WO2012099152A1 - Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel - Google Patents

Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel Download PDF

Info

Publication number
WO2012099152A1
WO2012099152A1 PCT/JP2012/050933 JP2012050933W WO2012099152A1 WO 2012099152 A1 WO2012099152 A1 WO 2012099152A1 JP 2012050933 W JP2012050933 W JP 2012050933W WO 2012099152 A1 WO2012099152 A1 WO 2012099152A1
Authority
WO
WIPO (PCT)
Prior art keywords
shoulder
metal plate
plate
screw
spiral groove
Prior art date
Application number
PCT/JP2012/050933
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to JP2012553746A priority Critical patent/JP5864446B2/en
Priority to KR1020137021594A priority patent/KR101471319B1/en
Priority to CN201280005439.2A priority patent/CN103476532B/en
Publication of WO2012099152A1 publication Critical patent/WO2012099152A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/045Hollow panels

Definitions

  • the present invention relates to a rotary tool unit provided with a bobbin tool, a friction stir welding method using the rotary tool unit, an assembly of double skin panels joined using the rotary tool unit, and a double skin panel using the rotary tool unit
  • the present invention relates to a friction stir welding method.
  • a bobbin tool is known as a tool for friction stir welding of end faces of metal plates (see Patent Document 1).
  • the bobbin tool includes a pair of shoulders and a screw pin formed between the shoulders.
  • the metal plate is restrained so as not to move, and then a bobbin tool rotated at a high speed from one end side of the metal plate is inserted, and the screw pin is moved along the abutting portion.
  • the metal around the end faces is frictionally stirred to join the metal plates together.
  • the shoulder is also provided on the back side of the metal plate, the backing member disposed on the back side of the metal plate can be usually omitted.
  • the work of installing the backing member becomes complicated, so that labor can be greatly reduced.
  • Double skin panels are used as structures such as railway vehicles, aircraft, ships, and civil engineering structures.
  • the double skin panel includes an outer plate, an inner plate, and a support plate interposed between the outer plate and the inner plate.
  • a rotating tool is used when joining the double skin panels. It is known that friction stir welding is performed on the abutted portions.
  • the spiral groove is engraved on the outer peripheral surface of the screw pin of the bobbin tool.
  • the concave groove formed on the decorative surface of the metal plate after joining may become large. There is a problem that a lot of burrs are generated on the makeup surface.
  • the double skin panel is a thin and long metal member, it is difficult to accurately abut the outer plates and the inner plates of the pair of double skin panels. Further, even if the double skin panel assembly is fixed to be immovable with a jig, there is a problem that the double skin panels are separated from each other when the rotary tool is moved and joined.
  • the present invention provides a rotary tool unit and a friction stir welding method capable of suitably joining while suppressing the occurrence of joining defects when joining a pair of metal plates using a bobbin tool. This is the issue.
  • Another object of the present invention is to reduce the burrs generated on the decorative surface of the metal plate or reduce the concave grooves formed on the decorative surface when the spiral groove is engraved on the outer peripheral surface of the screw pin of the bobbin tool.
  • the present invention provides a rotary tool unit fixed to a chuck portion of a friction stirrer, a cylindrical holder fixed to the chuck portion, and inserted into the holder.
  • a slide shaft and a bobbin tool attached to the tip of the slide shaft, the holder has a pair of elongated holes that penetrate in the radial direction and face each other, and the slide shaft has the pair of pairs A knock pin that is inserted into the long hole; and a fixing member that fixes the knock pin to the slide shaft, wherein the bobbin tool is fixed to the slide shaft and the first shoulder.
  • a second shoulder that is spaced apart from each other, and a screw pin that connects the first shoulder and the second shoulder, and the elongated hole extends along an axial direction.
  • Id shaft is configured to rotate the holder integrally with the engagement of the said long hole knock pin, thus being moved in the axial direction in the range of the long hole.
  • the slide shaft to which the bobbin tool is attached moves in the axial direction with respect to the holder, the bobbin tool also moves in the axial direction following the deformation of the metal plate.
  • the knock pin fixed to the slide shaft is inserted into the pair of long holes of the holder, the movement of the slide shaft can be stabilized.
  • the slide shaft has a through hole penetrating in the axial direction and a pin hole orthogonal to the through hole, the knock pin is inserted into the pin hole, the fixing member is inserted into the through hole, It is preferable that the tip of the fixing member is in contact with the knock pin.
  • the knock pin can be fixed to the slide shaft with a simple configuration.
  • a narrow portion is formed in the center portion of the knock pin than other portions, The distal end of the fixing member is preferably in contact with the constricted portion.
  • the knock pin can be more reliably fixed.
  • the bobbin tool includes: a first fastener that fastens one end side of the screw pin and the first shoulder; a second fastener that fastens the other end side of the screw pin and the second shoulder; A first engagement hole extending in the axial direction and having a non-circular cross section is formed in the first shoulder, and extends in the axial direction inside the second shoulder. A second engagement hole having a non-circular cross section is formed, and the screw pin is formed on one end side of a spiral groove portion exposed between the first shoulder and the second shoulder, It is preferable to have a first engagement shaft portion that engages with the first engagement hole, and a second engagement shaft portion that is formed on the other end side and engages with the second engagement hole.
  • the bobbin tool includes: a first fastener that fastens one end side of the screw pin and the first shoulder; a second fastener that fastens the other end side of the screw pin and the second shoulder;
  • the first shoulder is formed with a first hole extending in the axial direction, and a first screw-engaged accumulation hole communicating with the first hole from the side surface side of the shoulder, Inside the second shoulder, there are formed a second hole extending in the axial direction and a second screw-engaged accumulation hole communicating with the second hole from the side surface side of the shoulder, and the screw pin is A spiral groove portion exposed between the first shoulder and the second shoulder; a first shaft portion formed on one end side and inserted into the first hole; and a flat outer surface of the first shaft portion.
  • the first flat part formed and the other end are formed and inserted into the second hole.
  • a second flat portion formed flat on the outer peripheral surface of the second shaft portion, and the first engagement from the side surface side of the first shoulder to the first screw engagement hole.
  • a screw is screwed in, the tip of the first locking screw is brought into contact with the first flat portion, a second locking screw is screwed into the second screw locking hole from the side of the second shoulder, It is preferable that the tips of the two locking screws are brought into contact with the second flat portion.
  • the screw pin and the first shoulder and the second shoulder can be integrated so that they cannot rotate with each other, and the first shoulder and the second shoulder can be easily detached from the screw pin. Can do. Thereby, a change and maintenance of a screw pin and each shoulder can be performed easily.
  • At least one of the lower surface of the first shoulder and the upper surface of the second shoulder has a concave groove formed in a spiral shape around the axis of the bobbin tool.
  • the friction stirring efficiency can be improved.
  • the present invention is a friction stir welding method for joining a pair of metal plates using the rotary tool unit according to claim 1, and a butting step of abutting the end faces of the metal plates together
  • the distance between the shoulder and the second shoulder is set to be equal to or less than the thickness of the metal plate, when the metal plate is deformed by friction stirring and the position of the metal plate is displaced in the axial direction of the bobbin tool, It is preferable that the bobbin tool moves in the axial direction following the displacement.
  • the thickness of the metal plate and the distance between the shoulders are set to 0.2 mm ⁇ ⁇ (thickness of the metal plate) ⁇ (distance between shoulders) ⁇ It is preferable to set so that ⁇ 0.8 mm.
  • the thickness of the metal plate and the distance between the shoulders are set to 0.4 mm ⁇ ⁇ (thickness of the metal plate) ⁇ ( It is preferable to set the distance between the shoulders) ⁇ ⁇ 0.8 mm.
  • a value obtained by dividing a value obtained by squaring the diameter of the surface of the shoulder that contacts the metal plate by a value obtained by squaring the outer diameter of the screw pin is set to be larger than 2.0. preferable.
  • the value obtained by squaring the outer diameter of the screw pin is divided by a value obtained by subtracting a value obtained by squaring the outer diameter of the screw pin from a value obtained by squaring the diameter of the surface of the shoulder that contacts the metal plate. So that the value obtained by dividing the square of the outer diameter of the screw pin by the product of the outer diameter of the screw pin and the distance between the shoulders is larger than 1.2. It is preferable that it is set.
  • the value obtained by squaring the outer diameter of the screw pin is a value obtained by subtracting the value obtained by squaring the outer diameter of the screw pin from the value obtained by squaring the diameter of the surface of the shoulder that contacts the metal plate.
  • the divided value is 0.2 or less
  • the screw pin becomes thin and the tensile strength is insufficient, and it is easy to bend.
  • the value is larger than 0.2
  • the screw pin is relatively thick and is not easily broken.
  • a value obtained by dividing a value obtained by squaring the outer diameter of the screw pin by a product of the outer diameter of the screw pin and the distance between the shoulders is set to be larger than 1.2. .
  • this value is 1.2 or less, the screw pin becomes thin and the bending strength is insufficient, and it is easy to bend.
  • the value is larger than 1.2, the screw pin is relatively thick and is not easily broken.
  • the metal plate with the larger thickness of the metal plate is arranged on the left side with respect to the traveling direction of the bobbin tool. In this case, it is preferable to rotate the bobbin tool clockwise. Further, in the joining step, when the thickness of the metal plate at the abutted portion is different, the metal plate with the larger thickness of the metal plate is arranged on the right side with respect to the traveling direction of the bobbin tool. In this case, it is preferable to rotate the bobbin tool counterclockwise.
  • the first shoulder and the decorative surface of the metal plate are opposed to each other, and the center of the axial direction of the screw pin and the center of the thickness direction of the metal plate are matched, Move the screw pin of the bobbin tool rotated to the right when viewed from the slide shaft side to the abutting part formed by abutting the end faces, and a right-hand screw on the first shoulder side of the outer peripheral surface of the screw pin
  • a spiral groove is formed, and the right-hand spiral groove is preferably formed at a rate of 25% or more with respect to the distance between the first shoulder and the second shoulder.
  • the bobbin tool is pushed to the slide shaft side by the movement of the metal by the spiral groove of the right screw, and the metal plate It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface. Thereby, it can prevent that a ditch
  • a left-handed spiral groove is formed between an end portion of the right-handed spiral groove and the second shoulder on the outer peripheral surface.
  • the stirring efficiency of friction stirring can be increased.
  • the first shoulder and the decorative surface of the metal plate are opposed to each other, and the center of the axial direction of the screw pin and the center of the thickness direction of the metal plate are matched, Move the screw pin of the bobbin tool rotated counterclockwise as viewed from the slide shaft side to the abutting part formed by abutting the end faces, and set the left-hand screw on the first shoulder side of the outer peripheral surface of the screw pin.
  • a spiral groove is formed, and the spiral groove of the left screw is formed at a ratio of 25% or more with respect to the distance between the shoulders.
  • the left shoulder screw on the first shoulder side is formed at a ratio of 25% or more, so that the bobbin tool is pushed to the slide shaft side by the movement of the metal by the spiral groove of the left screw, and the metal plate It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface. Thereby, it can prevent that a ditch
  • a right-handed spiral groove is formed between an end portion of the left-handed spiral groove and the second shoulder on the outer peripheral surface.
  • the stirring efficiency of friction stirring can be increased.
  • the second shoulder and the decorative surface of the metal plate are opposed to each other, and the axial center of the screw pin and the center of the metal plate in the plate thickness direction are matched, Move the screw pin of the bobbin tool rotated to the right when viewed from the slide shaft side to the abutting part formed by abutting the end faces, and a left-hand screw on the second shoulder side of the outer peripheral surface of the screw pin It is preferable that a spiral groove is formed, and the spiral groove of the left screw is formed at a ratio of 25% or more with respect to the distance between the shoulders.
  • the bobbin tool is pushed to the opposite side of the slide shaft by the movement of the metal by the spiral groove of the left screw, It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface of the metal plate. Thereby, it can prevent that a ditch
  • a right-handed spiral groove is formed between an end portion of the left-handed spiral groove and the first shoulder on the outer peripheral surface.
  • the stirring efficiency of friction stirring can be increased.
  • the second shoulder and the decorative surface of the metal plate are opposed to each other, and the axial center of the screw pin and the center of the metal plate in the plate thickness direction are matched, Move the screw pin of the bobbin tool rotated counterclockwise as viewed from the slide shaft side to the abutting part formed by abutting the end faces, and a right-hand screw on the second shoulder side of the outer peripheral surface of the screw pin A spiral groove is formed, and the right-hand spiral groove is formed at a rate of 25% or more with respect to the distance between the shoulders.
  • the bobbin tool is pushed to the opposite side of the slide shaft by the movement of the metal by the spiral groove of the right screw, It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface of the metal plate. Thereby, it can prevent that a ditch
  • a left-handed spiral groove is formed between an end of the right-handed spiral groove and the first shoulder in the outer peripheral surface.
  • the stirring efficiency of friction stirring can be increased.
  • the joining step it is preferable to join the metal plate while cooling the decorative surface side.
  • the double skin panels it is possible to prevent the double skin panels from being separated when they are joined by engaging the flanges of the outer plates.
  • the collar is provided on the inner plate, it is difficult to abut the double skin panels.
  • the inner plate is not provided with the collar and only the end surfaces are abutted. Thereby, the work of the preparation process which abuts a double skin panel can be labor-saving.
  • Each of the flange portions includes a thin portion extending from the thick portion of the outer plate, and an overhang portion that extends continuously from the thin portion and extends in the plate thickness direction.
  • the parts are preferably engaged with each other.
  • the collar portion can be provided with a simple configuration.
  • an overhanging inclined surface is formed on a side portion of the overhanging portion of one of the double skin panels, and the thick wall portion of the other double skin panel is in surface contact with the overhanging inclined surface. It is preferable that a thick inclined surface is formed.
  • the double skin panels can be easily engaged with each other.
  • the length from the support plate to the end surface is c (mm) and the thickness of the thick portion is t (mm).
  • C ⁇ 7.0 ⁇ t + 18.5 mm is preferably set.
  • the deformation on the end side of the member may be increased.
  • the deformation on the end side of the member is reduced.
  • a friction stir welding method for a double skin panel in which the ends of a pair of double skin panels are friction stir welded using the rotary tool unit according to claim 1, wherein one of the double skin panels The end portion of the inner plate of one of the double skin panels is engaged with the flange portion formed on the end portion of the outer plate of the other double skin panel while engaging the flange portion formed on the end portion of the outer plate of the other double skin panel.
  • the joining step it is preferable to join the butt portion after joining the engaging portion.
  • the double skin panel assembly and the double skin panel friction stir welding method according to the present invention it is possible to suppress the occurrence of welding defects and to perform welding appropriately. Further, according to the double skin panel assembly and the double skin panel friction stir welding method according to the present invention, the double skin panel can be suitably joined.
  • FIG. 3 is a cross-sectional view taken along the line II-II in FIG.
  • A is sectional drawing of a slide shaft
  • B is a bottom view of a slide shaft
  • c is a side view which shows a knock pin.
  • 1st shoulder concerning 1st embodiment
  • (b) is a bottom view.
  • 2nd shoulder which concerns on 1st embodiment
  • FIG. 13 is a cross-sectional view taken along the line III-III in FIG. 12. It is IV-IV sectional drawing of FIG. It is a side view which shows the bobbin tool which concerns on 2nd embodiment. It is a figure which shows the friction stir welding method which concerns on 2nd embodiment, Comprising: (a) is a sectional side view, (b) is a VV end view of (a). It is a side view which shows the bobbin tool which concerns on 3rd embodiment. It is a sectional side view which shows the friction stir welding method which concerns on 3rd embodiment. (A) shows the 1st modification of the friction stir welding method, (b) shows the 2nd modification of the friction stir welding method. It is the perspective view which showed the double skin panel which concerns on 4th embodiment.
  • Example 1 it is a graph which shows the relationship between the clearance gap between the test bodies H1, and the thickness of a junction part. In Example 1, it is a graph which shows the relationship between the clearance gap between the test bodies H3, and the thickness of a junction part. In Example 1, it is a table
  • surface which shows the relationship between the thickness of a metal plate which affects joining quality, and a clearance gap, Comprising: The case where the thickness of Ad side thickness of Re side is shown. It is a table
  • Example 1 It is a table
  • (a) is a graph showing the relationship between the gap and the thickness of the Cr portion
  • (b) is a graph showing the relationship between the gap and the thickness of the Ad portion
  • (a) is a graph showing the relationship between the gap and the thickness of the Re portion
  • (b) is a graph showing the relationship between the gap and the average thickness.
  • Example 2 it is a table
  • surface which shows the relationship between the thickness of a metal plate and gap which affects joining quality, Comprising: The case where the thickness of Ad side thickness of Re side is shown.
  • Example 1 it is the table
  • Example 2 it is the table
  • Example 3 it is the graph which showed the influence (gap 0mm of butt
  • Example 3 it is the graph which showed the influence (gap 1.5mm of butt
  • Example 4 It is the front view which showed the engagement form or butt
  • FIG. It is the table
  • the friction stirrer 300 includes a chuck portion 301 and a rotary tool unit 302 fixed to the chuck portion 301.
  • the friction stirrer 300 is a device that rotates a rotary tool unit 302 fixed to the tip at a high speed around an axis and frictionally stirs a pair of metal plates (not shown).
  • the chuck portion 301 is fixed to the apparatus main body (not shown) and rotates around the rotation axis C.
  • the chuck portion 301 has a cylindrical shape.
  • the rotary tool unit 302 mainly includes a holder 303, a slide shaft 304, and a bobbin tool 305.
  • the holder 303 is fixed inside the chuck portion 301 and rotates integrally with the chuck portion 301.
  • the holder 303 has a cylindrical shape.
  • the holder 303 has a pair of long holes 311 and a flat surface 312.
  • the long holes 311 pass through the holder 303 in the radial direction and are provided so as to face each other.
  • the long hole 311 extends so that the longitudinal direction thereof is along the rotation axis C direction.
  • the flat surface 312 is provided on a part of the outer peripheral surface of the holder 303, and is a surface that is flat along the vertical direction.
  • the holder 303 and the chuck portion 301 are fixed via a fixture 313.
  • the fixture 313 is screwed into a thread groove formed in the chuck portion 301, and the tip thereof is in contact with the flat surface 312.
  • the chuck portion 301 and the holder 303 are integrated and rotate around the rotation axis C.
  • the slide shaft 304 is a member inserted into the holder 303 and rotates around the rotation axis C integrally with the holder 303.
  • the slide shaft 304 includes a slide body 321, a knock pin 322, and a fixing member 323.
  • the slide main body 321 includes a through hole 324 that penetrates in the axial direction and a pin hole 325 that penetrates in a direction orthogonal to the axial direction.
  • the through hole 324 is formed at a position overlapping the rotation axis C of the slide body 321, and has a large diameter portion 324 a from the upper side, a small diameter portion 324 b continuous to the large diameter portion 324 a, and a step between the large diameter portion 324 a and the small diameter portion 324 b.
  • the step portion 324c and the joint portion 324d formed in the above are provided.
  • a screw groove female screw
  • the fixing member 323 is screwed into a portion where the screw groove is formed.
  • a thread groove (female thread) is formed on the inner peripheral surface of the joint 324d.
  • the joint portion 324d is a portion to which a first shoulder 331 described later is screwed.
  • the pin hole 325 is orthogonal to the small diameter portion 324 b and penetrates the slide main body 321.
  • the knock pin 322 includes a base shaft portion 322a, a constricted portion 322b, and a tapered portion 322c.
  • the constricted portion 322b is a portion having a smaller diameter than other portions.
  • the tapered portion 322c is formed at both ends of the base shaft portion 322a and tapers toward the end portion.
  • the fixing member 323 is a member for fixing the knock pin 322 to the slide main body 321.
  • the fixing member 323 is screwed into the small diameter portion 324b, and the tip thereof is in contact with the constricted portion 322b of the knock pin 322. As shown in FIG. 3, a hexagonal groove is formed in the head of the fixing member 323.
  • the slide shaft 304 is inserted into the holder 303 with both ends of the knock pin 322 positioned in the long holes 311 and 311.
  • the bobbin tool 305 is a member joined to the tip of the slide shaft 304, and includes a first shoulder 331, a second shoulder 341, a screw pin 351, a first fastener 371, and a first fastener 371. It is mainly composed of two fasteners 372.
  • the first shoulder 331 and the second shoulder 341 are spaced apart from each other and are connected by screw pins 351.
  • the first shoulder 331 includes a first large diameter portion 332, a first small diameter portion 333, and a first hollow portion 334 formed therein. Both the first large diameter portion 332 and the first small diameter portion 333 have a substantially cylindrical shape.
  • the first large diameter portion 332 has a larger outer diameter than the first small diameter portion 333.
  • a concave groove 332 b that is spirally engraved around the rotation axis C is formed on the lower surface 332 a of the first large-diameter portion 332.
  • the cross-sectional shape of the concave groove 332b is semicircular.
  • a screw groove male screw
  • the first hollow portion 334 is a portion into which the screw pin 351 is inserted and penetrates in the vertical direction.
  • the first hollow portion 334 includes a first lower hole 335, a first inner hole 336, a first engagement hole 337, a first inner hole 338, and a first upper hole 339 from the lower side. .
  • Each of the first lower hole 335, the first inner hole 336, the first inner hole 338, and the first upper hole 339 has a cylindrical inner space.
  • the inner diameter of the first lower hole 335 is larger than the inner diameter of the first inner hole 336.
  • the inner diameter of the first upper hole 339 is larger than the inner diameter of the first inner hole 338.
  • the first engagement hole 337 has a substantially square columnar internal space.
  • the horizontal cross-sectional shape of the first engagement hole 337 is substantially square in the present embodiment, but may be another square shape.
  • the second shoulder 341 includes a second large diameter portion 342, a second small diameter portion 343, and a second hollow portion 344 formed therein. Yes.
  • a plurality of (three in the present embodiment) concave strips 342a that are recessed inward are formed on the outer peripheral surface of the second large diameter portion 342.
  • a concave groove 342c that is spirally engraved around the rotation axis C is formed on the upper surface 342b of the second large diameter portion 342.
  • the cross-sectional shape of the concave groove 342c is semicircular.
  • the second hollow portion 344 is a portion into which the screw pin 351 is inserted and penetrates in the vertical direction.
  • the second hollow portion 344 includes a second upper hole 345, a second inner hole 346, a second engagement hole 347, and a second lower hole 348 from the upper side.
  • Each of the second upper hole 345, the second inner hole 346, and the second lower hole 348 has a cylindrical inner space.
  • the inner diameter of the second upper hole 345 is larger than the inner diameter of the second inner hole 346.
  • the second engagement hole 347 has a substantially square columnar internal space.
  • the horizontal cross-sectional shape of the second engagement hole 347 is substantially square in the present embodiment, but may be another square shape.
  • the screw pin 351 is a member for connecting the first shoulder 331 and the second shoulder 341 as shown in FIG. As shown to (a) and (b) of FIG. 7, the screw pin 351 is vertically symmetrical, and the spiral groove part 352 is formed in the center. The upper side of the spiral groove 352 is a part inserted into the first shoulder 331, and the lower side is a part inserted into the second shoulder 341. Above the spiral groove 352, a first large-diameter shaft portion 353, a first small-diameter shaft portion 354, a first engagement shaft portion 355, and a first tip shaft portion 356 are provided. Below the spiral groove portion 352, a second large-diameter shaft portion 357, a second small-diameter shaft portion 358, a second engagement shaft portion 359, and a second tip shaft portion 360 are provided.
  • the spiral groove 352 is a portion that is exposed from between the first shoulder 331 and the second shoulder 341, and is a portion that is inserted into a metal plate (not shown) to be joined.
  • a spiral groove is engraved on the outer peripheral surface of the spiral groove portion 352.
  • the spiral groove 352 is engraved with a right-hand thread in the upper half and a left-hand thread in the lower half. What is necessary is just to set suitably the winding direction of the spiral groove engraved in the spiral groove part 352, the ratio of a right screw and a left screw, a cross-sectional shape, etc. with the metal plate to join.
  • the first large-diameter shaft portion 353 has a cylindrical shape.
  • the outer diameter of the first large-diameter shaft portion 353 is larger than the outer diameter of the spiral groove portion 352.
  • the first large-diameter shaft portion 353 is a portion that is inserted into the first lower hole 335 of the first shoulder 331 shown in FIG.
  • the first small diameter shaft portion 354 has a cylindrical shape.
  • the outer diameter of the first small diameter shaft portion 354 is smaller than that of the first large diameter shaft portion 353.
  • the first small-diameter shaft portion 354 is a portion that is inserted into the first inner hole 336 of the first shoulder 331 shown in FIG.
  • the first engagement shaft portion 355 has a quadrangular prism shape.
  • the horizontal cross-sectional shape of the first engagement shaft portion 355 is substantially square.
  • the length of the diagonal line related to the horizontal cross section of the first engagement shaft portion 355 is substantially equal to the outer diameter of the first small diameter shaft portion 354.
  • the first engagement shaft portion 355 is a portion that closely engages with the first engagement hole 337 of the first shoulder 331 shown in FIG.
  • the first tip shaft portion 356 has a cylindrical shape.
  • the outer diameter of the first tip shaft portion 356 is smaller than the length of one side of the horizontal cross section of the first engagement shaft portion 355.
  • a thread groove (male thread) is formed on the outer peripheral surface of the first tip shaft portion 356.
  • the first tip shaft portion 356 is a portion to be inserted into the first inner hole 338 and the first upper hole 339 shown in FIG.
  • the second large-diameter shaft portion 357 has a cylindrical shape.
  • the outer diameter of the second large-diameter shaft portion 357 is larger than the outer diameter of the spiral groove portion 352.
  • the second large-diameter shaft portion 357 is a portion that is inserted into the second upper hole 345 of the second shoulder 341 shown in FIG.
  • the second small diameter shaft portion 358 has a cylindrical shape.
  • the outer diameter of the second small diameter shaft portion 358 is smaller than the outer diameter of the second large diameter shaft portion 357.
  • the second small diameter shaft portion 358 is a portion that is inserted into the second inner hole 346 of the second shoulder 341 shown in FIG.
  • the second engagement shaft portion 359 has a prismatic shape.
  • the horizontal cross-sectional shape of the second engagement shaft portion 359 is substantially square.
  • the length of the diagonal line related to the horizontal cross section of the second engagement shaft portion 359 is substantially equal to the outer diameter of the second small diameter shaft portion 358.
  • the second engagement shaft portion 359 is a portion that is closely engaged with the second engagement hole 347 of the second shoulder 341 shown in FIG.
  • the second tip shaft portion 360 has a cylindrical shape.
  • the outer diameter of the second tip shaft portion 360 is smaller than the length of one side of the horizontal cross section of the second engagement shaft portion 359.
  • a thread groove (male thread) is formed on the outer peripheral surface of the second tip shaft portion 360.
  • the second tip shaft portion 360 is a portion that is inserted into the second lower hole 348 shown in FIG.
  • the first shoulder 331 is inserted from the first tip shaft portion 356 of the screw pin 351, and the first engagement shaft portion 355 and the first engagement hole 337 are engaged. Then, the first tip shaft portion 356 is fastened with the first fastener 371 in the first upper hole 339.
  • the second shoulder 341 is inserted from the second tip shaft portion 360 of the screw pin 351, and the second engagement shaft portion 359 and the second engagement hole 347 are engaged. Then, the second tip shaft portion 360 is fastened with the second fastener 372 on the lower surface of the second shoulder 341. Since the first engagement hole 337 and the first engagement shaft portion 355, and the second engagement hole 347 and the second engagement shaft portion 359 are prismatic (planar in plan view), they engage with each other without idling. Is done.
  • the slide shaft 304 and the bobbin tool 305 are joined by screwing the first small diameter portion 333 of the first shoulder 331 into the joint 324d of the slide shaft 304.
  • the fixing member 323 is inserted into the through hole 324 of the slide body 321 and the fixing member 323 is fastened with a hexagon wrench (not shown).
  • the holder 303 and the chuck part 301 are fixed by the fixture 313 while the holder 303 is inserted into the chuck part 301.
  • the slide shaft 304 to which the bobbin tool 305 is attached moves in the axial direction with respect to the holder 303, the bobbin tool 305 also moves in the axial direction following the deformation of the metal plate. Moving. Thereby, since the position shift of the joining position due to deformation of the metal plate can be prevented, the occurrence of joining defects can be suppressed. Further, since the knock pins 322 fixed to the slide shaft 304 are inserted into the pair of long holes 311 of the holder 303, the movement of the slide shaft 304 can be stabilized.
  • the slide shaft 304 of the present embodiment has a through hole 324 that penetrates in the axial direction and a pin hole 325 that is orthogonal to the through hole 324 and into which the knock pin 322 is inserted, and the fixing member 323 is inserted into the through hole 324.
  • the tip is in contact with the knock pin 322.
  • a constricted portion 322b that is narrower than other portions is formed at the center of the knock pin 322, and the tip of the fixing member 323 is in contact with the constricted portion 322b.
  • the first small diameter portion 333 of the first shoulder 331 is screwed into or released from the joint portion 324d formed at the tip of the slide shaft 304 so that it can be attached and detached.
  • the bobbin tool 305 can be easily replaced and maintained.
  • the bobbin tool 305 needs to change the distance between the first shoulder 331 and the second shoulder 341 and the thickness of the screw pin 351 depending on the thickness and type of the metal plate to be joined. Further, it is necessary to replace the first shoulder 331, the second shoulder 341, and the screw pin 351 due to wear. According to this embodiment, since the first shoulder 331 and the second shoulder 341 of the bobbin tool 305 can be easily attached to and detached from the screw pin 351, replacement and maintenance of each member can be easily performed. Can do.
  • a concave groove 332b and a concave groove 342c that are spirally formed around the rotation axis C of the bobbin tool 305 are formed. Thereby, friction stirring efficiency can be improved.
  • the concave grooves provided on the lower surface 331a of the first shoulder 331 and the upper surface 341b of the second shoulder 341 may be provided only in either one or may be omitted.
  • first engagement hole 337 and the first engagement shaft portion 355 and the second engagement hole 347 and the second engagement shaft portion 359 are such that the engagement shaft portion cannot rotate with respect to the engagement hole. Any shape can be used.
  • a key may be formed in one of the engagement hole and the engagement shaft portion, and a key groove may be formed in the other.
  • FIG. 8A is a cross-sectional view showing a modification of the first shoulder according to the first embodiment
  • FIG. 8B is a cross-sectional view showing a modification of the second shoulder according to the first embodiment
  • FIG. 9 is a cross-sectional view showing a modification according to the first embodiment.
  • the modification according to the first embodiment is different from the above-described embodiment in that a first locking screw 473 and a second locking screw 474 are used.
  • the modified bobbin tool 405 includes a first shoulder 431, a second shoulder 441, a screw pin 451, a first fastener 471, a second fastener 472, a first locking screw 473, and a second locking screw. It is mainly composed of screws 474.
  • the first shoulder 431 includes a first large-diameter portion 432, a first small-diameter portion 433, a first hollow portion 434 formed inside, and a first screw engagement accumulation hole 438.
  • the first large diameter portion 432 has a substantially cylindrical shape, and the lower end side is tapered toward the tip.
  • the first small diameter portion 433 has a cylindrical shape.
  • the outer diameter of the first small diameter portion 433 is smaller than the outer diameter of the first large diameter portion 432.
  • a thread groove male screw that is screwed into the joint portion 324d of the slide shaft 304 is formed on the outer peripheral surface of the first small-diameter portion 433, a thread groove (male screw) that is screwed into the joint portion 324d of the slide shaft 304 is formed.
  • the first hollow portion 434 is a portion into which the screw pin 451 is inserted and penetrates in the vertical direction.
  • the first hollow portion 434 includes a first lower hole 435, a first inner hole 436, and a first upper hole 437 from the lower side.
  • the first lower hole 435 is a portion corresponding to the “first hole” in the claims.
  • Each of the first lower hole 435, the first inner hole 436, and the first upper hole 437 has a cylindrical inner space. The inner diameters of the first inner hole 436, the first lower hole 435, and the first upper hole 437 increase in order.
  • the first screw engagement hole 438 extends from the side surface of the first large diameter portion 432 in the direction of the rotation axis C, and communicates with the first lower hole 435.
  • a thread groove female thread is formed on the rotation axis C side of the first screw engagement hole 438.
  • the second shoulder 441 includes a second main body portion 442, a second hollow portion 444 formed therein, and a second screw engagement accumulation hole 447.
  • a plurality of (four in this embodiment) concave strips 442a that are recessed inward are formed.
  • the second hollow portion 444 is a portion into which the screw pin 451 is inserted, and penetrates in the vertical direction.
  • the second hollow portion 444 includes a second upper hole 445 and a second lower hole 446 from the upper side.
  • the second upper hole 445 is a portion corresponding to the “second hole” in the claims.
  • Each of the second upper hole 445 and the second lower hole 446 has a cylindrical inner space.
  • the inner diameter of the second upper hole 445 is larger than the inner diameter of the second lower hole 446.
  • the second screw engagement hole 447 extends from the side surface of the second main body 442 in the direction of the rotation axis C, and communicates with the second upper hole 445.
  • a thread groove female thread is formed on the rotation axis C side of the second screw engagement hole 447.
  • the screw pin 451 is vertically symmetrical, and a spiral groove 452 is formed at the center thereof.
  • the spiral groove portion 452 is a portion exposed from between the first shoulder 431 and the second shoulder 441.
  • a first large-diameter shaft portion 453 and a first small-diameter shaft portion 454 are provided above the spiral groove 452.
  • a second large-diameter shaft portion 455 and a second small-diameter shaft portion 456 are provided below the spiral groove 452.
  • the first large-diameter shaft portion 453 and the first small-diameter shaft portion 454 both have a substantially cylindrical shape.
  • the outer diameter of the first large-diameter shaft portion 453 is larger than the outer diameter of the first small-diameter shaft portion 454.
  • the first large-diameter shaft portion 453 is a portion that is inserted into the first lower hole 435 shown in FIG.
  • a first flat portion 453 a that is a flat surface is formed on the outer peripheral surface of the first large-diameter shaft portion 453.
  • the first large-diameter shaft portion 453 is a portion corresponding to the “first shaft portion” in the claims.
  • the first small diameter shaft portion 454 is a portion that is inserted into the first inner hole 436 and the first upper hole 437.
  • a thread groove male thread
  • the second large-diameter shaft portion 455 and the second small-diameter shaft portion 456 both have a substantially cylindrical shape.
  • the outer diameter of the second large diameter shaft portion 455 is larger than the outer diameter of the second small diameter shaft portion 456.
  • the second large-diameter shaft portion 455 is a portion that is inserted into the second upper hole 445 shown in FIG.
  • a second flat portion 455a that is a flat surface is formed on the outer peripheral surface of the second large-diameter shaft portion 455.
  • the second large-diameter shaft portion 455 is a portion corresponding to the “second shaft portion” in the claims.
  • the second small diameter shaft portion 456 is a portion that is inserted into the second lower hole 446.
  • a thread groove male thread
  • the first shoulder 431 is inserted into the first large-diameter shaft portion 453 and the first small-diameter shaft portion 454 of the screw pin 451.
  • the front end of the first locking screw 473 is brought into contact with the first flat portion 453a of the first large-diameter shaft portion 453 while the first locking screw 473 is screwed into the first screw engagement hole 438.
  • the first fastener 471 is fastened to the first small diameter shaft portion 454.
  • the second shoulder 441 is inserted into the second large diameter shaft portion 455 and the second small diameter shaft portion 456 of the screw pin 451. Then, the tip of the second locking screw 474 is brought into contact with the second flat portion 455a of the second large-diameter shaft portion 455 while the second locking screw 474 is screwed into the second screw engaging hole 447. Then, the second fastener 472 is fastened to the second small diameter shaft portion 456.
  • the first small diameter portion 433 of the first shoulder 431 is screwed into the joint portion 324d of the slide shaft 304 to join the slide shaft 304 and the bobbin tool 405.
  • the screw pin 451 is integrated with the first shoulder 431 and the second shoulder 441, the first locking screw 473 and the second locking screw 474 are screwed together and their tips and the first flat portion 453a.
  • the relative rotation between the screw pin 451, the first shoulder 431, and the second shoulder 441 can be easily limited by bringing the second flat portion 455a into contact with each other.
  • it can be easily disassembled only by releasing the first locking screw 473 and the second locking screw 474. This facilitates parts replacement and maintenance.
  • the first shoulder 431 and the second shoulder 441 are provided with an engagement hole having a non-circular cross section in the plane, and an engagement shaft portion having a columnar shape is formed on a part of the shaft portion of the screw pin 451.
  • the engagement hole and the engagement shaft portion may be engaged with each other.
  • the friction stirrer 1 is a device for friction stir welding the butted portions N of a pair of butted metal plates.
  • a bobbin tool 5 is attached to the tip of the friction stirrer 1.
  • the hollow shape member 100A is an extruded shape member made of an aluminum alloy, and is a long member having a hollow portion 100a having a rectangular cross-sectional view.
  • the hollow shape member 100A includes a main body portion 101 having a hollow portion 100a, and plate-like end portions 102 and 103 projecting from the upper and lower ends of the left side surface of the main body portion 101 to the left side (hollow shape member 100B side).
  • the main body 101 is composed of four face materials 104, 105, 106, and 107, and is formed in a rectangular shape in sectional view.
  • the plate-like end portions 102 and 103 have a plate shape and are perpendicular to the face material 105.
  • the length in the left-right direction of the plate-like end portions 102 and 103 is about half that of the face material 104.
  • the plate-like end portions 102 and 103 have the same thickness as the face materials 104, 105, 106 and 107.
  • the plate-like end portions 102 and 103 are portions corresponding to the “metal plate” in the claims.
  • the hollow shape member 100B is a metal member having a shape equivalent to that of the hollow shape member 100A.
  • the hollow shape member 100B is denoted by the same reference numeral as the hollow shape member 100A, and detailed description thereof is omitted.
  • the plate-like end portions 102 and 103 of the hollow shape member 100A and the hollow shapes 100B and 102B are brought into contact with each other. More specifically, the end surface 102a of the plate-like end portion 102 of the hollow shape member 100A and the end surface 102a of the plate-like end portion 102 of the hollow shape member 100B are abutted with each other, and the end surface 103a of the plate-like end portion 103 of the hollow shape member 100A. And the end face 103a of the plate-like end portion 103 of the hollow shape member 100B are brought into contact with each other. As shown in FIG.
  • the portion where the end faces 102a and 102a and the end faces 103a and 103a are abutted is referred to as a “butting portion N”.
  • abutting portion N When joining the butt portion N, it is preferable that the end faces 102a and 102a are in close contact with each other, but the plate-like end portions 102 and 102 are deformed due to tolerances of the hollow shape members 100A and 100B and frictional heat at the time of joining. However, a minute gap may be formed between the end faces 102a and 102a.
  • the abutting portion N is a concept including a case where a minute gap is generated in the end faces 102a and 102a.
  • the plate-shaped end portion of the hollow shape material is illustrated as an object to be joined, but the object to be joined is formed of a metal capable of friction stir, and is particularly a member that exhibits a plate shape. It is not limited.
  • the friction stirrer 1 is mainly composed of a chuck portion 1a and a rotary tool unit 2 fixed inside the chuck portion 1a.
  • the chuck portion 1a is a cylindrical member having a flange, and is connected to the main body D of the friction stirrer 1 by a bolt B1.
  • the chuck part 1 a is a part that rotates around the axis by the rotational drive of the friction stirrer 1.
  • a cylindrical surface 1b is formed on the inner periphery of the chuck portion 1a.
  • the rotary tool unit 2 is composed of a holder 3, a slide shaft 4, and a bobbin tool 5, as shown in FIG.
  • the rotary tool unit 2 can be attached to and detached from the chuck portion 1a.
  • the holder 3 is a member that contains the slide shaft 4 and is fixed inside the chuck portion 1a.
  • the holder 3 has a cylindrical shape.
  • the bolts 2B and 2B are fastened in the radial direction from the outer surface of the chuck portion 1a, and their tips are in contact with the flat surface 3a. Thereby, the chuck
  • the slide shaft 4 has a cylindrical shape and is a member disposed in the hollow portion of the holder 3.
  • the slide shaft 4 is movable in the vertical direction with respect to the holder 3.
  • a key 4 a that protrudes outward is formed on the outer surface of the slide shaft 4.
  • the bobbin tool 5 is made of, for example, tool steel and is connected to the slide shaft 4.
  • the bobbin tool 5 rotates forward and backward integrally with the chuck portion 1a, the holder 3, and the slide shaft 4.
  • the bobbin tool 5 includes a first shoulder 11, a second shoulder 12 disposed below the first shoulder 11, and a screw pin 13 that connects the first shoulder 11 and the second shoulder 12.
  • the first shoulder 11 and the second shoulder 12 have a cylindrical shape and have the same outer diameter.
  • the screw pin 13 has a cylindrical shape and connects the first shoulder 11 and the second shoulder 12.
  • the screw pin 13 passes through the second shoulder 12.
  • the screw pin 13 passing through the second shoulder 12 is fastened with a nut at the lower end of the second shoulder 12.
  • the directions of the upper spiral groove 13a and the lower spiral groove 13b are engraved so as to be wound in opposite directions.
  • the upper spiral groove 13a is carved from the lower end of the first shoulder 11 to an intermediate position in the height direction of the screw pin 13.
  • the upper spiral groove 13a is formed with a right screw. That is, the upper spiral groove 13a is engraved so as to be wound clockwise from top to bottom.
  • the lower spiral groove 13b is carved from the upper end of the second shoulder 12 to an intermediate position in the height direction of the screw pin 13.
  • the lower spiral groove 13b is formed with a left screw. That is, the lower spiral groove 13b is engraved so as to be wound counterclockwise from the top to the bottom.
  • the metal that has been friction-stirred and plastically fluidized is slightly increased from the central portion of the plate-shaped end portion 102 toward the upper end direction or the lower end direction. It is supposed to move. Note that the movement of the metal in the vertical direction stops in a minute amount compared to the movement of the metal in the circumferential direction due to the rotation of the screw pin 13 of the bobbin tool 5.
  • the winding direction of the spiral groove and the ratio of engraving may be appropriately set according to the positional relationship between the decorative surface of the metal plate to be joined and the bobbin tool 5, the rotation direction of the bobbin tool, and the like.
  • both the right and left spiral grooves are engraved on the screw pin 13, but for example, all the right thread spiral grooves may be engraved on the screw pin 13. However, all may be provided with a left-handed spiral groove.
  • the first shoulder 11 side is a right-hand thread and the second shoulder 12 side is a left-hand thread, but the first shoulder 11 side may be a left-hand thread and the second shoulder 12 side may be a right-hand thread.
  • the distance Z between shoulders of the bobbin tool 5 (the length of the exposed portion of the screw pin 13) is equal to or more than the thickness T of the plate-like end portion 102 of the hollow shape member 100A. It is preferable that it is small.
  • the distance Z between shoulders is 0.2 mm smaller than the thickness T of the plate-like end portion 102 of the hollow shape member 100A.
  • the gap between the end faces 102a, 102a of the abutting portion N can be set to 1.00 mm or less
  • the thickness T of the plate-like end portion 102 and the distance Z between the shoulders are set to 0.2 mm ⁇ TZ ⁇ 0. It is preferable to set the distance to 8 mm.
  • the gap between the end faces 102a, 102a of the butt portion N can be set larger than 1.00 and 1.75 mm or less
  • the thickness T of the plate-like end portion 102 and the distance Z between the shoulders are set to 0.4 mm ⁇ It is preferable to set so that TZ ⁇ 0.8 mm.
  • the bobbin tool 5 is a value obtained by squaring the outer diameter X of the first shoulder 11 and the second shoulder 12 (the diameter of the surface in contact with the plate-like end portion 102) and the outer diameter Y of the screw pin 13. It is preferable to set so that the divided value is larger than 2.0. According to the bobbin tool 5, since the amount of material discharged as burrs can be suppressed by the first shoulder 11 and the second shoulder 12, the occurrence of joint defects can be reduced.
  • the bobbin tool 5 is a value obtained by squaring the value obtained by squaring the outer diameter Y of the screw pin 13 and the outer diameter X of the first shoulder 11 and the second shoulder 12 (the diameter of the surface contacting the plate-like end portion 102). It is preferable that a value obtained by dividing a value obtained by subtracting a value obtained by squaring the outer diameter Y of the screw pin 13 to be larger than 0.2 is set. According to the bobbin tool 5, since the tensile strength of the screw pin against the material resistance generated in the tool axis direction at the time of joining can be sufficiently ensured, the screw pin 13 can be prevented from being damaged.
  • the bobbin tool 5 is set so that a value obtained by dividing the square of the outer diameter Y of the screw pin 13 by the product of the outer diameter Y of the screw pin 13 and the distance Z between the shoulders is larger than 1.2. It is preferable. According to the bobbin tool 5, since the bending force of the screw pin against the material resistance that flows in the direction opposite to the tool traveling direction during joining can be sufficiently secured, the screw pin 13 can be prevented from being damaged. These grounds are described in the examples.
  • the temperature of the plate-like end portions 102 and 102 increases due to frictional heat, and the plate-like end portions 102 and 102 may warp upward or downward.
  • the slide shaft 4 is formed to be movable with respect to the holder 3
  • the bobbin follows the warpage.
  • the tool 5 is configured to move upward by a predetermined distance.
  • the bobbin tool 5 is configured to move downward by a predetermined distance following the warpage.
  • joining is performed by rotating the bobbin tool 5 to the right. Specifically, in this joining method, a butting process for butting the hollow members together and a joining process for inserting the bobbin tool 5 into the butting part N are performed.
  • the surface Sa is set as a decorative surface.
  • the hollow shape member 100A and the hollow shape member 100B are opposed to each other at the plate-like end portions 102, and the end surfaces 102a, 102a and the end surfaces 103a, 103a are brought into surface contact. More specifically, surface contact is made so that the midpoint of one end face 102a and the midpoint of the other end face 102a overlap.
  • temporary attachment may be performed by welding or the like along the abutting portion N so that the hollow shape members 100A and 100B are not separated from each other. When the hollow shape member 100A and the hollow shape member 100B are brought into contact with each other, they are restrained so as not to move.
  • the center 13c of the screw pin 13 is positioned outside the butted portion N so as to overlap the center Nc of the butted portion N. Then, as shown in FIG. 16, the bobbin tool 5 rotated to the right is moved along the abutting portion N. When the bobbin tool 5 is inserted into the abutting portion N, the metal around the screw pin 13 is frictionally stirred by the screw pin 13 that rotates at high speed, and the plate-like end portions 102 are integrated. A plasticized region W is formed in the locus of the screw pin 13.
  • the bobbin tool 5 follows the warpage in the vertical direction. It is possible to move smoothly. Thereby, it can suppress that the height position of the center 13c of the screw pin 13 and the center Nc of the butt
  • the plastic fluidized metal can be pressed, and the plastic flow is caused by friction stirring. It is possible to prevent the converted metal from overflowing to the outside of the first shoulder 11 and the second shoulder 12. Thereby, generation
  • the metal that has been frictionally stirred and fluidized is guided to the upper spiral groove 13 a of the right screw of the screw pin 13 and the lower spiral groove 13 b of the left screw, and the center of the plate-like end portion 102. It moves from Nc to the front surface Sa side and the back surface Sb side, respectively. Since the upper spiral groove 13a of the right screw is formed at a ratio of 25% or more, the bobbin tool 5 is pushed toward the slide shaft 4 (upward) with respect to the plate-like end portion 102 by the movement of the metal by the spiral groove. , It is possible to prevent the surface (decorative surface) Sa from entering deeply.
  • the ratio of the upper spiral groove 13a and the lower spiral groove 13b is 50:50, as shown in FIG. can do. Thereby, position shift with the center 13c of the screw pin 13 and the center Nc of the butting
  • the joining process is preferably performed while cooling the surface (decorative surface) Sa of the plate-like end portion 102 with a cooling device capable of supplying, for example, a cooled gas or liquid.
  • a cooling device capable of supplying, for example, a cooled gas or liquid.
  • FIG. 17 is a side view showing the bobbin tool according to the third embodiment.
  • a lower spiral groove 13b is engraved. That is, the upper spiral groove 13a is engraved so as to be wound counterclockwise from top to bottom, and the lower spiral groove 13b is engraved so as to be wound clockwise from top to bottom. Has been.
  • the distance between shoulders of the bobbin tool 5A (the length of the exposed portion of the screw pin 13) Z is preferably equal to or less than the plate thickness T of the plate-like end portion 102 of the hollow shape member 100A.
  • the distance Z between shoulders is 0.4 mm smaller than the plate thickness T of the plate-like end portion 102 of the hollow shape member 100A.
  • the bobbin tool 5A is rotated to the left to perform joining. Specifically, in this joining method, a butting process for butting the hollow members together and a joining process for inserting the bobbin tool 5A into the butting part N are performed.
  • the surface Sa is set as a decorative surface. Since the matching process is the same as that of the second embodiment, description thereof is omitted.
  • the center 13c of the screw pin 13 is positioned outside the butt portion N so as to overlap the center Nc of the butt portion N. Then, as shown in FIG. 18, the bobbin tool 5 ⁇ / b> A rotated to the left is moved along the abutting portion N. When the bobbin tool 5A is inserted into the abutting portion N, the metal around the screw pin 13 is frictionally stirred by the screw pin 13 rotating at high speed, and the plate-like end portions 102 are integrated. A plasticized region W is formed in the locus of the screw pin 13.
  • the friction stir and fluidized metal is led to the upper spiral groove 13a of the left screw of the screw pin 13 and the lower spiral groove 13b of the right screw, and the center Nc of the plate-like end portion 102 is obtained.
  • the bobbin tool 5A is pushed toward the slide shaft 4 (upward) with respect to the plate-like end portion 102 by the movement of the metal by the spiral groove.
  • the ratio of the upper spiral groove 13a and the lower spiral groove 13b is 50:50, the amount of metal to be moved can be made uniform. Thereby, position shift with the center 13c of the screw pin 13 and the center Nc of the butting
  • the first modified example is different from the above-described embodiment in that the thickness of the plate-like end portion 102A and the plate-like end portion 102B is different.
  • the thickness T1 of the plate-like end portion 102B is larger than the thickness T2 of the plate-like end portion 102A.
  • the midpoint in the height direction of the plate-like end portion 102A and the midpoint in the height direction of the plate-like end portion 102B are abutted so as to overlap each other.
  • the bobbin tool 5 is rotated to the right, and the plate-like end portion 102B (metal plate) having the larger thickness of the butted portion N of the plate-like end portion 102B is moved in the traveling direction. And place it on the left side.
  • the thickness T1 of the plate-like end portion 102B corresponding to the shear side is made larger than the thickness T2 of the plate-like end portion 102A, thereby eliminating the shortage of metal in the central portion of the plasticized region W. It can join more suitably.
  • the second modified example is different from the above-described embodiment in that the plate-like end portion 102C and the plate-like end portion 102D have different thicknesses.
  • the thickness T1 of the plate-like end portion 102C is larger than the thickness T2 of the plate-like end portion 102D.
  • the midpoint in the height direction of the plate-like end portion 102C and the midpoint in the height direction of the plate-like end portion 102D are abutted so as to overlap each other.
  • the bobbin tool 5 is rotated counterclockwise so that the plate-like end portion 102C (metal plate) having the larger thickness of the butted portion N of the plate-like end portion 102C is moved in the traveling direction. To the right.
  • the thickness T1 of the plate-like end portion 102C corresponding to the shear side is made larger than the thickness T2 of the plate-shaped end portion 102D by the same principle as in the first modified example.
  • the shortage of the metal in the central portion can be solved and the bonding can be performed more suitably.
  • the double skin panel 201 is a thin metal long member, and is mainly composed of an outer plate 202, an inner plate 203, and support plates 204 and 204. Each support plate 204 is perpendicular to the outer plate 202 and the inner plate 203.
  • the double skin panel 201 is used as a structure such as a railway vehicle, an aircraft, a ship, and a civil engineering structure by joining a plurality of double skin panels 201 in the left-right direction.
  • the manufacturing method of the double skin panel 201 is not particularly limited, in the present embodiment, it is formed by extrusion.
  • the material of the double skin panel 201 is not particularly limited as long as it is a metal capable of friction stirring, but in this embodiment, an aluminum alloy is used.
  • the outer plate 202 includes a central portion 205, a right plate-like end portion 210 extending rightward from the central portion 205, and a left-side plate-like end portion 220 extending leftward from the central portion 205. .
  • the right side plate-like end portion 210 includes a first outer plate thick portion 211, a first flange portion 212, and a first build-up portion 213.
  • the first outer plate thick portion 211 is perpendicular to the support plate 204 and extends to the right side.
  • the first brim part 212 has a bowl shape, and includes a first thin part 214 extending to the right side and a first overhanging part 215 projecting perpendicularly from the first thin part 214.
  • the first thin portion 214 is about one third of the thickness of the first outer plate thick portion 211.
  • the first overhanging portion 215 overhangs from the tip of the first thin portion 214 toward the inner plate 203 side.
  • a first projecting inclined surface 216 is formed on the side of the first projecting portion 215 so as to be closer to the support plate 204 toward the inner plate 203 side.
  • the first build-up portion 213 is a portion formed to protrude thickly from the upper surfaces of the first outer plate thick portion 211, the first thin portion 214, and the first overhang portion 215 and to be thick.
  • the left side plate-like end portion 220 is mainly composed of a second outer plate thick portion 221, a second flange portion 222, and a second build-up portion 223.
  • the second outer plate thick portion 221 is perpendicular to the support plate 204 and extends to the left side.
  • the second flange portion 222 has a hook shape, and includes a second thin portion 224 that extends to the left side and a second overhang portion 225 that extends perpendicularly to the second thin portion 224. Yes.
  • the second thin portion 224 is about one third of the thickness of the second outer plate thick portion 221.
  • the second projecting portion 225 projects from the tip of the second thin portion 224 toward the side opposite to the inner plate 203.
  • a second thick portion inclined surface 226 is formed at the left end of the second outer plate thick portion 221 so as to be inclined away from the support plate 204 toward the inner plate 203 side.
  • the second thick part inclined surface 226 has the same inclination angle as the first projecting inclined surface 216.
  • the second build-up portion 223 is a portion that protrudes upward from the upper surface of the second outer plate thick portion 221 with a certain thickness and is formed thick.
  • the inner plate 203 includes a central portion 206, a right plate-like end portion 230 extending to the right from the central portion 206, and a left-side plate-like end portion 240 extending to the left from the central portion 206. .
  • the right side plate-like end portion 230 includes a first inner plate thick portion 231, a first build-up portion 232, and a first end surface 233.
  • the first inner plate thick portion 231 is perpendicular to the support plate 204 and extends to the right side.
  • the first built-up portion 232 is a portion that protrudes downward from the lower surface on the distal end side of the first inner plate thick portion 231 and is thick.
  • the left side plate-like end portion 240 is composed of a second inner plate thick portion 241, a second built-up portion 242, and a second end surface 243.
  • the second inner plate thick portion 241 is perpendicular to the support plate 204 and extends to the left side.
  • the second build-up portion 242 is a portion that protrudes downward from the lower surface on the distal end side of the second inner plate thick portion 241 and is thick.
  • the friction stirrer 261 includes a chuck portion 261a and a rotary tool unit 262 fixed to the chuck portion 261a.
  • the chuck portion 261a is joined to the main body (not shown) of the friction stirrer 261 with a bolt as in the second embodiment.
  • the rotary tool unit 262 includes a holder 263, a slide shaft 264, and a bobbin tool 265.
  • the holder 263 is a member that includes the slide shaft 264 and is attached to the inside of the chuck portion 261a.
  • the holder 263 has a cylindrical shape.
  • the holder 263 is formed with an elongated key groove 263b penetrating in the radial direction.
  • the slide shaft 264 is a member that has a cylindrical shape and is inserted into the hollow portion of the holder 263 as shown in FIG.
  • the slide shaft 264 is movable in the vertical direction with respect to the holder 263.
  • a key 264 a that protrudes outward is formed on the outer surface of the slide shaft 264.
  • the bobbin tool 265 includes a first shoulder 252, a second shoulder 253, and a screw pin 254 interposed between the first shoulder 252 and the second shoulder 253. .
  • Each of the first shoulder 252, the second shoulder 253, and the screw pin 254 has a substantially cylindrical shape and is coaxial.
  • the bobbin tool 265 is a tool for friction stir welding by moving the screw pin 254 while rotating the joining portion at high speed.
  • the first shoulder 252 includes a large diameter portion 252a, a tapered portion 252b, and a lower end surface 252c.
  • the tapered portion 252b is gradually reduced in diameter toward the lower side.
  • the lower end surface 252c of the first shoulder 252 is formed with a hollow having a spiral shape in plan view along the periphery of the screw pin 254.
  • the second shoulder 253 is configured to have a groove on the outer surface.
  • the second shoulder 253 includes a large diameter portion 253a, a tapered portion 253b, and an upper end surface 253c.
  • the tapered portion 253b is gradually reduced in diameter toward the upper side.
  • the diameter ⁇ 1 of the large diameter portion 253a is smaller than the diameter ⁇ 1 of the large diameter portion 252a.
  • the diameter ⁇ 2 of the upper end surface 253c is equal to the diameter ⁇ 2 of the lower end surface 252c.
  • the outer surface of the screw pin 254 is engraved with a spiral groove 255 formed by a left-hand thread. That is, the spiral groove 255 is wound so as to be counterclockwise from the top to the bottom.
  • the outer diameter U of the screw pin 254 is smaller than the diameter ⁇ 2 and the diameter ⁇ 2.
  • the first shoulder 252 is connected to the slide shaft 264 via a nut.
  • the distance between the shoulders of the bobbin tool 265 is the thickness of the portion to be joined (in this embodiment, the first outer plate thick portion 211 and the first build-up portion 213). It is preferable that the total thickness) or less.
  • the depth, pitch, and the like of the spiral groove 255 may be appropriately set according to the material of the metal plate to be frictionally stirred, the thickness of the portion to be joined, the distance between the shoulders, and the like.
  • the friction stirrer 261 is formed so that the slide shaft 264 can move with respect to the holder 263, when the metal plate to be joined is warped upward, for example, the bobbin tool 265 follows the warp and the bobbin tool 265 has a predetermined distance. It is configured to move upwards only. On the other hand, when the metal plate to be joined is warped downward, the bobbin tool 265 is configured to move downward by a predetermined distance following the warpage. Thereby, the position shift of the bobbin tool 265 with respect to the metal plate during friction stir welding can be suppressed.
  • the double skin panels 201 and 201 are brought into contact with each other to form a double skin panel assembly, and the assembly is restrained so as not to move.
  • one double skin panel is labeled “201A”
  • the other double skin panel is labeled “201B”
  • “A” and “B” are added to the corresponding elements. Distinguish.
  • the first collar 212A of the double skin panel 201A and the second collar 222B of the double skin panel 201B are engaged, and the first end surface 233A and the second end surface 243B are abutted with each other. .
  • 212 A of 1st collar parts and the 2nd collar part 222B engage without gap, and the engaging part M is formed.
  • the first end surface 233A and the second end surface 243B are abutted to form an abutting portion N.
  • center line C1 An extension line of a portion where the overhang portion 215A and the overhang portion 225B are engaged and a portion where the first end surface 233A and the second end surface 243B are abutted with each other is referred to as a “center line C1”.
  • the upper surface of the first built-up portion 213A and the upper surface of the second built-up portion 223B are flush with each other, and the lower surface of the first outer plate thick portion 211A and the second outer plate thick portion 221B.
  • the lower surface of is flush.
  • the upper surface of the first inner plate thick portion 231A and the upper surface of the second inner plate thick portion 241B are flush with each other, and the lower surface of the first built-up portion 232A and the lower surface of the second built-up portion 242B are surfaces. It is one.
  • the assembly is restrained so as not to move with a jig.
  • a first joining step for joining the engaging portion M using the bobbin tool 265 and a second joining step for joining the butt portion N are performed.
  • the double skin panel 201A is arranged on the left side in the traveling direction. Then, the center of the screw pin 254 of the bobbin tool 265 rotated to the right is aligned with the center of the engaging portion M in the height direction on the center line C1, and is entered into the engaging portion M. Then, friction stir welding is performed along the engaging portion M from the front side toward the rear side. In addition, the plasticizing region W1 is formed in the engaging portion M along the locus along which the bobbin tool 265 moves (see FIG. 26).
  • the double skin panel assembly is turned over and the double skin panel assembly is again restrained so as not to move. Then, the center of the screw pin 254 of the bobbin tool 265 rotated to the right is aligned with the center in the height direction of the abutting portion N on the center line C1, and is entered into the abutting portion N. Then, friction stir welding is performed along the abutting portion N from the front side toward the rear side. A plasticized region (not shown) is formed in the butt portion N along the locus along which the bobbin tool 265 moves.
  • the first skin portion 212A of the outer plate 202A and the second flange portion 222B of the outer plate 202B are engaged, so that when the friction stir welding is performed, the double skin is used. It is possible to easily prevent the panels 201A and 201B from separating.
  • the inner plate 203A and the inner plate 203B are not provided with a flange portion, but the first end surface 233A and the second end surface 243B are abutted to each other, thereby making it possible to save labor in preparation work and double skin panel manufacturing.
  • the double skin panels 201A and 201B are long, engaging work becomes difficult if the inner plate 203A and the inner plate 203B are also provided with a flange, but according to the present embodiment, the engaging work is facilitated. .
  • the first overhanging inclined surface 216A and the second main body inclined surface 226B can be engaged while sliding. As a result, the engaging operation is facilitated. Specifically, when the double skin panel 201A is lowered from above the placed double skin panel 201B, the first overhanging inclined surface 216A and the second main body inclined surface 226B are simply slid to engage with each other. Can be made.
  • the screw pin 254 is provided with a left-handed spiral groove 255, and the bobbin tool 265 is moved from the front side to the rear side while rotating the bobbin tool 265 clockwise. There is a tendency to be guided to move toward the second shoulder 253.
  • the metal on the first shoulder 252 side is provided by providing the built-up portions (213A, 223B, 232A, 242B) on the side facing the first shoulder 252 of the outer plates 202A, 202B and the inner plates 203A, 203B. A shortage can be avoided.
  • the double skin panels 201A and 201B may be separated from each other.
  • the engaging portion M is bonded first.
  • the double skin panels 201A and 201B can be prevented from separating.
  • the shape and engagement form of the double skin panels 201A and 201B are not particularly limited as long as they are not separated from each other. As in this embodiment, it is preferable to engage the double skin panels 201A and 201B so that the end portions are flush with each other and the gap is eliminated. Moreover, the thing which provided the 1st collar part 212,212 in the both ends of the outer plate 202 of one double skin panel is formed, and the second collar part 222,222 is formed in the both ends of the outer plate 202 of the other double skin panel. May be formed, and these double skin panels may be alternately arranged and engaged and joined together. For example, as shown in FIG.
  • the support plate 204 is formed perpendicular to the outer plate 202 and the inner plate 203, but may be inclined.
  • Example 1 Using the friction stirrer 1 (bobbin tool 5) according to the second embodiment, the influence of the thickness of the metal plate (plate-shaped end) to be friction stir welded and the gap between the metal plates on the joining state. A test was conducted to investigate whether to give. As shown in FIG. 28, a pair of metal plate specimens (A6063-T5 material) to be friction stir welded were prepared from specimens H1 to H19 with varying thicknesses.
  • “Ad side” means a side where the rotation direction and the traveling direction of the bobbin tool coincide. That is, when the bobbin tool rotates clockwise, it means the left side in the traveling direction.
  • the “Re side” means a side where the rotation direction and the traveling direction of the bobbin tool are different. That is, when the bobbin tool rotates clockwise, it means the right side in the traveling direction.
  • Specimens H1 to H7 have the same metal plate thickness on the Ad side and Re side.
  • the metal plate on the Ad side is fixed to 6.0 mm, and the thickness of the metal plate on the Re side is changed.
  • the Re-side metal plate is fixed to 6.0 mm, and the thickness of the Re-side metal plate is changed.
  • the gap between the metal plates was changed from 0 to 2.0 mm by 0.25 mm.
  • the bobbin tool used for the test was set to a shoulder outer diameter (diameter of the surface contacting the metal plate of the shoulder) of 20 mm, a pin outer diameter of 12 mm, and a distance between shoulders of 5.8 mm.
  • the rotation speed of the bobbin tool was set to 800 rpm, the moving speed was set to 600 / min, and the rotation direction was set to the right rotation. Further, as described in the second embodiment, this bobbin tool has a form in which the height position of the bobbin tool changes following the warp of the metal plate. After the friction stir welding, the quality was judged from the X-ray transmission test and the cross-sectional microstructure.
  • FIG. 29 is a graph showing the relationship between the gap of the specimen H1 and the thickness of the joint in Example 1.
  • FIG. 30 is a graph showing the relationship between the gap of the test body H3 and the thickness of the joint in Example 1.
  • the joint part of Example 1 is synonymous with the plasticized region W in the embodiment.
  • Ad part”, “Cr part”, and “Re part” of the joint part of Example 1 are the Ad part, the center part, and Re part of the joint part (plasticization region W) shown in FIG. Each position of the part is shown.
  • the decrease in thickness was small for the Ad, Cr, and Re portions when the gap was less than 0.75 mm.
  • the thicknesses of the Ad part, Cr part, and Re part decreased, but no bonding defect occurred.
  • the gap was 2.0, the thickness of the joint portion was remarkably reduced and a joint defect was generated.
  • “ ⁇ ” indicates that the joining condition is good and “ ⁇ ” indicates that the joining condition is poor.
  • the joining condition may be improved if the thickness of the metal plate is increased.
  • the difference between the thickness of the metal plate and the distance between the shoulders exceeds 0.8 mm (in this embodiment, the thickness of the metal plate is made larger than 6.6 mm)
  • the internal pressure generated between the shoulders increases, and the tool It has been found that the lifetime is significantly reduced.
  • the bonding is performed if the thickness of the metal plate is 5.8 to 6.6 mm.
  • the situation was found to be good.
  • the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set so as to satisfy 0 ⁇ TZ ⁇ 0.8 mm.
  • the thickness of the metal plate is 6.2 mm to 6.6 mm. If it was, it turned out that the joining condition is favorable. In other words, it has been found that the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set to satisfy 0.4 ⁇ TZ ⁇ 0.8 mm.
  • the value of TZ is smaller than 0.4 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
  • the joining situation is obtained if the thickness of the metal plate is 6.6 mm. Was found to be good.
  • the value of TZ is smaller than 0.8 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
  • FIG. 32 is a table showing the relationship between the thickness of the metal plate and the gap on the bonding quality, and shows the case where the thickness on the Ad side is changed and the thickness on the Re side is fixed.
  • FIG. 33 is a table showing the relationship between the thickness of the metal plate and the gap on the bonding quality, and shows the case where the thickness on the Ad side is fixed and the thickness on the Re side is changed.
  • the thickness on the Re side was fixed to 6.0 mm, and the thickness on the Ad side was appropriately changed to perform friction stir welding.
  • the thickness on the Ad side was fixed to 6.0 mm, and the thickness on the Re side was appropriately changed to perform friction stir welding. That is, in the test according to FIG. 32 and FIG. 33, the bonding quality for each gap was observed while changing the thickness of the left and right metal plates to be matched.
  • FIG. 32 when the Re-side metal plate is fixed to 6.0 mm and the Ad-side metal plate is changed to 6.2 mm or more, the joining condition is often improved.
  • the bobbin tool is rotated to the right, so that the plastic fluidized metal easily moves from the left side (Ad side) to the right side (Re side), and there is a gap between the metal plates.
  • the gap is filled with the metal on the Ad side. Accordingly, if the thickness of the metal plate on the left side in the traveling direction is smaller than the thickness of the metal plate on the right side in the traveling direction as in the condition of FIG. high. However, when the thickness of the metal plate on the left side in the traveling direction is larger than the thickness of the metal plate on the right side in the traveling direction as in the condition of FIG. Can be good.
  • the thickness of the Ad portion of the joint is about 5.8 mm for all of the specimens H4, H10, and H16, and is smaller than the thickness before joining. I understood. In particular, when the specimens H4 and H16 were observed, it was found that the thickness was considerably reduced.
  • the thickness of the Cr portion can be made larger than that of the test body H10.
  • the thickness of the joint can be increased, but the internal pressure between the shoulders is increased accordingly, and the tool life is likely to be reduced. Therefore, like the test body H16, by setting the thickness of the metal plate on the Ad side to be larger than that on the Re side, the thickness of the Cr portion of the joint portion is increased while lowering the internal pressure between the shoulders. can do.
  • Example 2 Using the friction stirrer 1 (bobbin tool 5) according to the second embodiment, the influence of the thickness of the metal plate (plate-shaped end) to be friction stir welded and the gap between the metal plates on the joining state. A test was conducted to investigate whether to give. The gap between the metal plates was changed by 0.25 mm from 0 to 2.0 mm.
  • the bobbin tool used for the test was set to a shoulder outer diameter (diameter of the surface contacting the metal plate of the shoulder) of 10 mm, a screw pin outer diameter of 6 mm, and a distance between shoulders of 2.8 mm.
  • the rotation speed of the bobbin tool was set to 2000 rpm, the moving speed was set to 1000 mm / min, and the rotation direction was set to right rotation. Further, as described in the second embodiment, this bobbin tool has a form in which the height position of the bobbin tool changes following the warp of the metal plate. After the friction stir welding, the quality was judged from the X-ray transmission test and the cross-sectional microstructure.
  • the thicknesses of the metal plate on the Ad side and Re side are the same, and the thickness is 3.0 mm, 3.2 mm, and 3.4 mm.
  • a test specimen was prepared by changing.
  • Ad side Re side.
  • indicates that the joining condition is good and “ ⁇ ” indicates that the joining condition is poor.
  • the joining condition may be improved if the thickness of the metal plate with respect to the distance Z between the shoulders is increased.
  • the difference between the thickness of the metal plate and the distance Z between the shoulders exceeds 0.6 mm (in this embodiment, the thickness of the metal plate is made larger than 3.4 mm)
  • the internal pressure generated between the shoulders increases, It has been found that the tool life is significantly reduced.
  • the thickness of the metal plate is 3.2 to 3.4 mm. If it was, it turned out that the joining condition is favorable. In other words, it was found that the joining condition was good if the thickness T of the metal plate and the distance Z between the shoulders were set to satisfy 0.4 ⁇ TZ ⁇ 0.6 mm.
  • the value of TZ is smaller than 0.4 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
  • the thickness of the metal plate is 3.4 mm.
  • FIG. 37 is a table showing dimensions and joining states of each bobbin tool when the distance between the shoulders is fixed to 5.8 mm in the first embodiment.
  • FIG. 38 is a table showing dimensions and joining states of each bobbin tool when the distance between the shoulders is fixed at 2.8 mm in Example 2.
  • FIG. 39 is a table showing dimensions and joining states of each bobbin tool when the distance between the shoulders is fixed to 11.5 mm in the reference example. 37, 38, and 39 show the tensile strength / material resistance, the bending strength / material resistance, and the material retention tendency.
  • the tensile strength / material resistance is represented by Y 2 / (X 2 ⁇ Y 2 ). That is, since the lower surface of the first shoulder 11 and the upper surface of the second shoulder 12 are pressed by the metal that has been plastically fluidized during friction stirring, a tensile stress acts on the screw pin 13. Therefore, the tensile strength / material resistance is a value obtained by squaring the outer diameter Y of the screw pin 13, and the outer diameter X of the lower surface of the first shoulder 11 (the upper surface of the second shoulder 12) (the surface of the shoulder that contacts the metal plate). It is expressed as a value obtained by dividing a value obtained by subtracting a value obtained by squaring the outer diameter Y of the screw pin 13 from a value obtained by squaring the diameter), and (X 2 ⁇ Y 2 ).
  • the bending strength / material resistance is represented by Y 2 / YZ. That is, when the bobbin tool 5 moves through the abutting portion N, a force perpendicular to the axial direction of the screw pin 13 acts. Therefore, the bending strength / material resistance is represented by a value obtained by dividing the square of the outer diameter Y of the screw pin 13 by the cross-sectional area YZ of the cross section including the axis of the screw pin 13.
  • the material retention tendency is represented by X 2 / Y 2 . That is, the metal fluidized plastically during the friction stirring is held by the lower surface of the first shoulder 11 and the upper surface of the second shoulder 12. Therefore, the material retention tendency is a value obtained by squaring the outer diameter X of the first shoulder 11 (second shoulder 12) (the diameter of the surface of the shoulder that contacts the metal plate), and the outer diameter Y of the screw pin 13 is squared. Expressed by dividing by value.
  • the screw pin 13 is easily damaged when the bending strength / material resistance (Y 2 / YZ) is 1.2 or less. This is because if the bending strength / material resistance (Y 2 / YZ) is 1.2 or less, the pin outer diameter Y with respect to the distance between the shoulders (pin length) Z becomes smaller, It is considered that the pin bending force against the resistance of the material flowing in the opposite direction becomes insufficient, and the screw pin 13 is easily broken. If the bending strength / material resistance (Y 2 / YZ) is greater than 1.2, the pin outer diameter Y with respect to the shoulder distance (pin length) Z is increased, so that it is considered that the screw pin 13 is not easily broken.
  • the tensile strength / material resistance (Y 2 / (X 2 ⁇ Y 2 )) is 0.2 or less, or the bending strength / material resistance (Y 2 / YZ). If is less than 1.2, pin breakage occurred. However, if the tensile strength / material resistance (Y 2 / (X 2 ⁇ Y 2 )) is larger than 0.2 and the bending strength / material resistance (Y 2 / YZ) is larger than 1.2, the pin breaks. Did not happen.
  • Example 3 it was investigated how the ratio of the spiral groove engraved with the screw pin of the bobbin tool and the winding direction of the spiral groove affect the metal plate after joining. As shown in FIG. 16A, the rotation direction of the bobbin tool was set to right rotation when viewed from the slide shaft side. Friction stir welding was performed by changing the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw to set five types of conditions A to E.
  • the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 0: 100 (no right screw).
  • Condition B the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 25:75.
  • Condition C the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 50:50.
  • condition D the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 75:25.
  • the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 100: 0 (no left screw).
  • Example 3 two aluminum alloy metal plates (A6063-T5) having a plate thickness T of 6.2 mm were prepared and joined.
  • the outer diameter X of the first shoulder 11 and the second shoulder 12 of the bobbin tool 5 is 20 mm
  • the outer diameter Y of the screw pin 13 is 12 mm
  • the distance Z between the shoulders is 5. It was set to 8 mm.
  • the depth of the spiral groove was set to 0.81 mm.
  • the rotation speed of the bobbin tool 5 was set to 800 rpm, and the joining speed was set to 600 mm / min.
  • FIG. 40 is a graph showing the influence of the screw ratio on the level difference of the metal plate (gap 0 mm at the butt portion) in Example 3.
  • FIG. 41 is a graph showing the influence of the screw ratio on the level difference of the metal plate (gap 1.5 mm at the butt portion) in Example 3.
  • step difference has shown the height position of each place after joining on the basis of the surface of the metal plate before joining (reference
  • standard 0). When the step is a positive value, it is convex, and when it is a negative value, it indicates a concave shape (concave groove).
  • the Re side of the surface Sa indicated by “ ⁇ ” shows a positive value in the conditions A to E. That is, the Re side of the surface Sa is always convex.
  • the Ad side of the surface Sa indicated by “ ⁇ ” shows a large negative value in the condition A. That is, in the condition A, the Ad side of the surface Sa is greatly concave. Then, on the Ad side of the surface Sa indicated by “ ⁇ ”, the dent on the Ad side of the surface Sa gradually decreases as the ratio of the right-hand thread increases.
  • the Ad side of the back surface Sb indicated by “ ⁇ ” shows a large positive value in the condition A. That is, in the condition A, the Ad side of the back surface Sb is greatly convex. Then, on the Ad side of the back surface Sb indicated by “ ⁇ ”, the dent on the Ad side of the back surface Sb gradually increases as the ratio of the right-hand thread increases, and the conditions D and E are concave. That is, the Ad side of the front surface Sa indicated by “ ⁇ ” and the Ad side of the back surface Sb indicated by “ ⁇ ” have a contradictory relationship according to the ratio of the right-hand thread. Further, the Ad side of the front surface Sa indicated by “ ⁇ ” and the Ad side of the back surface Sb indicated by “ ⁇ ” are slightly concave under the condition C (50:50).
  • FIG. 42 is a diagram illustrating the plasticized region of the condition A according to Example 3 according to the gap between the butted portions.
  • FIG. 43 is a diagram illustrating the plasticized region of the condition B according to the third embodiment for each gap of the butted portion.
  • FIG. 44 is a diagram illustrating the plasticized region of the condition C according to the third embodiment for each gap between the butted portions.
  • FIG. 45 is a diagram illustrating the plasticized region of the condition D according to the third embodiment for each gap between the butted portions.
  • FIG. 46 is a diagram illustrating the plasticized region of the condition E according to the third embodiment for each gap between the butted portions.
  • the left column of each figure shows a cross-sectional view of macroscopic structure observation of the plasticized region W
  • the middle column shows a plan view on the surface (decorative surface) Sa side of the plasticized region W
  • the right column show the top view by the side of the back surface Sb of the plasticization area
  • a small groove V is formed on the front surface (decorative surface) Sa side, and a small groove V is formed also on the back surface Sb side.
  • a bonding defect Q is formed inside the metal plate.
  • the upper and lower stripe patterns and the left and right stripe patterns in the plasticized region W are substantially symmetrical.
  • the surface Sa of the condition C in FIG. 44 is compared with the surface Sa of the condition B in FIG. 43, the depth of the groove V is slightly smaller in the surface Sa in the condition C. Further, the surface Sa of the condition C has almost no burrs P. Further, on the back surface Sb of the condition C, more burrs P are generated on the Re side than on the Ad side.
  • the concave groove V is not formed on the front surface (decorative surface) Sa side, and the small concave groove V is formed on the rear surface Sb side.
  • a bonding defect Q is formed inside the metal plate. Further, more burrs P are generated on the back surface Sb than on the front surface Sa.
  • the concave groove V is not formed on the surface (decorative surface) Sa side, and the large concave groove V is formed on the Sb side.
  • the gap between the butted portions is 1.75 mm and the gap is 2.00 mm, a bonding defect Q is formed inside the metal plate.
  • the plasticized region W is gradually narrowed toward the back surface Sb. Many burrs P are generated on the back surface Sb, whereas no burrs P are generated on the front surface Sa.
  • FIG. 47 is a table summarizing the results of Example 3.
  • the reference numerals of the elements refer to the reference numerals of the second embodiment as they are.
  • the fluidized metal is guided to the spiral groove and moves to the back surface Sb side.
  • the second shoulder 12 of the bobbin tool 5 is pushed, and the bobbin tool 5 moves to the side opposite to the slide shaft 4 (the back surface Sb side) with respect to the metal plate.
  • the bobbin tool 5 penetrates deeply into the surface (decorative surface) Sa side, a large concave groove V is formed on the surface Sa side.
  • condition B and condition C when the gap of the butt portion is 2.00 mm, in condition D and condition E, when the gap of the butt portion is 1.75 mm and the gap is 2.00 mm, a bonding defect Q occurs. It is inappropriate. This is presumably because the metal material at the joint portion decreases when the gap between the butted portions is large.
  • the bobbin tool 5 moves upward with respect to the plate-like end portion 102 to increase the height of the lower surface of the first shoulder 11.
  • the height position is located above the surface (decorative surface) Sa of the plate-like end portion 102 before friction stirring, the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring.
  • the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring is very small, Can be pressed down sufficiently.
  • the plasticizing region W is slightly smaller than the surface Sa before friction stirring. It will protrude.
  • the process of smoothing the surface Sa of the plate-like end portion 102 is easy to finish because the protruding portion may be cut in accordance with the height of the surface Sa before friction stirring.
  • the upper spiral groove 13a and the lower spiral groove 13b are formed at a ratio of 50:50 to the shoulder distance Z, but the decorative surface is set to the surface Sa, and the bobbin tool 5 ,
  • the upper spiral groove 13a of the right thread on the first shoulder 11 side and the lower spiral groove 13b of the left thread on the second shoulder 12 side are 25:75 to 100: 0 with respect to the shoulder distance Z. It is preferable to be formed at a ratio. That is, the upper spiral groove 13a of the right screw is formed at a portion of 25% or more with respect to the distance Z between the shoulders on the first shoulder 11 side, and all the portions other than the upper spiral groove 13a are the lower spiral groove of the left screw. It may be formed to be 13b.
  • the right screw may be provided over the entire axial length of the screw pin 13 without providing the left screw.
  • Example 3 the front surface Sa side is set as the decorative surface, but the back surface Sb side may be set as the decorative surface.
  • the back surface Sb (decorative surface) side is set. The generation of the concave groove V can be prevented, or even if the concave groove V is formed, the depth of the concave groove V can be reduced.
  • the screw pin 13 of the bobbin tool 5 rotated to the right is moved to the butting portion N to perform friction stir welding.
  • the distance Z between the shoulders is set to be equal to or less than the thickness of the metal plate, and a left-handed spiral groove is formed on the second shoulder 12 side of the outer peripheral surface of the screw pin 13. It is preferable that the spiral groove is formed at a ratio of 25% or more with respect to the distance Z between the shoulders.
  • the bobbin tool 5 moves away from the slide shaft 4 by the movement of the metal by the spiral groove of the left screw ( It is possible to prevent the bobbin tool from entering deeply into the back surface (decorative surface) Sb of the metal plate. Thereby, it can prevent that a ditch
  • FIG. 48 is a table summarizing the concept when the bobbin tool is rotated counterclockwise.
  • the ratio of the upper spiral groove 13a of the left screw and the lower spiral groove 13b of the right screw was set to 0: 100 (no left screw).
  • the ratio of the left spiral upper spiral groove 13a and the right spiral lower spiral groove 13b was set to 25:75.
  • the ratio of the left spiral upper spiral groove 13a and the right spiral lower spiral groove 13b was set to 50:50.
  • the ratio of the left spiral upper spiral groove 13a and the right spiral lower spiral groove 13b was set to 75:25.
  • the ratio of the upper spiral groove 13a of the left screw and the lower spiral groove 13b of the right screw was set to 100: 0 (no right screw).
  • a bobbin tool 5A in which a left screw is provided in the upper spiral groove 13a and a right screw is provided in the lower spiral groove 13b is used.
  • the screw winding direction is different from that of the bobbin tool 5 of the second embodiment. That is, as shown in the conditions G to J, the metal that has been fluidized by friction stirring is guided to the upper spiral groove 13a of the left-hand thread of the screw pin 13 and moves to the first shoulder 11 side. It is guided to the lower spiral groove 13b and moves to the second shoulder 12 side.
  • the bobbin tool 5A Since the left screw is formed at a rate of 25% or more, the bobbin tool 5A is pushed to the slide shaft 4 side (upward) by the movement of the metal by the spiral groove of the left screw, and the surface (decorative surface) Sa of the metal plate
  • the bobbin tool 5A can be prevented from entering deeply. Thereby, it is possible to prevent the formation of the concave groove V on the surface (decorative surface) Sa, or even if the concave groove V is formed, the depth of the concave groove V can be reduced. Thereby, the effort of the finishing process for smoothing the surface Sa of the metal plate after joining can be reduced.
  • the bobbin tool 5 moves upward with respect to the plate-like end portion 102 to increase the height of the lower surface of the first shoulder 11.
  • the position is located above the surface Sa of the plate-like end portion 102 before friction stirring, and the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring is large.
  • the metal is not sufficiently pressed, but when the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring is very small, the metal can be sufficiently pressed. be able to.
  • the plasticizing region W is slightly smaller than the surface Sa before friction stirring. It will protrude.
  • the process of smoothing the surface Sa of the plate-like end portion 102 is easy to finish because the protruding portion may be cut in accordance with the height of the surface Sa before friction stirring.
  • the upper spiral groove 13a and the lower spiral groove 13b are formed at a ratio of 50:50 to the shoulder distance Z, but the decorative surface is set to the surface Sa, and the bobbin tool 5A ,
  • the left spiral upper spiral groove 13a on the first shoulder 11 side and the right spiral lower spiral groove 13b on the second shoulder 12 side are 25:75 to 100: 0 with respect to the shoulder distance Z. It is preferable to be formed at a ratio. That is, the left spiral upper spiral groove 13a is formed on the first shoulder 11 side at a portion of 25% or more with respect to the shoulder distance Z, and all the portions other than the upper spiral groove 13a are the right spiral lower spiral groove. It may be formed to be 13b.
  • a left screw may be provided over the entire axial length of the screw pin 13 without providing a right screw.
  • the surface Sa side was set as a decorative surface
  • the back surface Sb (decorative surface) side is set. The generation of the concave groove V can be prevented, or even if the concave groove V is formed, the depth of the concave groove V can be reduced.
  • the screw pin 13 of the bobbin tool 5A rotated to the left is moved to the butting portion N to perform friction stir welding.
  • the distance Z between the shoulders is set to be equal to or less than the thickness of the metal plate, and a right-hand spiral groove is formed on the second shoulder 12 side of the outer peripheral surface of the screw pin 13. It is preferable that the spiral groove is formed at a ratio of 25% or more with respect to the distance Z between the shoulders.
  • the bobbin tool 5A is moved away from the slide shaft 4 by the movement of the metal by the spiral groove of the right screw ( It is possible to prevent the bobbin tool from entering deeply into the back surface (decorative surface) Sb of the metal plate. Thereby, it can prevent that a ditch
  • FIGS. 49A and 49B are front views showing an engagement form or a butting form of Example 4, wherein FIG. 49A shows type I, FIG. 49B shows type II, and FIG. 49C shows type III.
  • Example 4 three types of specimens were prepared, and friction stir welding was performed only on the type I, type II, and type III portions, and the respective angular deformations after the welding were investigated.
  • Types I to III are double skin panels 201A and 201B made of an aluminum alloy 6N01-T5 material.
  • the outer plate thick portion (first outer plate thick portion 211, The thickness a of the second outer plate thick part 221) is 3 mm
  • the length d from the upper surface of the outer plate 202 to the lower surface of the inner plate 203, the left-right width dimension e 200 mm
  • the extension dimension 5000 mm Is set to
  • the outer diameter U of the screw pin 254 is set to 6 mm.
  • the length from the first shoulder 252 to the second shoulder 253 (the length of the exposed portion of the screw pin 254) is set to 2.9 mm.
  • the shape of the recess (not shown) formed in the lower end surface 252c of the first shoulder 252 is a spiral shape in plan view, and the depth of the recess is set to 0.3 mm and the pitch of the recess is set to 1.2 mm.
  • the bobbin tool 265 is set to the right rotation, and types I to III are moved from the front side to the back side in FIGS. 49 (a) to 49 (c).
  • the rotation speed of the bobbin tool 265 was set to 2000 rpm, and the moving speed was set to 1000 mm / min.
  • the double skin panel 201A is arranged on the left side in the moving direction of the bobbin tool 265, and the double skin panel 201B is arranged on the right side. 222B is engaged.
  • Type II as shown in FIG. 49 (b), the double skin panel 201A is arranged on the right side in the moving direction of the bobbin tool 265, and the double skin panel 201B is arranged on the left side. 222B is engaged.
  • type III as shown in FIG.
  • the double skin panel 201A is arranged on the left side in the moving direction of the bobbin tool 265, the double skin panel 201B is arranged on the right side, and the first end face 233A and the second end face are arranged. 243B.
  • FIG. 50 is a graph showing the result of type I angular deformation.
  • FIG. 51 is a graph showing the result of type II angular deformation.
  • FIG. 52 is a graph showing the results of type III angular deformation.
  • the horizontal axis indicates the length in the width direction from the left end of each joined specimen.
  • the vertical axis represents the height after joining from an arbitrary reference point in each specimen. The height of each point was measured at distances of 50 mm, 200 mm, 400 mm, 600 mm, 800 mm, and 950 mm in the extending direction from the front end of each specimen.
  • the inclination direction of the inclined surface Ma of the engaging portion M is substantially parallel to the direction of action of the stress F1, and the stress F1 is input to the center line C1. Since the position and the inclined surface Ma are on the same side, the double skin panel 201B is likely to move obliquely downward to the right, and the possibility that the double skin panels 201A and 201B are separated during joining increases.
  • the inclination direction of the inclined surface Ma of the engaging portion M intersects with the direction of application of the stress F1, and the input position and inclination of the stress F1 with respect to the center line C1. Since the surface Ma is on the opposite side, it is possible to effectively prevent the double skin panels 201A and 201B from separating during the joining.
  • the height at the position where the width direction is 180 mm and the position where the width direction is 210 mm are about the same. That is, the height of the joining portion is the highest compared to the left and right ends, and is a mountain shape when viewed from the front. Further, the height difference of type III is larger than the height difference of types I and II. If a plurality of (for example, five) double skin panels are arranged and friction stir welding is performed from the butt portion N side as in type III, it is considered that the total angular deformation of the joined double skin panels increases. . Therefore, there is no problem from the viewpoint of the joining strength whichever of the engaging portion M and the butting portion N is joined first, but considering the amount of angular deformation, the friction stir joining is performed first from the engaging portion M side. It is preferable.
  • FIG. 53 is a table summarizing the rotation direction of the bobbin tool, the winding direction of the spiral groove, and the engagement form.
  • FIG. 53 shows preferable conditions 1 to 4 for four patterns. As shown in Condition 1 (similar to the present embodiment), when the left-handed bobbin tool 265 is rotated to the right and moved from the front side to the back side in FIG. It is preferable.
  • condition 1 since the bobbin tool 265 is rotated to the right, the force of the component in the right direction from the left side acts on the center line C1, and the plastic fluidized metal is guided to the spiral groove and moves from top to bottom. . Therefore, in condition 1, the stress F1 acts as shown in the engagement form. Therefore, in Type I, the inclined surface Ma of the second flange portion 212B and the engaging portion M is set so as to face the stress F1, thereby preventing the double skin panels 201A and 201B from being separated during joining. it can.
  • the engagement form is preferably type II.
  • condition 2 since the bobbin tool 265 is rotated counterclockwise, a force in the left direction component acts on the center line C1, and the plastic fluidized metal is guided to the spiral groove and moves from top to bottom. . Therefore, under condition 2, the stress F2 acts as shown in the engagement form. Therefore, in the type II, the double skin panels 201A and 201B can be prevented from being separated by setting the second flange portion 212B and the inclined surface Ma of the engaging portion M so as to face the stress F2.
  • the engagement form is preferably type IV.
  • the left-handed bobbin tool 265 with a spiral groove is rotated leftward and moved from the front side to the back side in FIG. preferable.
  • the double skin panel 201A ′ during joining can be obtained by setting the inclined surface Ma ′ of the engaging portion M and the second flange portion 212B ′ to face the stresses F3 and F4. , 201B ′ can be prevented from separating.
  • Example 5 friction stir welding was performed using five double skin panels having a size different from that of Example 4.
  • the dimension is set to 12,500 mm.
  • the outer diameter U of 254 was set to 9 mm.
  • the length from the first shoulder 252 to the second shoulder 253 (the length of the exposed portion of the screw pin 254) is set to 3.7 mm.
  • the rotation speed of the bobbin tool was set to 1000 rpm.
  • the bobbin tool moving speed was set to 1000 mm / min on the engaging portion M side and 1500 mm / min on the butting portion N side.
  • Example 5 one double skin panel was set on the table, and the other double skin panel was lowered from above and engaged and butted. After engaging the five double skin panels without any gaps in the same operation, the assembly was restrained so as not to move. In order to prevent the assembly from floating, the assembly was pressed by a lateral pressing clamp arranged at a pitch of 1.5 m in the extending direction. In addition, the four corners of the assembly were clamped easily. Then, friction stir welding was performed in order from the end.
  • Example 5 Even under the conditions of Example 5, it was possible to produce a face material free from poor bonding.
  • heat shrinkage occurs, and thus the metal member after bonding may be warped.
  • the friction stir welding is performed on the front and back of the metal member, the friction stir welding is performed on the surface side of the metal member with the same rotation speed, moving speed, and moving length of the rotary tool, and then the friction is applied on the back surface side.
  • the stir welding is performed, there is a possibility that the back side is warped so as to be concave.
  • the moving speed of the bobbin tool on the butt portion N side is set faster than the engaging portion M side as in the fifth embodiment, the heat input at the time of joining to the butt portion N can be reduced. . Thereby, it can prevent that the double skin panel after joining curves.
  • Example 6 a test was conducted to investigate the relationship between the plate thickness and the length of the plate-like end portion. As shown in (a) of FIG. 54, the ends of the specimens 401 and 301 having the same U-shape in cross-sectional view were butted together, and friction stir welding was performed on the butted portion N. Each specimen 401 includes a support member 402 and a plate-like end portion 403 extending vertically from the support member 402.
  • the height of the specimen 401 was set to 30 mm, and the extension dimension was set to 500 mm.
  • the friction stir welding is performed in each condition using the plate thickness a of the plate-like end 403 and the length c from the support member 402 to the tip of the plate-like end 403 as parameters. Went.
  • FIG. 54 (b) summarizes the conditions and bonding quality of Example 6 in a table. The dimensions of the bobbin tool are as shown in the table of FIG. 54 (b).
  • FIG. 55 is a graph showing the correlation of Example 6.
  • the horizontal axis indicates the plate thickness a
  • the vertical axis indicates the length c from the support member 402 to the tip of the plate-like end 403.
  • the length c from the support member to the tip is preferably set so as to satisfy the length c ⁇ 7.0 ⁇ plate thickness a + 18.5 mm. Under these conditions, deformation of the plate-like end portion 403 can be suppressed, so that poor bonding is unlikely.

Abstract

The present invention addresses the problem of providing a rotary tool unit with which welding defects can be prevented when a pair of metal plates is welded together using a bobbin tool. This rotary tool unit is characterized in that it has a cylindrical holder (303) affixed to a chuck part (301), a slide shaft (304), and a bobbin tool (305), with the holder (303) having a pair of elongated holes (311) which oppose each other and penetrate the holder in the axial direction, and the slide shaft (304) having a knock pin (322) that is inserted into the pair of elongated holes (311) and a securing member (323) that secures the knock pin (322) with respect to the slide shaft (304), and the elongated holes (311) are provided extending in the axial direction, with the slide shaft (304) rotating integrally with the holder (303) due to the engagement of the elongated holes (311) and the knock pin (322) and moving in the axial direction within the span of the elongated holes (311).

Description

回転ツールユニット、摩擦攪拌接合方法、ダブルスキンパネルの組立体及びダブルスキンパネルの摩擦攪拌接合方法Rotary tool unit, friction stir welding method, double skin panel assembly and double skin panel friction stir welding method
 本発明は、ボビンツールを備えた回転ツールユニット、前記回転ツールユニットを用いる摩擦攪拌接合方法、前記回転ツールユニットを用いて接合されるダブルスキンパネルの組立体及び前記回転ツールユニットを用いるダブルスキンパネルの摩擦攪拌接合方法に関する。 The present invention relates to a rotary tool unit provided with a bobbin tool, a friction stir welding method using the rotary tool unit, an assembly of double skin panels joined using the rotary tool unit, and a double skin panel using the rotary tool unit The present invention relates to a friction stir welding method.
 従来、金属板の端面同士を摩擦攪拌接合するツールとしてボビンツールが知られている(特許文献1参照)。ボビンツールは、一対のショルダとこのショルダの間に形成されたスクリューピンとを備えている。一対の金属板を接合する際には、金属板を移動不能に拘束した上で、金属板の一端側から高速回転させたボビンツールを挿入し、突き合せ部に沿ってスクリューピンを移動させる。これにより、端面同士の周囲の金属が摩擦攪拌されて金属板同士が接合される。ボビンツールによれば、金属板の裏側にもショルダを備えているため、通常、金属板の裏側に配置する裏当部材を省略することができる。特に、中空形材の端部同士を接合する際には、裏当部材を設置する作業が煩雑になるため、作業手間を大幅に省略することができる。 Conventionally, a bobbin tool is known as a tool for friction stir welding of end faces of metal plates (see Patent Document 1). The bobbin tool includes a pair of shoulders and a screw pin formed between the shoulders. When joining a pair of metal plates, the metal plate is restrained so as not to move, and then a bobbin tool rotated at a high speed from one end side of the metal plate is inserted, and the screw pin is moved along the abutting portion. As a result, the metal around the end faces is frictionally stirred to join the metal plates together. According to the bobbin tool, since the shoulder is also provided on the back side of the metal plate, the backing member disposed on the back side of the metal plate can be usually omitted. In particular, when joining the end portions of the hollow shape members, the work of installing the backing member becomes complicated, so that labor can be greatly reduced.
 一方、従来、二枚の金属板を重ねて構成されたダブルスキンパネルが知られている。ダブルスキンパネルは、鉄道車両、航空機、船舶、土木建築構造物等の構造体として用いられている。ダブルスキンパネルは、例えば、特許文献2に記載されているように、外板と、内板と、外板と内板との間に介設される支持板と、を備えている。また、ダブルスキンパネル同士を接合する際には、隣り合うダブルスキンパネルの外板同士の端部及び内板同士の端部を突き合わせてダブルスキンパネルの組立体を形成した後、回転ツールを用いて突き合わせた部分を摩擦攪拌接合することが知られている。 On the other hand, there is conventionally known a double skin panel configured by overlapping two metal plates. Double skin panels are used as structures such as railway vehicles, aircraft, ships, and civil engineering structures. For example, as described in Patent Document 2, the double skin panel includes an outer plate, an inner plate, and a support plate interposed between the outer plate and the inner plate. In addition, when joining the double skin panels, after forming the double skin panel assembly by abutting the end portions of the outer skins of the adjacent double skin panels and the end portions of the inner plates, a rotating tool is used. It is known that friction stir welding is performed on the abutted portions.
特許第2712838号公報Japanese Patent No. 2712838 特開2008-272768号公報JP 2008-272768 A
 しかし、ボビンツールを用いた摩擦攪拌接合においては、スクリューピンの軸方向の中心と、金属板の高さ方向の中心とを合わせつつ接合することが好ましいが、金属板が摩擦熱によって変形する場合がある。摩擦熱によって金属板が変形すると、スクリューピンの中心と金属板の中心とが合わなくなり、接合不良になる場合がある。 However, in friction stir welding using a bobbin tool, it is preferable to join the screw pin in the axial direction center and the metal plate height direction center, but the metal plate is deformed by frictional heat. There is. If the metal plate is deformed by frictional heat, the center of the screw pin and the center of the metal plate may not be aligned, resulting in poor bonding.
 また、ボビンツールのショルダ間の距離が、金属板の厚さよりも大きいと、摩擦攪拌によって塑性流動化された金属がショルダの外部に溢れやすくなるため接合欠陥が発生しやすいという問題がある。 Also, if the distance between the shoulders of the bobbin tool is larger than the thickness of the metal plate, there is a problem that the metal plasticized by friction stirring tends to overflow to the outside of the shoulder, so that joint defects are likely to occur.
 また、ボビンツールのスクリューピンの外周面に螺旋溝を刻設する場合があるが、螺旋溝の方向や刻設する範囲によって接合後の金属板の化粧面に形成される凹溝が大きくなったり、化粧面にバリが多く発生したりするという問題がある。 In some cases, the spiral groove is engraved on the outer peripheral surface of the screw pin of the bobbin tool. Depending on the direction of the spiral groove and the range to be engraved, the concave groove formed on the decorative surface of the metal plate after joining may become large. There is a problem that a lot of burrs are generated on the makeup surface.
 また、ダブルスキンパネルは薄くかつ長尺な金属部材であるため、一対のダブルスキンパネルの外板同士及び内板同士を精度よく突き合わせる作業が困難となる。また、ダブルスキンパネルの組立体を治具で移動不能に固定しても、回転ツールを移動させて接合する際にダブルスキンパネル同士が離間してしまうという問題がある。 In addition, since the double skin panel is a thin and long metal member, it is difficult to accurately abut the outer plates and the inner plates of the pair of double skin panels. Further, even if the double skin panel assembly is fixed to be immovable with a jig, there is a problem that the double skin panels are separated from each other when the rotary tool is moved and joined.
 このような観点から、本発明は、ボビンツールを用いて一対の金属板を接合する際に、接合欠陥の発生を抑制し好適に接合することができる回転ツールユニット及び摩擦攪拌接合方法を提供することを課題とする。また、ボビンツールのスクリューピンの外周面に螺旋溝を刻設した際に、金属板の化粧面に発生するバリを少なくすること又は化粧面に形成される凹溝を小さくすることを課題とする。さらに、ダブルスキンパネルを好適に接合することができるダブルスキンパネルの組立体及びダブルスキンパネルの摩擦攪拌接合方法を提供することを課題とする。 From such a point of view, the present invention provides a rotary tool unit and a friction stir welding method capable of suitably joining while suppressing the occurrence of joining defects when joining a pair of metal plates using a bobbin tool. This is the issue. Another object of the present invention is to reduce the burrs generated on the decorative surface of the metal plate or reduce the concave grooves formed on the decorative surface when the spiral groove is engraved on the outer peripheral surface of the screw pin of the bobbin tool. . It is another object of the present invention to provide a double skin panel assembly and a double skin panel friction stir welding method capable of suitably joining a double skin panel.
 このような課題を解決するために本発明は、摩擦攪拌装置のチャック部に固定される回転ツールユニットであって、前記チャック部に固定される筒状のホルダーと、前記ホルダーの内部に挿入されたスライド軸と、前記スライド軸の先端に取り付けられたボビンツールと、を有し、前記ホルダーは、径方向に貫通し互いに対向する一対の長孔を有し、前記スライド軸は、前記一対の長孔に挿入されるノックピンと、前記スライド軸に対して前記ノックピンを固定する固定部材とを有し、前記ボビンツールは、前記スライド軸に固定される第一ショルダと、前記第一ショルダに対して離間する第二ショルダと、前記第一ショルダと前記第二ショルダを連結するスクリューピンと、を有し、前記長孔は、軸方向に沿って延設されており、前記スライド軸は、前記長孔と前記ノックピンの係合により前記ホルダーと一体的に回転するとともに、前記長孔の範囲で軸方向に移動することを特徴とする。 In order to solve such a problem, the present invention provides a rotary tool unit fixed to a chuck portion of a friction stirrer, a cylindrical holder fixed to the chuck portion, and inserted into the holder. A slide shaft and a bobbin tool attached to the tip of the slide shaft, the holder has a pair of elongated holes that penetrate in the radial direction and face each other, and the slide shaft has the pair of pairs A knock pin that is inserted into the long hole; and a fixing member that fixes the knock pin to the slide shaft, wherein the bobbin tool is fixed to the slide shaft and the first shoulder. A second shoulder that is spaced apart from each other, and a screw pin that connects the first shoulder and the second shoulder, and the elongated hole extends along an axial direction. Id shaft is configured to rotate the holder integrally with the engagement of the said long hole knock pin, thus being moved in the axial direction in the range of the long hole.
 かかる構成によれば、ボビンツールが取り付けられたスライド軸が、ホルダーに対して軸方向に移動するため、金属板の変形に追従してボビンツールも軸方向に移動する。これにより、金属板の変形による接合位置の位置ずれを防ぐことができるため、接合欠陥の発生を抑制することができる。また、スライド軸に固定されたノックピンが、ホルダーの一対の長孔に挿入されるため、スライド軸の移動を安定させることができる。 According to such a configuration, since the slide shaft to which the bobbin tool is attached moves in the axial direction with respect to the holder, the bobbin tool also moves in the axial direction following the deformation of the metal plate. Thereby, since the position shift of the joining position due to deformation of the metal plate can be prevented, the occurrence of joining defects can be suppressed. Moreover, since the knock pin fixed to the slide shaft is inserted into the pair of long holes of the holder, the movement of the slide shaft can be stabilized.
 また、前記スライド軸は、軸方向に貫通する貫通孔と前記貫通孔に直交するピン孔とを有し、前記ピン孔に前記ノックピンが挿入され、前記貫通孔に前記固定部材が挿入され、前記固定部材の先端が前記ノックピンに当接していることが好ましい。 Further, the slide shaft has a through hole penetrating in the axial direction and a pin hole orthogonal to the through hole, the knock pin is inserted into the pin hole, the fixing member is inserted into the through hole, It is preferable that the tip of the fixing member is in contact with the knock pin.
 かかる構成によれば、簡易な構成でスライド軸にノックピンを固定することができる。 According to such a configuration, the knock pin can be fixed to the slide shaft with a simple configuration.
 また、前記ノックピンの中央部には他の部分より細いくびれ部が形成されており、
 前記固定部材の先端は前記くびれ部に当接していることが好ましい。
In addition, a narrow portion is formed in the center portion of the knock pin than other portions,
The distal end of the fixing member is preferably in contact with the constricted portion.
 かかる構成によれば、ノックピンをより確実に固定することができる。 According to such a configuration, the knock pin can be more reliably fixed.
 また、前記ボビンツールは、前記スクリューピンの一端側と前記第一ショルダとを締結する第一締結具と、前記スクリューピンの他端側と前記第二ショルダとを締結する第二締結具と、を有し、前記第一ショルダの内部には、軸方向に延設され平断面が非円形を呈する第一係合孔が形成されており、前記第二ショルダの内部には、軸方向に延設され平断面が非円形を呈する第二係合孔が形成されており、前記スクリューピンは、前記第一ショルダと前記第二ショルダの間に露出する螺旋溝部と、一端側に形成され、前記第一係合孔に係合する第一係合軸部と、他端側に形成され、前記第二係合孔に係合する第二係合軸部と、を有することが好ましい。 The bobbin tool includes: a first fastener that fastens one end side of the screw pin and the first shoulder; a second fastener that fastens the other end side of the screw pin and the second shoulder; A first engagement hole extending in the axial direction and having a non-circular cross section is formed in the first shoulder, and extends in the axial direction inside the second shoulder. A second engagement hole having a non-circular cross section is formed, and the screw pin is formed on one end side of a spiral groove portion exposed between the first shoulder and the second shoulder, It is preferable to have a first engagement shaft portion that engages with the first engagement hole, and a second engagement shaft portion that is formed on the other end side and engages with the second engagement hole.
 また、前記ボビンツールは、前記スクリューピンの一端側と前記第一ショルダとを締結する第一締結具と、前記スクリューピンの他端側と前記第二ショルダとを締結する第二締結具と、を有し、前記第一ショルダの内部には、軸方向に延設された第一孔と、前記ショルダの側面側から前記第一孔に連通する第一ネジ係累孔とが形成されており、前記第二ショルダの内部には、軸方向に延設された第二孔と、前記ショルダの側面側から前記第二孔に連通する第二ネジ係累孔とが形成されており、前記スクリューピンは、前記第一ショルダと前記第二ショルダの間に露出する螺旋溝部と、一端側に形成され、前記第一孔に挿入される第一軸部と、前記第一軸部の外周面に平坦に形成された第一平坦部と、他端側に形成され、前記第二孔に挿入される第二軸部と、前記第二軸部の外周面に平坦に形成された第二平坦部と、を有し、前記第一ショルダの側面側から前記第一ネジ係累孔に第一係止ネジをねじ込んで、前記第一係止ネジの先端を前記第一平坦部に当接させ、前記第二ショルダの側面側から前記第二ネジ係累孔に第二係止ネジをねじ込んで、前記第二係止ネジの先端を前記第二平坦部に当接させることが好ましい。 The bobbin tool includes: a first fastener that fastens one end side of the screw pin and the first shoulder; a second fastener that fastens the other end side of the screw pin and the second shoulder; The first shoulder is formed with a first hole extending in the axial direction, and a first screw-engaged accumulation hole communicating with the first hole from the side surface side of the shoulder, Inside the second shoulder, there are formed a second hole extending in the axial direction and a second screw-engaged accumulation hole communicating with the second hole from the side surface side of the shoulder, and the screw pin is A spiral groove portion exposed between the first shoulder and the second shoulder; a first shaft portion formed on one end side and inserted into the first hole; and a flat outer surface of the first shaft portion. The first flat part formed and the other end are formed and inserted into the second hole. And a second flat portion formed flat on the outer peripheral surface of the second shaft portion, and the first engagement from the side surface side of the first shoulder to the first screw engagement hole. A screw is screwed in, the tip of the first locking screw is brought into contact with the first flat portion, a second locking screw is screwed into the second screw locking hole from the side of the second shoulder, It is preferable that the tips of the two locking screws are brought into contact with the second flat portion.
 金属板の厚さや金属板の材料に応じてショルダ間の距離や、スクリューピンの螺旋溝の深さやピッチ、巻回方向等を変更する必要がある。また、磨耗によって螺旋溝が浅くなるためスクリューピンの交換が必要になる。かかる構成によれば、スクリューピンと前記第一ショルダ及び第二ショルダとが互いに回転不能となるように一体化することができるとともに、スクリューピンに対して第一ショルダ及び第二ショルダを容易に取り外すことができる。これにより、スクリューピン及び各ショルダの変更やメンテナンスを容易に行うことができる。 It is necessary to change the distance between shoulders, the depth and pitch of the spiral groove of the screw pin, the winding direction, etc. according to the thickness of the metal plate and the material of the metal plate. Further, since the spiral groove becomes shallow due to wear, it is necessary to replace the screw pin. According to this configuration, the screw pin and the first shoulder and the second shoulder can be integrated so that they cannot rotate with each other, and the first shoulder and the second shoulder can be easily detached from the screw pin. Can do. Thereby, a change and maintenance of a screw pin and each shoulder can be performed easily.
 また、前記第一ショルダの下面及び前記第二ショルダの上面の少なくとも一方には、前記ボビンツールの軸周りに螺旋状に形成された凹溝が形成されていることが好ましい。 In addition, it is preferable that at least one of the lower surface of the first shoulder and the upper surface of the second shoulder has a concave groove formed in a spiral shape around the axis of the bobbin tool.
 かかる構成によれば、摩擦攪拌効率を向上させることができる。 According to such a configuration, the friction stirring efficiency can be improved.
 また、本発明は、請求の範囲第1項に記載の回転ツールユニットを用いて、一対の金属板を接合する摩擦攪拌接合方法であって、前記金属板の端面同士を突き合わせる突き合せ工程と、前記端面同士を突き合せて形成された突き合せ部に回転させた前記ボビンツールのスクリューピンを移動させて前記端面同士を摩擦攪拌接合する接合工程と、を含み、前記接合工程では、第一ショルダ及び第二ショルダ間の距離を前記金属板の厚さ以下に設定しておき、摩擦攪拌によって前記金属板が変形して前記金属板の位置が前記ボビンツールの軸方向に変位した際に、その変位に追従して前記ボビンツールが軸方向に移動することが好ましい。 Further, the present invention is a friction stir welding method for joining a pair of metal plates using the rotary tool unit according to claim 1, and a butting step of abutting the end faces of the metal plates together A joining step of friction stir welding the end faces by moving a screw pin of the bobbin tool rotated to a butting portion formed by abutting the end faces. In the joining process, When the distance between the shoulder and the second shoulder is set to be equal to or less than the thickness of the metal plate, when the metal plate is deformed by friction stirring and the position of the metal plate is displaced in the axial direction of the bobbin tool, It is preferable that the bobbin tool moves in the axial direction following the displacement.
 かかる方法によれば、ショルダ間の距離を金属板の厚さ以下に設定することで、摩擦攪拌して塑性流動化した金属がショルダの外部に溢れるのを防ぐことができる。これにより、接合欠陥の発生を抑制することができる。 According to such a method, by setting the distance between the shoulders to be equal to or less than the thickness of the metal plate, it is possible to prevent the metal that has been frictionally stirred and plastically fluidized from overflowing to the outside of the shoulder. Thereby, generation | occurrence | production of a joining defect can be suppressed.
 また、前記端面同士の隙間を1.00mm以下に設定する場合、前記金属板の厚さと前記ショルダ間の距離とを、0.2mm≦{(金属板の厚さ)-(ショルダ間の距離)}≦0.8mmとなるように設定することが好ましい。
 また、前記端面同士の隙間を1.00mmより大きく1.75mm以下に設定する場合、 前記金属板の厚さと前記ショルダ間の距離とを、0.4mm≦{(金属板の厚さ)-(ショルダ間の距離)}≦0.8mmとなるように設定することが好ましい。
When the gap between the end faces is set to 1.00 mm or less, the thickness of the metal plate and the distance between the shoulders are set to 0.2 mm ≦ {(thickness of the metal plate) − (distance between shoulders) } It is preferable to set so that ≦ 0.8 mm.
When the gap between the end faces is set to be greater than 1.00 mm and equal to or less than 1.75 mm, the thickness of the metal plate and the distance between the shoulders are set to 0.4 mm ≦ {(thickness of the metal plate) − ( It is preferable to set the distance between the shoulders)} ≦ 0.8 mm.
 かかる接合方法によれば、端面同士に隙間があっても接合欠陥の発生を抑制することができる。 According to such a joining method, even if there is a gap between the end faces, the occurrence of joining defects can be suppressed.
 また、前記ショルダのうち前記金属板に接触する面の直径を二乗した値を、前記スクリューピンの外径を二乗した値で除した値が2.0より大きくなるように設定されていることが好ましい。 Further, a value obtained by dividing a value obtained by squaring the diameter of the surface of the shoulder that contacts the metal plate by a value obtained by squaring the outer diameter of the screw pin is set to be larger than 2.0. preferable.
 かかる接合方法によれば、スクリューピンの外径に対してショルダのうち前記金属板に接触する面を大きく確保できるため、ショルダ間で塑性流動化した金属を確実に押えることができる。これにより、接合欠陥の発生をより抑制することができる。ショルダのうち前記金属板に接触する面の直径を二乗した値を、スクリューピンの外径を二乗した値で除した値が2.0以下であると金属が溢れやすくなり接合欠陥が発生しやすい。 According to such a joining method, since a large surface of the shoulder that contacts the metal plate can be secured with respect to the outer diameter of the screw pin, it is possible to surely hold the metal fluidized between the shoulders. Thereby, generation | occurrence | production of a joining defect can be suppressed more. If the value obtained by dividing the diameter of the surface of the shoulder that is in contact with the metal plate by the square of the outer diameter of the screw pin is 2.0 or less, the metal tends to overflow and joint defects are likely to occur. .
 また、前記スクリューピンの外径を二乗した値を、前記ショルダのうち前記金属板に接触する面の直径を二乗した値から前記スクリューピンの外径を二乗した値を引いた値で除した値が0.2より大きく、かつ、前記スクリューピンの外径を二乗した値を、前記スクリューピンの外径と前記ショルダ間の距離との積で除した値が1.2よりも大きくなるように設定されていることが好ましい。 Further, the value obtained by squaring the outer diameter of the screw pin is divided by a value obtained by subtracting a value obtained by squaring the outer diameter of the screw pin from a value obtained by squaring the diameter of the surface of the shoulder that contacts the metal plate. So that the value obtained by dividing the square of the outer diameter of the screw pin by the product of the outer diameter of the screw pin and the distance between the shoulders is larger than 1.2. It is preferable that it is set.
 かかる接合方法によれば、スクリューピンの外径を二乗した値を、前記ショルダのうち前記金属板に接触する面の直径を二乗した値からスクリューピンの外径を二乗した値を引いた値で除した値が0.2以下になると、スクリューピンが細くなるため抗張力が不足して折れやすくなるが、0.2よりも大きいとスクリューピンが比較的太くなるため折れにくい。
 また、前記スクリューピンの外径を二乗した値を、前記スクリューピンの外径と前記ショルダ間の距離との積で除した値が1.2よりも大きくなるように設定されていることが好ましい。この値が1.2以下になると、スクリューピンが細くなるため抗折力が不足して折れやすくなるが、1.2よりも大きいとスクリューピンが比較的太くなるため折れにくい。
According to this joining method, the value obtained by squaring the outer diameter of the screw pin is a value obtained by subtracting the value obtained by squaring the outer diameter of the screw pin from the value obtained by squaring the diameter of the surface of the shoulder that contacts the metal plate. When the divided value is 0.2 or less, the screw pin becomes thin and the tensile strength is insufficient, and it is easy to bend. However, when the value is larger than 0.2, the screw pin is relatively thick and is not easily broken.
Further, it is preferable that a value obtained by dividing a value obtained by squaring the outer diameter of the screw pin by a product of the outer diameter of the screw pin and the distance between the shoulders is set to be larger than 1.2. . When this value is 1.2 or less, the screw pin becomes thin and the bending strength is insufficient, and it is easy to bend. However, when the value is larger than 1.2, the screw pin is relatively thick and is not easily broken.
 また、前記接合工程において、突き合わされた部分の前記金属板の厚さが異なる場合に、前記金属板の厚さが大きい方の前記金属板を前記ボビンツールの進行方向に対して左側に配置した場合には、前記ボビンツールを右回転させることが好ましい。
 また、前記接合工程において、突き合わされた部分の前記金属板の厚さが異なる場合に、前記金属板の厚さが大きい方の前記金属板を前記ボビンツールの進行方向に対して右側に配置した場合には、前記ボビンツールを左回転させることが好ましい。
Further, in the joining step, when the thickness of the metal plate at the abutted portion is different, the metal plate with the larger thickness of the metal plate is arranged on the left side with respect to the traveling direction of the bobbin tool. In this case, it is preferable to rotate the bobbin tool clockwise.
Further, in the joining step, when the thickness of the metal plate at the abutted portion is different, the metal plate with the larger thickness of the metal plate is arranged on the right side with respect to the traveling direction of the bobbin tool. In this case, it is preferable to rotate the bobbin tool counterclockwise.
 摩擦攪拌においては、回転ツールを右回転させた場合、ツールの進行方向左側(シアー側:回転ツールの回転速度に回転ツールの移動速度が加算される側)からツールの進行方向右側(フロー側:回転ツールの回転速度に回転ツールの移動速度が減算される側)に塑性流動化された金属が流れる傾向があるため、仮に、金属板同士の間に隙間がある場合には、シアー側の金属でその隙間が埋められると考えられる。したがって、金属板の厚さが小さい金属板をシアー側に配置すると、金属が不足して接合後の塑性化領域の中央部の厚さが小さくなる傾向がある。
 しかし、金属板の端面同士の厚さが異なる場合は、金属板の厚さが大きい金属板をシアー側に配置することで金属不足を補うことができるため、より好適に接合することができる。
In friction agitation, when the rotary tool is rotated to the right, the tool travel direction left side (shear side: side where the rotational speed of the rotary tool is added to the rotational speed of the rotary tool) to the tool travel direction right side (flow side: Since the plasticized metal tends to flow on the side where the moving speed of the rotating tool is subtracted from the rotating speed of the rotating tool), if there is a gap between the metal plates, the metal on the shear side It is thought that the gap is filled. Therefore, when a metal plate having a small thickness is disposed on the shear side, the metal is insufficient and the thickness of the central portion of the plasticized region after joining tends to be small.
However, when the end faces of the metal plates are different from each other, the metal shortage can be compensated by disposing a metal plate with a large metal plate on the shear side, so that the metal plates can be joined more suitably.
 また、前記接合工程では、前記第一ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て右回転させた前記ボビンツールのスクリューピンを移動させ、前記スクリューピンの外周面の前記第一ショルダ側に右ネジの螺旋溝が形成されており、この右ネジの螺旋溝が前記第一ショルダ及び前記第二ショルダ間の距離に対して25%以上の割合で形成されていることが好ましい。 In the joining step, the first shoulder and the decorative surface of the metal plate are opposed to each other, and the center of the axial direction of the screw pin and the center of the thickness direction of the metal plate are matched, Move the screw pin of the bobbin tool rotated to the right when viewed from the slide shaft side to the abutting part formed by abutting the end faces, and a right-hand screw on the first shoulder side of the outer peripheral surface of the screw pin A spiral groove is formed, and the right-hand spiral groove is preferably formed at a rate of 25% or more with respect to the distance between the first shoulder and the second shoulder.
 かかる接合方法によれば、第一ショルダ側の右ネジは25%以上の割合で形成されているため、右ネジの螺旋溝による金属の移動によってボビンツールがスライド軸側に押され、金属板の化粧面にボビンツールが深く入り込むのを防ぐことができる。これにより、化粧面に凹溝が発生するのを防ぐか、又は、凹溝が形成されたとしてもその凹溝の深さを小さくすることができる。 According to such a joining method, since the right screw on the first shoulder side is formed at a rate of 25% or more, the bobbin tool is pushed to the slide shaft side by the movement of the metal by the spiral groove of the right screw, and the metal plate It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface. Thereby, it can prevent that a ditch | groove generate | occur | produces in a decorative surface, or even if a ditch | groove is formed, the depth of the ditch | groove can be made small.
 また、前記外周面のうち前記右ネジの螺旋溝の端部から前記第二ショルダまでの間に、左ネジの螺旋溝が形成されていることが好ましい。 Further, it is preferable that a left-handed spiral groove is formed between an end portion of the right-handed spiral groove and the second shoulder on the outer peripheral surface.
 かかる接合方法によれば、摩擦攪拌の攪拌効率を高めることができる。 According to such a joining method, the stirring efficiency of friction stirring can be increased.
 また、前記接合工程では、前記第一ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て左回転させた前記ボビンツールのスクリューピンを移動させ、前記スクリューピンの外周面の前記第一ショルダ側に左ネジの螺旋溝が形成されており、この左ネジの螺旋溝が前記ショルダ間の距離に対して25%以上の割合で形成されていることを特徴とする。 In the joining step, the first shoulder and the decorative surface of the metal plate are opposed to each other, and the center of the axial direction of the screw pin and the center of the thickness direction of the metal plate are matched, Move the screw pin of the bobbin tool rotated counterclockwise as viewed from the slide shaft side to the abutting part formed by abutting the end faces, and set the left-hand screw on the first shoulder side of the outer peripheral surface of the screw pin. A spiral groove is formed, and the spiral groove of the left screw is formed at a ratio of 25% or more with respect to the distance between the shoulders.
 かかる接合方法によれば、第一ショルダ側の左ネジは25%以上の割合で形成されているため、左ネジの螺旋溝による金属の移動によってボビンツールがスライド軸側に押され、金属板の化粧面にボビンツールが深く入り込むのを防ぐことができる。これにより、化粧面に凹溝が発生するのを防ぐか、又は、凹溝が形成されたとしてもその凹溝の深さを小さくすることができる。 According to such a joining method, the left shoulder screw on the first shoulder side is formed at a ratio of 25% or more, so that the bobbin tool is pushed to the slide shaft side by the movement of the metal by the spiral groove of the left screw, and the metal plate It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface. Thereby, it can prevent that a ditch | groove generate | occur | produces in a decorative surface, or even if a ditch | groove is formed, the depth of the ditch | groove can be made small.
 また、前記外周面のうち前記左ネジの螺旋溝の端部から前記第二ショルダまでの間に、右ネジの螺旋溝が形成されていることが好ましい。 Further, it is preferable that a right-handed spiral groove is formed between an end portion of the left-handed spiral groove and the second shoulder on the outer peripheral surface.
 かかる接合方法によれば、摩擦攪拌の攪拌効率を高めることができる。 According to such a joining method, the stirring efficiency of friction stirring can be increased.
 また、前記接合工程では、前記第二ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て右回転させた前記ボビンツールのスクリューピンを移動させ、前記スクリューピンの外周面の前記第二ショルダ側に左ネジの螺旋溝が形成されており、この左ネジの螺旋溝が前記ショルダ間の距離に対して25%以上の割合で形成されていることが好ましい。 In the joining step, the second shoulder and the decorative surface of the metal plate are opposed to each other, and the axial center of the screw pin and the center of the metal plate in the plate thickness direction are matched, Move the screw pin of the bobbin tool rotated to the right when viewed from the slide shaft side to the abutting part formed by abutting the end faces, and a left-hand screw on the second shoulder side of the outer peripheral surface of the screw pin It is preferable that a spiral groove is formed, and the spiral groove of the left screw is formed at a ratio of 25% or more with respect to the distance between the shoulders.
 かかる接合方法によれば、第二ショルダ側の左ネジは25%以上の割合で形成されているため、左ネジの螺旋溝による金属の移動によってボビンツールがスライド軸とは反対側に押され、金属板の化粧面にボビンツールが深く入り込むのを防ぐことができる。これにより、化粧面に凹溝が発生するのを防ぐか、又は、凹溝が形成されたとしてもその凹溝の深さを小さくすることができる。 According to such a joining method, since the left screw on the second shoulder side is formed at a ratio of 25% or more, the bobbin tool is pushed to the opposite side of the slide shaft by the movement of the metal by the spiral groove of the left screw, It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface of the metal plate. Thereby, it can prevent that a ditch | groove generate | occur | produces in a decorative surface, or even if a ditch | groove is formed, the depth of the ditch | groove can be made small.
 また、前記外周面のうち前記左ネジの螺旋溝の端部から前記第一ショルダまでの間に、右ネジの螺旋溝が形成されていることが好ましい。 Further, it is preferable that a right-handed spiral groove is formed between an end portion of the left-handed spiral groove and the first shoulder on the outer peripheral surface.
 かかる接合方法によれば、摩擦攪拌の攪拌効率を高めることができる。 According to such a joining method, the stirring efficiency of friction stirring can be increased.
 また、前記接合工程では、前記第二ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て左回転させた前記ボビンツールのスクリューピンを移動させ、前記スクリューピンの外周面の前記第二ショルダ側に右ネジの螺旋溝が形成されており、この右ネジの螺旋溝が前記ショルダ間の距離に対して25%以上の割合で形成されていることを特徴とする。 In the joining step, the second shoulder and the decorative surface of the metal plate are opposed to each other, and the axial center of the screw pin and the center of the metal plate in the plate thickness direction are matched, Move the screw pin of the bobbin tool rotated counterclockwise as viewed from the slide shaft side to the abutting part formed by abutting the end faces, and a right-hand screw on the second shoulder side of the outer peripheral surface of the screw pin A spiral groove is formed, and the right-hand spiral groove is formed at a rate of 25% or more with respect to the distance between the shoulders.
 かかる接合方法によれば、第二ショルダ側の右ネジは25%以上の割合で形成されているため、右ネジの螺旋溝による金属の移動によってボビンツールがスライド軸とは反対側に押され、金属板の化粧面にボビンツールが深く入り込むのを防ぐことができる。これにより、化粧面に凹溝が発生するのを防ぐか、又は、凹溝が形成されたとしてもその凹溝の深さを小さくすることができる。 According to such a joining method, since the right screw on the second shoulder side is formed at a rate of 25% or more, the bobbin tool is pushed to the opposite side of the slide shaft by the movement of the metal by the spiral groove of the right screw, It is possible to prevent the bobbin tool from penetrating deeply into the decorative surface of the metal plate. Thereby, it can prevent that a ditch | groove generate | occur | produces in a decorative surface, or even if a ditch | groove is formed, the depth of the ditch | groove can be made small.
 また、前記外周面のうち前記右ネジの螺旋溝の端部から前記第一ショルダまでの間に、左ネジの螺旋溝が形成されていることが好ましい。 Further, it is preferable that a left-handed spiral groove is formed between an end of the right-handed spiral groove and the first shoulder in the outer peripheral surface.
 かかる接合方法によれば、摩擦攪拌の攪拌効率を高めることができる。 According to such a joining method, the stirring efficiency of friction stirring can be increased.
 また、前記接合工程では、前記金属板の化粧面側を冷却しながら接合することが好ましい。 In the joining step, it is preferable to join the metal plate while cooling the decorative surface side.
 かかる接合方法によれば、流動化された金属の温度の上昇を抑えることにより、凹溝の発生をより抑えることができる。 According to such a joining method, it is possible to further suppress the generation of the groove by suppressing the rise in the temperature of the fluidized metal.
 また、請求の範囲第一項に記載の回転ツールユニットを用いて、摩擦攪拌接合される一対のダブルスキンパネルの組立体であって、一方の前記ダブルスキンパネルの外板の端部に形成された鉤部と他方の前記ダブルスキンパネルの外板の端部に形成された鉤部とが係合され、一方の前記ダブルスキンパネルの内板の端部に形成された端面と他方の前記ダブルスキンパネルの内板の端面とが係合されずに突き合わされていることを特徴とする。 Further, it is an assembly of a pair of double skin panels to be friction stir welded using the rotary tool unit according to claim 1, and is formed at an end portion of an outer plate of one of the double skin panels. The flange portion is engaged with the flange portion formed at the end portion of the outer plate of the other double skin panel, and the end surface formed at the end portion of the inner plate of the one double skin panel and the other double plate. The end face of the inner plate of the skin panel is abutted without being engaged.
 かかる構成によれば、外板の鉤部同士を係合させることにより、接合する際にダブルスキンパネル同士が離間するのを防ぐことができる。内板にも鉤部を設けると、ダブルスキンパネル同士を突き合わせる作業が困難になるが、本発明では内板には鉤部を設けず端面同士を突き合わせるだけでよい。これにより、ダブルスキンパネルを突き合わせる準備工程の作業を省力化することができる。 According to such a configuration, it is possible to prevent the double skin panels from being separated when they are joined by engaging the flanges of the outer plates. When the collar is provided on the inner plate, it is difficult to abut the double skin panels. However, in the present invention, the inner plate is not provided with the collar and only the end surfaces are abutted. Thereby, the work of the preparation process which abuts a double skin panel can be labor-saving.
 また、各前記鉤部は、前記外板の厚肉部から延設された薄肉部と、前記薄肉部に連続し板厚方向に張り出した張出部と、を有し、一対の前記張出部同士が係合されていることが好ましい。 Each of the flange portions includes a thin portion extending from the thick portion of the outer plate, and an overhang portion that extends continuously from the thin portion and extends in the plate thickness direction. The parts are preferably engaged with each other.
 かかる構成によれば、簡易な構成で鉤部を設けることができる。 According to such a configuration, the collar portion can be provided with a simple configuration.
 また、一方の前記ダブルスキンパネルの前記張出部の側部には張出傾斜面が形成されており、他方の前記ダブルスキンパネルの前記厚肉部には前記張出傾斜面に面接触する厚肉傾斜面が形成されていることが好ましい。 In addition, an overhanging inclined surface is formed on a side portion of the overhanging portion of one of the double skin panels, and the thick wall portion of the other double skin panel is in surface contact with the overhanging inclined surface. It is preferable that a thick inclined surface is formed.
 かかる構成によれば、傾斜面同士を斜めに摺動させることができるので、ダブルスキンパネル同士を係合させやすい。 According to such a configuration, since the inclined surfaces can be slid obliquely, the double skin panels can be easily engaged with each other.
 また、前記外板と前記内板の間に支持板が介設されており、前記支持板から前記端面までの長さをc(mm)及び前記厚肉部の板厚をt(mm)としたとき、c≦7.0×t+18.5mmを満たすように設定されていることが好ましい。 Further, when a support plate is interposed between the outer plate and the inner plate, the length from the support plate to the end surface is c (mm) and the thickness of the thick portion is t (mm). , C ≦ 7.0 × t + 18.5 mm is preferably set.
 支持板から端面までの距離が大きいと、部材の端部側の変形が大きくなるおそれがあるが、かかる構成によれば、部材の端部側の変形が小さくなる。 When the distance from the support plate to the end surface is large, the deformation on the end side of the member may be increased. However, according to such a configuration, the deformation on the end side of the member is reduced.
 また、請求の範囲第一項に記載の回転ツールユニットを用いて、一対のダブルスキンパネルの端部同士を摩擦攪拌接合するダブルスキンパネルの摩擦攪拌接合方法であって、一方の前記ダブルスキンパネルの外板の端部に形成された鉤部と他方の前記ダブルスキンパネルの外板の端部に形成された鉤部とを係合しつつ、一方の前記ダブルスキンパネルの内板の端部に形成された端面と他方の前記ダブルスキンパネルの内板の端面とを係合させずに突き合わせる準備工程と、前記準備工程で係合させた係合部及び突き合わせた突き合せ部に対して摩擦攪拌接合を行う接合工程と、を含むことが好ましい。 Also, there is provided a friction stir welding method for a double skin panel in which the ends of a pair of double skin panels are friction stir welded using the rotary tool unit according to claim 1, wherein one of the double skin panels The end portion of the inner plate of one of the double skin panels is engaged with the flange portion formed on the end portion of the outer plate of the other double skin panel while engaging the flange portion formed on the end portion of the outer plate of the other double skin panel. A preparatory step for abutting the end surface formed on the other side without engaging the end surface of the inner plate of the other double skin panel, and the engaging portion and the butted butted portion engaged in the preparatory step And a joining step for performing friction stir welding.
 かかる接合方法によれば、外板の鉤部同士を係合させることにより、接合する際にダブルスキンパネル同士が離間するのを防ぐことができる。内板にも鉤部を設けると、ダブルスキンパネル同士を突き合わせる作業が困難になるが、本発明では内板には鉤部を設けず端面同士を突き合わせるだけでよい。これにより、ダブルスキンパネルを突き合わせる準備工程の作業を省力化することができる。 According to such a joining method, it is possible to prevent the double skin panels from being separated from each other during joining by engaging the flange portions of the outer plates. When the collar is provided on the inner plate, it is difficult to abut the double skin panels. However, in the present invention, the inner plate is not provided with the collar and only the end surfaces are abutted. Thereby, the work of the preparation process which abuts a double skin panel can be labor-saving.
 また、前記接合工程では、前記係合部を接合した後に、前記突き合せ部を接合することが好ましい。 Moreover, in the joining step, it is preferable to join the butt portion after joining the engaging portion.
 係合部及び突き合せ部のどちらを先に接合しても接合強度の観点からは問題が無いが、かかる方法によれば、接合後の金属板同士の角変形を小さくすることができる。 There is no problem from the viewpoint of joining strength, whichever of the engaging part and the butting part is joined first, but according to such a method, the angular deformation between the metal plates after joining can be reduced.
 本発明に係る回転ツールユニット及び摩擦攪拌接合方法によれば、接合欠陥の発生を抑制し、好適に接合することができる。また、本発明に係るダブルスキンパネルの組立体及びダブルスキンパネルの摩擦攪拌接合方法によれば、ダブルスキンパネルを好適に接合することができる。 According to the rotary tool unit and the friction stir welding method according to the present invention, it is possible to suppress the occurrence of welding defects and to perform welding appropriately. Further, according to the double skin panel assembly and the double skin panel friction stir welding method according to the present invention, the double skin panel can be suitably joined.
第一実施形態に係る摩擦攪拌装置を示した側面図である。It is the side view which showed the friction stirring apparatus which concerns on 1st embodiment. 図1のI-I断面図である。It is II sectional drawing of FIG. 図2のII-II断面図である。FIG. 3 is a cross-sectional view taken along the line II-II in FIG. (a)はスライド軸の断面図、(b)はスライド軸の底面図、(c)はノックピンを示す側面図である。(A) is sectional drawing of a slide shaft, (b) is a bottom view of a slide shaft, (c) is a side view which shows a knock pin. 第一実施形態に係る第一ショルダを示した図であって、(a)は断面図、(b)は底面図である。It is the figure which showed the 1st shoulder concerning 1st embodiment, Comprising: (a) is sectional drawing, (b) is a bottom view. 第一実施形態に係る第二ショルダを示した図であって、(a)は断面図、(b)は平面図である。It is the figure which showed the 2nd shoulder which concerns on 1st embodiment, Comprising: (a) is sectional drawing, (b) is a top view. 第一実施形態に係るスクリューピンを示した図であって、(a)は側面図、(b)は平面図である。It is the figure which showed the screw pin which concerns on 1st embodiment, Comprising: (a) is a side view, (b) is a top view. (a)は第一実施形態に係る第一ショルダの変形例を示す断面図、(b)は第一実施形態に係る第二ショルダの変形例を示す断面図である。(A) is sectional drawing which shows the modification of the 1st shoulder which concerns on 1st embodiment, (b) is sectional drawing which shows the modification of the 2nd shoulder which concerns on 1st embodiment. 第一実施形態に係る変形例を示す断面図である。It is sectional drawing which shows the modification concerning 1st embodiment. 第二実施形態に係る摩擦攪拌装置と中空形材を示す斜視図である。It is a perspective view which shows the friction stirring apparatus and hollow shape material which concern on 2nd embodiment. 中空形材の突き合せ状態を示す図であって(a)は突き合せ前、(b)は突き合せ後を示す。It is a figure which shows the butt | matching state of a hollow shape material, (a) is before butt | matching, (b) shows after butt | matching. 第二実施形態に係る摩擦攪拌装置を示す斜視図である。It is a perspective view which shows the friction stirring apparatus which concerns on 2nd embodiment. 図12のIII-III断面図である。FIG. 13 is a cross-sectional view taken along the line III-III in FIG. 12. 図12のIV-IV断面図である。It is IV-IV sectional drawing of FIG. 第二実施形態に係るボビンツールを示す側面図である。It is a side view which shows the bobbin tool which concerns on 2nd embodiment. 第二実施形態に係る摩擦攪拌接合方法を示す図であって、(a)は側断面図、(b)は(a)のV-V端面図である。It is a figure which shows the friction stir welding method which concerns on 2nd embodiment, Comprising: (a) is a sectional side view, (b) is a VV end view of (a). 第三実施形態に係るボビンツールを示す側面図である。It is a side view which shows the bobbin tool which concerns on 3rd embodiment. 第三実施形態に係る摩擦攪拌接合方法を示す側断面図である。It is a sectional side view which shows the friction stir welding method which concerns on 3rd embodiment. (a)は摩擦攪拌接合方法の第一変形例を示し、(b)は摩擦攪拌接合方法の第二変形例を示す。(A) shows the 1st modification of the friction stir welding method, (b) shows the 2nd modification of the friction stir welding method. 第四実施形態に係るダブルスキンパネルを示した斜視図である。It is the perspective view which showed the double skin panel which concerns on 4th embodiment. 第四実施形態に係る摩擦攪拌装置を示した斜視図である。It is the perspective view which showed the friction stirring apparatus which concerns on 4th embodiment. 第四実施形態に係る回転ツールユニットを示した斜視図である。It is the perspective view which showed the rotary tool unit which concerns on 4th embodiment. 第四実施形態に係るボビンツールを示した側面図である。It is the side view which showed the bobbin tool which concerns on 4th embodiment. 第四実施形態に係る摩擦攪拌接合方法の準備工程を示した正面図である。It is the front view which showed the preparatory process of the friction stir welding method which concerns on 4th embodiment. 第四実施形態に係る摩擦攪拌接合方法の第一接合工程を示した斜視図である。It is the perspective view which showed the 1st joining process of the friction stir welding method which concerns on 4th embodiment. 第四実施形態に係る摩擦攪拌接合方法の第二接合工程を示した斜視図である。It is the perspective view which showed the 2nd joining process of the friction stir welding method which concerns on 4th embodiment. 第四実施形態に係る係合形態の変形例を示した正面図である。It is the front view which showed the modification of the engagement form which concerns on 4th embodiment. 実施例1における試験体の組み合わせを示した表である。2 is a table showing combinations of test specimens in Example 1. 実施例1において、試験体H1の隙間と接合部の厚さとの関係を示すグラフである。In Example 1, it is a graph which shows the relationship between the clearance gap between the test bodies H1, and the thickness of a junction part. 実施例1において、試験体H3の隙間と接合部の厚さとの関係を示すグラフである。In Example 1, it is a graph which shows the relationship between the clearance gap between the test bodies H3, and the thickness of a junction part. 実施例1において、接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さ=Re側の厚さの場合を示す。In Example 1, it is a table | surface which shows the relationship between the thickness of a metal plate which affects joining quality, and a clearance gap, Comprising: The case where the thickness of Ad side = thickness of Re side is shown. 接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さを変化させ、Re側の厚さを固定した場合を示す。It is a table | surface which shows the relationship between the thickness of a metal plate which affects joining quality, and a clearance gap, Comprising: The case where the thickness by the side of Ad is changed and the thickness by the side of Re is fixed is shown. 接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さを固定し、Re側の厚さを変化させた場合を示す。It is a table | surface which shows the relationship between the thickness of the metal plate which influences joining quality, and a clearance gap, Comprising: The case where the thickness on the Ad side is fixed and the thickness on the Re side is changed is shown. 実施例1において、(a)は隙間とCr部の厚さとの関係を示したグラフであり、(b)は隙間とAd部の厚さとの関係を示したグラフである。In Example 1, (a) is a graph showing the relationship between the gap and the thickness of the Cr portion, and (b) is a graph showing the relationship between the gap and the thickness of the Ad portion. 実施例1において、(a)は隙間とRe部の厚さとの関係を示したグラフであり、(b)は隙間と平均厚さとの関係を示したグラフである。In Example 1, (a) is a graph showing the relationship between the gap and the thickness of the Re portion, and (b) is a graph showing the relationship between the gap and the average thickness. 実施例2において、接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さ=Re側の厚さの場合を示す。In Example 2, it is a table | surface which shows the relationship between the thickness of a metal plate and gap which affects joining quality, Comprising: The case where the thickness of Ad side = thickness of Re side is shown. 実施例1において、ショルダ間距離を5.8mmに固定した場合の各ボビンツールの寸法と接合状況を示した表である。In Example 1, it is the table | surface which showed the dimension and joining condition of each bobbin tool at the time of fixing the distance between shoulders to 5.8 mm. 実施例2において、ショルダ間距離を2.8mmに固定した場合の各ボビンツールの寸法と接合状況を示した表である。In Example 2, it is the table | surface which showed the dimension and joining condition of each bobbin tool at the time of fixing the distance between shoulders to 2.8 mm. 参考例において、ショルダ間距離を11.5mmに固定した場合の各ボビンツールの寸法と接合状況を示した表である。In a reference example, it is the table | surface which showed the dimension and joining condition of each bobbin tool at the time of fixing the distance between shoulders to 11.5 mm. 実施例3において、金属板の段差に及ぼすネジ比率の影響(突き合せ部の隙間0mm)を示したグラフである。In Example 3, it is the graph which showed the influence (gap 0mm of butt | matching parts) of the screw ratio which acts on the level | step difference of a metal plate. 実施例3において、金属板の段差に及ぼすネジ比率の影響(突き合せ部の隙間1.5mm)を示したグラフである。In Example 3, it is the graph which showed the influence (gap 1.5mm of butt | matching parts) of the screw ratio which acts on the level | step difference of a metal plate. 実施例3に係る条件Aの金属板の塑性化領域を突き合せ部の隙間別に示す図である。It is a figure which shows the plasticization area | region of the metal plate of the conditions A which concern on Example 3 according to the clearance gap between butt | matching parts. 実施例3に係る条件Bの金属板の塑性化領域を突き合せ部の隙間別に示す図である。It is a figure which shows the plasticization area | region of the metal plate of the conditions B which concerns on Example 3 according to the clearance gap between butt | matching parts. 実施例3に係る条件Cの金属板の塑性化領域を突き合せ部の隙間別に示す図である。It is a figure which shows the plasticization area | region of the metal plate of the conditions C which concern on Example 3 according to the clearance gap between butt | matching parts. 実施例3に係る条件Dの金属板の塑性化領域を突き合せ部の隙間別に示す図である。It is a figure which shows the plasticization area | region of the metal plate of the conditions D based on Example 3 according to the clearance gap between butt | matching parts. 実施例3に係る条件Eの金属板の塑性化領域を突き合せ部の隙間別に示す図である。It is a figure which shows the plasticization area | region of the metal plate of the conditions E based on Example 3 according to the clearance gap between butt | matching parts. 実施例3の結果をまとめた表である。10 is a table summarizing the results of Example 3. ボビンツールを左回転させた場合の概念をまとめた表である。It is the table | surface which put together the concept at the time of rotating a bobbin tool counterclockwise. 実施例4の係合形態又は突き合わせ形態を示した正面図であって、(a)はタイプI、(b)はタイプII、(c)はタイプIIIを示す。It is the front view which showed the engagement form or butt | matching form of Example 4, Comprising: (a) is type I, (b) is type II, (c) shows type III. 実施例4のタイプIの角変形の結果を示したグラフである。10 is a graph showing the results of type I angular deformation of Example 4. 実施例4のタイプIIの角変形の結果を示したグラフである。10 is a graph showing the results of type II angular deformation of Example 4. 実施例4のタイプIIIの角変形の結果を示したグラフである。6 is a graph showing the results of type III angular deformation in Example 4. FIG. 実施例4のボビンツールの回転方向、螺旋溝の巻回方向、係合形態をまとめた表である。It is the table | surface which put together the rotation direction of the bobbin tool of Example 4, the winding direction of a spiral groove, and an engagement form. 実施例6を示すための図であって(a)は供試体を示し、(b)は各条件をまとめた表である。It is a figure for showing Example 6, Comprising: (a) shows a test body, (b) is the table | surface which put together each condition. 実施例6の板厚aと長さcの相関関係を示したグラフである。It is the graph which showed the correlation of board thickness a of Example 6, and length c.
[第一実施形態]
 本発明の実施形態に係る摩擦攪拌装置について、図面を参照して詳細に説明する。図1に示すように、本実施形態に係る摩擦攪拌装置300は、チャック部301と、チャック部301に固定された回転ツールユニット302とで構成されている。摩擦攪拌装置300は、先端に固定された回転ツールユニット302を軸周りに高速回転させて、一対の金属板(図示省略)を摩擦攪拌接合する装置である。
[First embodiment]
A friction stirrer according to an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the friction stirrer 300 according to this embodiment includes a chuck portion 301 and a rotary tool unit 302 fixed to the chuck portion 301. The friction stirrer 300 is a device that rotates a rotary tool unit 302 fixed to the tip at a high speed around an axis and frictionally stirs a pair of metal plates (not shown).
 チャック部301は、装置本体(図示省略)に固定されており、回転軸C周りに回転する。チャック部301は、円筒状を呈する。 The chuck portion 301 is fixed to the apparatus main body (not shown) and rotates around the rotation axis C. The chuck portion 301 has a cylindrical shape.
 回転ツールユニット302は、図1に示すように、ホルダー303と、スライド軸304と、ボビンツール305とで主に構成されている。 As shown in FIG. 1, the rotary tool unit 302 mainly includes a holder 303, a slide shaft 304, and a bobbin tool 305.
 ホルダー303は、チャック部301の内側に固定されており、チャック部301と一体的に回転する。ホルダー303は、円筒状を呈する。図2に示すように、ホルダー303は、一対の長孔311と、平坦面312とを有する。長孔311は、ホルダー303の径方向を貫通し、互いに対向するように設けられている。長孔311は、その長手方向が回転軸C方向に沿うように延設されている。 The holder 303 is fixed inside the chuck portion 301 and rotates integrally with the chuck portion 301. The holder 303 has a cylindrical shape. As shown in FIG. 2, the holder 303 has a pair of long holes 311 and a flat surface 312. The long holes 311 pass through the holder 303 in the radial direction and are provided so as to face each other. The long hole 311 extends so that the longitudinal direction thereof is along the rotation axis C direction.
 平坦面312は、図2に示すように、ホルダー303の外周面の一部に設けられており、鉛直方向に沿って平坦になっている面である。図3に示すように、ホルダー303とチャック部301とは、固定具313を介して固定されている。固定具313は、チャック部301に形成されたネジ溝に螺合されるとともに、その先端が平坦面312に当接している。これにより、チャック部301とホルダー303とが一体となり、回転軸C周りに回転するようになっている。 As shown in FIG. 2, the flat surface 312 is provided on a part of the outer peripheral surface of the holder 303, and is a surface that is flat along the vertical direction. As shown in FIG. 3, the holder 303 and the chuck portion 301 are fixed via a fixture 313. The fixture 313 is screwed into a thread groove formed in the chuck portion 301, and the tip thereof is in contact with the flat surface 312. As a result, the chuck portion 301 and the holder 303 are integrated and rotate around the rotation axis C.
 スライド軸304は、図2に示すように、ホルダー303の内部に挿入される部材であって、ホルダー303と一体的に回転軸C周りに回転する。スライド軸304は、スライド本体321と、ノックピン322と、固定部材323とで構成されている。 2, the slide shaft 304 is a member inserted into the holder 303 and rotates around the rotation axis C integrally with the holder 303. The slide shaft 304 includes a slide body 321, a knock pin 322, and a fixing member 323.
 スライド本体321は、図4に示すように、軸方向に貫通する貫通孔324と、軸方向と直交する方向に貫通するピン孔325とを備えている。貫通孔324は、スライド本体321の回転軸Cと重なる位置に形成されており、上側から大径部324a、大径部324aに連続する小径部324b、大径部324aと小径部324bとの段差で形成された段差部324c及び接合部324dとを備えている。小径部324bのうち、ピン孔325よりも上側の部位には、ネジ溝(雌ネジ)が形成されている。このネジ溝が形成された部位に固定部材323が螺合される。 As shown in FIG. 4, the slide main body 321 includes a through hole 324 that penetrates in the axial direction and a pin hole 325 that penetrates in a direction orthogonal to the axial direction. The through hole 324 is formed at a position overlapping the rotation axis C of the slide body 321, and has a large diameter portion 324 a from the upper side, a small diameter portion 324 b continuous to the large diameter portion 324 a, and a step between the large diameter portion 324 a and the small diameter portion 324 b. The step portion 324c and the joint portion 324d formed in the above are provided. A screw groove (female screw) is formed in a portion of the small diameter portion 324b above the pin hole 325. The fixing member 323 is screwed into a portion where the screw groove is formed.
 接合部324dの内周面にはネジ溝(雌ネジ)が形成されている。接合部324dは、後記する第一ショルダ331が螺合される部位である。ピン孔325は、図4の(a)及び(b)に示すように、小径部324bに対して直交し、スライド本体321を貫通している。 A thread groove (female thread) is formed on the inner peripheral surface of the joint 324d. The joint portion 324d is a portion to which a first shoulder 331 described later is screwed. As shown in FIGS. 4A and 4B, the pin hole 325 is orthogonal to the small diameter portion 324 b and penetrates the slide main body 321.
 ノックピン322は、図4の(c)に示すように、基軸部322aと、くびれ部322bと、テーパー部322cとを備えている。くびれ部322bは、他の部分よりも小さい径になっている部分である。テーパー部322cは、基軸部322aの両端に形成されており、端部に向けて先細りになっている。 As shown in FIG. 4C, the knock pin 322 includes a base shaft portion 322a, a constricted portion 322b, and a tapered portion 322c. The constricted portion 322b is a portion having a smaller diameter than other portions. The tapered portion 322c is formed at both ends of the base shaft portion 322a and tapers toward the end portion.
 固定部材323は、スライド本体321に対してノックピン322を固定するための部材である。固定部材323は、小径部324bに螺合されており、その先端がノックピン322のくびれ部322bに当接している。図3に示すように、固定部材323の頭部には六角溝が形成されている。 The fixing member 323 is a member for fixing the knock pin 322 to the slide main body 321. The fixing member 323 is screwed into the small diameter portion 324b, and the tip thereof is in contact with the constricted portion 322b of the knock pin 322. As shown in FIG. 3, a hexagonal groove is formed in the head of the fixing member 323.
 スライド軸304は、図2に示すように、ノックピン322の両端を長孔311,311に位置させた状態で、ホルダー303の内部に挿入される。 As shown in FIG. 2, the slide shaft 304 is inserted into the holder 303 with both ends of the knock pin 322 positioned in the long holes 311 and 311.
 ボビンツール305は、図2に示すように、スライド軸304の先端に接合される部材であって、第一ショルダ331と、第二ショルダ341と、スクリューピン351と、第一締結具371及び第二締結具372とで主に構成されている。第一ショルダ331及び第二ショルダ341は互いに離間して配置されており、スクリューピン351で連結されている。 As shown in FIG. 2, the bobbin tool 305 is a member joined to the tip of the slide shaft 304, and includes a first shoulder 331, a second shoulder 341, a screw pin 351, a first fastener 371, and a first fastener 371. It is mainly composed of two fasteners 372. The first shoulder 331 and the second shoulder 341 are spaced apart from each other and are connected by screw pins 351.
 第一ショルダ331は、図5の(a)に示すように、第一大径部332と、第一小径部333と、内部に形成された第一中空部334とを備えている。第一大径部332及び第一小径部333は、ともに略円柱状を呈する。第一大径部332は、第一小径部333よりも大きな外径になっている。図5の(b)に示すように、第一大径部332の下面332aには、回転軸C周りに螺旋状に刻設された凹溝332bが形成されている。凹溝332bの断面形状は半円状になっている。第一小径部333の外周面には、スライド軸34の接合部324dに螺合するネジ溝(雄ネジ)が形成されている。 As shown in FIG. 5A, the first shoulder 331 includes a first large diameter portion 332, a first small diameter portion 333, and a first hollow portion 334 formed therein. Both the first large diameter portion 332 and the first small diameter portion 333 have a substantially cylindrical shape. The first large diameter portion 332 has a larger outer diameter than the first small diameter portion 333. As shown in FIG. 5B, a concave groove 332 b that is spirally engraved around the rotation axis C is formed on the lower surface 332 a of the first large-diameter portion 332. The cross-sectional shape of the concave groove 332b is semicircular. On the outer peripheral surface of the first small diameter portion 333, a screw groove (male screw) that is screwed into the joint portion 324d of the slide shaft 34 is formed.
 第一中空部334は、スクリューピン351が挿入される部位であって上下方向に貫通している。第一中空部334は、下側から第一下側孔335と、第一内側孔336と、第一係合孔337と、第一内側孔338と及び第一上側孔339とを備えている。第一下側孔335、第一内側孔336、第一内側孔338及び第一上側孔339は、いずれも円柱状の内部空間を備えている。第一下側孔335の内径は、第一内側孔336の内径よりも大きくなっている。第一上側孔339の内径は、第一内側孔338の内径よりも大きくなっている。第一係合孔337は略四角柱状の内部空間を備えている。第一係合孔337の水平断面形状は、本実施形態では略正方形になっているが、他の角形状であってもよい。 The first hollow portion 334 is a portion into which the screw pin 351 is inserted and penetrates in the vertical direction. The first hollow portion 334 includes a first lower hole 335, a first inner hole 336, a first engagement hole 337, a first inner hole 338, and a first upper hole 339 from the lower side. . Each of the first lower hole 335, the first inner hole 336, the first inner hole 338, and the first upper hole 339 has a cylindrical inner space. The inner diameter of the first lower hole 335 is larger than the inner diameter of the first inner hole 336. The inner diameter of the first upper hole 339 is larger than the inner diameter of the first inner hole 338. The first engagement hole 337 has a substantially square columnar internal space. The horizontal cross-sectional shape of the first engagement hole 337 is substantially square in the present embodiment, but may be another square shape.
 第二ショルダ341は、図6の(a)及び(b)に示すように、第二大径部342と、第二小径部343と、内部に形成された第二中空部344とを備えている。第二大径部342の外周面には、内側に向けて窪む複数(本実施形態では3つ)の凹条342aが形成されている。第二大径部342の上面342bには、回転軸C周りに螺旋状に刻設された凹溝342cが形成されている。凹溝342cの断面形状は半円状になっている。 As shown in FIGS. 6A and 6B, the second shoulder 341 includes a second large diameter portion 342, a second small diameter portion 343, and a second hollow portion 344 formed therein. Yes. On the outer peripheral surface of the second large diameter portion 342, a plurality of (three in the present embodiment) concave strips 342a that are recessed inward are formed. On the upper surface 342b of the second large diameter portion 342, a concave groove 342c that is spirally engraved around the rotation axis C is formed. The cross-sectional shape of the concave groove 342c is semicircular.
 第二中空部344は、スクリューピン351が挿入される部位であって上下方向に貫通している。第二中空部344は、上側から第二上側孔345と、第二内側孔346と、第二係合孔347と、第二下側孔348とを備えている。第二上側孔345、第二内側孔346及び第二下側孔348は、いずれも円柱状の内部空間を備えている。第二上側孔345の内径は、第二内側孔346の内径よりも大きくなっている。第二係合孔347は、略四角柱状の内部空間を備えている。第二係合孔347の水平断面形状は、本実施形態では略正方形になっているが、他の角形状であってもよい。 The second hollow portion 344 is a portion into which the screw pin 351 is inserted and penetrates in the vertical direction. The second hollow portion 344 includes a second upper hole 345, a second inner hole 346, a second engagement hole 347, and a second lower hole 348 from the upper side. Each of the second upper hole 345, the second inner hole 346, and the second lower hole 348 has a cylindrical inner space. The inner diameter of the second upper hole 345 is larger than the inner diameter of the second inner hole 346. The second engagement hole 347 has a substantially square columnar internal space. The horizontal cross-sectional shape of the second engagement hole 347 is substantially square in the present embodiment, but may be another square shape.
 スクリューピン351は、図2に示すように、第一ショルダ331と第二ショルダ341を連結する部材である。図7の(a)及び(b)に示すように、スクリューピン351は、上下対称になっており、その中央には、螺旋溝部352が形成されている。螺旋溝部352よりも上側は第一ショルダ331に挿入される部位であり、下側は第二ショルダ341に挿入される部位である。螺旋溝部352より上側は、第一大径軸部353と、第一小径軸部354と、第一係合軸部355と、第一先端軸部356とを備えている。螺旋溝部352より下側は、第二大径軸部357と、第二小径軸部358と、第二係合軸部359と、第二先端軸部360とを備えている。 The screw pin 351 is a member for connecting the first shoulder 331 and the second shoulder 341 as shown in FIG. As shown to (a) and (b) of FIG. 7, the screw pin 351 is vertically symmetrical, and the spiral groove part 352 is formed in the center. The upper side of the spiral groove 352 is a part inserted into the first shoulder 331, and the lower side is a part inserted into the second shoulder 341. Above the spiral groove 352, a first large-diameter shaft portion 353, a first small-diameter shaft portion 354, a first engagement shaft portion 355, and a first tip shaft portion 356 are provided. Below the spiral groove portion 352, a second large-diameter shaft portion 357, a second small-diameter shaft portion 358, a second engagement shaft portion 359, and a second tip shaft portion 360 are provided.
 螺旋溝部352は、第一ショルダ331と第二ショルダ341との間から露出する部分であって、接合する金属板(図示省略)に挿入される部位である。螺旋溝部352には外周面に螺旋溝が刻設されている。螺旋溝部352には、本実施形態では、上半分に右ネジが刻設され、下半分に左ネジが刻設されている。螺旋溝部352に刻設される螺旋溝の巻回方向や、右ネジと左ネジの割合、断面形状等は接合する金属板によって適宜設定すればよい。 The spiral groove 352 is a portion that is exposed from between the first shoulder 331 and the second shoulder 341, and is a portion that is inserted into a metal plate (not shown) to be joined. A spiral groove is engraved on the outer peripheral surface of the spiral groove portion 352. In the present embodiment, the spiral groove 352 is engraved with a right-hand thread in the upper half and a left-hand thread in the lower half. What is necessary is just to set suitably the winding direction of the spiral groove engraved in the spiral groove part 352, the ratio of a right screw and a left screw, a cross-sectional shape, etc. with the metal plate to join.
 第一大径軸部353は、円柱状を呈する。第一大径軸部353の外径は、螺旋溝部352の外径よりも大きくなっている。第一大径軸部353は、図5の(a)に示す第一ショルダ331の第一下側孔335に挿入される部位である。 The first large-diameter shaft portion 353 has a cylindrical shape. The outer diameter of the first large-diameter shaft portion 353 is larger than the outer diameter of the spiral groove portion 352. The first large-diameter shaft portion 353 is a portion that is inserted into the first lower hole 335 of the first shoulder 331 shown in FIG.
 第一小径軸部354は、円柱状を呈する。第一小径軸部354の外径は、第一大径軸部353よりも小さくなっている。第一小径軸部354は、図5の(a)に示す第一ショルダ331の第一内側孔336に挿入される部位である。 The first small diameter shaft portion 354 has a cylindrical shape. The outer diameter of the first small diameter shaft portion 354 is smaller than that of the first large diameter shaft portion 353. The first small-diameter shaft portion 354 is a portion that is inserted into the first inner hole 336 of the first shoulder 331 shown in FIG.
 第一係合軸部355は、四角柱状を呈する。第一係合軸部355の水平断面形状は略正方形になっている。第一係合軸部355の水平断面に係る対角線の長さは、第一小径軸部354の外径と略同等になっている。第一係合軸部355は、図5の(a)に示す第一ショルダ331の第一係合孔337と密接に係合する部位である。 The first engagement shaft portion 355 has a quadrangular prism shape. The horizontal cross-sectional shape of the first engagement shaft portion 355 is substantially square. The length of the diagonal line related to the horizontal cross section of the first engagement shaft portion 355 is substantially equal to the outer diameter of the first small diameter shaft portion 354. The first engagement shaft portion 355 is a portion that closely engages with the first engagement hole 337 of the first shoulder 331 shown in FIG.
 第一先端軸部356は、円柱状を呈する。第一先端軸部356の外径は、第一係合軸部355の水平断面の一辺の長さよりも小さくなっている。第一先端軸部356の外周面にはネジ溝(雄ネジ)が形成されている。第一先端軸部356は、図5の(a)に示す第一内側孔338及び第一上側孔339に挿入される部位である。 The first tip shaft portion 356 has a cylindrical shape. The outer diameter of the first tip shaft portion 356 is smaller than the length of one side of the horizontal cross section of the first engagement shaft portion 355. A thread groove (male thread) is formed on the outer peripheral surface of the first tip shaft portion 356. The first tip shaft portion 356 is a portion to be inserted into the first inner hole 338 and the first upper hole 339 shown in FIG.
 第二大径軸部357は、円柱状を呈する。第二大径軸部357の外径は、螺旋溝部352の外径よりも大きくなっている。第二大径軸部357は、図6の(a)に示す第二ショルダ341の第二上側孔345に挿入される部位である。 The second large-diameter shaft portion 357 has a cylindrical shape. The outer diameter of the second large-diameter shaft portion 357 is larger than the outer diameter of the spiral groove portion 352. The second large-diameter shaft portion 357 is a portion that is inserted into the second upper hole 345 of the second shoulder 341 shown in FIG.
 第二小径軸部358は、円柱状を呈する。第二小径軸部358の外径は、第二大径軸部357の外径よりも小さくなっている。第二小径軸部358は、図6の(a)に示す第二ショルダ341の第二内側孔346に挿入される部位である。 The second small diameter shaft portion 358 has a cylindrical shape. The outer diameter of the second small diameter shaft portion 358 is smaller than the outer diameter of the second large diameter shaft portion 357. The second small diameter shaft portion 358 is a portion that is inserted into the second inner hole 346 of the second shoulder 341 shown in FIG.
 第二係合軸部359は、角柱状を呈する。第二係合軸部359の水平断面形状は略正方形になっている。第二係合軸部359の水平断面に係る対角線の長さは、第二小径軸部358の外径と略同等になっている。第二係合軸部359は、図6の(a)に示す第二ショルダ341の第二係合孔347と密接に係合する部位である。 The second engagement shaft portion 359 has a prismatic shape. The horizontal cross-sectional shape of the second engagement shaft portion 359 is substantially square. The length of the diagonal line related to the horizontal cross section of the second engagement shaft portion 359 is substantially equal to the outer diameter of the second small diameter shaft portion 358. The second engagement shaft portion 359 is a portion that is closely engaged with the second engagement hole 347 of the second shoulder 341 shown in FIG.
 第二先端軸部360は、円柱状を呈する。第二先端軸部360の外径は、第二係合軸部359の水平断面の一辺の長さよりも小さくなっている。第二先端軸部360の外周面にはネジ溝(雄ネジ)が形成されている。第二先端軸部360は、図6の(a)に示す第二下側孔348に挿入される部位である。 The second tip shaft portion 360 has a cylindrical shape. The outer diameter of the second tip shaft portion 360 is smaller than the length of one side of the horizontal cross section of the second engagement shaft portion 359. A thread groove (male thread) is formed on the outer peripheral surface of the second tip shaft portion 360. The second tip shaft portion 360 is a portion that is inserted into the second lower hole 348 shown in FIG.
 次に、各部材の組み付け方法について説明する。まず、図2、図5~7を参照してボビンツール305の組み付け方法について説明する。スクリューピン351の第一先端軸部356から第一ショルダ331を挿入し、第一係合軸部355と第一係合孔337とを係合させる。そして、第一上側孔339において第一先端軸部356を第一締結具371で締結する。 Next, the method for assembling each member will be described. First, a method for assembling the bobbin tool 305 will be described with reference to FIGS. 2 and 5 to 7. The first shoulder 331 is inserted from the first tip shaft portion 356 of the screw pin 351, and the first engagement shaft portion 355 and the first engagement hole 337 are engaged. Then, the first tip shaft portion 356 is fastened with the first fastener 371 in the first upper hole 339.
 一方、スクリューピン351の第二先端軸部360から第二ショルダ341を挿入し、第二係合軸部359と第二係合孔347とを係合させる。そして、第二ショルダ341の下面で第二先端軸部360を第二締結具372で締結する。第一係合孔337と第一係合軸部355、及び、第二係合孔347と第二係合軸部359は角柱状(平面視角形)であるため、互いに空転することなく係合される。 Meanwhile, the second shoulder 341 is inserted from the second tip shaft portion 360 of the screw pin 351, and the second engagement shaft portion 359 and the second engagement hole 347 are engaged. Then, the second tip shaft portion 360 is fastened with the second fastener 372 on the lower surface of the second shoulder 341. Since the first engagement hole 337 and the first engagement shaft portion 355, and the second engagement hole 347 and the second engagement shaft portion 359 are prismatic (planar in plan view), they engage with each other without idling. Is done.
 ボビンツール305を組み付けたら、スライド軸304の接合部324dに、第一ショルダ331の第一小径部333を螺合して、スライド軸304とボビンツール305とを接合する。 After the bobbin tool 305 is assembled, the slide shaft 304 and the bobbin tool 305 are joined by screwing the first small diameter portion 333 of the first shoulder 331 into the joint 324d of the slide shaft 304.
 次に、ホルダー303にスライド軸304を挿入しつつ、長孔311,311とピン孔325とを連通させてノックピン322を挿入する。そして、スライド本体321の貫通孔324に固定部材323を挿入し、図示しない六角レンチで固定部材323を締結する。 Next, while inserting the slide shaft 304 into the holder 303, the long holes 311, 311 and the pin hole 325 are communicated to insert the knock pin 322. Then, the fixing member 323 is inserted into the through hole 324 of the slide body 321 and the fixing member 323 is fastened with a hexagon wrench (not shown).
 最後に、ホルダー303をチャック部301に挿入しつつ、ホルダー303とチャック部301とを固定具313で固定する。 Finally, the holder 303 and the chuck part 301 are fixed by the fixture 313 while the holder 303 is inserted into the chuck part 301.
 以上説明した回転ツールユニット302によれば、ボビンツール305が取り付けられたスライド軸304が、ホルダー303に対して軸方向に移動するため、金属板の変形に追従してボビンツール305も軸方向に移動する。これにより、金属板の変形による接合位置の位置ずれを防ぐことができるため、接合欠陥の発生を抑制することができる。また、スライド軸304に固定されたノックピン322が、ホルダー303の一対の長孔311に挿入されるため、スライド軸304の移動を安定させることができる。 According to the rotary tool unit 302 described above, since the slide shaft 304 to which the bobbin tool 305 is attached moves in the axial direction with respect to the holder 303, the bobbin tool 305 also moves in the axial direction following the deformation of the metal plate. Moving. Thereby, since the position shift of the joining position due to deformation of the metal plate can be prevented, the occurrence of joining defects can be suppressed. Further, since the knock pins 322 fixed to the slide shaft 304 are inserted into the pair of long holes 311 of the holder 303, the movement of the slide shaft 304 can be stabilized.
 また、本実施形態のスライド軸304は、軸方向に貫通する貫通孔324と、貫通孔324に直交しノックピン322が挿入されるピン孔325とを有し、貫通孔324に固定部材323が挿入され、その先端がノックピン322に当接している。また、ノックピン322の中央部には他の部分より細いくびれ部322bが形成されており、固定部材323の先端はくびれ部322bに当接している。これにより、簡易な構成でスライド軸304にノックピン322を確実に固定することができる。 Further, the slide shaft 304 of the present embodiment has a through hole 324 that penetrates in the axial direction and a pin hole 325 that is orthogonal to the through hole 324 and into which the knock pin 322 is inserted, and the fixing member 323 is inserted into the through hole 324. The tip is in contact with the knock pin 322. Further, a constricted portion 322b that is narrower than other portions is formed at the center of the knock pin 322, and the tip of the fixing member 323 is in contact with the constricted portion 322b. Thereby, the knock pin 322 can be reliably fixed to the slide shaft 304 with a simple configuration.
 また、本実施形態によれば、スライド軸304の先端に形成された接合部324dに、第一ショルダ331の第一小径部333が螺合又は解除されることにより着脱自在になっている。これにより、ボビンツール305の交換やメンテナンスを容易に行うことができる。 In addition, according to the present embodiment, the first small diameter portion 333 of the first shoulder 331 is screwed into or released from the joint portion 324d formed at the tip of the slide shaft 304 so that it can be attached and detached. As a result, the bobbin tool 305 can be easily replaced and maintained.
 また、ボビンツール305は、接合する金属板の厚さや種類によって第一ショルダ331と第二ショルダ341の距離や、スクリューピン351の太さを変更する必要がある。また、磨耗によって第一ショルダ331、第二ショルダ341及びスクリューピン351の交換をする必要がある。本実施形態によれば、ボビンツール305の第一ショルダ331及び第二ショルダ341は、スクリューピン351に対して容易に着脱できるようになっているため、各部材の交換やメンテナンスを容易に行うことができる。 Also, the bobbin tool 305 needs to change the distance between the first shoulder 331 and the second shoulder 341 and the thickness of the screw pin 351 depending on the thickness and type of the metal plate to be joined. Further, it is necessary to replace the first shoulder 331, the second shoulder 341, and the screw pin 351 due to wear. According to this embodiment, since the first shoulder 331 and the second shoulder 341 of the bobbin tool 305 can be easily attached to and detached from the screw pin 351, replacement and maintenance of each member can be easily performed. Can do.
 また、第一ショルダ331の下面332a及び第二ショルダ341の上面342bには、ボビンツール305の回転軸C周りに螺旋状に形成された凹溝332b、凹溝342cがそれぞれ形成されている。これにより、摩擦攪拌効率を向上させることができる。 Further, on the lower surface 332a of the first shoulder 331 and the upper surface 342b of the second shoulder 341, a concave groove 332b and a concave groove 342c that are spirally formed around the rotation axis C of the bobbin tool 305 are formed. Thereby, friction stirring efficiency can be improved.
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、第一ショルダ331の下面331a及び第二ショルダ341の上面341bに設ける凹溝はいずれか一方に設けるだけでもよいし、省略してもよい。 Although the embodiment of the present invention has been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, the concave grooves provided on the lower surface 331a of the first shoulder 331 and the upper surface 341b of the second shoulder 341 may be provided only in either one or may be omitted.
 また、第一係合孔337と第一係合軸部355、及び、第二係合孔347と第二係合軸部359の形状は、係合孔に対して係合軸部が回転不能であればどのような形状であってもよい。例えば、係合孔及び係合軸部のいずれか一方にキーを形成し、他方にキー溝を形成してもよい。 Further, the shapes of the first engagement hole 337 and the first engagement shaft portion 355 and the second engagement hole 347 and the second engagement shaft portion 359 are such that the engagement shaft portion cannot rotate with respect to the engagement hole. Any shape can be used. For example, a key may be formed in one of the engagement hole and the engagement shaft portion, and a key groove may be formed in the other.
 図8の(a)は第一実施形態に係る第一ショルダの変形例を示す断面図、(b)は第一実施形態に係る第二ショルダの変形例を示す断面図である。図9は、第一実施形態に係る変形例を示す断面図である。図8に示すように第一実施形態に係る変形例では、第一係止ネジ473及び第二係止ネジ474を用いる点で前記した実施形態と相違する。変形例のボビンツール405は、第一ショルダ431と、第二ショルダ441と、スクリューピン451と、第一締結具471と、第二締結具472と、第一係止ネジ473及び第二係止ネジ474とで主に構成されている。 8A is a cross-sectional view showing a modification of the first shoulder according to the first embodiment, and FIG. 8B is a cross-sectional view showing a modification of the second shoulder according to the first embodiment. FIG. 9 is a cross-sectional view showing a modification according to the first embodiment. As shown in FIG. 8, the modification according to the first embodiment is different from the above-described embodiment in that a first locking screw 473 and a second locking screw 474 are used. The modified bobbin tool 405 includes a first shoulder 431, a second shoulder 441, a screw pin 451, a first fastener 471, a second fastener 472, a first locking screw 473, and a second locking screw. It is mainly composed of screws 474.
 第一ショルダ431は、図8の(a)に示すように、第一大径部432と、第一小径部433と、内部に形成された第一中空部434と、第一ネジ係累孔438と、を備えている。第一大径部432は、略円柱状を呈し、下端側は先端に向けて先細りになっている。第一小径部433は、円筒状を呈する。第一小径部433の外径は、第一大径部432の外径よりも小さくなっている。第一小径部433の外周面には、スライド軸304の接合部324dに螺合するネジ溝(雄ネジ)が形成されている。なお、第一大径部432の下面432aに凹溝を設けてもよい。 As shown in FIG. 8A, the first shoulder 431 includes a first large-diameter portion 432, a first small-diameter portion 433, a first hollow portion 434 formed inside, and a first screw engagement accumulation hole 438. And. The first large diameter portion 432 has a substantially cylindrical shape, and the lower end side is tapered toward the tip. The first small diameter portion 433 has a cylindrical shape. The outer diameter of the first small diameter portion 433 is smaller than the outer diameter of the first large diameter portion 432. On the outer peripheral surface of the first small-diameter portion 433, a thread groove (male screw) that is screwed into the joint portion 324d of the slide shaft 304 is formed. In addition, you may provide a ditch | groove in the lower surface 432a of the 1st large diameter part 432. FIG.
 第一中空部434は、スクリューピン451が挿入される部位であって、上下方向に貫通している。第一中空部434は、下側から第一下側孔435と、第一内側孔436と、第一上側孔437とを備えている。第一下側孔435は、請求の範囲の「第一孔」に相当する部位である。第一下側孔435、第一内側孔436及び第一上側孔437はいずれも円柱状の内部空間を備えている。第一内側孔436、第一下側孔435、第一上側孔437の順にそれぞれの内径が大きくなっている。 The first hollow portion 434 is a portion into which the screw pin 451 is inserted and penetrates in the vertical direction. The first hollow portion 434 includes a first lower hole 435, a first inner hole 436, and a first upper hole 437 from the lower side. The first lower hole 435 is a portion corresponding to the “first hole” in the claims. Each of the first lower hole 435, the first inner hole 436, and the first upper hole 437 has a cylindrical inner space. The inner diameters of the first inner hole 436, the first lower hole 435, and the first upper hole 437 increase in order.
 第一ネジ係累孔438は、第一大径部432の側面から回転軸C方向に延設されており、第一下側孔435に連通している。第一ネジ係累孔438のうち回転軸C側には、ネジ溝(雌ネジ)が形成されている。 The first screw engagement hole 438 extends from the side surface of the first large diameter portion 432 in the direction of the rotation axis C, and communicates with the first lower hole 435. A thread groove (female thread) is formed on the rotation axis C side of the first screw engagement hole 438.
 第二ショルダ441は、図8の(b)に示すように、第二本体部442と、内部に形成された第二中空部444と、第二ネジ係累孔447とを備えている。第二本体部442の外周面には、内側に向けて窪む複数(本実施形態では4つ)の凹条442aが形成されている。なお、第二本体部442の上面442bに凹溝を設けてもよい。 As shown in FIG. 8B, the second shoulder 441 includes a second main body portion 442, a second hollow portion 444 formed therein, and a second screw engagement accumulation hole 447. On the outer peripheral surface of the second main body portion 442, a plurality of (four in this embodiment) concave strips 442a that are recessed inward are formed. In addition, you may provide a ditch | groove in the upper surface 442b of the 2nd main-body part 442. FIG.
 第二中空部444は、スクリューピン451が挿入される部位であって、上下方向に貫通している。第二中空部444は、上側から第二上側孔445と、第二下側孔446とを備えている。第二上側孔445は、請求の範囲の「第二孔」に相当する部位である。第二上側孔445及び第二下側孔446は、いずれも円柱状の内部空間を備えている。第二上側孔445の内径は、第二下側孔446の内径よりも大きくなっている。 The second hollow portion 444 is a portion into which the screw pin 451 is inserted, and penetrates in the vertical direction. The second hollow portion 444 includes a second upper hole 445 and a second lower hole 446 from the upper side. The second upper hole 445 is a portion corresponding to the “second hole” in the claims. Each of the second upper hole 445 and the second lower hole 446 has a cylindrical inner space. The inner diameter of the second upper hole 445 is larger than the inner diameter of the second lower hole 446.
 第二ネジ係累孔447は、第二本体部442の側面から回転軸C方向に延設されており、第二上側孔445に連通している。第二ネジ係累孔447のうち回転軸C側には、ネジ溝(雌ネジ)が形成されている。 The second screw engagement hole 447 extends from the side surface of the second main body 442 in the direction of the rotation axis C, and communicates with the second upper hole 445. A thread groove (female thread) is formed on the rotation axis C side of the second screw engagement hole 447.
 スクリューピン451は、図9に示すように、上下対称になっており、その中央には螺旋溝部452が形成されている。螺旋溝部452は、第一ショルダ431と第二ショルダ441との間から露出する部分である。螺旋溝部452より上側は、第一大径軸部453と、第一小径軸部454とを備えている。螺旋溝部452より下側は、第二大径軸部455と、第二小径軸部456とを備えている。 As shown in FIG. 9, the screw pin 451 is vertically symmetrical, and a spiral groove 452 is formed at the center thereof. The spiral groove portion 452 is a portion exposed from between the first shoulder 431 and the second shoulder 441. Above the spiral groove 452, a first large-diameter shaft portion 453 and a first small-diameter shaft portion 454 are provided. Below the spiral groove 452, a second large-diameter shaft portion 455 and a second small-diameter shaft portion 456 are provided.
 第一大径軸部453及び第一小径軸部454は、いずれも略円柱状を呈する。第一大径軸部453の外径は、第一小径軸部454の外径よりも大きくなっている。第一大径軸部453は、図8の(a)に示す第一下側孔435に挿入される部位である。第一大径軸部453の外周面には、平坦面となる第一平坦部453aが形成されている。第一大径軸部453は、請求の範囲の「第一軸部」に相当する部位である。第一小径軸部454は、第一内側孔436及び第一上側孔437に挿入される部位である。第一小径軸部454の先端には、ネジ溝(雄ネジ)が形成されている。 The first large-diameter shaft portion 453 and the first small-diameter shaft portion 454 both have a substantially cylindrical shape. The outer diameter of the first large-diameter shaft portion 453 is larger than the outer diameter of the first small-diameter shaft portion 454. The first large-diameter shaft portion 453 is a portion that is inserted into the first lower hole 435 shown in FIG. A first flat portion 453 a that is a flat surface is formed on the outer peripheral surface of the first large-diameter shaft portion 453. The first large-diameter shaft portion 453 is a portion corresponding to the “first shaft portion” in the claims. The first small diameter shaft portion 454 is a portion that is inserted into the first inner hole 436 and the first upper hole 437. A thread groove (male thread) is formed at the tip of the first small diameter shaft portion 454.
 第二大径軸部455及び第二小径軸部456は、いずれも略円柱状を呈する。第二大径軸部455の外径は、第二小径軸部456の外径よりも大きくなっている。第二大径軸部455は、図8の(b)に示す第二上側孔445に挿入される部位である。第二大径軸部455の外周面には、平坦面となる第二平坦部455aが形成されている。第二大径軸部455は、請求の範囲の「第二軸部」に相当する部位である。第二小径軸部456は、第二下側孔446に挿入される部位である。第二小径軸部456の先端には、ネジ溝(雄ネジ)が形成されている。 The second large-diameter shaft portion 455 and the second small-diameter shaft portion 456 both have a substantially cylindrical shape. The outer diameter of the second large diameter shaft portion 455 is larger than the outer diameter of the second small diameter shaft portion 456. The second large-diameter shaft portion 455 is a portion that is inserted into the second upper hole 445 shown in FIG. A second flat portion 455a that is a flat surface is formed on the outer peripheral surface of the second large-diameter shaft portion 455. The second large-diameter shaft portion 455 is a portion corresponding to the “second shaft portion” in the claims. The second small diameter shaft portion 456 is a portion that is inserted into the second lower hole 446. A thread groove (male thread) is formed at the tip of the second small diameter shaft portion 456.
 次に、変形例に係るボビンツール405の組み付け方法について説明する。図8及び図9に示すように、まず、スクリューピン451の第一大径軸部453及び第一小径軸部454に第一ショルダ431を挿入する。そして、第一ネジ係累孔438に第一係止ネジ473を螺合させつつ、第一大径軸部453の第一平坦部453aに第一係止ネジ473の先端を当接させる。そして、第一小径軸部454に第一締結具471を締結する。 Next, a method for assembling the bobbin tool 405 according to the modification will be described. As shown in FIGS. 8 and 9, first, the first shoulder 431 is inserted into the first large-diameter shaft portion 453 and the first small-diameter shaft portion 454 of the screw pin 451. Then, the front end of the first locking screw 473 is brought into contact with the first flat portion 453a of the first large-diameter shaft portion 453 while the first locking screw 473 is screwed into the first screw engagement hole 438. Then, the first fastener 471 is fastened to the first small diameter shaft portion 454.
 一方、スクリューピン451の第二大径軸部455及び第二小径軸部456に第二ショルダ441を挿入する。そして、第二ネジ係累孔447に第二係止ネジ474を螺合させつつ、第二大径軸部455の第二平坦部455aに第二係止ネジ474の先端を当接させる。そして、第二小径軸部456に第二締結具472を締結する。 Meanwhile, the second shoulder 441 is inserted into the second large diameter shaft portion 455 and the second small diameter shaft portion 456 of the screw pin 451. Then, the tip of the second locking screw 474 is brought into contact with the second flat portion 455a of the second large-diameter shaft portion 455 while the second locking screw 474 is screwed into the second screw engaging hole 447. Then, the second fastener 472 is fastened to the second small diameter shaft portion 456.
 ボビンツール405を組み付けたら、スライド軸304の接合部324dに、第一ショルダ431の第一小径部433を螺合して、スライド軸304とボビンツール405とを接合する。 When the bobbin tool 405 is assembled, the first small diameter portion 433 of the first shoulder 431 is screwed into the joint portion 324d of the slide shaft 304 to join the slide shaft 304 and the bobbin tool 405.
 以上説明したように変形例においても、前記した実施形態と略同等の効果を奏することができる。また、スクリューピン451と第一ショルダ431及び第二ショルダ441とを一体化する際に、第一係止ネジ473及び第二係止ネジ474を螺合させつつそれらの先端と第一平坦部453a、第二平坦部455aとをそれぞれ当接させることにより、スクリューピン451と、第一ショルダ431及び第二ショルダ441との相対的な回転を容易に制限することができる。また、第一係止ネジ473及び第二係止ネジ474を解除するだけで、容易に分解することができる。これにより、部品の交換やメンテナンスが容易になる。 As described above, even in the modified example, it is possible to achieve substantially the same effect as the above-described embodiment. Further, when the screw pin 451 is integrated with the first shoulder 431 and the second shoulder 441, the first locking screw 473 and the second locking screw 474 are screwed together and their tips and the first flat portion 453a. The relative rotation between the screw pin 451, the first shoulder 431, and the second shoulder 441 can be easily limited by bringing the second flat portion 455a into contact with each other. Moreover, it can be easily disassembled only by releasing the first locking screw 473 and the second locking screw 474. This facilitates parts replacement and maintenance.
 なお、変形例において、第一ショルダ431及び第二ショルダ441の内部に平断面が非円形となる係合孔を設けるとともに、スクリューピン451の軸部の一部に柱状を呈する係合軸部を設け、当該係合孔と係合軸部とを係合させてもよい。これにより、スクリューピン451と、第一ショルダ431及び第二ショルダ441との相対的な回転をより確実に制限することができる。 In the modified example, the first shoulder 431 and the second shoulder 441 are provided with an engagement hole having a non-circular cross section in the plane, and an engagement shaft portion having a columnar shape is formed on a part of the shaft portion of the screw pin 451. The engagement hole and the engagement shaft portion may be engaged with each other. Thereby, the relative rotation of the screw pin 451, the first shoulder 431, and the second shoulder 441 can be more reliably limited.
[第二実施形態]
 本発明の第二実施形態について、図面を参照して詳細に説明する。図10に示すように、本実施形態に係る摩擦攪拌装置1は、突き合わされた一対の金属板の突き合せ部Nを摩擦攪拌接合する装置である。摩擦攪拌装置1の先端にはボビンツール5が装着されている。まずは、接合する一対の金属板の説明をする。説明における上下前後左右は図10の矢印に従う。
[Second Embodiment]
A second embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 10, the friction stirrer 1 according to the present embodiment is a device for friction stir welding the butted portions N of a pair of butted metal plates. A bobbin tool 5 is attached to the tip of the friction stirrer 1. First, a pair of metal plates to be joined will be described. The up, down, front, back, left and right in the description follow the arrows in FIG.
<中空形材>
 図11の(a)に示すように、本実施形態では中空形材100Aと中空形材100Bとを接合する場合を例示する。中空形材100Aは、アルミニウム合金製の押出形材であって、断面視矩形の中空部100aを有する長尺部材である。中空形材100Aは、中空部100aを備えた本体部101と、本体部101の左側面の上下端からそれぞれ左側(中空形材100B側)に張り出した板状端部102,103とを有する。
<Hollow profile>
As shown to (a) of FIG. 11, this embodiment illustrates the case where the hollow shape member 100A and the hollow shape member 100B are joined. The hollow shape member 100A is an extruded shape member made of an aluminum alloy, and is a long member having a hollow portion 100a having a rectangular cross-sectional view. The hollow shape member 100A includes a main body portion 101 having a hollow portion 100a, and plate- like end portions 102 and 103 projecting from the upper and lower ends of the left side surface of the main body portion 101 to the left side (hollow shape member 100B side).
 本体部101は、4つの面材104,105,106,107で構成され、断面視矩形に形成されている。板状端部102,103は、板状を呈し面材105に対して垂直になっている。板状端部102,103の左右方向の長さは、面材104の半分程度になっている。また、板状端部102,103は、面材104,105,106,107と同等の厚さになっている。板状端部102,103は、請求の範囲の「金属板」に相当する部位である。 The main body 101 is composed of four face materials 104, 105, 106, and 107, and is formed in a rectangular shape in sectional view. The plate- like end portions 102 and 103 have a plate shape and are perpendicular to the face material 105. The length in the left-right direction of the plate- like end portions 102 and 103 is about half that of the face material 104. Further, the plate- like end portions 102 and 103 have the same thickness as the face materials 104, 105, 106 and 107. The plate- like end portions 102 and 103 are portions corresponding to the “metal plate” in the claims.
 中空形材100Bは、中空形材100Aと同等の形状を呈する金属部材である。中空形材100Bは、中空形材100Aと同等の符号を付して詳細な説明は省略する。 The hollow shape member 100B is a metal member having a shape equivalent to that of the hollow shape member 100A. The hollow shape member 100B is denoted by the same reference numeral as the hollow shape member 100A, and detailed description thereof is omitted.
 中空形材100Aと中空形材100Bとを突き合わせる際には、中空形材100Aの板状端部102,103と中空形材100Bの102,103とをそれぞれ突き合わせる。より詳しくは、中空形材100Aの板状端部102の端面102aと中空形材100Bの板状端部102の端面102aとを突き合わせるとともに、中空形材100Aの板状端部103の端面103aと中空形材100Bの板状端部103の端面103aとをそれぞれ突き合わせる。図11の(b)に示すように、中空形材100Aと中空形材100Bとを突き合わせると、端面102a,102aの高さ方向の中心同士が重なるとともに、板状端部102,102の上面と下面とがそれぞれ面一になる。 When the hollow shape member 100A and the hollow shape member 100B are brought into contact with each other, the plate- like end portions 102 and 103 of the hollow shape member 100A and the hollow shapes 100B and 102B are brought into contact with each other. More specifically, the end surface 102a of the plate-like end portion 102 of the hollow shape member 100A and the end surface 102a of the plate-like end portion 102 of the hollow shape member 100B are abutted with each other, and the end surface 103a of the plate-like end portion 103 of the hollow shape member 100A. And the end face 103a of the plate-like end portion 103 of the hollow shape member 100B are brought into contact with each other. As shown in FIG. 11B, when the hollow shape member 100A and the hollow shape member 100B are brought into contact with each other, the centers of the end surfaces 102a and 102a in the height direction are overlapped with each other, and the upper surfaces of the plate- like end portions 102 and 102 are overlapped. And the bottom surface are flush with each other.
 図11の(b)に示すように、端面102a,102a、端面103a,103aがそれぞれ突き合わされた部分を「突き合せ部N」とする。突き合せ部Nを接合する際には、端面102a,102aが密接していることが好ましいが、中空形材100A,100Bの公差や、接合時における摩擦熱によって板状端部102,102が変形し、端面102a,102aとの間に微細な隙間が生じる場合がある。突き合せ部Nとは、端面102a,102aに微細な隙間が生じている場合も含む概念である。 As shown in FIG. 11 (b), the portion where the end faces 102a and 102a and the end faces 103a and 103a are abutted is referred to as a “butting portion N”. When joining the butt portion N, it is preferable that the end faces 102a and 102a are in close contact with each other, but the plate- like end portions 102 and 102 are deformed due to tolerances of the hollow shape members 100A and 100B and frictional heat at the time of joining. However, a minute gap may be formed between the end faces 102a and 102a. The abutting portion N is a concept including a case where a minute gap is generated in the end faces 102a and 102a.
 なお、本実施形態では接合する対象として中空形材の板状端部を例示しているが、接合する対象は、摩擦攪拌可能な金属で形成されており、板状を呈する部材であれば特に制限されるものではない。 In addition, in this embodiment, the plate-shaped end portion of the hollow shape material is illustrated as an object to be joined, but the object to be joined is formed of a metal capable of friction stir, and is particularly a member that exhibits a plate shape. It is not limited.
<摩擦攪拌装置>
 図12に示すように、摩擦攪拌装置1は、チャック部1aと、チャック部1aの内部に固定される回転ツールユニット2とで主に構成されている。図13に示すように、チャック部1aは、フランジを備えた円筒状の部材であって、摩擦攪拌装置1の本体DにボルトB1で接続されている。チャック部1aは、摩擦攪拌装置1の回転駆動によって軸周りに回転する部位である。チャック部1aの内周には円筒面1bが形成されている。
<Friction stirrer>
As shown in FIG. 12, the friction stirrer 1 is mainly composed of a chuck portion 1a and a rotary tool unit 2 fixed inside the chuck portion 1a. As shown in FIG. 13, the chuck portion 1a is a cylindrical member having a flange, and is connected to the main body D of the friction stirrer 1 by a bolt B1. The chuck part 1 a is a part that rotates around the axis by the rotational drive of the friction stirrer 1. A cylindrical surface 1b is formed on the inner periphery of the chuck portion 1a.
 回転ツールユニット2は、図13に示すように、ホルダー3と、スライド軸4と、ボビンツール5とで構成されている。回転ツールユニット2は、チャック部1aに対して着脱可能になっている。 The rotary tool unit 2 is composed of a holder 3, a slide shaft 4, and a bobbin tool 5, as shown in FIG. The rotary tool unit 2 can be attached to and detached from the chuck portion 1a.
 ホルダー3は、スライド軸4を内包するとともに、チャック部1aの内部に固定される部材である。ホルダー3は、円筒状を呈する。ホルダー3の外面には、上下方向に平坦に延設された平坦面3aが形成されているため、円筒面1bと平坦面3aとの間には微細な隙間が形成されている。ボルト2B,2Bは、チャック部1aの外面から径方向に向けて締結されており、その先端が平坦面3aに当接している。これにより、チャック部1aとホルダー3とが一体的に回転する。また、図14に示すように、ホルダー3には、径方向に貫通する長孔状のキー溝3bが形成されている。 The holder 3 is a member that contains the slide shaft 4 and is fixed inside the chuck portion 1a. The holder 3 has a cylindrical shape. On the outer surface of the holder 3, a flat surface 3 a that extends flatly in the vertical direction is formed, so that a fine gap is formed between the cylindrical surface 1 b and the flat surface 3 a. The bolts 2B and 2B are fastened in the radial direction from the outer surface of the chuck portion 1a, and their tips are in contact with the flat surface 3a. Thereby, the chuck | zipper part 1a and the holder 3 rotate integrally. Further, as shown in FIG. 14, the holder 3 is formed with an elongated key groove 3 b penetrating in the radial direction.
 スライド軸4は、図13に示すように、円柱状を呈し、ホルダー3の中空部に配置される部材である。スライド軸4は、ホルダー3に対して上下方向に移動可能になっている。図14に示すように、スライド軸4の外面には、外側に向けて突出するキー4aが形成されている。キー4aが、キー溝3bに係合することにより、ホルダー3とスライド軸4とが一体的に回転する。 As shown in FIG. 13, the slide shaft 4 has a cylindrical shape and is a member disposed in the hollow portion of the holder 3. The slide shaft 4 is movable in the vertical direction with respect to the holder 3. As shown in FIG. 14, a key 4 a that protrudes outward is formed on the outer surface of the slide shaft 4. When the key 4a is engaged with the key groove 3b, the holder 3 and the slide shaft 4 rotate integrally.
 ボビンツール5は、図15に示すように、例えば工具鋼で形成されておりスライド軸4に連結されている。ボビンツール5は、チャック部1a、ホルダー3及びスライド軸4と一体的に正逆回転する。ボビンツール5は、第一ショルダ11と、第一ショルダ11の下方に間をあけて配設された第二ショルダ12と、第一ショルダ11と第二ショルダ12とを連結するスクリューピン13とを有する。 As shown in FIG. 15, the bobbin tool 5 is made of, for example, tool steel and is connected to the slide shaft 4. The bobbin tool 5 rotates forward and backward integrally with the chuck portion 1a, the holder 3, and the slide shaft 4. The bobbin tool 5 includes a first shoulder 11, a second shoulder 12 disposed below the first shoulder 11, and a screw pin 13 that connects the first shoulder 11 and the second shoulder 12. Have.
 第一ショルダ11及び第二ショルダ12は、円柱状を呈し、同等の外径を備えている。スクリューピン13は、円柱状を呈し、第一ショルダ11と第二ショルダ12とを連結する。スクリューピン13は、第二ショルダ12を貫通している。第二ショルダ12を貫通したスクリューピン13は、第二ショルダ12の下端においてナットで締結されている。スクリューピン13の外周面には、上部螺旋溝13aと下部螺旋溝13bとが刻設されている。上部螺旋溝13a及び下部螺旋溝13bの溝の向きはそれぞれ反対方向に巻回されるように刻設されている。 The first shoulder 11 and the second shoulder 12 have a cylindrical shape and have the same outer diameter. The screw pin 13 has a cylindrical shape and connects the first shoulder 11 and the second shoulder 12. The screw pin 13 passes through the second shoulder 12. The screw pin 13 passing through the second shoulder 12 is fastened with a nut at the lower end of the second shoulder 12. On the outer peripheral surface of the screw pin 13, an upper spiral groove 13a and a lower spiral groove 13b are formed. The directions of the upper spiral groove 13a and the lower spiral groove 13b are engraved so as to be wound in opposite directions.
 上部螺旋溝13aは、第一ショルダ11の下端からスクリューピン13の高さ方向の中間位置まで刻設されている。本実施形態ではボビンツール5を右回転させるため、上部螺旋溝13aは右ネジで形成されている。つまり、上部螺旋溝13aは、上から下に向けて右回りに巻回されるように刻設されている。 The upper spiral groove 13a is carved from the lower end of the first shoulder 11 to an intermediate position in the height direction of the screw pin 13. In this embodiment, in order to rotate the bobbin tool 5 to the right, the upper spiral groove 13a is formed with a right screw. That is, the upper spiral groove 13a is engraved so as to be wound clockwise from top to bottom.
 一方、下部螺旋溝13bは、第二ショルダ12の上端からスクリューピン13の高さ方向の中間位置まで刻設されている。本実施形態ではボビンツール5を右回転させるため、下部螺旋溝13bは左ネジで形成されている。つまり、下部螺旋溝13bは、上から下に向けて左回りに巻回されるように刻設されている。 On the other hand, the lower spiral groove 13b is carved from the upper end of the second shoulder 12 to an intermediate position in the height direction of the screw pin 13. In this embodiment, in order to rotate the bobbin tool 5 to the right, the lower spiral groove 13b is formed with a left screw. That is, the lower spiral groove 13b is engraved so as to be wound counterclockwise from the top to the bottom.
 上部螺旋溝13a及び下部螺旋溝13bをこのように形成することで、摩擦攪拌されて塑性流動化した金属が、板状端部102の高さの中央部分から上端方向又は下端方向に向って若干移動するようになっている。なお、これら上下方向への金属の移動は、ボビンツール5のスクリューピン13の回転による周方向での金属の移動に比べて微量に止まるものである。 By forming the upper spiral groove 13a and the lower spiral groove 13b in this manner, the metal that has been friction-stirred and plastically fluidized is slightly increased from the central portion of the plate-shaped end portion 102 toward the upper end direction or the lower end direction. It is supposed to move. Note that the movement of the metal in the vertical direction stops in a minute amount compared to the movement of the metal in the circumferential direction due to the rotation of the screw pin 13 of the bobbin tool 5.
 螺旋溝の巻回方向や刻設する割合については、接合する金属板の化粧面とボビンツール5との位置関係や、ボビンツールの回転方向等に応じて適宜設定すればよい。本実施形態では、スクリューピン13に対して右ネジと左ネジの両方の螺旋溝を刻設しているが、例えば、スクリューピン13に対して全て右ネジの螺旋溝を刻設してもよいし、全て左ネジの螺旋溝を刻設してもよい。また、本実施形態では、第一ショルダ11側を右ネジ、第二ショルダ12側を左ネジにしているが、第一ショルダ11側を左ネジ、第二ショルダ12側を右ネジにしてもよい。 The winding direction of the spiral groove and the ratio of engraving may be appropriately set according to the positional relationship between the decorative surface of the metal plate to be joined and the bobbin tool 5, the rotation direction of the bobbin tool, and the like. In the present embodiment, both the right and left spiral grooves are engraved on the screw pin 13, but for example, all the right thread spiral grooves may be engraved on the screw pin 13. However, all may be provided with a left-handed spiral groove. In this embodiment, the first shoulder 11 side is a right-hand thread and the second shoulder 12 side is a left-hand thread, but the first shoulder 11 side may be a left-hand thread and the second shoulder 12 side may be a right-hand thread. .
 図15に示すように、ボビンツール5のショルダ間距離Z(スクリューピン13の露出した部分の長さ)は、中空形材100Aの板状端部102の厚さTと同等か、それよりも小さくなっていることが好ましい。例えば、本実施形態では、ショルダ間距離Zは、中空形材100Aの板状端部102の厚さTよりも0.2mm小さくなっている。 As shown in FIG. 15, the distance Z between shoulders of the bobbin tool 5 (the length of the exposed portion of the screw pin 13) is equal to or more than the thickness T of the plate-like end portion 102 of the hollow shape member 100A. It is preferable that it is small. For example, in the present embodiment, the distance Z between shoulders is 0.2 mm smaller than the thickness T of the plate-like end portion 102 of the hollow shape member 100A.
 なお、突き合せ部N(図11の(b)参照)の端面102a,102aの隙間を0.75mm以下に設定できる場合、板状端部102の厚さTとショルダ間距離Zとを同等、つまり、T-Z=0と設定しても接合状態を良好にすることができる。 When the gap between the end faces 102a and 102a of the butt portion N (see FIG. 11B) can be set to 0.75 mm or less, the thickness T of the plate-like end portion 102 is equal to the distance Z between the shoulders, In other words, even if TZ = 0 is set, the bonding state can be improved.
 また、突き合せ部Nの端面102a,102aの隙間を1.00mm以下に設定できる場合、板状端部102の厚さTとショルダ間距離Zとを、0.2mm≦T-Z≦0.8mmとなるように設定することが好ましい。 Further, when the gap between the end faces 102a, 102a of the abutting portion N can be set to 1.00 mm or less, the thickness T of the plate-like end portion 102 and the distance Z between the shoulders are set to 0.2 mm ≦ TZ−0. It is preferable to set the distance to 8 mm.
 また、突き合せ部Nの端面102a,102aの隙間を1.00より大きく、1.75mm以下に設定できる場合、板状端部102の厚さTとショルダ間距離Zとを、0.4mm≦T-Z≦0.8mmとなるように設定することが好ましい。 Further, when the gap between the end faces 102a, 102a of the butt portion N can be set larger than 1.00 and 1.75 mm or less, the thickness T of the plate-like end portion 102 and the distance Z between the shoulders are set to 0.4 mm ≦ It is preferable to set so that TZ ≦ 0.8 mm.
 また、ボビンツール5は、第一ショルダ11及び第二ショルダ12の外径X(板状端部102に接触する面の直径)を二乗した値をスクリューピン13の外径Yを二乗した値で除した値が2.0より大きくなるように設定することが好ましい。かかるボビンツール5によれば、バリとして排出される材料の量を第一ショルダ11及び第二ショルダ12によって抑制できるため、接合欠陥の発生を低減することができる。 The bobbin tool 5 is a value obtained by squaring the outer diameter X of the first shoulder 11 and the second shoulder 12 (the diameter of the surface in contact with the plate-like end portion 102) and the outer diameter Y of the screw pin 13. It is preferable to set so that the divided value is larger than 2.0. According to the bobbin tool 5, since the amount of material discharged as burrs can be suppressed by the first shoulder 11 and the second shoulder 12, the occurrence of joint defects can be reduced.
 また、ボビンツール5は、スクリューピン13の外径Yを二乗した値を、第一ショルダ11及び第二ショルダ12の外径X(板状端部102に接触する面の直径)を二乗した値からスクリューピン13の外径Yを二乗した値を引いた値で除した値が0.2よりも大きくなるように設定されていることが好ましい。かかるボビンツール5によれば、接合時にツール軸方向に発生する材料抵抗に対するスクリューピンの抗張力を十分に確保できるため、スクリューピン13の破損を防ぐことができる。 Further, the bobbin tool 5 is a value obtained by squaring the value obtained by squaring the outer diameter Y of the screw pin 13 and the outer diameter X of the first shoulder 11 and the second shoulder 12 (the diameter of the surface contacting the plate-like end portion 102). It is preferable that a value obtained by dividing a value obtained by subtracting a value obtained by squaring the outer diameter Y of the screw pin 13 to be larger than 0.2 is set. According to the bobbin tool 5, since the tensile strength of the screw pin against the material resistance generated in the tool axis direction at the time of joining can be sufficiently ensured, the screw pin 13 can be prevented from being damaged.
 また、ボビンツール5は、スクリューピン13の外径Yを二乗した値をスクリューピン13の外径Yとショルダ間距離Zとの積で除した値が1.2よりも大きくなるように設定することが好ましい。かかるボビンツール5によれば、接合時にツール進行方向とは逆向きに流れる材料抵抗に対するスクリューピンの抗折力を十分に確保できるため、スクリューピン13の破損を防ぐことができる。これらの根拠については実施例で記載する。 Further, the bobbin tool 5 is set so that a value obtained by dividing the square of the outer diameter Y of the screw pin 13 by the product of the outer diameter Y of the screw pin 13 and the distance Z between the shoulders is larger than 1.2. It is preferable. According to the bobbin tool 5, since the bending force of the screw pin against the material resistance that flows in the direction opposite to the tool traveling direction during joining can be sufficiently secured, the screw pin 13 can be prevented from being damaged. These grounds are described in the examples.
 ここで、摩擦攪拌接合を行うと、摩擦熱によって板状端部102,102の温度が上昇し、板状端部102,102が上方又は下方に反ってしまう場合がある。本実施形態に係る摩擦攪拌装置1は、スライド軸4がホルダー3に対して移動可能に形成されているため、板状端部102が例えば上方に反った際に、その反りに追従してボビンツール5が所定の距離だけ上方に移動するように構成されている。一方、板状端部102が下方に反った際には、その反りに追従してボビンツール5が所定の距離だけ下方に移動するように構成されている。これにより、摩擦攪拌接合中における金属板に対するボビンツール5の位置ズレを抑制できるようになっている。 Here, when friction stir welding is performed, the temperature of the plate- like end portions 102 and 102 increases due to frictional heat, and the plate- like end portions 102 and 102 may warp upward or downward. In the friction stirrer 1 according to the present embodiment, since the slide shaft 4 is formed to be movable with respect to the holder 3, when the plate-like end portion 102 warps upward, for example, the bobbin follows the warpage. The tool 5 is configured to move upward by a predetermined distance. On the other hand, when the plate-like end portion 102 warps downward, the bobbin tool 5 is configured to move downward by a predetermined distance following the warpage. Thereby, the position shift of the bobbin tool 5 with respect to the metal plate during friction stir welding can be suppressed.
 次に、第二実施形態のボビンツール5を用いた接合方法について説明する。
 第二実施形態の接合方法では、ボビンツール5を右回転させて接合を行う。具体的には、この接合方法では、中空形材同士を突き合わせる突き合せ工程と、突き合せ部Nにボビンツール5を挿入する接合工程と、を行う。ここでは、表面Saを化粧面として設定する。
Next, a joining method using the bobbin tool 5 of the second embodiment will be described.
In the joining method of the second embodiment, joining is performed by rotating the bobbin tool 5 to the right. Specifically, in this joining method, a butting process for butting the hollow members together and a joining process for inserting the bobbin tool 5 into the butting part N are performed. Here, the surface Sa is set as a decorative surface.
 突き合せ工程では、図11に示すように、中空形材100Aと中空形材100Bとを板状端部102同士で対向させ、端面102a,102a同士及び端面103a,103a同士を面接触させる。より詳しくは、一方の端面102aの中点と、他方の端面102aの中点とが重なるように面接触させる。なお、突き合わせた後は、中空形材100A,100Bが離間しないように、突き合せ部Nに沿って溶接などで仮付けを行ってもよい。中空形材100Aと中空形材100Bとを突き合わせたら、両者を移動不能に拘束する。 In the abutting step, as shown in FIG. 11, the hollow shape member 100A and the hollow shape member 100B are opposed to each other at the plate-like end portions 102, and the end surfaces 102a, 102a and the end surfaces 103a, 103a are brought into surface contact. More specifically, surface contact is made so that the midpoint of one end face 102a and the midpoint of the other end face 102a overlap. In addition, after abutting, temporary attachment may be performed by welding or the like along the abutting portion N so that the hollow shape members 100A and 100B are not separated from each other. When the hollow shape member 100A and the hollow shape member 100B are brought into contact with each other, they are restrained so as not to move.
 接合工程では、まず、突き合せ部Nの外部において、スクリューピン13の中心13cが、突き合せ部Nの中心Ncと重なるように位置させる。そして、図16に示すように、右回転させたボビンツール5を突き合せ部Nに沿って移動させる。ボビンツール5が突き合せ部Nに挿入されると、高速回転するスクリューピン13によってスクリューピン13の周囲の金属が摩擦攪拌され板状端部102同士が一体化される。スクリューピン13の軌跡には塑性化領域Wが形成される。 In the joining process, first, the center 13c of the screw pin 13 is positioned outside the butted portion N so as to overlap the center Nc of the butted portion N. Then, as shown in FIG. 16, the bobbin tool 5 rotated to the right is moved along the abutting portion N. When the bobbin tool 5 is inserted into the abutting portion N, the metal around the screw pin 13 is frictionally stirred by the screw pin 13 that rotates at high speed, and the plate-like end portions 102 are integrated. A plasticized region W is formed in the locus of the screw pin 13.
 以上説明した本実施形態に係る接合方法によれば、摩擦攪拌接合の摩擦熱によって板状端部(金属板)102,102が反ったとしても、その反りに追従してボビンツール5が上下方向にスムーズに移動可能になっている。これにより、スクリューピン13の中心13cと突き合せ部Nの中心Ncとの高さ位置がずれるのを抑制できる。これにより、接合位置がずれるのを防ぐことができる。 According to the joining method according to the present embodiment described above, even if the plate-like end portions (metal plates) 102 and 102 are warped by the frictional heat of friction stir welding, the bobbin tool 5 follows the warpage in the vertical direction. It is possible to move smoothly. Thereby, it can suppress that the height position of the center 13c of the screw pin 13 and the center Nc of the butt | matching part N shift | deviates. Thereby, it can prevent that a joining position shifts | deviates.
 また、本実施形態のように、ボビンツール5のショルダ間距離Zを板状端部102の厚さT以下に設定することで、塑性流動化した金属を押えることができ、摩擦攪拌によって塑性流動化した金属が第一ショルダ11及び第二ショルダ12の外部に溢れるのを防ぐことができる。これにより、接合欠陥の発生を抑制することができる。なお、T-Zの値が0.8を超えると摩擦攪拌装置1への負荷が大きくなるため不適切である。 Further, as in this embodiment, by setting the distance Z between the shoulders of the bobbin tool 5 to be equal to or less than the thickness T of the plate-like end portion 102, the plastic fluidized metal can be pressed, and the plastic flow is caused by friction stirring. It is possible to prevent the converted metal from overflowing to the outside of the first shoulder 11 and the second shoulder 12. Thereby, generation | occurrence | production of a joining defect can be suppressed. Note that if the value of TZ exceeds 0.8, the load on the friction stirrer 1 increases, which is inappropriate.
 また、接合方法によれば、摩擦攪拌されて流動化された金属は、スクリューピン13の右ネジの上部螺旋溝13aと、左ネジの下部螺旋溝13bに導かれて板状端部102の中心Ncから表面Sa側及び裏面Sb側にそれぞれ移動する。右ネジの上部螺旋溝13aは25%以上の割合で形成されているため、この螺旋溝による金属の移動によってボビンツール5が板状端部102に対してスライド軸4側(上方)に押され、表面(化粧面)Saに深く入り込むのを防ぐことができる。これにより、化粧面に凹溝Vが発生するのを防ぐか、又は、凹溝Vが形成されたとしてもその凹溝Vの深さを小さくすることができる。凹溝Vの発生を防ぐか又は凹溝Vを小さくすることで、表面(化粧面)Saを平滑にする仕上げ処理が容易になる。 In addition, according to the joining method, the metal that has been frictionally stirred and fluidized is guided to the upper spiral groove 13 a of the right screw of the screw pin 13 and the lower spiral groove 13 b of the left screw, and the center of the plate-like end portion 102. It moves from Nc to the front surface Sa side and the back surface Sb side, respectively. Since the upper spiral groove 13a of the right screw is formed at a ratio of 25% or more, the bobbin tool 5 is pushed toward the slide shaft 4 (upward) with respect to the plate-like end portion 102 by the movement of the metal by the spiral groove. , It is possible to prevent the surface (decorative surface) Sa from entering deeply. Thereby, it can prevent that the ditch | groove V generate | occur | produces in a decorative surface, or even if the ditch | groove V is formed, the depth of the ditch | groove V can be made small. By preventing the generation of the concave groove V or reducing the concave groove V, the finishing process for smoothing the surface (decorative surface) Sa is facilitated.
 また、第二実施形態では、上部螺旋溝13aと下部螺旋溝13bの割合が50:50であるため、図16の(a)に示すように、上側と下側で移動する金属量を均等にすることができる。これにより、スクリューピン13の中心13cと突き合せ部Nの中心Ncとの位置ずれをより防ぐことができる。また、上部螺旋溝13a及び下部螺旋溝13bが刻設されているため、摩擦攪拌の攪拌効率を高めることができる。 In the second embodiment, since the ratio of the upper spiral groove 13a and the lower spiral groove 13b is 50:50, as shown in FIG. can do. Thereby, position shift with the center 13c of the screw pin 13 and the center Nc of the butting | matching part N can be prevented more. Moreover, since the upper spiral groove 13a and the lower spiral groove 13b are formed, the stirring efficiency of friction stirring can be increased.
 接合工程を行う際には、板状端部102の表面(化粧面)Saに対して、例えば冷却された気体や液体等を供給可能な冷却装置によって、冷却しながら行うことが好ましい。これにより、板状端部102の変形を抑制して接合精度を向上させることができる。なお、板状端部102の裏面Sb側を冷却しながら接合を行ってもよい。 The joining process is preferably performed while cooling the surface (decorative surface) Sa of the plate-like end portion 102 with a cooling device capable of supplying, for example, a cooled gas or liquid. Thereby, deformation of the plate-like end portion 102 can be suppressed and the joining accuracy can be improved. In addition, you may join, cooling the back surface Sb side of the plate-shaped edge part 102. FIG.
 また、第二実施形態の回転ツールユニット2に代えて第一実施形態の回転ツールユニット302を用いても、第二実施形態と略同様の効果を奏することができる。 Further, even if the rotary tool unit 302 of the first embodiment is used instead of the rotary tool unit 2 of the second embodiment, substantially the same effect as that of the second embodiment can be obtained.
[第三実施形態]
 第三実施形態に係る接合方法では、ボビンツールの螺旋溝の構成及び回転方向が第二実施形態と相違する。第三実施形態の説明においては、第二実施形態と共通する点については、詳細な説明を省略する。
[Third embodiment]
In the joining method according to the third embodiment, the configuration and rotation direction of the spiral groove of the bobbin tool are different from those of the second embodiment. In the description of the third embodiment, a detailed description of points common to the second embodiment is omitted.
 図17は、第三実施形態に係るボビンツールを示す側面図である。図17に示すように、第三実施形態に係るボビンツール5Aのスクリューピン13の外周面には、上半分に形成された左ネジの上部螺旋溝13aと、下半分に形成された右ネジの下部螺旋溝13bとが刻設されている。つまり、上部螺旋溝13aは上から下に向けて左回りに巻回されるように刻設されており、下部螺旋溝13bは上から下に向けて右回りに巻回されるように刻設されている。 FIG. 17 is a side view showing the bobbin tool according to the third embodiment. As shown in FIG. 17, on the outer peripheral surface of the screw pin 13 of the bobbin tool 5A according to the third embodiment, an upper spiral groove 13a of a left screw formed in the upper half and a right screw formed in the lower half. A lower spiral groove 13b is engraved. That is, the upper spiral groove 13a is engraved so as to be wound counterclockwise from top to bottom, and the lower spiral groove 13b is engraved so as to be wound clockwise from top to bottom. Has been.
 ボビンツール5Aのショルダ間距離(スクリューピン13の露出した部分の長さ)Zは、中空形材100Aの板状端部102の板厚T以下になっていることが好ましい。例えば、本実施形態では、ショルダ間距離Zは、中空形材100Aの板状端部102の板厚Tよりも0.4mm小さくなっている。 The distance between shoulders of the bobbin tool 5A (the length of the exposed portion of the screw pin 13) Z is preferably equal to or less than the plate thickness T of the plate-like end portion 102 of the hollow shape member 100A. For example, in the present embodiment, the distance Z between shoulders is 0.4 mm smaller than the plate thickness T of the plate-like end portion 102 of the hollow shape member 100A.
 次に、第三実施形態のボビンツール5Aを用いた接合方法ついて説明する。
 第三実施形態の接合方法では、図18に示すように、ボビンツール5Aを左回転させて接合を行う。具体的には、この接合方法では、中空形材同士を突き合わせる突き合せ工程と、突き合せ部Nにボビンツール5Aを挿入する接合工程と、を行う。ここでは、表面Saを化粧面として設定する。突合工程は、第二実施形態と同等であるため、説明を省略する。
Next, a joining method using the bobbin tool 5A of the third embodiment will be described.
In the joining method of the third embodiment, as shown in FIG. 18, the bobbin tool 5A is rotated to the left to perform joining. Specifically, in this joining method, a butting process for butting the hollow members together and a joining process for inserting the bobbin tool 5A into the butting part N are performed. Here, the surface Sa is set as a decorative surface. Since the matching process is the same as that of the second embodiment, description thereof is omitted.
 接合工程では、突き合せ部Nの外部において、スクリューピン13の中心13cが、突き合せ部Nの中心Ncと重なるように位置させる。そして、図18に示すように、左回転させたボビンツール5Aを突き合せ部Nに沿って移動させる。ボビンツール5Aが突き合せ部Nに挿入されると、高速回転するスクリューピン13によってスクリューピン13の周囲の金属が摩擦攪拌され板状端部102同士が一体化される。スクリューピン13の軌跡には塑性化領域Wが形成される。 In the joining step, the center 13c of the screw pin 13 is positioned outside the butt portion N so as to overlap the center Nc of the butt portion N. Then, as shown in FIG. 18, the bobbin tool 5 </ b> A rotated to the left is moved along the abutting portion N. When the bobbin tool 5A is inserted into the abutting portion N, the metal around the screw pin 13 is frictionally stirred by the screw pin 13 rotating at high speed, and the plate-like end portions 102 are integrated. A plasticized region W is formed in the locus of the screw pin 13.
 この接合方法によれば、摩擦攪拌されて流動化された金属は、スクリューピン13の左ネジの上部螺旋溝13aと、右ネジの下部螺旋溝13bに導かれて板状端部102の中心Ncから表面Sa側及び裏面Sb側にそれぞれ移動する。左ネジの上部螺旋溝13aは25%以上の割合で形成されているため、この螺旋溝による金属の移動によってボビンツール5Aが板状端部102に対してスライド軸4側(上方)に押され、表面(化粧面)Saに深く入り込むのを防ぐことができる。これにより、表面(化粧面)Saに凹溝Vが発生するのを防ぐか、又は、凹溝Vが形成されたとしてもその凹溝Vの深さを小さくすることができる。 According to this joining method, the friction stir and fluidized metal is led to the upper spiral groove 13a of the left screw of the screw pin 13 and the lower spiral groove 13b of the right screw, and the center Nc of the plate-like end portion 102 is obtained. To the front surface Sa side and the back surface Sb side. Since the upper spiral groove 13a of the left screw is formed at a ratio of 25% or more, the bobbin tool 5A is pushed toward the slide shaft 4 (upward) with respect to the plate-like end portion 102 by the movement of the metal by the spiral groove. , It is possible to prevent the surface (decorative surface) Sa from entering deeply. Thereby, it is possible to prevent the formation of the concave groove V on the surface (decorative surface) Sa, or even if the concave groove V is formed, the depth of the concave groove V can be reduced.
 また、第三実施形態では、上部螺旋溝13aと下部螺旋溝13bの割合が50:50であるため、移動する金属量を均等にすることができる。これにより、スクリューピン13の中心13cと突き合せ部Nの中心Ncとの位置ずれをより防ぐことができる。また、上部螺旋溝13a及び下部螺旋溝13bが刻設されているため、摩擦攪拌の攪拌効率を高めることができる。 In the third embodiment, since the ratio of the upper spiral groove 13a and the lower spiral groove 13b is 50:50, the amount of metal to be moved can be made uniform. Thereby, position shift with the center 13c of the screw pin 13 and the center Nc of the butting | matching part N can be prevented more. Moreover, since the upper spiral groove 13a and the lower spiral groove 13b are formed, the stirring efficiency of friction stirring can be increased.
<第一変形例>
 第一変形例では、図19の(a)に示すように、板状端部102Aと板状端部102Bとの厚さが異なる点で前記した実施形態と相違する。板状端部102Bの厚さT1は、板状端部102Aの厚さT2よりも大きくなっている。第一変形例では、板状端部102Aの高さ方向の中点と、板状端部102Bの高さ方向の中点とが重なるように突き合わされている。
<First modification>
As shown in FIG. 19A, the first modified example is different from the above-described embodiment in that the thickness of the plate-like end portion 102A and the plate-like end portion 102B is different. The thickness T1 of the plate-like end portion 102B is larger than the thickness T2 of the plate-like end portion 102A. In the first modification, the midpoint in the height direction of the plate-like end portion 102A and the midpoint in the height direction of the plate-like end portion 102B are abutted so as to overlap each other.
 第一変形例に係る接合工程では、ボビンツール5を右回転させて、板状端部102Bの突き合せ部Nの厚さが大きい方の板状端部102B(金属板)を進行方向に対して左側に配置する。 In the joining step according to the first modified example, the bobbin tool 5 is rotated to the right, and the plate-like end portion 102B (metal plate) having the larger thickness of the butted portion N of the plate-like end portion 102B is moved in the traveling direction. And place it on the left side.
 摩擦攪拌においては、回転ツールを右回転させた場合、ツールの進行方向左側(シアー側:回転ツールの回転速度に回転ツールの移動速度が加算される側)からツールの進行方向右側(フロー側:回転ツールの回転速度に回転ツールの移動速度が減算される側)に塑性流動化された金属が流れる傾向があるため、仮に、金属板同士の間に隙間がある場合には、シアー側の金属でその隙間が埋められると考えられる。したがって、シアー側の金属板の厚さが小さいと、金属が不足して接合後の塑性化領域の中央部の厚さが小さくなる傾向がある。ちなみに、回転ツールを左回転させた場合、ツールの進行方向右側がシアー側、左側がフロー側となる。 In friction agitation, when the rotary tool is rotated to the right, the tool travel direction left side (shear side: side where the rotational speed of the rotary tool is added to the rotational speed of the rotary tool) to the tool travel direction right side (flow side: Since the plasticized metal tends to flow on the side where the moving speed of the rotating tool is subtracted from the rotating speed of the rotating tool), if there is a gap between the metal plates, the metal on the shear side It is thought that the gap is filled. Therefore, when the thickness of the metal plate on the shear side is small, the metal is insufficient and the thickness of the central portion of the plasticized region after joining tends to be small. By the way, when the rotating tool is rotated counterclockwise, the right side of the tool traveling direction is the shear side and the left side is the flow side.
 第一変形例では、シアー側にあたる板状端部102Bの厚さT1を板状端部102Aの厚さT2よりも大きくすることで、塑性化領域Wの中央部の金属の不足を解消してより好適に接合することができる。 In the first modified example, the thickness T1 of the plate-like end portion 102B corresponding to the shear side is made larger than the thickness T2 of the plate-like end portion 102A, thereby eliminating the shortage of metal in the central portion of the plasticized region W. It can join more suitably.
<第二変形例>
 第二変形例では、図19の(b)に示すように、板状端部102Cと板状端部102Dとの厚さが異なる点で前記した実施形態と相違する。板状端部102Cの厚さT1は、板状端部102Dの厚さT2よりも大きくなっている。第二変形例では、板状端部102Cの高さ方向の中点と、板状端部102Dの高さ方向の中点とが重なるように突き合わされている。
<Second modification>
As shown in FIG. 19B, the second modified example is different from the above-described embodiment in that the plate-like end portion 102C and the plate-like end portion 102D have different thicknesses. The thickness T1 of the plate-like end portion 102C is larger than the thickness T2 of the plate-like end portion 102D. In the second modification, the midpoint in the height direction of the plate-like end portion 102C and the midpoint in the height direction of the plate-like end portion 102D are abutted so as to overlap each other.
 第二変形例に係る接合工程では、ボビンツール5を左回転させて、板状端部102Cの突き合せ部Nの厚さが大きい方の板状端部102C(金属板)を進行方向に対して右側に配置する。 In the joining step according to the second modification, the bobbin tool 5 is rotated counterclockwise so that the plate-like end portion 102C (metal plate) having the larger thickness of the butted portion N of the plate-like end portion 102C is moved in the traveling direction. To the right.
 第二変形例では、第一変形例と同様の原理により、シアー側にあたる板状端部102Cの厚さT1を板状端部102Dの厚さT2よりも大きくすることで、塑性化領域Wの中央部の金属の不足を解消してより好適に接合することができる。 In the second modified example, the thickness T1 of the plate-like end portion 102C corresponding to the shear side is made larger than the thickness T2 of the plate-shaped end portion 102D by the same principle as in the first modified example. The shortage of the metal in the central portion can be solved and the bonding can be performed more suitably.
[第四実施形態]
 本発明の第四実施形態について説明する。第四実施形態ではダブルスキンパネルを接合する場合を例示する。本実施形態の説明における上下左右前後は、図20の矢印にしたがう。
[Fourth embodiment]
A fourth embodiment of the present invention will be described. The case where a double skin panel is joined is illustrated in 4th embodiment. The vertical and horizontal directions in the description of the present embodiment follow the arrows in FIG.
 ダブルスキンパネル201は、図20に示すように、金属製の薄い長尺部材であって、外板202と、内板203と、支持板204,204とで主に構成されている。各支持板204は、外板202及び内板203に対して垂直になっている。ダブルスキンパネル201は、左右方向に複数枚接合されることにより、例えば鉄道車両、航空機、船舶及び土木建築構造物等の構造体として用いられる。ダブルスキンパネル201の製造方法は特に制限されないが、本実施形態では押出成形で成形されている。ダブルスキンパネル201の材料は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態ではアルミニウム合金を用いている。 As shown in FIG. 20, the double skin panel 201 is a thin metal long member, and is mainly composed of an outer plate 202, an inner plate 203, and support plates 204 and 204. Each support plate 204 is perpendicular to the outer plate 202 and the inner plate 203. The double skin panel 201 is used as a structure such as a railway vehicle, an aircraft, a ship, and a civil engineering structure by joining a plurality of double skin panels 201 in the left-right direction. Although the manufacturing method of the double skin panel 201 is not particularly limited, in the present embodiment, it is formed by extrusion. The material of the double skin panel 201 is not particularly limited as long as it is a metal capable of friction stirring, but in this embodiment, an aluminum alloy is used.
 外板202は、中央部205と、中央部205から右側に延設された右側板状端部210と、中央部205から左側に延設された左側板状端部220とで構成されている。 The outer plate 202 includes a central portion 205, a right plate-like end portion 210 extending rightward from the central portion 205, and a left-side plate-like end portion 220 extending leftward from the central portion 205. .
 右側板状端部210は、第一外板厚肉部211と、第一鉤部212と、第一肉盛部213とで構成されている。第一外板厚肉部211は、支持板204に対して垂直になっており、右側に延設されている。第一鉤部212は、鉤状になっており、右側に延設された第一薄肉部214と、第一薄肉部214から垂直に張り出した第一張出部215とで構成されている。第一薄肉部214は、第一外板厚肉部211の3分の一程度の厚さになっている。 The right side plate-like end portion 210 includes a first outer plate thick portion 211, a first flange portion 212, and a first build-up portion 213. The first outer plate thick portion 211 is perpendicular to the support plate 204 and extends to the right side. The first brim part 212 has a bowl shape, and includes a first thin part 214 extending to the right side and a first overhanging part 215 projecting perpendicularly from the first thin part 214. The first thin portion 214 is about one third of the thickness of the first outer plate thick portion 211.
 第一張出部215は、第一薄肉部214の先端から内板203側に向けて張り出している。第一張出部215の側部には、内板203側に向かうにつれて支持板204に近づくように傾斜する第一張出傾斜面216が形成されている。第一肉盛部213は、第一外板厚肉部211、第一薄肉部214及び第一張出部215の上面から一定の厚みで上方に突出し、厚肉に形成された部位である。 The first overhanging portion 215 overhangs from the tip of the first thin portion 214 toward the inner plate 203 side. A first projecting inclined surface 216 is formed on the side of the first projecting portion 215 so as to be closer to the support plate 204 toward the inner plate 203 side. The first build-up portion 213 is a portion formed to protrude thickly from the upper surfaces of the first outer plate thick portion 211, the first thin portion 214, and the first overhang portion 215 and to be thick.
 左側板状端部220は、第二外板厚肉部221と、第二鉤部222と、第二肉盛部223とで主に構成されている。第二外板厚肉部221は、支持板204に対して垂直になっており、左側に延設されている。第二鉤部222は、鉤状になっており、左側に延設された第二薄肉部224と、第二薄肉部224に対して垂直に張り出した第二張出部225とで構成されている。第二薄肉部224は、第二外板厚肉部221の3分の一程度の厚さになっている。 The left side plate-like end portion 220 is mainly composed of a second outer plate thick portion 221, a second flange portion 222, and a second build-up portion 223. The second outer plate thick portion 221 is perpendicular to the support plate 204 and extends to the left side. The second flange portion 222 has a hook shape, and includes a second thin portion 224 that extends to the left side and a second overhang portion 225 that extends perpendicularly to the second thin portion 224. Yes. The second thin portion 224 is about one third of the thickness of the second outer plate thick portion 221.
 第二張出部225は、第二薄肉部224の先端から内板203とは反対側に向けて張り出している。第二外板厚肉部221の左端には、内板203側に向かうにつれて支持板204から離間するように傾斜する第二厚肉部傾斜面226が形成されている。第二厚肉部傾斜面226は、第一張出傾斜面216と同じ傾斜角度になっている。第二肉盛部223は、第二外板厚肉部221の上面から一定の厚みで上方に突出し、厚肉に形成された部位である。 The second projecting portion 225 projects from the tip of the second thin portion 224 toward the side opposite to the inner plate 203. A second thick portion inclined surface 226 is formed at the left end of the second outer plate thick portion 221 so as to be inclined away from the support plate 204 toward the inner plate 203 side. The second thick part inclined surface 226 has the same inclination angle as the first projecting inclined surface 216. The second build-up portion 223 is a portion that protrudes upward from the upper surface of the second outer plate thick portion 221 with a certain thickness and is formed thick.
 内板203は、中央部206と、中央部206から右側に延設された右側板状端部230と、中央部206から左側に延設された左側板状端部240とで構成されている。 The inner plate 203 includes a central portion 206, a right plate-like end portion 230 extending to the right from the central portion 206, and a left-side plate-like end portion 240 extending to the left from the central portion 206. .
 右側板状端部230は、第一内板厚肉部231と、第一肉盛部232と、第一端面233とで構成されている。第一内板厚肉部231は、支持板204に対して垂直になっており、右側に延設されている。第一肉盛部232は、第一内板厚肉部231の先端側の下面から下方に突出し、厚肉になっている部位である。 The right side plate-like end portion 230 includes a first inner plate thick portion 231, a first build-up portion 232, and a first end surface 233. The first inner plate thick portion 231 is perpendicular to the support plate 204 and extends to the right side. The first built-up portion 232 is a portion that protrudes downward from the lower surface on the distal end side of the first inner plate thick portion 231 and is thick.
 左側板状端部240は、第二内板厚肉部241と、第二肉盛部242と、第二端面243とで構成されている。第二内板厚肉部241は、支持板204に対して垂直になっており、左側に延設されている。第二肉盛部242は、第二内板厚肉部241の先端側の下面から下方に突出し、厚肉になっている部位である。 The left side plate-like end portion 240 is composed of a second inner plate thick portion 241, a second built-up portion 242, and a second end surface 243. The second inner plate thick portion 241 is perpendicular to the support plate 204 and extends to the left side. The second build-up portion 242 is a portion that protrudes downward from the lower surface on the distal end side of the second inner plate thick portion 241 and is thick.
 次に、本実施形態で用いる摩擦攪拌装置について説明する。図21,22に示すように、摩擦攪拌装置261は、チャック部261aと、チャック部261aに固定された回転ツールユニット262とで構成されている。チャック部261aは、第二実施形態と同じように摩擦攪拌装置261の本体(図示省略)にボルトで接合されている。 Next, the friction stirrer used in this embodiment will be described. As shown in FIGS. 21 and 22, the friction stirrer 261 includes a chuck portion 261a and a rotary tool unit 262 fixed to the chuck portion 261a. The chuck portion 261a is joined to the main body (not shown) of the friction stirrer 261 with a bolt as in the second embodiment.
 回転ツールユニット262は、ホルダー263と、スライド軸264と、ボビンツール265とで構成されている。 The rotary tool unit 262 includes a holder 263, a slide shaft 264, and a bobbin tool 265.
 ホルダー263は、図22に示すように、スライド軸264を内包するとともに、チャック部261aの内部に取り付けられる部材である。ホルダー263は、円筒状を呈する。ホルダー263には、半径方向に貫通する長孔状のキー溝263bが形成されている。 As shown in FIG. 22, the holder 263 is a member that includes the slide shaft 264 and is attached to the inside of the chuck portion 261a. The holder 263 has a cylindrical shape. The holder 263 is formed with an elongated key groove 263b penetrating in the radial direction.
 スライド軸264は、図22に示すように、円柱状を呈し、ホルダー263の中空部に挿入される部材である。スライド軸264は、ホルダー263に対して上下方向に移動可能になっている。スライド軸264の外面には、外側に向けて突出するキー264aが形成されている。キー264aが、キー溝263bに係合することにより、ホルダー263とスライド軸264とが一体的に回転する。 The slide shaft 264 is a member that has a cylindrical shape and is inserted into the hollow portion of the holder 263 as shown in FIG. The slide shaft 264 is movable in the vertical direction with respect to the holder 263. A key 264 a that protrudes outward is formed on the outer surface of the slide shaft 264. When the key 264a is engaged with the key groove 263b, the holder 263 and the slide shaft 264 rotate integrally.
 ボビンツール265は、図23に示すように、第一ショルダ252と、第二ショルダ253と、第一ショルダ252と第二ショルダ253との間に介設されたスクリューピン254とで構成されている。第一ショルダ252、第二ショルダ253、スクリューピン254はいずれも略円柱状を呈し同軸になっている。ボビンツール265は、スクリューピン254が接合部分を高速回転しながら移動することにより摩擦攪拌接合するツールである。 As shown in FIG. 23, the bobbin tool 265 includes a first shoulder 252, a second shoulder 253, and a screw pin 254 interposed between the first shoulder 252 and the second shoulder 253. . Each of the first shoulder 252, the second shoulder 253, and the screw pin 254 has a substantially cylindrical shape and is coaxial. The bobbin tool 265 is a tool for friction stir welding by moving the screw pin 254 while rotating the joining portion at high speed.
 第一ショルダ252は、大径部252aと、テーパー部252bと、下端面252cとを備えている。テーパー部252bは、下方に向けて徐々に縮径している。第一ショルダ252の下端面252cには、図示は省略するが、スクリューピン254周りに沿って平面視渦巻き形状の窪みが形成されている。 The first shoulder 252 includes a large diameter portion 252a, a tapered portion 252b, and a lower end surface 252c. The tapered portion 252b is gradually reduced in diameter toward the lower side. Although not shown in the drawing, the lower end surface 252c of the first shoulder 252 is formed with a hollow having a spiral shape in plan view along the periphery of the screw pin 254.
 第二ショルダ253は、外面に溝を備えた構成になっている。第二ショルダ253は、大径部253aと、テーパー部253bと、上端面253cとを備えている。テーパー部253bは、上方に向けて徐々に縮径している。大径部253aの直径β1は、大径部252aの直径α1よりも小さくなっている。また、上端面253cの直径β2は、下端面252cの直径α2と同等になっている。 The second shoulder 253 is configured to have a groove on the outer surface. The second shoulder 253 includes a large diameter portion 253a, a tapered portion 253b, and an upper end surface 253c. The tapered portion 253b is gradually reduced in diameter toward the upper side. The diameter β1 of the large diameter portion 253a is smaller than the diameter α1 of the large diameter portion 252a. Further, the diameter β2 of the upper end surface 253c is equal to the diameter α2 of the lower end surface 252c.
 スクリューピン254の外面には、左ネジで形成された螺旋溝255が刻設されている。つまり、螺旋溝255は、上から下に向け左回りとなるように巻回されている。スクリューピン254の外径Uは、直径α2及び直径β2よりも小さくなっている。第一ショルダ252は、ナットを介してスライド軸264に接続されている。 The outer surface of the screw pin 254 is engraved with a spiral groove 255 formed by a left-hand thread. That is, the spiral groove 255 is wound so as to be counterclockwise from the top to the bottom. The outer diameter U of the screw pin 254 is smaller than the diameter α2 and the diameter β2. The first shoulder 252 is connected to the slide shaft 264 via a nut.
 ボビンツール265のショルダ間距離(スクリューピン254の露出した部分の長さ)は、接合する部分の板厚(本実施形態では、第一外板厚肉部211と第一肉盛部213との厚さの合計)以下になっていることが好ましい。螺旋溝255の溝の深さや、ピッチ等は摩擦攪拌する金属板の材料や接合する部分の板厚、ショルダ間距離等に応じて適宜設定すればよい。 The distance between the shoulders of the bobbin tool 265 (the length of the exposed portion of the screw pin 254) is the thickness of the portion to be joined (in this embodiment, the first outer plate thick portion 211 and the first build-up portion 213). It is preferable that the total thickness) or less. The depth, pitch, and the like of the spiral groove 255 may be appropriately set according to the material of the metal plate to be frictionally stirred, the thickness of the portion to be joined, the distance between the shoulders, and the like.
 摩擦攪拌装置261は、スライド軸264がホルダー263に対して移動可能に形成されているため、接合する金属板が例えば上方に反った際に、その反りに追従してボビンツール265が所定の距離だけ上方に移動するように構成されている。一方、接合する金属板が下方に反った際には、その反りに追従してボビンツール265が所定の距離だけ下方に移動するように構成されている。これにより、摩擦攪拌接合中における金属板に対するボビンツール265の位置ズレを抑制できるようになっている。 Since the friction stirrer 261 is formed so that the slide shaft 264 can move with respect to the holder 263, when the metal plate to be joined is warped upward, for example, the bobbin tool 265 follows the warp and the bobbin tool 265 has a predetermined distance. It is configured to move upwards only. On the other hand, when the metal plate to be joined is warped downward, the bobbin tool 265 is configured to move downward by a predetermined distance following the warpage. Thereby, the position shift of the bobbin tool 265 with respect to the metal plate during friction stir welding can be suppressed.
 次に、本実施形態に係るダブルスキンパネルの接合方法について説明する。ここでは同形状のダブルスキンパネル201を二本併設して接合する場合を例示する。この接合方法では、準備工程と、接合工程とを行う。 Next, a method for joining the double skin panels according to this embodiment will be described. Here, a case where two double skin panels 201 having the same shape are juxtaposed and joined is illustrated. In this joining method, a preparation process and a joining process are performed.
 準備工程では、図24に示すように、ダブルスキンパネル201,201を突き合わせてダブルスキンパネルの組立体を形成し、その組立体を移動不能に拘束する。なお、説明においては、一方のダブルスキンパネルを「201A」と付し、他方のダブルスキンパネルを「201B」と付し、それぞれに対応する要素に「A」、「B」と符号を加えて区別する。 In the preparation step, as shown in FIG. 24, the double skin panels 201 and 201 are brought into contact with each other to form a double skin panel assembly, and the assembly is restrained so as not to move. In the description, one double skin panel is labeled “201A”, the other double skin panel is labeled “201B”, and “A” and “B” are added to the corresponding elements. Distinguish.
 準備工程では、具体的には、ダブルスキンパネル201Aの第一鉤部212Aとダブルスキンパネル201Bの第二鉤部222Bとを係合させるとともに、第一端面233Aと第二端面243Bとを突き合わせる。これにより、第一鉤部212Aと第二鉤部222Bとが隙間なく係合し、係合部Mが形成される。一方、第一端面233Aと第二端面243Bとが突き合わされて突き合せ部Nが形成される。張出部215Aと張出部225Bとが係合する箇所及び第一端面233Aと第二端面243Bとが突き合わされる箇所の延長線を「センター線C1」とする。 Specifically, in the preparation step, the first collar 212A of the double skin panel 201A and the second collar 222B of the double skin panel 201B are engaged, and the first end surface 233A and the second end surface 243B are abutted with each other. . Thereby, 212 A of 1st collar parts and the 2nd collar part 222B engage without gap, and the engaging part M is formed. On the other hand, the first end surface 233A and the second end surface 243B are abutted to form an abutting portion N. An extension line of a portion where the overhang portion 215A and the overhang portion 225B are engaged and a portion where the first end surface 233A and the second end surface 243B are abutted with each other is referred to as a “center line C1”.
 準備工程を行うと、第一肉盛部213Aの上面と第二肉盛部223Bの上面とは面一になるとともに、第一外板厚肉部211Aの下面と第二外板厚肉部221Bの下面は面一になる。また、第一内板厚肉部231Aの上面と第二内板厚肉部241Bの上面は面一になるとともに、第一肉盛部232Aの下面と第二肉盛部242Bの下面とは面一になっている。ダブルスキンパネルの組立体を形成したら、この組立体を治具で移動不能に拘束する。 When the preparation step is performed, the upper surface of the first built-up portion 213A and the upper surface of the second built-up portion 223B are flush with each other, and the lower surface of the first outer plate thick portion 211A and the second outer plate thick portion 221B. The lower surface of is flush. The upper surface of the first inner plate thick portion 231A and the upper surface of the second inner plate thick portion 241B are flush with each other, and the lower surface of the first built-up portion 232A and the lower surface of the second built-up portion 242B are surfaces. It is one. After the double skin panel assembly is formed, the assembly is restrained so as not to move with a jig.
 接合工程では、図25に示すように、ボビンツール265を用いて係合部Mを接合する第一接合工程と、突き合せ部Nを接合する第二接合工程を行う。 In the joining step, as shown in FIG. 25, a first joining step for joining the engaging portion M using the bobbin tool 265 and a second joining step for joining the butt portion N are performed.
 第一接合工程では、進行方向の左側にダブルスキンパネル201Aが配置されるようにする。そして、右回転させたボビンツール265のスクリューピン254の中心を、センター線C1上における係合部Mの高さ方向の中心に合わせ、係合部Mに突入させる。そして、前側から後側に向けて係合部Mに沿って摩擦攪拌接合を行う。なお、係合部Mにはボビンツール265が移動した軌跡に沿って塑性化領域W1が形成される(図26参照)。 In the first joining step, the double skin panel 201A is arranged on the left side in the traveling direction. Then, the center of the screw pin 254 of the bobbin tool 265 rotated to the right is aligned with the center of the engaging portion M in the height direction on the center line C1, and is entered into the engaging portion M. Then, friction stir welding is performed along the engaging portion M from the front side toward the rear side. In addition, the plasticizing region W1 is formed in the engaging portion M along the locus along which the bobbin tool 265 moves (see FIG. 26).
 第二接合工程では、図26に示すように、第一接合工程が終えたら、ダブルスキンパネルの組立体を裏返しにして、再度ダブルスキンパネルの組立体を移動不能に拘束する。そして、右回転させたボビンツール265のスクリューピン254の中心を、センター線C1上における突き合せ部Nの高さ方向の中心に合わせ、突き合せ部Nに突入させる。そして、前側から後側に向けて突き合せ部Nに沿って摩擦攪拌接合を行う。突き合せ部Nにはボビンツール265が移動した軌跡に沿って塑性化領域(図示省略)が形成される。以上の工程により、外板202Aと外板202Bとが接合されるとともに、内板203Aと内板203Bとが接合される。 In the second joining step, as shown in FIG. 26, when the first joining step is completed, the double skin panel assembly is turned over and the double skin panel assembly is again restrained so as not to move. Then, the center of the screw pin 254 of the bobbin tool 265 rotated to the right is aligned with the center in the height direction of the abutting portion N on the center line C1, and is entered into the abutting portion N. Then, friction stir welding is performed along the abutting portion N from the front side toward the rear side. A plasticized region (not shown) is formed in the butt portion N along the locus along which the bobbin tool 265 moves. Through the above steps, the outer plate 202A and the outer plate 202B are joined, and the inner plate 203A and the inner plate 203B are joined.
 以上説明した本実施形態にかかる摩擦攪拌接合方法によれば、外板202Aの第一鉤部212Aと外板202Bの第二鉤部222Bを係合させることにより、摩擦攪拌接合する際にダブルスキンパネル201A,201Bが離間するのを簡易に防ぐことができる。一方、内板203A及び内板203Bには鉤部を設けず第一端面233A及び第二端面243Bを突き合わせることにより、準備工程の作業やダブルスキンパネルの製造を省力化することができる。ダブルスキンパネル201A,201Bが長尺である場合、内板203A及び内板203Bにも鉤部を設けると係合する作業が困難になるが、本実施形態によれば係合作業が容易となる。 According to the friction stir welding method according to the present embodiment described above, the first skin portion 212A of the outer plate 202A and the second flange portion 222B of the outer plate 202B are engaged, so that when the friction stir welding is performed, the double skin is used. It is possible to easily prevent the panels 201A and 201B from separating. On the other hand, the inner plate 203A and the inner plate 203B are not provided with a flange portion, but the first end surface 233A and the second end surface 243B are abutted to each other, thereby making it possible to save labor in preparation work and double skin panel manufacturing. When the double skin panels 201A and 201B are long, engaging work becomes difficult if the inner plate 203A and the inner plate 203B are also provided with a flange, but according to the present embodiment, the engaging work is facilitated. .
 また、準備工程では、第一鉤部212Aと第二鉤部222Bとを係合させる際に、第一張出傾斜面216Aと第二本体傾斜面226Bとを摺動させながら係合させることができるため、係合作業が容易になる。具体的には、載置されたダブルスキンパネル201Bの上方から、ダブルスキンパネル201Aを降ろす際に、第一張出傾斜面216Aと第二本体傾斜面226Bとを摺動させるだけで、係合させることができる。 In the preparation step, when the first collar portion 212A and the second collar portion 222B are engaged, the first overhanging inclined surface 216A and the second main body inclined surface 226B can be engaged while sliding. As a result, the engaging operation is facilitated. Specifically, when the double skin panel 201A is lowered from above the placed double skin panel 201B, the first overhanging inclined surface 216A and the second main body inclined surface 226B are simply slid to engage with each other. Can be made.
 また、第一張出部215Aと第二張出部225Bとを設けることで簡易な構成で係合させることができる。また、肉盛部(213A,223B,232A,242B)を設けることで、摩擦攪拌接合の際に、金属が不足するのを防ぐことができる。本実施形態では、スクリューピン254に左ネジの螺旋溝255が刻設されており、ボビンツール265を右回転させつつ前側から後側に移動させるため、塑性流動化された金属が螺旋溝255に導かれて第二ショルダ253側に移動する傾向がある。したがって、肉盛部(213A,223B,232A,242B)を、外板202A,202B及び内板203A,203Bのうち、第一ショルダ252と対向する側に設けることにより、第一ショルダ252側における金属不足を回避できる。 Further, by providing the first overhanging portion 215A and the second overhanging portion 225B, it is possible to engage with a simple configuration. Further, by providing the built-up portions (213A, 223B, 232A, 242B), it is possible to prevent the metal from being insufficient during the friction stir welding. In this embodiment, the screw pin 254 is provided with a left-handed spiral groove 255, and the bobbin tool 265 is moved from the front side to the rear side while rotating the bobbin tool 265 clockwise. There is a tendency to be guided to move toward the second shoulder 253. Therefore, the metal on the first shoulder 252 side is provided by providing the built-up portions (213A, 223B, 232A, 242B) on the side facing the first shoulder 252 of the outer plates 202A, 202B and the inner plates 203A, 203B. A shortage can be avoided.
 また、突き合せ部Nを先に接合すると、ダブルスキンパネル201A,201Bが離間してしまうおそれがあるが、本実施形態に係る接合工程では、係合部Mを先に接合することで、突き合せ部Nを接合する際に、ダブルスキンパネル201A,201Bが離間するのを防ぐことができる。 In addition, if the butted portion N is bonded first, the double skin panels 201A and 201B may be separated from each other. However, in the bonding step according to the present embodiment, the engaging portion M is bonded first. When the mating portion N is joined, the double skin panels 201A and 201B can be prevented from separating.
 なお、ダブルスキンパネル201A,201Bの形状や係合形態は両者が離間しない形態であれば特に制限されるものではない。本実施形態のように、ダブルスキンパネル201A,201Bの端部が面一になり、かつ、隙間がなくなるように係合することが好ましい。また、一のダブルスキンパネルの外板202の両端に、第一鉤部212,212を設けたものを形成し、他のダブルスキンパネルの外板202の両端に、第二鉤部222,222を設けたものを形成し、これらのダブルスキンパネルを交互に併設して係合及び接合してもよい。また、例えば、図27に示すように、第一張出部215A及び第二張出部225Bの側部に傾斜を設けない形状としてもよい。また、本実施形態では、支持板204は外板202及び内板203に対して垂直に形成したが、斜めであってもよい。 The shape and engagement form of the double skin panels 201A and 201B are not particularly limited as long as they are not separated from each other. As in this embodiment, it is preferable to engage the double skin panels 201A and 201B so that the end portions are flush with each other and the gap is eliminated. Moreover, the thing which provided the 1st collar part 212,212 in the both ends of the outer plate 202 of one double skin panel is formed, and the second collar part 222,222 is formed in the both ends of the outer plate 202 of the other double skin panel. May be formed, and these double skin panels may be alternately arranged and engaged and joined together. For example, as shown in FIG. 27, it is good also as a shape which does not provide an inclination in the side part of 215 A of 1st overhang | projection parts and the 2nd overhang | projection part 225B. In the present embodiment, the support plate 204 is formed perpendicular to the outer plate 202 and the inner plate 203, but may be inclined.
<実施例1>
 第二実施形態に係る摩擦攪拌装置1(ボビンツール5)を用いて、摩擦攪拌接合される金属板(板状端部)の厚さ及び金属板同士の隙間が接合状態にどのような影響を与えるかを調査するための試験を行った。図28に示すように、摩擦攪拌接合される一対の金属板の試験体(A6063-T5材)については、それぞれ厚さを変化させて試験体H1~H19まで用意した。「Ad側」とは、ボビンツールの回転方向と進行方向が一致する側を意味する。つまり、ボビンツールが右回転の場合は進行方向左側を意味する。「Re側」とは、ボビンツールの回転方向と進行方向が相違する側を意味する。つまり、ボビンツールが右回転の場は進行方向右側を意味する。
<Example 1>
Using the friction stirrer 1 (bobbin tool 5) according to the second embodiment, the influence of the thickness of the metal plate (plate-shaped end) to be friction stir welded and the gap between the metal plates on the joining state. A test was conducted to investigate whether to give. As shown in FIG. 28, a pair of metal plate specimens (A6063-T5 material) to be friction stir welded were prepared from specimens H1 to H19 with varying thicknesses. “Ad side” means a side where the rotation direction and the traveling direction of the bobbin tool coincide. That is, when the bobbin tool rotates clockwise, it means the left side in the traveling direction. The “Re side” means a side where the rotation direction and the traveling direction of the bobbin tool are different. That is, when the bobbin tool rotates clockwise, it means the right side in the traveling direction.
 試験体H1~H7は、金属板の厚さをAd側とRe側とで同一にしている。試験体H8~H13は、Ad側の金属板を6.0mmに固定し、Re側の金属板の厚さを変化させている。一方、試験体H14~H19は、Re側の金属板を6.0mmに固定し、Re側の金属板の厚さを変化させている。 Specimens H1 to H7 have the same metal plate thickness on the Ad side and Re side. In the test bodies H8 to H13, the metal plate on the Ad side is fixed to 6.0 mm, and the thickness of the metal plate on the Re side is changed. On the other hand, in the test bodies H14 to H19, the Re-side metal plate is fixed to 6.0 mm, and the thickness of the Re-side metal plate is changed.
 金属板同士の隙間は0~2.0mmまで0.25mmずつ変化させた。試験に使用したボビンツールは、ショルダ外径(ショルダのうち金属板に接触する面の直径)20mm、ピン外径12mm、ショルダ間距離5.8mmに設定した。ボビンツールの回転数は800rpm、移動速度は600/min、回転方向は右回転に設定した。また、このボビンツールは、第二実施形態で記載したように、金属板の反りに追従してボビンツールの高さ位置が変化する形態である。摩擦攪拌接合後、X線透過試験と断面ミクロ組織から品質を判定した。 The gap between the metal plates was changed from 0 to 2.0 mm by 0.25 mm. The bobbin tool used for the test was set to a shoulder outer diameter (diameter of the surface contacting the metal plate of the shoulder) of 20 mm, a pin outer diameter of 12 mm, and a distance between shoulders of 5.8 mm. The rotation speed of the bobbin tool was set to 800 rpm, the moving speed was set to 600 / min, and the rotation direction was set to the right rotation. Further, as described in the second embodiment, this bobbin tool has a form in which the height position of the bobbin tool changes following the warp of the metal plate. After the friction stir welding, the quality was judged from the X-ray transmission test and the cross-sectional microstructure.
 図29は、実施例1において、試験体H1の隙間と接合部の厚さとの関係を示したグラフである。図30は、実施例1において、試験体H3の隙間と接合部の厚さとの関係を示したグラフである。実施例1の接合部とは、実施形態における塑性化領域Wと同義である。また、実施例1の接合部の「Ad部」、「Cr部」、「Re部」とは、図16の(b)に示す接合部(塑性化領域W)のAd部、中央部、Re部の各位置を示している。 FIG. 29 is a graph showing the relationship between the gap of the specimen H1 and the thickness of the joint in Example 1. FIG. 30 is a graph showing the relationship between the gap of the test body H3 and the thickness of the joint in Example 1. The joint part of Example 1 is synonymous with the plasticized region W in the embodiment. Further, “Ad part”, “Cr part”, and “Re part” of the joint part of Example 1 are the Ad part, the center part, and Re part of the joint part (plasticization region W) shown in FIG. Each position of the part is shown.
 図29に示すように、金属板の厚さを6.0mm同士に設定して接合した場合、隙間0.75mm未満ではAd部、Cr部、Re部ともに厚さの減少は小さいが、隙間0.75以上では隙間が増加するに従いAd部、Cr部、Re部ともに厚さが減少した。隙間が1.2mmを超えると接合部の厚さは5.8mm未満になり接合欠陥が発生した。 As shown in FIG. 29, when the thicknesses of the metal plates are set to 6.0 mm and joined, if the gap is less than 0.75 mm, the decrease in the thickness is small in both the Ad part, the Cr part, and the Re part, but the gap 0 Above .75, the thickness of the Ad, Cr and Re portions decreased as the gap increased. When the gap exceeded 1.2 mm, the thickness of the joint became less than 5.8 mm, and a joint defect occurred.
 図30に示すように、金属板の厚さが6.4mm同士に設定して接合した場合、隙間0.75mm未満ではAd部、Cr部、Re部ともに厚さの減少は小さかった。隙間0.75~1.75までは、Ad部、Cr部、Re部ともに厚さの減少はするが、接合欠陥は発生しなかった。隙間2.0となると著しく接合部の厚さが減少し接合欠陥が発生した。 As shown in FIG. 30, when the metal plates were joined at a thickness of 6.4 mm, the decrease in thickness was small for the Ad, Cr, and Re portions when the gap was less than 0.75 mm. In the gaps 0.75 to 1.75, the thicknesses of the Ad part, Cr part, and Re part decreased, but no bonding defect occurred. When the gap was 2.0, the thickness of the joint portion was remarkably reduced and a joint defect was generated.
 図29及び図30からは、接合部のCr部の厚さが5.8mm以下になると接合欠陥が発生することがわかった。つまり、金属板同士の間に隙間があっても、塑性流動によって金属が供給されて、接合部のCr部の厚さが、ショルダ間距離と同等の5.8mm未満にならなければ健全に接合されることがわかった。以上のことから、接合部(塑性化領域)の厚さがショルダ間距離以上となるように接合条件を設定する必要がある。 From FIG. 29 and FIG. 30, it was found that when the thickness of the Cr portion of the joint portion is 5.8 mm or less, a joint defect occurs. That is, even if there is a gap between the metal plates, the metal is supplied by plastic flow, and if the thickness of the Cr portion of the joint does not become less than 5.8 mm, which is equivalent to the distance between the shoulders, the joint is soundly joined. I found out that From the above, it is necessary to set the joining conditions so that the thickness of the joint (plasticized region) is equal to or greater than the distance between the shoulders.
 図31は、実施例1において、接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さ=Re側の厚さの場合を示す。図中、「○」は接合状況が良好、「×」は接合状況が不良である場合を示す。 FIG. 31 is a table showing the relationship between the thickness of the metal plate and the gap on the bonding quality in Example 1, and shows the case where the thickness on the Ad side = the thickness on the Re side. In the figure, “◯” indicates that the joining condition is good and “×” indicates that the joining condition is poor.
 図31によれば、隙間が大きくなったとしても、金属板の厚さが大きくなれば、接合状況が良好になる場合があることがわかった。ただし、金属板の厚さとショルダ間距離との差が0.8mmを越える(本実施例では金属板の厚さを6.6mmより大きくする)と、ショルダ間に発生する内圧が大きくなり、ツール寿命が著しく低下することがわかった。 According to FIG. 31, it was found that even if the gap is increased, the joining condition may be improved if the thickness of the metal plate is increased. However, if the difference between the thickness of the metal plate and the distance between the shoulders exceeds 0.8 mm (in this embodiment, the thickness of the metal plate is made larger than 6.6 mm), the internal pressure generated between the shoulders increases, and the tool It has been found that the lifetime is significantly reduced.
 また、図31によれば、ショルダ間距離5.8mmであり、金属板同士の隙間が0~0.75mm以下である場合、金属板の厚さが5.8~6.6mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離Zとを0≦T-Z≦0.8mmとなるように設定すれば接合状況は良好であることがわかった。 Further, according to FIG. 31, when the distance between the shoulders is 5.8 mm, and the gap between the metal plates is 0 to 0.75 mm or less, the bonding is performed if the thickness of the metal plate is 5.8 to 6.6 mm. The situation was found to be good. In other words, it has been found that the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set so as to satisfy 0 ≦ TZ ≦ 0.8 mm.
 T-Zの値が0よりも小さくなる場合、つまり、板状端部102の厚さTよりもショルダ間距離Zが大きくなると、塑性流動化された金属が第一ショルダ11及び第二ショルダ12(図16の(a)参照)から溢れやすくなるため、接合部(塑性化領域W)の密度が低下する。これにより接合欠陥が生じる可能性が高くなる。0≦T-Z≦0.8mmとなる場合には、金属板同士の隙間が0~0.75mmであっても、摩擦攪拌接合の摩擦熱によって金属板の温度が上昇し、金属板が膨張することによって隙間が無くなるため、接合状況が概ね良好であると考えられる。 When the value of TZ becomes smaller than 0, that is, when the distance Z between the shoulders becomes larger than the thickness T of the plate-like end portion 102, the plastic fluidized metal becomes the first shoulder 11 and the second shoulder 12. Since it becomes easy to overflow from (refer (a) of FIG. 16), the density of a junction part (plasticization area | region W) falls. This increases the possibility of junction defects. When 0 ≦ TZ ≦ 0.8 mm, even if the gap between the metal plates is 0 to 0.75 mm, the temperature of the metal plate rises due to the frictional heat of friction stir welding, and the metal plate expands. By doing so, the gap is eliminated, and it is considered that the joining condition is generally good.
 また、図31によれば、ショルダ間距離5.8mmであり、金属板同士の隙間が0~1.0mm以下である場合、金属板の厚さが6.0~6.6mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離Zとを0.2≦T-Z≦0.8mmとなるように設定すれば接合状況は良好であることがわかった。T-Zの値が0.2mmよりも小さくなると、塑性流動化された金属が第一ショルダ11及び第二ショルダ12から溢れやすくなるため、接合部の密度が低下する。これにより接合欠陥が生じる可能性が高くなる。 In addition, according to FIG. 31, when the distance between the shoulders is 5.8 mm, and the gap between the metal plates is 0 to 1.0 mm or less, if the thickness of the metal plate is 6.0 to 6.6 mm, the bonding is performed. The situation was found to be good. In other words, it was found that the joining condition was good if the thickness T of the metal plate and the distance Z between the shoulders were set to satisfy 0.2 ≦ TZ ≦ 0.8 mm. When the value of TZ is smaller than 0.2 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
 また、図31によれば、ショルダ間距離5.8mmであり、金属板同士の隙間が1.0mmより大きく1.75mm以下である場合、金属板の厚さが6.2mm~6.6mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離Zとを0.4≦T-Z≦0.8mmとなるように設定すれば接合状況は良好であることがわかった。T-Zの値が0.4mmよりも小さくなると、塑性流動化された金属が第一ショルダ11及び第二ショルダ12から溢れやすくなるため、接合部の密度が低下する。これにより接合欠陥が生じる可能性が高くなる。 Further, according to FIG. 31, when the distance between the shoulders is 5.8 mm, and the gap between the metal plates is greater than 1.0 mm and equal to or less than 1.75 mm, the thickness of the metal plate is 6.2 mm to 6.6 mm. If it was, it turned out that the joining condition is favorable. In other words, it has been found that the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set to satisfy 0.4 ≦ TZ ≦ 0.8 mm. When the value of TZ is smaller than 0.4 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
 また、図31によれば、ショルダ間距離5.8mmであり、金属板同士の隙間が1.75mmより大きく2.00mm以下である場合、金属板の厚さが6.6mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離ZとをT-Z=0.8mmとなるように設定すれば接合状況は良好であることがわかった。T-Zの値が0.8mmよりも小さくなると、塑性流動化された金属が第一ショルダ11及び第二ショルダ12から溢れやすくなるため、接合部の密度が低下する。これにより接合欠陥が生じる可能性が高くなる。 Further, according to FIG. 31, when the distance between the shoulders is 5.8 mm, and the gap between the metal plates is greater than 1.75 mm and less than or equal to 2.00 mm, the joining situation is obtained if the thickness of the metal plate is 6.6 mm. Was found to be good. In other words, it has been found that the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set so that TZ = 0.8 mm. When the value of TZ is smaller than 0.8 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
 図32は、接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さを変化させ、Re側の厚さを固定した場合を示す。図33は、接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側の厚さを固定し、Re側の厚さを変化させた場合を示す。 FIG. 32 is a table showing the relationship between the thickness of the metal plate and the gap on the bonding quality, and shows the case where the thickness on the Ad side is changed and the thickness on the Re side is fixed. FIG. 33 is a table showing the relationship between the thickness of the metal plate and the gap on the bonding quality, and shows the case where the thickness on the Ad side is fixed and the thickness on the Re side is changed.
 図32に係る試験ではRe側の厚さを6.0mmに固定し、Ad側の厚さを適宜変化させて摩擦攪拌接合を行った。図33に係る試験ではAd側の厚さを6.0mmに固定し、Re側の厚さを適宜変化させて摩擦攪拌接合を行った。つまり、図32及び図33に係る試験では、突き合わせる金属板の左右の厚さを変化させつつ、隙間ごとの接合品質について観察した。 32, the thickness on the Re side was fixed to 6.0 mm, and the thickness on the Ad side was appropriately changed to perform friction stir welding. In the test according to FIG. 33, the thickness on the Ad side was fixed to 6.0 mm, and the thickness on the Re side was appropriately changed to perform friction stir welding. That is, in the test according to FIG. 32 and FIG. 33, the bonding quality for each gap was observed while changing the thickness of the left and right metal plates to be matched.
 図32及び図33を対比すると、図32の方が良好である条件が多い。言い換えると、図32に示すように、Re側の金属板を6.0mmに固定し、Ad側の金属板を6.2mm以上に変化させた場合に接合状況が良好になる場合が多い。これは、実施例1ではボビンツールを右回転させているため、塑性流動化した金属は、進行方向左側(Ad側)から右側(Re側)に移動しやすくなり、金属板同士の間に隙間がある場合には、Ad側の金属でその隙間が埋められると考えられる。したがって、図33の条件のように、進行方向左側の金属板の厚さが進行方向右側の金属板の厚さよりも小さいと、接合部の中央の金属が不足して接合不良となる可能性が高い。しかし、図32の条件のように、進行方向左側の金属板の厚さが進行方向右側の金属板の厚さよりも大きいと、接合部の中央の金属不足を補うことができるため、接合状態を良好にすることができる。 32 and FIG. 33 are compared, there are many conditions that FIG. 32 is better. In other words, as shown in FIG. 32, when the Re-side metal plate is fixed to 6.0 mm and the Ad-side metal plate is changed to 6.2 mm or more, the joining condition is often improved. This is because in Example 1, the bobbin tool is rotated to the right, so that the plastic fluidized metal easily moves from the left side (Ad side) to the right side (Re side), and there is a gap between the metal plates. When there is, it is considered that the gap is filled with the metal on the Ad side. Accordingly, if the thickness of the metal plate on the left side in the traveling direction is smaller than the thickness of the metal plate on the right side in the traveling direction as in the condition of FIG. high. However, when the thickness of the metal plate on the left side in the traveling direction is larger than the thickness of the metal plate on the right side in the traveling direction as in the condition of FIG. Can be good.
 このことは、図34,35のグラフからも確認できる。プロット点「◆」は、試験体H4(Ad側の厚さ=6.6mm、Re側の厚さ=6.6mm)を示している。プロット点「■」は試験体H10(Ad側の厚さ=6.0mm、Re側の厚さ=6.6mm)を示し、プロット点「●」は試験体H16(Ad側の厚さ=6.6mm、Re側の厚さ=6.0mm)を示している。 This can be confirmed from the graphs of FIGS. The plotted point “♦” indicates the specimen H4 (Ad side thickness = 6.6 mm, Re side thickness = 6.6 mm). Plot point “■” indicates specimen H10 (Ad side thickness = 6.0 mm, Re side thickness = 6.6 mm), and plot point “●” indicates specimen H16 (Ad side thickness = 6). .6 mm, Re-side thickness = 6.0 mm).
 図34の(a)に示すように、接合部のCr部の厚さにおいては、試験体H4,H16,H10の順に小さくなるころがわかる。つまり、Ad側の金属板がRe側よりも薄いと、接合部のCr部の厚さが小さくなることがわかった。 As shown in FIG. 34 (a), it can be seen that in the thickness of the Cr portion of the joint portion, the specimens H4, H16, and H10 become smaller in order. That is, it was found that when the metal plate on the Ad side is thinner than the Re side, the thickness of the Cr portion of the joint portion is reduced.
 図34の(b)に示すように、接合部のAd部の厚さにおいては、試験体H4,H10,H16とも5.8mm前後になっており、接合前の厚さよりも減少していることがわかった。特に、試験体H4,H16を見ると厚さがかなり減少していることがわかった。 As shown in FIG. 34 (b), the thickness of the Ad portion of the joint is about 5.8 mm for all of the specimens H4, H10, and H16, and is smaller than the thickness before joining. I understood. In particular, when the specimens H4 and H16 were observed, it was found that the thickness was considerably reduced.
 図35の(a)に示すように、接合部のRe部の厚さにおいては、試験体H10,H16の厚さはさほど相違ないが、H4の厚さは総じて大きいことがわかった。また、図34の(b)と図35の(a)を全体的に対比すると、Ad部よりもRe部の厚さの方が総じて大きいことがわかった。 As shown in FIG. 35 (a), it was found that the thicknesses of the test specimens H10 and H16 were not so different in the thickness of the Re part of the joint part, but the thickness of H4 was generally large. 34 (b) and FIG. 35 (a) as a whole, it was found that the thickness of the Re portion was generally larger than that of the Ad portion.
 図35の(b)に示すように、接合部の平均厚さは、試験体H10,H16,H4の順に大きくなることがわかった。 As shown in FIG. 35 (b), it was found that the average thickness of the joint portion increased in the order of the specimens H10, H16, and H4.
 図34,35に示すように、試験体H4,H16によれば、試験体H10よりもCr部の厚さを大きくすることができる。ただし、試験体H4によると、接合部の厚さを大きくすることができるが、その分ショルダ間の内圧が大きくなってツールの寿命が低下する可能性が高い。したがって、試験体H16のように、Re側よりもAd側の金属板の厚さを大きくなるように設定することにより、ショルダ間の内圧を低下させつつ、接合部のCr部の厚さを大きくすることができる。 34 and 35, according to the test bodies H4 and H16, the thickness of the Cr portion can be made larger than that of the test body H10. However, according to the specimen H4, the thickness of the joint can be increased, but the internal pressure between the shoulders is increased accordingly, and the tool life is likely to be reduced. Therefore, like the test body H16, by setting the thickness of the metal plate on the Ad side to be larger than that on the Re side, the thickness of the Cr portion of the joint portion is increased while lowering the internal pressure between the shoulders. can do.
<実施例2>
 第二実施形態に係る摩擦攪拌装置1(ボビンツール5)を用いて、摩擦攪拌接合される金属板(板状端部)の厚さ及び金属板同士の隙間が接合状態にどのような影響を与えるかを調査するための試験を行った。金属板同士の隙間は0~2.0mmまで0.25mmずつ変化させた。試験に使用したボビンツールは、ショルダ外径(ショルダのうち金属板に接触する面の直径)10mm、スクリューピン外径6mm、ショルダ間距離2.8mmに設定した。ボビンツールの回転数は2000rpm、移動速度は1000mm/min、回転方向は右回転に設定した。また、このボビンツールは、第二実施形態で記載したように、金属板の反りに追従してボビンツールの高さ位置が変化する形態である。摩擦攪拌接合後、X線透過試験と断面ミクロ組織から品質を判定した。
<Example 2>
Using the friction stirrer 1 (bobbin tool 5) according to the second embodiment, the influence of the thickness of the metal plate (plate-shaped end) to be friction stir welded and the gap between the metal plates on the joining state. A test was conducted to investigate whether to give. The gap between the metal plates was changed by 0.25 mm from 0 to 2.0 mm. The bobbin tool used for the test was set to a shoulder outer diameter (diameter of the surface contacting the metal plate of the shoulder) of 10 mm, a screw pin outer diameter of 6 mm, and a distance between shoulders of 2.8 mm. The rotation speed of the bobbin tool was set to 2000 rpm, the moving speed was set to 1000 mm / min, and the rotation direction was set to right rotation. Further, as described in the second embodiment, this bobbin tool has a form in which the height position of the bobbin tool changes following the warp of the metal plate. After the friction stir welding, the quality was judged from the X-ray transmission test and the cross-sectional microstructure.
 摩擦攪拌接合される金属板の試験体(A6063-T5材)については、Ad側とRe側の金属板の厚さを同等としつつ、3.0mm、3.2mm、3.4mmと厚さを変えて試験体を作成した。 For the metal plate specimen (A6063-T5 material) to be friction stir welded, the thicknesses of the metal plate on the Ad side and Re side are the same, and the thickness is 3.0 mm, 3.2 mm, and 3.4 mm. A test specimen was prepared by changing.
 図36は、実施例2において、接合品質に及ぼす金属板の厚さと隙間の関係を示す表であって、Ad側=Re側の場合を示す。図中、「○」は接合状況が良好、「×」は接合状況が不良である場合を示す。 FIG. 36 is a table showing the relationship between the thickness of the metal plate and the gap on the bonding quality in Example 2, and shows the case where Ad side = Re side. In the figure, “◯” indicates that the joining condition is good and “×” indicates that the joining condition is poor.
 図36によれば、隙間が大きくなったとしても、ショルダ間距離Zに対する金属板の厚さが大きくなれば、接合状況が良好になる場合があることがわかった。ただし、金属板の厚さとショルダ間距離Zとの差が0.6mmを越える(本実施例では金属板の厚さを3.4mmより大きくする)と、ショルダ間に発生する内圧が大きくなり、ツール寿命が著しく低下することがわかった。 According to FIG. 36, it was found that even if the gap is increased, the joining condition may be improved if the thickness of the metal plate with respect to the distance Z between the shoulders is increased. However, if the difference between the thickness of the metal plate and the distance Z between the shoulders exceeds 0.6 mm (in this embodiment, the thickness of the metal plate is made larger than 3.4 mm), the internal pressure generated between the shoulders increases, It has been found that the tool life is significantly reduced.
 また、図36によれば、ショルダ間距離Zが2.8mmであり、金属板同士の隙間が0.75mm以下である場合、金属板の厚さが3.0mm~3.4mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離Zとを0.2≦T-Z≦0.6mmとなるように設定すれば接合状況は良好であることがわかった。T-Zの値が0.2mmよりも小さくなると、塑性流動化された金属が第一ショルダ11及び第二ショルダ12から溢れやすくなるため、接合部の密度が低下する。これにより接合欠陥が生じる可能性が高くなる。金属板同士の隙間が0.75mm以下であると、摩擦攪拌接合の摩擦熱によって金属板の温度が上昇し、金属板が膨張することによって隙間が無くなるため、接合状況が概ね良好であると考えられる。 In addition, according to FIG. 36, when the distance Z between the shoulders is 2.8 mm and the gap between the metal plates is 0.75 mm or less, if the thickness of the metal plate is 3.0 mm to 3.4 mm, the bonding is performed. The situation was found to be good. That is, it has been found that the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set to satisfy 0.2 ≦ TZ ≦ 0.6 mm. When the value of TZ is smaller than 0.2 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects. If the gap between the metal plates is 0.75 mm or less, the temperature of the metal plate rises due to the frictional heat of friction stir welding, and the gap disappears when the metal plate expands. It is done.
 また、図36によれば、ショルダ間距離2.8mmであり、金属板同士の隙間が0.75mmより大きく1.50mm以下である場合、金属板の厚さが3.2~3.4mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離Zとを0.4≦T-Z≦0.6mmとなるように設定すれば接合状況は良好であることがわかった。T-Zの値が0.4mmよりも小さくなると、塑性流動化された金属が第一ショルダ11及び第二ショルダ12から溢れやすくなるため、接合部の密度が低下する。これにより接合欠陥が生じる可能性が高くなる。 In addition, according to FIG. 36, when the distance between the shoulders is 2.8 mm and the gap between the metal plates is greater than 0.75 mm and equal to or less than 1.50 mm, the thickness of the metal plate is 3.2 to 3.4 mm. If it was, it turned out that the joining condition is favorable. In other words, it was found that the joining condition was good if the thickness T of the metal plate and the distance Z between the shoulders were set to satisfy 0.4 ≦ TZ ≦ 0.6 mm. When the value of TZ is smaller than 0.4 mm, the plastic fluidized metal tends to overflow from the first shoulder 11 and the second shoulder 12, and the density of the joint portion is reduced. This increases the possibility of junction defects.
 また、図36によれば、ショルダ間距離2.8mmであり、金属板同士の隙間が1.50mmより大きく1.75mm以下である場合、金属板の厚さが3.4mmであれば接合状況は良好であることがわかった。つまり、金属板の厚さTとショルダ間距離ZとをT-Z=0.6mmとなるように設定すれば接合状況は良好であることがわかった。 In addition, according to FIG. 36, when the distance between the shoulders is 2.8 mm, and the gap between the metal plates is greater than 1.50 mm and equal to or less than 1.75 mm, the thickness of the metal plate is 3.4 mm. Was found to be good. In other words, it has been found that the joining condition is good if the thickness T of the metal plate and the distance Z between the shoulders are set so that TZ = 0.6 mm.
 また、図36によれば、隙間が2.0mmであると、金属板の厚さを3.4mmとしても接合不良になることがわかった。 In addition, according to FIG. 36, it was found that when the gap was 2.0 mm, poor bonding occurred even when the thickness of the metal plate was 3.4 mm.
<ツール形状>
 図37は、実施例1において、ショルダ間距離を5.8mmに固定した場合の各ボビンツールの寸法と接合状況を示した表である。図38は、実施例2において、ショルダ間距離を2.8mmに固定した場合の各ボビンツールの寸法と接合状況を示した表である。図39は、参考例において、ショルダ間距離を11.5mmに固定した場合の各ボビンツールの寸法と接合状況を示した表である。図37,38,39には、抗張力/材料抵抗、抗折力/材料抵抗、材料保持傾向を示した。
<Tool shape>
FIG. 37 is a table showing dimensions and joining states of each bobbin tool when the distance between the shoulders is fixed to 5.8 mm in the first embodiment. FIG. 38 is a table showing dimensions and joining states of each bobbin tool when the distance between the shoulders is fixed at 2.8 mm in Example 2. FIG. 39 is a table showing dimensions and joining states of each bobbin tool when the distance between the shoulders is fixed to 11.5 mm in the reference example. 37, 38, and 39 show the tensile strength / material resistance, the bending strength / material resistance, and the material retention tendency.
 抗張力/材料抵抗は、Y/(X-Y)で表される。つまり、第一ショルダ11の下面及び第二ショルダ12の上面は、摩擦攪拌の際に塑性流動化された金属によって押圧さるため、スクリューピン13には引張応力が作用する。そこで、抗張力/材料抵抗は、スクリューピン13の外径Yを二乗した値を、第一ショルダ11の下面(第二ショルダ12の上面)の外径X(ショルダのうち金属板に接触する面の直径)を二乗した値からスクリューピン13の外径Yを二乗した値を引いた値(X-Y)で除した値で表される。 The tensile strength / material resistance is represented by Y 2 / (X 2 −Y 2 ). That is, since the lower surface of the first shoulder 11 and the upper surface of the second shoulder 12 are pressed by the metal that has been plastically fluidized during friction stirring, a tensile stress acts on the screw pin 13. Therefore, the tensile strength / material resistance is a value obtained by squaring the outer diameter Y of the screw pin 13, and the outer diameter X of the lower surface of the first shoulder 11 (the upper surface of the second shoulder 12) (the surface of the shoulder that contacts the metal plate). It is expressed as a value obtained by dividing a value obtained by subtracting a value obtained by squaring the outer diameter Y of the screw pin 13 from a value obtained by squaring the diameter), and (X 2 −Y 2 ).
 抗折力/材料抵抗は、Y/YZで表される。つまり、ボビンツール5が突き合せ部Nを移動する際には、スクリューピン13の軸方向に対して垂直方向の力が作用する。そこで、抗折力/材料抵抗は、スクリューピン13の外径Yを二乗した値を、スクリューピン13の軸を含む断面の断面積YZで除した値で表される。 The bending strength / material resistance is represented by Y 2 / YZ. That is, when the bobbin tool 5 moves through the abutting portion N, a force perpendicular to the axial direction of the screw pin 13 acts. Therefore, the bending strength / material resistance is represented by a value obtained by dividing the square of the outer diameter Y of the screw pin 13 by the cross-sectional area YZ of the cross section including the axis of the screw pin 13.
 材料保持傾向は、X/Yで表される。つまり、摩擦攪拌の際に塑性流動化された金属は第一ショルダ11の下面及び第二ショルダ12の上面によって保持される。そこで、材料保持傾向は、第一ショルダ11(第二ショルダ12)の外径X(ショルダのうち金属板に接触する面の直径)を二乗した値を、スクリューピン13の外径Yを二乗した値で除して表される。 The material retention tendency is represented by X 2 / Y 2 . That is, the metal fluidized plastically during the friction stirring is held by the lower surface of the first shoulder 11 and the upper surface of the second shoulder 12. Therefore, the material retention tendency is a value obtained by squaring the outer diameter X of the first shoulder 11 (second shoulder 12) (the diameter of the surface of the shoulder that contacts the metal plate), and the outer diameter Y of the screw pin 13 is squared. Expressed by dividing by value.
 図37,38,39を勘案すると、材料保持傾向(X/Y)が2.0以下であると接合欠陥が発生し易く、2.0よりも大きくなると接合欠陥が発生しないことがわかった。材料保持傾向(X/Y)が2.0以下であると、第一ショルダ11(第二ショルダ12)の外径Xに対するスクリューピン13の外径Yが太いため、金属を押えるショルダの面積が小さくなり、摩擦攪拌された金属を十分に押えることができず、金属がバリとなってショルダの外部から溢れ出てしまうためであると考えられる。一方、材料保持傾向(X/Y)が2.0より大きいと、スクリューピン13の外径Yに対して、第一ショルダ11(第二ショルダ12)の外径Xが大きいため、塑性流動化した金属を両ショルダで十分に押えることができる。これにより、接合欠陥が発生しにくいと考えられる。 Considering FIGS. 37, 38, and 39, it is found that when the material retention tendency (X 2 / Y 2 ) is 2.0 or less, a bonding defect is likely to occur, and when it is larger than 2.0, the bonding defect is not generated. It was. If the material retention tendency (X 2 / Y 2 ) is 2.0 or less, the outer diameter Y of the screw pin 13 with respect to the outer diameter X of the first shoulder 11 (second shoulder 12) is thick. This is considered to be because the area becomes small and the friction-stirred metal cannot be sufficiently suppressed, and the metal becomes burrs and overflows from the outside of the shoulder. On the other hand, if the material retention tendency (X 2 / Y 2 ) is larger than 2.0, the outer diameter X of the first shoulder 11 (second shoulder 12) is larger than the outer diameter Y of the screw pin 13, so that plasticity The fluidized metal can be sufficiently held by both shoulders. Thereby, it is considered that a bonding defect hardly occurs.
 また、図37,38,39を勘案すると、抗張力/材料抵抗(Y/(X-Y))が0.2以下であるとピンが破損し易いことがわかった。これは、抗張力/材料抵抗(Y/(X-Y))が0.2以下であると、ショルダ外径Xに対するピン外径Yが小さくなるため、接合時にツール軸方向に発生する材料抵抗に対するピンの抗張力が不十分となり、スクリューピン13が折れ易くなると考えられる。抗張力/材料抵抗(Y/(X-Y))が0.2より大きいと、ショルダ外径Xに対するピン外径Yが大きくなるため、スクリューピン13が折れにくくなると考えられる。 37, 38, and 39, it was found that if the tensile strength / material resistance (Y 2 / (X 2 −Y 2 )) is 0.2 or less, the pin is easily damaged. This occurs when the tensile strength / material resistance (Y 2 / (X 2 −Y 2 )) is 0.2 or less, since the pin outer diameter Y with respect to the shoulder outer diameter X becomes smaller, and thus the tool axial direction is generated during joining. It is considered that the tensile strength of the pin against the material resistance becomes insufficient and the screw pin 13 is easily broken. If the tensile strength / material resistance (Y 2 / (X 2 −Y 2 )) is larger than 0.2, the pin outer diameter Y with respect to the shoulder outer diameter X is increased, so that it is considered that the screw pin 13 is not easily broken.
 また、図37,38,39を勘案すると、抗折力/材料抵抗(Y/YZ)が1.2以下であるとスクリューピン13が破損し易いことがわかった。これは、抗折力/材料抵抗(Y/YZ)が1.2以下であると、ショルダ間距離(ピンの長さ)Zに対するピン外径Yが小さくなるため、接合時にツール進行方向とは逆向きに流れる材料の抵抗に対するピンの抗折力が不十分となり、スクリューピン13が折れ易くなると考えられる。抗折力/材料抵抗(Y/YZ)が1.2より大きいと、ショルダ間距離(ピンの長さ)Zに対するピン外径Yが大きくなるため、スクリューピン13が折れにくくなると考えられる。 37, 38, and 39, it was found that the screw pin 13 is easily damaged when the bending strength / material resistance (Y 2 / YZ) is 1.2 or less. This is because if the bending strength / material resistance (Y 2 / YZ) is 1.2 or less, the pin outer diameter Y with respect to the distance between the shoulders (pin length) Z becomes smaller, It is considered that the pin bending force against the resistance of the material flowing in the opposite direction becomes insufficient, and the screw pin 13 is easily broken. If the bending strength / material resistance (Y 2 / YZ) is greater than 1.2, the pin outer diameter Y with respect to the shoulder distance (pin length) Z is increased, so that it is considered that the screw pin 13 is not easily broken.
 また、図37,38,39を勘案すると、抗張力/材料抵抗(Y/(X-Y))が0.2以下であるか、又は抗折力/材料抵抗(Y/YZ)が1.2以下である場合、ピンの破損が起こった。しかしながら、抗張力/材料抵抗(Y/(X-Y))が0.2より大きく、かつ、抗折力/材料抵抗(Y/YZ)が1.2より大きい場合、ピンの破損は起こらなかった。よって、接合時のボビンツールのピンの破損を防止するためには、ショルダ外径X、ピン外径Y及びショルダ間距離(ピンの長さ)Zについて、以下の式(1)、(2)の両方を満たすようにボビンルーツの形状を設計することが好ましいと結論づけられる。
 Y/(X-Y)>0.2・・・・(1)
 Y/YZ>1.2・・・・・・・・(2)
37, 38 and 39, the tensile strength / material resistance (Y 2 / (X 2 −Y 2 )) is 0.2 or less, or the bending strength / material resistance (Y 2 / YZ). If is less than 1.2, pin breakage occurred. However, if the tensile strength / material resistance (Y 2 / (X 2 −Y 2 )) is larger than 0.2 and the bending strength / material resistance (Y 2 / YZ) is larger than 1.2, the pin breaks. Did not happen. Therefore, in order to prevent the breakage of the pins of the bobbin tool at the time of joining, the following formulas (1) and (2) for the shoulder outer diameter X, the pin outer diameter Y, and the distance between the shoulders (pin length) Z: It can be concluded that it is preferable to design the shape of the bobbin root to satisfy both of the above.
Y 2 / (X 2 −Y 2 )> 0.2 (1)
Y 2 /YZ>1.2 (2)
<実施例3>
 実施例3では、ボビンツールのスクリューピンの刻設された螺旋溝の割合及び螺旋溝の巻回方向が接合後の金属板にどのような影響を及ぼすか調査した。図16の(a)を参照するように、ボビンツールの回転方向をスライド軸側から見て右回転に設定した。また、右ネジの上部螺旋溝13aと左ネジの下部螺旋溝13bとの割合を変化させて5種類の条件A~Eを設定し摩擦攪拌接合を行った。
<Example 3>
In Example 3, it was investigated how the ratio of the spiral groove engraved with the screw pin of the bobbin tool and the winding direction of the spiral groove affect the metal plate after joining. As shown in FIG. 16A, the rotation direction of the bobbin tool was set to right rotation when viewed from the slide shaft side. Friction stir welding was performed by changing the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw to set five types of conditions A to E.
 条件Aでは、右ネジの上部螺旋溝13aと左ネジの下部螺旋溝13bとの割合を0:100に設定した(右ネジ無し)。
 条件Bでは、右ネジの上部螺旋溝13aと左ネジの下部螺旋溝13bとの割合を25:75に設定した。
 条件Cでは、右ネジの上部螺旋溝13aと左ネジの下部螺旋溝13bとの割合を50:50に設定した。
 条件Dでは、右ネジの上部螺旋溝13aと左ネジの下部螺旋溝13bとの割合を75:25に設定した。
 条件Eでは、右ネジの上部螺旋溝13aと左ネジの下部螺旋溝13bとの割合を100:0に設定した(左ネジ無し)。
In the condition A, the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 0: 100 (no right screw).
In Condition B, the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 25:75.
In the condition C, the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 50:50.
In the condition D, the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 75:25.
In the condition E, the ratio of the upper spiral groove 13a of the right screw and the lower spiral groove 13b of the left screw was set to 100: 0 (no left screw).
 実施例3では、板厚Tが6.2mmのアルミニウム合金の金属板(A6063-T5)を二枚用意してこれらを接合した。ボビンツール5の第一ショルダ11及び第二ショルダ12の外径X(ショルダのうち金属板に接触する面の直径)は20mm、スクリューピン13の外径Yは12mm、ショルダ間距離Zは5.8mmに設定した。螺旋溝の深さは0.81mmに設定した。ボビンツール5の回転数は800rpm、接合速度は600mm/minに設定した。また、各条件において、突き合せ部Nの隙間との関係を調査するために、隙間を0mm、1.25mm、1.50mm、1.75mm、2.00mmと変えて試験を行った。 In Example 3, two aluminum alloy metal plates (A6063-T5) having a plate thickness T of 6.2 mm were prepared and joined. The outer diameter X of the first shoulder 11 and the second shoulder 12 of the bobbin tool 5 is 20 mm, the outer diameter Y of the screw pin 13 is 12 mm, and the distance Z between the shoulders is 5. It was set to 8 mm. The depth of the spiral groove was set to 0.81 mm. The rotation speed of the bobbin tool 5 was set to 800 rpm, and the joining speed was set to 600 mm / min. Moreover, in order to investigate the relationship with the clearance gap of the butt | matching part N in each condition, it tested by changing a clearance gap into 0 mm, 1.25 mm, 1.50 mm, 1.75 mm, and 2.00 mm.
 図40は、実施例3において、金属板の段差に及ぼすネジ比率の影響(突き合せ部の隙間0mm)を示したグラフである。図41は、実施例3において、金属板の段差に及ぼすネジ比率の影響(突き合せ部の隙間1.5mm)を示したグラフである。段差は、接合前の金属板の表面を基準(基準=0)として、接合後の各所の高さ位置を示している。段差がプラス値である場合は凸状になっており、マイナス値である場合は凹状(凹溝)になっていることを示している。 FIG. 40 is a graph showing the influence of the screw ratio on the level difference of the metal plate (gap 0 mm at the butt portion) in Example 3. FIG. 41 is a graph showing the influence of the screw ratio on the level difference of the metal plate (gap 1.5 mm at the butt portion) in Example 3. The level | step difference has shown the height position of each place after joining on the basis of the surface of the metal plate before joining (reference | standard = 0). When the step is a positive value, it is convex, and when it is a negative value, it indicates a concave shape (concave groove).
 図40に示すように、「▲」で示す表面SaのRe側は、条件A~Eにおいて、プラスの値を示している。つまり、表面SaのRe側は、常に凸状になっている。 As shown in FIG. 40, the Re side of the surface Sa indicated by “▲” shows a positive value in the conditions A to E. That is, the Re side of the surface Sa is always convex.
 一方、「◆」で示す表面SaのAd側は、条件Aにおいて、大きなマイナス値を示している。つまり、条件Aにおいて、表面SaのAd側は、大きく凹状になっている。そして、「◆」で示す表面SaのAd側は、右ネジの割合が大きくなるにつれて、表面SaのAd側の凹みが徐々に小さくなり、条件Eでは凸状になっている。 On the other hand, the Ad side of the surface Sa indicated by “♦” shows a large negative value in the condition A. That is, in the condition A, the Ad side of the surface Sa is greatly concave. Then, on the Ad side of the surface Sa indicated by “♦”, the dent on the Ad side of the surface Sa gradually decreases as the ratio of the right-hand thread increases.
 他方、「■」で示す裏面SbのAd側は、条件Aにおいて、大きなプラス値を示している。つまり、条件Aにおいて、裏面SbのAd側は、大きく凸状になっている。そして、「■」で示す裏面SbのAd側は、右ネジの割合が大きくなるにつれて、裏面SbのAd側の凹みが徐々に大きくなり、条件D、条件Eでは凹状になっている。つまり、「◆」で示す表面SaのAd側と、「■」で示す裏面SbのAd側は、右ネジの割合に応じて相反する関係にある。また、「◆」で示す表面SaのAd側と、「■」で示す裏面SbのAd側は、条件C(50:50)でもわずかに凹状になっている。 On the other hand, the Ad side of the back surface Sb indicated by “■” shows a large positive value in the condition A. That is, in the condition A, the Ad side of the back surface Sb is greatly convex. Then, on the Ad side of the back surface Sb indicated by “■”, the dent on the Ad side of the back surface Sb gradually increases as the ratio of the right-hand thread increases, and the conditions D and E are concave. That is, the Ad side of the front surface Sa indicated by “♦” and the Ad side of the back surface Sb indicated by “■” have a contradictory relationship according to the ratio of the right-hand thread. Further, the Ad side of the front surface Sa indicated by “♦” and the Ad side of the back surface Sb indicated by “■” are slightly concave under the condition C (50:50).
 図40と図41とを対比すると、突き合せ部の隙間を1.5mmにしても、突き合せ部の隙間が0mmである場合とさほど段差の傾向は変わらないことがわかる。図41の「▲」で示す表面SaのRe側の値及び「●」で示す裏面SbのRe側の値は、図40と比べると全体的に小さくなっていることがわかる。 40 and 41 are compared, it can be seen that even if the gap of the butted portion is 1.5 mm, the tendency of the step is not so different from the case where the gap of the butted portion is 0 mm. It can be seen that the value on the Re side of the front surface Sa indicated by “▲” in FIG. 41 and the value on the Re side of the back surface Sb indicated by “●” are generally smaller than those in FIG.
 図42は、実施例3に係る条件Aの塑性化領域を突き合せ部の隙間別に示す図である。図43は、実施例3に係る条件Bの塑性化領域を突き合せ部の隙間別に示す図である。図44は、実施例3に係る条件Cの塑性化領域を突き合せ部の隙間別に示す図である。図45は、実施例3に係る条件Dの塑性化領域を突き合せ部の隙間別に示す図である。図46は、実施例3に係る条件Eの塑性化領域を突き合せ部の隙間別に示す図である。図42~46における各図の左欄は塑性化領域Wのマクロ組織観察を行った断面図を示し、中欄は塑性化領域Wの表面(化粧面)Sa側の平面図を示し、右欄は塑性化領域Wの裏面Sb側の平面図を示す。 FIG. 42 is a diagram illustrating the plasticized region of the condition A according to Example 3 according to the gap between the butted portions. FIG. 43 is a diagram illustrating the plasticized region of the condition B according to the third embodiment for each gap of the butted portion. FIG. 44 is a diagram illustrating the plasticized region of the condition C according to the third embodiment for each gap between the butted portions. FIG. 45 is a diagram illustrating the plasticized region of the condition D according to the third embodiment for each gap between the butted portions. FIG. 46 is a diagram illustrating the plasticized region of the condition E according to the third embodiment for each gap between the butted portions. 42 to 46, the left column of each figure shows a cross-sectional view of macroscopic structure observation of the plasticized region W, the middle column shows a plan view on the surface (decorative surface) Sa side of the plasticized region W, and the right column These show the top view by the side of the back surface Sb of the plasticization area | region W. FIG.
 図42の左欄に示すように、条件Aの場合、表面(化粧面)Sa側には大きな凹溝Vが形成されているが、裏面Sb側には凹溝Vが無い。突き合せ部の隙間が1.75mm、2.00mmでは表面Sa側に接合欠陥Qが形成されている。塑性化領域Wは、裏面Sbに向けて徐々に幅広になるようになっている。塑性化領域Wの縞模様は、左右非対称になっている。塑性化領域WのRe側よりもAd側の方が縞模様が濃くなっている。また、図42では、金属板の表面Sa側に比べて裏面Sb側の方がバリPが少ない。 42, in the case of Condition A, a large groove V is formed on the front surface (decorative surface) Sa side, but there is no groove V on the back surface Sb side. When the gap between the butted portions is 1.75 mm and 2.00 mm, a bonding defect Q is formed on the surface Sa side. The plasticized region W is gradually widened toward the back surface Sb. The striped pattern in the plasticized region W is asymmetrical. The striped pattern is darker on the Ad side than on the Re side of the plasticized region W. Further, in FIG. 42, the burr P is less on the back surface Sb side than on the front surface Sa side of the metal plate.
 図43の左欄に示すように、条件Bの場合、表面(化粧面)Sa側には条件Aに比べて小さな凹溝Vが形成されているが、裏面Sb側には凹溝Vが無い。突き合せ部の隙間が2.00mmでは金属板の内部に接合欠陥Qが形成されている。塑性化領域Wの縞模様は、左右非対称になっている。塑性化領域WのRe側よりもAd側の方が縞模様が濃くなっている。図43の条件Bの裏面Sbと図42の条件Aの裏面Sbとを対比すると、条件Bの方がバリPが多く発生し面が荒くなっている。 As shown in the left column of FIG. 43, in the case of condition B, a small groove V is formed on the front surface (decorative surface) Sa side compared to condition A, but there is no groove V on the back surface Sb side. . When the gap between the butted portions is 2.00 mm, a bonding defect Q is formed inside the metal plate. The striped pattern in the plasticized region W is asymmetrical. The striped pattern is darker on the Ad side than on the Re side of the plasticized region W. When the back surface Sb of the condition B in FIG. 43 is compared with the back surface Sb of the condition A in FIG. 42, more burr P is generated and the surface is rough in the condition B.
 図44の左欄に示すように、条件Cの場合、表面(化粧面)Sa側には小さな凹溝Vが形成されており、裏面Sb側にも小さな凹溝Vが形成されている。突き合せ部の隙間が2.0mmでは金属板の内部に接合欠陥Qが形成されている。塑性化領域Wの上下の縞模様及び左右の縞模様はそれぞれ略対称になっている。図44の条件Cの表面Saと図43の条件Bの表面Saとを対比すると、条件Cの表面Saの方が凹溝Vの深さが若干小さい。また、条件Cの表面Saには、バリPがほぼ無い。また、条件Cの裏面Sbには、Ad側よりもRe側の方がバリPが多く発生している。 44, in the case of Condition C, a small groove V is formed on the front surface (decorative surface) Sa side, and a small groove V is formed also on the back surface Sb side. When the gap between the butted portions is 2.0 mm, a bonding defect Q is formed inside the metal plate. The upper and lower stripe patterns and the left and right stripe patterns in the plasticized region W are substantially symmetrical. When the surface Sa of the condition C in FIG. 44 is compared with the surface Sa of the condition B in FIG. 43, the depth of the groove V is slightly smaller in the surface Sa in the condition C. Further, the surface Sa of the condition C has almost no burrs P. Further, on the back surface Sb of the condition C, more burrs P are generated on the Re side than on the Ad side.
 図45の左欄に示すように、条件Dの場合、表面(化粧面)Sa側には凹溝Vが形成されておらず、裏面Sb側には小さな凹溝Vが形成されている。突き合せ部の隙間2.00mmでは、金属板の内部に接合欠陥Qが形成されている。また、表面Saよりも裏面Sbの方がバリPが多く発生している。 As shown in the left column of FIG. 45, in the case of condition D, the concave groove V is not formed on the front surface (decorative surface) Sa side, and the small concave groove V is formed on the rear surface Sb side. At a gap of 2.00 mm between the butted portions, a bonding defect Q is formed inside the metal plate. Further, more burrs P are generated on the back surface Sb than on the front surface Sa.
 図46の左欄に示すように、条件Eの場合、表面(化粧面)Sa側には凹溝Vが形成されておらず、Sb側には大きな凹溝Vが形成されている。突き合せ部の隙間1.75mm、隙間2.00mmでは、金属板の内部に接合欠陥Qが形成されている。塑性化領域Wは裏面Sbに向けて徐々に幅狭になるようになっている。裏面SbにはバリPが多く発生しているのに対し、表面SaにはバリPが発生していない。 As shown in the left column of FIG. 46, in the case of condition E, the concave groove V is not formed on the surface (decorative surface) Sa side, and the large concave groove V is formed on the Sb side. When the gap between the butted portions is 1.75 mm and the gap is 2.00 mm, a bonding defect Q is formed inside the metal plate. The plasticized region W is gradually narrowed toward the back surface Sb. Many burrs P are generated on the back surface Sb, whereas no burrs P are generated on the front surface Sa.
 図47は、実施例3の結果をまとめた表である。各要素の符号は、第二実施形態の符号をそのまま参照するものとする。図47の条件Aの概念図に示すように、右回転で左ネジを100%の範囲で設けると、流動化した金属は螺旋溝に導かれて裏面Sb側に移動する。この金属の移動によって、ボビンツール5の第二ショルダ12が押され、金属板に対してボビンツール5がスライド軸4とは反対側(裏面Sb側)に移動する。これにより、ボビンツール5が表面(化粧面)Sa側に深く入り込むため表面Sa側には大きな凹溝Vが形成される。 FIG. 47 is a table summarizing the results of Example 3. The reference numerals of the elements refer to the reference numerals of the second embodiment as they are. As shown in the conceptual diagram of the condition A in FIG. 47, when the left screw is provided in the range of 100% by clockwise rotation, the fluidized metal is guided to the spiral groove and moves to the back surface Sb side. By this movement of the metal, the second shoulder 12 of the bobbin tool 5 is pushed, and the bobbin tool 5 moves to the side opposite to the slide shaft 4 (the back surface Sb side) with respect to the metal plate. Thereby, since the bobbin tool 5 penetrates deeply into the surface (decorative surface) Sa side, a large concave groove V is formed on the surface Sa side.
 一方、図47の条件B~Eに示すように、上部螺旋溝13aとして右ネジ部分を25%以上設ける場合には、右ネジの螺旋溝による金属の移動によってボビンツール5がスライド軸4側(上方)に押され、金属板の表面Sa(化粧面)にボビンツール5が深く入り込むのを防ぐことができる。これにより、表面Sa(化粧面)に凹溝Vが発生するのを防ぐか、又は、凹溝Vが形成されたとしてもその凹溝Vの深さを小さくすることができる。これにより、接合後の金属板の表面Saを平滑にするための仕上げ処理の手間を少なくすることができる。ただし、条件B、条件Cにおいては突き合せ部の隙間2.00mmの場合、条件D、条件Eにおいては突き合せ部の隙間1.75mm、隙間2.00mmの場合は接合欠陥Qが発生するため不適切である。これは、突き合せ部の隙間が大きいと接合部分の金属材料が減少するためと考えられる。 On the other hand, as shown in the conditions B to E of FIG. 47, when the right screw portion is provided as the upper spiral groove 13a by 25% or more, the bobbin tool 5 is moved to the slide shaft 4 side (by the metal movement by the right screw spiral groove ( It is possible to prevent the bobbin tool 5 from entering deeply into the surface Sa (decorative surface) of the metal plate. Thereby, even if the ditch | groove V is formed in the surface Sa (decorative surface), or the ditch | groove V is formed, the depth of the ditch | groove V can be made small. Thereby, the effort of the finishing process for smoothing the surface Sa of the metal plate after joining can be reduced. However, in condition B and condition C, when the gap of the butt portion is 2.00 mm, in condition D and condition E, when the gap of the butt portion is 1.75 mm and the gap is 2.00 mm, a bonding defect Q occurs. It is inappropriate. This is presumably because the metal material at the joint portion decreases when the gap between the butted portions is large.
 なお、例えば条件Eのように、右回転で右ネジが100%刻設されている場合において、ボビンツール5が板状端部102に対して上方に移動して第一ショルダ11の下面の高さ位置が板状端部102の摩擦攪拌前の表面(化粧面)Saよりも上方に位置し、第一ショルダ11の下面の高さ位置と板状端部102の摩擦攪拌前の表面Saとの隙間が大きい場合は金属の押さえが不十分になるが、第一ショルダ11の下面の高さ位置と板状端部102の摩擦攪拌前の表面Saとの隙間が微小である場合は、金属を十分に押えることができる。 For example, as in condition E, when the right screw is engraved 100% by rotating to the right, the bobbin tool 5 moves upward with respect to the plate-like end portion 102 to increase the height of the lower surface of the first shoulder 11. The height position is located above the surface (decorative surface) Sa of the plate-like end portion 102 before friction stirring, the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring. However, if the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring is very small, Can be pressed down sufficiently.
 また、第一ショルダ11の下面の高さ位置と板状端部102の摩擦攪拌前の表面Saとの隙間が微小である場合は、塑性化領域Wが摩擦攪拌前の表面Saよりもわずかに突出することになる。しかし、板状端部102の表面Saを平滑にする処理は摩擦攪拌前の表面Saの高さに合わせてその突出した部分を切削すればよいため仕上げ処理が容易になる。 Further, when the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa before friction stirring of the plate-like end portion 102 is very small, the plasticizing region W is slightly smaller than the surface Sa before friction stirring. It will protrude. However, the process of smoothing the surface Sa of the plate-like end portion 102 is easy to finish because the protruding portion may be cut in accordance with the height of the surface Sa before friction stirring.
 前記した第二実施形態では、上部螺旋溝13aと下部螺旋溝13bとはショルダ間距離Zに対して50:50の割合で形成されているが、化粧面を表面Saに設定し、ボビンツール5を右回転する場合、第一ショルダ11側の右ネジの上部螺旋溝13aと第二ショルダ12側の左ネジの下部螺旋溝13bとがショルダ間距離Zに対して25:75~100:0の割合で形成されていることが好ましい。つまり、右ネジの上部螺旋溝13aは、第一ショルダ11側において、ショルダ間距離Zに対して25%以上の部分に形成され、上部螺旋溝13a以外の部分の全てが左ネジの下部螺旋溝13bとなるように形成されていてもよい。ボビンツール5を右回転させる場合は、左ネジを設けずに、スクリューピン13の軸方向の全長にわたって右ネジを設けてもよい。 In the second embodiment described above, the upper spiral groove 13a and the lower spiral groove 13b are formed at a ratio of 50:50 to the shoulder distance Z, but the decorative surface is set to the surface Sa, and the bobbin tool 5 , The upper spiral groove 13a of the right thread on the first shoulder 11 side and the lower spiral groove 13b of the left thread on the second shoulder 12 side are 25:75 to 100: 0 with respect to the shoulder distance Z. It is preferable to be formed at a ratio. That is, the upper spiral groove 13a of the right screw is formed at a portion of 25% or more with respect to the distance Z between the shoulders on the first shoulder 11 side, and all the portions other than the upper spiral groove 13a are the lower spiral groove of the left screw. It may be formed to be 13b. When the bobbin tool 5 is rotated to the right, the right screw may be provided over the entire axial length of the screw pin 13 without providing the left screw.
 また、実施例3では、表面Sa側を化粧面として設定したが、裏面Sb側を化粧面として設定してもよい。この場合は、図47を参照するように、ボビンツール5の回転方向、螺旋溝の巻回方向を条件A,B,C,Dのように設定することで、裏面Sb(化粧面)側の凹溝Vが発生するのを防ぐか、又は、凹溝Vが形成されたとしてもその凹溝Vの深さを小さくすることができる。 In Example 3, the front surface Sa side is set as the decorative surface, but the back surface Sb side may be set as the decorative surface. In this case, as shown in FIG. 47, by setting the rotation direction of the bobbin tool 5 and the winding direction of the spiral groove as in conditions A, B, C, and D, the back surface Sb (decorative surface) side is set. The generation of the concave groove V can be prevented, or even if the concave groove V is formed, the depth of the concave groove V can be reduced.
 つまり、ボビンツール5を右回転させつつ裏面Sb側を化粧面として設定する場合は、金属板の端面同士を突き合わせる突き合わせ工程と、第二ショルダ12と金属板の化粧面とを対向させ、かつ、スクリューピン13の軸方向の中心と金属板の板厚方向の中心とを合わせた後、突き合せ部Nに右回転させたボビンツール5のスクリューピン13を移動させて摩擦攪拌接合する接合工程と、を含み、ショルダ間の距離Zを金属板の板厚以下に設定するとともに、スクリューピン13の外周面の第二ショルダ12側に左ネジの螺旋溝が形成されており、この左ネジの螺旋溝がショルダ間距離Zに対して25%以上の割合で形成されていることが好ましい。 That is, when setting the back surface Sb side as the decorative surface while rotating the bobbin tool 5 clockwise, the abutting step of abutting the end surfaces of the metal plates with each other, the second shoulder 12 and the decorative surface of the metal plate are opposed to each other, and After joining the axial center of the screw pin 13 and the center of the metal plate in the plate thickness direction, the screw pin 13 of the bobbin tool 5 rotated to the right is moved to the butting portion N to perform friction stir welding. The distance Z between the shoulders is set to be equal to or less than the thickness of the metal plate, and a left-handed spiral groove is formed on the second shoulder 12 side of the outer peripheral surface of the screw pin 13. It is preferable that the spiral groove is formed at a ratio of 25% or more with respect to the distance Z between the shoulders.
 かかる接合方法によれば、第二ショルダ12側の左ネジは25%以上の割合で形成されているため、左ネジの螺旋溝による金属の移動によってボビンツール5がスライド軸4とは反対側(下方)に押され、金属板の裏面(化粧面)Sbにボビンツールが深く入り込むのを防ぐことができる。これにより、化粧面に凹溝が発生するのを防ぐか、又は、凹溝が形成されたとしてもその凹溝の深さを小さくすることができる。 According to such a joining method, since the left screw on the second shoulder 12 side is formed at a ratio of 25% or more, the bobbin tool 5 moves away from the slide shaft 4 by the movement of the metal by the spiral groove of the left screw ( It is possible to prevent the bobbin tool from entering deeply into the back surface (decorative surface) Sb of the metal plate. Thereby, it can prevent that a ditch | groove generate | occur | produces in a decorative surface, or even if a ditch | groove is formed, the depth of the ditch | groove can be made small.
 図48は、ボビンツールを左回転させる場合の概念をまとめた表である。
 条件Fでは、左ネジの上部螺旋溝13aと右ネジの下部螺旋溝13bとの割合を0:100に設定した(左ネジ無し)。
 条件Gでは、左ネジの上部螺旋溝13aと右ネジの下部螺旋溝13bとの割合を25:75に設定した。
 条件Hでは、左ネジの上部螺旋溝13aと右ネジの下部螺旋溝13bとの割合を50:50に設定した。
 条件Iでは、左ネジの上部螺旋溝13aと右ネジの下部螺旋溝13bとの割合を75:25に設定した。
 条件Jでは、左ネジの上部螺旋溝13aと右ネジの下部螺旋溝13bとの割合を100:0に設定した(右ネジ無し)。
FIG. 48 is a table summarizing the concept when the bobbin tool is rotated counterclockwise.
In the condition F, the ratio of the upper spiral groove 13a of the left screw and the lower spiral groove 13b of the right screw was set to 0: 100 (no left screw).
In the condition G, the ratio of the left spiral upper spiral groove 13a and the right spiral lower spiral groove 13b was set to 25:75.
In the condition H, the ratio of the left spiral upper spiral groove 13a and the right spiral lower spiral groove 13b was set to 50:50.
In Condition I, the ratio of the left spiral upper spiral groove 13a and the right spiral lower spiral groove 13b was set to 75:25.
In the condition J, the ratio of the upper spiral groove 13a of the left screw and the lower spiral groove 13b of the right screw was set to 100: 0 (no right screw).
 第三実施形態で示したように、左回転させる場合は、上部螺旋溝13aに左ネジを設け、下部螺旋溝13bに右ネジを設けたボビンツール5Aを用いる。ボビンツール5Aを左回転させる場合は、第二実施形態のボビンツール5とはネジの巻回方向が異なるため、結果的に実施例3と同等の作用効果を示す。つまり、条件G~条件Jに示すように、摩擦攪拌されて流動化された金属は、スクリューピン13の左ネジの上部螺旋溝13aに導かれて第一ショルダ11側に移動し、右ネジの下部螺旋溝13bに導かれて第二ショルダ12側に移動する。左ネジは25%以上の割合で形成されているため、左ネジの螺旋溝による金属の移動によってボビンツール5Aがスライド軸4側(上方)に押され、金属板の表面(化粧面)Saにボビンツール5Aが深く入り込むのを防ぐことができる。これにより、表面(化粧面)Saに凹溝Vが発生するのを防ぐか、又は、凹溝Vが形成されたとしてもその凹溝Vの深さを小さくすることができる。これにより、接合後の金属板の表面Saを平滑にするための仕上げ処理の手間を少なくすることができる。 As shown in the third embodiment, when rotating counterclockwise, a bobbin tool 5A in which a left screw is provided in the upper spiral groove 13a and a right screw is provided in the lower spiral groove 13b is used. When the bobbin tool 5A is rotated counterclockwise, the screw winding direction is different from that of the bobbin tool 5 of the second embodiment. That is, as shown in the conditions G to J, the metal that has been fluidized by friction stirring is guided to the upper spiral groove 13a of the left-hand thread of the screw pin 13 and moves to the first shoulder 11 side. It is guided to the lower spiral groove 13b and moves to the second shoulder 12 side. Since the left screw is formed at a rate of 25% or more, the bobbin tool 5A is pushed to the slide shaft 4 side (upward) by the movement of the metal by the spiral groove of the left screw, and the surface (decorative surface) Sa of the metal plate The bobbin tool 5A can be prevented from entering deeply. Thereby, it is possible to prevent the formation of the concave groove V on the surface (decorative surface) Sa, or even if the concave groove V is formed, the depth of the concave groove V can be reduced. Thereby, the effort of the finishing process for smoothing the surface Sa of the metal plate after joining can be reduced.
 なお、例えば条件Jのように、左回転で左ネジが100%刻設されている場合において、ボビンツール5が板状端部102に対して上方に移動して第一ショルダ11の下面の高さ位置が板状端部102の摩擦攪拌前の表面Saよりも上方に位置し、第一ショルダ11の下面の高さ位置と板状端部102の摩擦攪拌前の表面Saとの隙間が大きい場合は金属の押さえが不十分になるが、第一ショルダ11の下面の高さ位置と板状端部102の摩擦攪拌前の表面Saとの隙間が微小である場合は、金属を十分に押えることができる。 Note that, for example, when the left screw is engraved 100% by left rotation as in Condition J, the bobbin tool 5 moves upward with respect to the plate-like end portion 102 to increase the height of the lower surface of the first shoulder 11. The position is located above the surface Sa of the plate-like end portion 102 before friction stirring, and the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring is large. In this case, the metal is not sufficiently pressed, but when the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa of the plate-like end portion 102 before friction stirring is very small, the metal can be sufficiently pressed. be able to.
 また、第一ショルダ11の下面の高さ位置と板状端部102の摩擦攪拌前の表面Saとの隙間が微小である場合は、塑性化領域Wが摩擦攪拌前の表面Saよりもわずかに突出することになる。しかし、板状端部102の表面Saを平滑にする処理は摩擦攪拌前の表面Saの高さに合わせてその突出した部分を切削すればよいため仕上げ処理が容易になる。 Further, when the gap between the height position of the lower surface of the first shoulder 11 and the surface Sa before friction stirring of the plate-like end portion 102 is very small, the plasticizing region W is slightly smaller than the surface Sa before friction stirring. It will protrude. However, the process of smoothing the surface Sa of the plate-like end portion 102 is easy to finish because the protruding portion may be cut in accordance with the height of the surface Sa before friction stirring.
 前記した第三実施形態では、上部螺旋溝13aと下部螺旋溝13bとはショルダ間距離Zに対して50:50の割合で形成されているが、化粧面を表面Saに設定し、ボビンツール5Aを左回転する場合、第一ショルダ11側の左ネジの上部螺旋溝13aと第二ショルダ12側の右ネジの下部螺旋溝13bとがショルダ間距離Zに対して25:75~100:0の割合で形成されていることが好ましい。つまり、左ネジの上部螺旋溝13aは、第一ショルダ11側において、ショルダ間距離Zに対して25%以上の部分に形成され、上部螺旋溝13a以外の部分の全てが右ネジの下部螺旋溝13bとなるように形成されていてもよい。ボビンツール5Aを左回転させる場合は、右ネジを設けずに、スクリューピン13の軸方向の全長にわたって左ネジを設けてもよい。 In the third embodiment described above, the upper spiral groove 13a and the lower spiral groove 13b are formed at a ratio of 50:50 to the shoulder distance Z, but the decorative surface is set to the surface Sa, and the bobbin tool 5A , The left spiral upper spiral groove 13a on the first shoulder 11 side and the right spiral lower spiral groove 13b on the second shoulder 12 side are 25:75 to 100: 0 with respect to the shoulder distance Z. It is preferable to be formed at a ratio. That is, the left spiral upper spiral groove 13a is formed on the first shoulder 11 side at a portion of 25% or more with respect to the shoulder distance Z, and all the portions other than the upper spiral groove 13a are the right spiral lower spiral groove. It may be formed to be 13b. When the bobbin tool 5A is rotated counterclockwise, a left screw may be provided over the entire axial length of the screw pin 13 without providing a right screw.
 なお、表面Sa側を化粧面として設定したが、裏面Sb側を化粧面として設定してもよい。この場合は、図48を参照するように、ボビンツール5の回転方向、螺旋溝の巻回方向を条件F,G,H,Iのように設定することで、裏面Sb(化粧面)側の凹溝Vが発生するのを防ぐか、又は、凹溝Vが形成されたとしてもその凹溝Vの深さを小さくすることができる。 In addition, although the surface Sa side was set as a decorative surface, you may set the back surface Sb side as a decorative surface. In this case, as shown in FIG. 48, by setting the rotation direction of the bobbin tool 5 and the winding direction of the spiral groove as in the conditions F, G, H, and I, the back surface Sb (decorative surface) side is set. The generation of the concave groove V can be prevented, or even if the concave groove V is formed, the depth of the concave groove V can be reduced.
 つまり、ボビンツール5Aを左回転させつつ裏面Sb側を化粧面として設定する場合は、金属板の端面同士を突き合わせる突き合わせ工程と、第二ショルダ12と金属板の化粧面とを対向させ、かつ、スクリューピン13の軸方向の中心と金属板の板厚方向の中心とを合わせた後、突き合せ部Nに左回転させたボビンツール5Aのスクリューピン13を移動させて摩擦攪拌接合する接合工程と、を含み、ショルダ間の距離Zを金属板の板厚以下に設定するとともに、スクリューピン13の外周面の第二ショルダ12側に右ネジの螺旋溝が形成されており、この右ネジの螺旋溝がショルダ間距離Zに対して25%以上の割合で形成されていることが好ましい。 That is, when setting the back surface Sb side as the decorative surface while rotating the bobbin tool 5A counterclockwise, the abutting step of abutting the end surfaces of the metal plates with each other, the second shoulder 12 and the decorative surface of the metal plate are opposed to each other, and After joining the axial center of the screw pin 13 and the center of the metal plate in the plate thickness direction, the screw pin 13 of the bobbin tool 5A rotated to the left is moved to the butting portion N to perform friction stir welding. The distance Z between the shoulders is set to be equal to or less than the thickness of the metal plate, and a right-hand spiral groove is formed on the second shoulder 12 side of the outer peripheral surface of the screw pin 13. It is preferable that the spiral groove is formed at a ratio of 25% or more with respect to the distance Z between the shoulders.
 かかる接合方法によれば、第二ショルダ12側の右ネジは25%以上の割合で形成されているため、右ネジの螺旋溝による金属の移動によってボビンツール5Aがスライド軸4とは反対側(下方)に押され、金属板の裏面(化粧面)Sbにボビンツールが深く入り込むのを防ぐことができる。これにより、裏面(化粧面)に凹溝が発生するのを防ぐか、又は、凹溝が形成されたとしてもその凹溝の深さを小さくすることができる。 According to such a joining method, since the right screw on the second shoulder 12 side is formed at a ratio of 25% or more, the bobbin tool 5A is moved away from the slide shaft 4 by the movement of the metal by the spiral groove of the right screw ( It is possible to prevent the bobbin tool from entering deeply into the back surface (decorative surface) Sb of the metal plate. Thereby, it can prevent that a ditch | groove generate | occur | produces in a back surface (decorative surface), or even if a ditch | groove is formed, the depth of the ditch | groove can be made small.
<実施例4>
 次に、本発明の実施例4について説明する。図49は、実施例4の係合形態又は突き合わせ形態を示した正面図であって、(a)はタイプI、(b)はタイプII、(c)はタイプIIIを示す。実施例4では、3種類の供試体を用意して、タイプI、タイプII及びタイプIIIの部分のみにそれぞれ摩擦攪拌接合を行い、接合後のそれぞれの角変形を調査した。
<Example 4>
Next, a fourth embodiment of the present invention will be described. FIGS. 49A and 49B are front views showing an engagement form or a butting form of Example 4, wherein FIG. 49A shows type I, FIG. 49B shows type II, and FIG. 49C shows type III. In Example 4, three types of specimens were prepared, and friction stir welding was performed only on the type I, type II, and type III portions, and the respective angular deformations after the welding were investigated.
 タイプI~IIIは、アルミニウム合金6N01-T5材からなるダブルスキンパネル201A,201Bであって、図20及び図49を参照するように、外板厚肉部(第一外板厚肉部211、第二外板厚肉部221)の板厚a=3mm、肉盛部(肉盛部213,223,232,242)の厚さ寸法b=0.5mm、支持板204から第一端面33までの長さc及び支持板204から第二端面43までの長さc=15mm、外板202の上面から内板203の下面までの長さd=30mm、左右幅寸法e=200mm、延長寸法5000mmに設定されている。 Types I to III are double skin panels 201A and 201B made of an aluminum alloy 6N01-T5 material. As shown in FIGS. 20 and 49, the outer plate thick portion (first outer plate thick portion 211, The thickness a of the second outer plate thick part 221) is 3 mm, the thickness dimension b of the build-up part (build-up parts 213, 223, 232, 242) is 0.5 mm, from the support plate 204 to the first end face 33 Length c and the length c from the support plate 204 to the second end face 43 = 15 mm, the length d from the upper surface of the outer plate 202 to the lower surface of the inner plate 203, the left-right width dimension e = 200 mm, and the extension dimension 5000 mm. Is set to
 ボビンツール265は、図23を参照するように、第一ショルダ252の下端面252cの直径α2=10mm、第二ショルダ253の上端面253cの直径β2=10mm、第二ショルダ253の直径β1=15mm、スクリューピン254の外径U=6mmに設定されている。第一ショルダ252から第二ショルダ253までの長さ(スクリューピン254の露出した部分の長さ)は2.9mmに設定されている。第一ショルダ252の下端面252cに形成された窪み(図示省略)の形状は平面視渦巻き状であって、窪みの深さは0.3mm、窪みのピッチは1.2mmに設定されている。ボビンツール265は、右回転に設定し、タイプI~IIIとも図49の(a)~(c)の紙面表側から裏側に向けて移動させる。ボビンツール265の回転速度は2000rpm、移動速度は1000mm/minに設定した。 As shown in FIG. 23, the bobbin tool 265 has a diameter α2 = 10 mm of the lower end surface 252c of the first shoulder 252, a diameter β2 = 10 mm of the upper end surface 253c of the second shoulder 253, and a diameter β1 = 15 mm of the second shoulder 253. The outer diameter U of the screw pin 254 is set to 6 mm. The length from the first shoulder 252 to the second shoulder 253 (the length of the exposed portion of the screw pin 254) is set to 2.9 mm. The shape of the recess (not shown) formed in the lower end surface 252c of the first shoulder 252 is a spiral shape in plan view, and the depth of the recess is set to 0.3 mm and the pitch of the recess is set to 1.2 mm. The bobbin tool 265 is set to the right rotation, and types I to III are moved from the front side to the back side in FIGS. 49 (a) to 49 (c). The rotation speed of the bobbin tool 265 was set to 2000 rpm, and the moving speed was set to 1000 mm / min.
 タイプIは、図49の(a)に示すように、ボビンツール265の進行方向の左側にダブルスキンパネル201Aを、右側にダブルスキンパネル201Bを配置し、第一鉤部212Aと第二鉤部222Bとを係合させている。
 タイプIIは、図49の(b)に示すように、ボビンツール265の進行方向の右側にダブルスキンパネル201Aを、左側にダブルスキンパネル201Bを配置し、第一鉤部212Aと第二鉤部222Bとを係合させている。
 タイプIIIは、図49の(c)に示すように、ボビンツール265の進行方向の左側にダブルスキンパネル201Aを配置し、右側にダブルスキンパネル201Bを配置し、第一端面233Aと第二端面243Bとを突き合わせている。
In type I, as shown in FIG. 49 (a), the double skin panel 201A is arranged on the left side in the moving direction of the bobbin tool 265, and the double skin panel 201B is arranged on the right side. 222B is engaged.
In Type II, as shown in FIG. 49 (b), the double skin panel 201A is arranged on the right side in the moving direction of the bobbin tool 265, and the double skin panel 201B is arranged on the left side. 222B is engaged.
In type III, as shown in FIG. 49 (c), the double skin panel 201A is arranged on the left side in the moving direction of the bobbin tool 265, the double skin panel 201B is arranged on the right side, and the first end face 233A and the second end face are arranged. 243B.
 図50は、タイプIの角変形結果を示したグラフである。図51は、タイプIIの角変形結果を示したグラフである。図52は、タイプIIIの角変形結果を示したグラフである。横軸は、接合された各供試体の左側端からの幅方向の長さを示している。幅方向=200mmとは、センター線C1の位置を示している。縦軸は、各供試体における任意の基準点からの接合後の高さを示している。各供試体の前端から延長方向の距離50mm、200mm、400mm、600mm、800mm、950mmにおける各地点の高さを計測した。 FIG. 50 is a graph showing the result of type I angular deformation. FIG. 51 is a graph showing the result of type II angular deformation. FIG. 52 is a graph showing the results of type III angular deformation. The horizontal axis indicates the length in the width direction from the left end of each joined specimen. The width direction = 200 mm indicates the position of the center line C1. The vertical axis represents the height after joining from an arbitrary reference point in each specimen. The height of each point was measured at distances of 50 mm, 200 mm, 400 mm, 600 mm, 800 mm, and 950 mm in the extending direction from the front end of each specimen.
 図50,51に示すように、タイプI及びタイプIIでは、幅方向=180mmの位置での高さが最も高く、幅方向=210mmの位置での高さが最も低くなっている。つまり、接合部分に小さく目違いが発生した形状となっている。また、幅方向=180mm~210mmの位置での高低差は、タイプIに比べてタイプIIの方が大きかった。また、幅方向=210mmの位置から供試体の右端までの高低差も、タイプIに比べてタイプIIの方が大きかった。つまり、タイプIに比べてタイプIIの方が、角変形が全体的に大きいことが分かった。 As shown in FIGS. 50 and 51, in Type I and Type II, the height at the position of the width direction = 180 mm is the highest, and the height at the position of the width direction = 210 mm is the lowest. That is, it is a shape in which a small difference occurs in the joint portion. Further, the height difference at the position of the width direction = 180 mm to 210 mm was larger in Type II than in Type I. Further, the height difference from the position of the width direction = 210 mm to the right end of the specimen was larger in Type II than in Type I. In other words, it was found that type II had a larger overall angular deformation than type I.
 これは、図49の(a)及び(b)に示すように、ダブルスキンパネル201A,201Bがボビンツール265から受ける力の方向と、ダブルスキンパネル201A,201Bの係合形態の違いに起因するものであると考えられる。本実施形態にかかるボビンツール265(スクリューピン254の螺旋溝255が左ネジ)を右回転させて、図49の紙面の表側から裏側に向けて移動させると、応力F1が作用すると考えられる。 As shown in FIGS. 49 (a) and 49 (b), this is due to the difference in the direction of the force that the double skin panels 201A and 201B receive from the bobbin tool 265 and the engagement form of the double skin panels 201A and 201B. It is thought to be a thing. It is considered that when the bobbin tool 265 (the spiral groove 255 of the screw pin 254 is a left screw) according to the present embodiment is rotated clockwise and moved from the front side to the back side in FIG. 49, the stress F1 acts.
 したがって、図49の(b)に示すタイプIIであると、係合部Mの傾斜面Maの傾斜方向が応力F1の作用方向と略平行であるとともに、センター線C1に対して応力F1の入力位置と傾斜面Maとが同じ側にあるため、ダブルスキンパネル201Bが右斜め下側に移動しやすくなり、接合中にダブルスキンパネル201A,201Bが離間する可能性が高くなる。 Therefore, in the case of type II shown in FIG. 49B, the inclination direction of the inclined surface Ma of the engaging portion M is substantially parallel to the direction of action of the stress F1, and the stress F1 is input to the center line C1. Since the position and the inclined surface Ma are on the same side, the double skin panel 201B is likely to move obliquely downward to the right, and the possibility that the double skin panels 201A and 201B are separated during joining increases.
 一方、図49の(a)に示すタイプIであると、係合部Mの傾斜面Maの傾斜方向が応力F1の作用方向と交わるとともに、センター線C1に対して応力F1の入力位置と傾斜面Maとが反対側にあるため、接合中にダブルスキンパネル201A,201Bが離間するのを効果的に防ぐことができる。 On the other hand, in the case of Type I shown in FIG. 49A, the inclination direction of the inclined surface Ma of the engaging portion M intersects with the direction of application of the stress F1, and the input position and inclination of the stress F1 with respect to the center line C1. Since the surface Ma is on the opposite side, it is possible to effectively prevent the double skin panels 201A and 201B from separating during the joining.
 他方、図52に示すように、タイプIIIでは、幅方向が180mmの位置及び幅方向が210mmの位置における高さが同じくらいであった。つまり、左右端に比べて接合部分の高さが最も高く、正面視して山型になっている。また、タイプIIIの高低差は、タイプI,IIの高低差よりも大きくなっている。仮に、ダブルスキンパネルを複数枚(例えば5枚)配設し、タイプIIIのように突き合せ部N側から摩擦攪拌接合すると、接合されたダブルスキンパネルの全体の角変形量が増大すると考えられる。したがって、係合部M及び突き合せ部Nのどちらを先に接合しても接合強度の観点からは問題が無いが、角変形量を考慮すると、先に係合部M側から摩擦攪拌接合することが好ましい。 On the other hand, as shown in FIG. 52, in Type III, the height at the position where the width direction is 180 mm and the position where the width direction is 210 mm are about the same. That is, the height of the joining portion is the highest compared to the left and right ends, and is a mountain shape when viewed from the front. Further, the height difference of type III is larger than the height difference of types I and II. If a plurality of (for example, five) double skin panels are arranged and friction stir welding is performed from the butt portion N side as in type III, it is considered that the total angular deformation of the joined double skin panels increases. . Therefore, there is no problem from the viewpoint of the joining strength whichever of the engaging portion M and the butting portion N is joined first, but considering the amount of angular deformation, the friction stir joining is performed first from the engaging portion M side. It is preferable.
 図53は、ボビンツールの回転方向、螺旋溝の巻回方向、係合形態をまとめた表である。図53では、4パターンの好ましい条件1~4を示している。条件1(本実施形態と同様)に示すように、螺旋溝が左ネジのボビンツール265を右回転させて、図53の紙面表側から裏側方向に移動させる場合、係合形態をタイプIとすることが好ましい。 FIG. 53 is a table summarizing the rotation direction of the bobbin tool, the winding direction of the spiral groove, and the engagement form. FIG. 53 shows preferable conditions 1 to 4 for four patterns. As shown in Condition 1 (similar to the present embodiment), when the left-handed bobbin tool 265 is rotated to the right and moved from the front side to the back side in FIG. It is preferable.
 つまり、条件1ではボビンツール265を右回転させるため、センター線C1に対して左側から右側方向成分の力が作用するとともに、塑性流動化した金属が螺旋溝に導かれて上から下に移動する。したがって、条件1では、係合形態に示すように応力F1が作用する。そこで、タイプIでは応力F1に対向するように、第二鉤部212B及び係合部Mの傾斜面Maを設定することで、接合中にダブルスキンパネル201A,201Bが離間するのを防ぐことができる。 That is, in condition 1, since the bobbin tool 265 is rotated to the right, the force of the component in the right direction from the left side acts on the center line C1, and the plastic fluidized metal is guided to the spiral groove and moves from top to bottom. . Therefore, in condition 1, the stress F1 acts as shown in the engagement form. Therefore, in Type I, the inclined surface Ma of the second flange portion 212B and the engaging portion M is set so as to face the stress F1, thereby preventing the double skin panels 201A and 201B from being separated during joining. it can.
 また、条件2に示すように、螺旋溝が右ネジのボビンツール265を左回転させて、図53の紙面表側から裏側方向に移動させる場合、係合形態をタイプIIとすることが好ましい。 Further, as shown in Condition 2, when the spiral groove rotates the right-handed bobbin tool 265 counterclockwise and moves from the front side to the back side in FIG. 53, the engagement form is preferably type II.
 つまり、条件2ではボビンツール265を左回転させるため、センター線C1に対して右側から左側方向成分の力が作用するとともに、塑性流動化した金属が螺旋溝に導かれて上から下に移動する。したがって、条件2では、係合形態に示すように応力F2が作用する。そこで、タイプIIでは応力F2に対向するように、第二鉤部212B及び係合部Mの傾斜面Maを設定することで、ダブルスキンパネル201A,201Bが離間するのを防ぐことができる。 In other words, in condition 2, since the bobbin tool 265 is rotated counterclockwise, a force in the left direction component acts on the center line C1, and the plastic fluidized metal is guided to the spiral groove and moves from top to bottom. . Therefore, under condition 2, the stress F2 acts as shown in the engagement form. Therefore, in the type II, the double skin panels 201A and 201B can be prevented from being separated by setting the second flange portion 212B and the inclined surface Ma of the engaging portion M so as to face the stress F2.
 同様に、条件3に示すように、螺旋溝が右ネジのボビンツール265を右回転させて、図53の紙面表側から裏側方向に移動させる場合、係合形態をタイプIVとすることが好ましい。
 また、同様に、条件4に示すように、螺旋溝が左ネジのボビンツール265を左回転させて、図53の紙面表側から裏側方向に移動させる場合、係合形態をタイプVとすることが好ましい。
Similarly, as shown in Condition 3, when the spiral groove rotates the right-handed bobbin tool 265 to the right and moves it from the front side to the back side in FIG. 53, the engagement form is preferably type IV.
Similarly, as shown in condition 4, when the left-handed bobbin tool 265 with a spiral groove is rotated leftward and moved from the front side to the back side in FIG. preferable.
 条件3,4の場合であっても、係合部Mの傾斜面Ma’及び第二鉤部212B’を応力F3,F4に対向するように設定することで、接合中にダブルスキンパネル201A’,201B’が離間するのを防ぐことができる。 Even in the case of conditions 3 and 4, the double skin panel 201A ′ during joining can be obtained by setting the inclined surface Ma ′ of the engaging portion M and the second flange portion 212B ′ to face the stresses F3 and F4. , 201B ′ can be prevented from separating.
 また、条件1,2では第一ショルダ252側、条件3,4では第二ショルダ253側に肉盛部を設けることが好ましい。これにより、摩擦攪拌によって金属が不足する側に金属を補充できるため、金属不足になるのを補うことができる。 Further, it is preferable to provide a built-up portion on the first shoulder 252 side in the conditions 1 and 2 and on the second shoulder 253 side in the conditions 3 and 4. Thereby, since metal can be replenished to the side which lacks metal by friction stirring, it can compensate for becoming short of metal.
<実施例5>
 実施例5では、実施例4とは異なるサイズのダブルスキンパネルを5枚用いて摩擦攪拌接合を行った。図20を参照すると、実施例5のダブルスキンパネルは、外板厚肉部の板厚a=4.0mmm、肉盛部の厚さ寸法b=0.5mm、左右幅寸法e=400mm、延長寸法12500mmに設定されている。
<Example 5>
In Example 5, friction stir welding was performed using five double skin panels having a size different from that of Example 4. Referring to FIG. 20, the double skin panel of Example 5 has a thickness a = 4.0 mm of the outer plate thick part, a thickness dimension b = 0.5 mm of the built-up part, a left-right width dimension e = 400 mm, and an extension. The dimension is set to 12,500 mm.
 ボビンツールは、図23を参照すると、第一ショルダ252の下端面252cの直径α2=15mm、第二ショルダ253の直径β1=18mm、第二ショルダ253の上端面253cの直径β2=15mm、スクリューピン254の外径U=9mmに設定した。第一ショルダ252から第二ショルダ253までの長さ(スクリューピン254の露出した部分の長さ)は3.7mmに設定されている。また、ボビンツールの回転速度を1000rpmに設定した。また、ボビンツール移動速度は、係合部M側が1000mm/min、突き合せ部N側が1500mm/minに設定した。 23, the diameter α2 = 15 mm of the lower end surface 252c of the first shoulder 252; the diameter β1 = 18 mm of the second shoulder 253; the diameter β2 = 15 mm of the upper end surface 253c of the second shoulder 253; The outer diameter U of 254 was set to 9 mm. The length from the first shoulder 252 to the second shoulder 253 (the length of the exposed portion of the screw pin 254) is set to 3.7 mm. The rotation speed of the bobbin tool was set to 1000 rpm. The bobbin tool moving speed was set to 1000 mm / min on the engaging portion M side and 1500 mm / min on the butting portion N side.
 実施例5では、一方のダブルスキンパネルをテーブルの上にセットし、他方のダブルスキンパネルを上方から降ろして係合及び突き合わせた。同様の作業で5枚のダブルスキンパネルを隙間無く係合した後、組立体を移動不能に拘束した。組立体が浮かないように、延長方向に1.5mピッチで配置された横押しクランプで押し付けた。また、組立体の四隅を簡単にクランプした。そして、端から順番に摩擦攪拌接合を行った。 In Example 5, one double skin panel was set on the table, and the other double skin panel was lowered from above and engaged and butted. After engaging the five double skin panels without any gaps in the same operation, the assembly was restrained so as not to move. In order to prevent the assembly from floating, the assembly was pressed by a lateral pressing clamp arranged at a pitch of 1.5 m in the extending direction. In addition, the four corners of the assembly were clamped easily. Then, friction stir welding was performed in order from the end.
 実施例5の条件であっても、接合不良の無い面材を製造することができた。ここで、一般的に、金属部材に対して摩擦攪拌接合を行うと、熱収縮が発生するため接合後の金属部材が反ってしまうことがある。仮に、金属部材の表裏において摩擦攪拌接合をする場合、回転ツールの回転速度、移動速度及び移動長さを同じ条件にして、金属部材の表面側に摩擦攪拌接合を行った後、裏面側に摩擦攪拌接合を行うと裏面側が凹状となるように反ってしまうおそれがある。 Even under the conditions of Example 5, it was possible to produce a face material free from poor bonding. Here, generally, when friction stir welding is performed on a metal member, heat shrinkage occurs, and thus the metal member after bonding may be warped. If the friction stir welding is performed on the front and back of the metal member, the friction stir welding is performed on the surface side of the metal member with the same rotation speed, moving speed, and moving length of the rotary tool, and then the friction is applied on the back surface side. When the stir welding is performed, there is a possibility that the back side is warped so as to be concave.
 これは、表面側を摩擦攪拌接合した後は、熱収縮によって金属部材が表面側に凹状となるように沿ってしまうため、沿った金属部材を引っくり返し平坦なテーブルの上に置くとテーブルと金属部材との間の隙間が大きくなる。この状態で、裏面側を摩擦攪拌接合すると、摩擦攪拌による熱がテーブルに抜けていきにくいため、金属部材に残る熱量が大きくなる。その結果、金属部材に残った熱とも相まって裏面側が凹状となるように大きく反ってしまう。 This is because, after the friction stir welding of the surface side, the metal member is along a concave shape on the surface side due to heat shrinkage, so when the metal member along the surface is turned over and placed on a flat table, the table and the metal member The gap between is increased. If the back side is friction stir welded in this state, the amount of heat remaining on the metal member increases because the heat from the friction stir does not easily escape to the table. As a result, combined with the heat remaining in the metal member, the back side is greatly warped so as to be concave.
 そこで、実施例5のように、係合部M側よりも突き合せ部N側におけるボビンツールの移動速度を早く設定すれば、突き合せ部Nへの接合時の入熱を小さくすることができる。これにより、接合後のダブルスキンパネルが反るのを防ぐことができる。 Thus, if the moving speed of the bobbin tool on the butt portion N side is set faster than the engaging portion M side as in the fifth embodiment, the heat input at the time of joining to the butt portion N can be reduced. . Thereby, it can prevent that the double skin panel after joining curves.
<実施例6>
 実施例6では、板状端部の板厚と長さの関係を調査するために試験を行った。図54の(a)に示すように、断面視コの字状を呈し、同形状からなる供試体401,301の端部同士を突き合わせ、突き合せ部Nに対して摩擦攪拌接合を行った。各供試体401は、支持部材402と、支持部材402から垂直に延設された板状端部403と、を備えている。
<Example 6>
In Example 6, a test was conducted to investigate the relationship between the plate thickness and the length of the plate-like end portion. As shown in (a) of FIG. 54, the ends of the specimens 401 and 301 having the same U-shape in cross-sectional view were butted together, and friction stir welding was performed on the butted portion N. Each specimen 401 includes a support member 402 and a plate-like end portion 403 extending vertically from the support member 402.
 供試体401の高さは30mm、延長寸法は500mmに設定した。図54の(a)及び(b)に示すように、板状端部403の板厚a及び支持部材402から板状端部403の先端までの長さcをパラメータとして各条件において摩擦攪拌接合を行った。図54の(b)に実施例6の各条件と接合の品質について表にまとめた。ボビンツールの寸法については、図54の(b)の表に示すとおりである。 The height of the specimen 401 was set to 30 mm, and the extension dimension was set to 500 mm. As shown in FIGS. 54A and 54B, the friction stir welding is performed in each condition using the plate thickness a of the plate-like end 403 and the length c from the support member 402 to the tip of the plate-like end 403 as parameters. Went. FIG. 54 (b) summarizes the conditions and bonding quality of Example 6 in a table. The dimensions of the bobbin tool are as shown in the table of FIG. 54 (b).
 図54の(b)に示すように、板厚a=3mm、支持部材402から板状端部403の先端までの長さc=50mmの場合、接合不良となった。また、板厚a=6mmの場合は、長さc=70mm、80mmのときに接合不良となった。また、板厚a=12mmの場合は、長さc=120mmのときに接合不良となった。つまり、支持部材402に対して板状端部403の長さが長すぎると、板状端部403の先端側が変形しやすくなるため接合不良になりやすい。 As shown in FIG. 54 (b), when the plate thickness a = 3 mm and the length c from the support member 402 to the tip of the plate-like end portion 403 = 50 mm, poor bonding occurred. Further, in the case of the plate thickness a = 6 mm, bonding failure occurred when the length c = 70 mm and 80 mm. Further, in the case of the plate thickness a = 12 mm, bonding failure occurred when the length c = 120 mm. That is, if the length of the plate-like end portion 403 is too long with respect to the support member 402, the tip end side of the plate-like end portion 403 is likely to be deformed, which tends to cause poor bonding.
 図55は、実施例6の相関関係を示したグラフである。図55の横軸は板厚aを示し、縦軸は支持部材402から板状端部403の先端までの長さcを示している。このグラフから、支持部材から先端までの長さcは、長さc≦7.0×板厚a+18.5mmを満たすように設定することが好ましい。この条件であれば、板状端部403の変形を抑制できるため、接合不良になりにくい。 FIG. 55 is a graph showing the correlation of Example 6. In FIG. 55, the horizontal axis indicates the plate thickness a, and the vertical axis indicates the length c from the support member 402 to the tip of the plate-like end 403. From this graph, the length c from the support member to the tip is preferably set so as to satisfy the length c ≦ 7.0 × plate thickness a + 18.5 mm. Under these conditions, deformation of the plate-like end portion 403 can be suppressed, so that poor bonding is unlikely.
 1   摩擦攪拌装置
 1a  チャック部
 2   回転ツールユニット
 3   ホルダー
 4   スライド軸
 5   ボビンツール
 11  第一ショルダ
 12  第二ショルダ
 13  スクリューピン
 13a 上部螺旋溝
 13b 下部螺旋溝
 100A中空形材
 100B中空形材
 N   突き合せ部
 T   金属板の厚さ
 W   塑性化領域(接合部)
 Z   ショルダ間距離
DESCRIPTION OF SYMBOLS 1 Friction stirrer 1a Chuck part 2 Rotary tool unit 3 Holder 4 Slide shaft 5 Bobbin tool 11 1st shoulder 12 2nd shoulder 13 Screw pin 13a Upper spiral groove 13b Lower spiral groove 100A hollow profile 100B hollow profile N Butting part T Thickness of metal plate W Plasticization region (joint)
Z Shoulder distance

Claims (28)

  1.  摩擦攪拌装置のチャック部に固定される回転ツールユニットであって、
     前記チャック部に固定される筒状のホルダーと、
     前記ホルダーの内部に挿入されたスライド軸と、
     前記スライド軸の先端に取り付けられたボビンツールと、を有し、
     前記ホルダーは、径方向に貫通し互いに対向する一対の長孔を有し、
     前記スライド軸は、前記一対の長孔に挿入されるノックピンと、前記スライド軸に対して前記ノックピンを固定する固定部材とを有し、
     前記ボビンツールは、前記スライド軸に固定される第一ショルダと、前記第一ショルダに対して離間する第二ショルダと、前記第一ショルダと前記第二ショルダを連結するスクリューピンと、を有し、
     前記長孔は、軸方向に沿って延設されており、
     前記スライド軸は、前記長孔と前記ノックピンの係合により前記ホルダーと一体的に回転するとともに、前記長孔の範囲で軸方向に移動することを特徴とする回転ツールユニット。
    A rotary tool unit fixed to the chuck of the friction stirrer,
    A cylindrical holder fixed to the chuck portion;
    A slide shaft inserted into the holder;
    A bobbin tool attached to the tip of the slide shaft,
    The holder has a pair of elongated holes that penetrate in the radial direction and face each other,
    The slide shaft includes a knock pin inserted into the pair of long holes, and a fixing member that fixes the knock pin to the slide shaft,
    The bobbin tool has a first shoulder fixed to the slide shaft, a second shoulder spaced from the first shoulder, and a screw pin connecting the first shoulder and the second shoulder,
    The long hole is extended along the axial direction,
    The slide tool unit rotates together with the holder by the engagement of the long hole and the knock pin, and moves in the axial direction within the range of the long hole.
  2.  前記スライド軸は、軸方向に貫通する貫通孔と前記貫通孔に直交するピン孔とを有し、前記ピン孔に前記ノックピンが挿入され、
     前記貫通孔に前記固定部材が挿入され、前記固定部材の先端が前記ノックピンに当接していることを特徴とする請求の範囲第1項に記載の回転ツールユニット。
    The slide shaft has a through hole penetrating in the axial direction and a pin hole orthogonal to the through hole, and the knock pin is inserted into the pin hole,
    2. The rotary tool unit according to claim 1, wherein the fixing member is inserted into the through hole, and a tip of the fixing member is in contact with the knock pin.
  3.  前記ノックピンの中央部には他の部分より細いくびれ部が形成されており、
     前記固定部材の先端は前記くびれ部に当接していることを特徴とする請求の範囲第1項に記載の回転ツールユニット。
    A narrower portion is formed at the center of the knock pin than other portions,
    The rotary tool unit according to claim 1, wherein a distal end of the fixing member is in contact with the constricted portion.
  4.  前記ボビンツールは、前記スクリューピンの一端側と前記第一ショルダとを締結する第一締結具と、前記スクリューピンの他端側と前記第二ショルダとを締結する第二締結具と、を有し、
     前記第一ショルダの内部には、軸方向に延設され平断面が非円形を呈する第一係合孔が形成されており、
     前記第二ショルダの内部には、軸方向に延設され平断面が非円形を呈する第二係合孔が形成されており、
     前記スクリューピンは、
     前記第一ショルダと前記第二ショルダの間に露出する螺旋溝部と、
     一端側に形成され、前記第一係合孔に係合する第一係合軸部と、
     他端側に形成され、前記第二係合孔に係合する第二係合軸部と、を有することを特徴とする請求の範囲第1項に記載の回転ツールユニット。
    The bobbin tool has a first fastener that fastens one end side of the screw pin and the first shoulder, and a second fastener that fastens the other end side of the screw pin and the second shoulder. And
    Inside the first shoulder, a first engagement hole extending in the axial direction and having a non-circular cross section is formed.
    A second engagement hole extending in the axial direction and having a non-circular cross section is formed in the second shoulder,
    The screw pin is
    A spiral groove exposed between the first shoulder and the second shoulder;
    A first engagement shaft portion formed on one end side and engaged with the first engagement hole;
    The rotary tool unit according to claim 1, further comprising: a second engagement shaft portion that is formed on the other end side and engages with the second engagement hole.
  5.  前記ボビンツールは、前記スクリューピンの一端側と前記第一ショルダとを締結する第一締結具と、前記スクリューピンの他端側と前記第二ショルダとを締結する第二締結具と、を有し、
     前記第一ショルダの内部には、軸方向に延設された第一孔と、前記ショルダの側面側から前記第一孔に連通する第一ネジ係累孔とが形成されており、
     前記第二ショルダの内部には、軸方向に延設された第二孔と、前記ショルダの側面側から前記第二孔に連通する第二ネジ係累孔とが形成されており、
     前記スクリューピンは、
     前記第一ショルダと前記第二ショルダの間に露出する螺旋溝部と、
     一端側に形成され、前記第一孔に挿入される第一軸部と、
     前記第一軸部の外周面に平坦に形成された第一平坦部と、
     他端側に形成され、前記第二孔に挿入される第二軸部と、
     前記第二軸部の外周面に平坦に形成された第二平坦部と、を有し、
     前記第一ショルダの側面側から前記第一ネジ係累孔に第一係止ネジをねじ込んで、前記第一係止ネジの先端を前記第一平坦部に当接させ、
     前記第二ショルダの側面側から前記第二ネジ係累孔に第二係止ネジをねじ込んで、前記第二係止ネジの先端を前記第二平坦部に当接させることを特徴とする請求の範囲第1項に記載の回転ツールユニット。
    The bobbin tool has a first fastener that fastens one end side of the screw pin and the first shoulder, and a second fastener that fastens the other end side of the screw pin and the second shoulder. And
    Inside the first shoulder, there are formed a first hole extending in the axial direction and a first screw engagement hole communicating with the first hole from the side surface side of the shoulder,
    Inside the second shoulder, there are formed a second hole extending in the axial direction and a second screw engagement cumulative hole communicating with the second hole from the side surface side of the shoulder,
    The screw pin is
    A spiral groove exposed between the first shoulder and the second shoulder;
    A first shaft portion formed on one end side and inserted into the first hole;
    A first flat portion formed flat on the outer peripheral surface of the first shaft portion;
    A second shaft portion formed on the other end side and inserted into the second hole;
    A second flat portion formed flat on the outer peripheral surface of the second shaft portion,
    A first locking screw is screwed into the first screw engagement hole from the side of the first shoulder, and the tip of the first locking screw is brought into contact with the first flat portion,
    The second locking screw is screwed into the second screw engaging hole from the side surface side of the second shoulder, and the tip of the second locking screw is brought into contact with the second flat portion. The rotary tool unit according to item 1.
  6.  前記第一ショルダの下面及び前記第二ショルダの上面の少なくとも一方には、前記ボビンツールの軸周りに螺旋状に形成された凹溝が形成されていることを特徴とする請求の範囲第1項に記載の回転ツールユニット。 2. A concave groove formed in a spiral shape around an axis of the bobbin tool is formed in at least one of the lower surface of the first shoulder and the upper surface of the second shoulder. Rotating tool unit as described in
  7.  請求の範囲第1項に記載の回転ツールユニットを用いて、一対の金属板を接合する摩擦攪拌接合方法であって、
     前記金属板の端面同士を突き合わせる突き合せ工程と、
     前記端面同士を突き合せて形成された突き合せ部に回転させた前記ボビンツールのスクリューピンを移動させて前記端面同士を摩擦攪拌接合する接合工程と、を含み、
     前記接合工程では、第一ショルダ及び第二ショルダ間の距離を前記金属板の厚さ以下に設定しておき、摩擦攪拌によって前記金属板が変形して前記金属板の位置が前記ボビンツールの軸方向に変位した際に、その変位に追従して前記ボビンツールが軸方向に移動することを特徴とする摩擦攪拌接合方法。
    Using the rotary tool unit according to claim 1, a friction stir welding method for joining a pair of metal plates,
    A butting step of butting the end faces of the metal plates;
    A joining step of friction stir welding the end faces by moving a screw pin of the bobbin tool rotated to the abutting portion formed by abutting the end faces.
    In the joining step, the distance between the first shoulder and the second shoulder is set to be equal to or less than the thickness of the metal plate, the metal plate is deformed by friction stirring, and the position of the metal plate is the axis of the bobbin tool. A friction stir welding method, wherein the bobbin tool moves in the axial direction following the displacement when displaced in the direction.
  8.  前記端面同士の隙間を1.00mm以下に設定する場合、
     前記金属板の厚さと前記ショルダ間の距離とを、0.2mm≦{(金属板の厚さ)-(ショルダ間の距離)}≦0.8mmとなるように設定することを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。
    When the gap between the end faces is set to 1.00 mm or less,
    The thickness of the metal plate and the distance between the shoulders are set so that 0.2 mm ≦ {(thickness of the metal plate) − (distance between shoulders)} ≦ 0.8 mm. The friction stir welding method according to claim 7,
  9.  前記端面同士の隙間を1.00mmより大きく1.75mm以下に設定する場合、
     前記金属板の厚さと前記ショルダ間の距離とを、0.4mm≦{(金属板の厚さ)-(ショルダ間の距離)}≦0.8mmとなるように設定することを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。
    When the gap between the end faces is set to be larger than 1.00 mm and not larger than 1.75 mm,
    The thickness of the metal plate and the distance between the shoulders are set so that 0.4 mm ≦ {(thickness of the metal plate) − (distance between shoulders)} ≦ 0.8 mm. The friction stir welding method according to claim 7,
  10.  前記ショルダのうち前記金属板に接触する面の直径を二乗した値を、前記スクリューピンの外径を二乗した値で除した値が2.0より大きくなるように設定されていることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。 A value obtained by dividing a value obtained by squaring the diameter of a surface of the shoulder that contacts the metal plate by a value obtained by squaring the outer diameter of the screw pin is set to be larger than 2.0. The friction stir welding method according to claim 7.
  11.  前記スクリューピンの外径を二乗した値を、前記ショルダのうち前記金属板に接触する面の直径を二乗した値から前記スクリューピンの外径を二乗した値を引いた値で除した値が0.2より大きく、かつ、前記スクリューピンの外径を二乗した値を、前記スクリューピンの外径と前記ショルダ間の距離との積で除した値が1.2よりも大きくなるように設定されていることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。 A value obtained by dividing a value obtained by squaring the outer diameter of the screw pin by a value obtained by subtracting a value obtained by squaring the outer diameter of the screw pin from a value obtained by squaring the diameter of a surface of the shoulder that contacts the metal plate is 0. .2 and a value obtained by dividing the square of the outer diameter of the screw pin by the product of the outer diameter of the screw pin and the distance between the shoulders is set to be larger than 1.2. The friction stir welding method according to claim 7, wherein the friction stir welding method is provided.
  12.  前記接合工程において、突き合わされた部分の前記金属板の厚さが異なる場合に、前記金属板の厚さが大きい方の前記金属板を前記ボビンツールの進行方向に対して左側に配置した場合には、前記ボビンツールを右回転させることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。 In the joining step, when the thickness of the metal plate at the abutted portion is different, when the metal plate with the larger thickness of the metal plate is arranged on the left side with respect to the traveling direction of the bobbin tool 8. The friction stir welding method according to claim 7, wherein the bobbin tool is rotated clockwise.
  13.  前記接合工程において、突き合わされた部分の前記金属板の厚さが異なる場合に、前記金属板の厚さが大きい方の前記金属板を前記ボビンツールの進行方向に対して右側に配置した場合には、前記ボビンツールを左回転させることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。 In the joining step, when the thickness of the metal plate at the abutted portion is different, when the metal plate with the larger thickness of the metal plate is arranged on the right side with respect to the traveling direction of the bobbin tool 8. The friction stir welding method according to claim 7, wherein the bobbin tool is rotated counterclockwise.
  14.  前記接合工程では、
     前記第一ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て右回転させた前記ボビンツールのスクリューピンを移動させ、
     前記スクリューピンの外周面の前記第一ショルダ側に右ネジの螺旋溝が形成されており、この右ネジの螺旋溝が前記第一ショルダ及び前記第二ショルダ間の距離に対して25%以上の割合で形成されていることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。
    In the joining step,
    After the first shoulder and the decorative surface of the metal plate are opposed to each other, and the center in the axial direction of the screw pin and the center in the plate thickness direction of the metal plate are aligned, the end surfaces are butted together. Moved the screw pin of the bobbin tool rotated to the right when viewed from the slide shaft side to the butted portion,
    A right-hand spiral groove is formed on the first shoulder side of the outer peripheral surface of the screw pin, and the right-hand spiral groove is 25% or more of the distance between the first shoulder and the second shoulder. The friction stir welding method according to claim 7, wherein the friction stir welding method is formed at a ratio.
  15.  前記外周面のうち前記右ネジの螺旋溝の端部から前記第二ショルダまでの間に、左ネジの螺旋溝が形成されていることを特徴とする請求の範囲第14項に記載の摩擦攪拌接合方法。 15. The friction stirrer according to claim 14, wherein a left-handed spiral groove is formed between an end of the right-handed spiral groove and the second shoulder in the outer peripheral surface. Joining method.
  16.  前記接合工程では、
     前記第一ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て左回転させた前記ボビンツールのスクリューピンを移動させ、
     前記スクリューピンの外周面の前記第一ショルダ側に左ネジの螺旋溝が形成されており、この左ネジの螺旋溝が前記ショルダ間の距離に対して25%以上の割合で形成されていることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。
    In the joining step,
    After the first shoulder and the decorative surface of the metal plate are opposed to each other, and the center in the axial direction of the screw pin and the center in the plate thickness direction of the metal plate are aligned, the end surfaces are butted together. The screw pin of the bobbin tool that has been rotated counterclockwise as viewed from the slide shaft side is moved to the abutted portion,
    A left-handed spiral groove is formed on the first shoulder side of the outer peripheral surface of the screw pin, and the left-handed spiral groove is formed at a ratio of 25% or more with respect to the distance between the shoulders. The friction stir welding method according to claim 7, wherein:
  17.  前記外周面のうち前記左ネジの螺旋溝の端部から前記第二ショルダまでの間に、右ネジの螺旋溝が形成されていることを特徴とする請求の範囲第16項に記載の摩擦攪拌接合方法。 17. The friction stirrer according to claim 16, wherein a right-hand spiral groove is formed between an end of the left-hand spiral groove and the second shoulder in the outer peripheral surface. Joining method.
  18.  前記接合工程では、
     前記第二ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て右回転させた前記ボビンツールのスクリューピンを移動させ、
     前記スクリューピンの外周面の前記第二ショルダ側に左ネジの螺旋溝が形成されており、この左ネジの螺旋溝が前記ショルダ間の距離に対して25%以上の割合で形成されていることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。
    In the joining step,
    After the second shoulder and the decorative surface of the metal plate are opposed to each other, and the center in the axial direction of the screw pin and the center in the plate thickness direction of the metal plate are aligned, the end surfaces are abutted to each other. Moved the screw pin of the bobbin tool rotated to the right when viewed from the slide shaft side to the butted portion,
    A left-handed spiral groove is formed on the second shoulder side of the outer peripheral surface of the screw pin, and the left-handed spiral groove is formed at a ratio of 25% or more with respect to the distance between the shoulders. The friction stir welding method according to claim 7, wherein:
  19.  前記外周面のうち前記左ネジの螺旋溝の端部から前記第一ショルダまでの間に、右ネジの螺旋溝が形成されていることを特徴とする請求の範囲第18項に記載の摩擦攪拌接合方法。 The friction stirrer according to claim 18, wherein a right-handed spiral groove is formed between an end of the left-handed spiral groove and the first shoulder in the outer peripheral surface. Joining method.
  20.  前記接合工程では、
     前記第二ショルダと前記金属板の化粧面とを対向させ、かつ、前記スクリューピンの軸方向の中心と前記金属板の板厚方向の中心とを合わせた後、前記端面同士を突き合せて形成された突き合せ部に前記スライド軸側から見て左回転させた前記ボビンツールのスクリューピンを移動させ、
     前記スクリューピンの外周面の前記第二ショルダ側に右ネジの螺旋溝が形成されており、この右ネジの螺旋溝が前記ショルダ間の距離に対して25%以上の割合で形成されていることを特徴とする請求の範囲第7項に記載の摩擦攪拌接合方法。
    In the joining step,
    After the second shoulder and the decorative surface of the metal plate are opposed to each other, and the center in the axial direction of the screw pin and the center in the plate thickness direction of the metal plate are aligned, the end surfaces are abutted to each other. The screw pin of the bobbin tool that has been rotated counterclockwise as viewed from the slide shaft side is moved to the abutted portion,
    A right-hand spiral groove is formed on the second shoulder side of the outer peripheral surface of the screw pin, and the right-hand spiral groove is formed at a ratio of 25% or more with respect to the distance between the shoulders. The friction stir welding method according to claim 7, wherein:
  21.  前記外周面のうち前記右ネジの螺旋溝の端部から前記第一ショルダまでの間に、左ネジの螺旋溝が形成されていることを特徴とする請求の範囲第20項に記載の摩擦攪拌接合方法。 21. The friction stirrer according to claim 20, wherein a left-handed spiral groove is formed between an end of the right-handed spiral groove and the first shoulder in the outer peripheral surface. Joining method.
  22.  前記接合工程では、前記金属板の化粧面側を冷却しながら接合することを特徴とする請求の範囲第14項、請求の範囲第16項、請求の範囲第18項又は請求の範囲第20項に記載の摩擦攪拌接合方法。 In the said joining process, it joins, cooling the decorative surface side of the said metal plate, Claims Claim 16, Claim 18 or Claim Claim 20 characterized by the above-mentioned. The friction stir welding method according to 1.
  23.  請求の範囲第1項に記載の回転ツールユニットを用いて、摩擦攪拌接合される一対のダブルスキンパネルの組立体であって、
     一方の前記ダブルスキンパネルの外板の端部に形成された鉤部と他方の前記ダブルスキンパネルの外板の端部に形成された鉤部とが係合され、
     一方の前記ダブルスキンパネルの内板の端部に形成された端面と他方の前記ダブルスキンパネルの内板の端面とが係合されずに突き合わされていることを特徴とするダブルスキンパネルの組立体。
    An assembly of a pair of double skin panels that are friction stir welded using the rotary tool unit according to claim 1,
    The flange formed at the end of the outer skin of one of the double skin panels is engaged with the flange formed at the end of the outer skin of the other double skin panel,
    A set of double skin panels, characterized in that an end surface formed at an end portion of the inner plate of one of the double skin panels and an end surface of the inner plate of the other double skin panel are abutted without being engaged with each other. Solid.
  24.  各前記鉤部は、前記外板の厚肉部から延設された薄肉部と、前記薄肉部に連続し板厚方向に張り出した張出部と、を有し、
     一対の前記張出部同士が係合されていることを特徴とする請求の範囲第23項に記載のダブルスキンパネルの組立体。
    Each of the flanges includes a thin part extending from the thick part of the outer plate, and an overhang part that extends continuously in the thickness direction of the thin part,
    24. The double skin panel assembly according to claim 23, wherein the pair of overhanging portions are engaged with each other.
  25.  一方の前記ダブルスキンパネルの前記張出部の側部には張出傾斜面が形成されており、
     他方の前記ダブルスキンパネルの前記厚肉部には前記張出傾斜面に面接触する厚肉傾斜面が形成されていることを特徴とする請求の範囲第24項に記載のダブルスキンパネルの組立体。
    An overhanging inclined surface is formed on the side of the overhanging portion of one of the double skin panels,
    25. The set of double skin panels according to claim 24, wherein a thick inclined surface that is in surface contact with the protruding inclined surface is formed in the thick portion of the other double skin panel. Solid.
  26.  前記外板と前記内板の間に支持板が介設されており、
     前記支持板から前記端面までの長さをc(mm)及び前記厚肉部の板厚をt(mm)としたとき、
     c≦7.0×t+18.5mmを満たすように設定されていることを特徴とする請求の範囲第23項に記載のダブルスキンパネルの組立体。
    A support plate is interposed between the outer plate and the inner plate,
    When the length from the support plate to the end face is c (mm) and the thickness of the thick part is t (mm),
    24. The double skin panel assembly according to claim 23, wherein the assembly is set so as to satisfy c ≦ 7.0 × t + 18.5 mm.
  27.  請求の範囲第1項に記載の回転ツールユニットを用いて、一対のダブルスキンパネルの端部同士を摩擦攪拌接合するダブルスキンパネルの摩擦攪拌接合方法であって、
     一方の前記ダブルスキンパネルの外板の端部に形成された鉤部と他方の前記ダブルスキンパネルの外板の端部に形成された鉤部とを係合しつつ、一方の前記ダブルスキンパネルの内板の端部に形成された端面と他方の前記ダブルスキンパネルの内板の端面とを係合させずに突き合わせる準備工程と、
     前記準備工程で係合させた係合部及び突き合わせた突き合せ部に対して摩擦攪拌接合を行う接合工程と、を含むことを特徴とするダブルスキンパネルの摩擦攪拌接合方法。
    Using the rotary tool unit according to claim 1, a friction stir welding method of a double skin panel for friction stir welding the ends of a pair of double skin panels,
    One of the double skin panels is engaged with a flange formed at an end of the outer plate of one of the double skin panels and a flange formed at the end of the outer plate of the other double skin panel. A preparation step of abutting the end face formed at the end of the inner plate and the end face of the inner plate of the other double skin panel without engaging with each other;
    A friction stir welding method for a double skin panel, comprising: a friction stir welding for the engaging portion and the butted butted portion engaged in the preparation step.
  28.  前記接合工程では、前記係合部を接合した後に、前記突き合せ部を接合することを特徴とする請求の範囲第27項に記載のダブルスキンパネルの摩擦攪拌接合方法。 28. The double skin panel friction stir welding method according to claim 27, wherein, in the joining step, the butted portion is joined after joining the engaging portion.
PCT/JP2012/050933 2011-01-19 2012-01-18 Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel WO2012099152A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012553746A JP5864446B2 (en) 2011-01-19 2012-01-18 Rotary tool unit, friction stir welding method and double skin panel friction stir welding method
KR1020137021594A KR101471319B1 (en) 2011-01-19 2012-01-18 Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel
CN201280005439.2A CN103476532B (en) 2011-01-19 2012-01-18 The assembly of throw unit, friction stirring connecting method, double face slab and the friction stirring connecting method of double face slab

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011008547 2011-01-19
JP2011-008547 2011-01-19
JP2011-094284 2011-04-20
JP2011-094283 2011-04-20
JP2011094283 2011-04-20
JP2011094284 2011-04-20
JP2011-137620 2011-06-21
JP2011137620 2011-06-21
JP2012-000400 2012-01-05
JP2012000400 2012-01-05

Publications (1)

Publication Number Publication Date
WO2012099152A1 true WO2012099152A1 (en) 2012-07-26

Family

ID=46515775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050933 WO2012099152A1 (en) 2011-01-19 2012-01-18 Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel

Country Status (5)

Country Link
JP (1) JP5864446B2 (en)
KR (1) KR101471319B1 (en)
CN (4) CN103909344B (en)
TW (1) TWI494184B (en)
WO (1) WO2012099152A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170304934A1 (en) * 2016-04-26 2017-10-26 GM Global Technology Operations LLC Friction stir welding bobbin tool
CN107876962A (en) * 2017-11-20 2018-04-06 宁波金凤焊割机械制造有限公司 Double-shaft shoulder stirring friction welding agitator head and its welding method
JP2019008038A (en) * 2017-06-22 2019-01-17 富士ゼロックス株式会社 Rotating member and image forming apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3033957A1 (en) * 2016-08-22 2018-03-01 Novelis Inc. Components and systems for friction stir welding and related processes
CN106583915A (en) * 2016-12-30 2017-04-26 广东省焊接技术研究所(广东省中乌研究院) Novel linear friction welding method and tool
CN107470774B (en) * 2017-07-26 2019-07-12 首都航天机械公司 A kind of permanent displacement control method and device of Friction Stir Welding main shaft
JP6824213B2 (en) * 2018-03-12 2021-02-03 株式会社東芝 Friction stir welding tool, friction stir welding device, and friction stir welding method
CN108311785A (en) * 2018-04-27 2018-07-24 航天工程装备(苏州)有限公司 Packaging multi-shoulder stirring tool for welding hollow material and welding method
JP7150570B2 (en) * 2018-11-13 2022-10-11 川崎重工業株式会社 Tool for friction stir welding and friction stir welding method
JP7347234B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
KR102265585B1 (en) * 2020-06-30 2021-06-15 안동대학교 산학협력단 Friction Stir Welding(FSW) Tool with Adjustable Probe Length and Depth of Shoulder Groove
CN113084330B (en) * 2021-04-09 2023-04-07 郑州机械研究所有限公司 Friction stir machining head

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154471A (en) * 2001-11-20 2003-05-27 Hitachi Ltd Hollow member for friction stirring and joining
JP2003260574A (en) * 2002-03-07 2003-09-16 Hitachi Ltd Frictional agitation bonding method for hollow material
JP2004114138A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Friction stir welding machine
JP2004216435A (en) * 2003-01-16 2004-08-05 Mitsubishi Heavy Ind Ltd Friction stirring and joining method and apparatus
JP2004243375A (en) * 2003-02-14 2004-09-02 Mitsubishi Heavy Ind Ltd Method for producing hollow panel by friction stir joining using bobbin tool
JP2004298900A (en) * 2003-03-28 2004-10-28 Mitsubishi Heavy Ind Ltd Friction stir welding method, its welding equipment, and friction welding body
JP2005519769A (en) * 2002-04-29 2005-07-07 ザ・ボーイング・カンパニー Method and apparatus for friction stir welding
JP2008149331A (en) * 2006-12-14 2008-07-03 Nippon Sharyo Seizo Kaisha Ltd Friction stir welding apparatus and friction stir welding method
JP2009018312A (en) * 2007-07-10 2009-01-29 Sumitomo Light Metal Ind Ltd Friction stir welding device and method of manufacturing different thickness tailored blank material of different kinds of metals utilizing friction stir welding device
JP2009202212A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Method and apparatus for joining different kinds of material
JP2011083799A (en) * 2009-10-16 2011-04-28 Sumitomo Light Metal Ind Ltd Friction stir welding mechanism and friction stir welding apparatus having the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281189A (en) * 1990-03-29 1991-12-11 Toyoda Mach Works Ltd Working tool device
JPH06114783A (en) * 1992-10-09 1994-04-26 Fanuc Ltd Floating unit
CN1310732C (en) * 1996-03-19 2007-04-18 株式会社日立制作所 Friction welding method
JP3289779B2 (en) * 1999-07-30 2002-06-10 日本軽金属株式会社 Method for producing hollow panel structure and hollow extruded profile for the production
JP2001129673A (en) * 1999-10-29 2001-05-15 Kobe Steel Ltd Method of joining by friction stir welding
JP2002018580A (en) * 2000-06-30 2002-01-22 Hitachi Ltd Method of friction stir joining and joining device
JP2002346766A (en) * 2001-05-28 2002-12-04 Hitachi Ltd Friction stir welding method of members having different thickness
JP3795824B2 (en) * 2002-04-16 2006-07-12 株式会社日立製作所 Friction stir welding method
JP2004230412A (en) * 2003-01-29 2004-08-19 Kawasaki Heavy Ind Ltd Joint structure of hollow extrusion profile material
JP3836091B2 (en) * 2003-06-20 2006-10-18 三菱重工業株式会社 Friction stir welding method, apparatus therefor, and structure manufactured by the method
US7163136B2 (en) * 2003-08-29 2007-01-16 The Boeing Company Apparatus and method for friction stir welding utilizing a grooved pin
CN2675320Y (en) * 2004-02-09 2005-02-02 中国航空工业第一集团公司北京航空制造工程研究所 Retractable mixing friction-welding drill head
US7748591B2 (en) * 2004-12-14 2010-07-06 The Boeing Company Pressure foot clamp for friction stir welding machine
WO2006081819A1 (en) * 2005-02-01 2006-08-10 Dan Stir Aps A device for friction stir welding and a method of welding
JP4886277B2 (en) * 2005-11-17 2012-02-29 日野自動車株式会社 Material joining method
CN101537538B (en) * 2009-04-24 2011-01-05 重庆大学 Integrated pin tool for friction stir welding and composite method of resistance-friction stir welding thereof
CN103459081B (en) * 2011-01-19 2016-05-25 日本轻金属株式会社 The assembly of throw unit, friction stirring connecting method, double face slab and the friction stirring connecting method of double face slab
JP5492235B2 (en) * 2011-06-21 2014-05-14 日本軽金属株式会社 Double skin panel assembly and friction stir welding method for double skin panel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154471A (en) * 2001-11-20 2003-05-27 Hitachi Ltd Hollow member for friction stirring and joining
JP2003260574A (en) * 2002-03-07 2003-09-16 Hitachi Ltd Frictional agitation bonding method for hollow material
JP2005519769A (en) * 2002-04-29 2005-07-07 ザ・ボーイング・カンパニー Method and apparatus for friction stir welding
JP2004114138A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Friction stir welding machine
JP2004216435A (en) * 2003-01-16 2004-08-05 Mitsubishi Heavy Ind Ltd Friction stirring and joining method and apparatus
JP2004243375A (en) * 2003-02-14 2004-09-02 Mitsubishi Heavy Ind Ltd Method for producing hollow panel by friction stir joining using bobbin tool
JP2004298900A (en) * 2003-03-28 2004-10-28 Mitsubishi Heavy Ind Ltd Friction stir welding method, its welding equipment, and friction welding body
JP2008149331A (en) * 2006-12-14 2008-07-03 Nippon Sharyo Seizo Kaisha Ltd Friction stir welding apparatus and friction stir welding method
JP2009018312A (en) * 2007-07-10 2009-01-29 Sumitomo Light Metal Ind Ltd Friction stir welding device and method of manufacturing different thickness tailored blank material of different kinds of metals utilizing friction stir welding device
JP2009202212A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Method and apparatus for joining different kinds of material
JP2011083799A (en) * 2009-10-16 2011-04-28 Sumitomo Light Metal Ind Ltd Friction stir welding mechanism and friction stir welding apparatus having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170304934A1 (en) * 2016-04-26 2017-10-26 GM Global Technology Operations LLC Friction stir welding bobbin tool
US10239152B2 (en) * 2016-04-26 2019-03-26 GM Global Technology Operations LLC Friction stir welding bobbin tool
JP2019008038A (en) * 2017-06-22 2019-01-17 富士ゼロックス株式会社 Rotating member and image forming apparatus
CN107876962A (en) * 2017-11-20 2018-04-06 宁波金凤焊割机械制造有限公司 Double-shaft shoulder stirring friction welding agitator head and its welding method

Also Published As

Publication number Publication date
CN103894728B (en) 2016-06-01
KR20140029389A (en) 2014-03-10
CN103909343A (en) 2014-07-09
CN103909343B (en) 2016-04-27
CN103894728A (en) 2014-07-02
CN103909344B (en) 2016-05-25
CN103909344A (en) 2014-07-09
CN103476532B (en) 2016-05-25
TWI494184B (en) 2015-08-01
KR101471319B1 (en) 2014-12-09
TW201235137A (en) 2012-09-01
JP5864446B2 (en) 2016-02-17
CN103476532A (en) 2013-12-25
JPWO2012099152A1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5864446B2 (en) Rotary tool unit, friction stir welding method and double skin panel friction stir welding method
JP5559214B2 (en) Rotary tool unit, friction stir welding method and double skin panel friction stir welding method
US9566661B2 (en) Friction stir welding method
US6676008B1 (en) Friction stir welding of corner configurations
US20180043465A1 (en) Joining method and method for manufacturing composite rolled material
JP5492235B2 (en) Double skin panel assembly and friction stir welding method for double skin panel
WO2020095483A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP7247996B2 (en) Rotary tool for double-sided friction stir welding and double-sided friction stir welding method
US20110180587A1 (en) Friction stir welding tool
US11707799B2 (en) Joining method
JP2006239734A (en) Weld joint and method for forming the same
WO2019182020A1 (en) Rotary tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
JP5662953B2 (en) Joining method
KR20090103346A (en) Friction stir welding tool with exchangeable pin
JP5422011B2 (en) Joining method
Ahmed et al. On increasing productivity of micro-friction stir welding with aid of tool shoulder micro-features
WO2021149272A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP6897024B2 (en) Joining method
JP5422010B2 (en) Joining method
JP2009208121A (en) Friction stir welding method
WO2020059218A1 (en) Welding method and method for producing composite rolled material
JP2005205423A (en) Tool for frictional stir joining
JP2021154308A (en) Method of manufacturing liquid-cooled jacket and friction-stir joining method
JP2021154309A (en) Method of manufacturing liquid-cooled jacket and friction-stir joining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004057

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20137021594

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12736765

Country of ref document: EP

Kind code of ref document: A1