を有する。
 目標値決定部256は、SHO機能が実行されている場合に、測定部154により測定されたサービングセル1のSIRと非サービングセル2のSIRとの差分量を算出する。そして、目標値決定部256は、算出した差分量と第1の閾値Nth1とを比較する。そして、目標値決定部256は、差分量が第1の閾値Nth1未満である場合には、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する。
 一方、目標値決定部256は、差分量が第1の閾値Nth1以上である場合には、差分量の大きさに応じたオフセット値を目標SIRの初期値に加算することより得られる更新値を目標SIRとして決定する。例えば、目標値決定部256は、差分量の大きさと変換テーブル記憶部260の目標SIR更新値テーブルの識別番号とを対応付けた内部テーブルを有し、この内部テーブルを参照して、差分量に応じた目標SIR更新値テーブルを選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を選択した目標SIR更新値テーブルから取得し、取得した更新値を新たな目標SIRとして決定する。
 目標値決定部256が有する内部テーブルの一例を図11に示す。同図に示すように、内部テーブルは、サービングセル1のSIR「X」と非サービングセル2のSIR「Y」との差分量|X-Y|の大きさに対応付けて目標SIR更新値テーブルのテーブル番号を格納する。テーブル番号は、目標SIR更新値テーブルの識別番号である。
 例えば、目標値決定部256は、差分量|X-Y|が第1の閾値Nth1以上で、かつ、第2の閾値Nth2未満である場合には、図11に示した内部テーブルが有する情報を参照して、テーブル番号「#1」の目標SIR更新値テーブル#1を選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を、選択した目標SIR更新値テーブル#1から取得し、取得した更新値を新たな目標SIRとして決定する。また、例えば、目標値決定部256は、差分量|X-Y|が第2の閾値Nth2以上で、かつ、第3の閾値Nth3未満である場合には、図11に示した内部テーブルを参照して、テーブル番号「#2」の目標SIR更新値テーブル#2を選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を、選択した目標SIR更新値テーブル#2から取得し、取得した更新値を新たな目標SIRとして決定する。
 図10に戻り、変換テーブル記憶部260は、TPC信号のエラーレートを目標SIRに変換するための複数の変換テーブルを格納する。変換テーブル記憶部260に記憶された変換テーブルの一例を図12に示す。同図に示すように、変換テーブル記憶部260は、目標SIR初期値テーブル、目標SIR更新値テーブル#1および目標SIR更新値テーブル#2を格納する。このうち、目標SIR初期値テーブルは、図5に示した目標SIR初期値テーブルの説明と同様であるので、説明を省略する。
 目標SIR更新値テーブル#1および目標SIR更新値テーブル#2は、目標値決定部256が目標SIRの更新値を新たに目標SIRとして決定する際に参照する情報を有する変換テーブルである。目標SIR更新値テーブル#1に含まれる目標SIRの更新値は、目標SIR初期値テーブルにおいて所定のTPC信号のエラーレートに対応する目標SIRの初期値にオフセット値aを加算することにより得られる。目標SIR更新値テーブル#2に含まれる目標SIRの更新値は、目標SIR初期値テーブルにおいて所定のTPC信号のエラーレートに対応する目標SIRの初期値にオフセット値aよりも大きいオフセット値bを加算することにより得られる。オフセット値a、bは、移動機200の設計者等によって、サービングセルと非サービングセル間の品質差、F-DPCHの送信電力および下り方向のTPC信号のエラーレートなどのパラメータのうち少なくとも一つのパラメータに応じて適宜設定される。特に、本実施例では、オフセット値a、bは、サービングセル1の受信品質と非サービングセル2の受信品質との差分量に応じた値となるように設定され、好ましくは、該差分量が大きいほど増大するように設定される。
 ここで、図12に示した目標SIR更新値テーブルを用いて実行される目標値決定部256の処理の一例について説明する。ここでは、TPC信号のエラーレートの目標値を示すTarget Qualityが「0.01」であるものとする。例えば、目標値決定部256は、測定部154により測定されたサービングセル1のSIRと非サービングセル2のSIRとの差分量が第1の閾値Nth1以上である場合に、以下の処理を行う。すなわち、目標値決定部256は、差分量が第1の閾値Nth1以上で、かつ、第2の閾値Nth2未満である場合に、図12に示した目標SIR更新値テーブル#1を選択する。そして、目標値決定部256は、TPC信号のエラーレート「0.01」に対応する目標SIRの更新値「3.5dB」を目標SIR更新値テーブル#1から取得し、取得した更新値「3.5」を初期値「3dB」よりも大きい新たな目標SIRとして決定する。また、目標値決定部256は、差分量が第2の閾値Nth2以上で、かつ、第3の閾値Nth3未満である場合に、図12に示した目標SIR更新値テーブル#2を選択する。そして、目標値決定部256は、TPC信号のエラーレート「0.01」に対応する目標SIRの更新値「4.5dB」を目標SIR更新値テーブル#1から取得し、取得した更新値「3.5」を初期値「3dB」よりも大きい新たな目標SIRとして決定する。これにより、目標SIRがより緻密に決定されるので、送信電力の増加を指示するTPC信号が適切に生成され、サービングセル基地局10や非サービングセル基地局20に対する送信電力制御がより高精度に行われる。
 次に、図13を参照して、実施例2におけるSHO時送信電力制御処理について説明する。図13は、SHO時送信電力制御処理の処理手順を示すフローチャートである。なお、図13に示したSHO時送信電力制御処理は、図6に示したステップS105に対応する。また、ステップS201、S202およびステップS210~S214は、図8に示したステップS121、S122およびステップS127~S131と同様の処理であるため、その説明を省略する。
 図13に示すように、測定部154によりサービングセル1および非サービングセル2を含む全てのセルのSIRが測定された後に(ステップS202)、目標値決定部256は、サービングセル1のSIRと非サービングセル2のSIRとの差分量を算出する。以下では、測定部154により測定されたサービングセル1のSIRを「X」と表記し、測定部154により測定された非サービングセル2のSIRを「Y」と表記する。そして、目標値決定部256は、算出した差分量|X-Y|と第1の閾値Nth1とを比較する(ステップS203)。
 そして、目標値決定部256は、差分量|X-Y|が第1の閾値Nth1未満である場合には(ステップS203否定)、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する(ステップS204)。
 一方、目標値決定部256は、差分量|X-Y|が第1の閾値Nth1以上である場合には(ステップS203肯定)、差分量|X-Y|が第2の閾値Nth2以上であるか否かを判定する(ステップS205)。
 そして、目標値決定部256は、差分量|X-Y|が第2の閾値Nth2未満である場合には(ステップS205否定)、内部テーブルを参照して、対応する目標SIR更新値テーブル#1を選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を、選択した目標SIR更新値テーブル#1から取得し(ステップS206)、取得した更新値を新たな目標SIRとして決定する(ステップS207)。
 一方、目標値決定部256は、差分量|X-Y|が第2の閾値Nth2以上である場合には(ステップS205肯定)、内部テーブルを参照して、対応する目標SIR更新値テーブル#2を選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を、選択した目標SIR更新値テーブル#2から取得し(ステップS208)、取得した更新値を新たな目標SIRとして決定する(ステップS209)。
 また、上記の図13の説明では、目標値決定部256が、サービングセル1と非サービングセル2のとのSIRの差分量を算出し、算出したSIRの差分量の大きさに応じた更新値を目標SIRとして決定する場合を説明した。しかし、図14に示すように、目標値決定部256が、SIR以外の受信品質の差分量を算出し、算出したSIR以外の受信品質の差分量の大きさに応じた更新値を目標SIRとして決定するようにしてもよい。
 つまり、図14に示すように、測定部154は、図13で説明した処理と同様の処理を行って、サービングセル1および非サービングセル2を含む全てのセルのSIRを測定する(ステップS221~S222)。さらに、測定部154は、SIR以外の受信品質として、サービングセル1および非サービングセル2を含む全てのセルのCPICH_RSCP、CPICH_Ec/No又はPasslossを測定する(ステップS222)。ここでは、ここでは、CPICH_RSCP、CPICH_Ec/No又はPasslossを単に「CPICH_RSCP等」と表記する。
 その後、目標値決定部256は、測定部154により測定されたサービングセル1のCPICH_RSCP等と非サービングセル2のCPICH_RSCP等との差分量を算出する。ここでは、測定部154により測定されたサービングセル1のCPICH_RSCP等を「X´」と表記し、測定部154により測定された非サービングセル2のCPICH_RSCP等を「Y´」と表記する。そして、目標値決定部256は、算出した差分量|X´-Y´|と第1の閾値Nth1´とを比較する(ステップS223)。
 そして、目標値決定部256は、差分量|X´-Y´|が閾値Nth1´未満である場合には(ステップS223否定)、取得部155により取得された目標SIRの初期値をそのまま目標SIRとして決定する(ステップS224)。
 一方、目標値決定部256は、差分量|X´-Y´|が第1の閾値Nth1´以上である場合には(ステップS223肯定)、差分量|X´-Y´|が第2の閾値Nth2´以上であるか否かを判定する(ステップS225)。
 そして、目標値決定部256は、差分量|X´-Y´|が第2の閾値Nth2´未満である場合には(ステップS225否定)、内部テーブルを参照して、対応する目標SIR更新値テーブル#1を選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を、選択した目標SIR更新値テーブル#1から取得し(ステップS226)、取得した更新値を新たな目標SIRとして決定する(ステップS227)。
 一方、目標値決定部256は、差分量|X´-Y´|が第2の閾値Nth2´以上である場合には(ステップS225肯定)、内部テーブルを参照して、対応する目標SIR更新値テーブル#2を選択する。そして、目標値決定部256は、Target Qualityに対応する目標SIRの更新値を、選択した目標SIR更新値テーブル#2から取得し(ステップS228)、取得した更新値を新たな目標SIRとして決定する(ステップS229)。
 その後、TPC信号送信部157は、図13で説明した処理と同様の処理を行って、上り方向のTPC信号を生成し、生成したTPC信号をサービングセル基地局10および非サービングセル基地局20に送信する(ステップS230~S234)。
 上述してきたように、実施例2では、目標値決定部256が、サービングセル1と非サービングセル2との受信品質の差分量が第1の閾値以上である場合に、差分量の大きさに応じたオフセット値を初期値に加算した更新値を目標SIRとして決定する。
 このため、実施例2によれば、サービングセル1と非サービングセル2の受信品質の差に応じた目標SIRをより緻密に決定することができ、非サービングセル2の通信品質を段階的に向上することができる。その結果、SHO機能の実行時における送信電力制御の精度を更に向上することができる。
 ところで、上記の実施例1および2で説明した各種の処理は、予め用意されたプログラムをコンピュータで実行することによって実現することができる。そこで、以下では、図15を用いて、実施例1に係る移動機100を実現するためのプログラムを実行するコンピュータの一例を説明する。
 図15は、無線通信装置制御プログラムを実行するコンピュータを示す図である。同図に示すように、コンピュータ500は、通信部510、HDD(Hard Disk Drive)520、RAM(Random Access Memory)530およびCPU(Central Processing Unit)540をバス600で接続して構成される。
 このうち、通信部510は、無線通信を行うための通信インターフェースである。HDD520は、CPU540による各種処理の実行に必要な情報を記憶する。RAM530は、各種情報を一時的に記憶する。CPU540は、各種演算処理を実行する。なお、通信部510は、図4に示したアンテナ共用器110、RF部120、ABB部130およびDBB部140に対応する。
 そして、HDD520には、図15に示すように、上記の実施例に示した移動機100が有する各機能部と同様の機能を発揮する無線通信装置制御プログラム521と、無線通信装置制御データ522とがあらかじめ記憶されている。なお、無線通信装置制御プログラム521を適宜分散させて、ネットワークを介して通信可能に接続された他のコンピュータの記憶部に記憶させておくこともできる。
 そして、CPU540が、この無線通信装置制御プログラム521をHDD520から読み出してRAM530に展開することにより、図15に示すように、無線通信装置制御プログラム521は無線通信装置制御プロセス531として機能するようになる。すなわち、無線通信装置制御プロセス531は、無線通信装置制御データ522等をHDD520から読み出して、RAM530において自身に割り当てられた領域に展開し、この展開したデータ等に基づいて各種処理を実行する。なお、無線通信装置制御プロセス531は、図4に示した制御部150に対応する。
 なお、上記した無線通信装置制御プログラム521については、必ずしも最初からHDD520に記憶させておく必要はなく、例えば、CD-ROM等の記憶媒体に記憶されたプログラムを、コンピュータ500が読み出して実行するようにしてもよい。また、公衆回線、インターネット、LAN、WAN等を介してコンピュータ500に接続される他のコンピュータ(またはサーバ)などに各プログラムを記憶させておき、コンピュータ500がこれらから各プログラムを読み出して実行するようにしてもよい。
10 サービングセル基地局
20 非サービングセル基地局
100、200 移動機
110a アンテナ
110 アンテナ共用器
120 RF部
121 送信部
122 受信部
130 ABB部
131 DAC部
132 ADC部
140 DBB部
150、250 制御部
151 SHO実行部
152 判定部
153 受信部
154 測定部
155 取得部
156、256 目標値決定部
157 TPC信号送信部
160、260 変換テーブル記憶部

Claims (7)

  1.  複数の基地局と同時に通信する機能を有する無線通信装置であって、
     前記複数の基地局から送信される無線信号を受信する受信部と、
     前記受信される無線信号に基づいて、前記複数の基地局のうち第1の基地局に対する受信品質である第1の受信品質と、前記第1の基地局以外の第2の基地局に対する受信品質である第2の受信品質とを測定する測定部と、
     前記第1の受信品質と前記第2の受信品質との差分量に基づいて、前記第1の基地局および前記第2の基地局における送信電力に対する目標値を決定する目標値決定部と、
     前記決定した目標値と前記第1の受信品質及び/又は前記第2の受信品質とに基づいて前記第1の基地局および前記第2の基地局における送信電力の増減を制御する制御信号を生成して前記第1の基地局および前記第2の基地局へ送信する送信電力制御信号送信部と
     を備えたことを特徴とする無線通信装置。
  2.  前記無線信号に含まれる前記制御信号のエラーレートに対応して予め定められた前記目標値の初期値を取得する取得部をさらに備え、
     前記目標値決定部は、
     前記第1の受信品質と前記第2の受信品質との差分量が閾値未満である場合には、前記取得部により取得された前記初期値を前記目標値として決定し、前記第1の受信品質と前記第2の受信品質との差分量が閾値以上である場合には、前記初期値に所定のオフセット値を加算することにより得られる更新値を前記目標値として決定することを特徴とする請求項1に記載の無線通信装置。
  3.  前記目標値決定部は、前記第1の受信品質と前記第2の受信品質との差分量が閾値以上である場合には、該差分量の大きさに応じたオフセット値を前記初期値に加算することにより得られる更新値を前記目標値として決定することを特徴とする請求項2に記載の無線通信装置。
  4.  前記オフセット値は、前記第1の受信品質と前記第2の受信品質との差分量が大きいほど増大することを特徴とする請求項3に記載の無線通信装置。
  5.  前記複数の基地局と同時に通信する機能が実行されているか否かを判定する判定部をさらに備え、
     前記受信部は、前記判定部により前記複数の基地局と同時に通信する機能が実行されていないと判定された場合には、前記第1の基地局から送信される無線信号を受信し、
     前記測定部は、前記受信される無線信号に基づいて前記第1の受信品質を測定し、
     前記目標値決定部は、前記取得部により取得された前記初期値を前記目標値として決定し、
     前記送信電力制御信号送信部は、前記決定した前記目標値と前記第1の受信品質とに基づいて前記第1の基地局における送信電力の増減を制御する制御信号を生成して前記第1の基地局へ送信することを特徴とする請求項2~4のいずれか一つに記載の無線通信装置。
  6.  複数の基地局と同時に通信する機能を有する無線通信装置が、
     前記複数の基地局から送信される無線信号を受信し、
     前記受信される無線信号に基づいて、前記複数の基地局のうち第1の基地局に対する受信品質である第1の受信品質と、前記第1の基地局以外の第2の基地局に対する受信品質である第2の受信品質とを測定し、
     前記第1の受信品質と前記第2の受信品質との差分量に基づいて、前記第1の基地局および前記第2の基地局における送信電力に対する目標値を決定し、
     前記決定した目標値と前記第1の受信品質とに基づいて前記第1の基地局および前記第2の基地局における送信電力の増減を制御する制御信号を生成して前記第1の基地局および前記第2の基地局へ送信する
     ことを特徴とする無線通信装置制御方法。
  7.  複数の基地局と同時に通信する機能を有する無線通信装置に、
     前記複数の基地局のうち第1の基地局から受信される無線信号に基づいて測定された前記第1の基地局に対する受信品質である第1の受信品質と、前記複数の基地局のうち前記第1の基地局以外の第2の基地局から受信される無線信号に基づいて測定された前記第2の基地局に対する受信品質である第2の受信品質との差分量に基づいて、前記第1の基地局および前記第2の基地局における送信電力に対する目標値を決定し、
     前記決定した目標値と前記第1の受信品質及び/又は前記第2の受信品質とに基づいて前記第1の基地局および前記第2の基地局における送信電力の増減を制御する制御信号を生成して前記第1の基地局および前記第2の基地局へ送信する
     処理を実行させる無線通信装置制御プログラム。
PCT/JP2011/051668 2011-01-27 2011-01-27 無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム WO2012101807A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051668 WO2012101807A1 (ja) 2011-01-27 2011-01-27 無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051668 WO2012101807A1 (ja) 2011-01-27 2011-01-27 無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム

Publications (1)

Publication Number Publication Date
WO2012101807A1 true WO2012101807A1 (ja) 2012-08-02

Family

ID=46580410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051668 WO2012101807A1 (ja) 2011-01-27 2011-01-27 無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム

Country Status (1)

Country Link
WO (1) WO2012101807A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217773A (ja) * 2000-02-04 2001-08-10 Hitachi Ltd 無線通信システム、基地局制御局、基地局及び送信電力制御方法
JP2006352883A (ja) * 2005-06-14 2006-12-28 Samsung Electronics Co Ltd 移動通信システムにおけるハンドオーバー遂行のための方法
WO2008050893A1 (fr) * 2006-10-27 2008-05-02 Nec Corporation Procédé de commande de la puissance de transmission et dispositif terminal portable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217773A (ja) * 2000-02-04 2001-08-10 Hitachi Ltd 無線通信システム、基地局制御局、基地局及び送信電力制御方法
JP2006352883A (ja) * 2005-06-14 2006-12-28 Samsung Electronics Co Ltd 移動通信システムにおけるハンドオーバー遂行のための方法
WO2008050893A1 (fr) * 2006-10-27 2008-05-02 Nec Corporation Procédé de commande de la puissance de transmission et dispositif terminal portable

Similar Documents

Publication Publication Date Title
RU2417525C2 (ru) Управление мощностью с использованием индикаций помех на множестве скоростей
CN108055880B (zh) 无线网络中的功率控制
EP1142408B1 (en) System and method for estimating interfrequency measurements used for radio network function
EP2633726B1 (en) Method and apparatus for uplink transmit power adjustment
US7068626B2 (en) Method of using a mobile unit to autonomously determine a serving cell
RU2520261C1 (ru) Способ управления мощностью передачи восходящей линии связи и устройство для его осуществления
US8768401B2 (en) Method, apparatus, and network device for power control
US7127267B2 (en) Enhanced forward link power control during soft hand-off
US20070082620A1 (en) Method and apparatus for controlling uplink transmission power for ofdma based evolved utra
US7203510B2 (en) CDMA mobile communication system in which updating of a reference value for controlling closed-loop transmission power is realized in a base transceiver station
US20110300869A1 (en) Radio access network apparatus, mobile station and handover control method
KR20100138723A (ko) 이동통신 시스템에서 업링크 전송 출력을 제어하는 방법 및 장치
EP2642785B1 (en) Methods and devices for data measurement
JP2008148038A (ja) 移動体通信システム、移動体通信システムにおける移動端末、その制御プログラムおよび移動体通信システムにおける同期確立判定方法
US8295873B2 (en) Communication terminal and method for use in radio communication system
US20130010633A1 (en) Reducing load in a communications network
KR101895341B1 (ko) 전력 제어 방법 및 장치
WO2012101807A1 (ja) 無線通信装置、無線通信装置制御方法および無線通信装置制御プログラム
US20090117904A1 (en) Mobile station and handover control method
WO2009084091A1 (ja) 送信電力制御方法及びその装置
JP5651497B2 (ja) 閾値算出装置及び閾値算出プログラム
JPWO2019069572A1 (ja) 端末、基地局、送信方法及び受信方法
WO2014194799A1 (zh) 通信方法、无线网络控制器和用户设备
JP2005318327A (ja) 通信端末装置及び送信電力制御方法
JP2002305477A (ja) 基地局装置、移動局装置および送信電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP