JP5177306B2 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
JP5177306B2
JP5177306B2 JP2012010570A JP2012010570A JP5177306B2 JP 5177306 B2 JP5177306 B2 JP 5177306B2 JP 2012010570 A JP2012010570 A JP 2012010570A JP 2012010570 A JP2012010570 A JP 2012010570A JP 5177306 B2 JP5177306 B2 JP 5177306B2
Authority
JP
Japan
Prior art keywords
flat
leeward
heat transfer
heat exchanger
leeward side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012010570A
Other languages
Japanese (ja)
Other versions
JP2012163317A (en
Inventor
正憲 神藤
好男 織谷
俊 吉岡
俊光 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012010570A priority Critical patent/JP5177306B2/en
Publication of JP2012163317A publication Critical patent/JP2012163317A/en
Application granted granted Critical
Publication of JP5177306B2 publication Critical patent/JP5177306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Each of a plurality of heat-transfer portions (37) has a plurality of protrusions (51, 52, 53) which are protruded toward an air passage (38) and extend in a direction intersecting with an airflow direction. The protrusions (51, 52, 53) are arranged in the airflow direction.

Description

本発明は、扁平管と複数のフィンとを備え、扁平管を流れる流体と空気とを熱交換させる熱交換器、及び熱交換器を備えた空気調和機に関するものである。   The present invention relates to a heat exchanger that includes a flat tube and a plurality of fins, exchanges heat between fluid flowing through the flat tube and air, and an air conditioner including the heat exchanger.

従来より、扁平管とフィンとを備えた熱交換器が知られている。例えば、特許文献1に記載された熱交換器では、左右方向に延びる複数の扁平管が互いに所定の間隔をおいて上下に並べられ、板状のフィンが互いに所定の間隔をおいて扁平管の伸長方向に並べられている。また、特許文献2や特許文献3に記載された熱交換器では、左右方向に延びる複数の扁平管が互いに所定の間隔をおいて上下に並べられ、隣り合う扁平管の間にコルゲートフィンが一つずつ設けられている。これらの熱交換器では、フィンと接触しながら流れる空気が、扁平管内を流れる流体と熱交換する。   Conventionally, a heat exchanger including a flat tube and fins is known. For example, in the heat exchanger described in Patent Document 1, a plurality of flat tubes extending in the left-right direction are arranged one above the other at a predetermined interval, and plate-like fins are arranged at a predetermined interval from each other. They are arranged in the direction of extension. Further, in the heat exchangers described in Patent Document 2 and Patent Document 3, a plurality of flat tubes extending in the left-right direction are arranged one above the other at a predetermined interval, and one corrugated fin is provided between adjacent flat tubes. It is provided one by one. In these heat exchangers, the air flowing while contacting the fins exchanges heat with the fluid flowing in the flat tube.

通常、この種の熱交換器のフィンには、伝熱を促進するためのルーバーが形成される。このルーバーは、フィンの一部を切り起こすことで形成される。フィンの伝熱性能を向上させるには、ルーバーの長さをできるだけ長くするのが有利である。そこで、特許文献2の図2や特許文献3の図4に記載されているように、従来の熱交換器のフィンでは、ほぼフィンの全幅に亘って形成されたルーバーが、空気の通過方向に並んでいる。   Usually, a louver for promoting heat transfer is formed on the fin of this type of heat exchanger. The louver is formed by cutting and raising a part of the fin. In order to improve the heat transfer performance of the fin, it is advantageous to make the length of the louver as long as possible. Therefore, as described in FIG. 2 of Patent Document 2 and FIG. 4 of Patent Document 3, in the fins of the conventional heat exchanger, the louver formed almost over the entire width of the fin is in the air passage direction. Are lined up.

特開2003−262485号公報JP 2003-262485 A 特開2010−002138号公報JP 2010-002138 A 特開平11−294984号公報JP 11-294984 A

ところで、空気調和機の冷媒回路には、冷媒を室外空気と熱交換させる室外熱交換器が設けられる。空気調和機の暖房運転中には、室外熱交換器が蒸発器として機能する。室外熱交換器での冷媒の蒸発温度が0℃を下回ると、空気中の水分が霜(即ち、氷)となって室外熱交換器に付着する。そこで、外気温が低い状態における暖房運転中には、室外熱交換器に付着した霜を融かすための除霜動作が、例えば所定時間が経過する毎に行われる。除霜動作中には、高温の冷媒が室外熱交換器へ供給され、室外熱交換器に付着した霜が冷媒によって暖められて融解する。その結果、室外熱交換器に付着していた霜は、融解してドレン水となって室外熱交換器から排出される。   By the way, the refrigerant circuit of the air conditioner is provided with an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air. During the heating operation of the air conditioner, the outdoor heat exchanger functions as an evaporator. When the evaporation temperature of the refrigerant in the outdoor heat exchanger falls below 0 ° C., moisture in the air becomes frost (that is, ice) and adheres to the outdoor heat exchanger. Therefore, during the heating operation in a state where the outside air temperature is low, a defrosting operation for melting frost attached to the outdoor heat exchanger is performed, for example, every time a predetermined time elapses. During the defrosting operation, the high-temperature refrigerant is supplied to the outdoor heat exchanger, and the frost attached to the outdoor heat exchanger is heated by the refrigerant and melts. As a result, the frost adhering to the outdoor heat exchanger melts to become drain water and is discharged from the outdoor heat exchanger.

一方、扁平管が上下に並んだ熱交換器は、空気調和機の室外熱交換器として用いることが可能である。しかし、この熱交換器では、扁平管の平坦な側面が上向きとなっているため、扁平管の上にドレン水が溜まりやすい。特に、フィンの表面に複数のルーバーを形成すると、ルーバーの切り起こしに伴って形成される細長い切り目の間にドレン水が入り込んで貯まってしまう。このようにしてフィンの周辺にドレン水が滞留すると、冷媒から霜への熱の移動がドレン水によって阻害され、霜が融けきるまでに要する時間が長くなるおそれがあった。   On the other hand, a heat exchanger in which flat tubes are lined up and down can be used as an outdoor heat exchanger of an air conditioner. However, in this heat exchanger, since the flat side surface of the flat tube faces upward, drain water tends to accumulate on the flat tube. In particular, when a plurality of louvers are formed on the surface of the fin, drain water enters and accumulates between the long and narrow cuts that are formed when the louvers are cut and raised. If the drain water stays in the vicinity of the fins in this manner, the transfer of heat from the refrigerant to the frost is hindered by the drain water, and there is a possibility that the time required for the frost to melt will be increased.

本発明は、かかる点に鑑みてなされたものであり、その目的は、扁平管が上下に並んだ熱交換器において、ドレン水の排出を促進させて除霜に要する時間を短縮することにある。   This invention is made | formed in view of this point, The objective is to shorten discharge | emission time which accelerates discharge | emission of drain water in the heat exchanger with which the flat tube was lined up and down. .

第1の発明は、平坦な側面が対向するように上下に配列され、内部に流体の通路(34)が形成される複数の扁平管(33)と、隣り合う上記扁平管(33)の間を空気が流れる複数の通風路(38)に区画する複数のフィン(35,36)とを備え、該複数のフィン(35,36)は、隣り合う上記扁平管(33)の一方から他方に亘る板状に形成されて上記通風路(38)の側壁を構成する複数の伝熱部(37)と、該伝熱部(37)の風下側端部と連結して排水経路を形成する風下側板部(42,47)とを有する熱交換器を対象とする。そして、この熱交換器は、上記複数の伝熱部(37)に、上記通風路(38)側に向かって膨出し且つ空気の通過方向と交わる方向に延びる複数の膨出部(51,52,53)が、該空気の通過方向に配列され、上記複数の膨出部(51,52,53)は、上記通風路(38)の風上側に形成される風上側膨出部(51)と、上記通風路(38)の風下側に形成される風下側膨出部(53)とを含み、上記伝熱部(37)では、上記風上側膨出部(51)と下側の扁平管(33)との間に形成される平坦部(51a)の高さが、上記風下側膨出部(53)と下側の扁平管(33)との間に形成される平坦部(53a)の高さよりも大きいことを特徴とする。 The first invention is arranged between a plurality of flat tubes (33), which are arranged one above the other so that the flat side faces each other, and in which a fluid passage (34) is formed, and between the adjacent flat tubes (33). And a plurality of fins (35, 36) that divide a plurality of ventilation paths (38) through which air flows, the plurality of fins (35, 36) extending from one of the adjacent flat tubes (33) to the other A leeward formed into a plate shape and connected to a plurality of heat transfer portions (37) constituting the side wall of the ventilation passage (38) and a leeward side end portion of the heat transfer portion (37) to form a drainage passage A heat exchanger having side plate portions (42, 47) is an object. The heat exchanger has a plurality of bulge portions (51, 52) that bulges toward the ventilation path (38) and extends in a direction intersecting the air passage direction in the plurality of heat transfer portions (37). , 53) are arranged in the air passage direction, and the plurality of bulge portions (51, 52, 53) are formed on the windward side bulge portion (51) formed on the windward side of the ventilation path (38). And a leeward bulge portion (53) formed on the leeward side of the ventilation path (38). In the heat transfer portion (37), the windward bulge portion (51) and the lower flat portion The height of the flat part (51a) formed between the pipe (33) and the flat part (53a) formed between the leeward bulge part (53) and the lower flat pipe (33) ), Which is larger than the height .

第1の発明では、熱交換器(30)に扁平管(33)とフィン(35,36)とが複数ずつ設けられる。上下に配列された扁平管(33)の間には、フィン(35,36)の伝熱部(37)が配置される。これにより、扁平管(33)の間には通風路(38)が区画される。熱交換器(30)では、通風路(38)を流れる空気と、扁平管(33)内の通路(34)を流れる流体とが熱交換する。   In the first invention, the heat exchanger (30) is provided with a plurality of flat tubes (33) and a plurality of fins (35, 36). Between the flat tubes (33) arranged vertically, the heat transfer section (37) of the fins (35, 36) is arranged. Thereby, the ventilation path (38) is divided between the flat tubes (33). In the heat exchanger (30), heat is exchanged between the air flowing through the ventilation path (38) and the fluid flowing through the passage (34) in the flat tube (33).

本発明の伝熱部(37)には、通風路(38)側に向かって膨出する複数の膨出部(51,52,53)が、通風路(38)の通風方向に配列される。これらの複数の膨出部(51,52,53)によって伝熱部(37)の伝熱性能が増大する。   In the heat transfer section (37) of the present invention, a plurality of bulging sections (51, 52, 53) that bulge toward the ventilation path (38) are arranged in the ventilation direction of the ventilation path (38). . The heat transfer performance of the heat transfer section (37) is increased by the plurality of bulge sections (51, 52, 53).

ところで、扁平管(33)内を流れる流体の温度が0℃を下回る場合には、空気中の水分が霜となって伝熱部(37)の表面に付着する。この霜を融かす除霜中には、伝熱部(37)の表面において融解した水(ドレン水)が発生する。ここで、本発明の伝熱部(37)の膨出部(51,52,53)は、従来例のルーバーのように伝熱部(37)を切り起こして形成されるものではない。つまり、本発明の膨出部(51,52,53)には、ドレン水が貯まり込むような切れ目が形成されていないため、膨出部(51,52,53)の近傍のドレン水は速やかに風下側へ流れる。このドレン水は、風下側板部(42,47)の壁面に沿うようにして下方へ排出される。   By the way, when the temperature of the fluid flowing in the flat tube (33) is lower than 0 ° C., moisture in the air becomes frost and adheres to the surface of the heat transfer section (37). During defrosting to melt this frost, melted water (drain water) is generated on the surface of the heat transfer section (37). Here, the bulging portions (51, 52, 53) of the heat transfer portion (37) of the present invention are not formed by cutting and raising the heat transfer portion (37) as in the conventional louver. That is, the swelled portion (51, 52, 53) of the present invention is not formed with a cut that accumulates drain water, so the drain water in the vicinity of the swelled portion (51, 52, 53) quickly To the leeward side. This drain water is discharged downward along the wall surface of the leeward side plate (42, 47).

の発明の伝熱部(37)には、風上側寄りの風上側膨出部(51)と、風下側寄りの風下側膨出部(53)とが形成される。扁平管(33)を流れる流体の温度が0℃を下回って、伝熱部(37)の表面に霜が付着する場合、風上側膨出部(51)の方が風下側膨出部(53)よりも着霜量が多くなる。よって、除霜中には、風上側膨出部(51)で発生するドレン水の量が、風下側膨出部(53)で発生するドレン水の量よりも多くなる。ここで、本発明では、風上側膨出部(51)の下側に形成される平坦部(51a)の高さを、風下側膨出部(53)の下側に形成される平坦部(53a)よりも大きくしている。このため、除霜中には、風上側膨出部(51)の近傍で多量に生成されたドレン水が、その下側の平坦部(51a)に沿うように下方へ速やかに流れ落ちる。 The heat transfer section (37) of the first invention is formed with an upwind bulge (51) near the leeward side and a leeward bulge (53) near the leeward side. When the temperature of the fluid flowing through the flat tube (33) is less than 0 ° C. and frost adheres to the surface of the heat transfer section (37), the leeward bulge section (51) is more in the leeward bulge section (53 ) The amount of frost increases. Therefore, during defrosting, the amount of drain water generated at the leeward bulge portion (51) is greater than the amount of drain water generated at the leeward bulge portion (53). Here, in the present invention, the height of the flat part (51a) formed on the lower side of the leeward bulge part (51) is set to the flat part (51a) formed on the lower side of the leeward bulge part (53). It is larger than 53a). For this reason, during defrosting, the drain water produced in a large amount in the vicinity of the windward bulge portion (51) flows down rapidly along the lower flat portion (51a).

第2の発明は、平坦な側面が対向するように上下に配列され、内部に流体の通路(34)が形成される複数の扁平管(33)と、隣り合う上記扁平管(33)の間を空気が流れる複数の通風路(38)に区画する複数のフィン(35,36)とを備え、該複数のフィン(35,36)は、隣り合う上記扁平管(33)の一方から他方に亘る板状に形成されて上記通風路(38)の側壁を構成する複数の伝熱部(37)と、該伝熱部(37)の風下側端部と連結して排水経路を形成する風下側板部(42,47)とを有する熱交換器を対象とする。そして、この熱交換器は、上記複数の伝熱部(37)に、上記通風路(38)側に向かって膨出し且つ空気の通過方向と交わる方向に延びる複数の膨出部(51,52,53)が、該空気の通過方向に配列され、上記複数の膨出部(51,52,53)と下側の扁平管(33)との間に形成される平坦部(51a,52a,53a)の高さは、風上側から風下側に向かうにつれて小さくなっていることを特徴とする。 According to a second aspect of the present invention, there is provided a plurality of flat tubes (33) arranged vertically so that flat side surfaces are opposed to each other, and a fluid passage (34) is formed therein, and between the adjacent flat tubes (33). And a plurality of fins (35, 36) that divide a plurality of ventilation paths (38) through which air flows, the plurality of fins (35, 36) extending from one of the adjacent flat tubes (33) to the other A leeward formed into a plate shape and connected to a plurality of heat transfer portions (37) constituting the side wall of the ventilation passage (38) and a leeward side end portion of the heat transfer portion (37) to form a drainage passage A heat exchanger having side plate portions (42, 47) is an object. The heat exchanger has a plurality of bulge portions (51, 52) that bulges toward the ventilation path (38) and extends in a direction intersecting the air passage direction in the plurality of heat transfer portions (37). , 53) are arranged in the air passage direction, and flat portions (51a, 52a, 52) formed between the plurality of bulging portions (51, 52, 53) and the lower flat tube (33). The height of 53a) is characterized by decreasing from the leeward side toward the leeward side.

の発明では、複数の膨出部(51,52,53)の下側に形成される平坦部(51a,52a,53a)の高さが、風上から風下へ向かうに従って小さくなっている。つまり、隣り合う伝熱部(37)の間では、平坦部(51a,52a,53a)に沿って形成される隙間の高さが、風下側において小さくなっていく。このため、除霜中において、風上側の膨出部(51)近傍で発生したドレン水は、毛管現象によって伝熱部(37)の風下側へ引き込まれる。 In 2nd invention, the height of the flat part (51a, 52a, 53a) formed in the lower side of a some bulging part (51,52,53) becomes small as it goes to the leeward from the windward side. . That is, between the adjacent heat transfer parts (37), the height of the gap formed along the flat part (51a, 52a, 53a) becomes smaller on the leeward side. For this reason, during defrosting, the drain water generated in the vicinity of the bulge portion (51) on the windward side is drawn to the leeward side of the heat transfer portion (37) by capillary action.

の発明は、平坦な側面が対向するように上下に配列され、内部に流体の通路(34)が形成される複数の扁平管(33)と、隣り合う上記扁平管(33)の間を空気が流れる複数の通風路(38)に区画する複数のフィン(35,36)とを備え、該複数のフィン(35,36)は、隣り合う上記扁平管(33)の一方から他方に亘る板状に形成されて上記通風路(38)の側壁を構成する複数の伝熱部(37)と、該伝熱部(37)の風下側端部と連結して排水経路を形成する風下側板部(42,47)とを有する熱交換器を対象とする。そして、この熱交換器は、上記複数の伝熱部(37)に、上記通風路(38)側に向かって膨出し且つ空気の通過方向と交わる方向に延びる複数の膨出部(51,52,53)が、該空気の通過方向に配列され、上記複数の膨出部(51,52,53)の少なくとも1つの膨出部(51,52)の下端と、該膨出部(51,52)の下端の下側の扁平管(33)との間に形成される平坦部(51a,51b)の高さは、風上側から風下側に向かうにつれて小さくなっていることを特徴とする。 According to a third aspect of the present invention, there is provided a plurality of flat tubes (33) that are arranged one above the other so that flat side surfaces are opposed to each other and in which a fluid passage (34) is formed, and between the adjacent flat tubes (33). And a plurality of fins (35, 36) that divide a plurality of ventilation paths (38) through which air flows, the plurality of fins (35, 36) extending from one of the adjacent flat tubes (33) to the other A leeward formed into a plate shape and connected to a plurality of heat transfer portions (37) constituting the side wall of the ventilation passage (38) and a leeward side end portion of the heat transfer portion (37) to form a drainage passage A heat exchanger having side plate portions (42, 47) is an object. The heat exchanger has a plurality of bulge portions (51, 52) that bulges toward the ventilation path (38) and extends in a direction intersecting the air passage direction in the plurality of heat transfer portions (37). , 53) are arranged in the air passage direction, and the lower end of at least one bulging portion (51, 52) of the plurality of bulging portions (51, 52, 53), and the bulging portion (51, The height of the flat portion (51a, 51b) formed between the lower flat tube (33) at the lower end of 52) decreases from the leeward side toward the leeward side.

の発明では、複数の膨出部(51,52,53)のうちの少なくとも1つの膨出部(51,52)の下端の下側に形成される平坦部(51a,52a)の高さが、風上側から風下側へ向かうに従って小さくなっている。つまり、隣り合う伝熱部(37)の間では、平坦部(51a,52a,53a)に沿って形成される隙間の高さが、風下側に向かって徐々に小さくなっていく。このため、除霜中において、膨出部(51,52)近傍で発生したドレン水は、毛管現象によって伝熱部(37)の風下側へ引き込まれる。 In the third invention, the height of the flat portion (51a, 52a) formed below the lower end of at least one bulge portion (51, 52) of the plurality of bulge portions (51, 52, 53). However, it becomes small as it goes from the leeward side to the leeward side. That is, between the adjacent heat transfer parts (37), the height of the gap formed along the flat part (51a, 52a, 53a) gradually decreases toward the leeward side. For this reason, during defrosting, drain water generated in the vicinity of the bulging portion (51, 52) is drawn to the leeward side of the heat transfer portion (37) by capillary action.

第4の発明は、第1乃至第3のいずれか1つの発明において、上記膨出部(51,52,53)は、該膨出部(51,52,53)の下端が該膨出部(51,52,53)の上端よりも風下寄りに位置するように鉛直方向に対して傾斜していることを特徴とする。   According to a fourth invention, in any one of the first to third inventions, the bulging portion (51, 52, 53) has a lower end of the bulging portion (51, 52, 53). It is inclined with respect to the vertical direction so as to be located closer to the lee side than the upper end of (51, 52, 53).

第4の発明では、膨出部(51,52,53)が鉛直方向に対して傾斜しており、この膨出部(51,52,53)の下端がその上端よりも風下に位置している。これにより、除霜中に膨出部(51,52,53)の近傍で発生したドレン水は、膨出部(51,52,53)に案内されるようにして風下側に向かって流れ落ちていく。   In the fourth invention, the bulging portion (51, 52, 53) is inclined with respect to the vertical direction, and the lower end of the bulging portion (51, 52, 53) is located leeward than the upper end. Yes. As a result, drain water generated in the vicinity of the bulging part (51, 52, 53) during defrosting flows down toward the leeward side as guided by the bulging part (51, 52, 53). Go.

の発明は、第1乃至第のいずれか1つの発明において、上記複数のフィン(36)は、上記扁平管(33)を差し込むための複数の切り欠き部(45)が風上側に設けられた板状に形成され、扁平管(33)の伸長方向に互いに所定の間隔をおいて配置され、切り欠き部(45)の周縁で上記扁平管(33)を挟んでおり、上記フィン(36)では、上下に隣り合う切り欠き部(45)の間の部分が上記伝熱部(37)を構成し、該伝熱部(37)の風下側端部と連続して上下に延びる部分が上記風下側板部(47)を構成していること特徴とする。 According to a fifth invention, in any one of the first to fourth inventions, the plurality of fins (36) have a plurality of notches (45) for inserting the flat tube (33) on the windward side. The plate is formed in a plate shape, arranged at a predetermined interval in the extending direction of the flat tube (33), and sandwiches the flat tube (33) at the periphery of the notch (45). In (36), the part between the notches (45) that are vertically adjacent constitutes the heat transfer part (37), and extends up and down continuously with the leeward side end of the heat transfer part (37). The portion constitutes the leeward side plate portion (47).

の発明では、上下に配列される複数の伝熱部(37)の風下側に、該複数の伝熱部と連続するように風下側板部(47)が形成される。これにより、一体的な縦長のフィン(36)が形成される。これらのフィン(36)の切り欠き部(45)の周縁に扁平管(33)が挟まれることで、隣り合う扁平管(33)と、各伝熱部(37)との間に複数の通風路(38)が区画される。 In the fifth invention, the leeward side plate portion (47) is formed on the leeward side of the plurality of heat transfer portions (37) arranged vertically so as to be continuous with the plurality of heat transfer portions. Thereby, an integral vertically long fin (36) is formed. Since the flat tube (33) is sandwiched around the periphery of the notch (45) of the fin (36), a plurality of ventilations are provided between the adjacent flat tube (33) and each heat transfer unit (37). The road (38) is demarcated.

の発明は、第の発明において、上記風下側板部(47)には、上記複数の伝熱部(37)の風下側端部に沿うように延びるリブ(57)が形成されていることを特徴とする。 In a sixth aspect based on the fifth aspect , the leeward side plate portion (47) is formed with a rib (57) extending along the leeward side end portions of the plurality of heat transfer portions (37). It is characterized by that.

の発明では、除霜中に各伝熱部(37)で発生したドレン水が風下側板部(47)へ流れると、このドレン水はリブ(57)に案内されるように、下方へ流れ落ちる。 In 6th invention, when drain water which generate | occur | produced in each heat-transfer part (37) during defrost flows into a leeward side board part (47), this drain water will be below so that it may be guided to a rib (57). run down.

の発明は、第又は第の発明において、上記フィン(36)には、通風路(38)側に向かって切り起こされる切り起こし部(61,62)が形成され、該切り起こし部(61a,62a)の切り起こし面(61a,62a)が、水平面に対して傾いていることを特徴とする。 According to a seventh invention, in the fifth or sixth invention, the fin (36) is formed with a cut-and-raised portion (61, 62) cut and raised toward the ventilation path (38). The cut and raised surfaces (61a, 62a) of the portions (61a, 62a) are inclined with respect to the horizontal plane.

の発明では、フィン(36)に切り起こし部(61,62)が形成される。この切り起こし部(61,62)の先端を、隣り合うフィン(36)に接触させることで、隣り合う2つのフィン(36)の間に所定の間隔を確保できる。一方、このように切り起こし部(61,62)を形成すると、除霜中に生成したドレン水が切り起こし部(61,62)の上面に保持されてしまうおそれがある。しかしながら、本発明の切り起こし部(61,62)は、水平面に対して傾いているため、切り起こし部(61,62)の上面のドレン水は速やかに下方へ流れ落ちる。 In the seventh invention, the cut-and-raised part (61, 62) is formed in the fin (36). A predetermined interval can be secured between the two adjacent fins (36) by bringing the tips of the cut and raised portions (61, 62) into contact with the adjacent fins (36). On the other hand, when the cut-and-raised part (61, 62) is formed in this way, drain water generated during defrosting may be held on the upper surface of the cut-and-raised part (61, 62). However, since the cut-and-raised portion (61, 62) of the present invention is inclined with respect to the horizontal plane, the drain water on the upper surface of the cut-and-raised portion (61, 62) flows down rapidly.

の発明は、空気調和機(10)を対象とし、上記第1乃至第のいずれか一つの発明の熱交換器(30)が設けられた冷媒回路(20)を備え、上記冷媒回路(20)において冷媒を循環させて冷凍サイクルを行うものである。 An eighth invention is directed to an air conditioner (10), and includes a refrigerant circuit (20) provided with the heat exchanger (30) of any one of the first to seventh inventions, and the refrigerant circuit In (20), the refrigerant is circulated to perform the refrigeration cycle.

の発明では、上記第1乃至第のいずれか一つの発明の熱交換器(30)が冷媒回路(20)に接続される。熱交換器(30)において、冷媒回路(20)を循環する冷媒は、扁平管(33)の通路(34)を流れ、通風路(39)を流れる空気と熱交換する。 In the eighth invention, the heat exchanger (30) of any one of the first to seventh inventions is connected to the refrigerant circuit (20). In the heat exchanger (30), the refrigerant circulating in the refrigerant circuit (20) flows through the passage (34) of the flat tube (33) and exchanges heat with the air flowing through the ventilation path (39).

本発明によれば、複数のフィン(35,36)において、伝熱部(37)の一部を通風路(38)側に膨出させて複数の膨出部(51,52,53)を形成している。このため、膨出部(51,52,53)によって空気と流体の伝熱を促進させることができる。また、本発明の膨出部(51,52,53)は、従来例のルーバーのように、伝熱部に切り目を入れて切り起こす形状となっていない。このため、膨出部(51,52,53)では、除霜時に霜が融解して発生したドレン水が溜まりにくいため、このドレン水を速やかに風下側へ流すことができる。その結果、除霜時に要する時間を短縮できる。   According to the present invention, in the plurality of fins (35, 36), a part of the heat transfer section (37) is bulged toward the air passage (38) so that the plurality of bulge sections (51, 52, 53) are formed. Forming. For this reason, the heat transfer of air and fluid can be promoted by the bulging portion (51, 52, 53). Moreover, the bulging part (51, 52, 53) of this invention is not the shape which cuts and raises a heat transfer part like the louver of a prior art example. For this reason, in the bulging part (51, 52, 53), the drain water generated by melting of the frost at the time of defrosting is not easily collected, so that the drain water can be quickly flowed to the leeward side. As a result, the time required for defrosting can be shortened.

の発明では、風上側膨出部(51)の下側の平坦部(51a)の高さを、風下側膨出部(53)の下側の平坦部(53a)の高さよりも大きくしている。風上側膨出部(51)の表面では、特に着霜量が多くなり、除霜時に発生するドレン水も多くなる。しかしながら、風上側膨出部(51)の下側では、平坦部(51a)に沿って形成される隙間が十分に確保されるため、風上側膨出部(51)で発生する多量のドレン水を速やかに排出できる。 In the first invention, the height of the lower flat portion (51a) of the leeward bulge portion (51) is larger than the height of the lower flat portion (53a) of the leeward bulge portion (53). doing. On the surface of the windward bulge portion (51), the amount of frost formation increases, and drain water generated during defrosting also increases. However, since a gap formed along the flat portion (51a) is sufficiently secured below the upwind bulge portion (51), a large amount of drain water generated in the upwind bulge portion (51). Can be discharged quickly.

の発明では、風下側の平坦部(53a)の高さを小さくすることにより、下側の扁平管(33)の上面に溜まったドレン水を毛管現象を利用して風下側へ引き込むことができる。 In the second invention, by reducing the height of the flat portion (53a) on the leeward side, the drain water accumulated on the upper surface of the lower flat tube (33) is drawn into the leeward side using the capillary phenomenon. Can do.

の発明では、少なくとも1つの膨出部(51,52)の下側の下端の平坦部(51a,52a)の高さを、風下側に向かうにつれて徐々に小さくすることにより、扁平管(33)の上面に溜まったドレン水を毛管現象を利用して風下側へ引き込むことができる。 In the third invention, the flat tube (51a, 52a) is gradually reduced in height toward the leeward side by reducing the height of the lower flat portion (51a, 52a) on the lower side of the at least one bulging portion (51, 52). The drain water accumulated on the upper surface of 33) can be drawn to the leeward side using capillary action.

の発明では、膨出部(51,52,53)の下端が上端よりも風下に位置するように、膨出部(51,52,53)を傾斜させている。このため、膨出部(51,52,53)の表面で融解した水を風下側へ速やかに排出できる。 In the fourth invention, the bulging portion (51, 52, 53) is inclined so that the lower end of the bulging portion (51, 52, 53) is located leeward than the upper end. For this reason, the water melt | dissolved on the surface of the bulging part (51,52,53) can be rapidly discharged | emitted to the leeward side.

の発明では、上下に配列される伝熱部(37)の風下側端部を風下側板部(47)によって連結し、この風下側板部(47)にリブ(57)を形成している。このため、伝熱部(37)から風下側板部(47)側に流れたドレン水をリブ(57)の表面に捕集し、このリブ(57)を伝ってドレン水を下方へ案内することができる。 In 6th invention, the leeward side edge part of the heat-transfer part (37) arranged up and down is connected by the leeward side board part (47), and the rib (57) is formed in this leeward side board part (47). . For this reason, drain water that has flowed from the heat transfer section (37) to the leeward side plate section (47) is collected on the surface of the rib (57), and the drain water is guided downward through the rib (57). Can do.

の発明では、フィン(36)に切り起こし部(61,62)を形成することで、この切り起こし部(61,62)を隣り合うフィン(36)の間のスペーサとして利用できる。また、切り起こし部(61,62)の切り起こし面(61a,62a)を水平面に対して傾斜させることで、水平面の上側にドレン水が溜まってしまうことも回避できる。 In the seventh invention, by forming the cut-and-raised portion (61, 62) in the fin (36), the cut-raised portion (61, 62) can be used as a spacer between the adjacent fins (36). Moreover, it can also avoid that drain water accumulates on the upper side of a horizontal surface by inclining the raised surfaces (61a, 62a) of the raised portions (61, 62) with respect to the horizontal surface.

図1は、実施形態1の熱交換器を備える空気調和機の概略構成を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner including the heat exchanger according to the first embodiment. 図2は、実施形態1の熱交換器の概略斜視図である。FIG. 2 is a schematic perspective view of the heat exchanger according to the first embodiment. 図3は、実施形態1の熱交換器の正面を示す一部断面図である。FIG. 3 is a partial cross-sectional view illustrating the front of the heat exchanger according to the first embodiment. 図4は、図3のIV-IV断面の一部を示す熱交換器の断面図である。FIG. 4 is a cross-sectional view of the heat exchanger showing a part of the IV-IV cross section of FIG. 図5は、図4のV-V断面を示すフィンの断面図である。FIG. 5 is a cross-sectional view of the fin showing the VV cross section of FIG. 図6は、実施形態1のフィンの斜視図である。FIG. 6 is a perspective view of the fin according to the first embodiment. 図7は、実施形態2の熱交換器の概略斜視図である。FIG. 7 is a schematic perspective view of the heat exchanger according to the second embodiment. 図8は、実施形態2の熱交換器の正面を示す一部断面図である。FIG. 8 is a partial cross-sectional view illustrating the front of the heat exchanger according to the second embodiment. 図9は、図8のIX-IX断面の一部を示す熱交換器の断面図である。FIG. 9 is a cross-sectional view of the heat exchanger showing a part of the IX-IX cross section of FIG. 図10は、図9のX-X断面を示すフィンの断面図である。FIG. 10 is a cross-sectional view of the fin showing the XX cross section of FIG.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。実施形態1の熱交換器(30)は、後述する空気調和機(10)の室外熱交換器(23)を構成している。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The heat exchanger (30) of Embodiment 1 comprises the outdoor heat exchanger (23) of the air conditioner (10) mentioned later.

−空気調和機−
本実施形態の熱交換器(30)を備えた空気調和機(10)について、図1を参照しながら説明する。
-Air conditioner-
The air conditioner (10) provided with the heat exchanger (30) of the present embodiment will be described with reference to FIG.

〈空気調和機の構成〉
空気調和機(10)は、室外ユニット(11)及び室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)及びガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)、及びガス側連絡配管(14)によって、冷媒回路(20)が形成されている。
<Configuration of air conditioner>
The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14). In the air conditioner (10), the refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side communication pipe (13), and the gas side communication pipe (14).

冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、及び膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。一方、室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。   The refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing. The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11). The outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23). On the other hand, the indoor heat exchanger (25) is accommodated in the indoor unit (12). The indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).

冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出側が四方切換弁(22)の第1のポートに、その吸入側が四方切換弁(22)の第2のポートに、それぞれ接続されている。また、冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。   The refrigerant circuit (20) is a closed circuit filled with a refrigerant. In the refrigerant circuit (20), the compressor (21) has its discharge side connected to the first port of the four-way switching valve (22) and its suction side connected to the second port of the four-way switching valve (22). Yes. In the refrigerant circuit (20), the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.

圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機(21)である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁(24)である。   The compressor (21) is a scroll type or rotary type hermetic compressor (21). The four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port. The expansion valve (24) is a so-called electronic expansion valve (24).

室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)は、本実施形態の熱交換器(30)によって構成されている。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。   The outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger (23) is configured by the heat exchanger (30) of the present embodiment. On the other hand, the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.

〈冷房運転〉
空気調和機(10)は、冷房運転を行う。冷房運転中には、四方切換弁(22)が第1状態に設定される。また、冷房運転中には、室外ファン(15)及び室内ファン(16)が運転される。
<Cooling operation>
The air conditioner (10) performs a cooling operation. During the cooling operation, the four-way switching valve (22) is set to the first state. During the cooling operation, the outdoor fan (15) and the indoor fan (16) are operated.

冷媒回路(20)では、冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された冷媒は、四方切換弁(22)を通って室外熱交換器(23)へ流入し、室外空気へ放熱して凝縮する。室外熱交換器(23)から流出した冷媒は、膨張弁(24)を通過する際に膨張してから室内熱交換器(25)へ流入し、室内空気から吸熱して蒸発する。室内熱交換器(25)から流出した冷媒は、四方切換弁(22)を通過後に圧縮機(21)へ吸入されて圧縮される。室内ユニット(12)は、室内熱交換器(25)において冷却された空気を室内へ供給する。   In the refrigerant circuit (20), a refrigeration cycle is performed. Specifically, the refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (23) through the four-way switching valve (22), dissipates heat to the outdoor air, and is condensed. The refrigerant flowing out of the outdoor heat exchanger (23) expands when passing through the expansion valve (24), then flows into the indoor heat exchanger (25), absorbs heat from the indoor air, and evaporates. The refrigerant that has flowed out of the indoor heat exchanger (25) passes through the four-way switching valve (22) and then is sucked into the compressor (21) and compressed. The indoor unit (12) supplies the air cooled in the indoor heat exchanger (25) to the room.

〈暖房運転〉
空気調和機(10)は、暖房運転を行う。暖房運転中には、四方切換弁(22)が第2状態に設定される。また、暖房運転中には、室外ファン(15)及び室内ファン(16)が運転される。
<Heating operation>
The air conditioner (10) performs heating operation. During the heating operation, the four-way selector valve (22) is set to the second state. During the heating operation, the outdoor fan (15) and the indoor fan (16) are operated.

冷媒回路(20)では、冷凍サイクルが行われる。具体的に、圧縮機(21)から吐出された冷媒は、四方切換弁(22)を通って室内熱交換器(25)へ流入し、室内空気へ放熱して凝縮する。室内熱交換器(25)から流出した冷媒は、膨張弁(24)を通過する際に膨張してから室外熱交換器(23)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(23)から流出した冷媒は、四方切換弁(22)を通過後に圧縮機(21)へ吸入されて圧縮される。室内ユニット(12)は、室内熱交換器(25)において加熱された空気を室内へ供給する。   In the refrigerant circuit (20), a refrigeration cycle is performed. Specifically, the refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (25) through the four-way switching valve (22), dissipates heat to the indoor air, and condenses. The refrigerant flowing out of the indoor heat exchanger (25) expands when passing through the expansion valve (24), then flows into the outdoor heat exchanger (23), absorbs heat from the outdoor air, and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger (23) passes through the four-way switching valve (22) and then is sucked into the compressor (21) and compressed. The indoor unit (12) supplies the air heated in the indoor heat exchanger (25) to the room.

〈除霜動作〉
上述したように、暖房運転中には、室外熱交換器(23)が蒸発器として機能する。外気温が低い運転条件では、室外熱交換器(23)における冷媒の蒸発温度が0℃を下回る場合があり、この場合には、室外空気中の水分が霜となって室外熱交換器(23)に付着する。そこで、空気調和機(10)は、例えば暖房運転の継続時間が所定値(たとえは数十分)に達する毎に、除霜動作を行う。
<Defrosting operation>
As described above, the outdoor heat exchanger (23) functions as an evaporator during the heating operation. Under operating conditions where the outside air temperature is low, the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) may be lower than 0 ° C. In this case, the moisture in the outdoor air becomes frost and the outdoor heat exchanger (23 ). Therefore, the air conditioner (10) performs the defrosting operation every time the duration time of the heating operation reaches a predetermined value (for example, several tens of minutes).

除霜動作を開始する際には、四方切換弁(22)が第2状態から第1状態へ切り換わり、室外ファン(15)及び室内ファン(16)が停止する。除霜動作中の冷媒回路(20)では、圧縮機(21)から吐出された高温の冷媒が室外熱交換器(23)へ供給される。室外熱交換器(23)では、その表面に付着した霜が冷媒によって暖められて融解する。室外熱交換器(23)において放熱した冷媒は、膨張弁(24)と室内熱交換器(25)を順に通過し、その後に圧縮機(21)へ吸入されて圧縮される。除霜動作が終了すると、暖房運転が再開される。つまり、四方切換弁(22)が第1状態から第2状態へ切り換わり、室外ファン(15)及び室内ファン(16)の運転が再開される。   When starting the defrosting operation, the four-way switching valve (22) is switched from the second state to the first state, and the outdoor fan (15) and the indoor fan (16) are stopped. In the refrigerant circuit (20) during the defrosting operation, the high-temperature refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23). In the outdoor heat exchanger (23), the frost adhering to the surface is heated and melted by the refrigerant. The refrigerant that has radiated heat in the outdoor heat exchanger (23) sequentially passes through the expansion valve (24) and the indoor heat exchanger (25), and is then sucked into the compressor (21) and compressed. When the defrosting operation is completed, the heating operation is resumed. That is, the four-way switching valve (22) is switched from the first state to the second state, and the operation of the outdoor fan (15) and the indoor fan (16) is resumed.

−実施形態1の熱交換器−
空気調和機(10)の室外熱交換器(23)を構成する本実施形態の熱交換器(30)について、図2〜6を適宜参照しながら説明する。
-Heat exchanger of Embodiment 1-
The heat exchanger (30) of the present embodiment constituting the outdoor heat exchanger (23) of the air conditioner (10) will be described with reference to FIGS.

〈熱交換器の全体構成〉
図2及び図3に示すように、本実施形態の熱交換器(30)は、一つの第1ヘッダ集合管(31)と、一つの第2ヘッダ集合管(32)と、多数の扁平管(33)と、多数のフィン(35)とを備えている。第1ヘッダ集合管(31)、第2ヘッダ集合管(32)、扁平管(33)、及びフィン(35)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。
<Overall configuration of heat exchanger>
As shown in FIGS. 2 and 3, the heat exchanger (30) of the present embodiment includes one first header collecting pipe (31), one second header collecting pipe (32), and many flat tubes. (33) and a large number of fins (35). The first header collecting pipe (31), the second header collecting pipe (32), the flat pipe (33), and the fin (35) are all made of an aluminum alloy and are joined to each other by brazing. .

第1ヘッダ集合管(31)と第2ヘッダ集合管(32)は、何れも両端が閉塞された細長い中空円筒状に形成されている。図3では、熱交換器(30)の左端に第1ヘッダ集合管(31)が立設され、熱交換器(30)の右端に第2ヘッダ集合管(32)が立設されている。つまり、第1ヘッダ集合管(31)と第2ヘッダ集合管(32)は、それぞれの軸方向が上下方向となる姿勢で設置されている。   Each of the first header collecting pipe (31) and the second header collecting pipe (32) is formed in an elongated hollow cylindrical shape whose both ends are closed. In FIG. 3, the first header collecting pipe (31) is erected at the left end of the heat exchanger (30), and the second header collecting pipe (32) is erected at the right end of the heat exchanger (30). That is, the first header collecting pipe (31) and the second header collecting pipe (32) are installed in such a posture that their respective axial directions are in the vertical direction.

図4にも示すように、扁平管(33)は、その断面形状が扁平な長円形あるいは角の丸い矩形となった伝熱管である。熱交換器(30)において、複数の扁平管(33)は、その伸長方向が左右方向となり、且つそれぞれの平坦な側面が互いに向かい合う姿勢で配置されている。また、複数の扁平管(33)は、互いに一定の間隔をおいて上下に並んで配置されている。各扁平管(33)は、その一端部が第1ヘッダ集合管(31)に挿入され、その他端部が第2ヘッダ集合管(32)に挿入されている。   As shown in FIG. 4, the flat tube (33) is a heat transfer tube whose cross-sectional shape is a flat oval or a rounded rectangle. In the heat exchanger (30), the plurality of flat tubes (33) are arranged in a posture in which the extending direction is the left-right direction and the flat side surfaces face each other. In addition, the plurality of flat tubes (33) are arranged side by side at regular intervals. Each flat tube (33) has one end inserted into the first header collecting tube (31) and the other end inserted into the second header collecting tube (32).

図4に示すように、各扁平管(33)には、複数の流体通路(34)が形成されている。各流体通路(34)は、扁平管(33)の伸長方向に延びている。各扁平管(33)において、複数の流体通路(34)は、扁平管(33)の伸長方向と直交する幅方向に一列に並んでいる。各扁平管(33)に形成された複数の流体通路(34)は、それぞれの一端が第1ヘッダ集合管(31)の内部空間に連通し、それぞれの他端が第2ヘッダ集合管(32)の内部空間に連通している。熱交換器(30)へ供給された冷媒は、扁平管(33)の流体通路(34)を流れる間に空気と熱交換する。   As shown in FIG. 4, each flat tube (33) is formed with a plurality of fluid passages (34). Each fluid passage (34) extends in the extending direction of the flat tube (33). In each flat tube (33), the plurality of fluid passages (34) are arranged in a line in the width direction orthogonal to the extending direction of the flat tube (33). One end of each of the plurality of fluid passages (34) formed in each flat pipe (33) communicates with the internal space of the first header collecting pipe (31), and the other end of each of the plurality of fluid passages (34) is the second header collecting pipe (32). ). The refrigerant supplied to the heat exchanger (30) exchanges heat with air while flowing through the fluid passage (34) of the flat tube (33).

フィン(35)は、上下に蛇行するコルゲートフィンであって、上下に隣り合う扁平管(33)の間に配置されている。詳しくは後述するが、フィン(35)には、伝熱部(37)と中間板部(41)とが複数ずつ形成されている。各フィン(35)では、その中間板部(41)がロウ付けによって扁平管(33)に接合される。   A fin (35) is a corrugated fin meandering up and down, and is arrange | positioned between the flat pipes (33) adjacent up and down. As will be described in detail later, the fin (35) has a plurality of heat transfer portions (37) and a plurality of intermediate plate portions (41). In each fin (35), the intermediate plate portion (41) is joined to the flat tube (33) by brazing.

〈フィンの構成〉
図6に示すように、フィン(35)は、一定幅の金属板を折り曲げることによって形成されたコルゲートフィンであって、上下に蛇行する波板状となっている。フィン(35)には、扁平管(33)の伸長方向に沿って、伝熱部(37)と中間板部(41)とが交互に形成されている。つまり、フィン(35)には、隣り合う扁平管(33)の間に配置されて扁平管(33)の伸長方向に並ぶ複数の伝熱部(37)が設けられている。また、フィン(35)には、風下側に突出板部(42)が形成されている。
<Fin configuration>
As shown in FIG. 6, the fin (35) is a corrugated fin formed by bending a metal plate having a certain width, and has a corrugated shape that meanders up and down. In the fin (35), heat transfer portions (37) and intermediate plate portions (41) are alternately formed along the extending direction of the flat tube (33). That is, the fin (35) is provided with a plurality of heat transfer portions (37) arranged between adjacent flat tubes (33) and arranged in the extending direction of the flat tubes (33). The fin (35) has a protruding plate (42) formed on the leeward side.

伝熱部(37)は、上下に隣り合う扁平管(33)の一方から他方に亘る板状の部分である。伝熱部(37)は、隣り合う扁平管(33)の間にそれぞれ区画される通風路(38)の側壁を構成している。伝熱部(37)では、風上側の端部が前縁(39)となっている。中間板部(41)は、扁平管(33)の平坦な側面に沿った板状の部分であって、左右に隣り合う伝熱部(37)の上端同士または下端同士に連続している。伝熱部(37)と中間板部(41)のなす角度は、概ね直角となっている。   A heat-transfer part (37) is a plate-shaped part ranging from one to the other of the flat pipe (33) adjacent up and down. The heat transfer part (37) constitutes a side wall of the ventilation path (38) partitioned between the adjacent flat tubes (33). In the heat transfer section (37), the windward end is the leading edge (39). The intermediate plate portion (41) is a plate-like portion along the flat side surface of the flat tube (33), and is continuous with the upper ends or lower ends of the heat transfer portions (37) adjacent to the left and right. The angle formed by the heat transfer section (37) and the intermediate plate section (41) is substantially a right angle.

突出板部(42)は、各伝熱部(37)の風下側の端部に連続して形成された板状の部分である。突出板部(42)は、上下に延びる細長い板状に形成され、扁平管(33)よりも風下側に突出している。また、突出板部(42)は、その上端が伝熱部(37)の上端よりも上方に突き出し、その下端が伝熱部(37)の下端よりも下方に突き出ている。図4に示すように、熱交換器(30)では、扁平管(33)を挟んで上下に隣り合うフィン(35)の突出板部(42)が、互いに接触する。突出板部(42)は、上下に連なることでドレン水の排水経路を形成する風下側板部を構成している。   The protruding plate portion (42) is a plate-like portion formed continuously at the leeward end of each heat transfer portion (37). The projecting plate portion (42) is formed in an elongated plate shape extending vertically, and projects further to the leeward side than the flat tube (33). Moreover, the upper end of the protruding plate part (42) protrudes above the upper end of the heat transfer part (37), and the lower end protrudes below the lower end of the heat transfer part (37). As shown in FIG. 4, in the heat exchanger (30), the protruding plate portions (42) of the fins (35) that are vertically adjacent to each other across the flat tube (33) are in contact with each other. The protruding plate portion (42) constitutes a leeward plate portion that forms a drain water drainage path by being connected vertically.

図4に示すように、フィン(35)の伝熱部(37)及び突出板部(42)には、複数のワッフル部(51,52,53)が形成されている。ワッフル部(51,52,53)は、上下に縦長に形成された膨出部を構成している。ワッフル部(51,52,53)は、通風路(38)側に向かって膨出させることによって稜線が空気の通風方向と交わる山型に形成されている。ワッフル部(51,52,53)は、伝熱部(37)の一部をプレス加工等により塑性変形させることで成形される。各ワッフル部(51,52,53)は、その下端部が上端部よりも風下寄りに位置するように、鉛直方向に対して斜めに傾斜する方向に延びている。   As shown in FIG. 4, a plurality of waffle portions (51, 52, 53) are formed on the heat transfer portion (37) and the protruding plate portion (42) of the fin (35). The waffle portion (51, 52, 53) constitutes a bulging portion that is vertically formed vertically. The waffle portion (51, 52, 53) is formed in a mountain shape in which the ridge line intersects with the air ventilation direction by bulging toward the ventilation path (38) side. The waffle part (51, 52, 53) is formed by plastically deforming a part of the heat transfer part (37) by press working or the like. Each waffle portion (51, 52, 53) extends in a direction inclined obliquely with respect to the vertical direction so that its lower end portion is located closer to the lee than the upper end portion.

各ワッフル部(51,52,53)は、上下に縦長の一対の台形面(54,54)と、上下に扁平な一対の三角面(55,55)とを有している。一対の台形面(54,54)は、これらの間に稜線をなす山折り部(56)を形成するように通風方向に隣り合っている。一対の三角面(55,55)は、山折り部(56)を挟んで上下に形成されている。   Each waffle portion (51, 52, 53) has a pair of vertically long trapezoidal surfaces (54, 54) and a pair of triangular surfaces (55, 55) flat in the vertical direction. The pair of trapezoidal surfaces (54, 54) are adjacent to each other in the ventilation direction so as to form a mountain fold (56) forming a ridgeline between them. The pair of triangular surfaces (55, 55) are formed up and down across the mountain fold (56).

伝熱部(37)では、風上側から風下側に向かって複数のワッフル部(51,52,53)が並んで形成されている。これらのワッフル部(51,52,53)は、伝熱部(37)の風上側に形成される1つの風上側ワッフル部(51)と、伝熱部(37)の風下側に形成される2つの風下側ワッフル部(53,53)と、風上側ワッフル部(51)と風下側ワッフル部(53)との間に形成される1つの中間ワッフル部(52)とで構成されている。風上側ワッフル部(51)は、複数のワッフル部(51,52,53)のうち最も風上側に形成される風上側膨出部を構成している。風下側ワッフル部(53,53)は、複数のワッフル部(51,52,53)のうち最も風下側に形成される風下側膨出部を構成している。   In the heat transfer part (37), a plurality of waffle parts (51, 52, 53) are formed side by side from the windward side toward the leeward side. These waffle parts (51, 52, 53) are formed on one leeward waffle part (51) formed on the windward side of the heat transfer part (37) and on the leeward side of the heat transfer part (37). It comprises two leeward waffle parts (53, 53) and one intermediate waffle part (52) formed between the leeward waffle part (51) and the leeward waffle part (53). The windward waffle portion (51) constitutes the windward bulge portion formed on the most windward side among the plurality of waffle portions (51, 52, 53). The leeward waffle portion (53, 53) constitutes the leeward bulge portion formed on the most leeward side among the plurality of waffle portions (51, 52, 53).

風上側ワッフル部(51)の上端は、風下側ワッフル部(53)の上端よりも低い位置にある。また、中間ワッフル部(52)の上端と風下側ワッフル部(53)の上端とは、概ね同じ高さにある。風上側ワッフル部(51)の上端、中間ワッフル部(52)の上端、及び風下側ワッフル部(53)の上端は、上側の扁平管(33)の平坦面と略平行となっている。   The upper end of the windward waffle part (51) is located at a position lower than the upper end of the leeward waffle part (53). Further, the upper end of the intermediate waffle portion (52) and the upper end of the leeward waffle portion (53) are substantially at the same height. The upper end of the windward waffle part (51), the upper end of the intermediate waffle part (52), and the upper end of the leeward waffle part (53) are substantially parallel to the flat surface of the upper flat tube (33).

風上側ワッフル部(51)の下端は、風下側ワッフル部(53)の下端よりも高い位置にある。風上側ワッフル部(51)の下端は、風上側よりも風下側の方が低い位置となるように、斜めに傾斜している。中間ワッフル部(52)の下端も、風上側よりも風下側の方が低い位置となるように、斜めに傾斜している。風下側ワッフル部(53)の下端は、扁平管(33)の平坦面と略平行となっている。   The lower end of the windward waffle portion (51) is located higher than the lower end of the leeward waffle portion (53). The lower end of the windward waffle portion (51) is inclined obliquely so that the leeward side is lower than the windward side. The lower end of the intermediate waffle portion (52) is also inclined obliquely so that the leeward side is lower than the leeward side. The lower end of the leeward waffle portion (53) is substantially parallel to the flat surface of the flat tube (33).

フィン(35)には、ワッフル部(51,52,53)よりも下流側に導水用リブ(57)が形成されている。具体的に、導水用リブ(57)は、各突出板部(42)にそれぞれ1本ずつ形成されている。導水用リブ(57)は、突出板部(42)の風下側の端部に沿って上下に延びている。図5に示すように、導水用リブ(57)は、突出板部(42)の一方の面に凸条(57a)を形成し、他方の面に凹溝(57b)を形成している。上下に隣り合う各突出板部(42)、及び扁平管(33)の伸長方向に隣り合う各突出板部(42)では、いずれも同じ側の側面にそれぞれ凸条(57a)が形成されている。また、上下に隣り合う導水用リブ(57)は、鉛直方向において概ね一致するように配置されている。本実施形態では、導水用リブ(57)の上端が突出板部(42)の上端よりもやや低い位置にあり、導水用リブ(57)の下端は突出板部(42)の下端よりもやや高い位置にある。なお、各導水用リブ(57)を突出板部(42)の上端から下端に亘って形成してもよい。   The fin (35) is formed with a water guiding rib (57) on the downstream side of the waffle portion (51, 52, 53). Specifically, one water guiding rib (57) is formed on each protruding plate (42). The water guiding rib (57) extends vertically along the leeward end of the protruding plate (42). As shown in FIG. 5, the water guiding rib (57) has a protrusion (57a) formed on one surface of the protruding plate portion (42) and a groove (57b) formed on the other surface. Each of the protruding plate portions (42) adjacent to each other in the vertical direction and the protruding plate portions (42) adjacent to each other in the extending direction of the flat tube (33) are respectively formed with ridges (57a) on the side surfaces on the same side. Yes. Further, the water guiding ribs (57) adjacent to each other in the vertical direction are arranged so as to substantially coincide with each other in the vertical direction. In the present embodiment, the upper end of the water guiding rib (57) is slightly lower than the upper end of the protruding plate portion (42), and the lower end of the water guiding rib (57) is slightly lower than the lower end of the protruding plate portion (42). High position. In addition, you may form each rib for water conveyance (57) ranging from the upper end to the lower end of a protrusion board part (42).

伝熱部(37)の側面のうちワッフル部(51,52,53)や導水用リブ(57)が形成されていない領域は、平坦な面となっている。各ワッフル部(51,52,53)の下端と、該ワッフル部(51,52,53)の下側の扁平管(33)との間には、平坦部(51a,51b,51c)が形成されている。   The area | region in which the waffle part (51,52,53) and the rib for water conveyance (57) are not formed among the side surfaces of a heat-transfer part (37) is a flat surface. A flat part (51a, 51b, 51c) is formed between the lower end of each waffle part (51, 52, 53) and the flat tube (33) below the waffle part (51, 52, 53). Has been.

より詳細に、伝熱部(37)では、風上側ワッフル部(51)の下端と、下側の扁平管(33)との間に第1平坦部(51a)が形成され、中間ワッフル部(52)の下端と、下側の扁平管(33)との間に第2平坦部(52a)が形成され、風下側ワッフル部(53)の下端と、下側の扁平管(33)との間に第3平坦部(53a)が形成されている。伝熱部(37)では、第1平坦部(51a)の高さが風上側から風下側に向かうにつれて小さくなっている。また、伝熱部(37)では、第2平坦部(52a)の高さも、風上側から風下側に向かうにつれて小さくなっている。つまり、本実施形態では、4つの膨出部(51,52,53,53)のうちの2つの膨出部(51,52)の下端と、これらの膨出部(51,52)の下側の扁平管(33)との間の2つの平坦部(51a,52a)の高さが、それぞれ、風上側から風下側に向かうにつれて小さくなっている。さらに、伝熱部(37)では、第1平坦部(51a)の高さが第3平坦部(53a)の高さよりも大きくなっている。なお、4つの膨出部(51,52,53,53)のうちの1つのみの下側の平坦部の高さを、風上側から風下側に向かうにつれて小さくしてもよいし、3つ以上の平坦部の高さを、それぞれ、風上側から風下側に向かうにつれて小さくしてもよい。   More specifically, in the heat transfer part (37), a first flat part (51a) is formed between the lower end of the windward waffle part (51) and the lower flat pipe (33), and the intermediate waffle part ( 52) and a lower flat tube (33), a second flat portion (52a) is formed between the lower end of the leeward waffle portion (53) and the lower flat tube (33). A third flat portion (53a) is formed therebetween. In the heat transfer part (37), the height of the first flat part (51a) decreases from the windward side toward the leeward side. Moreover, in the heat transfer part (37), the height of the second flat part (52a) also decreases from the leeward side toward the leeward side. That is, in this embodiment, the lower end of two bulges (51,52) of the four bulges (51,52,53,53) and the bottom of these bulges (51,52) The height of the two flat portions (51a, 52a) between the flat tube (33) on the side decreases from the leeward side toward the leeward side. Furthermore, in the heat transfer part (37), the height of the first flat part (51a) is larger than the height of the third flat part (53a). In addition, the height of the lower flat part of only one of the four bulging parts (51, 52, 53, 53) may be reduced from the leeward side toward the leeward side. You may make the height of the above flat part small as it goes to the leeward side from the windward side, respectively.

−除霜動作中における霜とドレン水の状態−
上述したように、本実施形態の熱交換器(30)は、空気調和機(10)の室外熱交換器(23)を構成している。空気調和機(10)は暖房運転を行うが、室外熱交換器(23)における冷媒の蒸発温度が0℃を下回る運転状態では、室外空気中の水分が霜となって室外熱交換器(23)に付着する。このため、空気調和機(10)は、室外熱交換器(23)に付着した霜を融かすための除霜動作を行う。除霜動作中には、霜が融解することによってドレン水が生成する。
-State of frost and drain water during defrosting operation-
As described above, the heat exchanger (30) of the present embodiment constitutes the outdoor heat exchanger (23) of the air conditioner (10). The air conditioner (10) performs a heating operation. However, in an operation state where the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) is lower than 0 ° C., moisture in the outdoor air becomes frost and the outdoor heat exchanger (23 ). For this reason, the air conditioner (10) performs a defrosting operation for melting frost attached to the outdoor heat exchanger (23). During the defrosting operation, drain water is generated by melting of the frost.

除霜動作の開始直前には、フィンの伝熱部(37)に多量の霜が付着し、隣り合う伝熱部(37)の間の空間が霜によって殆ど塞がれた状態となる。図4に示す本実施形態の伝熱部(37)では、特に風上側寄りに形成される風上側ワッフル部(51)の表面の着霜量が多くなる。しかしながら、風上側ワッフル部(51)の下側には、第1平坦部(51a)に沿って隙間が形成され、この隙間を空気が流れ易くなっている。このため、伝熱部(37)では、中間ワッフル部(52)の下部や風下側ワッフル部(53)の下部にも空気中の水分が霜として付着し易くなる。   Immediately before the start of the defrosting operation, a large amount of frost adheres to the heat transfer section (37) of the fin, and the space between the adjacent heat transfer sections (37) is almost blocked by frost. In the heat transfer section (37) of the present embodiment shown in FIG. 4, the amount of frost formation on the surface of the windward waffle section (51) formed particularly near the windward side is increased. However, a gap is formed below the windward waffle portion (51) along the first flat portion (51a), and air easily flows through the gap. For this reason, in the heat-transfer part (37), the water | moisture content in air tends to adhere as a frost also to the lower part of an intermediate waffle part (52) and the lower part of a leeward side waffle part (53).

以上のように、本実施形態の熱交換器(30)では、風上側ワッフル部(51)の下側の第1平坦部(51a)の高さを第2平坦部(52a)や第3平坦部(53a)よりも大きくすることで、伝熱部(37)の風上側の領域ばかりに霜が集中して付着することを回避できる。よって、暖房運転中において、霜の局所的な付着に起因して熱交換器(30)の性能が損なわれるまでの時間を長くできる。よって、暖房運転が開始されてから除霜動作が開始するまでの時間が長くなるので、暖房運転の継続時間も長くなる。   As described above, in the heat exchanger (30) of the present embodiment, the height of the first flat part (51a) below the windward waffle part (51) is set to the second flat part (52a) or the third flat part. By making it larger than the portion (53a), it is possible to avoid frost concentrating and adhering only to the windward region of the heat transfer portion (37). Therefore, during the heating operation, it is possible to lengthen the time until the performance of the heat exchanger (30) is impaired due to the local adhesion of frost. Therefore, since the time from the start of the heating operation to the start of the defrosting operation is increased, the duration of the heating operation is also increased.

除霜動作が開始されると、熱交換器(30)に付着した霜は、冷媒によって暖められて次第に融けてゆく。上述したように、伝熱部(37)では、特に風上側ワッフル部(51)の表面の着霜量が多くなるため、この領域で融解する水(ドレン水)の量も多くなる。これに対し、風上側ワッフル部(51)の下側の第1平坦部(51a)は、その高さが他の平坦部(52a,53a)の高さよりも大きくなっている。このため、風上側ワッフル部(51)の下側には、ドレン水を排出するための隙間が十分に確保される。従って、風上側ワッフル部(51)に付着した霜が融けることによって生成したドレン水は、第1平坦部(51a)を伝って速やかに下方へ流れ落ちてゆき、下側の扁平管(33)の上面にまで至る。   When the defrosting operation is started, the frost attached to the heat exchanger (30) is warmed by the refrigerant and gradually melts. As described above, in the heat transfer section (37), since the amount of frost formation on the surface of the windward waffle section (51) increases, the amount of water (drain water) that melts in this region also increases. On the other hand, the height of the first flat portion (51a) on the lower side of the windward waffle portion (51) is larger than the heights of the other flat portions (52a, 53a). For this reason, the space | gap for discharging drain water is fully ensured under the windward waffle part (51). Accordingly, the drain water generated by the frost adhering to the windward waffle portion (51) melts down quickly through the first flat portion (51a), and the lower flat tube (33) It reaches to the upper surface.

このようにしてドレン水を速やかに下方に排出できると、伝熱部(37)の熱が風上側ワッフル部(51)の表面に残存する霜に移動し易くなる。よって、本実施形態では、風上側ワッフル部(51)の表面の霜の融解に要する時間を短くでき、除霜動作の継続時間も短くなる。   Thus, if drain water can be discharged | emitted immediately below, the heat of a heat-transfer part (37) will become easy to move to the frost which remains on the surface of an upwind waffle part (51). Therefore, in this embodiment, the time required for melting the frost on the surface of the windward waffle part (51) can be shortened, and the duration of the defrosting operation is also shortened.

通常、除霜動作の終了直後の熱交換器(30)では、霜は残存していないがドレン水は存在する状態となる。除霜動作中に生成したドレン水は、風下側へ流れていく。この際、本実施形態では、平坦部(51a,52a,53a)の高さが風下側に向かうにつれて小さくなっており、特に最も風下側の第3平坦部(53a)の高さが小さくなっている。このため、扁平管(33)の上面に溜まったドレン水は、毛管現象によって風下側へ引き込まれてゆく。つまり、除霜動作中には室外ファン(15)が停止しており、扁平管(33)の上面が概ね水平面となっているにも拘わらず、ドレン水が風下側へ移動してゆく。   Usually, in the heat exchanger (30) immediately after the end of the defrosting operation, there is no frost but drain water is present. The drain water generated during the defrosting operation flows to the leeward side. At this time, in the present embodiment, the height of the flat portion (51a, 52a, 53a) is reduced toward the leeward side, and particularly the height of the third flat portion (53a) on the leeward side is reduced. Yes. For this reason, the drain water collected on the upper surface of the flat tube (33) is drawn to the leeward side by capillary action. That is, during the defrosting operation, the outdoor fan (15) is stopped, and the drain water moves to the leeward side even though the upper surface of the flat tube (33) is substantially horizontal.

また、複数のワッフル部(51)は、各々の下端が、各々の上端よりも風下側に位置するように鉛直方向に対して傾斜している。このため、ワッフル部(51)の表面で融解したドレン水は、各ワッフル部(51)の傾斜方向に沿うように風下側へ移動してゆく。   Further, the plurality of waffle portions (51) are inclined with respect to the vertical direction so that the lower ends of the plurality of waffle portions (51) are located on the leeward side of the upper ends of the waffle portions (51). For this reason, the drain water melt | dissolved on the surface of the waffle part (51) moves to the leeward side along the inclination direction of each waffle part (51).

風下側に移動したドレン水は、突出板部(42)の導水用リブ(57)に至る。このドレン水は、導水用リブ(57)の凸条(57a)の表面、あるいは凹溝(57b)の内部を伝って、重力によって下方へ流れ落ちていく。突出板部(42)を流れ落ちたドレン水は、その下側の突出板部(42)の導水用リブ(57)に案内されて更に下方へ流れ落ちていく。これにより、ドレン水は、最も下側に位置するフィン(35)まで流れ落ち、その後にドレンパン等の排水経路へ送られる。   The drain water that has moved to the leeward side reaches the water guiding rib (57) of the protruding plate portion (42). The drain water flows down through the surface of the ridge (57a) of the rib for guiding water (57) or the inside of the groove (57b) by gravity. The drain water that has flowed down the protruding plate portion (42) is guided by the water guiding rib (57) of the lower protruding plate portion (42) and further flows downward. Thereby, drain water flows down to the fin (35) located in the lowest side, and is sent to drainage paths, such as a drain pan, after that.

−実施形態1の効果−
上記実施形態1では、図4に示すように、伝熱部(37)に複数のワッフル部(51,52,53)を形成している。このワッフル部(51,52,53)は、伝熱部(37)の一部を通風路(38)側に向かって膨出させた形状であり、例えば従来例のルーバーのように伝熱部(37)に切り目を入れる構成となっていない。このため、本実施形態では、霜が融解して生成されたドレン水が伝熱部(37)の切り目に溜まってしまうことを回避でき、ドレン水を速やかに排出できる。
-Effect of Embodiment 1-
In the said Embodiment 1, as shown in FIG. 4, the several waffle part (51,52,53) is formed in the heat-transfer part (37). The waffle part (51, 52, 53) has a shape in which a part of the heat transfer part (37) is bulged toward the air passage (38). For example, a heat transfer part like a conventional louver. (37) is not configured to cut. For this reason, in this embodiment, it can avoid that the drain water produced | generated by the frost melting | dissolving accumulates in the cut of a heat-transfer part (37), and drain water can be discharged | emitted rapidly.

特に、上述のように、風上側ワッフル部(51)の下側の第1平坦部(51a)の高さを、風下側ワッフル部(53)の下側の第3平坦部(53a)よりも高くすることで、風上側ワッフル部(51)ばかりに霜が集中的に着いてしまうことを回避できる。その結果、暖房運転の継続時間を延ばすことができる。また、風上側ワッフル部(51)の表面で発生したドレン水を第1平坦部(51a)に沿って下方へ速やかに排出できる。   In particular, as described above, the height of the first flat portion (51a) on the lower side of the windward waffle portion (51) is set higher than that of the third flat portion (53a) on the lower side of the leeward waffle portion (53). By making it high, it can be avoided that frost is concentrated on only the windward waffle portion (51). As a result, the duration of the heating operation can be extended. Further, drain water generated on the surface of the windward waffle portion (51) can be quickly discharged downward along the first flat portion (51a).

また、第3平坦部(53a)の高さを小さくすることで、扁平管(33)の上側に溜まったドレン水を毛管現象を利用して速やかに風下側へ送ることができる。更に、各ワッフル部(51,52,53)を図4のように傾斜させることで、各ワッフル部(51,52,53)の表面で融解したドレン水を風下側へ速やかに案内させることができる。   In addition, by reducing the height of the third flat portion (53a), the drain water accumulated on the upper side of the flat tube (33) can be quickly sent to the leeward side using the capillary phenomenon. Further, by inclining each waffle part (51, 52, 53) as shown in FIG. 4, drain water melted on the surface of each waffle part (51, 52, 53) can be promptly guided to the leeward side. it can.

以上のようにして、除霜動作時におけるドレン水の排出時間を短縮化できると、霜の融解に要する時間も短縮化できる。その結果、除霜動作の実行時間も短くできるので、これに伴い暖房運転の実行時間を延ばすことができる。   If the drain water discharge time during the defrosting operation can be shortened as described above, the time required for frost melting can also be shortened. As a result, since the execution time of the defrosting operation can be shortened, the execution time of the heating operation can be extended accordingly.

《発明の実施形態2》
本発明の実施形態2について説明する。実施形態2の熱交換器(30)は、実施形態1の熱交換器(30)と同様に、空気調和機(10)の室外熱交換器(23)を構成している。以下では、本実施形態の熱交換器(30)について、図7〜10を適宜参照しながら説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. Similarly to the heat exchanger (30) of the first embodiment, the heat exchanger (30) of the second embodiment constitutes an outdoor heat exchanger (23) of the air conditioner (10). Below, the heat exchanger (30) of this embodiment is demonstrated, referring FIGS. 7-10 suitably.

〈熱交換器の全体構成〉
図7及び図8に示すように、本実施形態の熱交換器(30)は、一つの第1ヘッダ集合管(31)と、一つの第2ヘッダ集合管(32)と、多数の扁平管(33)と、多数のフィン(36)とを備えている。第1ヘッダ集合管(31)、第2ヘッダ集合管(32)、扁平管(33)、及びフィン(36)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。
<Overall configuration of heat exchanger>
As shown in FIGS. 7 and 8, the heat exchanger (30) of the present embodiment includes one first header collecting pipe (31), one second header collecting pipe (32), and a number of flat tubes. (33) and a large number of fins (36). The first header collecting pipe (31), the second header collecting pipe (32), the flat pipe (33), and the fin (36) are all made of an aluminum alloy and are joined to each other by brazing. .

第1ヘッダ集合管(31)、第2ヘッダ集合管(32)、及び扁平管(33)の構成と配置は、上記実施形態1の熱交換器(30)と同じである。つまり、第1ヘッダ集合管(31)及び第2ヘッダ集合管(32)は、共に縦長の円筒状に形成されており、一方が熱交換器(30)の左端に、他方が熱交換器(30)の右端にそれぞれ配置されている。一方、扁平管(33)は、扁平な断面形状の伝熱管であって、それぞれの平坦な側面が向かい合う姿勢で上下に並んで配置されている。各扁平管(33)には、複数の流体通路(34)が形成されている。上下に並んだ各扁平管(33)は、一端部が第1ヘッダ集合管(31)に挿入され、他端部が第2ヘッダ集合管(32)に挿入されている。   The configuration and arrangement of the first header collecting pipe (31), the second header collecting pipe (32), and the flat pipe (33) are the same as those of the heat exchanger (30) of the first embodiment. That is, the first header collecting pipe (31) and the second header collecting pipe (32) are both formed in a vertically long cylindrical shape, one at the left end of the heat exchanger (30) and the other at the heat exchanger (30). 30) are arranged at the right end of each. On the other hand, the flat tube (33) is a heat transfer tube having a flat cross-sectional shape, and is arranged side by side in a posture in which the flat side surfaces face each other. Each flat tube (33) has a plurality of fluid passages (34). One end of each of the flat tubes (33) arranged in the vertical direction is inserted into the first header collecting pipe (31), and the other end is inserted into the second header collecting pipe (32).

フィン(36)は、板状フィンであって、扁平管(33)の伸長方向に互いに一定の間隔をおいて配置されている。つまり、フィン(36)は、扁平管(33)の伸長方向と実質的に直交するように配置されている。   The fins (36) are plate-like fins and are arranged at regular intervals in the extending direction of the flat tube (33). That is, the fin (36) is disposed so as to be substantially orthogonal to the extending direction of the flat tube (33).

〈フィンの構成〉
図9に示すように、フィン(36)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(36)には、フィン(36)の前縁(39)からフィン(36)の幅方向に延びる細長い切り欠き部(45)が、多数形成されている。フィン(36)では、多数の切り欠き部(45)が、フィン(36)の長手方向に一定の間隔で形成されている。切り欠き部(45)の風下寄りの部分は、管挿入部(46)を構成している。管挿入部(46)は、上下方向の幅が扁平管(33)の厚さと実質的に等しく、長さが扁平管(33)の幅と実質的に等しい。扁平管(33)は、フィン(36)の管挿入部(46)に挿入され、管挿入部(46)の周縁部とロウ付けによって接合される。
<Fin configuration>
As shown in FIG. 9, the fin (36) is a vertically long plate-like fin formed by pressing a metal plate. The fin (36) has a number of elongated notches (45) extending in the width direction of the fin (36) from the front edge (39) of the fin (36). In the fin (36), a large number of notches (45) are formed at regular intervals in the longitudinal direction of the fin (36). The portion closer to the lee of the notch (45) constitutes the tube insertion portion (46). The tube insertion portion (46) has a vertical width substantially equal to the thickness of the flat tube (33) and a length substantially equal to the width of the flat tube (33). The flat tube (33) is inserted into the tube insertion portion (46) of the fin (36) and joined to the peripheral portion of the tube insertion portion (46) by brazing.

フィン(36)では、隣り合う切り欠き部(45)の間の部分が伝熱部(37)を構成し、管挿入部(46)の風下側の部分が風下側板部(47)を構成している。つまり、フィン(36)には、扁平管(33)を挟んで上下に隣り合う複数の伝熱部(37)と、各伝熱部(37)の風下側の端部に連続する一つの風下側板部(47)とが設けられている。本実施形態の熱交換器(30)では、フィン(36)の伝熱部(37)が上下に並んだ扁平管(33)の間に配置され、風下側板部(47)が扁平管(33)よりも風下側へ突出している。   In the fin (36), the part between the adjacent notches (45) constitutes the heat transfer part (37), and the leeward side part of the tube insertion part (46) constitutes the leeward side plate part (47). ing. In other words, the fin (36) has a plurality of heat transfer portions (37) adjacent to each other up and down across the flat tube (33), and one leeward continuous to the leeward end of each heat transfer portion (37). A side plate portion (47) is provided. In the heat exchanger (30) of the present embodiment, the heat transfer section (37) of the fin (36) is disposed between the flat tubes (33) arranged in the vertical direction, and the leeward side plate portion (47) is disposed in the flat tube (33 ) Protrudes further to the leeward side.

図9に示すように、フィン(35)の伝熱部(37)及び風下側板部(47)には、実施形態1と同様にして、複数のワッフル部(51,52,53)が形成されている。つまり、ワッフル部(51,52,53)は、通風路(38)側に向かって膨出し、且つ上下に縦長に形成された膨出部を構成している。ワッフル部(51,52,53)は、伝熱部(37)の一部をプレス加工等により塑性変形させることで成形される。各ワッフル部(51,52,53)は、その下端部が上端部よりも風下寄りに位置するように、鉛直方向に対して斜めに傾斜する方向に延びている。各ワッフル部(51,52,53)は、実施形態1と同様、一対の台形面(54,54)と一対の三角面(55,55)と、山折り部(56)とを有している。   As shown in FIG. 9, a plurality of waffle portions (51, 52, 53) are formed in the heat transfer portion (37) and the leeward side plate portion (47) of the fin (35) in the same manner as in the first embodiment. ing. That is, the waffle portion (51, 52, 53) bulges toward the ventilation path (38) and constitutes a bulge portion that is vertically formed vertically. The waffle part (51, 52, 53) is formed by plastically deforming a part of the heat transfer part (37) by press working or the like. Each waffle portion (51, 52, 53) extends in a direction inclined obliquely with respect to the vertical direction so that its lower end portion is located closer to the lee than the upper end portion. Each waffle portion (51, 52, 53) has a pair of trapezoidal surfaces (54, 54), a pair of triangular surfaces (55, 55), and a mountain fold portion (56), as in the first embodiment. Yes.

伝熱部(37)には、風上側から風下側に向かって、1つの風上側ワッフル部(51)と、1つの中間ワッフル部(52)と、2つの風下側ワッフル部(53,53)とが形成されている。2つの風下側ワッフル部(53,53)のうち風下寄りのワッフル部(53)は、伝熱部(37)と風下側板部(47)とに跨って形成されている。   From the windward side to the leeward side, the heat transfer part (37) has one windward waffle part (51), one intermediate waffle part (52), and two leeward waffle parts (53, 53). And are formed. Of the two leeward waffle portions (53, 53), the leeward waffle portion (53) is formed across the heat transfer portion (37) and the leeward side plate portion (47).

実施形態2においても、各ワッフル部(51,52,53)の下端と、該ワッフル部(51,52,53)の下側の扁平管(33)との間に平坦部(51a,51b,51c)が形成されている。具体的に、伝熱部(37)では、風上側ワッフル部(51)の下端と、下側の扁平管(33)との間に第1平坦部(51a)が形成され、中間ワッフル部(52)の下端と、下側の扁平管(33)との間に第2平坦部(52a)が形成され、風下側ワッフル部(53)の下端と、下側の扁平管(33)との間に第3平坦部(53a)が形成されている。伝熱部(37)では、第1平坦部(51a)の高さが風上側から風下側に向かうにつれて小さくなっている。また、伝熱部(37)では、第2平坦部(52a)の高さも、風上側から風下側に向かうにつれて小さくなっている。つまり、本実施形態では、4つの膨出部(51,52,53,53)のうちの2つの膨出部(51,52)の下端と、これらの膨出部(51,52)の下側の扁平管(33)との間の2つの平坦部(51a,52a)の高さが、それぞれ、風上側から風下側に向かうにつれて小さくなっている。さらに、伝熱部(37)では、第1平坦部(51a)の高さが第3平坦部(53a)の高さよりも大きくなっている。なお、4つの膨出部(51,52,53,53)のうちの1つのみの下側の平坦部の高さを、風上側から風下側に向かうにつれて小さくしてもよいし、3つ以上の平坦部の高さを、それぞれ、風上側から風下側に向かうにつれて小さくしてもよい。   Also in the second embodiment, the flat portion (51a, 51b, between the lower end of each waffle portion (51, 52, 53) and the flat tube (33) below the waffle portion (51, 52, 53). 51c) is formed. Specifically, in the heat transfer part (37), a first flat part (51a) is formed between the lower end of the windward waffle part (51) and the lower flat pipe (33), and the intermediate waffle part ( 52) and a lower flat tube (33), a second flat portion (52a) is formed between the lower end of the leeward waffle portion (53) and the lower flat tube (33). A third flat portion (53a) is formed therebetween. In the heat transfer part (37), the height of the first flat part (51a) decreases from the windward side toward the leeward side. Moreover, in the heat transfer part (37), the height of the second flat part (52a) also decreases from the leeward side toward the leeward side. That is, in this embodiment, the lower end of two bulges (51,52) of the four bulges (51,52,53,53) and the bottom of these bulges (51,52) The height of the two flat portions (51a, 52a) between the flat tube (33) on the side decreases from the leeward side toward the leeward side. Furthermore, in the heat transfer part (37), the height of the first flat part (51a) is larger than the height of the third flat part (53a). In addition, the height of the lower flat part of only one of the four bulging parts (51, 52, 53, 53) may be reduced from the leeward side toward the leeward side. You may make the height of the above flat part small as it goes to the leeward side from the windward side, respectively.

フィン(36)の風下側板部(47)は、ドレン水の排水経路を形成するように上下方向に延びている。風下側板部(47)には、1本の導水用リブ(57)が形成されている。導水用リブ(57)は、風下側板部(47)の風下側の端部に沿って上下に延びる細長い凹溝であって、風下側板部(47)の上端から下端に亘って形成されている。導水用リブ(57)は、図10に示すように、風下側板部(47)の一方の面に凸条(57a)を形成し、他方の面に凹溝(57b)を形成している。扁平管(33)の伸長方向に隣り合う各風下側板部(47)では、いずれも同じ側の側面に凸条(57a)が形成されている。   The leeward side plate portion (47) of the fin (36) extends in the vertical direction so as to form a drain water drainage path. One riving rib (57) is formed on the leeward side plate portion (47). The water guiding rib (57) is a long and narrow groove extending vertically along the leeward end of the leeward plate (47), and is formed from the upper end to the lower end of the leeward plate (47). . As shown in FIG. 10, the water guiding rib (57) has a ridge (57a) formed on one surface of the leeward side plate portion (47) and a groove (57b) formed on the other surface. In each leeward side plate portion (47) adjacent to the extending direction of the flat tube (33), a ridge (57a) is formed on the side surface on the same side.

フィン(36)には、隣り合うフィン(36)との間隔を保持するためのタブ(61,62)が形成されている。各タブ(61,62)は、フィン(36)の一部を切り起こすことで構成される矩形の小片である。   The fin (36) is formed with tabs (61, 62) for maintaining a gap between adjacent fins (36). Each tab (61, 62) is a rectangular piece formed by cutting and raising a part of the fin (36).

図9に示すように、各伝熱部(37)の風上側端部には、風上側タブ(61)がそれぞれ形成されている。風上側タブ(61)は、伝熱部(37)の一部を斜め上方に切り起こすことで形成される。つまり、風上側タブ(61)の切り起こし面(61a)は、水平面に対して斜めに傾斜している。風下側板部(47)には、各扁平管(33)の風下の部位に風下側タブ(62)がそれぞれ形成されている。風下側タブ(62)は、風下側板部(47)の一部を風上側に切り起こすことで形成される。つまり、風下側タブ(62)の切り起こし面(62a)は、水平面に対して直交している。   As shown in FIG. 9, the windward side tab (61) is formed in the windward side edge part of each heat-transfer part (37), respectively. The windward tab (61) is formed by raising a part of the heat transfer section (37) obliquely upward. That is, the cut-and-raised surface (61a) of the windward tab (61) is inclined obliquely with respect to the horizontal plane. In the leeward side plate portion (47), leeward side tabs (62) are formed in the leeward portions of the respective flat tubes (33). The leeward side tab (62) is formed by raising a part of the leeward side plate portion (47) to the upwind side. That is, the cut-and-raised surface (62a) of the leeward tab (62) is orthogonal to the horizontal plane.

各タブ(61,62)の切り起こしの高さは、隣り合うフィン(36)と接触可能な高さに設定されている。つまり、各タブ(61,62)は、隣り合うフィン(36)の間に所定の間隔を確保するためのスペーサとして機能する。なお、各フィン(36)を扁平管(33)とろう付けした後には、各タブ(61,62)をフィン(36)側に折り込んで元の位置に戻してもよい。   The height of the cut-and-raised of each tab (61, 62) is set to a height that allows contact with the adjacent fin (36). That is, each tab (61, 62) functions as a spacer for ensuring a predetermined interval between adjacent fins (36). In addition, after each fin (36) is brazed with the flat tube (33), each tab (61, 62) may be folded back to the fin (36) side and returned to the original position.

−実施形態2の効果−
実施形態2の熱交換器(30)では、上記実施形態1と同様の効果を得ることができる。つまり、実施形態2においても、伝熱部(37)に複数のワッフル部(51,52,53)を形成することで、伝熱性能を向上できる。このワッフル部(51,52,53)は、従来例のルーバーのように切れ目を要しないため、ワッフル部(51,52,53)の近傍にドレン水が貯まり込んでしまうこともない。加えて、風上側ワッフル部(51)の下側に第1平坦部(51a)を形成することで、風上側ワッフル部(51)の表面で発生したドレン水を速やかに下方へ排出できる。更に、扁平管(33)の上側に溜まったドレン水を、第3平坦部(53a)側の隙間から毛管現象を利用して風下側へ引き込むことができる。更に、各ワッフル部(51,52,53)の表面で発生したドレン水を、各ワッフル部(51,52,53)の傾斜方向に沿うように風下側へ案内できる。
-Effect of Embodiment 2-
In the heat exchanger (30) of the second embodiment, the same effect as in the first embodiment can be obtained. That is, also in Embodiment 2, heat transfer performance can be improved by forming a plurality of waffle portions (51, 52, 53) in the heat transfer portion (37). Since this waffle part (51, 52, 53) does not require a cut like the conventional louver, drain water does not accumulate near the waffle part (51, 52, 53). In addition, by forming the first flat portion (51a) below the windward waffle portion (51), drain water generated on the surface of the windward waffle portion (51) can be quickly discharged downward. Furthermore, the drain water collected on the upper side of the flat tube (33) can be drawn into the leeward side from the gap on the third flat portion (53a) side using the capillary phenomenon. Furthermore, drain water generated on the surface of each waffle part (51, 52, 53) can be guided to the leeward side along the inclination direction of each waffle part (51, 52, 53).

以上のようにして、風下側板部(47)に移動したドレン水は、導水用リブ(57)の凸条(57a)の表面や凹溝(57b)の内部に捕集され、導水用リブ(57)に沿って下方へ流れ落ちていく。その結果、フィン(36)の風下側に溜まったドレン水を速やかにドレンパン等へ排出できる。   As described above, the drain water that has moved to the leeward side plate portion (47) is collected on the surface of the ridge (57a) of the water guiding rib (57) and the inside of the groove (57b), and the water guiding rib ( 57) It flows down along the line. As a result, drain water accumulated on the leeward side of the fin (36) can be quickly discharged to a drain pan or the like.

また、実施形態2の各タブ(61,62)の切り起こし面(61a,62a)は、それぞれ水平面に対して傾斜している。このため、フィン(36)の表面で生成したドレン水が、タブ(61,62)の切り起こし面(61a,62a)の上側に溜まってしまうことを回避できる。従って、タブ(61,62)の表面のドレン水が再び凍結してしまうことで、通風路(38)での空気の流れが阻害されてしまうことを回避できる。   Further, the cut and raised surfaces (61a, 62a) of the tabs (61, 62) of the second embodiment are inclined with respect to the horizontal plane. For this reason, it can avoid that the drain water produced | generated on the surface of the fin (36) accumulates on the upper side of the cut-and-raised surface (61a, 62a) of the tab (61, 62). Therefore, it can be avoided that the drain water on the surfaces of the tabs (61, 62) is frozen again, thereby obstructing the air flow in the ventilation path (38).

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、扁平管と複数のフィンとを備え、扁平管を流れる流体と空気とを熱交換させる熱交換器、及びこの熱交換器を備えた空気調和機について有用である。   As described above, the present invention is useful for a heat exchanger that includes a flat tube and a plurality of fins, exchanges heat between the fluid flowing through the flat tube and air, and an air conditioner that includes this heat exchanger. is there.

10 空気調和機
30 熱交換器
33 扁平管
34 流体通路(流体の通路)
35 フィン(コルゲートフィン)
36 フィン
37 伝熱部
38 通風路
42 突出板部(風下側板部)
45 切り欠き部
47 風下側板部
51 風上側ワッフル部(風上側膨出部、膨出部)
51a 第1平坦部(平坦部)
52 中間ワッフル部(膨出部)
52a 第2平坦部(平坦部)
53 風下側ワッフル部(風下側膨出部、膨出部)
53a 第3平坦部(平坦部)
57 導水用リブ(リブ)
61 風上側タブ(切り起こし部)
61a 切り起こし面
62 風下側タブ(切り起こし部)
62a 切り起こし面
10 Air conditioner
30 heat exchanger
33 Flat tube
34 Fluid passage (fluid passage)
35 fins (corrugated fins)
36 fins
37 Heat transfer section
38 Ventilation path
42 Protruding plate (leeward side plate)
45 Notch
47 Downward side plate
51 Windward waffle (windward bulge, bulge)
51a First flat part (flat part)
52 Intermediate waffle section (bulging section)
52a Second flat part (flat part)
53 leeward waffle (leeward bulge, bulge)
53a Third flat part (flat part)
57 Rib for water conveyance (rib)
61 Windward tab (cut and raised)
61a Cut face
62 leeward tab (cut and raised)
62a Cut face

Claims (8)

平坦な側面が対向するように上下に配列され、内部に流体の通路(34)が形成される複数の扁平管(33)と、隣り合う上記扁平管(33)の間を空気が流れる複数の通風路(38)に区画する複数のフィン(35,36)とを備え、
上記複数のフィン(35,36)は、隣り合う上記扁平管(33)の一方から他方に亘る板状に形成されて上記通風路(38)の側壁を構成する複数の伝熱部(37)と、該伝熱部(37)の風下側端部と連結して排水経路を形成する風下側板部(42,47)とを有する熱交換器であって、
上記複数の伝熱部(37)には、上記通風路(38)側に向かって膨出し且つ空気の通過方向と交わる方向に延びる複数の膨出部(51,52,53)が、該空気の通過方向に配列されて形成され、
上記複数の膨出部(51,52,53)は、上記通風路(38)の風上側に形成される風上側膨出部(51)と、上記通風路(38)の風下側に形成される風下側膨出部(53)とを含み、
上記伝熱部(37)では、上記風上側膨出部(51)と下側の扁平管(33)との間に形成される平坦部(51a)の高さが、上記風下側膨出部(53)と下側の扁平管(33)との間に形成される平坦部(53a)の高さよりも大きいことを特徴とする熱交換器。
A plurality of flat tubes (33) which are arranged vertically so that the flat side faces each other and in which a fluid passage (34) is formed, and a plurality of air flows between the adjacent flat tubes (33) A plurality of fins (35, 36) dividing the ventilation path (38);
The plurality of fins (35, 36) are formed in a plate shape extending from one side to the other of the adjacent flat tubes (33), and form a plurality of heat transfer sections (37) constituting the side walls of the ventilation path (38). And a leeward side plate part (42, 47) that is connected to the leeward side end of the heat transfer part (37) to form a drainage path,
The plurality of heat transfer portions (37) have a plurality of bulge portions (51, 52, 53) that bulge toward the ventilation path (38) and extend in a direction crossing the air passage direction. Formed in the direction of passage of
The plurality of bulges (51, 52, 53) are formed on the leeward side of the ventilation path (38) and the leeward bulge part (51) formed on the windward side of the ventilation path (38). A leeward bulge portion (53)
In the heat transfer part (37), the height of the flat part (51a) formed between the leeward bulge part (51) and the lower flat tube (33) is the leeward bulge part. The heat exchanger characterized by being larger than the height of the flat part (53a) formed between (53) and a lower flat tube (33) .
平坦な側面が対向するように上下に配列され、内部に流体の通路(34)が形成される複数の扁平管(33)と、隣り合う上記扁平管(33)の間を空気が流れる複数の通風路(38)に区画する複数のフィン(35,36)とを備え、
上記複数のフィン(35,36)は、隣り合う上記扁平管(33)の一方から他方に亘る板状に形成されて上記通風路(38)の側壁を構成する複数の伝熱部(37)と、該伝熱部(37)の風下側端部と連結して排水経路を形成する風下側板部(42,47)とを有する熱交換器であって、
上記複数の伝熱部(37)には、上記通風路(38)側に向かって膨出し且つ空気の通過方向と交わる方向に延びる複数の膨出部(51,52,53)が、該空気の通過方向に配列されて形成され、
上記複数の膨出部(51,52,53)と下側の扁平管(33)との間に形成される平坦部(51a,52a,53a)の高さは、風上側から風下側に向かうにつれて小さくなっていることを特徴とする熱交換器。
A plurality of flat tubes (33) which are arranged vertically so that the flat side faces each other and in which a fluid passage (34) is formed, and a plurality of air flows between the adjacent flat tubes (33) A plurality of fins (35, 36) dividing the ventilation path (38);
The plurality of fins (35, 36) are formed in a plate shape extending from one side to the other of the adjacent flat tubes (33), and form a plurality of heat transfer sections (37) constituting the side walls of the ventilation path (38). And a leeward side plate part (42, 47) that is connected to the leeward side end of the heat transfer part (37) to form a drainage path,
The plurality of heat transfer portions (37) have a plurality of bulge portions (51, 52, 53) that bulge toward the ventilation path (38) and extend in a direction crossing the air passage direction. Formed in the direction of passage of
The height of the flat portion (51a, 52a, 53a) formed between the plurality of bulging portions (51, 52, 53) and the lower flat tube (33) is from the leeward side toward the leeward side. A heat exchanger characterized in that it becomes smaller as
平坦な側面が対向するように上下に配列され、内部に流体の通路(34)が形成される複数の扁平管(33)と、隣り合う上記扁平管(33)の間を空気が流れる複数の通風路(38)に区画する複数のフィン(35,36)とを備え、
上記複数のフィン(35,36)は、隣り合う上記扁平管(33)の一方から他方に亘る板状に形成されて上記通風路(38)の側壁を構成する複数の伝熱部(37)と、該伝熱部(37)の風下側端部と連結して排水経路を形成する風下側板部(42,47)とを有する熱交換器であって、
上記複数の伝熱部(37)には、上記通風路(38)側に向かって膨出し且つ空気の通過方向と交わる方向に延びる複数の膨出部(51,52,53)が、該空気の通過方向に配列されて形成され、
上記複数の膨出部(51,52,53)の少なくとも1つの膨出部(51,52)の下端と、該膨出部(51,52)の下端の下側の扁平管(33)との間に形成される平坦部(51a,51b)の高さは、風上側から風下側に向かうにつれて小さくなっていることを特徴とする熱交換器。
A plurality of flat tubes (33) which are arranged vertically so that the flat side faces each other and in which a fluid passage (34) is formed, and a plurality of air flows between the adjacent flat tubes (33) A plurality of fins (35, 36) dividing the ventilation path (38);
The plurality of fins (35, 36) are formed in a plate shape extending from one side to the other of the adjacent flat tubes (33), and form a plurality of heat transfer sections (37) constituting the side walls of the ventilation path (38). And a leeward side plate part (42, 47) that is connected to the leeward side end of the heat transfer part (37) to form a drainage path,
The plurality of heat transfer portions (37) have a plurality of bulge portions (51, 52, 53) that bulge toward the ventilation path (38) and extend in a direction crossing the air passage direction. Formed in the direction of passage of
A lower end of at least one bulge portion (51,52) of the plurality of bulge portions (51,52,53), and a flat tube (33) below the lower end of the bulge portion (51,52), The heat exchanger characterized by the height of the flat part (51a, 51b) formed between is decreasing from the leeward side toward the leeward side.
請求項1乃至3のいずれか1つにおいて、
上記膨出部(51,52,53)は、該膨出部(51,52,53)の下端が該膨出部(51,52,53)の上端よりも風下寄りに位置するように鉛直方向に対して傾斜していることを特徴とする熱交換器。
In any one of Claims 1 thru | or 3,
The bulging portion (51, 52, 53) is vertical so that the lower end of the bulging portion (51, 52, 53) is located closer to the lee than the upper end of the bulging portion (51, 52, 53). A heat exchanger that is inclined with respect to a direction.
請求項1乃至のいずれか1つにおいて、
上記複数のフィン(36)は、上記扁平管(33)を差し込むための複数の切り欠き部(45)が風上側に設けられた板状に形成され、扁平管(33)の伸長方向に互いに所定の間隔をおいて配置され、切り欠き部(45)の周縁で上記扁平管(33)を挟んでおり、
上記フィン(36)では、上下に隣り合う切り欠き部(45)の間の部分が上記伝熱部(37)を構成し、該伝熱部(37)の風下側端部と連続して上下に延びる部分が上記風下側板部(47)を構成していることを特徴とする熱交換器。
In any one of Claims 1 thru | or 4 ,
The plurality of fins (36) are formed in a plate shape in which a plurality of notches (45) for inserting the flat tube (33) are provided on the windward side, and are arranged in the extending direction of the flat tube (33). Arranged at a predetermined interval, sandwiching the flat tube (33) at the periphery of the notch (45),
In the fin (36), the portion between the upper and lower cutouts (45) constitutes the heat transfer section (37), and the upper and lower ends of the heat transfer section (37) are continuous with the leeward side end. The heat exchanger is characterized in that the portion extending to the bottom constitutes the leeward side plate (47).
請求項において、
上記風下側板部(47)には、上記複数の伝熱部(37)の風下側端部に沿うように延びるリブ(57)が形成されていることを特徴とする熱交換器。
In claim 5 ,
The heat exchanger according to claim 1, wherein a rib (57) extending along the leeward side ends of the plurality of heat transfer parts (37) is formed on the leeward side plate part (47).
請求項又はにおいて、
上記フィン(36)には、通風路(38)側に向かって切り起こされる切り起こし部(61,62)が形成され、
上記切り起こし部(61,62)の切り起こし面(61a,62a)が、水平面に対して傾いていることを特徴とする熱交換器。
In claim 5 or 6 ,
The fin (36) is formed with a cut-and-raised portion (61, 62) cut and raised toward the ventilation path (38).
The heat exchanger, wherein the cut and raised surfaces (61a and 62a) of the cut and raised parts (61 and 62) are inclined with respect to a horizontal plane.
請求項1乃至のいずれか一つに記載の熱交換器(30)が設けられた冷媒回路(20)を備え、
上記冷媒回路(20)において冷媒を循環させて冷凍サイクルを行うことを特徴とする空気調和機。
A refrigerant circuit (20) provided with the heat exchanger (30) according to any one of claims 1 to 7 ,
An air conditioner that performs a refrigeration cycle by circulating refrigerant in the refrigerant circuit (20).
JP2012010570A 2011-01-21 2012-01-23 Heat exchanger and air conditioner Expired - Fee Related JP5177306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010570A JP5177306B2 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011011195 2011-01-21
JP2011011195 2011-01-21
JP2012010570A JP5177306B2 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner

Publications (2)

Publication Number Publication Date
JP2012163317A JP2012163317A (en) 2012-08-30
JP5177306B2 true JP5177306B2 (en) 2013-04-03

Family

ID=46515547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010570A Expired - Fee Related JP5177306B2 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner

Country Status (8)

Country Link
US (1) US20130299153A1 (en)
EP (1) EP2667139A1 (en)
JP (1) JP5177306B2 (en)
KR (1) KR101313347B1 (en)
CN (1) CN103314269B (en)
AU (1) AU2012208120A1 (en)
BR (1) BR112013018043A2 (en)
WO (1) WO2012098914A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032111A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Heat exchanger
JP5445875B2 (en) * 2012-08-06 2014-03-19 日高精機株式会社 Flat tube fins and flat tube fin manufacturing mold and metal strip feeder
KR102218301B1 (en) * 2013-07-30 2021-02-22 삼성전자주식회사 Heat exchanger and corrugated fin thereof
EP2869015B1 (en) * 2013-11-05 2017-09-20 MAHLE International GmbH Method of using asymmetric corrugated fins with louvers
KR102227419B1 (en) * 2014-01-15 2021-03-15 삼성전자주식회사 Heat exchanger and air conditioner having the same
WO2015108289A1 (en) * 2014-01-15 2015-07-23 삼성전자주식회사 Heat exchanger and air conditioner having same
KR102188114B1 (en) * 2014-01-28 2020-12-07 삼성전자주식회사 Heat exchanger
CN103925742B (en) * 2014-04-18 2016-06-29 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger and manufacture method, heat exchange module, heat-exchanger rig and heat source unit
JP6465970B2 (en) * 2015-05-29 2019-02-06 三菱電機株式会社 Heat exchanger
JP6710205B2 (en) * 2015-05-29 2020-06-17 三菱電機株式会社 Heat exchanger and refrigeration cycle device
US11041676B2 (en) * 2015-07-31 2021-06-22 Lg Electronics Inc. Heat exchanger
KR20170015146A (en) * 2015-07-31 2017-02-08 엘지전자 주식회사 Heat exchanger
CN106705270B (en) * 2015-11-12 2020-07-17 浙江盾安人工环境股份有限公司 Heat exchanger
CN205352165U (en) * 2015-12-16 2016-06-29 杭州三花微通道换热器有限公司 Heat exchanger core and heat exchanger that has it
US10712104B2 (en) 2016-07-01 2020-07-14 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN106370045B (en) * 2016-08-30 2019-07-23 杭州三花微通道换热器有限公司 Fin and heat exchanger with the fin
JP6294537B1 (en) 2017-01-20 2018-03-14 三菱アルミニウム株式会社 Mixed composition paint for brazing
CN110603419A (en) * 2017-05-11 2019-12-20 三菱电机株式会社 Heat exchanger and refrigeration cycle device
US11175053B2 (en) 2017-06-22 2021-11-16 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
JP6631608B2 (en) * 2017-09-25 2020-01-15 ダイキン工業株式会社 Air conditioner
JP6865353B2 (en) * 2018-01-09 2021-04-28 パナソニックIpマネジメント株式会社 Heat exchanger
WO2019175973A1 (en) * 2018-03-13 2019-09-19 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner with same
WO2019239520A1 (en) * 2018-06-13 2019-12-19 三菱電機株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2020196593A1 (en) 2019-03-26 2020-10-01 株式会社富士通ゼネラル Heat exchanger and air conditioner comprising heat exchanger
US11988462B2 (en) 2020-08-31 2024-05-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427336A (en) * 1945-04-25 1947-09-16 Peerless Of America Heat transfer unit
US3437134A (en) * 1965-10-24 1969-04-08 Borg Warner Heat exchanger
US4328861A (en) * 1979-06-21 1982-05-11 Borg-Warner Corporation Louvred fins for heat exchangers
JPS61237995A (en) * 1985-04-12 1986-10-23 Matsushita Electric Ind Co Ltd Finned heat exchanger
KR900006245B1 (en) * 1985-04-19 1990-08-27 마쯔시다덴기산교 가부시기가이샤 Heat exchanger
US4709753A (en) * 1986-09-08 1987-12-01 Nordyne, Inc. Uni-directional fin-and-tube heat exchanger
JP3064055B2 (en) * 1991-08-29 2000-07-12 昭和アルミニウム株式会社 Heat exchanger manufacturing method
JPH0590173U (en) * 1992-04-20 1993-12-07 住友軽金属工業株式会社 Fin tube heat exchanger
KR100290761B1 (en) * 1995-01-23 2001-06-01 구자홍 Fin tube type heat exchanger
JPH09324995A (en) * 1996-06-05 1997-12-16 Toshiba Corp Heat exchanger
KR100210072B1 (en) * 1996-07-09 1999-07-15 윤종용 Heat exchanger of air conditioner
US5752567A (en) * 1996-12-04 1998-05-19 York International Corporation Heat exchanger fin structure
US5975200A (en) * 1997-04-23 1999-11-02 Denso Corporation Plate-fin type heat exchanger
US5787972A (en) * 1997-08-22 1998-08-04 General Motors Corporation Compression tolerant louvered heat exchanger fin
JPH11294984A (en) 1998-04-09 1999-10-29 Zexel:Kk Juxtaposed integrated heat exchanger
US6964296B2 (en) * 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
JP4096226B2 (en) 2002-03-07 2008-06-04 三菱電機株式会社 FIN TUBE HEAT EXCHANGER, ITS MANUFACTURING METHOD, AND REFRIGERATION AIR CONDITIONER
US7021370B2 (en) * 2003-07-24 2006-04-04 Delphi Technologies, Inc. Fin-and-tube type heat exchanger
JP2005201467A (en) 2004-01-13 2005-07-28 Matsushita Electric Ind Co Ltd Heat exchanger
KR100621525B1 (en) * 2005-06-09 2006-09-11 위니아만도 주식회사 Heat transfer pin of heat exchanger
JP2007017042A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Heat exchanger
US7540320B1 (en) * 2006-02-10 2009-06-02 Thomas Middleton Semmes High efficiency conditioning air apparatus
JP5320846B2 (en) 2008-06-20 2013-10-23 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
AU2012208120A1 (en) 2013-08-01
US20130299153A1 (en) 2013-11-14
KR101313347B1 (en) 2013-10-01
EP2667139A1 (en) 2013-11-27
JP2012163317A (en) 2012-08-30
KR20130099254A (en) 2013-09-05
WO2012098914A1 (en) 2012-07-26
CN103314269B (en) 2014-06-18
BR112013018043A2 (en) 2019-09-24
CN103314269A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5177306B2 (en) Heat exchanger and air conditioner
JP5397489B2 (en) Heat exchanger and air conditioner
JP5141840B2 (en) Heat exchanger and air conditioner
JP5177308B2 (en) Heat exchanger and air conditioner
JP5569408B2 (en) Heat exchanger and air conditioner
JP2015031490A (en) Heat exchanger and air conditioner
JP5736794B2 (en) Heat exchanger and air conditioner
JP5569409B2 (en) Heat exchanger and air conditioner
JP2012154492A (en) Heat exchanger and air conditioner
JP2015031491A (en) Heat exchanger and air conditioner
WO2012098913A1 (en) Heat exchanger and air conditioner
JP5664272B2 (en) Heat exchanger and air conditioner
JP2012154500A (en) Heat exchanger and air conditioner
JP6355915B2 (en) Heat exchanger and heat exchanger structure
JP2015031483A (en) Heat exchanger and air conditioner including the same
JP2015031478A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5177306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees