WO2012100372A1 - Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru - Google Patents

Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru Download PDF

Info

Publication number
WO2012100372A1
WO2012100372A1 PCT/CN2011/000133 CN2011000133W WO2012100372A1 WO 2012100372 A1 WO2012100372 A1 WO 2012100372A1 CN 2011000133 W CN2011000133 W CN 2011000133W WO 2012100372 A1 WO2012100372 A1 WO 2012100372A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
bypass
optical module
protection unit
internal processing
Prior art date
Application number
PCT/CN2011/000133
Other languages
English (en)
Inventor
Jinping Zhang
Original Assignee
Telefonaktiebolaget L M Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget L M Ericsson (Publ) filed Critical Telefonaktiebolaget L M Ericsson (Publ)
Priority to PCT/CN2011/000133 priority Critical patent/WO2012100372A1/fr
Publication of WO2012100372A1 publication Critical patent/WO2012100372A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to communication system, particularly to a method for RRU bypass in radio communication network and a RRU device.
  • the Radio Remote Unit In conventional radio access network systems, the Radio Remote Unit (RRU) is adopted widely. Base on requirements of Common Public Radio Interface (CPRI) protocol and network Operators, the RRU shall support chain, tree, or ring topology architecture. (The tree topology structure may be considered as a merge of several chain topologies)
  • CPRI Common Public Radio Interface
  • ring topology architecture as shown in Figure 2, if any RRU located in the whole ring can not work well, the ring topology is broken into two chains topology. For example, in a ring topology as shown in Figure 2, if the RRU3 gets into fault status for some reason, it will result in that the original ring topology is broken into two chain topology and RRU4, RRU5 and RRU6 have to build one new cascading chain (all of original configuration will lost and all of RRU4/5/6 have to be reinitialized and reconfigured).
  • the present invention proposes a new design of a RRU device with a bypass protection function and a RRU bypass method.
  • the fault RRU When some fault information of RRU is monitored, the fault RRU will be bypassed, thus supply a protection scheme to the RRU cascading network (such as, chain or ring topology).
  • the fault RRU gets back to a normal status, it will be put into service within the original chain or ring topology automatically.
  • a method for RRU bypass in wireless communication network where at least two of the RRUs are cascaded includes: monitoring a signal indicating at least one of cascaded RRU is in failure or to be updated; and switching the at least one of cascaded RRU into a bypass mode by connecting a first optical module to a second optical module via a bypass protection unit.
  • the method further includes : if the at least one of cascaded RRU recovers to a normal working status, switching the RRU into a normal mode by connecting the first optical module to a first internal processing module in the RRU via the bypass protection unit, and connecting the second optical module to a second internal processing module in the RRU via the bypass protection unit.
  • the first internal processing module and the second internal processing module are serial and De-Serial, SERDES, modules.
  • the bypass protection unit is a unit comprising at least one of the following: cross-point switches, cross-point switches with buffer, and FPGA with two SERDES ports, the two SERDES ports being connected directly when the FPGA is in programming mode.
  • the RRU when the RRU goes into bypass mode or returns back to normal mode, the RRU updates delay compensation values depending on an amount of preceding RRUs in failure with respect to the current RRU in a transmission direction of service data from a baseband processing unit (e. g. BBU) to RRU.
  • a baseband processing unit e. g. BBU
  • a new RRU device comprising: a first optical module configured to connect to a bypass protection unit and convert between optical signal and electric signal; a second optical module configured to connect to the bypass protection unit and convert between optical signal and electric signal; a bypass protection unit configured to monitor a signal indicating the RRU is in failure or to be updated, and switch the RRU into a bypass mode by connecting the first optical module to the second optical module; a first internal processing module configured to communicate data with the first optical module via the bypass protection unit; a second internal processing module configured to communicate data with the second optical module via the bypass protection unit.
  • a protection scheme can be provided in the RRU chain and ring topology easily.
  • the RRU among the chain or ring topology can be bypassed and automatically put into service via a bypass protection unit. Additionally, it provides a scheme to update/upgrade the RRU application in the whole chain one by one without affecting the remaining RRUs. When some RRU updates/upgrades its application, other RRUs may continue to work. This improves the reliability and resilience of the RRU device and the RRU cascading network.
  • Figure 1 illustrates a schematic diagram of a chain topology architecture of RRU in the prior art
  • Figure 2 illustrates a schematic diagram of a ring topology architecture of RRU in the prior art
  • Figure 3 illustrates a schematic diagram of a method for RRU bypass in a cascading network topology according to an embodiment of the present invention
  • Figure 4 illustrates a schematic diagram of a circuit in RRU normal mode according to an embodiment of the present invention
  • Figure 5 illustrates a schematic diagram of a circuit in RRU bypass mode according to an embodiment of the present invention
  • Figure 6 illustrates a schematic diagram of a workflow of RRU protection according to an embodiment of the present invention.
  • Figure 7 illustrates a schematic diagram of a RRU device according to an embodiment of the present invention.
  • Figure 3 illustrates a schematic diagram of a method 300 for RRU bypass in a cascading network topology according to an embodiment of the present invention, where at least two of RRUs are cascaded.
  • the method 300 shown in Figure 3 particularly includes the following steps:
  • Step 301 monitoring a signal indicating at least one of cascaded RRU is in failure or to be updated, for example, indicating that the RRU needs to be reset when some fatal error is monitored; and an application software running on the RRU needs to be updated.
  • the RRU bypass protection unit or some other unit in the cascading network monitors if some fault information indicating, for example, at least one of cascaded RRU in a cascading network topology is in failure or to be updated occurs.
  • Step 302 switching the at least one of cascaded RRU into a bypass mode by connecting a first optical module to a second optical module via the bypass protection unit.
  • the RRU bypass protection unit bypasses the RRU in failure or to be upgraded and provides a protection scheme to the chain or ring topology.
  • the bypass protection unit monitors that the fault RRU goes back to normal status, it will recover the RRU into the original ring or chain topology.
  • the current RRU used in cascading application has two optical modules, one is called a first optical module and the other is called a second optical module.
  • a RRU bypass unit may be adopted.
  • the RRU bypass unit may be a unit including cross-point switch, more preferably including two high-speed CML cross-point switch blocks. This further improves the switching quality and provides a reliable protection.
  • the cross point switch may be implemented as at least one of the following:
  • the RRU bypass protection unit has two work modes: a normal mode and a bypass mode.
  • the transmitting port of the first optical module (for example, OIL A TX) is connected to the receiving port of the first internal processing module (for example, SERDES A RX) and the receiving port of the first optical module (for example, OIL_A_RX) is connected to the transmitting port of the first internal processing module (for example, SERDES_A_TX) via, for example, CML cross-point switch;
  • the transmitting port of the second optical module (for example, OIL B TX) is connected to the receiving port of the second internal processing module (for example, SERDES_B_RX) and the receiving port of the second optical module (for example, OILJB RX) is connected to the transmitting port of the second internal processing module (for example, SERDESJB TX) via CML cross-point switch.
  • the transmitting port of the first optical module (for example, OIL A TX) is connected to the receiving port of the second optical module (for example, OIL_B_RX), and the receiving port of the first optical module (for example, OIL_A_RX) is connected to the transmitting port of the second optical module (for example, OIL_B_TX) via, for example, CML cross-point switch buffer.
  • a delay compensation scheme may include:
  • Each RRU in the cascading chain is identified as in a normal or bypass mode.
  • the compensation value of each RRU is determined in the following way, for example: if all the preceding RRUs with respect to the current RRU are in the normal mode, the compensation value of the current RRU is zero; if one preceding RRU is in bypass mode, the compensation value is delta; if two preceding RRUs are in bypass mode, the compensation value is 2 x delta.
  • the transmission direction of service data e. g.
  • the delay compensation value for RRU 3 will be delta, and the delay compensation value for RRU 5 will be 2 x delta.
  • Figure 6 shows the workflow of RRU according to an embodiment of the present invention. Based on the RRU status monitored, the RRU bypass protection unit determines if the RRU works in the normal mode or bypass mode.
  • Figure 7 illustrates a schematic diagram of a new RRU device 700 according to an embodiment of the present invention.
  • the RRU device 700 includes: a first optical module 701 , e. g. , OIL-A, configured to connect to a bypass protection unit and convert between optical signal and electric signal; a second optical module 702, e. g., OIL-B, configured to connect to the bypass protection unit and convert between optical signal and electric signal; a bypass protection unit 703, e. g. , CML cross-point switch, monitor a signal indicating the RRU is in failure or to be updated, and switch the RRU into a bypass mode by connecting the first optical module to the second optical module; a first internal processing module 704, e. g. SERDES A, configured to communicate data with the first optical module via the bypass protection unit; and a second internal processing module 705, e. g. SERDES B, configured to communicate data with the second optical module via the bypass protection unit.
  • a first optical module 701 e. g. , OIL-A
  • OIL-B configured to connect to the bypass protection unit and convert between optical signal and
  • the first optical module 701 e. g. , OIL-A, converts between optical signal and electric signal to communicate with previous level RRU or BBU via optical signal and with bypass protection unit via electric signal.
  • the second optical module 702 e. g. , OIL-B, converts between optical signal and electric signal to communicate with succeeding RRU via optical signal and with bypass protection unit via electric signal.
  • the bypass protection unit 703 e. g. , CML cross-point switch, implements the supervision function of RRU status and switches the RRU work mode between normal and bypass.
  • the bypass protection unit 703 is further configured to, if the RRU recovers to a normal working status, switch the RRU into a normal mode by connecting the first optical module 701 to the first internal processing module 704, and connecting the second optical module 702 to the second internal processing module 705.
  • the bypass protection unit 703 is a unit including at least one of the following: cross-point switches, cross-point switches with buffer, and FPGA with two SERDES ports, the two SERDES ports being connected directly when the FPGA is in programming mode.
  • the bypass protection unit 703 may be integrated into the RRU or separately from the RRU physically.
  • the first internal processing module e.g. SERDES A, converts between high speed serial data and parallel data, and communicates the data from the first optical module to the other internal function blocks of RRU (for example, CPRI framing/de-framing function block).
  • RRU for example, CPRI framing/de-framing function block
  • the second internal processing module e.g. SERDES B, converts between high speed serial data and parallel data, and communicates the data from the second optical module to the other internal function blocks of RRU.
  • the RRU may further include a module for updating delay compensation values.
  • the delay compensation value of each RRU may depends on an amount of preceding RRUs in failure or to be upgraded with respect to the current RRU in a transmission direction of service data from baseband processing unit (e. g. BBU) to RRU when the current RRU goes into bypass mode or returns back to normal mode.
  • the baseband processing unit may include all the devices with the same functionality as the BBU in the embodiments of the present invention.
  • the new RRU device of the present invention could supply a RRU cascading protection scheme in the RRU chain and ring topology easily and the RRU among the chain or ring topology can be bypassed and automatically put into service based on the monitored status. It can also provide a scheme to update the RRU application in the whole chain one by one. When some RRU updates its application, the others can continue to work. This enhances the reliability and resilience of the RRU device and the RRU cascading network topology.
  • the unit(s) or module(s) comprised in the device/apparatus may be any unit normally used for performing the involved tasks, e. g., a hardware, such as a processor with a memory.
  • the invention may be implemented in any suitable form including hardware, software, firmware or any combination thereof. Specifically, the invention may be implemented as computer software running on one or more data processors and/or digital signal processors.
  • the elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. As such, the invention may be implemented in a single unit, or may be physically and functionally distributed between different units and processors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention se rapporte à un procédé permettant le contournement d'unités radio distantes (RRU, Remote Radio Unit) dans un réseau de communication sans fil, au moins deux des unités RRU étant agencées en cascade. Ledit procédé consiste à : surveiller un signal qui indique qu'une ou plusieurs unités RRU agencées en cascade sont en panne ou doivent être mises à jour ; et passer la ou les unités RRU agencées en cascade en mode de dérivation par raccordement d'un premier module optique à un second module optique par l'intermédiaire d'une unité de protection de dérivation. L'invention se rapporte également à un nouveau dispositif d'unité RRU ayant une protection en cascade. Ceci améliore la fiabilité et la souplesse du dispositif RRU et la topologie du réseau en cascade d'unités RRU.
PCT/CN2011/000133 2011-01-27 2011-01-27 Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru WO2012100372A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000133 WO2012100372A1 (fr) 2011-01-27 2011-01-27 Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000133 WO2012100372A1 (fr) 2011-01-27 2011-01-27 Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru

Publications (1)

Publication Number Publication Date
WO2012100372A1 true WO2012100372A1 (fr) 2012-08-02

Family

ID=46580170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000133 WO2012100372A1 (fr) 2011-01-27 2011-01-27 Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru

Country Status (1)

Country Link
WO (1) WO2012100372A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702356A (zh) * 2013-12-31 2014-04-02 大唐移动通信设备有限公司 一种基于tdd系统的故障诊断装置
WO2014056382A1 (fr) * 2012-10-10 2014-04-17 中兴通讯股份有限公司 Procédé et système de maintenance d'une station de base
WO2016058395A1 (fr) * 2014-10-17 2016-04-21 中兴通讯股份有限公司 Procédé de sortie d'informations, procédé et dispositif de diagnostic, et module d'étanchéité
WO2016065866A1 (fr) * 2014-10-31 2016-05-06 中兴通讯股份有限公司 Procédé et dispositif de contrôle d'accès de rru à une station de base
WO2017004920A1 (fr) * 2015-07-06 2017-01-12 中兴通讯股份有限公司 Procédé de détection de dispositif de communication sans fil, et dispositif de communication sans fil
WO2017028311A1 (fr) * 2015-08-20 2017-02-23 华为技术有限公司 Unité radio à distance, récepteur et station de base
CN109840102A (zh) * 2017-11-27 2019-06-04 大唐移动通信设备有限公司 一种Rhub软件升级处理方法及装置
JP2019149830A (ja) * 2019-04-22 2019-09-05 株式会社東芝 無線中継システム、無線中継システムの子機、及び、無線中継システムのバイパス切り替え方法
WO2021104392A1 (fr) * 2019-11-26 2021-06-03 中兴通讯股份有限公司 Procédé de liaison terrestre, unité, procédé d'attribution de données et dispositif de commande, système de réseau et support
WO2021135466A1 (fr) * 2019-12-31 2021-07-08 中兴通讯股份有限公司 Procédé d'acquisition intelligente de données de puce de bande de base, appareil, dispositif et support d'informations
WO2021244301A1 (fr) * 2020-06-01 2021-12-09 中兴通讯股份有限公司 Procédé de compensation du temps de propagation et station de base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852504A (zh) * 2005-07-21 2006-10-25 上海华为技术有限公司 一种射频拉远模块复位的方法及系统
CN1885750A (zh) * 2005-06-23 2006-12-27 上海华为技术有限公司 远端射频模块及其传输信号的方法
CN101035350A (zh) * 2007-04-18 2007-09-12 中兴通讯股份有限公司 一种基带单元对多级远端射频单元实现复位的方法
CN101325754A (zh) * 2005-07-21 2008-12-17 华为技术有限公司 一种射频拉远模块复位的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885750A (zh) * 2005-06-23 2006-12-27 上海华为技术有限公司 远端射频模块及其传输信号的方法
CN1852504A (zh) * 2005-07-21 2006-10-25 上海华为技术有限公司 一种射频拉远模块复位的方法及系统
CN101325754A (zh) * 2005-07-21 2008-12-17 华为技术有限公司 一种射频拉远模块复位的方法及系统
CN101035350A (zh) * 2007-04-18 2007-09-12 中兴通讯股份有限公司 一种基带单元对多级远端射频单元实现复位的方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014056382A1 (fr) * 2012-10-10 2014-04-17 中兴通讯股份有限公司 Procédé et système de maintenance d'une station de base
CN103702356A (zh) * 2013-12-31 2014-04-02 大唐移动通信设备有限公司 一种基于tdd系统的故障诊断装置
CN103702356B (zh) * 2013-12-31 2017-04-05 大唐移动通信设备有限公司 一种基于tdd系统的故障诊断装置
WO2016058395A1 (fr) * 2014-10-17 2016-04-21 中兴通讯股份有限公司 Procédé de sortie d'informations, procédé et dispositif de diagnostic, et module d'étanchéité
WO2016065866A1 (fr) * 2014-10-31 2016-05-06 中兴通讯股份有限公司 Procédé et dispositif de contrôle d'accès de rru à une station de base
CN105636073A (zh) * 2014-10-31 2016-06-01 中兴通讯股份有限公司 一种控制rru接入基站的方法和装置
CN105636073B (zh) * 2014-10-31 2020-01-17 中兴通讯股份有限公司 一种控制rru接入基站的方法和装置
WO2017004920A1 (fr) * 2015-07-06 2017-01-12 中兴通讯股份有限公司 Procédé de détection de dispositif de communication sans fil, et dispositif de communication sans fil
US10187102B2 (en) 2015-08-20 2019-01-22 Huawei Technologies Co., Ltd. Radio remote unit, receiver, and base station
WO2017028311A1 (fr) * 2015-08-20 2017-02-23 华为技术有限公司 Unité radio à distance, récepteur et station de base
CN109840102A (zh) * 2017-11-27 2019-06-04 大唐移动通信设备有限公司 一种Rhub软件升级处理方法及装置
CN109840102B (zh) * 2017-11-27 2020-10-09 大唐移动通信设备有限公司 一种Rhub软件升级处理方法及装置
JP2019149830A (ja) * 2019-04-22 2019-09-05 株式会社東芝 無線中継システム、無線中継システムの子機、及び、無線中継システムのバイパス切り替え方法
WO2021104392A1 (fr) * 2019-11-26 2021-06-03 中兴通讯股份有限公司 Procédé de liaison terrestre, unité, procédé d'attribution de données et dispositif de commande, système de réseau et support
US12101228B2 (en) 2019-11-26 2024-09-24 Zte Corporation Backhaul method, unit, data allocation method and controller, network system, and medium
WO2021135466A1 (fr) * 2019-12-31 2021-07-08 中兴通讯股份有限公司 Procédé d'acquisition intelligente de données de puce de bande de base, appareil, dispositif et support d'informations
WO2021244301A1 (fr) * 2020-06-01 2021-12-09 中兴通讯股份有限公司 Procédé de compensation du temps de propagation et station de base

Similar Documents

Publication Publication Date Title
WO2012100372A1 (fr) Procédé permettant le contournement d'unités radio distantes (rru) dans un réseau de communication sans fil et dispositif d'unité rru
CN102006189B (zh) 用于双机冗余备份的主用接入服务器确定方法及装置
CN102883355B (zh) 基带处理单元、基带处理板和基带处理板的故障处理方法
US20090003326A1 (en) Interface switching method and device
US20140219080A1 (en) Method and apparatus for interworking protection switching
JP2915288B2 (ja) 通信交換機における交換ファブリック置換方法
JP5849911B2 (ja) 通信システムおよび光伝送装置
CN102763087B (zh) Cpu间互联容错的实现方法及系统
EP2197218B1 (fr) Dispositif d'interconnexion distribuée à bus partagé
US20030133405A1 (en) Method and apparatus for healing of failures for chained boards with SDH interfaces
US7032135B2 (en) Equipment protection using a partial star architecture
US6928584B2 (en) Segmented protection system and method
EP1659719B1 (fr) Dispositif pour protéger des cartes de trafic d'ordre faible/élevé dans un dispositif de transmission à hierarchie numerique synchrone
EP2873174A1 (fr) Procédé et agencement pour fournir une redondance de plan de données
CN111934841A (zh) 参考时钟的确定方法和装置、系统、存储介质及电子装置
US10873795B2 (en) Relay system in ring topology
JP2837038B2 (ja) パケット交換装置の回線対応部
JPH0936882A (ja) Sonet伝送装置の回線接続変更システム
EP1311080B1 (fr) Méthode et l'appareil pour le fonctionnement enchaíné des cartes SDH
CN110192352B (zh) 无线设备自动冗余结构
JP2867865B2 (ja) 予備回線切替制御方式
KR100383872B1 (ko) 동기식 전송시스템의 절체안정화를 위한 이중화 유니트
EP1330070A1 (fr) Méthode et dispositif pour curer des pannes de réseau des cartes enchaínés avec des interfaces SDH (HNS)
CN116260543A (zh) 时间触发网络pcf帧的处理方法
CN117527536A (zh) 一种智能双链路切换装置及网络链路智能切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856647

Country of ref document: EP

Kind code of ref document: A1