JP3836091B2 - Friction stir welding method, apparatus therefor, and structure manufactured by the method - Google Patents

Friction stir welding method, apparatus therefor, and structure manufactured by the method Download PDF

Info

Publication number
JP3836091B2
JP3836091B2 JP2003177195A JP2003177195A JP3836091B2 JP 3836091 B2 JP3836091 B2 JP 3836091B2 JP 2003177195 A JP2003177195 A JP 2003177195A JP 2003177195 A JP2003177195 A JP 2003177195A JP 3836091 B2 JP3836091 B2 JP 3836091B2
Authority
JP
Japan
Prior art keywords
base material
heat input
friction
plastic flow
flow region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003177195A
Other languages
Japanese (ja)
Other versions
JP2005007466A (en
Inventor
信介 平塚
広明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003177195A priority Critical patent/JP3836091B2/en
Publication of JP2005007466A publication Critical patent/JP2005007466A/en
Application granted granted Critical
Publication of JP3836091B2 publication Critical patent/JP3836091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ボビンツールを用いた摩擦攪拌接合装置とその接合方法に係り、特に、航空機やロケット、宇宙ステーション用機材若しくは圧力容器等の円筒体を多数の曲面状パネルを用いて製造する場合や、鉄道車両のように長尺の平面パネルを用いて製造する場合に好適な摩擦攪拌接合装置とその接合方法に関する。
【0002】
【従来の技術】
近年、金属材の溶接やロウ付けに代わる新しい接合手段として、摩擦撹拌接合(Friction Stir Welding:FSW)法が登場している。この摩擦撹拌接合法は、たとえば特許2712838号公報(特許文献1)に開示されているように、金属の被接合物よりも硬い材質の回転工具を用いて、母材表面を摺擦回転するショルダ部で母材表面より摩擦熱を付与しながら、母材に侵入させた攪拌軸の機械的攪拌により、攪拌軸周囲が塑性流動化し、この状態で回転工具を接合線に沿って移動させることにより、接合線周囲が塑性流動化しつつ接合線に沿って2つの素材が圧力を受けながら撹拌混練され、攪拌軸9の後方側に移行する。この結果塑性流動した素材は後方側で摩擦熱を失って急速に冷却固化するので両接合部材間は素材同士が混じり合って完全に一体化した状態で接合されるものであるが、かかる接合方法では接合時に摩擦熱を発生させるために、回転工具を接合線側に押しつける必要があり、従ってこの反力に対処するために、裏当金が使用されている。この裏当金は被加工物の面板の裏面に密着させて設置するものであり、大きな加圧力を必要とする。
【0003】
かかる欠点を解消するためにボビンツールと呼ばれる回転工具が提案されている。かかる工具は接合する被接合材の表裏両面を挟持するように一定間隔を設けた一対のショルダーが設けられているとともに、該上下一対のショルダー間に攪拌軸(攪拌軸9)が設けられているので、接合面の両面において摩擦発熱させることが出来、下側の融合不良が生じないのみならず、上下一対のショルダー間で互いの反力を受けているために、裏当金が不要になる。
【0004】
そして、このようなボビンツールを用いた摩擦攪拌接合装置においては、ショルダ面形状に工夫を凝らし、摩擦入熱の容易化を図っている。例えば特開2002−263863号公報(特許文献2)においては、上部ショルダー及び下部ショルダー表面にリング状の凸部からなる、軟化したメタルの溜まり部を設けるとともに、そのショルダー面に同心状に設けたリング状凸部を設けて、バリ発生防止とともに内部欠陥、凹みのような表面欠陥、およびバリのない健全な接合部を形成することができるものである。
【0005】
又、前記両ショルダ間が可変のボビンツールを用いた摩擦攪拌接合装置も公知技術として開示されている。例えば特開2000−33484号公報(特許文献3)において、コイルスプリングを用い下部ショルダを軸方向に可変にした技術が開示されている。係る技術によれば、上部ショルダーと下部ショルダーの間隔がコイルスプリングで調整されるため、母材に部材厚の変動、部材形状の変形が生じても、それら変形、変動にツールが倣いながら、接合が行われる。そのため、母材の変形等が生じても、接合不良を防ぐことが可能となる。
【0006】
【特許文献1】
特許2712838号
【特許文献2】
特開2002−263863号
【特許文献3】
特開2000−33484号
【0007】
【発明が解決しようとする課題】
さて、このようなボビンツールを用いた摩擦攪拌接合方法は、長尺のダブルスキンパネルやシングルスキンパネルを長手方向にのみ接合するだけで、車両、航空機、船舶、建物等の大型構造体を製造する際の平面状の広幅パネル体が容易に製造され、作業性の向上とともに、接合ひずみの発生が少なくなり、歪取り、仕上げ作業の削減を図る意味で、極めて有利である。
【0008】
そして更に近年は、航空機やロケット、宇宙ステーション用機材若しくは圧力容器等の円筒体を多数の曲率パネルを用いて製造するのにこのボビンツールを用いた摩擦攪拌接合方法を適用することが検討されている。
その接合方法を図7を用いて簡単に説明する。
図7(A)はロケットタンクシリンダをボビンツールを用いて製造する際の製造手順を示し、
まず図7(A)(1)において、平面状のシングルスキンパネルを複数枚(N)枚用意し、例えば5枚の場合は、360/5=72°の曲率でシングルスキンパネルをプレス成形して曲率パネル1A、1B…を製造する。
次に(A)(2)に示すように前記複数の曲率パネル1A、1B…が円周シリンダ状になるようにパネル同士を固定する固定治具(不図示)により軸方向長手端部を固定した状態で、前記曲率パネル同士の直線状にのびる接合線をボビンツールにより接合する。
【0009】
しかしながらこのように比較的板厚が薄いスキン板材料を接合して、ロケットタンクシリンダ等の筒体若しくは航空機の中空殻状体を製造した場合に、その接合線に沿ってボビンツールにより接合した部分が熱収縮して、一方曲率パネルの円周シリンダに対する内周側では接合線に沿って圧縮力が働き、又外周側では、接合線に沿って引っ張り力が生じるために、しかも該円筒体の軸方向両端が治具により固定されているために、その熱収縮部分が中央側に逃げ、結果として円筒体軸方向両端の直径に対して中央側の直径が小さくなる円筒部中央側の収縮となり、(A)(3)及び(B)に示すようにその部分においてそりが発生する場合がある。
又平面パネルの接合の場合でもパネル単体の初期そりが原因で同様なそりが発生する場合がある。
【0010】
そして、航空機、ロケット等の中空構造体のように速度を持って円筒軸方向に運行移動する物体においては、外表面のそりは流体損失の発生源となるために、その反り等を排除する工夫が必要である。
特にロケットシリンダにおいては、その運行移動速度が音速を大きく超えるために、微細なそりが機軸方向の座屈強度等に大きく影響する。
【0011】
このようなそりを除去する方法として図7(C)に示す逆ぞり法が行われている。
逆反り法は接合によりそる量を見越して接合前に前記曲面パネル板のセット(固定)段階で逆方向に反った状態で固定した後、前記曲率パネル同士の直線状にのびる接合線をボビンツールにより接合する。
これにより接合によるそりを前もって逆そりした部分で相殺され、そりのない面一なパネル面が形成できる。
しかしながらかかる逆反り方は接合時に生じる見越し設定量や逆反り状態でのセット(固定)方法が難しく品質のばらつきが大きい。
【0012】
本発明はかかる従来技術の欠点を鑑み、ボビンツールを用いて摩擦攪拌接合により被接合材を曲面状に若しくは平面状に目的製品を製造する場合に、鉄道、航空機、ロケット等の移動構造体の場合は流体抵抗の原因となり、又船舶の圧力容器や広幅パネルの場合は強度低下の原因となる反り等の発生を抑制することができる摩擦攪拌接合方法及び該方法により製造された円周状若しくは平板状の接合体を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の原理を図1乃至図4に基づいて説明する。
ボビンツール6は、一般的に母材表面と裏面とをそれぞれ摺擦回転する一対の摩擦入熱部材(ショルダ部8A、8B)の母材摺擦面(ショルダ面)で母材両面より摩擦熱を付与しながら、母材に侵入させた攪拌の機械的攪拌により、攪拌軸9周囲が塑性流動化し、この状態でボビンツール6を接合線に沿って移動させて接合されるものであるが、かかる回転工具では一対の摩擦入熱部材のショルダ面にそれぞれに正逆反対方向に刻設された螺旋溝80をもっており、これは図2のように接合部中心部に向けて軟化材を集積させる効果がある。すなわち、母材表面の摺擦により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域3Aと裏面側塑性流動域3Bを生成する。
この場合に一般的には母材表側と裏面側のショルダ直径は同径であり、そしてそのショルダの押圧により生じる摩擦入熱量は母材への表面倣い若しくはギャップ(開先)条件等によって押圧量が設定される。
【0014】
そして、例えば従来技術においては、母材表側と裏面側のショルダの押圧力は同一になるように制御されており、この場合は母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域3Aと裏面側塑性流動域3Bとの中立線(両塑性流動域の間に流動域境界面、以下流動域境界面を垂直断面で見た場合に線であるのでこれを中立線と呼ぶ)は母材垂直断面における中心線(以下母材中心線という)上と一致する。
そして図2(A)に示すように、表面側塑性流動域3Aと裏面側塑性流動域3Bとの中立線が母材中心線上と一致した場合、結果として上下(表裏)で収縮のバランスがとられ、平板状パネルの場合は、反りが生じることがなく面一の広幅パネルが形成される。
【0015】
しかしながらロケットタンクシリンダ等の筒体や殻体を製造した場合に、その接合線に沿ってボビンツール6により接合した部分が熱収縮して、一方曲率パネルの円周シリンダに対する内周側では接合線に沿って圧縮力が働き、又外周側では、接合線に沿って引っ張り力が生じるために、しかも該円筒体の軸方向両端が治具により固定されているために、その熱収縮部分が中央側に逃げ、結果として筒体軸方向両端の直径に対して中央側の直径が小さくなる筒部中央側の収縮となり、その部分においてそりが発生することは前記したとおりである。
又平面パネルの接合し長尺の場合でもパネル単体の初期そりが原因で同様なそりが発生する場合がある。
【0016】
そこで本発明は、図1(B)に示す母材表面側より母材中心側に向かう表面側塑性流動域3Aの厚さtと母材裏面側より母材中心側に向かう裏面側塑性流動域3Bの厚さtとの関係を異ならせて設定することにより、図2(B)に示すように、塑性流動域の大きい方つまりt>tの方向に、母材収縮量が大きくなる。
そこで本発明は、表面側塑性流動域3Aと裏面側塑性流動域3B間に形成される中立線を、母材中心線(中心線)より、そりが発生する側の表裏いずれかの面側に偏位するように制御することにより、表面側塑性流動域3Aと裏面側塑性流動域3Bそれぞれの収縮量を制御することができ、結果としてロケットタンクシリンダ等の円筒体のようにそりが発生する接合体に対しそりの矯正のみならず、そりが発生した接合体の補修及び人為的なそりを形成することも可能である。
【0017】
そこで本発明は、接合線上に位置する母材表裏両面を挟持する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えた回転工具6(以下ボビンツールという)を用い、該ボビンツールを、母材接合線に沿って移動させながら前記接合を行う摩擦攪拌接合方法において、
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となる(筒体若しくは殻体を含む)曲率パネルを製造する際に、前記一対の摩擦入熱部材のそれぞれの母材入熱により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域3Aと裏面側塑性流動域3Bと該両塑性流動域の間に流動域境界面(以下流動域境界面を垂直断面で見た場合に線であるのでこれを中立線と呼ぶ)を生成するとともに、
前記両塑性流動域の間に生成される中立線が、母材垂直断面における中心線(以下母材中心線という)より、前記母材表面側に偏位するように、母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせて接合することを特徴とする。
又本発明は、前記両塑性流動域の間に生成される中立線が、母材中心線より、前記母材表面側に偏位するように、前記攪拌軸の攪拌方向をその途中位置で異ならせた攪拌軸により生成されていることを特徴とする。具体的には前記それぞれの摩擦入熱部材の母材入熱量を異ならせる条件が、それぞれの摩擦入熱部材の母材摺擦面に形成された螺旋溝の相違が、螺旋の螺旋ピッチ若しくは溝深さ、又は螺旋溝間に形成される螺旋条の曲率半径若しくは螺旋条肉厚のいずれか1若しくは複数の組み合わせであ
【0018】
かかる発明によれば、図1のように前記それぞれの摩擦入熱部材の母材摺擦面に形成された螺旋溝の相違が、塑性流動域の集積力に差異をつけ、板厚方向の塑性流動に方向性を持たせ、接合後の母材の反り量を制御することができる。
【0019】
すなわち、FSWの塑性流動域は図3のように接合線側に収縮する傾向があるため、塑性流動域の大きい方つまり溝深さが大きい方がより収縮しようとする為、被接合材の上下(表裏)で収縮のアンバランスが生じ反りが発生すると考えられる。本発明ではこのアンバランスを任意に作り出すことにより積極的に反りを制御する。したがって反りが必要ないときは反りなし接合、元の部品が反っていて接合により矯正したいときは成形接合、任意の反りが必要なときは反りを発生させることも可能である。
【0020】
又母材入熱量を異ならせる条件が、それぞれの摩擦入熱部材の直径の相違を含む母材接触面積の相違として構成してもよい。
【0021】
これは、母材と摩擦入熱部材との接触で発生する摩擦熱が、母材に対する摩擦入熱部材の押圧荷重に依存することを利用している。表面摩擦入熱部材と裏面摩擦入熱部材の押圧荷重を異ならせることで、摩擦熱発生量に差異を生じさせ、母材表面と裏面における塑性流動性のバランスを崩し、被接合材板材内部の収縮力のアンバランスを発生させるものである。
【0022】
又前記それぞれの塑性流動域間に形成される中立線の偏位が前記攪拌軸9の螺旋条の螺旋方向を異ならせてもよい。
すなわち、図4のように板厚方向中心部でねじ方向が逆転するねじが構成されている。このねじにより板厚方向中心部へ向け塑性流動を発生させている。このねじが逆転する位置を任意に変化させることにより塑性流動を上下で強弱つけ図2で示したような差異により反りを制御することも可能である。
【0023】
そしてかかる発明を効果的に達成する装置として、接合線上に位置する母材表裏両面を挟時する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えたボビンツール、該ボビンツール回転により、前記一対の摩擦入熱部材のそれぞれより母材に入熱させて、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域裏面側塑性流動域該両塑性流動域の間に流動域境界面(以下中立線という)を生成させながら母材接合線に沿ってボビンツールに押圧力を付勢する駆動部を具えた摩擦攪拌接合装置において、
スキンパネルからなる母材同士を長手方向に接合して母材表面側が凸の曲率となる曲率パネルを製造する装置であって、
前記両塑性流動域の間に生成される中立線が、母材中心線より、前記凸の曲率となる母材表面側に偏位するように、母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材接触面積を異ならせるか、若しくは、それぞれの摩擦入熱部材の押圧荷重を異ならせて構成したことを特徴とする。
そして前記母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材接触面積を異ならせて形成してもよく、前記ボビンツール6の攪拌軸9の螺旋条を、母材中心より表裏いずれかの面側に偏位させた位置より螺旋方向を異ならせて形成し、該螺旋条の螺旋方向の相違により前記中立線を偏位させてもよい。
【0024】
更に母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材摺擦面形状がボビンツール6回転方向に沿って軸中心に向かう螺旋溝80である場合において、該螺旋溝80の螺旋ピッチ若しくは溝深さ、又は螺旋溝間に形成される螺旋条の曲率半径若しくは螺旋条肉厚のいずれか1若しくは複数を、それぞれの摩擦入熱部材間で異ならせるのがよい。
【0025】
そして本発明は、接合線上に位置する母材表裏両面を挟時する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えたボビンツールと、該ボビンツールの回転により前記一対の摩擦入熱部材のそれぞれより母材に入熱させて、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成させながら母材接合線に沿ってボビンツールに押圧力を付勢する駆動部を具えた摩擦攪拌接合装置において、
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となる(筒体若しくは殻体を含む)曲率パネルを製造する装置であって、
前記両塑性流動域の間に生成される中立線が、母材中心線より、前記凸の曲率となる母材表面側に偏位するように、
前記ボビンツールの攪拌軸の螺旋条を、母材中心線より母材表面側に偏位させた位置より螺旋方向を異ならせて形成したことを特徴とする。
かかる発明によれば、筒体内径側に向かう収縮力のアンバランスが外周側に逆ぞりを発生させることにより反りを互いに相殺させてそりのない円筒体を形成できる。
【0026】
そして本発明は前記そりの矯正を行う摩擦攪拌接合方法としても適用でき、
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となるそりが発生している接合体についてボビンツールを母材接合線に沿って移動させながら摩擦攪拌により前記そりの矯正を行う摩擦攪拌接合方法において、
前記一対の摩擦入熱部材のそれぞれの母材入熱により、母材表面側及び裏面側よりそれぞれ母材中心線側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、該塑性流動域間に形成される中立線が、母材中心線より、 記母材裏面側に偏位するように母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせて母材接合線に沿って摩擦攪拌してそりを矯正することもでき、又前記一対の摩擦入熱部材のそれぞれの母材入熱及び攪拌軸の攪拌により、母材表面側及び裏面側よりそれぞれ母材中心線側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、該塑性流動域間に形成される中立線が、母材中心線より、前記母材裏面側に偏位するように、前記攪拌軸の攪拌方向をその途中位置で異ならせた攪拌軸により母材接合線に沿って摩擦攪拌して前記そりを矯正することができる。
又本発明は、そりを持たせた接合体の製造を行う場合にも適用でき、ボビンツールをスキンパネルからなる母材接合線に沿って移動させながら摩擦攪拌により母材表面側が凸の曲率となるそりを持たせた接合体の製造を行う摩擦攪拌接合方法において、
前記一対の摩擦入熱部材のそれぞれの母材入熱により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、
前記両塑性流動域の間に生成される中立線が、母材中心線より母材裏面側に偏位するように母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせて接合することによりそりを有する接合体を製造するか、又前記一対の摩擦入熱部材のそれぞれの母材入熱及び攪拌軸の攪拌により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、前記両塑性流動域の間に生成される中立線が、母材中心線より、母材裏面側に偏位するように、前記攪拌軸の攪拌方向をその途中位置で異ならせて接合することによりそりを有する接合体を製造することもできる。
【0027】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。但し本実施の形態に記載される製品の寸法、形状、材質、その相対配置等は特に特定的な記載がない限りは本発明の範囲をそれのみに限定する主旨ではなく、単なる説明例に過ぎない。
【0028】
先ず本発明が適用される摩擦攪拌接合装置本体50の要部構成を図8に基づいて説明する。
図8は送りモータにより駆動する送りねじを用いた摩擦攪拌接合装置の実施例、特に裏面側ショルダ8Bと表面側ショルダ8Aの両者を同期して回転可能にした実施例で、図中8Bは回転主軸4軸端に設けられた裏面側ショルダで、該回転主軸4は裏面側ショルダ8B取り付け部よりネジ状ピン軸9が形成され、更にその回転主軸4の表面側ショルダ8Aに挿設される部位をスプライン状に構成し、スプライン31を介して表面側ショルダ8Aが回転主軸に軸方向に摺動自在に嵌合されている。
更に回転主軸4の延在軸端側にはサーボモータ等の回転駆動部12を設けている。
これにより表面側ショルダ8Aと裏面ショルダ8Bが同期して回転可能に構成される。すなわち表面側ショルダ8Aは前記回転主軸4にスプライン31を介して、軸方向に摺動自在に連結され、回転主軸4の回転駆動部12により回転可能に構成されている。
そして前記回転駆動部12を構成するサーボモータは制御回路13により一定速度若しくは制御された回転数で回転可能に構成されている。
又裏面ショルダ8Bが取りつけられた回転主軸4の軸端には下側工具ベース39を介して「送りねじ21と送りねじ駆動モータ22、及びロードセル23が収納された」第1のアクチュエータ40が連結されており、又表面側ショルダ8Aは軸受25が内蔵された支持収納部を介して、「送りねじ210と送りねじ駆動モータ220及びロードセル230が収納された」からなる第2のアクチュエータ41が連結されている。
この結果、これらのアクチュエータ41、40及び回転駆動部12は制御回路13に接続され、アクチュエータ41、40の夫々のロードセル23、230の信号に基づいて送りねじ駆動モータ22、220の回転位相を制御して例えば前記裏面側と表面側のショルダ面間にスキンパネル等の母材の接合部を挟持した状態で、該接合面の表側にかかる表側ショルダ8A面の荷重と、裏側ショルダ面8Bの荷重を夫々制御し得る。
【0029】
又制御回路13では、回転駆動部12のサーボモータの回転数も制御可能に構成し、例えば裏面ショルダ1と表面側のショルダ2の摩擦入熱量を制御可能に構成し、回転速度とアクチュエータ40、41による押圧荷重のいずれの組み合わせにても制御可能に構成している。
更に制御回路13では、前記装置本体50をレール29、29により母材接合線方向に沿って移動、停止及び反転させる制御及び送りねじ駆動モータ22、220の回転位相を制御して例えば前記裏面側と表面側のショルダ面間の間隔変位、荷重さらには回転停止位置での予熱、保持時間の制御等を行っている。
【0030】
(第一の実施例)
図3に本実施例に係るボビンツールの第1の実施例の構成を示す。基本構成は前述のボビンツールと同等である。本実施例のショルダー8A、8Bは母材を摺擦するショルダ面に母材表面と裏面側に位置するそれぞれの表面側ショルダ8Aと裏面側ショルダ8Bには、母材摺擦面形状がボビンツール6回転方向に沿って軸中心に向かう螺旋溝80になるように、螺旋溝80を正逆反対方向に螺旋方向を異ならせて刻設させている点は、前記従来技術と同様であるが、該螺旋溝80のピッチP若しくは溝深さd、螺旋溝間に形成される螺旋条の曲率半径R、又は該螺旋条の肉厚のいずれか1若しくは複数を異ならせて、それぞれのショルダ面の面接触量を表裏それぞれのショルダ8で異ならせて、両ショルダの摺擦回転より母材側に前記接合線上に沿ってパネル表面側及び裏面側よりそれぞれパネル肉厚中心側に向かう表面側塑性流動域3Aと裏面側塑性流動域3Bが形成され、更にツール回転方向に沿って軸中心に向かう螺旋溝80が形成されているために、該流動域が攪拌軸9中心側に集積されて、上下母材両面側より攪拌軸9中心側に集積される軟化材集積量は、前記塑性流動域間に形成される中立線の位置に比例し、更に、この中心部に集積した流動域は、ボビンツールが進行した後、急速に冷却硬化し、それぞれの流動域で攪拌軸9側に向かう収縮力が生じながら、接合部を形成する。
【0031】
従ってかかる実施例によれば、 母材表面と裏面側に位置するそれぞれのショルダ部材のショルダ面に設けた螺旋溝80のピッチ若しくは溝深さ、螺旋溝間に形成される螺旋条の曲率半径若しくは螺旋条肉厚のいずれか1若しくは複数を異ならせた表面ショルダー8Aと裏面ショルダー8Bは前記制御回路により同一の押圧荷重で母材を狭持しながら摩擦攪拌接合を行うことにより、接合される母材外周側の収縮量を多くすることにより、筒体内径側に向かう収縮力のアンバランスが外周側に逆ぞりを発生させることにより反りを互いに相殺させてそりのない円筒体を形成できる。
すなわちショルダ前記ボビンツール6の攪拌軸9の螺旋条9A、9Bを、母材中心より表裏いずれかの面側に偏位させた位置より螺旋方向を異ならせて形成し、該螺旋条9A、9Bの螺旋方向の相違により前記収縮量の差が生じるようにする。
【0032】
本発明を図1に基づいてさらに詳細に説明する。通常、母材の上側ショルダと下側ショルダの摩擦熱が同等であれば、塑性流動域がバランスしており、軟化流動材が集積する領域の中立線は接合部の板厚中心となる(図1(B)の中心線)。
【0033】
しかし、本実施例では、前述のようにショルダー8A、8Bの母材接触面に施された、螺旋形状が異なる。そのため、ショルダーの回転によって発生する摩擦熱量が、母材の表面と裏面で差異が生じることになる。例えば、螺旋溝80の彫りの深さが深いショルダーの方が、母材との摩擦入熱が大きくなり、軟化した材料の塑性流動域が大きくなる。
【0034】
それにより、母材表面と裏面の塑性流動域の集積量バランス崩れ、表面側と裏面側の 流動性によって発生する軟化部材の集積力の中立線が板厚中心線からずれた場所となる(図1(C)の中立線)。図5(B)では表側面の塑性流動性が裏面側の塑性流動性より高く、集積力の平衡点が板厚中心より下部にある事例を示している。
【0035】
集積力の中立線が板厚中心からずれた結果、板材内部で発生する収縮力が均一ではなくなる為に、この板材内部の収縮力のアンバランスが接合後の部材に反りを発生させることになる。図5(B)の事例では、板厚上部側の部材の収縮力が下部側に比べ大きくなり、接合後の部材に反りを与えることができる。
【0036】
前述のように、ショルダーの回転によって発生する摩擦熱量によって部材の塑性流動性を制御することにより、板材内部の収縮力のバランスを制御することが可能となる。その結果、接合後の部材に任意の反り形状を与えることが可能となる。そして、部材の反りを矯正する方向に任意の反りを発生させることが可能になる。従って、初期の部材の反りを矯正する方向に任意の反りを発生させ、母材に元々発生している、部材の反り、歪みを矯正しながら接合を行うことで、構造体の反り、歪み等の発生を抑制し、反り、歪みの無い構造体の製作が可能となる。
【0037】
以下、実際の接合部材の反りの矯正例について示す。
図5に示すように2枚の部材の摩擦攪拌接合を行った。図中に示すように、ボビンツールの進行方向からみて、左側の接合部材を“Ad”、右側の接合部材を“Re”と称している。母材はそれぞれ、定盤上に周囲を固定された状態で設置される。母材の材料はアルミ合金A12219−T87である。材料長さ(=接合距離)は800mm、接合部材厚は6.35mmである。また、定盤に固定された状態での被接合材それぞれの反りはAd側で0.5mm、Re側で1.5mmである(図5)。
【0038】
ボビンツールのショルダー径は上側、下側とも20mmで、母材接触面に設けられた螺旋形状は上側ショルダーと下側ショルダーでピッチは2.0mm、溝の曲率は0.75mmで共通であるが、溝の深さは上部ショルダーでは0.7mm、下部ショルダーでは0.3mmと異なっている(図5)。また、ショルダーの母材への押し圧力は上側、下側とも同じ7kNとした。
【0039】
図5に前記溝の深さが上部ショルダーでは0.7mm、下部ショルダーでは0.3mmと異なっている円形ショルダー螺旋溝80を形成し、その回転により螺旋溝80の溝深さの相違により、塑性流動傾向が表側ショルダから裏面側ショルダ8Bに向け、下向きに生成した場合の接合前後で、接合前後のそり量変化を示す測定結果を示す。
図5(A)の上側はそりが上向きの状態で初期そり形状が発生している接合前試験片を、前記条件によって接合を行うことにより、材料の反りの矯正ができている。これは、反りが発生している側(表面側)のショルダー螺旋溝80深さ0.7と裏面側ショルダ8B螺旋溝80深さ0.3より深くし、表面側)のショルダーの摩擦熱の発生量を高くした結果、材料の塑性流動域の中立線は裏面側に変位して、(B)の回転方向アドバンスAd(前進)側でも(C)の回転方向後進(Re)側でも、板材内の収縮力のアンバランスが発生し、初期の試験片の反りと反対の方向に反りを発生させ、初期の反りを矯正することができていることが分かる。
【0040】
図5(A)の下側はそりが下向きの状態で初期そり形状が発生している接合前試験片を、前記条件によって接合を行うことにより、材料の反りの増幅ができている。これは、反りが発生している側(表面側)のショルダー螺旋溝80深さ0.7と裏面側ショルダ8B螺旋溝80深さ0.3より深くし、表面側)のショルダーの摩擦熱の発生量を高くした結果、材料の塑性流動域の中立線は裏面側に変位して、(B)の回転方向アドバンスAd(前進)側でも(C)の回転方向後進(Re)側でも、板材内の収縮力のアンバランスが発生し、初期の試験片の反りの方向に更に反りを発生させ、初期の反りを増幅できていることが分かる。
【0041】
図6に前記溝の深さが上部ショルダーでは0.3mm、下部ショルダーでは0.7mmと異なっている円形ショルダー螺旋溝80を形成し、その回転により螺旋溝80の溝深さの相違により、塑性流動傾向が裏側ショルダから表面側ショルダ8Aに向け、上向きに生成した場合の接合前後で、接合前後のそり量変化を示す測定結果を示す。
【0042】
図6(A)の上側はそりが上向きの状態で初期そり形状が発生している接合前試験片を、前記条件によって接合を行うことにより、材料の反りの矯正ができている。これは、反りが発生している側(表面側)のショルダー螺旋溝80深さ0.3と裏面側ショルダ8B螺旋溝80深さ0.7より浅くし、裏面側のショルダーの摩擦熱の発生量を高くした結果、材料の塑性流動域の中立線は表面側に変位して、(B)の回転方向アドバンスAd(前進)側でも(C)の回転方向後進(Re)側でも、板材内の収縮力のアンバランスが発生し、初期の試験片の反りの方向に増幅した反りを発生させ、初期の反りを増幅することができていることが分かる。
【0043】
図6(A)の下側はそりが下向きの状態で初期そり形状が発生している接合前試験片を、前記条件によって接合を行うことにより、材料の反りの提言ができている。これは、反りが発生している側(表面側)のショルダー螺旋溝80深さ0.3と裏面側ショルダ8B螺旋溝80深さ0.7より浅くし、裏面のショルダーの摩擦熱の発生量を高くした結果、材料の塑性流動域の中立線は表面面側に変位して、(B)の回転方向アドバンスAd(前進)側でも(C)の回転方向後進(Re)側でも、板材内の収縮力のアンバランスが発生し、初期の試験片の反りの反対方向に反りを発生させ、初期の反りを低減できていることが分かる。
【0044】
前述のような、接合時の反りの制御を行う他の手法としては、表面側ショルダ8Aと表面側ショルダ8Aの径を異ならせることによっても達成することができる。これは、径の大きいショルダーの方が母材との面積が大きいため、他方に比べ摩擦熱の発生量が大きくなり、母材の塑性流動性を高くできる。その結果、前述のように、板材内の収縮力のアンバランスを発生させ、部材の反りを矯正することが可能となる。
【0045】
また、ショルダーの押し付け圧力又は回転速度を表面側ショルダ8Aと裏面側ショルダ8Bで異ならせることにより、可能となる。これは、ショルダーの回転速度の差異が、摩擦熱発生量に差異を発生させることにより、板材内の収縮力のアンバランスを発生させ、部材の反りを矯正することが可能となる。各ショルダーの押し付け圧力、回転数を独立制御する手法は、前述した図3に示す装置構成により可能となる。
前記ボビンツールを回転させて接合を開始すると、母材に押圧されるショルダー8A、8Bと攪拌軸9で発生する摩擦熱で、母材の素材が軟化し、塑性流動性を有するようになる。この塑性流動性を有した部材はショルダー8A、8Bの回転により接合部中心に押し流されることとなる。
【0046】
更に、接合部中心に押し流された部材は、攪拌軸9の回転により母材板厚中心方向に流される。攪拌軸9の表面は2種類のネジ山形状となっているため、前記部材の板厚中心への流れは、母材の表面、裏面の双方から発生することとなる。この中心部に集積した部材は、ボビンツールが進行した後、急速に冷却硬化し、接合部を形成する。
【0047】
(第2の実施例)
ボビンツール6の攪拌軸9にはねじ条9A、9Bが形成されている。
このねじ条を図4(A)に示すように、攪拌軸9中心部でネジ方向が逆転するネジ山加工が攪拌軸9表面に施されている。この攪拌軸9の中心が母材の板厚中心と一致するようにボビンツール6セッティングし、接合を行う。この攪拌軸9表面の形状により、接合時に母材板厚中心方向に材料の塑性流動が発生する。そして、図4(A)のように、母材板厚中心で、攪拌軸9のネジ方向が逆転するようにすると、塑性流動による部材が集積する領域は板厚中心でバランスさせることができる。
【0048】
一方、攪拌軸9表面のネジ方向が逆転する位置9A、9Bを母材中心線より母材表面側、もしくは母材裏面側に偏位させ、塑性流動域を被接合材の表面と裏面間で差異をもたせ、塑性流動性によって発生する軟化部材の集積力の平衡点を母材板厚中心線からずらすと、板材内部で発生する収縮力が均一ではなくなるため、この板材内部の収縮力のアンバランスが接合後の部材に反り若しくは逆ぞりを発生させることが可能となる。
【0049】
図4(B)では板厚中心より下方に攪拌軸9のネジ方向の逆転位置9A、9Bがあり、そのため、部材表面側と裏面側の部材の集積力の平衡点が、板厚の中心部より下方になっている。そのため、板材内部の収縮力は表面側の方が高くなり、接合後は図7(C)に示すように谷型の反りを与えることが可能となる。従って、初期の部材の反りを矯正する差異は、そりの反対側で母材の表側塑性流動域と裏面側流動域間に収縮力の差が発生するように、攪拌軸9のネジ方向を設定することにより、母材に元々発生している、部材の反りを矯正することが可能となる。
【0050】
以上述べてきた、各手法は、摩擦攪拌接合における母材の反り制御方法として、単独で、または2以上の手法を組み合わせたものを適用することも当然可能である。
【0051】
【発明の効果】
以上記載したごとく、本発明によれば、摩擦攪拌接合方法において、接合部材内の収縮力のバランスを制御することにより、接合部材に任意の反りを与えることができる。よって、初期の部材の反りを矯正する方向に任意の反りを発生させ、母材に元々発生している、部材の反り、歪みを矯正しながら接合を行うことで、反り、歪み等の発生を抑制した、構造体の製造が可能となる。
【図面の簡単な説明】
【図1】 本発明に係るそりを抑制するための摩擦攪拌接合方法の原理図の1で表面側と裏面側よりの塑性流動材と裏面側の塑性流動材の集積量の差により差によりそりを制御する方法を示し、(A)は全体概要図、(B)は中心線と中立線が一致する従来の原理図、(C)はそりにあわせて中立線を偏位させた本発明の原理図である。
【図2】 本発明に係るそりを抑制するための摩擦攪拌接合方法の原理図の2で表面側と裏面側よりの塑性流動材と裏面側の塑性流動材の収縮量の差により差によりそりを制御する方法を示し、(A)は収縮力の中心線と中立線が一致する従来の原理図、(B)はそりにあわせて収縮力の中立線を偏位させた本発明の原理図、(C)はその条件でそりが生じた状態を示す母材の接合状態である。
【図3】 本発明に係るボビンツールの円形ショルダー表面の螺旋溝加工例を示す図である。
【図4】 本発明に係るボビンツールの攪拌軸9の螺旋条の加工例を示す図である。
【図5】 円形ショルダー表面の螺旋溝を塑性流動傾向が表側ショルダから裏面側ショルダ8Bに向け、下向きに生成した場合の接合前後で、接合前後のそり量変化を示す測定結果を示す。
【図6】 円形ショルダー表面の螺旋溝を塑性流動傾向が裏面側ショルダ8Bから表面側ショルダ8Aに向け、上向きに生成した場合の接合前後で、接合前後のそり量変化を示す測定結果を示す。
【図7】 (A)はロケットタンクシリンダをボビンツールを用いて製造する際の製造手順を示し、(B)はその製造手順でそりが発生している状態を示す。(C)はそりを除去する方法としての逆ぞり法を示す。
【図8】 本発明に係るボビンツールの円形ショルダーの押し圧、回転数を独立して制御するための装置構成図である。
【図9】 従来のボビンツール6の概要図を示す。
【符号の説明】
1A、1B 母材
6 ボビンツール
7 回転駆動部
8A 表面円形ショルダー
8B 裏面円形ショルダー
9 攪拌軸
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a friction stir welding apparatus using a bobbin tool and a joining method thereof, particularly when a cylindrical body such as an aircraft, a rocket, a space station equipment, or a pressure vessel is manufactured using a large number of curved panels. The present invention relates to a friction stir welding apparatus suitable for manufacturing using a long flat panel such as a railway vehicle and a joining method thereof.
[0002]
[Prior art]
  In recent years, a friction stir welding (FSW) method has emerged as a new joining means that replaces welding and brazing of metal materials. In this friction stir welding method, as disclosed in, for example, Japanese Patent No. 2712838 (Patent Document 1), a shoulder that slidably rotates on the surface of a base material by using a rotary tool made of a material harder than a metal workpiece. While the frictional heat is applied from the surface of the base material at the part, mechanical stirring of the stirring shaft that has penetrated the base materialPlasticityBy fluidizing and moving the rotary tool along the joining line in this state, the periphery of the joining line isPlasticityWhile fluidizing, the two materials are stirred and kneaded along the joining line while receiving pressure, and moved to the rear side of the stirring shaft 9. As a resultPlasticityThe flowed material loses frictional heat at the rear side and rapidly cools and solidifies, so the materials are mixed together and joined together in a completely integrated state. In order to generate frictional heat, it is necessary to press the rotary tool against the joining line side, and therefore a backing metal is used to cope with this reaction force. This backing metal is installed in close contact with the back surface of the face plate of the workpiece, and requires a large pressing force.
[0003]
  In order to eliminate such drawbacks, a rotating tool called a bobbin tool has been proposed. Such a tool is provided with a pair of shoulders that are spaced apart so as to sandwich both the front and back surfaces of the materials to be joined, and a stirring shaft (stirring shaft 9) is provided between the pair of upper and lower shoulders. Therefore, frictional heat can be generated on both sides of the joint surface, and not only the lower fusion failure does not occur, but also because a mutual reaction force is received between the pair of upper and lower shoulders, a backing metal becomes unnecessary. .
[0004]
  And in the friction stir welding apparatus using such a bobbin tool, the shoulder surface shape is devised to facilitate frictional heat input. For example, in Japanese Patent Application Laid-Open No. 2002-263863 (Patent Document 2), a soft metal reservoir portion including ring-shaped convex portions is provided on the upper shoulder surface and the lower shoulder surface, and concentrically provided on the shoulder surface. By providing a ring-shaped convex portion, it is possible to form a sound joint portion free from burrs and having no internal defects, surface defects such as dents, and burrs.
[0005]
  Further, a friction stir welding apparatus using a bobbin tool in which the distance between the shoulders is variable is also disclosed as a known technique. For example, Japanese Patent Laid-Open No. 2000-33484 (Patent Document 3) discloses a technique in which a lower shoulder is variable in the axial direction using a coil spring. According to this technology, since the distance between the upper shoulder and the lower shoulder is adjusted by the coil spring, even if the thickness of the base material is changed or the shape of the member is deformed, the tool follows the deformation and change while joining. Is done. Therefore, it is possible to prevent poor bonding even if the base material is deformed.
[0006]
[Patent Document 1]
  Japanese Patent No. 2712838
[Patent Document 2]
  JP 2002-263863 A
[Patent Document 3]
  JP 2000-33484 A
[0007]
[Problems to be solved by the invention]
  Now, the friction stir welding method using such a bobbin tool manufactures large structures such as vehicles, aircrafts, ships, buildings, etc. by simply joining long double skin panels and single skin panels only in the longitudinal direction. A flat wide panel body is easily manufactured, and it is extremely advantageous in terms of improving workability, reducing the occurrence of joining distortion, and reducing distortion and finishing operations.
[0008]
  In recent years, it has been studied to apply the friction stir welding method using this bobbin tool to manufacture a cylinder such as an aircraft, rocket, space station equipment or pressure vessel using a large number of curvature panels. Yes.
  The joining method will be briefly described with reference to FIG.
  FIG. 7A shows a manufacturing procedure for manufacturing a rocket tank cylinder using a bobbin tool.
  First, in FIG. 7 (A) (1), a plurality of (N) planar single skin panels are prepared. For example, in the case of 5 sheets, a single skin panel is press-molded with a curvature of 360/5 = 72 °. To produce curvature panels 1A, 1B,.
  Next, as shown in (A) and (2), the longitudinal end portion in the axial direction is fixed by a fixing jig (not shown) for fixing the panels so that the plurality of curvature panels 1A, 1B. In this state, a joining line extending linearly between the curvature panels is joined by a bobbin tool.
[0009]
  However, when a skin plate material having a relatively thin thickness is joined in this manner to produce a cylindrical body such as a rocket tank cylinder or a hollow shell body of an aircraft, a portion joined by a bobbin tool along the joining line Since the heat shrinks, on the other hand, a compressive force acts along the joint line on the inner peripheral side of the circumferential panel of the curvature panel, and a tensile force occurs along the joint line on the outer peripheral side. Since both ends in the axial direction are fixed by jigs, the heat shrinkage part escapes to the center, resulting in contraction on the center side of the cylindrical portion where the diameter on the center side is smaller than the diameter on both ends in the axial direction of the cylinder. , (A) As shown in (3) and (B), warpage may occur in that portion.
  Even when flat panels are joined, the same warpage may occur due to the initial warpage of the panel alone.
[0010]
  And for objects that move and move in the direction of the cylindrical axis at high speeds, such as hollow structures such as aircraft and rockets, the warpage of the outer surface becomes a source of fluid loss, so it is possible to eliminate such warpage. is required.
  In particular, in a rocket cylinder, the traveling movement speed greatly exceeds the speed of sound, so a fine warp greatly affects the buckling strength in the axial direction.
[0011]
  As a method for removing such warpage, a reverse warping method shown in FIG. 7C is performed.
  In the reverse warping method, in anticipation of the amount of warping due to joining, the curved panel plate is fixed in a state of being warped in the reverse direction at the stage of setting (fixing), and then the joining line extending in a straight line between the curvature panels is formed by the bobbin tool To join.
  As a result, the warpage due to joining is canceled out by the portion that has been warped in advance, and a flat panel surface without warpage can be formed.
  However, such a reverse warping method has a large amount of variation in quality because it is difficult to set an anticipation set amount generated at the time of joining or a method of setting (fixing) in a reverse warping state.
[0012]
  In view of the drawbacks of the prior art, the present invention provides a moving structure such as a railway, an aircraft, a rocket, etc., when a target product is manufactured in a curved shape or a planar shape by friction stir welding using a bobbin tool. In the case of a vessel pressure vessel or a wide panel, a friction stir welding method capable of suppressing the occurrence of warpage or the like that causes a decrease in strength, and a circumferential or An object is to provide a flat joined body.
[0013]
[Means for Solving the Problems]
  The principle of the present invention will be described with reference to FIGS.
  The bobbin tool 6 generally has frictional heat from both surfaces of the base material on the base material rubbing surfaces (shoulder surfaces) of a pair of frictional heat input members (shoulder portions 8A and 8B) that slidably rotate on the front surface and the back surface of the base material. Stirring while allowing the base material to penetrateaxisDue to the mechanical stirring ofPlasticityIn this state, the bobbin tool 6 is moved along the joining line to be joined. However, in such a rotary tool, the shoulder surfaces of the pair of frictional heat input members are respectively engraved in opposite directions. This has the effect of accumulating the softening material toward the center of the joint as shown in FIG. That is, the surface side toward the base material center side from the base material surface side and the back surface side due to the rubbing of the base material surface, respectively.PlasticityFlow area 3A and back sidePlasticityA flow zone 3B is generated.
  In this case, generally, the shoulder diameters on the front side and the back side of the base material are the same, and the amount of frictional heat generated by the pressing of the shoulder depends on the surface copy or gap (groove) condition of the base material. Is set.
[0014]
  And, for example, in the prior art, the pressing force of the shoulder on the base metal front side and the back side is controlled to be the same. In this case, the surface side toward the base metal center side from the base material front side and the back side, respectively.PlasticityFlow area 3A and back sidePlasticityNeutral line with flow zone 3B (bothPlasticityThe flow line boundary surface between the flow regions, which is a line when the flow region boundary surface is viewed in a vertical section, is called a neutral line)) is the center line in the base material vertical section (hereinafter referred to as the base material center line) Matches above.
  And as shown in FIG.PlasticityFlow area 3A and back sidePlasticityIf the neutral line with the flow zone 3B coincides with the center line of the base material, the balance of shrinkage is balanced up and down (front and back) as a result. It is formed.
[0015]
  However, when a cylinder or a shell such as a rocket tank cylinder is manufactured, the portion joined by the bobbin tool 6 along the joining line is thermally contracted, while the joining line is formed on the inner peripheral side of the circumferential panel of the curvature panel. A compressive force is applied along the outer peripheral side, and a tensile force is generated along the joining line on the outer peripheral side. Further, since both ends of the cylindrical body in the axial direction are fixed by a jig, the heat shrinking portion is in the center. As described above, the tube portion contracts to the side, resulting in contraction on the center side of the tube portion where the diameter on the center side becomes smaller than the diameter on both ends of the tube body in the axial direction.
  Also, joining flat panelsTheEven in the case of a long panel, the same warpage may occur due to the initial warpage of the panel alone.
[0016]
  Therefore, the present invention provides a surface side from the base material surface side shown in FIG. 1 (B) toward the base material center side.PlasticityFlow area 3A thickness t1And back side toward base metal center side from back side of base materialPlasticityThickness t of flow zone 3B2As shown in FIG. 2 (B), the relationship between and is set differently.PlasticityThe larger of the flow region, that is, t1> T2In this direction, the base material shrinkage increases.
  Therefore, the present invention provides a surface sidePlasticityFlow area 3A and back sidePlasticityBy controlling the neutral line formed between the flow zones 3B to be deviated from the base material center line (center line) to either the front or back surface side where warpage occurs, the surface sidePlasticityFlow area 3A and back sidePlasticityThe amount of contraction of each of the flow zones 3B can be controlled. As a result, not only the warpage of a joined body such as a cylinder such as a rocket tank cylinder, but also the correction of the warped joint, It is also possible to form artificial sledges.
[0017]
  Therefore, the present inventionUsing a pair of friction heat input members sandwiching the front and back surfaces of the base material located on the joining line and a rotating tool 6 (hereinafter referred to as a bobbin tool) having a stirring shaft between the friction heat input members,Bobbin toolTheIn the friction stir welding method for performing the joining while moving along the base material joining line,
  When manufacturing a curvature panel (including a cylinder or a shell) having a convex curvature on the surface of the base material by joining base materials made of skin panels, the base materials of the pair of frictional heat input members are included. Due to the heat, from the front surface side and the back surface side to the base material center side, respectively.Front sidePlasticityFlow area 3A and back sidePlasticityFlow zone 3BAnd a flow zone boundary surface between the two plastic flow zones (hereinafter referred to as a neutral line because it is a line when the flow zone boundary is viewed in a vertical section)
  Generated between the two plastic flow zonesNeutral lineFrom the center line in the vertical cross section of the base material (hereinafter referred to as the base material center line) to the base material surface sideTo deviateThe base material heat input amounts of the friction heat input members positioned on the front surface and the back surface side of the base material are different from each other.
  In the present invention, the agitation direction of the agitation shaft is different in the middle position so that a neutral line generated between the plastic flow regions is deviated from the matrix center line toward the matrix surface side. It is characterized by being generated by a stirrer shaft.Specifically, the condition that the base material heat input amount of each friction heat input member is different is that the difference in the spiral groove formed on the base material rubbing surface of each friction heat input member is spiral.groove1 or a combination of any one or more of the spiral pitch or groove depth, or the radius of curvature of the spiral strip formed between the spiral grooves or the thickness of the spiral strip.Ru.
[0018]
  According to this invention, the difference of the spiral groove formed on the base material rubbing surface of each friction heat input member as shown in FIG.PlasticityMake a difference in the accumulation capacity of the flow area,PlasticityIt is possible to control the amount of warpage of the base material after joining by giving direction to the flow.
[0019]
  That is, FSWPlasticitySince the flow zone tends to shrink toward the joining line as shown in FIG.PlasticitySince the larger flow region, that is, the larger groove depth tends to shrink, it is considered that shrinkage is unbalanced at the upper and lower sides (front and back) of the material to be joined and warpage occurs. In the present invention, the warpage is positively controlled by arbitrarily creating this unbalance. Accordingly, it is possible to generate warp-free joining when warpage is not necessary, molding joining when the original part is warped and correction is desired by joining, and warp when any warpage is required.
[0020]
  Further, the condition for changing the heat input amount of the base material may be configured as a difference in contact area of the base material including a difference in diameter of each frictional heat input member.
[0021]
  This utilizes the fact that the frictional heat generated by the contact between the base material and the frictional heat input member depends on the pressing load of the frictional heat input member against the base material. By making the pressing load of the surface friction heat input member and the back surface friction heat input member different, a difference is generated in the amount of friction heat generation,PlasticityThe balance of fluidity is lost, and an unbalance of the shrinkage force inside the bonded material plate is generated.
[0022]
  Each of the abovePlasticityThe deviation of the neutral line formed between the flow zones may make the spiral direction of the spiral strip of the stirring shaft 9 different.
  That is, as shown in FIG. 4, a screw whose screw direction is reversed at the central portion in the thickness direction is configured. Towards the center of the plate thickness direction with this screwPlasticityThe flow is generated. By arbitrarily changing the position where this screw reversesPlasticityIt is also possible to control the warpage according to the difference shown in FIG.
[0023]
    As a device for effectively achieving the invention, a bobbin tool having a pair of frictional heat input members sandwiching the front and back surfaces of the base material located on the joining line and a stirring shaft between the frictional heat input membersWhenThe bobbin toolofBy rotating, heat is applied to the base material from each of the pair of frictional heat input members, and the surface side toward the base material center side from the base material surface side and the back surface side, respectively.PlasticityFlow areaWhenBack sidePlasticityFlow areaWhenBothPlasticityIn a friction stir welding apparatus having a drive unit that urges a bobbin tool along a base material joining line while generating a fluidized zone boundary surface (hereinafter referred to as a neutral line) between the fluidized zones,
  An apparatus for manufacturing a curvature panel in which the base materials composed of skin panels are joined in the longitudinal direction and the base material surface side has a convex curvature,
  Both plasticityThe neutral line generated between the flow zones is the base metal center line.The surface side of the base material that has the convex curvatureThe base material contact areas of the respective frictional heat input members located on the front surface and the back surface of the base material are made different so as to be displacedOrAlternatively, the frictional heat input members are configured to have different pressing loads.
  The base material contact areas of the frictional heat input members positioned on the front surface and the back surface of the base material may be different from each other. The spiral strip of the stirring shaft 9 of the bobbin tool 6 The neutral line may be formed by changing the spiral direction from the position shifted to any one of the surfaces, and by shifting the spiral direction of the spiral strip.
[0024]
    Further, in the case where the base material rubbing surface shape of each frictional heat input member located on the front surface and the back surface side of the base material is a spiral groove 80 directed to the axial center along the rotation direction of the bobbin tool 6, the spiral of the spiral groove 80 Any one or more of the pitch or groove depth, or the radius of curvature of the spiral strip formed between the spiral grooves or the thickness of the spiral strip may be made different between the respective frictional heat input members.
[0025]
  And this inventionA pair of friction heat input members sandwiching the front and back surfaces of the base material located on the joining line, a bobbin tool having a stirring shaft between the friction heat input members, and the pair of friction heat input members by rotation of the bobbin tool. Heat is applied to the base material from each side, and a neutral line is generated between the surface side plastic flow region, the back side plastic flow region, and the both plastic flow regions from the front surface side and the back surface side toward the base material center side. While in the friction stir welding apparatus having a drive unit that urges the bobbin tool along the base material joining line,
  An apparatus for manufacturing a curvature panel (including a cylindrical body or a shell) by joining base materials composed of skin panels and having a convex curvature on the surface side of the base material,
  Both plasticityThe neutral line generated between the flow zones is the base metal center line.So as to deviate toward the surface of the base material having the convex curvature,
  The spiral strip of the stirring shaft of the bobbin tool was formed by changing the spiral direction from a position displaced from the base material center line to the base material surface side.It is characterized by that.
  According to this invention, the unbalance of the contraction force toward the inner diameter side of the cylinder causes a reverse warp on the outer peripheral side, thereby canceling out the warpage to each other, thereby forming a cylindrical body without warpage.
[0026]
  The present invention can also be applied as a friction stir welding method for correcting the warpage,
  Joining base materials made of skin panels and joining them where warpage has a convex curvature on the surface side of the base material. Correcting the warp by friction stirring while moving the bobbin tool along the base material joining line. In the friction stir welding method to be performed,
  By the base material heat input of each of the pair of friction heat input members, the surface side toward the base material center line side from the base material surface side and the back surface side, respectively.PlasticityFlow area and back sidePlasticityFlow area and bothPlasticityDuring the flow zoneNeutral lineAs well asPlasticityThe neutral line formed between the flow zones isin front Back side of base materialThe base material heat input amount of each friction heat input member located on the base material surface and the back surface side so as to deviate to the side can be varied to correct the warp by friction stirring along the base material joint line, orBy the base material heat input of each of the pair of frictional heat input members and stirring of the stirring shaft, a front surface side plastic flow region and a back surface side plastic flow region from the front surface side and the back surface side toward the base material center line side, A neutral line is generated between both plastic flow zones, and the plasticityThe neutral line formed between the flow zones isBack side of the base materialSo that the stirring direction of the stirring shaft is varied in the middle of the stirring shaft so as to deviate to the side.SaidThe warp can be corrected.
  The present invention can also be applied to the production of a joined body having a warp,In the friction stir welding method for manufacturing a joined body having a warp with a convex curvature on the base material surface side by friction stirring while moving the bobbin tool along the base material joining line consisting of the skin panel,
  By the base material heat input of each of the pair of friction heat input members, the surface side toward the base material center side from the base material surface side and the back surface side, respectively.PlasticityFlow area and back sidePlasticityFlow area and bothPlasticityCreate a neutral line between the flow zones,
  BothPlasticityThe neutral line generated during the flow zone isBack side of base materialManufacturing a joined body having a warp by joining the frictional heat input members located on the front surface and the back surface of the base material with different amounts of heat input to the base material so as to be displaced to the side, orBy the base material heat input and the stirring shaft stirring of the pair of friction heat input members, the front surface side plastic flow region and the back surface side plastic flow region respectively facing the base material center side from the base material front side and back surface side, Generate neutral lines between plastic flow zones,BothPlasticityThe neutral line generated during the flow zone isBack side of base materialIt is also possible to manufacture a joined body having a warp by joining the agitating shafts with different agitation directions in the middle of the agitating shafts so as to be displaced to the side.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, shapes, materials, relative arrangements, etc. of the products described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specified, but are merely illustrative examples. Absent.
[0028]
  First, the main configuration of the friction stir welding apparatus main body 50 to which the present invention is applied will be described with reference to FIG.
  FIG. 8 shows an embodiment of a friction stir welding apparatus using a feed screw driven by a feed motor, particularly an embodiment in which both the back side shoulder 8B and the front side shoulder 8A can be rotated synchronously. A back side shoulder provided at the end of the main shaft 4, the rotating main shaft 4 is formed with a screw-like pin shaft 9 from a mounting portion of the back side shoulder 8 B, and further inserted into the front side shoulder 8 A of the rotating main shaft 4. Is formed in a spline shape, and the front side shoulder 8A is slidably fitted to the rotary main shaft through the spline 31 in the axial direction.
  Further, a rotation drive unit 12 such as a servo motor is provided on the extending shaft end side of the rotation main shaft 4.
  Accordingly, the front side shoulder 8A and the rear side shoulder 8B are configured to be rotatable in synchronization. That is, the front side shoulder 8 </ b> A is slidably connected in the axial direction to the rotary main shaft 4 via the spline 31, and is configured to be rotatable by the rotation drive unit 12 of the rotary main shaft 4.
  The servo motor constituting the rotation drive unit 12 is configured to be rotatable at a constant speed or a controlled rotation speed by the control circuit 13.
  A first actuator 40 “with the feed screw 21, the feed screw drive motor 22, and the load cell 23” is connected via a lower tool base 39 to the shaft end of the rotary spindle 4 to which the back shoulder 8 B is attached. The front side shoulder 8A is connected to the second actuator 41 having “the feed screw 210, the feed screw drive motor 220 and the load cell 230 are accommodated” through a support housing portion in which the bearing 25 is built. Has been.
  As a result, the actuators 41 and 40 and the rotation drive unit 12 are connected to the control circuit 13 and control the rotation phases of the feed screw drive motors 22 and 220 based on the signals of the load cells 23 and 230 of the actuators 41 and 40, respectively. For example, in a state in which a joint portion of a base material such as a skin panel is sandwiched between the back surface side and the front shoulder surface, the load on the front shoulder 8A surface and the load on the back shoulder surface 8B on the front side of the joint surface Can be controlled respectively.
[0029]
  Further, the control circuit 13 is configured to be able to control the rotation speed of the servo motor of the rotation drive unit 12, for example, to be able to control the frictional heat input amount of the rear shoulder 1 and the front shoulder 2, and the rotational speed and the actuator 40, It is configured to be controllable in any combination of pressing loads by 41.
  Further, the control circuit 13 controls the apparatus main body 50 to move, stop, and reverse along the base material joining line direction by the rails 29 and 29 and the rotational phase of the feed screw drive motors 22 and 220 to control, for example, the back side. The distance between the shoulder surface and the front shoulder surface, the load, the preheating at the rotation stop position, the control of the holding time, and the like are performed.
[0030]
(First embodiment)
  FIG. 3 shows the configuration of the first embodiment of the bobbin tool according to this embodiment. The basic configuration is equivalent to the bobbin tool described above. The shoulders 8A and 8B of the present embodiment are formed on the shoulder surface that rubs the base material, and the surface side shoulder 8A and the back side shoulder 8B that are located on the base material front surface and the back surface side have a base material rubbing surface shape of the bobbin tool. The spiral groove 80 is engraved with different spiral directions in the opposite direction so that the spiral groove 80 is directed to the axial center along the six rotation directions. One or more of the pitch P or groove depth d of the spiral groove 80, the radius of curvature R of the spiral stripe formed between the spiral grooves, or the thickness of the spiral stripe is made different, and each shoulder surface The surface contact amount is different between the shoulders 8 on the front and back sides, and the surface side toward the panel thickness center side from the panel surface side and the back surface side along the joining line on the base material side from the sliding rotation of both shoulders.PlasticityFlow area 3A and back sidePlasticitySince the flow zone 3B is formed and the spiral groove 80 is formed toward the axis center along the tool rotation direction, the flow zone is accumulated on the center side of the stirring shaft 9 and stirred from both sides of the upper and lower base materials. The amount of softening material accumulated on the center side of the shaft 9 isPlasticityIn proportion to the position of the neutral line formed between the flow zones, the flow zone accumulated in the central part rapidly cools and hardens after the bobbin tool advances, and moves toward the stirring shaft 9 in each flow zone. A joining portion is formed while a shrinking force is generated.
[0031]
  Therefore, according to this embodiment, the pitch or groove depth of the spiral groove 80 provided on the shoulder surface of each shoulder member located on the front surface and the back surface side of the base material, the radius of curvature of the spiral strip formed between the spiral grooves, or The front shoulder 8A and the back shoulder 8B having different one or more of the thickness of the spiral strip are joined by performing friction stir welding while holding the base material with the same pressing load by the control circuit. By increasing the amount of contraction on the outer peripheral side of the material, the unbalanced contraction force toward the inner diameter side of the cylinder causes reverse warping on the outer peripheral side, thereby canceling out the warpage and forming a cylindrical body without warpage.
  That is, the spiral strips 9A, 9B of the stirrer shaft 9 of the shoulder bobbin tool 6 are formed by changing the spiral direction from the position where the spiral strips 9A, 9B are displaced from the center of the base material to either the front or back surface side. The difference in the amount of contraction is caused by the difference in the spiral direction.
[0032]
  The present invention will be described in more detail with reference to FIG. Normally, if the frictional heat of the upper shoulder and the lower shoulder of the base metal is equivalent,PlasticityThe neutral line in the region where the flow regions are balanced and the softened fluid material accumulates is the center of the thickness of the joint (center line in FIG. 1B).
[0033]
  However, in the present embodiment, the spiral shapes applied to the base material contact surfaces of the shoulders 8A and 8B are different as described above. Therefore, the amount of frictional heat generated by the rotation of the shoulder is different between the front surface and the back surface of the base material. For example, the shoulder with a deeper groove of the spiral groove 80 has a higher frictional heat input with the base material, and the softened materialPlasticityThe flow area becomes larger.
[0034]
  As a result, the front and back surfaces of the base materialPlasticityThe amount of flow area accumulation is lost, the front side and the back sidePlastic sexThe neutral line of the collective force of the softening member generated by the fluidity is a place shifted from the plate thickness center line (neutral line in FIG. 1C). In FIG. 5B, the front sidePlasticityFluidity on the back sidePlasticityIt shows an example where the fluidity is higher and the equilibrium point of the accumulation force is below the thickness center.
[0035]
  As a result of the accumulation force neutral line deviating from the center of the plate thickness, the shrinkage force generated inside the plate material is not uniform, and the unbalance of the shrinkage force inside the plate material causes warping of the joined member. . In the case of FIG. 5B, the contraction force of the member on the upper side of the plate thickness is larger than that on the lower side, and the warped member can be warped.
[0036]
  As described above, by controlling the plastic fluidity of the member by the amount of frictional heat generated by the rotation of the shoulder, it is possible to control the balance of the shrinkage force inside the plate material. As a result, it is possible to give an arbitrary warped shape to the joined member. And it becomes possible to generate | occur | produce arbitrary curvature in the direction which corrects the curvature of a member. Therefore, any warpage is generated in the direction of correcting the initial warpage of the member, and the warping, distortion, etc. of the structural body are performed by performing joining while correcting the warpage and distortion of the member originally occurring in the base material. It is possible to manufacture a structure that is free from warping and distortion.
[0037]
  Less than,An example of correcting the warpage of the actual joining member will be described.
  As shown in FIG. 5, the friction stir welding of two members was performed. As shown in the figure, the left joining member is referred to as “Ad” and the right joining member is referred to as “Re” when viewed from the traveling direction of the bobbin tool. Each base material is installed on the surface plate with its periphery fixed. The material of the base material is aluminum alloy A12219-T87. The material length (= joining distance) is 800 mm, and the joining member thickness is 6.35 mm. Further, the warpage of each of the materials to be joined when fixed to the surface plate is 0.5 mm on the Ad side and 1.5 mm on the Re side (FIG. 5).
[0038]
  The shoulder diameter of the bobbin tool is 20 mm on both the upper and lower sides, and the spiral shape provided on the base material contact surface is the upper shoulder and the lower shoulder, the pitch is 2.0 mm, and the groove curvature is 0.75 mm. The depth of the groove is different from 0.7 mm for the upper shoulder and 0.3 mm for the lower shoulder (FIG. 5). Further, the pressure applied to the shoulder base material was set to 7 kN on both the upper side and the lower side.
[0039]
  In FIG. 5, a circular shoulder spiral groove 80 is formed in which the depth of the groove is different from 0.7 mm at the upper shoulder and 0.3 mm at the lower shoulder, and due to the difference in the groove depth of the spiral groove 80 due to its rotation,PlasticityThe measurement result which shows the amount of warpage before and after joining is shown before and after joining when the flow tendency is generated downward from the front side shoulder toward the back side shoulder 8B.
  On the upper side of FIG. 5A, the warp of the material can be corrected by bonding the pre-bonding test piece in which the warp is upward and the initial warp shape is generated according to the above conditions. This is because the shoulder spiral groove 80 depth 0.7 on the warped side (surface side) and the back side shoulder 8B spiral groove 80 depth 0.3 deeper than the surface side) shoulder frictional heat. As a result of increasing the generation amount,PlasticityThe neutral line of the flow zone is displaced to the back side, and the shrinkage force in the plate material is unbalanced on both the rotation direction advance Ad (forward) side of (B) and the reverse direction (Re) side of (C). It can be seen that the warp is generated in the direction opposite to the warp of the initial test piece and the initial warp can be corrected.
[0040]
  On the lower side of FIG. 5A, the warpage of the material can be amplified by joining the test piece before joining, in which the initial warp shape is generated in a state in which the warp is downward, under the above conditions. This is because the shoulder spiral groove 80 depth 0.7 on the warped side (surface side) and the back side shoulder 8B spiral groove 80 depth 0.3 deeper than the surface side) shoulder frictional heat. As a result of increasing the generation amount,PlasticityThe neutral line of the flow zone is displaced to the back side, and the shrinkage force in the plate material is unbalanced on both the rotation direction advance Ad (forward) side of (B) and the reverse direction (Re) side of (C). It can be seen that further warping is generated in the direction of warping of the initial test piece, and the initial warping can be amplified.
[0041]
  In FIG. 6, a circular shoulder spiral groove 80 is formed in which the depth of the groove is different from 0.3 mm at the upper shoulder and 0.7 mm at the lower shoulder, and due to the difference in the groove depth of the spiral groove 80 due to its rotation,PlasticityThe measurement result which shows the amount of warpage before and after joining is shown before and after joining when the flow tendency is directed upward from the back side shoulder toward the front side shoulder 8A.
[0042]
  On the upper side of FIG. 6A, the warp of the material can be corrected by bonding the pre-bonding test piece in which the warp is upward and the initial warp shape is generated under the above conditions. This is made shallower than the shoulder spiral groove 80 depth 0.3 on the warped side (front side) and the back side shoulder 8B spiral groove 80 depth 0.7, and generation of frictional heat of the shoulder on the back side. As a result of increasing the amount of materialPlasticityThe neutral line of the flow region is displaced to the surface side, and an unbalance of the shrinkage force in the plate material occurs on both the rotation direction advance Ad (forward) side in (B) and the reverse rotation (Re) side in (C). It can be seen that an amplified warp is generated in the direction of the warp of the initial test piece, and the initial warp can be amplified.
[0043]
  In the lower side of FIG. 6A, a warp of a material can be proposed by joining a pre-joining test piece in which an initial warp shape is generated in a state in which the warp faces downward, under the above-described conditions. This is shallower than the shoulder spiral groove 80 depth 0.3 on the warped side (front side) and the back side shoulder 8B spiral groove 80 depth 0.7, and the amount of frictional heat generated on the back shoulder. As a result of raising the materialPlasticityThe neutral line of the flow region is displaced to the surface side, and an unbalance of the contracting force in the plate material occurs on both the rotational direction advance Ad (forward) side in (B) and the backward direction (Re) in (C) rotational direction. In addition, it can be seen that the warp is generated in the opposite direction to the warp of the initial test piece, and the initial warp can be reduced.
[0044]
  As another method for controlling the warping during the joining as described above, it can also be achieved by making the diameters of the surface side shoulder 8A and the surface side shoulder 8A different. This is because the shoulder with a larger diameter has a larger area with the base material, so the amount of frictional heat generated is larger than the other, and the base materialPlasticityIncreases fluidity. As a result, as described above, it is possible to generate an unbalance of the contraction force in the plate material and correct the warpage of the member.
[0045]
  In addition, the shoulder pressing pressure or rotational speed can be made different between the front side shoulder 8A and the rear side shoulder 8B. This is because the difference in the rotational speed of the shoulders causes a difference in the amount of generated frictional heat, thereby causing an unbalance of the contraction force in the plate material and correcting the warping of the member. The method of independently controlling the pressing pressure and the rotation speed of each shoulder can be realized by the above-described apparatus configuration shown in FIG.
  When the bobbin tool is rotated and joining is started, the material of the base material is softened by the frictional heat generated in the shoulders 8A and 8B and the stirring shaft 9 pressed by the base material,PlasticityIt has fluidity. thisPlasticityThe member having fluidity is pushed away to the center of the joint by the rotation of the shoulders 8A and 8B.
[0046]
  In addition,The member pushed away to the center of the joint is caused to flow in the direction of the center of the base metal plate thickness by the rotation of the stirring shaft 9. Since the surface of the stirring shaft 9 has two types of thread shapes, the flow of the member to the center of the plate thickness occurs from both the front surface and the back surface of the base material. After the bobbin tool has advanced, the member accumulated at the center rapidly cools and hardens to form a joint.
[0047]
(Second embodiment)
  Threads 9A and 9B are formed on the stirring shaft 9 of the bobbin tool 6.
  As shown in FIG. 4 (A), the surface of the stirring shaft 9 is threaded so that the screw direction is reversed at the central portion of the stirring shaft 9. The bobbin tool 6 is set so that the center of the stirring shaft 9 coincides with the center of the thickness of the base material, and bonding is performed. Due to the shape of the surface of the stirring shaft 9, the material is moved in the direction of the center of the base metal plate thickness during bonding.PlasticityFlow occurs. Then, as shown in FIG. 4A, when the screw direction of the stirring shaft 9 is reversed at the center of the base material plate thickness,PlasticityThe region where the members due to the flow are accumulated can be balanced at the center of the plate thickness.
[0048]
  On the other hand, the positions 9A and 9B where the screw direction of the surface of the stirring shaft 9 is reversed are displaced from the base material center line to the base material surface side or the base material back side,PlasticityMake the flow zone different between the front and back surfaces of the material to be joined,PlasticityIf the equilibrium point of the accumulation force of the softening member generated by the fluidity is shifted from the base plate thickness center line, the shrinkage force generated inside the plate will not be uniform. It becomes possible to generate warpage or reverse warping of the member.
[0049]
  In FIG. 4 (B), there are reversal positions 9A and 9B in the screw direction of the stirring shaft 9 below the center of the plate thickness. Therefore, the equilibrium point of the integrated force of the members on the front and back sides of the member is It is lower. Therefore, the contraction force inside the plate is higher on the surface side, and after joining, it becomes possible to give a valley-shaped warp as shown in FIG. Therefore, the difference in correcting the warping of the initial member is the opposite side of the warp on the front side of the base material.PlasticityBy setting the screw direction of the agitation shaft 9 so that a difference in contraction force occurs between the flow region and the back surface side flow region, it is possible to correct the warping of the member originally generated in the base material. Become.
[0050]
  As described above, each method described above can be applied by itself or a combination of two or more methods as a base material warpage control method in friction stir welding.
[0051]
【The invention's effect】
  As described above, according to the present invention, in the friction stir welding method, it is possible to give an arbitrary warp to the joining member by controlling the balance of the shrinkage force in the joining member. Therefore, by generating an arbitrary warp in the direction of correcting the initial warpage of the member and joining while correcting the warpage and distortion of the member originally occurring in the base material, the occurrence of warpage, distortion, etc. A suppressed structure can be manufactured.
[Brief description of the drawings]
FIG. 1 is a first view of the principle of a friction stir welding method for suppressing warpage according to the present invention.PlasticityFluidized material and back sidePlasticityThe method of controlling the warp according to the difference in the accumulated amount of fluidized material is shown. (A) is an overall schematic diagram, (B) is a conventional principle diagram in which the center line and the neutral line coincide, and (C) is in accordance with the warp. FIG. 3 is a principle diagram of the present invention in which a neutral line is displaced.
FIG. 2 is a principle diagram 2 of the friction stir welding method for suppressing warpage according to the present invention.PlasticityFluidized material and back sidePlasticityThe method of controlling the warpage by the difference in the shrinkage amount of the fluidized material is shown. (A) is a conventional principle diagram in which the center line and the neutral line of the contraction force coincide, and (B) is the neutrality of the contraction force according to the warp. The principle diagram of the present invention in which the line is deviated, (C) is a joining state of the base material showing a state in which warpage occurs under the conditions.
FIG. 3 is a view showing an example of processing a spiral groove on a circular shoulder surface of a bobbin tool according to the present invention.
FIG. 4 is a view showing a processing example of a spiral strip of a stirring shaft 9 of a bobbin tool according to the present invention.
[Figure 5] Spiral groove on the circular shoulder surfacePlasticityThe measurement result which shows the amount of warpage before and after joining is shown before and after joining when the flow tendency is generated downward from the front side shoulder toward the back side shoulder 8B.
[Fig. 6] The spiral groove on the circular shoulder surfacePlasticityThe measurement result which shows the amount of warpage before and after joining is shown before and after joining when the flow tendency is generated upward from the back side shoulder 8B toward the front side shoulder 8A.
7A shows a manufacturing procedure when a rocket tank cylinder is manufactured using a bobbin tool, and FIG. 7B shows a state in which warpage occurs in the manufacturing procedure. (C) shows a reverse sledging method as a method for removing the warp.
FIG. 8 is an apparatus configuration diagram for independently controlling the pressing force and the rotational speed of the circular shoulder of the bobbin tool according to the present invention.
FIG. 9 shows a schematic diagram of a conventional bobbin tool 6.
[Explanation of symbols]
    1A, 1B base material
    6 Bobbin tool
    7 Rotation drive
    8A circular shoulder
    8B Back circular shoulder
    9 Stirring shaft

Claims (15)

接合線上に位置する母材表裏両面を挟持する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えた回転工具(以下ボビンツールという)を用い、該ボビンツールを、母材接合線に沿って移動させながら前記接合を行う摩擦攪拌接合方法において、
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となる(筒体若しくは殻体を含む)曲率パネルを製造する際に、前記一対の摩擦入熱部材のそれぞれの母材入熱により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に流動域境界面(以下流動域境界面を垂直断面で見た場合に線であるのでこれを中立線と呼ぶ)を生成するとともに、
前記両塑性流動域の間に生成される中立線が、母材垂直断面における中心線(以下母材中心線という)より、前記母材表面側に偏位するように、母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせて接合することを特徴とする摩擦攪拌接合方法。
A pair of friction heat input members sandwiching both the front and back surfaces of the base material located on the joining line and a rotary tool (hereinafter referred to as a bobbin tool) having a stirring shaft between the friction heat input members are used. In the friction stir welding method for performing the joining while moving along a line,
When manufacturing a curvature panel (including a cylinder or a shell) having a convex curvature on the surface of the base material by joining base materials made of skin panels, the base materials of the pair of frictional heat input members are included. by heat, flow boundary surfaces between the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center side and the back side plastic flow region and both said plastic flow region (hereinafter the flow boundary surfaces perpendicular (This is called a neutral line because it is a line when viewed in cross section.)
The neutral line generated between both plastic flow region is, the center line of the base material vertical section (hereinafter referred to as preform centerline) good is, as deviates to the base material surface, the base material surface and the back surface A friction stir welding method, wherein the friction heat input members positioned on the side are joined with different amounts of heat input to the base material.
接合線上に位置する母材表裏両面を挟持する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えた回転工具(以下ボビンツールという)を用い、該ボビンツールを母材接合線に沿って移動させながら接合を行う摩擦攪拌接合方法において、
スキンパネルからなる母材同士を長手方向に接合して母材表面側が凸の曲率となる(筒体若しくは殻体を含む)曲率パネルを製造する際に、
前記一対の摩擦入熱部材のそれぞれの母材入熱及び攪拌軸の攪拌により、母材表面側及び裏面側よりそれぞれ母材中心線側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、
前記両塑性流動域の間に生成される中立線が、母材中心線より、前記母材表面側に偏位するように、前記攪拌軸の攪拌方向をその途中位置で異ならせた攪拌軸により生成されていることを特徴とする摩擦攪拌接合方法。
A pair of friction heat input members sandwiching both the front and back surfaces of the base material located on the joint line and a rotary tool (hereinafter referred to as a bobbin tool) having a stirring shaft between the friction heat input members are used to connect the bobbin tool to the base material joint line. In the friction stir welding method for joining while moving along
When manufacturing a curvature panel (including a cylindrical body or a shell body) in which the base materials composed of skin panels are joined in the longitudinal direction to have a convex curvature on the surface side of the base material,
The stirring of each preform heat input and stirring shaft of the pair of friction heat input member, the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center line side and the back side plastic flow region and the Create a neutral line between the two plastic flow zones,
The neutral line generated between both plastic flow region is Ri by preform centerline, the polarization coordinated manner on the base material surface, stirring shaft having different agitation directions of the stirring shaft at its intermediate position Friction stir welding method characterized by being produced by
前記母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせる条件が、それぞれの摩擦入熱部材の母材摺擦面に形成された螺旋溝の相違であることを特徴とする請求項1記載の摩擦攪拌接合方法。  The condition that the amount of heat input to the base material of each friction heat input member located on the front surface and the back surface side of the base material is different is the difference in the spiral groove formed on the base material rubbing surface of each friction heat input member. The friction stir welding method according to claim 1. 前記それぞれの摩擦入熱部材の母材摺擦面に形成された螺旋溝の相違が、螺旋溝の螺旋ピッチ若しくは溝深さ、又は螺旋溝間に形成される螺旋条の曲率半径若しくは螺旋条肉厚のいずれか1若しくは複数の組み合わせであることを特徴とする請求項3記載の摩擦攪拌方法。  The difference between the spiral grooves formed on the base material rubbing surface of each friction heat input member is the spiral pitch or groove depth of the spiral grooves, or the radius of curvature of the spiral stripes formed between the spiral grooves or the spiral stripe thickness. 4. The friction stirring method according to claim 3, wherein any one or a combination of thicknesses is used. 前記母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせる条件が、それぞれの摩擦入熱部材の直径の相違を含む母材接触面積の相違であることを特徴とする請求項1記載の摩擦攪拌接合方法。  The condition for differentiating the base material heat input amount of each friction heat input member located on the front surface and the back surface side of the base material is a difference in contact area of the base material including a difference in diameter of each friction heat input member. The friction stir welding method according to claim 1. 前記両塑性流動域の間に生成される中立線の偏位が、前記摩擦入熱部材それぞれの母材摺擦面に対する押圧荷重の差異によって生じせしめることを特徴とする請求項1記載の摩擦攪拌方法。2. The friction stirrer according to claim 1, wherein a deviation of a neutral line generated between the two plastic flow regions is caused by a difference in a pressing load with respect to a base material rubbing surface of each friction heat input member. Method. 接合線上に位置する母材表裏両面を挟時する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えたボビンツールと、該ボビンツールの回転により、前記一対の摩擦入熱部材のそれぞれより母材に入熱させて、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に流動域境界面(以下中立線という)を生成させながら母材接合線に沿ってボビンツールに押圧力を付勢する駆動部を具えた摩擦攪拌接合装置において、
スキンパネルからなる母材同士を長手方向に接合して母材表面側が凸の曲率となる曲率パネルを製造する装置であって、
前記両塑性流動域の間に生成される中立線が、母材中心線より、前記凸の曲率となる母材表面側に偏位するように、母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材接触面積を異ならせるか、若しくは、それぞれの摩擦入熱部材の押圧荷重を異ならせて構成したことを特徴とする摩擦攪拌接合装置。
A pair of friction heat input members sandwiching both the front and back surfaces of the base material located on the joint line, a bobbin tool having a stirring shaft between the friction heat input members, and the pair of friction heat input members by rotation of the bobbin tool of by heat input to the base material from each flow boundary surfaces between the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center side and the back side plastic flow region and both said plastic flow zone In a friction stir welding apparatus comprising a drive unit that urges a bobbin tool along a base material joining line while generating (hereinafter referred to as a neutral line),
An apparatus for manufacturing a curvature panel in which the base materials composed of skin panels are joined in the longitudinal direction and the base material surface side has a convex curvature,
The neutral line generated between both plastic flow region is Ri by preform centerline, so deflect the base material surface side which is a curvature of the convex, respectively located on the base material surface and the back surface side A friction stir welding apparatus characterized in that the base material contact area of the frictional heat input member is made different or the pressing load of each frictional heat input member is made different.
母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材接触面積を異ならせる手段が、前記それぞれの摩擦入熱部材の直径の相違であることを特徴とする請求項7記載の摩擦攪拌接合装置。  8. The friction according to claim 7, wherein the means for differentiating the base material contact areas of the frictional heat input members located on the front surface and the back surface side of the base material is a difference in diameter of the respective frictional heat input members. Stir welding device. 母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材接触面積を異ならせる手段が、母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材摺擦面形状がボビンツール回転方向に沿って軸中心に向かう螺旋溝であり、該螺旋溝の螺旋ピッチ若しくは溝深さ、又は螺旋溝間に形成される螺旋条の曲率半径若しくは螺旋条肉厚のいずれか1若しくは複数を、それぞれの摩擦入熱部材間で異ならせたことを特徴とする請求項8記載の摩擦攪拌装置。  The means for differentiating the base material contact areas of the friction heat input members located on the front surface and the back surface of the base material is the bobbin shape of the base material rubbing surface of the friction heat input members located on the front surface and the back surface of the base material. One or a plurality of spiral grooves or depths of the spiral grooves formed between the spiral grooves, or the spiral radius or thickness of the spiral stripes formed between the spiral grooves. The friction stirrer according to claim 8, wherein the friction heat input member is made different between the friction heat input members. 接合線上に位置する母材表裏両面を挟時する一対の摩擦入熱部材と前記摩擦入熱部材間に攪拌軸を具えたボビンツールと、該ボビンツールの回転により前記一対の摩擦入熱部材のそれぞれより母材に入熱させて、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成させながら母材接合線に沿ってボビンツールに押圧力を付勢する駆動部を具えた摩擦攪拌接合装置において、
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となる(筒体若しくは殻体を含む)曲率パネルを製造する装置であって、
前記両塑性流動域の間に生成される中立線が、母材中心線より、前記凸の曲率となる母材表面側に偏位するように、
前記ボビンツールの攪拌軸の螺旋条を、母材中心線より母材表面側に偏位させた位置より螺旋方向を異ならせて形成したことを特徴とする摩擦攪拌接合装置。
A pair of friction heat input members sandwiching the front and back surfaces of the base material located on the joining line, a bobbin tool having a stirring shaft between the friction heat input members, and the pair of friction heat input members by rotation of the bobbin tool. by heat input to the base material from each to generate neutral line between the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center side and the back side plastic flow region and both said plastic flow zone While in the friction stir welding apparatus having a drive unit that urges the bobbin tool along the base material joining line,
An apparatus for manufacturing a curvature panel (including a cylindrical body or a shell) by joining base materials composed of skin panels and having a convex curvature on the surface side of the base material,
The neutral line generated between both plastic flow region is Ri by preform centerline, so deflect the base material surface side which is a curvature of the convex,
2. A friction stir welding apparatus according to claim 1, wherein the spiral stirrer of the stirring shaft of the bobbin tool is formed by changing the spiral direction from a position where the spiral strip is displaced from the base metal center line to the base material surface side .
複数の曲率若しくは平面パネル同士をその接合線に沿ってボビンツールを移動させながら摩擦攪拌接合して形成した筒体状構造体において、
前記接合線上に沿ってパネル表面側及び裏面側よりそれぞれパネル肉厚中心側に向かう表面側塑性流動域と裏面側塑性流動域が存在し、該塑性流動域間に形成される中立線が、母材中心線より筒体状構造体の外周面側に偏位させてなることを特徴とする構造体。
In the cylindrical structure formed by friction stir welding while moving the bobbin tool along the joining line between a plurality of curvatures or flat panels,
The surface plastic flow region respectively from the panel surface side and the back side toward the panel thickness center side and the back side plastic flow region exists along the joint line, the neutral line is formed between the plastic flow region, the mother A structure characterized by being displaced from the material center line toward the outer peripheral surface of the cylindrical structure.
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となるそりが発生している接合体についてボビンツールを母材接合線に沿って移動させながら摩擦攪拌により前記そりの矯正を行う摩擦攪拌接合方法において、
前記一対の摩擦入熱部材のそれぞれの母材入熱により、母材表面側及び裏面側よりそれぞれ母材中心線側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、該塑性流動域間に形成される中立線が、母材中心線より、前記母材裏面側に偏位するように母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせて母材接合線に沿って摩擦攪拌してそりを矯正することを特徴とする摩擦攪拌接合方法。
The friction stir while the bobbin tool is moved along the base material bonding wire for assembly sled base material surface by joining the base material to each other consisting of skin panel is convex curvature occurs correction of the warp In the friction stir welding method to be performed,
By the respective base material heat input of said pair of friction heat input member, the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center line side and the back side plastic flow region and the both plastic flow zone to generate a neutral line between, each of the neutral line formed between the plastic flow region is, from the base metal center line, located on the back side and the polarization coordinated manner the surface of the base material to the base material the back side A friction stir welding method characterized in that the amount of heat input to the base material of the friction heat input member is varied to frictionally stir along the base material joint line to correct warpage.
スキンパネルからなる母材同士を接合して母材表面側が凸の曲率となるそりが発生している接合体についてボビンツールを母材接合線に沿って移動させながら摩擦攪拌により前記そりの矯正を行う摩擦攪拌接合方法において、
前記一対の摩擦入熱部材のそれぞれの母材入熱及び攪拌軸の攪拌により、母材表面側及び裏面側よりそれぞれ母材中心線側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、該塑性流動域間に形成される中立線が、母材中心線より、前記母材裏面側に偏位するように、前記攪拌軸の攪拌方向をその途中位置で異ならせた攪拌軸により母材接合線に沿って摩擦攪拌して前記そりを矯正することを特徴とする摩擦攪拌接合方法。
The friction stir while the bobbin tool is moved along the base material bonding wire for assembly sled base material surface by joining the base material to each other consisting of skin panel is convex curvature occurs correction of the warp In the friction stir welding method to be performed,
The stirring of each preform heat input and stirring shaft of the pair of friction heat input member, the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center line side and the back side plastic flow region and the to generate a neutral line between the two plastic flow region, the neutral line formed between the plastic flow region is, from the base metal center line, so deflect the base material the back surface side, agitation of the stirring shaft friction stir welding method, characterized in that to correct the warp by friction stir along the preform joining line by stirring shaft having different directions in its intermediate position.
ボビンツールをスキンパネルからなる母材接合線に沿って移動させながら摩擦攪拌により母材表面側が凸の曲率となるそりを持たせた接合体の製造を行う摩擦攪拌接合方法において
前記一対の摩擦入熱部材のそれぞれの母材入熱により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、
前記両塑性流動域の間に生成される中立線が、母材中心線より母材裏面側に偏位するように母材表面と裏面側に位置するそれぞれの摩擦入熱部材の母材入熱量を異ならせて接合することによりそりを有する接合体を製造することを特徴とする摩擦攪拌接合方法。
In the friction stir welding method for manufacturing a joined body having a warp having a convex curvature on the base material surface side by friction stirring while moving the bobbin tool along the base material joining line made of the skin panel , the pair of friction insertions by the respective base material heat input of the heat member, generating a neutral line between the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center side and the back side plastic flow region and both said plastic flow zone And
The amount of heat input to the base material of each friction heat input member positioned on the front surface and the back surface of the base material so that the neutral line generated between the plastic flow zones is displaced to the back surface side of the base material from the base material center line. A friction stir welding method comprising manufacturing a joined body having warpage by joining differently.
ボビンツールをスキンパネルからなる母材接合線に沿って移動させながら摩擦攪拌により母材表面側が凸の曲率となるそりを持たせた接合体の製造を行う摩擦攪拌接合方法において、
前記一対の摩擦入熱部材のそれぞれの母材入熱及び攪拌軸の攪拌により、母材表面側及び裏面側よりそれぞれ母材中心側に向かう表面側塑性流動域と裏面側塑性流動域と該両塑性流動域の間に中立線を生成するとともに、
前記両塑性流動域の間に生成される中立線が、母材中心線より、母材裏面側に偏位するように、前記攪拌軸の攪拌方向をその途中位置で異ならせて接合することによりそりを有する接合体を製造することを特徴とする摩擦攪拌接合方法。
In the friction stir welding method for manufacturing a joined body having a warp with a convex curvature on the base material surface side by friction stirring while moving the bobbin tool along the base material joining line consisting of the skin panel ,
The stirring of each preform heat input and stirring shaft of the pair of friction heat input member, the surface-side plastic flow region respectively from the base metal surface and the second surface side toward the base material center side and the back side plastic flow region and the both Generate neutral lines between plastic flow zones,
By joining the agitation direction of the agitation shaft differently in the middle position so that the neutral line generated between the plastic flow zones is deviated from the base material center line to the back side of the base material. A friction stir welding method comprising manufacturing a joined body having a warp.
JP2003177195A 2003-06-20 2003-06-20 Friction stir welding method, apparatus therefor, and structure manufactured by the method Expired - Fee Related JP3836091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177195A JP3836091B2 (en) 2003-06-20 2003-06-20 Friction stir welding method, apparatus therefor, and structure manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177195A JP3836091B2 (en) 2003-06-20 2003-06-20 Friction stir welding method, apparatus therefor, and structure manufactured by the method

Publications (2)

Publication Number Publication Date
JP2005007466A JP2005007466A (en) 2005-01-13
JP3836091B2 true JP3836091B2 (en) 2006-10-18

Family

ID=34099852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177195A Expired - Fee Related JP3836091B2 (en) 2003-06-20 2003-06-20 Friction stir welding method, apparatus therefor, and structure manufactured by the method

Country Status (1)

Country Link
JP (1) JP3836091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894727A (en) * 2011-01-19 2014-07-02 日本轻金属株式会社 Friction stir welding method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684810B2 (en) * 2005-09-01 2011-05-18 住友軽金属工業株式会社 Method for manufacturing cylindrical article
FR2921575B1 (en) * 2007-09-27 2009-11-13 Eads Europ Aeronautic Defence DOUBLE - SHAPING WELDING DEVICE FOR WELDING FRICTION - MIXED PIECES AND METHOD FOR WELDING.
US8113133B2 (en) 2007-12-27 2012-02-14 Kawasaki Jukogyo Kabushiki Kaisha Dissimilar joint structure, tank skirt including dissimilar joint structure, transport ship including tank skirt, and method for joining dissimilar metal members
BR112012004131B1 (en) * 2009-08-31 2017-09-26 Mitsubishi-Hitachi Metals Machinery, Inc METHOD AND APPLICATION OF WELDING ATTENTION ON BOTH SIDES, METHOD OF JUNCTION OF METAL PLATES IN COLD LAMINATION SYSTEM, AND COLD LAMINATION SYSTEM
CN103476532B (en) * 2011-01-19 2016-05-25 日本轻金属株式会社 The assembly of throw unit, friction stirring connecting method, double face slab and the friction stirring connecting method of double face slab
JP5422010B2 (en) * 2011-04-20 2014-02-19 日本軽金属株式会社 Joining method
JP2012245542A (en) 2011-05-27 2012-12-13 Mitsubishi Heavy Ind Ltd Friction stir welding tool and friction stir welding apparatus
GB201120274D0 (en) 2011-11-24 2012-01-04 Welding Inst Friction stir welding tool
CN103464907B (en) * 2013-08-22 2015-06-17 中国航空工业集团公司北京航空制造工程研究所 Method of connecting sheets by thermal self-pressing
JP5641117B2 (en) * 2013-09-26 2014-12-17 日本軽金属株式会社 Joining method
JP6166999B2 (en) * 2013-09-27 2017-07-19 三菱重工業株式会社 Friction stir tool, friction stir welding apparatus, and friction stir welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894727A (en) * 2011-01-19 2014-07-02 日本轻金属株式会社 Friction stir welding method

Also Published As

Publication number Publication date
JP2005007466A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP3836091B2 (en) Friction stir welding method, apparatus therefor, and structure manufactured by the method
US20140119814A1 (en) Friction stir welding tool with shoulders having different areas; methods using such tool; product welded with such tool
JP2016007633A (en) Friction stir welding method and friction stir welding device
JP2009018312A (en) Friction stir welding device and method of manufacturing different thickness tailored blank material of different kinds of metals utilizing friction stir welding device
JPH1147859A (en) Production of aluminum alloy panel
JP4298784B1 (en) Method for manufacturing railway vehicle structure by friction stir welding
EP1236533B1 (en) Friction stir welding method
WO2015068428A1 (en) Friction stir welding method
JP4052443B2 (en) Friction stir welding method for double skin panels
JP5113803B2 (en) Hollow shaped joints and joints
WO2019049892A1 (en) Clamp member for double acting type friction stir spot welding device, double acting type friction stir spot welding device, and double acting type friction stir spot welding method
JP2005239029A (en) Railway vehicle structural body
JP4668437B2 (en) Friction stir welding method and friction stir welding apparatus
JP2001237621A (en) Waveguide and its producing method
JP2001096378A (en) Method of friction welding and welded structure
JPH11267858A (en) Friction jointing member and its jointing method, and jointing panel
JP4463183B2 (en) Aluminum structure and manufacturing method thereof
WO2020171203A1 (en) Friction stir welding device, and friction stir welding method
JP4619999B2 (en) Double skin panel and joint structure thereof, and structure
JP6033646B2 (en) Friction stir welding tool and friction stir welding method
WO2012046458A1 (en) Method for manufacturing vehicle frame
JP2004050205A (en) Friction stir joining equipment and method using bobbin tool
JP4043005B2 (en) Friction welding method
JP2001087871A (en) Manufacture of panel joined structure
JP4825897B2 (en) Joined member and friction stir welding method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R151 Written notification of patent or utility model registration

Ref document number: 3836091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees