WO2012098915A1 - Heat exchanger and air conditioner - Google Patents
Heat exchanger and air conditioner Download PDFInfo
- Publication number
- WO2012098915A1 WO2012098915A1 PCT/JP2012/000382 JP2012000382W WO2012098915A1 WO 2012098915 A1 WO2012098915 A1 WO 2012098915A1 JP 2012000382 W JP2012000382 W JP 2012000382W WO 2012098915 A1 WO2012098915 A1 WO 2012098915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flat tube
- heat exchanger
- edge
- fins
- tube
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
- F28F1/325—Fins with openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/12—Fins with U-shaped slots for laterally inserting conduits
Definitions
- the present invention relates to a heat exchanger that includes a flat tube and fins and exchanges heat between fluid flowing in the flat tube and air, and an air conditioner including the heat exchanger.
- heat exchangers with flat tubes and fins are known.
- a heat exchanger described in Patent Document 1 a plurality of flat tubes extending in the left-right direction are arranged one above the other at a predetermined interval, and plate-like fins are arranged at a predetermined interval from each other. They are arranged in the extending direction.
- the flat tubes are inserted into fins and joined by brazing.
- the air flowing between the fins exchanges heat with the fluid flowing in the flat tube.
- the present invention has been made in view of such points, and an object thereof is to avoid a state in which fins come into contact with each other via a brazing material when the flat tube and the fin are joined by brazing.
- 1st invention is formed in the plate shape extended in the sequence direction of the several flat tube (33) arranged up and down so that a side surface (33a) may oppose, and this flat tube (33),
- Each said flat tube (33) is premised on a heat exchanger provided with a plurality of fins (36) having notches (45) which are inserted in an orthogonal direction and joined by brazing.
- the edge part (46a, 46b) to which the said flat tube (33) of the said notch part (45) is joined is the state in which the said flat pipe (33) was inserted in the said notch part (45). It is bent so that a substantially V-shaped groove (60) is formed between the edge (46a, 46b) and the flat tube (33).
- the edge portions (46a, 46b) to which the flat tube (33) of the notch portion (45) is joined are formed in a substantially square shape. Then, in a state where the flat tube (33) is inserted into the notch (45), a substantially V-shaped groove (60) is formed between the flat tube (33) and the edges (46a, 46b). Formed (see FIG. 7). In other words, the groove (60) becomes narrower toward the bottom.
- the flat tube (33) and the notch (45) are brazed, the flat tube (33) is joined to the edges (46a, 46b) of the notch (45). The molten brazing material actively flows into the groove (60) by capillary action.
- the entire circumference of the edge (46a, 46b) to which the flat tube (33) of the notch portion (45) is joined is the flat tube (33). Bent so that a substantially V-shaped groove (60) is formed between the edge (46a, 46b) and the flat tube (33) in a state of being inserted into the notch (45). It is what has been.
- the groove (60) is formed on the entire circumference of the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined. Therefore, the amount of brazing material that flows into the groove (60) during joining by brazing increases. This further suppresses the amount of brazing material that flows between the fins (36).
- an end of the flat tube (33) in the insertion direction into the notch (45) is continuous with the side surface (33a) and protrudes outward. It is a circular arc surface (33b).
- the edge part to which the said flat tube (33) of the said notch part (45) is joined is the linear edge part (46a) corresponding to the side surface (33a) of the said flat pipe (33), and this linear form.
- An arcuate edge portion (46b) that is continuous with the edge portion (46a) and corresponds to the arcuate surface (33b) of the flat tube (33) is provided.
- the edge of the notch (45) has a shape corresponding to the shape of the flat tube (33), particularly the arc surface (33b) of the flat tube (33). A large contact area between (33) and the notch (45) can be earned.
- the bending height of the linear edge (46a) is greater than the bending height of the arcuate edge (46b).
- the bending height of the linear edge portion (46a) is the arcuate edge portion (46b). ) Is larger (higher) than the folding height of the arc-shaped edge (46b) when the edges (46a, 46b) are bent.
- a fifth invention is directed to an air conditioner (10), and includes a refrigerant circuit (20) provided with the heat exchanger (30) of any one of the first to fourth inventions, and the refrigerant circuit In (20), the refrigerant is circulated to perform the refrigeration cycle.
- the heat exchanger (30) of any one of the first to fourth aspects is connected to the refrigerant circuit (20).
- the refrigerant circulating in the refrigerant circuit (20) flows through the flat tube (33) and exchanges heat with the air flowing around the flat tube (33).
- the substantially V-shaped groove (60) can be formed between the flat tube (33) and the edge (46a, 46b).
- the brazing material can be actively flowed into the groove (60) by capillary action. Therefore, a sufficient amount of brazing material can be secured at the joint between the flat tube (33) and the notch (45), and the amount of brazing material flowing between the fins (36) can be reduced accordingly. it can.
- the state which fins (36) contact via a brazing material can be avoided. Therefore, increase in ventilation resistance between the fins (36) can be prevented, and as a result, it is possible to prevent the heat exchange efficiency of the heat exchanger (30) from decreasing.
- the groove (60) can be formed on the entire periphery of the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined. Therefore, the amount of brazing material flowing into the groove (60) can be increased, and thereby the amount of brazing material flowing between the fins (36) can be further suppressed.
- the shape of the edge (46a, 46b) of the notch (45) is made to correspond to the shape of the flat tube (33). You can earn a lot of contact area with the notch (45). Therefore, the amount of heat transfer between the flat tube (33) and the fin (36) can be earned sufficiently.
- the folding height of the linear edge (46a) is made larger than the folding height of the arcuate edge (46b). It is possible to prevent the arcuate edge (46b) from being broken during processing. Therefore, the substantially V-shaped groove (60) can be appropriately and reliably formed between the flat tube (33) and the edges (46a, 46b). Therefore, at the time of joining by brazing, the amount of brazing material that flows between the fins (36) can be reliably suppressed.
- FIG. 1 is a refrigerant circuit figure showing a schematic structure of an air harmony machine of an embodiment.
- FIG. 2 is a schematic perspective view of the heat exchanger according to the embodiment.
- Drawing 3 is a partial sectional view showing the front of the heat exchanger of an embodiment.
- FIG. 4 is a cross-sectional view of the heat exchanger showing a part of the AA cross section of FIG. 5A and 5B are views showing the main parts of the fins of the heat exchanger according to the embodiment, wherein FIG. 5A is a front view and FIG. 5B is a cross-sectional view showing a BB cross section of FIG.
- FIG. 6 is a cross-sectional view of the fin showing the CC cross section of FIG.
- FIG. 7 is a schematic cross-sectional view showing the relationship between the flat tube and the tube insertion portion of the embodiment as viewed from the windward side.
- the heat exchanger (30) of the present embodiment constitutes an outdoor heat exchanger (23) of the air conditioner (10). Then, the air conditioner (10) provided with the heat exchanger (30) of this embodiment is demonstrated, referring FIG.
- the air conditioner (10) includes an outdoor unit (11) and an indoor unit (12).
- the outdoor unit (11) and the indoor unit (12) are connected via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
- a refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side connecting pipe (13), and the gas side connecting pipe (14).
- the refrigerant circuit (20) includes a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). .
- the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11).
- the outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23).
- the indoor heat exchanger (25) is accommodated in the indoor unit (12).
- the indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
- the compressor (21) has its discharge side connected to the first port of the four-way switching valve (22) and its suction side connected to the second port of the four-way switching valve (22).
- the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.
- Compressor (21) is a scroll type or rotary type hermetic compressor.
- the four-way switching valve (22) has a first state (state indicated by a broken line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port, The port is switched to a second state (state indicated by a solid line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
- the expansion valve (24) is a so-called electronic expansion valve.
- the outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant.
- the outdoor heat exchanger (23) is configured by the heat exchanger (30) of the present embodiment.
- the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant.
- the indoor heat exchanger (25) is constituted by a so-called cross fin (36) type fin (36) and tube heat exchanger provided with a heat transfer tube which is a circular tube.
- the air conditioner (10) performs a cooling operation.
- the four-way switching valve (22) is set to the first state.
- the outdoor fan (15) and the indoor fan (16) are operated.
- Refrigeration cycle is performed in the refrigerant circuit (20). Specifically, the refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (23) through the four-way switching valve (22), dissipates heat to the outdoor air, and is condensed. The refrigerant flowing out of the outdoor heat exchanger (23) expands when passing through the expansion valve (24), then flows into the indoor heat exchanger (25), absorbs heat from the indoor air, and evaporates. The refrigerant that has flowed out of the indoor heat exchanger (25) passes through the four-way switching valve (22) and then is sucked into the compressor (21) and compressed. The indoor unit (12) supplies the air cooled in the indoor heat exchanger (25) to the room.
- the air conditioner (10) performs heating operation.
- the four-way selector valve (22) is set to the second state.
- the outdoor fan (15) and the indoor fan (16) are operated.
- Refrigeration cycle is performed in the refrigerant circuit (20). Specifically, the refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (25) through the four-way switching valve (22), dissipates heat to the indoor air, and condenses. The refrigerant flowing out of the indoor heat exchanger (25) expands when passing through the expansion valve (24), then flows into the outdoor heat exchanger (23), absorbs heat from the outdoor air, and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger (23) passes through the four-way switching valve (22) and then is sucked into the compressor (21) and compressed. The indoor unit (12) supplies the air heated in the indoor heat exchanger (25) to the room.
- the outdoor heat exchanger (23) functions as an evaporator during the heating operation.
- the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) may be lower than 0 ° C.
- the moisture in the outdoor air becomes frost and the outdoor heat exchanger (23 ). Therefore, the air conditioner (10) performs the defrosting operation every time the duration time of the heating operation reaches a predetermined value (for example, several tens of minutes).
- the four-way switching valve (22) When starting the defrosting operation, the four-way switching valve (22) is switched from the second state to the first state, and the outdoor fan (15) and the indoor fan (16) are stopped.
- the refrigerant circuit (20) during the defrosting operation the high-temperature refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23).
- the frost adhering to the surface In the outdoor heat exchanger (23), the frost adhering to the surface is heated and melted by the refrigerant.
- the refrigerant that has radiated heat in the outdoor heat exchanger (23) sequentially passes through the expansion valve (24) and the indoor heat exchanger (25), and is then sucked into the compressor (21) and compressed.
- the heating operation is resumed. That is, the four-way switching valve (22) is switched from the first state to the second state, and the operation of the outdoor fan (15) and the indoor fan (16) is resumed.
- the heat exchanger (30) includes one first header collecting pipe (31), one second header collecting pipe (32), and a number of flat tubes (33). And a number of fins (36).
- the first header collecting pipe (31), the second header collecting pipe (32), the flat pipe (33), and the fin (36) are all made of an aluminum alloy and are joined to each other by brazing.
- the first header collecting pipe (31) and the second header collecting pipe (32) are both formed in a vertically long cylindrical shape, one at the left end of the heat exchanger (30) and the other at the right end of the heat exchanger (30). Respectively.
- the flat tube (33) is a heat transfer tube having a flat cross-sectional shape, and has a flat side surface (33a) and an arc that continues to the side surface (33a) and protrudes outward. Surface (33b).
- Each flat tube (33) is inserted into a tube insertion portion (46) of a notch (45) described later.
- the circular arc surface (33b) of the flat tube (33) corresponds to an end portion in the insertion direction of the flat tube (33) into the notch (45).
- the flat tubes (33) are arranged side by side in a state where the flat side surfaces (33a) face each other.
- Each flat tube (33) has a plurality of fluid passages (34).
- One end of each of the flat tubes (33) arranged in the vertical direction is inserted into the first header collecting pipe (31), and the other end is inserted into the second header collecting pipe (32).
- the fins (36) are plate-like fins extending in the arrangement direction of the flat tubes (33), and are arranged at regular intervals in the extending direction of the flat tubes (33). That is, the fin (36) is disposed so as to be substantially orthogonal to the extending direction of the flat tube (33).
- the fin (36) is a vertically long plate-like fin formed by pressing a metal plate.
- the fin (36) has a number of elongated notches (45) extending in the width direction of the fin (36) from the front edge (38) of the fin (36).
- a large number of notches (45) are formed at regular intervals in the longitudinal direction of the fin (36).
- a portion closer to the lee of the notch portion (45) constitutes a tube insertion portion (46) into which the flat tube (33) is inserted.
- the flat tube (33) is inserted into the tube insertion portion (46) and joined to the edges (46a, 46b) of the tube insertion portion (46) by brazing.
- the edge (46a, 46b) of the tube insertion part (46) includes a linear edge (46a) corresponding to the side surface (33a) of the flat tube (33) and the linear edge (46a). And an arcuate edge (46b) corresponding to the arc surface (33b) of the flat tube (33). That is, the edge portions (46a, 46b) of the tube insertion portion (46) are portions joined to the flat tube (33), and the shape thereof corresponds to the shape of the flat tube (33).
- the tube insertion portion (46) has a vertical width (that is, the interval between the straight edges (46a)) substantially equal to the thickness of the flat tube (33), and the length is the width of the flat tube (33). Is substantially equal.
- the entire circumference of the edge portions (46a, 46b) of the tube insertion portion (46), that is, the straight edge portion (46a) and the arcuate edge portion (46b) go to the edge. It is bent so as to incline inward. Specifically, in one tube insertion portion (46), the opposing linear edge portion (46a) is bent into a substantially C shape. Further, the edge (46a, 46b) of the tube insertion part (46) has a bending height H of the linear edge part (46a) greater than a bending height H (not shown) of the arcuate edge part (46b). Is also formed to be large (high).
- the fin (36) has a plurality of heat transfer portions (37) adjacent to each other up and down across the flat tube (33), and one leeward continuous to the leeward end of each heat transfer portion (37).
- a side plate portion (47) is provided.
- each louver (50) is formed by raising the heat-transfer part (37) and the leeward side board part (47). That is, each louver (50) is formed by making a plurality of slit-like cuts in the heat transfer part (37) and the leeward side plate part (47), and plastically deforming so as to twist the part between the adjacent cuts. ing.
- each louver (50) is substantially parallel to the front edge (38) of the heat transfer section (37). That is, the longitudinal direction of each louver (50) is the vertical direction.
- a plurality of louvers (50) extending in the vertical direction are formed side by side from the windward side toward the leeward side.
- the leeward side plate portion (47) of the fin (36) is formed with a water guiding rib (71).
- the water guiding rib (71) is a long and narrow groove extending vertically along the leeward end of the leeward plate (47), and is formed from the upper end to the lower end of the leeward plate (47). .
- the fin (36) is formed with a tab (48) for maintaining a distance from the adjacent fin (36).
- the tab (48) is a rectangular piece formed by cutting and raising the fin (36). The tab (48) keeps the space between the fins (36) by the protrusions coming into contact with the adjacent fins (36).
- a substantially V-shaped groove (60) is formed.
- the flat tube (33) and the tube insertion portion (46) are brazed, and the flat tube (33) is joined to the edges (46a, 46b) of the tube insertion portion (46).
- the groove (60) is formed between the flat tube (33) and the edge portion (46a, 46b) of the tube insertion portion (46)
- the molten brazing material is subjected to the above-mentioned groove ( 60).
- the flat tube (33) is securely joined to the fin (36).
- the groove (60) is formed over the entire periphery of the edge (46a, 46b) of the tube insertion portion (46)
- the entire periphery of the flat tube (33) and the fin (36) are surely secured. Close contact with.
- the molten brazing material actively flows into the groove (60) as described above, the molten brazing material is less likely to flow between the fins (36). That is, the amount of brazing material that tends to flow between the fins (36) is suppressed.
- the groove (60) is formed over the entire circumference of the edge (46a, 46b) of the pipe insertion portion (46), it is possible to sufficiently earn the amount of brazing material flowing into the groove (60). As a result, the amount of brazing material that tends to flow between the fins (36) is further suppressed. Thereby, the state which fins (36) contact via a brazing material can be avoided.
- the vertical width of the tube insertion portion (46) (that is, the linear edge portion). (Interval between (46a)) is narrower than the thickness of the flat tube (33). That is, before the flat tube (33) is inserted into the tube insertion portion (46), the dimension L1 shown in FIG. 6 is smaller than the dimension L2 shown in FIG. Therefore, in a state where the flat tube (33) is inserted into the tube insertion portion (46), the edge portions (46a, 46b) of the tube insertion portion (46) are securely adhered to the flat tube (33) by its elastic force. be able to. Thereby, since a flat tube (33) and a fin (36) can be joined reliably, the heat transfer amount between a flat tube (33) and a fin (36) can fully be ensured.
- the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined that is, the edge (46a, 46b) of the tube insertion part (46).
- the brazing material can be actively flowed into the groove (60) by capillary action. Therefore, since a sufficient amount of brazing material can be secured at the joint between the flat tube (33) and the notch (45), the flat tube (33) and the fin (36) can be reliably bonded.
- the brazing material can be actively flowed into the groove (60), the amount of the brazing material flowing between the fins (36) can be suppressed accordingly. Thereby, the state which fins (36) will contact via a brazing material can be avoided. Therefore, increase in ventilation resistance between the fins (36) can be prevented, and as a result, it is possible to prevent the heat exchange efficiency of the heat exchanger (30) from decreasing.
- the entire circumference of the edge (46a, 46b) is bent so that the entire circumference of the edge (46a, 46b) of the tube insertion part (46) is inclined inward as it goes to the edge.
- the groove (60) can be formed on the surface. Therefore, the amount of brazing material flowing into the groove (60) can be increased, and thereby the amount of brazing material flowing between the fins (36) can be further suppressed.
- the bending height H of the linear edge (46a) is greater than the bending height H of the arcuate edge (46b) at the edges (46a, 46b) of the tube insertion portion (46). It is formed to be (high). For this reason, the arc-shaped edge portion (46b) is not easily broken when the edge portions (46a, 46b) are bent. Thereby, a substantially V-shaped groove
- the present invention is useful for a heat exchanger including a flat tube and fins and an air conditioner including the heat exchanger.
- Air conditioner 20 Refrigerant circuit 30 heat exchanger 33 Flat tube 36 fins 45 Notch
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A flat tube (33) is inserted into a tube insertion part (46) of a fin (36), and joined thereto by brazing. The edges (46a, 46b) of the tube insertion part (46) are bent so as to slant inward as approaching the tip thereof.
Description
本発明は、扁平管とフィンとを備え、扁平管内を流れる流体を空気と熱交換させる熱交換器およびそれを備えた空気調和機に関する。
The present invention relates to a heat exchanger that includes a flat tube and fins and exchanges heat between fluid flowing in the flat tube and air, and an air conditioner including the heat exchanger.
従来より、扁平管とフィンとを備えた熱交換器が知られている。例えば、特許文献1に記載された熱交換器は、左右方向に延びる複数の扁平管が互いに所定の間隔をおいて上下に並べられ、板状のフィンが互いに所定の間隔をおいて扁平管の伸長方向に並べられて構成されている。扁平管は、フィンに差し込まれロウ付けによって接合されている。そして、この熱交換器では、フィン間を流れる空気が扁平管内を流れる流体と熱交換する。
Conventionally, heat exchangers with flat tubes and fins are known. For example, in a heat exchanger described in Patent Document 1, a plurality of flat tubes extending in the left-right direction are arranged one above the other at a predetermined interval, and plate-like fins are arranged at a predetermined interval from each other. They are arranged in the extending direction. The flat tubes are inserted into fins and joined by brazing. In this heat exchanger, the air flowing between the fins exchanges heat with the fluid flowing in the flat tube.
ところで、上述したような従来の熱交換器の場合、フィン同士の間隔が非常に狭いため、ロウ付けによる接合時において、フィン同士の間にロウ材が流れ込んでフィン同士がロウ材を介して接触しやすくなるという問題があった。特に、予め表面にロウ材が被覆されたフィンを用いた熱交換器においては、扁平管とフィンとは確実且つ容易に密着するものの、ロウ材がフィン同士の間に流れ込みやすくなり、上述したフィン同士の接触が顕著となる。このように、フィン同士がロウ材を介して接触すると、フィン間の通風抵抗が増大して、熱交換効率が低下してしまう。
By the way, in the case of the conventional heat exchanger as described above, since the interval between the fins is very narrow, at the time of joining by brazing, the brazing material flows between the fins and the fins are in contact with each other via the brazing material. There was a problem that it was easy to do. In particular, in a heat exchanger using fins whose surfaces are coated with a brazing material in advance, the flat tube and the fins are surely and easily adhered to each other, but the brazing material tends to flow between the fins, and the fins described above The contact between them becomes remarkable. Thus, when fins contact each other via a brazing material, the ventilation resistance between fins will increase and heat exchange efficiency will fall.
本発明は、かかる点に鑑みてなされたものであり、その目的は、扁平管とフィンとをロウ付けによって接合する際、フィン同士がロウ材を介して接触する状態を回避することにある。
The present invention has been made in view of such points, and an object thereof is to avoid a state in which fins come into contact with each other via a brazing material when the flat tube and the fin are joined by brazing.
第1の発明は、側面(33a)が対向するように上下に配列された複数の扁平管(33)と、該扁平管(33)の配列方向に延びる板状に形成され、上記各扁平管(33)が直交方向に差し込まれロウ付けによって接合される切欠き部(45)を有する複数のフィン(36)とを備えた熱交換器を前提としている。そして、上記切欠き部(45)の上記扁平管(33)が接合される縁部(46a,46b)は、上記扁平管(33)が上記切欠き部(45)に差し込まれた状態で上記縁部(46a,46b)と上記扁平管(33)との間に略Vの字状の溝(60)が形成されるように、折り曲げられているものである。
1st invention is formed in the plate shape extended in the sequence direction of the several flat tube (33) arranged up and down so that a side surface (33a) may oppose, and this flat tube (33), Each said flat tube (33) is premised on a heat exchanger provided with a plurality of fins (36) having notches (45) which are inserted in an orthogonal direction and joined by brazing. And the edge part (46a, 46b) to which the said flat tube (33) of the said notch part (45) is joined is the state in which the said flat pipe (33) was inserted in the said notch part (45). It is bent so that a substantially V-shaped groove (60) is formed between the edge (46a, 46b) and the flat tube (33).
上記第1の発明では、例えば図6に示すように、切欠き部(45)の扁平管(33)が接合される縁部(46a,46b)が略ハの字状に形成される。そうすると、扁平管(33)が切欠き部(45)に差し込まれた状態において、扁平管(33)と縁部(46a,46b)との間に、略Vの字状の溝(60)が形成される(図7参照)。つまり、この溝(60)は底部にいくに従って狭くなっている。扁平管(33)と切欠き部(45)とのロウ付けを行うと、扁平管(33)が切欠き部(45)の縁部(46a,46b)と接合される。また、溶融したロウ材は毛細管現象によって上記溝(60)へ積極的に流れ込む。これにより、扁平管(33)と切欠き部(45)の縁部(46a,46b)との接合部において十分な量のロウ材が確保され、確実に扁平管(33)と切欠き部(45)の縁部(46a,46b)とが接合される。そして、ロウ材が積極的に上記溝(60)へ流れ込むため、フィン(36)同士の間に流れ込むロウ材の量が抑制される。
In the first invention, for example, as shown in FIG. 6, the edge portions (46a, 46b) to which the flat tube (33) of the notch portion (45) is joined are formed in a substantially square shape. Then, in a state where the flat tube (33) is inserted into the notch (45), a substantially V-shaped groove (60) is formed between the flat tube (33) and the edges (46a, 46b). Formed (see FIG. 7). In other words, the groove (60) becomes narrower toward the bottom. When the flat tube (33) and the notch (45) are brazed, the flat tube (33) is joined to the edges (46a, 46b) of the notch (45). The molten brazing material actively flows into the groove (60) by capillary action. As a result, a sufficient amount of brazing material is secured at the joint between the flat tube (33) and the edge (46a, 46b) of the notch (45), and the flat tube (33) and the notch ( 45) are joined to the edges (46a, 46b). Since the brazing material actively flows into the groove (60), the amount of brazing material flowing between the fins (36) is suppressed.
第2の発明は、上記第1の発明において、上記切欠き部(45)の上記扁平管(33)が接合される縁部(46a,46b)の全周が、上記扁平管(33)が上記切欠き部(45)に差し込まれた状態で上記縁部(46a,46b)と上記扁平管(33)との間に略Vの字状の溝(60)が形成されるように、折り曲げられているものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the entire circumference of the edge (46a, 46b) to which the flat tube (33) of the notch portion (45) is joined is the flat tube (33). Bent so that a substantially V-shaped groove (60) is formed between the edge (46a, 46b) and the flat tube (33) in a state of being inserted into the notch (45). It is what has been.
上記第2の発明では、切欠き部(45)の上記扁平管(33)が接合される縁部(46a,46b)の全周に上記溝(60)が形成される。そのため、ロウ付けによる接合時に、上記溝(60)へ流れ込むロウ材の量が多くなる。これにより、フィン(36)同士の間に流れ込むロウ材の量が一層抑制される。
In the second invention, the groove (60) is formed on the entire circumference of the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined. Therefore, the amount of brazing material that flows into the groove (60) during joining by brazing increases. This further suppresses the amount of brazing material that flows between the fins (36).
第3の発明は、上記第2の発明において、上記扁平管(33)の上記切欠き部(45)への差込方向における端部が、上記側面(33a)に連続し且つ外方へ突出する円弧面(33b)となっている。そして、上記切欠き部(45)の上記扁平管(33)が接合される縁部は、上記扁平管(33)の側面(33a)に対応した直線状縁部(46a)と、該直線状縁部(46a)に連続し上記扁平管(33)の円弧面(33b)に対応した円弧状縁部(46b)とを有している。
According to a third invention, in the second invention, an end of the flat tube (33) in the insertion direction into the notch (45) is continuous with the side surface (33a) and protrudes outward. It is a circular arc surface (33b). And the edge part to which the said flat tube (33) of the said notch part (45) is joined is the linear edge part (46a) corresponding to the side surface (33a) of the said flat pipe (33), and this linear form. An arcuate edge portion (46b) that is continuous with the edge portion (46a) and corresponds to the arcuate surface (33b) of the flat tube (33) is provided.
上記第3の発明では、切欠き部(45)の縁部が、扁平管(33)の形状、特に扁平管(33)の円弧面(33b)に対応した形状となっているので、扁平管(33)と切欠き部(45)との接触面積を多く稼ぐことができる。
In the third invention, the edge of the notch (45) has a shape corresponding to the shape of the flat tube (33), particularly the arc surface (33b) of the flat tube (33). A large contact area between (33) and the notch (45) can be earned.
第4の発明は、上記第3の発明において、上記直線状縁部(46a)の折り曲げ高さが、上記円弧状縁部(46b)の折り曲げ高さよりも大きい。
In a fourth aspect based on the third aspect, the bending height of the linear edge (46a) is greater than the bending height of the arcuate edge (46b).
上記第4の発明では、切欠き部(45)の扁平管(33)が接合される縁部(46a,46b)において、直線状縁部(46a)の折り曲げ高さが円弧状縁部(46b)の折り曲げ高さよりも大きい(高い)ので、縁部(46a,46b)の折り曲げ加工の際に円弧状縁部(46b)が破断しにくくなる。
In the fourth aspect of the invention, in the edge portions (46a, 46b) to which the flat tube (33) of the notch portion (45) is joined, the bending height of the linear edge portion (46a) is the arcuate edge portion (46b). ) Is larger (higher) than the folding height of the arc-shaped edge (46b) when the edges (46a, 46b) are bent.
第5の発明は、空気調和機(10)を対象とし、上記第1乃至第4の何れか1つの発明の熱交換器(30)が設けられた冷媒回路(20)を備え、上記冷媒回路(20)において冷媒を循環させて冷凍サイクルを行うものである。
A fifth invention is directed to an air conditioner (10), and includes a refrigerant circuit (20) provided with the heat exchanger (30) of any one of the first to fourth inventions, and the refrigerant circuit In (20), the refrigerant is circulated to perform the refrigeration cycle.
上記第5の発明では、上記第1乃至第4の何れか1つの発明の熱交換器(30)が冷媒回路(20)に接続される。熱交換器(30)において、冷媒回路(20)を循環する冷媒は、扁平管(33)の内部を流れ、扁平管(33)の周囲を流れる空気と熱交換する。
In the fifth aspect, the heat exchanger (30) of any one of the first to fourth aspects is connected to the refrigerant circuit (20). In the heat exchanger (30), the refrigerant circulating in the refrigerant circuit (20) flows through the flat tube (33) and exchanges heat with the air flowing around the flat tube (33).
以上説明したように、本発明によれば、扁平管(33)と縁部(46a,46b)との間に略V字状の溝(60)を形成することができる。これにより、ロウ付けによる接合時において、ロウ材を毛細管現象によって上記溝(60)内へ積極的に流動させることができる。そのため、扁平管(33)と切欠き部(45)との接合部において十分な量のロウ材を確保できると共に、その分フィン(36)同士の間に流れ込むロウ材の量を抑制することができる。これにより、扁平管(33)とフィン(36)とを確実に接合させることができると共に、フィン(36)同士がロウ材を介して接触する状態を回避することができる。よって、フィン(36)間における通風抵抗の増大を防止することができ、その結果、熱交換器(30)の熱交換効率が低下するのを防止することができる。
As described above, according to the present invention, the substantially V-shaped groove (60) can be formed between the flat tube (33) and the edge (46a, 46b). Thereby, at the time of joining by brazing, the brazing material can be actively flowed into the groove (60) by capillary action. Therefore, a sufficient amount of brazing material can be secured at the joint between the flat tube (33) and the notch (45), and the amount of brazing material flowing between the fins (36) can be reduced accordingly. it can. Thereby, while being able to join a flat tube (33) and a fin (36) reliably, the state which fins (36) contact via a brazing material can be avoided. Therefore, increase in ventilation resistance between the fins (36) can be prevented, and as a result, it is possible to prevent the heat exchange efficiency of the heat exchanger (30) from decreasing.
特に、第2の発明では、切欠き部(45)の扁平管(33)が接合される縁部(46a,46b)の全周に上記溝(60)を形成することができる。そのため、上記溝(60)へ流れ込むロウ材の量を増加させることができ、それによって、フィン(36)同士の間に流れ込むロウ材の量を一層抑制することができる。
Particularly, in the second invention, the groove (60) can be formed on the entire periphery of the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined. Therefore, the amount of brazing material flowing into the groove (60) can be increased, and thereby the amount of brazing material flowing between the fins (36) can be further suppressed.
また、第3の発明によれば、切欠き部(45)の縁部(46a,46b)の形状を、扁平管(33)の形状に対応させるようにしているので、扁平管(33)と切欠き部(45)との接触面積を多く稼ぐことができる。そのため、扁平管(33)とフィン(36)との間の熱伝達量を十分に稼ぐことができる。
Further, according to the third invention, the shape of the edge (46a, 46b) of the notch (45) is made to correspond to the shape of the flat tube (33). You can earn a lot of contact area with the notch (45). Therefore, the amount of heat transfer between the flat tube (33) and the fin (36) can be earned sufficiently.
また、第4の発明によれば、直線状縁部(46a)の折り曲げ高さを円弧状縁部(46b)の折り曲げ高さよりも大きくするようにしたので、縁部(46a,46b)の折り曲げ加工時において円弧状縁部(46b)が破断するのを防止することができる。よって、扁平管(33)と縁部(46a,46b)との間に略V字状の溝(60)を適切且つ確実に形成することができる。そのため、ロウ付けによる接合時において、フィン(36)同士の間に流れ込むロウ材の量を確実に抑制することができる。
According to the fourth aspect of the invention, the folding height of the linear edge (46a) is made larger than the folding height of the arcuate edge (46b). It is possible to prevent the arcuate edge (46b) from being broken during processing. Therefore, the substantially V-shaped groove (60) can be appropriately and reliably formed between the flat tube (33) and the edges (46a, 46b). Therefore, at the time of joining by brazing, the amount of brazing material that flows between the fins (36) can be reliably suppressed.
そして、第5の発明によれば、熱交換効率が高く、成績係数(COP)の高い空気調和機(10)を提供することができる。
And according to the fifth invention, it is possible to provide an air conditioner (10) having high heat exchange efficiency and a high coefficient of performance (COP).
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
本実施形態の熱交換器(30)は、空気調和機(10)の室外熱交換器(23)を構成している。そこで、本実施形態の熱交換器(30)を備えた空気調和機(10)について、図1を参照しながら説明する。
The heat exchanger (30) of the present embodiment constitutes an outdoor heat exchanger (23) of the air conditioner (10). Then, the air conditioner (10) provided with the heat exchanger (30) of this embodiment is demonstrated, referring FIG.
〈空気調和機の構成〉
空気調和機(10)は、室外ユニット(11)および室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して接続されている。そして、室外ユニット(11)と室内ユニット(12)と液側連絡配管(13)とガス側連絡配管(14)とによって冷媒回路(20)が形成されている。 <Configuration of air conditioner>
The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected via a liquid side connecting pipe (13) and a gas side connecting pipe (14). A refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side connecting pipe (13), and the gas side connecting pipe (14).
空気調和機(10)は、室外ユニット(11)および室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して接続されている。そして、室外ユニット(11)と室内ユニット(12)と液側連絡配管(13)とガス側連絡配管(14)とによって冷媒回路(20)が形成されている。 <Configuration of air conditioner>
The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected via a liquid side connecting pipe (13) and a gas side connecting pipe (14). A refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side connecting pipe (13), and the gas side connecting pipe (14).
冷媒回路(20)は、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とを備えている。上記圧縮機(21)、四方切換弁(22)、室外熱交換器(23)および膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給する室外ファン(15)が設けられている。一方、室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給する室内ファン(16)が設けられている。
The refrigerant circuit (20) includes a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). . The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11). The outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23). On the other hand, the indoor heat exchanger (25) is accommodated in the indoor unit (12). The indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
圧縮機(21)は、その吐出側が四方切換弁(22)の第1のポートに、その吸入側が四方切換弁(22)の第2のポートに、それぞれ接続されている。また、冷媒回路(20)において、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。
The compressor (21) has its discharge side connected to the first port of the four-way switching valve (22) and its suction side connected to the second port of the four-way switching valve (22). In the refrigerant circuit (20), the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.
圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に破線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に実線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。
Compressor (21) is a scroll type or rotary type hermetic compressor. The four-way switching valve (22) has a first state (state indicated by a broken line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port, The port is switched to a second state (state indicated by a solid line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port. The expansion valve (24) is a so-called electronic expansion valve.
室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)は、本実施形態の熱交換器(30)によって構成されている。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン(36)型のフィン(36)・アンド・チューブ熱交換器によって構成されている。
The outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger (23) is configured by the heat exchanger (30) of the present embodiment. On the other hand, the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger (25) is constituted by a so-called cross fin (36) type fin (36) and tube heat exchanger provided with a heat transfer tube which is a circular tube.
〈冷房運転〉
空気調和機(10)は、冷房運転を行う。冷房運転中には、四方切換弁(22)が第1状態に設定される。また、冷房運転中には、室外ファン(15)および室内ファン(16)が運転される。 <Cooling operation>
The air conditioner (10) performs a cooling operation. During the cooling operation, the four-way switching valve (22) is set to the first state. During the cooling operation, the outdoor fan (15) and the indoor fan (16) are operated.
空気調和機(10)は、冷房運転を行う。冷房運転中には、四方切換弁(22)が第1状態に設定される。また、冷房運転中には、室外ファン(15)および室内ファン(16)が運転される。 <Cooling operation>
The air conditioner (10) performs a cooling operation. During the cooling operation, the four-way switching valve (22) is set to the first state. During the cooling operation, the outdoor fan (15) and the indoor fan (16) are operated.
冷媒回路(20)では、冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された冷媒は、四方切換弁(22)を通って室外熱交換器(23)へ流入し、室外空気へ放熱して凝縮する。室外熱交換器(23)から流出した冷媒は、膨張弁(24)を通過する際に膨張してから室内熱交換器(25)へ流入し、室内空気から吸熱して蒸発する。室内熱交換器(25)から流出した冷媒は、四方切換弁(22)を通過後に圧縮機(21)へ吸入されて圧縮される。室内ユニット(12)は、室内熱交換器(25)において冷却された空気を室内へ供給する。
Refrigeration cycle is performed in the refrigerant circuit (20). Specifically, the refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (23) through the four-way switching valve (22), dissipates heat to the outdoor air, and is condensed. The refrigerant flowing out of the outdoor heat exchanger (23) expands when passing through the expansion valve (24), then flows into the indoor heat exchanger (25), absorbs heat from the indoor air, and evaporates. The refrigerant that has flowed out of the indoor heat exchanger (25) passes through the four-way switching valve (22) and then is sucked into the compressor (21) and compressed. The indoor unit (12) supplies the air cooled in the indoor heat exchanger (25) to the room.
〈暖房運転〉
空気調和機(10)は、暖房運転を行う。暖房運転中には、四方切換弁(22)が第2状態に設定される。また、暖房運転中には、室外ファン(15)および室内ファン(16)が運転される。 <Heating operation>
The air conditioner (10) performs heating operation. During the heating operation, the four-way selector valve (22) is set to the second state. During the heating operation, the outdoor fan (15) and the indoor fan (16) are operated.
空気調和機(10)は、暖房運転を行う。暖房運転中には、四方切換弁(22)が第2状態に設定される。また、暖房運転中には、室外ファン(15)および室内ファン(16)が運転される。 <Heating operation>
The air conditioner (10) performs heating operation. During the heating operation, the four-way selector valve (22) is set to the second state. During the heating operation, the outdoor fan (15) and the indoor fan (16) are operated.
冷媒回路(20)では、冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された冷媒は、四方切換弁(22)を通って室内熱交換器(25)へ流入し、室内空気へ放熱して凝縮する。室内熱交換器(25)から流出した冷媒は、膨張弁(24)を通過する際に膨張してから室外熱交換器(23)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(23)から流出した冷媒は、四方切換弁(22)を通過後に圧縮機(21)へ吸入されて圧縮される。室内ユニット(12)は、室内熱交換器(25)において加熱された空気を室内へ供給する。
Refrigeration cycle is performed in the refrigerant circuit (20). Specifically, the refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (25) through the four-way switching valve (22), dissipates heat to the indoor air, and condenses. The refrigerant flowing out of the indoor heat exchanger (25) expands when passing through the expansion valve (24), then flows into the outdoor heat exchanger (23), absorbs heat from the outdoor air, and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger (23) passes through the four-way switching valve (22) and then is sucked into the compressor (21) and compressed. The indoor unit (12) supplies the air heated in the indoor heat exchanger (25) to the room.
〈除霜動作〉
上述したように、暖房運転中には、室外熱交換器(23)が蒸発器として機能する。外気温が低い運転条件では、室外熱交換器(23)における冷媒の蒸発温度が0℃を下回る場合があり、この場合には、室外空気中の水分が霜となって室外熱交換器(23)に付着する。そこで、空気調和機(10)は、例えば暖房運転の継続時間が所定値(たとえは数十分)に達する行う毎に、除霜動作を行う。 <Defrosting operation>
As described above, the outdoor heat exchanger (23) functions as an evaporator during the heating operation. Under operating conditions where the outside air temperature is low, the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) may be lower than 0 ° C. In this case, the moisture in the outdoor air becomes frost and the outdoor heat exchanger (23 ). Therefore, the air conditioner (10) performs the defrosting operation every time the duration time of the heating operation reaches a predetermined value (for example, several tens of minutes).
上述したように、暖房運転中には、室外熱交換器(23)が蒸発器として機能する。外気温が低い運転条件では、室外熱交換器(23)における冷媒の蒸発温度が0℃を下回る場合があり、この場合には、室外空気中の水分が霜となって室外熱交換器(23)に付着する。そこで、空気調和機(10)は、例えば暖房運転の継続時間が所定値(たとえは数十分)に達する行う毎に、除霜動作を行う。 <Defrosting operation>
As described above, the outdoor heat exchanger (23) functions as an evaporator during the heating operation. Under operating conditions where the outside air temperature is low, the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) may be lower than 0 ° C. In this case, the moisture in the outdoor air becomes frost and the outdoor heat exchanger (23 ). Therefore, the air conditioner (10) performs the defrosting operation every time the duration time of the heating operation reaches a predetermined value (for example, several tens of minutes).
除霜動作を開始する際には、四方切換弁(22)が第2状態から第1状態へ切り換わり、室外ファン(15)および室内ファン(16)が停止する。除霜動作中の冷媒回路(20)では、圧縮機(21)から吐出された高温の冷媒が室外熱交換器(23)へ供給される。室外熱交換器(23)では、その表面に付着した霜が冷媒によって暖められて融解する。室外熱交換器(23)において放熱した冷媒は、膨張弁(24)と室内熱交換器(25)を順に通過し、その後に圧縮機(21)へ吸入されて圧縮される。除霜動作が終了すると、暖房運転が再開される。つまり、四方切換弁(22)が第1状態から第2状態へ切り換わり、室外ファン(15)および室内ファン(16)の運転が再開される。
When starting the defrosting operation, the four-way switching valve (22) is switched from the second state to the first state, and the outdoor fan (15) and the indoor fan (16) are stopped. In the refrigerant circuit (20) during the defrosting operation, the high-temperature refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23). In the outdoor heat exchanger (23), the frost adhering to the surface is heated and melted by the refrigerant. The refrigerant that has radiated heat in the outdoor heat exchanger (23) sequentially passes through the expansion valve (24) and the indoor heat exchanger (25), and is then sucked into the compressor (21) and compressed. When the defrosting operation is completed, the heating operation is resumed. That is, the four-way switching valve (22) is switched from the first state to the second state, and the operation of the outdoor fan (15) and the indoor fan (16) is resumed.
〈熱交換器の構成〉
空気調和機(10)の室外熱交換器(23)を構成する本実施形態の熱交換器(30)について、図2~7を参照しながら説明する。 <Configuration of heat exchanger>
The heat exchanger (30) of the present embodiment constituting the outdoor heat exchanger (23) of the air conditioner (10) will be described with reference to FIGS.
空気調和機(10)の室外熱交換器(23)を構成する本実施形態の熱交換器(30)について、図2~7を参照しながら説明する。 <Configuration of heat exchanger>
The heat exchanger (30) of the present embodiment constituting the outdoor heat exchanger (23) of the air conditioner (10) will be described with reference to FIGS.
熱交換器(30)は、図2および図3に示すように、一つの第1ヘッダ集合管(31)と、一つの第2ヘッダ集合管(32)と、多数の扁平管(33)と、多数のフィン(36)とを備えている。第1ヘッダ集合管(31)、第2ヘッダ集合管(32)、扁平管(33)およびフィン(36)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。
As shown in FIGS. 2 and 3, the heat exchanger (30) includes one first header collecting pipe (31), one second header collecting pipe (32), and a number of flat tubes (33). And a number of fins (36). The first header collecting pipe (31), the second header collecting pipe (32), the flat pipe (33), and the fin (36) are all made of an aluminum alloy and are joined to each other by brazing.
第1ヘッダ集合管(31)および第2ヘッダ集合管(32)は、共に縦長の円筒状に形成され、一方が熱交換器(30)の左端に、他方が熱交換器(30)の右端にそれぞれ配置されている。一方、扁平管(33)は、図4に示すように、扁平な断面形状の伝熱管であって、平坦な側面(33a)と、該側面(33a)に連続し且つ外方へ突出する円弧面(33b)とを有している。各扁平管(33)は後述する切欠き部(45)の管挿入部(46)へ差し込まれる。扁平管(33)の円弧面(33b)は、扁平管(33)の切欠き部(45)への差込方向における端部に相当する。各扁平管(33)は、それぞれの平坦な側面(33a)が対向する状態で上下に並んで配置されている。各扁平管(33)には、複数の流体通路(34)が形成されている。上下に並んだ各扁平管(33)は、一端部が第1ヘッダ集合管(31)に挿入され、他端部が第2ヘッダ集合管(32)に挿入されている。
The first header collecting pipe (31) and the second header collecting pipe (32) are both formed in a vertically long cylindrical shape, one at the left end of the heat exchanger (30) and the other at the right end of the heat exchanger (30). Respectively. On the other hand, as shown in FIG. 4, the flat tube (33) is a heat transfer tube having a flat cross-sectional shape, and has a flat side surface (33a) and an arc that continues to the side surface (33a) and protrudes outward. Surface (33b). Each flat tube (33) is inserted into a tube insertion portion (46) of a notch (45) described later. The circular arc surface (33b) of the flat tube (33) corresponds to an end portion in the insertion direction of the flat tube (33) into the notch (45). The flat tubes (33) are arranged side by side in a state where the flat side surfaces (33a) face each other. Each flat tube (33) has a plurality of fluid passages (34). One end of each of the flat tubes (33) arranged in the vertical direction is inserted into the first header collecting pipe (31), and the other end is inserted into the second header collecting pipe (32).
フィン(36)は、扁平管(33)の配列方向に延びる板状フィンであって、扁平管(33)の伸長方向に互いに一定の間隔をおいて配置されている。つまり、フィン(36)は、扁平管(33)の伸長方向と実質的に直交するように配置されている。
The fins (36) are plate-like fins extending in the arrangement direction of the flat tubes (33), and are arranged at regular intervals in the extending direction of the flat tubes (33). That is, the fin (36) is disposed so as to be substantially orthogonal to the extending direction of the flat tube (33).
図4に示すように、フィン(36)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(36)には、フィン(36)の前縁(38)からフィン(36)の幅方向に延びる細長い切欠き部(45)が、多数形成されている。フィン(36)では、多数の切欠き部(45)が、フィン(36)の長手方向に一定の間隔で形成されている。切欠き部(45)の風下寄りの部分は、扁平管(33)が差し込まれる管挿入部(46)を構成している。扁平管(33)は、管挿入部(46)に差し込まれ、管挿入部(46)の縁部(46a,46b)とロウ付けによって接合される。具体的に、管挿入部(46)の縁部(46a,46b)は、扁平管(33)の側面(33a)に対応した直線状縁部(46a)と、該直線状縁部(46a)に連続し扁平管(33)の円弧面(33b)に対応した円弧状縁部(46b)とで構成されている。つまり、管挿入部(46)の縁部(46a,46b)は、扁平管(33)と接合される部分であり、その形状が扁平管(33)の形状に対応している。管挿入部(46)は、上下方向の幅(即ち、直線状縁部(46a)同士の間隔)が扁平管(33)の厚さと実質的に等しく、長さが扁平管(33)の幅と実質的に等しい。
As shown in FIG. 4, the fin (36) is a vertically long plate-like fin formed by pressing a metal plate. The fin (36) has a number of elongated notches (45) extending in the width direction of the fin (36) from the front edge (38) of the fin (36). In the fin (36), a large number of notches (45) are formed at regular intervals in the longitudinal direction of the fin (36). A portion closer to the lee of the notch portion (45) constitutes a tube insertion portion (46) into which the flat tube (33) is inserted. The flat tube (33) is inserted into the tube insertion portion (46) and joined to the edges (46a, 46b) of the tube insertion portion (46) by brazing. Specifically, the edge (46a, 46b) of the tube insertion part (46) includes a linear edge (46a) corresponding to the side surface (33a) of the flat tube (33) and the linear edge (46a). And an arcuate edge (46b) corresponding to the arc surface (33b) of the flat tube (33). That is, the edge portions (46a, 46b) of the tube insertion portion (46) are portions joined to the flat tube (33), and the shape thereof corresponds to the shape of the flat tube (33). The tube insertion portion (46) has a vertical width (that is, the interval between the straight edges (46a)) substantially equal to the thickness of the flat tube (33), and the length is the width of the flat tube (33). Is substantially equal.
そして、図6に示すように、管挿入部(46)の縁部(46a,46b)の全周、即ち直線状縁部(46a)および円弧状縁部(46b)は、その縁端にいくに従って内方へ傾斜するように折り曲げられている。具体的に、一つの管挿入部(46)において、対向する直線状縁部(46a)が略ハの字状に折り曲げられている。また、管挿入部(46)の縁部(46a,46b)は、直線状縁部(46a)の折り曲げ高さHが、円弧状縁部(46b)の折り曲げ高さH(図示せず)よりも大きく(高く)なるように形成されている。
Then, as shown in FIG. 6, the entire circumference of the edge portions (46a, 46b) of the tube insertion portion (46), that is, the straight edge portion (46a) and the arcuate edge portion (46b) go to the edge. It is bent so as to incline inward. Specifically, in one tube insertion portion (46), the opposing linear edge portion (46a) is bent into a substantially C shape. Further, the edge (46a, 46b) of the tube insertion part (46) has a bending height H of the linear edge part (46a) greater than a bending height H (not shown) of the arcuate edge part (46b). Is also formed to be large (high).
フィン(36)では、隣り合う切欠き部(45)の間の部分が伝熱部(37)を構成し、管挿入部(46)の風下側の部分が風下側板部(47)を構成している。つまり、フィン(36)には、扁平管(33)を挟んで上下に隣り合う複数の伝熱部(37)と、各伝熱部(37)の風下側の端部に連続する一つの風下側板部(47)とが設けられている。
In the fin (36), the part between the adjacent notches (45) constitutes the heat transfer part (37), and the leeward part of the pipe insertion part (46) constitutes the leeward side plate part (47). ing. In other words, the fin (36) has a plurality of heat transfer portions (37) adjacent to each other up and down across the flat tube (33), and one leeward continuous to the leeward end of each heat transfer portion (37). A side plate portion (47) is provided.
図5に示すように、フィン(36)の伝熱部(37)および風下側板部(47)には、複数のルーバー(50)が形成されている。図6にも示すように、各ルーバー(50)は、伝熱部(37)および風下側板部(47)を切り起こすことによって形成されている。つまり、各ルーバー(50)は、伝熱部(37)および風下側板部(47)に複数のスリット状の切り込みを入れ、隣り合う切り込みの間の部分を捩るように塑性変形させることによって形成されている。
As shown in FIG. 5, a plurality of louvers (50) are formed in the heat transfer section (37) and the leeward side plate section (47) of the fin (36). As shown also in FIG. 6, each louver (50) is formed by raising the heat-transfer part (37) and the leeward side board part (47). That is, each louver (50) is formed by making a plurality of slit-like cuts in the heat transfer part (37) and the leeward side plate part (47), and plastically deforming so as to twist the part between the adjacent cuts. ing.
各ルーバー(50)の長手方向は、伝熱部(37)の前縁(38)と実質的に平行となっている。つまり、各ルーバー(50)の長手方向は、上下方向となっている。伝熱部(37)では、上下方向に延びる複数のルーバー(50)が、風上側から風下側へ向かって並んで形成されている。
The longitudinal direction of each louver (50) is substantially parallel to the front edge (38) of the heat transfer section (37). That is, the longitudinal direction of each louver (50) is the vertical direction. In the heat transfer section (37), a plurality of louvers (50) extending in the vertical direction are formed side by side from the windward side toward the leeward side.
フィン(36)の風下側板部(47)には、導水用リブ(71)が形成されている。導水用リブ(71)は、風下側板部(47)の風下側の端部に沿って上下に延びる細長い凹溝であって、風下側板部(47)の上端から下端に亘って形成されている。
The leeward side plate portion (47) of the fin (36) is formed with a water guiding rib (71). The water guiding rib (71) is a long and narrow groove extending vertically along the leeward end of the leeward plate (47), and is formed from the upper end to the lower end of the leeward plate (47). .
また、フィン(36)には、隣のフィン(36)との間隔を保持するためのタブ(48)が形成されている。図5(B)に示すように、タブ(48)は、フィン(36)を切り起こすことによって形成された矩形の小片である。タブ(48)は、その突端が隣のフィン(36)に当接することによって、フィン(36)同士の間隔を保持する。
Also, the fin (36) is formed with a tab (48) for maintaining a distance from the adjacent fin (36). As shown in FIG. 5B, the tab (48) is a rectangular piece formed by cutting and raising the fin (36). The tab (48) keeps the space between the fins (36) by the protrusions coming into contact with the adjacent fins (36).
〈扁平管とフィンの接合〉
扁平管(33)とフィン(36)の管挿入部(46)とのロウ付けによる接合について説明する。 <Bonding of flat tube and fin>
The joining by the brazing of the flat tube (33) and the tube insertion portion (46) of the fin (36) will be described.
扁平管(33)とフィン(36)の管挿入部(46)とのロウ付けによる接合について説明する。 <Bonding of flat tube and fin>
The joining by the brazing of the flat tube (33) and the tube insertion portion (46) of the fin (36) will be described.
図7に示すように、扁平管(33)がフィン(36)の管挿入部(46)に差し込まれた状態では、扁平管(33)と管挿入部(46)の縁部(46a,46b)との間に、略Vの字状の溝(60)が形成される。この状態で、扁平管(33)と管挿入部(46)とのロウ付けが行われ、扁平管(33)が管挿入部(46)の縁部(46a,46b)と接合される。その際、扁平管(33)と管挿入部(46)の縁部(46a,46b)との間に上記溝(60)が形成されているため、溶融したロウ材は毛細管現象によって上記溝(60)へ積極的に流れ込む。これにより、扁平管(33)と切欠き部(45)の縁部(46a,46b)との接合部において十分な量のロウ材が確保される。そのため、扁平管(33)がフィン(36)と確実に接合される。特に、管挿入部(46)の縁部(46a,46b)の全周に亘って上記溝(60)が形成されるため、扁平管(33)のほぼ全周とフィン(36)とが確実に密着する。また、縁部(46a,46b)の縁端部分では加工上の公差やばらつきにより、扁平管(33)と管挿入部(46)の縁部(46a,46b)との間には若干の隙間(例えば100分の数ミリ程度の隙間)ができている。そのため、上記溝(60)へ流れ込んだロウ材は毛細管現象によって上記隙間の部分へ積極的に流れ込む。その結果、扁平管(33)がフィン(36)とより確実に接合される。
As shown in FIG. 7, in the state where the flat tube (33) is inserted into the tube insertion portion (46) of the fin (36), the edges (46a, 46b) of the flat tube (33) and the tube insertion portion (46) ), A substantially V-shaped groove (60) is formed. In this state, the flat tube (33) and the tube insertion portion (46) are brazed, and the flat tube (33) is joined to the edges (46a, 46b) of the tube insertion portion (46). At that time, since the groove (60) is formed between the flat tube (33) and the edge portion (46a, 46b) of the tube insertion portion (46), the molten brazing material is subjected to the above-mentioned groove ( 60). As a result, a sufficient amount of brazing material is secured at the joint between the flat tube (33) and the edge (46a, 46b) of the notch (45). Therefore, the flat tube (33) is securely joined to the fin (36). In particular, since the groove (60) is formed over the entire periphery of the edge (46a, 46b) of the tube insertion portion (46), the entire periphery of the flat tube (33) and the fin (36) are surely secured. Close contact with. In addition, there is a slight gap between the flat tube (33) and the edge (46a, 46b) of the tube insertion part (46) due to processing tolerances and variations at the edge of the edge (46a, 46b). (For example, a gap of about several hundredths of a millimeter) is formed. Therefore, the brazing material that has flowed into the groove (60) actively flows into the gap due to capillary action. As a result, the flat tube (33) is more reliably joined to the fin (36).
また、上述したように溶融したロウ材が上記溝(60)へ積極的に流れ込むことから、その分溶融したロウ材はフィン(36)同士の間に流れ込みにくくなる。つまり、フィン(36)同士の間に流れ込もうとするロウ材の量が抑制される。特に、管挿入部(46)の縁部(46a,46b)の全周に亘って上記溝(60)が形成されるため、その溝(60)へ流れ込むロウ材の量を十分に稼ぐことができ、その分フィン(36)同士の間に流れ込もうとするロウ材の量が一層抑制される。これにより、フィン(36)同士がロウ材を介して接触する状態を回避できる。
Moreover, since the molten brazing material actively flows into the groove (60) as described above, the molten brazing material is less likely to flow between the fins (36). That is, the amount of brazing material that tends to flow between the fins (36) is suppressed. In particular, since the groove (60) is formed over the entire circumference of the edge (46a, 46b) of the pipe insertion portion (46), it is possible to sufficiently earn the amount of brazing material flowing into the groove (60). As a result, the amount of brazing material that tends to flow between the fins (36) is further suppressed. Thereby, the state which fins (36) contact via a brazing material can be avoided.
また、本実施形態では、扁平管(33)がフィン(36)の管挿入部(46)に差し込まれる前の状態において、管挿入部(46)の上下方向の幅(即ち、直線状縁部(46a)同士の間隔)が、扁平管(33)の厚さよりも狭くなっている。つまり、扁平管(33)が管挿入部(46)に差し込まれる前では、図6に示す寸法L1が図7に示す寸法L2よりも小さい。そのため、扁平管(33)が管挿入部(46)に差し込まれた状態において、管挿入部(46)の縁部(46a,46b)をその弾性力によって扁平管(33)に確実に密着させることができる。これにより、扁平管(33)とフィン(36)とを確実に接合させることができるので、扁平管(33)とフィン(36)の間の熱伝達量を十分に確保することができる。
Moreover, in this embodiment, in the state before the flat tube (33) is inserted into the tube insertion portion (46) of the fin (36), the vertical width of the tube insertion portion (46) (that is, the linear edge portion). (Interval between (46a)) is narrower than the thickness of the flat tube (33). That is, before the flat tube (33) is inserted into the tube insertion portion (46), the dimension L1 shown in FIG. 6 is smaller than the dimension L2 shown in FIG. Therefore, in a state where the flat tube (33) is inserted into the tube insertion portion (46), the edge portions (46a, 46b) of the tube insertion portion (46) are securely adhered to the flat tube (33) by its elastic force. be able to. Thereby, since a flat tube (33) and a fin (36) can be joined reliably, the heat transfer amount between a flat tube (33) and a fin (36) can fully be ensured.
-実施形態の効果-
以上のように、本実施形態によれば、切欠き部(45)の扁平管(33)が接合される縁部(46a,46b)、即ち管挿入部(46)の縁部(46a,46b)を、縁端にいくに従って内方へ傾斜するように折り曲げるため、扁平管(33)と縁部(46a,46b)との間に略V字状の溝(60)を形成することができる。これにより、ロウ付けによる接合時において、ロウ材を毛細管現象によって上記溝(60)内へ積極的に流動させることができる。そのため、扁平管(33)と切欠き部(45)との接合部において十分な量のロウ材を確保できるので、扁平管(33)とフィン(36)とを確実に接合させることができる。 -Effects of the embodiment-
As described above, according to the present embodiment, the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined, that is, the edge (46a, 46b) of the tube insertion part (46). ) Is bent so as to be inclined inward toward the edge, so that a substantially V-shaped groove (60) can be formed between the flat tube (33) and the edges (46a, 46b). . Thereby, at the time of joining by brazing, the brazing material can be actively flowed into the groove (60) by capillary action. Therefore, since a sufficient amount of brazing material can be secured at the joint between the flat tube (33) and the notch (45), the flat tube (33) and the fin (36) can be reliably bonded.
以上のように、本実施形態によれば、切欠き部(45)の扁平管(33)が接合される縁部(46a,46b)、即ち管挿入部(46)の縁部(46a,46b)を、縁端にいくに従って内方へ傾斜するように折り曲げるため、扁平管(33)と縁部(46a,46b)との間に略V字状の溝(60)を形成することができる。これにより、ロウ付けによる接合時において、ロウ材を毛細管現象によって上記溝(60)内へ積極的に流動させることができる。そのため、扁平管(33)と切欠き部(45)との接合部において十分な量のロウ材を確保できるので、扁平管(33)とフィン(36)とを確実に接合させることができる。 -Effects of the embodiment-
As described above, according to the present embodiment, the edge (46a, 46b) to which the flat tube (33) of the notch (45) is joined, that is, the edge (46a, 46b) of the tube insertion part (46). ) Is bent so as to be inclined inward toward the edge, so that a substantially V-shaped groove (60) can be formed between the flat tube (33) and the edges (46a, 46b). . Thereby, at the time of joining by brazing, the brazing material can be actively flowed into the groove (60) by capillary action. Therefore, since a sufficient amount of brazing material can be secured at the joint between the flat tube (33) and the notch (45), the flat tube (33) and the fin (36) can be reliably bonded.
また、ロウ材を上記溝(60)へ積極的に流動させることができることから、その分フィン(36)同士の間に流れ込むロウ材の量を抑制することができる。これにより、フィン(36)同士がロウ材を介して接触してしまう状態を回避することができる。よって、フィン(36)間における通風抵抗の増大を防止することができ、その結果、熱交換器(30)の熱交換効率が低下するのを防止することができる。
Further, since the brazing material can be actively flowed into the groove (60), the amount of the brazing material flowing between the fins (36) can be suppressed accordingly. Thereby, the state which fins (36) will contact via a brazing material can be avoided. Therefore, increase in ventilation resistance between the fins (36) can be prevented, and as a result, it is possible to prevent the heat exchange efficiency of the heat exchanger (30) from decreasing.
特に、本実施形態では、管挿入部(46)の縁部(46a,46b)の全周を縁端にいくに従って内方へ傾斜するように折り曲げるため、縁部(46a,46b)の全周に上記溝(60)を形成することができる。そのため、上記溝(60)へ流れ込むロウ材の量を増加させることができ、それによって、フィン(36)同士の間に流れ込むロウ材の量を一層抑制することができる。
In particular, in this embodiment, the entire circumference of the edge (46a, 46b) is bent so that the entire circumference of the edge (46a, 46b) of the tube insertion part (46) is inclined inward as it goes to the edge. The groove (60) can be formed on the surface. Therefore, the amount of brazing material flowing into the groove (60) can be increased, and thereby the amount of brazing material flowing between the fins (36) can be further suppressed.
また、本実施形態のフィン(36)のように、隣のフィン(36)に当接してフィン(36)同士の間隔を保持するタブ(48)が形成されているものでは、そのタブ(48)へロウ材が流れてフィン(36)同士がロウ材を介して接触しやすくなる。ところが、本実施形態では、上述したようにロウ材が上記溝(60)へ積極的に流れ込むため、フィン(36)同士の接触を確実に回避することができる。
Further, in the case where a tab (48) is formed that holds the space between the fins (36) in contact with the adjacent fin (36) like the fin (36) of the present embodiment, the tab (48 ) The brazing material flows and the fins (36) easily come into contact with each other through the brazing material. However, in this embodiment, since the brazing material actively flows into the groove (60) as described above, it is possible to reliably avoid contact between the fins (36).
また、本実施形態では、管挿入部(46)の縁部(46a,46b)の形状を、扁平管(33)の形状に対応させるようにしているので、扁平管(33)と管挿入部(46)との接触面積を多く稼ぐことができる。そのため、扁平管(33)とフィン(36)の間の熱伝達量を十分に稼ぐことができる。
Moreover, in this embodiment, since the shape of the edge part (46a, 46b) of a pipe insertion part (46) is made to respond | correspond to the shape of a flat pipe (33), a flat pipe (33) and a pipe insertion part You can earn a lot of contact area with (46). Therefore, the amount of heat transfer between the flat tube (33) and the fin (36) can be earned sufficiently.
また、本実施形態では、管挿入部(46)の縁部(46a,46b)において直線状縁部(46a)の折り曲げ高さHが円弧状縁部(46b)の折り曲げ高さHよりも大きく(高く)なるように形成している。そのため、縁部(46a,46b)の折り曲げ加工の際、円弧状縁部(46b)が破断しにくくなる。これにより、扁平管(33)と縁部(46a,46b)との間に略V字状の溝(60)を適切且つ確実に形成することができる。よって、ロウ付けによる接合時において、フィン(36)同士の間に流れ込むロウ材の量を確実に抑制することができる。
In the present embodiment, the bending height H of the linear edge (46a) is greater than the bending height H of the arcuate edge (46b) at the edges (46a, 46b) of the tube insertion portion (46). It is formed to be (high). For this reason, the arc-shaped edge portion (46b) is not easily broken when the edge portions (46a, 46b) are bent. Thereby, a substantially V-shaped groove | channel (60) can be appropriately and reliably formed between a flat tube (33) and an edge part (46a, 46b). Therefore, at the time of joining by brazing, the amount of brazing material flowing between the fins (36) can be reliably suppressed.
なお、本実施形態では、管挿入部(46)の縁部(46a,46b)の全周に亘って折り曲げるようにしたが、一部を折り曲げるようにしてもよい。
In addition, in this embodiment, although it bent over the perimeter of the edge part (46a, 46b) of a pipe insertion part (46), you may make it bend a part.
また、本実施形態では、扁平管(33)と管挿入部(46)の縁部(46a,46b)との間に形成される溝(60)がその底部にいくほど狭くなるものであれば、管挿入部(46)の縁部(46a,46b)の折り曲げ方は如何なるものであってもよい。
Moreover, in this embodiment, if the groove | channel (60) formed between a flat tube (33) and the edge (46a, 46b) of a tube insertion part (46) becomes so narrow that it goes to the bottom part. Any method may be used for bending the edge portions (46a, 46b) of the tube insertion portion (46).
以上説明したように、本発明は、扁平管とフィンとを備えた熱交換器およびそれを備えた空気調和機について有用である。
As described above, the present invention is useful for a heat exchanger including a flat tube and fins and an air conditioner including the heat exchanger.
10 空気調和機
20 冷媒回路
30 熱交換器
33 扁平管
36 フィン
45 切欠き部 10 Air conditioner
20 Refrigerant circuit
30 heat exchanger
33 Flat tube
36 fins
45 Notch
20 冷媒回路
30 熱交換器
33 扁平管
36 フィン
45 切欠き部 10 Air conditioner
20 Refrigerant circuit
30 heat exchanger
33 Flat tube
36 fins
45 Notch
Claims (5)
- 側面(33a)が対向するように上下に配列された複数の扁平管(33)と、該扁平管(33)の配列方向に延びる板状に形成され、上記各扁平管(33)が直交方向に差し込まれロウ付けによって接合される切欠き部(45)を有する複数のフィン(36)とを備えた熱交換器であって、
上記切欠き部(45)の上記扁平管(33)が接合される縁部(46a,46b)は、上記扁平管(33)が上記切欠き部(45)に差し込まれた状態で上記縁部(46a,46b)と上記扁平管(33)との間に略Vの字状の溝(60)が形成されるように、折り曲げられている
ことを特徴とする熱交換器。 A plurality of flat tubes (33) arranged vertically so that the side surfaces (33a) face each other, and a plate extending in the arrangement direction of the flat tubes (33), each flat tube (33) being orthogonal A heat exchanger comprising a plurality of fins (36) having notches (45) that are inserted into and joined by brazing,
The edge portions (46a, 46b) of the notched portion (45) to which the flat tube (33) is joined are the edge portions in a state where the flat tube (33) is inserted into the notched portion (45). (46a, 46b) and the said flat tube (33), It is bent so that the substantially V-shaped groove | channel (60) may be formed, The heat exchanger characterized by the above-mentioned. - 請求項1において、
上記切欠き部(45)の上記扁平管(33)が接合される縁部(46a,46b)は、上記扁平管(33)が上記切欠き部(45)に差し込まれた状態で上記縁部(46a,46b)と上記扁平管(33)との間に略Vの字状の溝(60)が形成されるように、全周が折り曲げられている
ことを特徴とする熱交換器。 In claim 1,
The edge portions (46a, 46b) of the notched portion (45) to which the flat tube (33) is joined are the edge portions in a state where the flat tube (33) is inserted into the notched portion (45). (46a, 46b) and the said flat tube (33), The heat exchanger characterized by the whole circumference being bent so that a substantially V-shaped groove | channel (60) may be formed. - 請求項2において、
上記扁平管(33)は、上記切欠き部(45)への差込方向における端部が、上記側面(33a)に連続し且つ外方へ突出する円弧面(33b)となっており、
上記切欠き部(45)の上記扁平管(33)が接合される縁部は、上記扁平管(33)の側面(33a)に対応した直線状縁部(46a)と、該直線状縁部(46a)に連続し上記扁平管(33)の円弧面(33b)に対応した円弧状縁部(46b)とを有している
ことを特徴とする熱交換器。 In claim 2,
The flat tube (33) has an arc surface (33b) whose end in the insertion direction to the notch (45) is continuous with the side surface (33a) and protrudes outward,
The edge of the notch (45) to which the flat tube (33) is joined includes a straight edge (46a) corresponding to the side surface (33a) of the flat tube (33) and the straight edge. A heat exchanger having an arcuate edge (46b) that is continuous with (46a) and corresponds to the arc surface (33b) of the flat tube (33). - 請求項3において、
上記直線状縁部(46a)の折り曲げ高さは、上記円弧状縁部(46b)の折り曲げ高さよりも大きい
ことを特徴とする熱交換器。 In claim 3,
The heat exchanger according to claim 1, wherein a bending height of the linear edge portion (46a) is larger than a bending height of the arcuate edge portion (46b). - 請求項1乃至4の何れか一つに記載の熱交換器(30)が設けられた冷媒回路(20)を備え、
上記冷媒回路(20)において冷媒を循環させて冷凍サイクルを行う
ことを特徴とする空気調和機。 A refrigerant circuit (20) provided with the heat exchanger (30) according to any one of claims 1 to 4,
An air conditioner that performs a refrigeration cycle by circulating refrigerant in the refrigerant circuit (20).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-011298 | 2011-01-21 | ||
JP2011011298A JP2012154498A (en) | 2011-01-21 | 2011-01-21 | Heat exchanger, and air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012098915A1 true WO2012098915A1 (en) | 2012-07-26 |
Family
ID=46515548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/000382 WO2012098915A1 (en) | 2011-01-21 | 2012-01-23 | Heat exchanger and air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012154498A (en) |
WO (1) | WO2012098915A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014156990A (en) * | 2013-02-18 | 2014-08-28 | Mitsubishi Electric Corp | Heat exchanger of air conditioner |
EP3561430A3 (en) * | 2018-04-25 | 2019-11-06 | Panasonic Intellectual Property Management Co., Ltd. | Heat exchanger |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3421919A4 (en) * | 2016-02-24 | 2019-11-06 | Mitsubishi Electric Corporation | Heat exchanger |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5238761U (en) * | 1975-09-12 | 1977-03-18 | ||
JPS5274552U (en) * | 1975-12-02 | 1977-06-03 | ||
JPS55107897A (en) * | 1979-02-09 | 1980-08-19 | Nippon Denso Co Ltd | Heat exchanger |
JPS58127092A (en) * | 1982-01-25 | 1983-07-28 | Nippon Denso Co Ltd | Heat exchanger and manufacture thereof |
JPH02169177A (en) * | 1988-12-16 | 1990-06-29 | Matsushita Refrig Co Ltd | Production of heat exchanger |
JPH0560482A (en) * | 1991-08-29 | 1993-03-09 | Showa Alum Corp | Manufacture of heat exchanger |
JPH0590173U (en) * | 1992-04-20 | 1993-12-07 | 住友軽金属工業株式会社 | Fin tube heat exchanger |
JPH09310993A (en) * | 1996-05-22 | 1997-12-02 | Nippon Light Metal Co Ltd | Manufacture of heat exchanger and heat exchanger |
JP2003214791A (en) * | 2002-01-23 | 2003-07-30 | Mitsubishi Electric Corp | Heat exchanger |
-
2011
- 2011-01-21 JP JP2011011298A patent/JP2012154498A/en active Pending
-
2012
- 2012-01-23 WO PCT/JP2012/000382 patent/WO2012098915A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5238761U (en) * | 1975-09-12 | 1977-03-18 | ||
JPS5274552U (en) * | 1975-12-02 | 1977-06-03 | ||
JPS55107897A (en) * | 1979-02-09 | 1980-08-19 | Nippon Denso Co Ltd | Heat exchanger |
JPS58127092A (en) * | 1982-01-25 | 1983-07-28 | Nippon Denso Co Ltd | Heat exchanger and manufacture thereof |
JPH02169177A (en) * | 1988-12-16 | 1990-06-29 | Matsushita Refrig Co Ltd | Production of heat exchanger |
JPH0560482A (en) * | 1991-08-29 | 1993-03-09 | Showa Alum Corp | Manufacture of heat exchanger |
JPH0590173U (en) * | 1992-04-20 | 1993-12-07 | 住友軽金属工業株式会社 | Fin tube heat exchanger |
JPH09310993A (en) * | 1996-05-22 | 1997-12-02 | Nippon Light Metal Co Ltd | Manufacture of heat exchanger and heat exchanger |
JP2003214791A (en) * | 2002-01-23 | 2003-07-30 | Mitsubishi Electric Corp | Heat exchanger |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014156990A (en) * | 2013-02-18 | 2014-08-28 | Mitsubishi Electric Corp | Heat exchanger of air conditioner |
EP3561430A3 (en) * | 2018-04-25 | 2019-11-06 | Panasonic Intellectual Property Management Co., Ltd. | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2012154498A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5196043B2 (en) | Heat exchanger and air conditioner | |
JP5177307B2 (en) | Heat exchanger | |
JP5141840B2 (en) | Heat exchanger and air conditioner | |
JP5177306B2 (en) | Heat exchanger and air conditioner | |
US9316446B2 (en) | Heat exchanger and air conditioner | |
JP2013132675A (en) | Method for manufacturing heat exchanger | |
WO2012098915A1 (en) | Heat exchanger and air conditioner | |
WO2012098913A1 (en) | Heat exchanger and air conditioner | |
JP5569409B2 (en) | Heat exchanger and air conditioner | |
JP5736794B2 (en) | Heat exchanger and air conditioner | |
JP5664272B2 (en) | Heat exchanger and air conditioner | |
JP2015031491A (en) | Heat exchanger and air conditioner | |
JP5573698B2 (en) | Heat exchanger and air conditioner | |
JP2012154492A (en) | Heat exchanger and air conditioner | |
JP2012154499A (en) | Heat exchanger, and air conditioner | |
JP2012154500A (en) | Heat exchanger and air conditioner | |
JP2015031478A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12736559 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12736559 Country of ref document: EP Kind code of ref document: A1 |