WO2012098861A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2012098861A1
WO2012098861A1 PCT/JP2012/000243 JP2012000243W WO2012098861A1 WO 2012098861 A1 WO2012098861 A1 WO 2012098861A1 JP 2012000243 W JP2012000243 W JP 2012000243W WO 2012098861 A1 WO2012098861 A1 WO 2012098861A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
trench
silicon
film
insulating layer
Prior art date
Application number
PCT/JP2012/000243
Other languages
French (fr)
Japanese (ja)
Inventor
庭山 雅彦
内田 正雄
康太郎 田中
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012098861A1 publication Critical patent/WO2012098861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a semiconductor device using silicon carbide and a method for manufacturing the same.
  • Silicon carbide is a high-hardness semiconductor material having a larger band gap than silicon (Si), such as power elements (also called power devices), environmental elements, high-temperature operating elements, and high-frequency elements. It is applied to various semiconductor devices. Especially, application to power devices, such as a switching element and a rectifier, attracts attention.
  • MOSFET Metal Insulator Semiconductor Effect Transistor
  • MESFT Metal Semiconductor Field Transistor Transistor
  • the voltage applied between the gate electrode and the source electrode can be switched between an on state in which a drain current of several A (amperes) or more flows and an off state in which the drain current is zero. Further, a high breakdown voltage of several hundred volts or more can be realized in the off state.
  • a typical rectifying element using SiC there are a Schottky diode and a pn diode. These are expected as rectifying elements that realize a large current and a high breakdown voltage.
  • SiC power device Since SiC has a higher dielectric breakdown electric field and thermal conductivity than Si, a power device using SiC (SiC power device) can easily achieve higher breakdown voltage and lower loss than Si power devices. For this reason, when realizing the same performance as the Si power device, the area and thickness can be greatly reduced as compared with the Si power device.
  • a vertical power MISFET having a trench gate structure has been proposed instead of the conventional planar gate structure.
  • a channel region is formed on the surface of the silicon carbide layer, whereas in the trench gate structure, a channel region is formed on the side surface of the trench formed in the silicon carbide layer.
  • a vertical MISFET generally includes a plurality of unit cells arranged two-dimensionally. Each unit cell is provided with a trench gate having a side surface perpendicular to the main surface of the substrate.
  • FIG. 6 is a cross-sectional view showing a conventional vertical MISFET unit cell 300U having a trench gate structure.
  • Unit cell 300U has silicon carbide substrate 1 and silicon carbide layer 2 formed on the main surface of silicon carbide substrate 1.
  • Silicon carbide layer 2 has an n-type drift region 2d formed on the main surface of silicon carbide substrate 1, and a p-type body region 3 formed on drift region 2d.
  • An n-type source region 4 is disposed in a part of the surface region of the body region 3.
  • silicon carbide layer 2 a trench 12 that penetrates source region 4 and reaches drift region 2 d is formed.
  • gate electrode 8 and gate insulating film 5 for insulating gate electrode 8 and silicon carbide layer 2 are arranged.
  • a source electrode 10 is provided on the silicon carbide layer 2 so as to be in contact with the source region 4.
  • a drain electrode 9 is provided on the back surface of silicon carbide substrate 1.
  • the semiconductor device including the unit cell 300U is manufactured as follows, for example.
  • a silicon carbide layer 2 having the same crystal structure as that of silicon carbide substrate 1 is formed on the main surface of low resistance n-type silicon carbide substrate 1.
  • n-type drift region 2d and p-type body region 3 are formed in this order on the main surface of silicon carbide substrate 1 by epitaxial growth, and silicon carbide layer 2 is obtained.
  • a mask layer (not shown) made of a silicon oxide film is disposed on a predetermined region of silicon carbide layer 2, and n-type impurity ions (for example, N (nitrogen) ions) are applied to body region 3 using this as a mask.
  • the source region 4 is formed in the body region 3.
  • an Al film (not shown) is formed on a part of the source region 4 via an oxide film, and this is used as a mask to form a vertical trench 12 reaching the drift region 2d by the RIE method.
  • the gate insulating film 5 is an oxide film formed by, for example, thermal oxidation of the silicon carbide layer 2.
  • the gate electrode 8 is formed by depositing polysilicon on the gate insulating film 5 by LP-CVD (Low Pressure Chemical Vapor Deposition), for example, and then patterning. Further, source electrode (source / body electrode) 10 is formed on silicon carbide layer 2 so as to extend over both body region 3 and source region 4, and drain electrode 9 is formed on the back surface of silicon carbide substrate 1. . In this way, a MISFET having a trench gate structure is completed.
  • LP-CVD Low Pressure Chemical Vapor Deposition
  • the source electrode 10 when the source electrode 10 is connected to the ground potential and the gate electrode 8 is connected to the ground potential or when a negative bias is applied to the gate electrode 8, Between the drift region 2d, holes are induced in a region in the vicinity of the interface between the body region 3 and the gate insulating film 5, and an electron path as a conduction carrier is blocked, so that no current flows ( Off).
  • a high voltage is applied between the drain electrode 9 and the source electrode 10 so that the drain electrode 9 side is positive, the pn junction between the body region 3 and the drift region 2d becomes a reverse bias state. A depletion layer spreads in the drift region 2d, and a high voltage is maintained.
  • a JFET junction field effect transistor
  • JFET resistance a resistance component
  • the MISFET having the trench gate structure has a problem that the electric field strength applied to the gate insulating film at the bottom of the trench becomes very large.
  • FIG. 7A is an enlarged cross-sectional view showing a structure within a broken line A of the conventional MISFET shown in FIG.
  • FIGS. 7B and 7C are diagrams showing electric field strength distributions in an off state (when a drain voltage is applied) in the pn junction 30 and the MIS structure 40 indicated by broken lines in FIG. 7A, respectively. It is.
  • the pn junction 30 is formed by the body region 3 and the drift region 2d.
  • the MIS structure portion 40 is formed by the gate electrode 8, the gate insulating film 5, and the drift region 2d.
  • the MISFET When a MISFET is used as a power device, the MISFET is ideally designed so that breakdown occurs when the peak electric field strength applied to the pn junction 30 exceeds the dielectric breakdown field strength of SiC (about 10 MV / cm). The However, before the electric field strength applied to the pn junction 30 reaches the dielectric breakdown electric field strength, the electric field strength applied to the gate insulating film (for example, SiO 2 film) 5 at the bottom of the trench 12 may reach the dielectric breakdown electric field strength first. There is. For this reason, breakdown may occur at a voltage lower than the theoretical breakdown voltage.
  • the difference between the relative dielectric constant of SiC (9.7 for 4H-SiC) and the relative dielectric constant of the SiO 2 film (3.8) is the difference between the relative dielectric constant of Si (11.9) and the SiO 2 film.
  • the SiC power device has a larger electric field strength on the gate insulating film 5 of the MIS structure portion 40 than the Si power device because it is smaller than the difference from the relative dielectric constant (3.8).
  • the electric field concentrates on the portions of the gate insulating film 5 located at the bottom and corner portions of the trench, and a higher electric field is applied than the other portions.
  • the dielectric breakdown electric field strength of Si is 0.2 MV / cm, which is two orders of magnitude lower than 10 MV / cm of the SiO 2 film, so in most cases before dielectric breakdown occurs in the gate insulating film. , Breakdown occurs at the pn junction.
  • the breakdown electric field strength of SiC (4H—SiC) is as large as 2 MV / cm, and the difference from the breakdown electric field strength of the SiO 2 film is small (about 0.5 to 1 digit).
  • Patent Documents 1 and 2 propose a method of increasing the dielectric breakdown electric field by thickening the gate insulating film at the bottom of the trench.
  • the thickness of the portion of the gate insulating film (thermal oxide film) located at the bottom of the trench is determined by using the (000-1) carbon surface having a high oxidation rate as the bottom of the trench. It has been proposed that the thickness be larger than the thickness of the portion located in the portion. Further, in the method proposed in Patent Document 2, after depositing a polysilicon film inside the trench, only a portion of the polysilicon film located at the bottom of the trench is selectively oxidized, and a gate insulating film is formed at the bottom of the trench. Is thickened. Thereafter, the polysilicon film left on the side surface of the trench is removed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to prevent dielectric breakdown of an insulating film due to electric field concentration at the bottom of a trench in a silicon carbide semiconductor device having a trench structure without deteriorating element characteristics. It is to suppress.
  • a semiconductor device includes a substrate, a silicon carbide layer disposed on the main surface of the substrate, a trench having a bottom surface and a side surface disposed on the silicon carbide layer, and a bottom surface and a side surface of the trench. And a conductive layer disposed in the trench and insulated from the silicon carbide layer by the insulating film.
  • the conductive layer is made of silicon, and the insulating film is a bottom surface of the trench.
  • a first insulating layer disposed on a side surface, and a second insulating layer that is disposed between a portion of the first insulating layer located on the bottom surface of the trench and the conductive layer and is made of silicon.
  • the second insulating layer is in contact with the conductive layer, and the thickness of the insulating film is three times or more on the side surface of the trench on the bottom surface of the trench.
  • the method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device having a silicon carbide layer, wherein (A) a step of preparing a substrate having a silicon carbide layer formed on a main surface; Forming a trench having a bottom surface and a side surface in the silicon layer; (C) forming a first insulating layer on the bottom surface and side surface of the trench; and (D) a first layer on the first insulating layer.
  • an insulating film thicker on the bottom surface of the trench than on the side surface of the trench can be formed between the conductive layer serving as the gate electrode and the silicon carbide layer. It becomes possible. Further, the thickness of the insulating film on the side surface of the trench and the bottom of the trench can be arbitrarily controlled independently of each other. Therefore, the electric field strength applied to the insulating film at the bottom of the trench can be reduced while maintaining the element characteristics, and the dielectric breakdown can be suppressed.
  • FIGS. 4A to 4E are schematic process cross-sectional views for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIGS. 4A to 4D are schematic process cross-sectional views for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIGS. 4A to 4C are schematic process cross-sectional views for explaining another method for manufacturing the semiconductor device according to the embodiment of the present invention. It is typical sectional drawing of the other semiconductor device of embodiment by this invention. It is typical sectional drawing of one unit cell in the conventional MISFET which has a trench gate structure.
  • FIG. 6 is sectional drawing which shows the enlarged structure of the broken line A in the conventional MISFET shown in FIG. 6,
  • (b) and (c) are the OFF states (drain) in the pn junction part 30 and the MIS structure part 40, respectively.
  • FIGS. 4A to 4C are schematic process cross-sectional views for explaining still another method for manufacturing the semiconductor device according to the embodiment of the present invention.
  • Patent Documents 1 and 2 As described above, according to the conventional methods proposed in Patent Documents 1 and 2, it is difficult for the inventor to suppress the dielectric breakdown at the bottom of the trench while controlling the thickness of the gate insulating film on the side surface of the trench. I found out. Hereinafter, the examination result by this inventor is demonstrated.
  • FIG. 8 is a diagram showing a simulation result by the present inventor, and shows a relationship between the thickness of the gate insulating film (thermal oxide film) at the bottom of the trench and the electric field strength applied to the bottom of the trench.
  • the strength of the electric field applied to the bottom of the trench changes depending on the thickness of the gate insulating film at the bottom of the trench when 1200 V is applied to the drain voltage.
  • the thickness of the gate insulating film in the channel portion on the side surface of the trench is 50 nm, 70 nm, and 90 nm.
  • the junction breakdown voltage between the drift region and the body region is set to 1200 V or more.
  • the breakdown electric field strength of the thermal oxide film is 10 MV / cm or more.
  • the allowable electric field strength is set to be higher than the actual breakdown electric field in order to ensure reliability during long-term use. Is set to a sufficiently small value, for example, 3 to 4 MV / cm. That is, it is preferable to suppress the electric field strength applied to the vicinity of the bottom of the trench to at least 4 MV / cm or less.
  • the thickness of the gate insulating film on the side surface of the trench is 50 nm and the thickness of the gate insulating film at the bottom of the trench is set to 150 nm or more, the electric field strength applied to the bottom of the trench is 4 MV / cm. The following can be suppressed.
  • the thickness of the gate insulating film on the side surface of the trench is 70 nm
  • the thickness of the gate insulating film at the bottom of the trench is 210 nm or more
  • the thickness of the gate insulating film on the side surface of the trench is 90 nm, the thickness of the gate insulating film at the bottom of the trench.
  • the electric field strength applied to the bottom of the trench can be suppressed to 4 MV / cm or less.
  • the thickness of the gate insulating film that can reduce the electric field strength applied to the bottom of the trench to a predetermined value or less varies depending on the thickness of the gate insulating film on the side surface of the trench.
  • the present inventor has normalized the thickness of the gate insulating film at the bottom of the trench with the thickness of the gate insulating film on the side of the trench, and examined the relationship between the normalized value and the electric field strength applied to the bottom of the trench.
  • the electric field strength at the bottom of the trench when a drain voltage of 1200 V was applied to a MISFET having a trench structure with an avalanche breakdown voltage of 1200 V or more at the junction of the drift region and the body region was calculated by simulation.
  • FIG. 9 is a diagram showing a simulation result by the present inventor.
  • the horizontal axis represents the normalized value, that is, the ratio of the thickness of the gate insulating film (thermal oxide film) at the bottom of the trench to the thickness of the gate insulating film at the side of the trench (the thickness of the thermal oxide film at the bottom of the trench / the side of the trench).
  • the thickness of the thermal oxide film) R represents the electric field strength applied to the bottom of the trench.
  • it is calculated how the strength of the electric field applied to the bottom of the trench varies depending on the thickness ratio R of the gate insulating film when 1200 V is applied to the drain voltage.
  • the thickness of the gate insulating film in the channel portion on the side surface of the trench is 50 nm, 70 nm, and 90 nm.
  • black circles indicate simulation results when the thickness of the gate insulating film in the channel portion on the trench side surface is 50 nm, and triangles indicate results when the thickness of the gate insulating film in the channel portion on the trench side surface is 70 nm.
  • white circles show the simulation results when the thickness of the gate insulating film in the channel portion on the side surface of the trench is 90 nm.
  • the results shown in FIG. 9 indicate that the electric field strength exceeds 9 MV / cm when the thickness of the gate insulating film at the bottom of the trench is approximately the same as the thickness of the gate insulating film on the side surface of the trench. It can be seen that an electric field of 5 MV / cm is applied to the bottom of the trench even when the thickness of the gate insulating film at the bottom of the trench is set to twice the thickness on the side of the trench. It can also be seen that the electric field strength applied to the bottom of the trench can be suppressed to 4 MV / cm or less by setting the thickness of the gate insulating film at the bottom of the trench to 3 times or more the thickness of the side surface of the trench (channel portion).
  • the electric field strength applied to the bottom of the trench can be reduced to 4 MV / cm or less by setting the thickness of the gate insulating film to 3 times or more of the side surface of the trench at the bottom of the trench. From the above results, it is possible to prevent the gate insulating film from being destroyed even when a drain voltage of 1200 V is applied by setting the thickness of the gate insulating film to three times or more of the side surface of the trench at the bottom of the trench. it can.
  • the thickness of the gate insulating film on the bottom surface of the trench is selectively increased by utilizing the plane orientation dependence of the oxidation rate of silicon carbide.
  • the thickness of the gate insulating film at the bottom and side surfaces of the trench cannot be controlled independently. For this reason, it is difficult to relax the electric field applied to the bottom of the trench to a predetermined value or less while ensuring the transistor characteristics, and there is a possibility that the dielectric breakdown of the gate insulating film cannot be reliably suppressed.
  • the main surface for forming a device is the (000-1) carbon surface. It is necessary to.
  • the epitaxial film is grown on the carbon surface, there is a problem that it is difficult to control the growth conditions as compared with the silicon surface. For this reason, it is difficult not only to control the concentration and thickness of the epitaxial film, but also to form a film with few crystal defects (low defect layer). Therefore, it is difficult to form a drift region and a body region, and there is a possibility that a device having desired element characteristics cannot be easily manufactured.
  • the inventor makes the thickness of the gate insulating film at the bottom of the trench larger than the thickness of the gate insulating film on the side surface of the trench without complicating the process.
  • the present inventors have studied the structure of a semiconductor device (for example, three times or more), and have reached the present invention.
  • the semiconductor device of this embodiment is a silicon carbide MISFET having a trench gate structure.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device 100 of the present embodiment.
  • the semiconductor device 100 includes a plurality of unit cells arranged two-dimensionally.
  • FIG. 1A is a cross-sectional view of a unit cell 100U in the semiconductor device 100.
  • FIG. 1B is a plan view showing an example of the arrangement of unit cells 100U on the surface of the silicon carbide layer of semiconductor device 100.
  • FIG. 1A is a cross-sectional view taken along the line I-I ′ of FIG.
  • the unit cell 100U of the semiconductor device 100 has a substrate 1 containing silicon carbide and a silicon carbide layer 2 made of silicon carbide and disposed on the surface (main surface) of the substrate 1.
  • Silicon carbide layer 2 includes a first conductivity type (here, n-type) drift region 2d formed on the main surface of substrate 1, and a second conductivity type (here, p-type) formed on drift region 2d.
  • Body region 3 A source region 4 of the first conductivity type (n-type) is disposed in a part of the surface region of the body region 3. In the illustrated example, the source region 4 is surrounded by the body region 3.
  • the silicon carbide layer 2 is provided with a trench 12 that penetrates the source region 4 and the body region 3 and reaches the drift region 2d.
  • An insulating film 11 is disposed on the bottom and side surfaces of the trench 12.
  • a conductive layer functioning as the gate electrode 8 is disposed in the trench 12.
  • Gate electrode (conductive layer) 8 and silicon carbide layer 2 are insulated by insulating film 11.
  • the insulating film 11 includes a first insulating layer 6 disposed on the bottom surface and side surfaces of the trench 12, and a second insulating layer 7 disposed on the first insulating layer 6 at the bottom of the trench 12. It is constituted by.
  • the second insulating layer 7 is disposed between the portion of the first insulating layer 6 located on the bottom surface of the trench 12 and the gate electrode 8.
  • the first insulating layer 6 may be a thermal oxide film, a nitride film, an oxide film, or a laminated film including at least one of them.
  • the second insulating layer 7 and the gate electrode 8 are made of silicon.
  • the gate electrode 8 and the second insulating layer 7 may be integrally formed using the same silicon film.
  • the gate electrode 8 is a doped polysilicon layer containing phosphorus at a concentration of 1 ⁇ 10 20 cm ⁇ 3 or more.
  • the second insulating layer 7 is a polysilicon layer that does not contain impurities or contains the same impurities (phosphorus in this case) as the gate electrode 8 at a concentration of 1 ⁇ 10 18 cm ⁇ 3 or less.
  • a silicon layer that is not doped with impurities or has an extremely low impurity concentration (1 ⁇ 10 18 cm ⁇ 3 or less) is referred to as an “undoped silicon layer”.
  • the semiconductor device 100 also includes a source electrode 10 provided on the silicon carbide layer 2 and a drain electrode 9 formed on the back surface of the substrate 1.
  • Source electrode 10 is electrically connected to source region 4 and body region 3.
  • An interlayer insulating film (not shown) is formed on the source electrode 10 and the gate electrode 8.
  • a source wiring (not shown) is provided on the interlayer insulating film. The source wiring is electrically connected to the source electrode 10 in a contact hole formed in the interlayer insulating film.
  • the insulating film 11 including the first and second insulating layers 6 and 7 is disposed between the side and bottom surfaces of the trench 12 and the gate electrode 8.
  • the insulating film 11 is thicker on the bottom surface of the trench 12 than on the side surface of the trench 12.
  • the thickness of the insulating film 11 on the bottom surface of the trench 12 can be three times or more the thickness of the insulating film 11 in the surface region (channel portion) of the body region 3 exposed on the side surface of the trench 12. For this reason, the electric field strength generated in the insulating film 11 at the bottom of the trench 12 can be reduced without deteriorating the transistor characteristics, and the dielectric breakdown can be suppressed.
  • the second insulating layer 7 is selectively disposed only at the bottom of the trench 12, and the first insulating layer 6 is in contact with the gate electrode 8 on the side surface of the trench 12.
  • the upper surface of the second insulating layer 7 is preferably in contact with the lower surface of the gate electrode 8.
  • the interface between the gate electrode 8 and the second insulating layer 7 is preferably deeper than the interface between the drift region 2 d and the body region 3.
  • the second insulating layer 7 is preferably not disposed on a portion (channel portion) exposed on the side surface of the trench 12 in the surface of the body region 3.
  • the first insulating layer 6 can be interposed as a gate insulating film between the channel portion and the gate electrode 8. Therefore, by controlling the thickness of the first insulating layer 6, a gate insulating film having a desired thickness can be obtained, and characteristics such as a threshold voltage can be ensured.
  • the second insulating layer 7 is disposed on the bottom surface of the trench 12. Therefore, the thickness of the insulating film 11 on the bottom surface of the trench 12 (the total thickness of the first and second insulating layers 6 and 7) is set to the thickness of the insulating film 11 on the side surface of the trench 12 (the first insulating layer 6). Only thicker).
  • the thickness of the first insulating layer 6 is substantially the same on the bottom surface and the side surface of the trench 12, the thickness of the insulating film 11 increases by the thickness of the second insulating layer 7 on the side surface of the trench 12. Therefore, by controlling the thickness of the second insulating layer 7, the thickness of the insulating film 11 disposed on the bottom surface of the trench 12 can be adjusted, so that the dielectric breakdown can be more effectively suppressed. . If the first insulating layer 6 is a thermal oxide film, the thickness of the first insulating layer 6 is not uniform due to the plane orientation dependence of the oxidation rate.
  • the thickness of the second insulating layer 7 may be set in consideration of the non-uniformity of the thickness of the first insulating layer 6 due to the plane orientation. In this way, the thickness of the insulating film on the side surface (particularly the channel portion) of the trench 12 and the thickness of the insulating film on the bottom surface of the trench 12 can be set independently and arbitrarily.
  • the gate electrode 8 is formed by doping impurities only in a part of the silicon film, and the part of the silicon film that is not doped with impurities (the part that remains undoped silicon) is subjected to the second insulation. Leave as layer 7.
  • the second insulating layer 7 may be formed also on the channel portion on the side surface of the trench 12 depending on the state of impurity diffusion. Even in such a case, since the second insulating layer 7 is much thinner on the channel portion than on the bottom surface of the trench 12, the above-described effects can be obtained.
  • the thickness of the insulating film constituted by the first insulating layer 6 and the second insulating layer 7 is three times or more on the side surface of the trench 12 (particularly on the channel portion) and on the bottom surface of the trench 12. More preferably, it is 5 times or more. Thereby, as described with reference to FIGS. 8 and 9, the electric field strength applied to the insulating film at the bottom of the trench 12 can be more effectively reduced.
  • the (0001) silicon surface of the substrate 1 is a main surface, and the silicon carbide layer 2 is formed on the main surface.
  • the thickness of the insulating film (thermal oxide film) on the bottom surface of the trench, which is the silicon surface is smaller than the thickness of the thermal oxide film on the side surface of the trench. It was.
  • the thickness of the insulating film located on the bottom surface of the trench can be made larger (for example, three times or more) than the thickness of the insulating film located on the side surface of the trench, so that a more remarkable effect can be obtained.
  • the configuration of the semiconductor device 100 of the present embodiment has been described by taking an n-channel type MISFET as an example.
  • the semiconductor device 100 may be a p-channel type MISFET.
  • the conductivity type of the SiC substrate 1, the drift region 2d, and the source region 4 is p-type
  • the conductivity type of the body region 3 is n-type.
  • FIGS. 2A to 2E and FIGS. 3A to 3D are schematic process cross-sectional views for explaining an example of a method for manufacturing the semiconductor device 100, respectively.
  • silicon carbide is epitaxially grown on the main surface of the substrate 1, so that a drift region 2 d of a first conductivity type (here, n-type) and a second conductivity type (here) Then, p-type) body region 3 is formed in this order, and silicon carbide layer 2 is obtained. Thereafter, the source region 4 is formed in the body region 3.
  • a first conductivity type here, n-type
  • a second conductivity type here
  • a low-resistance n-type SiC substrate containing nitrogen at a concentration of 3 ⁇ 10 18 cm ⁇ 3 can be used as the substrate 1.
  • the drift region 2d is doped with nitrogen at a concentration of 8 ⁇ 10 15 cm ⁇ 3 , for example.
  • the thickness of the drift region 2d is, for example, 12 ⁇ m. Note that the thickness and concentration of the drift region 2d are determined by a desired breakdown voltage, and are not limited to the above-described thickness and concentration.
  • the body region 3 is doped with aluminum at a concentration of 2 ⁇ 10 18 cm ⁇ 3 , for example.
  • the thickness of the body region 3 is 1 ⁇ m, for example.
  • the body region 3 is formed by epitaxial growth, but may be formed by ion implantation instead. Specifically, after forming n-type silicon carbide layer 2 by epitaxial growth, body region 3 may be formed by ion-implanting p-type impurities into the surface region. In that case, the region of silicon carbide layer 2 where the p-type impurity is not implanted becomes drift region 2d.
  • the source region 4 is formed by ion implantation, for example.
  • a mask layer (not shown) made of a silicon oxide film is disposed on a predetermined region of silicon carbide layer 2.
  • n-type impurity ions for example, nitrogen ions
  • the acceleration energy is 100 keV and the dose is 5 ⁇ 10 15 cm ⁇ 2 .
  • annealing is performed in an inert gas atmosphere at a temperature of, for example, 1700 ° C. for about 30 minutes. Thereby, the implanted impurity ions are activated and the source region 4 is obtained.
  • a trench (concave portion) 12 is formed in the silicon carbide layer 2 so as to penetrate the source region 4 and the body region 3 and have a bottom surface in the drift region 2d.
  • an Al film (not shown) is formed on a part of the source region 4 via an oxide film.
  • trenches (depth: 1.5 ⁇ m, width: 1 ⁇ m, for example) 12 are formed in the silicon carbide layer 2 by reactive ion etching (RIE).
  • RIE reactive ion etching
  • the side surface of the trench 12 is substantially perpendicular to the main surface of the substrate 1, but the trench 12 may have a side surface that is inclined with respect to the normal direction of the main surface of the substrate 1 ( Tapered shape).
  • the first insulating layer 6 and the silicon film 16 are formed in this order in the trench 12.
  • the first insulating layer 6 and the silicon film 16 are formed on the upper surface of the silicon carbide layer 2 and in the trench 12, but may be formed at least on the bottom surface and side surfaces of the trench 12.
  • a thermal oxide film is formed as the first insulating layer 6.
  • heat treatment is performed for 3 hours at a temperature of 1200 ° C. in a dry oxidation atmosphere.
  • the surface of silicon carbide layer 2 (including portions exposed at the bottom and side surfaces of trench 12) is thermally oxidized, and first insulating layer 6 is obtained.
  • the heat treatment condition is controlled so that the thickness of the first insulating layer 6 is, for example, 70 nm on the side surface of the trench 12.
  • the thickness of the first insulating layer 6 on the bottom surface of the trench 12 may be different from the thickness on the side surface of the trench 12 due to the surface orientation dependence of the oxidation rate.
  • the thickness of the first insulating layer 6 is, for example, 50 to 100 nm although it depends on the plane orientation of the main surface.
  • the first insulating layer 6 may be formed by a deposition method such as a CVD method instead of the thermal oxidation. Further, as the first insulating layer 6, a nitride film, an oxynitride film, or a laminated film including at least one of them may be formed. In the heat treatment process to be described later, since impurities are difficult to diffuse into these films, film quality deteriorates due to the diffusion of impurities into the first insulating layer 6 (for example, a decrease in passing charge amount Qbd until the oxide film is destroyed). Can be prevented.
  • the silicon film 16 may be an undoped polysilicon film or an undoped amorphous silicon film.
  • an undoped polysilicon film (thickness: for example, 800 nm) is formed by LP-CVD on the upper surface of silicon carbide layer 2 and inside trench 12. At this time, the inside of the trench 12 is filled with the silicon film 16 so that no void is generated inside the trench 12.
  • impurity ions here, phosphorus ions
  • phosphorus ions are implanted into the entire surface of the substrate 1 from above the substrate 1.
  • the acceleration energy is set to 60 keV, for example, and the dose is set to 5 ⁇ 10 15 cm ⁇ 2 .
  • an impurity diffusion layer also referred to as a second silicon layer
  • 8a is formed in a part of the silicon film 16.
  • a portion of the silicon film 16 that is deeper than the impurity diffusion layer 8a and into which impurity ions are hardly implanted remains as an undoped silicon layer (also referred to as a first silicon layer) 7a.
  • the implantation conditions are preferably adjusted so that a thin undoped silicon layer remains not only inside trench 12 but also between impurity diffusion layer 8 a and the upper surface of silicon carbide layer 2.
  • the impurity diffusion layer 8a may be formed using thermal diffusion.
  • a resist mask 21 having an opening that is slightly smaller than the opening of the trench 12 is formed on the impurity diffusion layer 8a.
  • impurity ions here, phosphorus ions
  • the acceleration energy is set larger than the acceleration energy in the implantation step shown in FIG. 2D, for example, 300 keV.
  • the dose approximately the same amount (e.g., 5 ⁇ 10 15 cm -2) and a dose of the implantation step illustrated in Figure 2 (d).
  • a further impurity diffusion layer (also referred to as a third silicon layer) 8b is formed in the trench 12 at a position deeper than the impurity diffusion layer 8a.
  • the impurity diffusion layers 8a and 8b having a range (Rp) of about 0.4 ⁇ m from the surface (the upper surface of the silicon film 16) and a junction depth (Rp + 3 ⁇ Rp) of about 0.7 ⁇ m from the surface are formed on the silicon film 16. Is formed. A portion of the silicon film 16 where the impurity diffusion layers 8a and 8b are not formed remains as an undoped silicon layer 7b. Undoped silicon layer 7 b is thick at the bottom of trench 12 and thin on the side surface of trench 12 and the top surface of silicon carbide layer 2.
  • heat treatment for diffusing and activating impurities (phosphorus) in the silicon film 16 is performed.
  • an RTA (Rapid Thermal Anneal) process is performed in an inert gas atmosphere at a temperature of 1000 ° C. for 60 seconds.
  • phosphorus in the impurity diffusion layers 8a and 8b is diffused to become an active layer (conductive layer) functioning as the gate electrode 8.
  • the insulating film 11 constituted by the first insulating layer 6 and the second insulating layer 7 is obtained.
  • phosphorus diffuses into the upper surface of the silicon carbide layer 2 and the channel portion of the trench 12 in the silicon film 16, and a conductive layer in contact with the first insulating layer 6 is obtained as the gate electrode 8.
  • undoped polysilicon selectively remains at the bottom of the trench 12 and becomes the second insulating layer 7.
  • the interface between the second insulating layer 7 and the gate electrode 8 is deeper than the interface between the drift region 2 d and the body region 3. For this reason, the second insulating layer 7 is not formed on the channel portion on the side surface of the trench 12.
  • the thickness of the second insulating layer 7, that is, the distance from the interface between the second insulating layer 7 and the gate electrode 8 to the bottom surface of the trench 12 is, for example, 350 nm.
  • the impurity concentration decreases as the depth increases.
  • the interface between the second insulating layer 7 and the gate electrode 8 may not be clearly confirmed. is there.
  • the portion of the silicon film 16 where the impurity concentration is 1 ⁇ 10 18 cm ⁇ 3 or less is the “second insulating layer 7”, and the portion where the impurity concentration is higher than 1 ⁇ 10 18 cm ⁇ 3 is the gate. This is referred to as electrode 8 ”.
  • the diffusion distance of the impurities becomes small, and the conductive layer (gate electrode 8) and the first insulating layer 6 are formed on the upper surface of the silicon carbide layer 2 or on the channel portion of the trench 12.
  • the undoped silicon layer (second insulating layer 7) remains thin. Even in such a case, the effect of the present invention can be obtained if the thickness of the second insulating layer 7 on the channel portion is sufficiently smaller than the thickness at the bottom of the trench 12. However, it is preferable that the second insulating layer 7 is not formed at least on the channel portion.
  • a resist mask 22 is formed on the gate electrode 8 so as to cover the trench 12.
  • the gate electrode 8 is patterned by dry etching using the resist mask 22 as an etching mask.
  • a source electrode (source / body electrode) is formed on the upper surface of the silicon carbide layer 2 so as to straddle both the body region 3 and the source region 4. 10 is formed. Further, the drain electrode 9 is formed on the surface (back surface) opposite to the main surface of the substrate 1. In this way, the semiconductor device 100 is obtained.
  • the first insulating layer 6 having a thickness of about 50 to 100 nm and the second insulating layer 7 which is an undoped polysilicon layer are provided. Is formed.
  • the total thickness of these insulating layers 6 and 7 is, for example, 400 nm or more.
  • an undoped silicon film is provided inside the trench 12
  • a part of the silicon film is doped with impurities to form the gate electrode 8
  • an undoped silicon film is selectively formed at the bottom of the trench 12. leave.
  • a thicker insulating film than the conventional one can be disposed at the bottom of the trench 12 without increasing the number of manufacturing steps.
  • the thickness of the insulating film at the bottom of the trench 12 can be controlled separately from the thickness of the insulating film disposed on the channel portion of the trench 12. Therefore, dielectric breakdown at the bottom of the trench 12 can be suppressed while ensuring desired transistor characteristics.
  • the silicon film 16 is doped with impurities from the entire upper surface of the silicon film 16 (FIG. 2D), and then the portion of the silicon film 16 located in the trench 12 is applied. Then, the impurity is doped (FIG. 2E).
  • the impurity is doped in two steps as described above, an undoped silicon layer having a desired thickness can be more reliably left between the impurity diffusion layers 8 a and 8 b and the silicon carbide layer 2. Therefore, in the subsequent heat treatment, it is possible to more reliably prevent impurities from diffusing into the first insulating layer 6 that becomes the gate insulating film.
  • the impurity diffusion layer 8a is formed in the silicon film by ion implantation in the step shown in FIG. 2 (d). Instead, using silicon (PH 3 ) or POCl 3 (pockle), The impurity diffusion layer 8 a may be formed by thermally diffusing phosphorus from the surface of the film 16. Subsequent steps may be the same as those described above. Specifically, as shown in FIG. 2E, impurity ions may be implanted into a portion of the silicon film 16 located in the trench 12.
  • the impurity diffusion layers 8a and 8b are formed in two stages.
  • the impurity diffusion layers 8a and 8b can be formed in one stage without performing the ion implantation process corresponding to the process shown in FIG.
  • the gate electrode 8 is formed by diffusing phosphorus in the impurity diffusion layer 8a deeper than the body region 3 in the subsequent activation process (heat treatment). It can.
  • the phosphorus diffusion distance can be adjusted by phosphorus implantation conditions such as ion implantation energy and ion implantation amount, temperature and time of activation treatment, and the like.
  • the impurity diffusion layer may be formed in one step by the method described below.
  • 4A to 4C are process cross-sectional views illustrating another method for manufacturing the semiconductor device 100, respectively.
  • trench 12 is formed in silicon carbide layer 2.
  • the first insulating layer 6 and the silicon film 26 are formed inside the trench 12 and on the upper surface of the silicon carbide layer 2.
  • a thermal oxide film may be formed as the first insulating layer 6, it is preferable here to form a nitride film, an oxynitride film, or a laminated film including at least one of them by a CVD method.
  • the silicon film 16 (FIG. 2C) having a substantially flat upper surface is formed.
  • a silicon film 26 having a recess is formed on the trench 12.
  • an impurity diffusion layer (second silicon layer) 8a is formed in a region from the surface of the silicon film 26 to a predetermined depth by ion implantation or thermal diffusion. At this time, a part of the impurity diffusion layer 8 a is also formed in the trench 12. A portion of the silicon film 26 where the impurity diffusion layer 8a is not formed becomes an undoped silicon layer (first silicon layer) 7a.
  • heat treatment is performed to activate the impurities contained in the silicon film 26, thereby forming an impurity active layer that becomes the gate electrode 8.
  • the heat treatment conditions may be the same as the heat treatment conditions described above with reference to FIG.
  • the first insulating layer 6 is a thermal oxide film (SiO 2 film)
  • impurities easily diffuse into the first insulating layer 6 particularly near the opening of the trench 12.
  • the impurity (phosphorus) in the impurity diffusion layer 8 a is difficult to diffuse into the first insulating layer 6. Therefore, it is possible to prevent the characteristics (for example, Qbd) of the first insulating layer 6 from being deteriorated.
  • Subsequent steps are the same as those described above with reference to FIGS. 3B to 3D.
  • the semiconductor device manufacturing method of the present invention is not limited to the method described above with reference to FIGS.
  • an undoped polysilicon film is formed as the silicon films 16 and 26.
  • a polysilicon film doped with impurities (for example, phosphorus) only in the surface layer may be formed.
  • an amorphous silicon film may be formed instead of the polysilicon film.
  • an RTA treatment for 60 seconds may be performed at a temperature of 1000 ° C. in an inert gas atmosphere.
  • the trench 12 having a depth of 1.5 ⁇ m is formed.
  • the depth of the trench 12 reaches the drift region 2 d and an insulating film having a desired thickness can be formed on the bottom surface of the trench 12. There is no particular limitation as long as the depth is set.
  • the thickness of the silicon films 16 and 26 is not particularly limited, and may be set so that the entire inside of the trench 12 can be buried.
  • the thickness of such silicon films 16 and 26 varies depending on the width of the trench 12, but is generally preferably 50 to 80% of the width of the trench 12.
  • the width of the trench 12 refers to the maximum width of the opening of the trench 12 when viewed from the normal direction of the main surface of the substrate 1.
  • the ion implantation conditions for forming the impurity diffusion layers 8a and 8b, the heat treatment conditions for activating the impurities in the impurity diffusion layers 8a and 8b to form the active layer (gate electrode 8), and the like are also described above.
  • the conditions are not limited to the exemplified conditions.
  • the acceleration energy at the time of implanting impurity ions, the temperature and time of the heat treatment for activation are as follows: an undoped silicon layer that becomes the second insulating layer 7 and an active layer (doped silicon layer) that becomes the gate electrode May be set as appropriate so that the interface between and the drift region 2d and the body region 3 is deeper.
  • RTA it is preferable to perform RTA as a heat treatment for activation.
  • an undoped silicon layer can be left thicker (for example, 200 nm or more) than other heat treatment methods (for example, a vertical diffusion furnace).
  • the method for forming the silicon film is not limited to the method described above.
  • the present embodiment includes a first silicon layer disposed on the bottom and side surfaces of the trench, and a second silicon layer disposed on the first silicon layer and containing impurities at a higher concentration than the first silicon layer.
  • a silicon film may be formed.
  • a conductive layer functioning as a gate electrode can be obtained from part of the silicon film by activating impurities contained in the silicon film by heat treatment.
  • the impurity concentration of the silicon films 16 and 26 is partially increased by implanting impurity ions into part of the silicon films 16 and 26, but instead, on the first silicon layer having a low impurity concentration.
  • a second silicon layer having a higher impurity concentration than the first silicon layer may be deposited.
  • FIGS. 10A and 10B are process cross-sectional views illustrating an example of another method for manufacturing the semiconductor device of the present embodiment.
  • a silicon film is formed by depositing a doped silicon layer on an undoped silicon layer.
  • trench 12 is formed in silicon carbide layer 2.
  • a silicon layer (first silicon layer) 36 is formed inside the trench 12 and on the upper surface of the silicon carbide layer 2. Thereafter, a silicon layer 36 and a doped silicon layer (second silicon layer) 37 containing impurities (for example, phosphorus) at a higher concentration than the silicon layer 36 are formed in this order.
  • the impurity concentration of the doped silicon layer 37 is, for example, 8 ⁇ 10 20 cm ⁇ 3 . In this way, the silicon film 46 is obtained.
  • the silicon layer 36 and the doped silicon layer 37 are formed continuously (in situ).
  • the upper surfaces of the silicon layer 36 and the doped silicon layer 37 have recesses on the trench 12, but the upper surfaces of these layers 36 and 37 may be substantially flat.
  • the heat treatment conditions may be the same as the heat treatment conditions described above with reference to FIG.
  • an impurity diffusion layer 38 may be formed by implanting.
  • the impurity diffusion layer 38 is formed at a position deeper than the doped silicon layer 37.
  • the injection conditions may be the same as the injection conditions described above with reference to FIG.
  • a part of phosphorus contained in the impurity diffusion layer 38 diffuses into the silicon layer 36, and in these layers 36, 37, 38, The contained phosphorus is activated. Thereby, a conductive layer to be the gate electrode 8 is obtained from a part of the silicon film 46. The remaining portion of the silicon film 46 as the insulating layer becomes the second insulating layer 7.
  • a 4H—SiC substrate is used as the substrate 1, but other crystal planes or other polytype SiC substrates may be used.
  • the silicon carbide layer 2 may be formed on the Si surface
  • the drain electrode 9 may be formed on the C surface
  • the silicon carbide layer 2 on the C surface
  • the drain electrode 9 on the Si surface May be formed.
  • the side surface and the bottom surface of the trench 12 intersect perpendicularly to form a corner (corner portion), but the trench 12 has a tapered shape.
  • the side surface and the bottom surface do not have to intersect perpendicularly. Even if the corner is rounded by etching or a process other than etching, the same effect as described above can be obtained.
  • silicon carbide layer 2 includes body region 3, source region 4, and drift region 2d, but may further include other components.
  • a portion of the drift region 2d located near the bottom surface of the trench 12 may have a second conductivity type impurity layer for electric field relaxation.
  • a channel layer may be formed on the side surface of the trench 12.
  • the semiconductor device 100 is a MISFET having an inverted channel structure, but the present invention is also applied to a MISFET having a storage channel structure, and the same effect as described above can be obtained.
  • FIG. 5 is a cross-sectional view illustrating a MISFET having a storage channel structure.
  • FIG. 5 is a cross-sectional view illustrating a MISFET having a storage channel structure.
  • a channel layer 18 made of silicon carbide is formed on the bottom and side surfaces of the trench 12.
  • Channel layer 18 is a silicon carbide layer of the first conductivity type formed by, for example, epitaxial growth.
  • the first insulating layer 6 may be formed by thermally oxidizing the surface portion of the channel layer 18.
  • Other configurations are the same as those shown in FIG.
  • the present invention is not limited to a vertical MISFET, and can be applied to various semiconductor devices having a structure in which an electrode is disposed on a silicon carbide layer via an insulating film.
  • a MISFET is manufactured using a silicon carbide substrate having the same conductivity type as the silicon carbide layer (drift region).
  • a silicon carbide substrate having a conductivity type different from that of the silicon carbide layer can also be manufactured.
  • IGBT Insulated Gate Bipolar Transistor
  • the present invention can be widely applied to semiconductor devices using a silicon carbide layer.
  • a power SiC device such as a power MISFET and various control devices and driving devices provided with the device.

Abstract

A semiconductor device is provided with a silicon carbide layer (2) disposed on a main surface of a substrate (1), a trench (12) having a bottom surface and side surfaces disposed in the silicon carbide layer (2), an insulating film (11) disposed on the bottom surface and side surfaces of the trench, and a conductor layer (8) insulated from the silicon carbide layer (2) by the insulating film (11). The conductor layer (8) is constituted of silicon. The insulating film (11) has a first insulating layer (6) disposed on the bottom surface and side surfaces of the trench (12) and a second insulating layer (7), constituted of silicon, disposed between the part of the first insulating layer (6) positioned on the bottom surface of the trench (12) and the conductor layer (8). The second insulating layer (7) is in contact with the conductor layer (8), and the insulating film (11) thickness on the bottom surface of the trench (12) is three times or greater than that on the side surfaces of the trench (12).

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、炭化珪素を用いた半導体装置およびその製造方法に関するものである。 The present invention relates to a semiconductor device using silicon carbide and a method for manufacturing the same.
 炭化珪素(シリコンカーバイド:SiC)は、珪素(Si)に比べてバンドギャップの大きな高硬度の半導体材料であり、パワー素子(パワーデバイスともいう)、耐環境素子、高温動作素子、高周波素子等の種々の半導体装置に応用されている。なかでも、スイッチング素子や整流素子などのパワーデバイスへの応用が注目されている。 Silicon carbide (silicon carbide: SiC) is a high-hardness semiconductor material having a larger band gap than silicon (Si), such as power elements (also called power devices), environmental elements, high-temperature operating elements, and high-frequency elements. It is applied to various semiconductor devices. Especially, application to power devices, such as a switching element and a rectifier, attracts attention.
 SiCを用いたパワーデバイスの代表的なスイッチング素子として、金属-絶縁体-半導体電界効果トランジスタ(Metal Insulator Semiconductor Field Effect Transistor、以下「MISFET」)、金属-半導体電界効果トランジスタ(Metal Semiconductor Field Effect Transistor、以下「MESFET」)などがある。このようなスイッチング素子では、ゲート電極-ソース電極間に印加する電圧によって、数A(アンペア)以上のドレイン電流が流れるオン状態と、ドレイン電流がゼロとなるオフ状態とを切り替えることができる。また、オフ状態のとき、数百V以上の高耐圧を実現できる。 As typical switching elements of power devices using SiC, metal-insulator-semiconductor field effect transistors (Metal Insulator Semiconductor Effect Transistor, hereinafter referred to as “MISFET”), metal-semiconductor field effect transistors (Metal Semiconductor Field Transistor Transistor). Hereinafter referred to as “MESFET”). In such a switching element, the voltage applied between the gate electrode and the source electrode can be switched between an on state in which a drain current of several A (amperes) or more flows and an off state in which the drain current is zero. Further, a high breakdown voltage of several hundred volts or more can be realized in the off state.
 また、SiCを用いた代表的な整流素子として、ショットキーダイオードやpnダイオードなどがある。これらは、大電流、高耐圧を実現する整流素子として期待されている。 Also, as a typical rectifying element using SiC, there are a Schottky diode and a pn diode. These are expected as rectifying elements that realize a large current and a high breakdown voltage.
 SiCは、Siよりも高い絶縁破壊電界および熱伝導度を有するので、SiCを用いたパワーデバイス(SiCパワーデバイス)では、Siパワーデバイスよりも高耐圧化、低損失化が容易である。このため、Siパワーデバイスと同一性能を実現させる場合、Siパワーデバイスよりも面積および厚さを大幅に縮小することが可能となる。 Since SiC has a higher dielectric breakdown electric field and thermal conductivity than Si, a power device using SiC (SiC power device) can easily achieve higher breakdown voltage and lower loss than Si power devices. For this reason, when realizing the same performance as the Si power device, the area and thickness can be greatly reduced as compared with the Si power device.
 MISFETなどのパワーデバイスで更なる大電流を流すためには、チャネル密度を高くすることが有効である。このため、従来のプレーナゲート構造に代わって、トレンチゲート構造の縦型パワーMISFETが提案されている。プレーナゲート構造では、炭化珪素層表面にチャネル領域が形成されるのに対し、トレンチゲート構造では、炭化珪素層に形成されたトレンチの側面にチャネル領域が形成される。 It is effective to increase the channel density in order to allow a larger current to flow in a power device such as MISFET. Therefore, a vertical power MISFET having a trench gate structure has been proposed instead of the conventional planar gate structure. In the planar gate structure, a channel region is formed on the surface of the silicon carbide layer, whereas in the trench gate structure, a channel region is formed on the side surface of the trench formed in the silicon carbide layer.
 以下、SiCを用いたスイッチング素子の1つであるトレンチゲート構造を有する縦型MISFETの断面構造を、図面を参照しながら説明する。縦型MISFETは、一般に、二次元に配列された複数のユニットセルを備えている。各ユニットセルには、基板の主面に垂直な側面を有するトレンチゲートが設けられている。 Hereinafter, a cross-sectional structure of a vertical MISFET having a trench gate structure which is one of switching elements using SiC will be described with reference to the drawings. A vertical MISFET generally includes a plurality of unit cells arranged two-dimensionally. Each unit cell is provided with a trench gate having a side surface perpendicular to the main surface of the substrate.
 図6は、トレンチゲート構造を有する従来の縦型MISFETのユニットセル300Uを示す断面図である。 FIG. 6 is a cross-sectional view showing a conventional vertical MISFET unit cell 300U having a trench gate structure.
 ユニットセル300Uは、炭化珪素基板1と、炭化珪素基板1の主面に形成された炭化珪素層2とを有している。炭化珪素層2は、炭化珪素基板1の主面上に形成されたn型のドリフト領域2dと、ドリフト領域2dの上に形成されたp型のボディ領域3とを有している。ボディ領域3の表面領域の一部には、n型のソース領域4が配置されている。炭化珪素層2には、ソース領域4を貫通し、ドリフト領域2dに達するトレンチ12が形成されている。トレンチ12内には、ゲート電極8、および、ゲート電極8と炭化珪素層2とを絶縁するためのゲート絶縁膜5が配置されている。また、炭化珪素層2の上には、ソース領域4に接するようにソース電極10が設けられている。炭化珪素基板1の裏面にはドレイン電極9が設けられている。 Unit cell 300U has silicon carbide substrate 1 and silicon carbide layer 2 formed on the main surface of silicon carbide substrate 1. Silicon carbide layer 2 has an n-type drift region 2d formed on the main surface of silicon carbide substrate 1, and a p-type body region 3 formed on drift region 2d. An n-type source region 4 is disposed in a part of the surface region of the body region 3. In silicon carbide layer 2, a trench 12 that penetrates source region 4 and reaches drift region 2 d is formed. In trench 12, gate electrode 8 and gate insulating film 5 for insulating gate electrode 8 and silicon carbide layer 2 are arranged. A source electrode 10 is provided on the silicon carbide layer 2 so as to be in contact with the source region 4. A drain electrode 9 is provided on the back surface of silicon carbide substrate 1.
 ユニットセル300Uを備える半導体装置は、例えば次のようにして製造される。 The semiconductor device including the unit cell 300U is manufactured as follows, for example.
 まず、低抵抗のn型の炭化珪素基板1の主面上に、炭化珪素基板1と同様の結晶構造を持つ炭化珪素層2を形成する。例えば、炭化珪素基板1の主面上に、エピタキシャル成長によりn型のドリフト領域2dとp型のボディ領域3とをこの順で形成し、炭化珪素層2を得る。この後、炭化珪素層2の所定領域上にシリコン酸化膜からなるマスク層(図示せず)を配置し、これをマスクとしてn型の不純物イオン(例えばN(窒素)イオン)をボディ領域3に注入することにより、ボディ領域3内にソース領域4を形成する。 First, a silicon carbide layer 2 having the same crystal structure as that of silicon carbide substrate 1 is formed on the main surface of low resistance n-type silicon carbide substrate 1. For example, n-type drift region 2d and p-type body region 3 are formed in this order on the main surface of silicon carbide substrate 1 by epitaxial growth, and silicon carbide layer 2 is obtained. Thereafter, a mask layer (not shown) made of a silicon oxide film is disposed on a predetermined region of silicon carbide layer 2, and n-type impurity ions (for example, N (nitrogen) ions) are applied to body region 3 using this as a mask. By implanting, the source region 4 is formed in the body region 3.
 マスク層を除去した後、ソース領域4の一部の上に、酸化膜を介してAl膜(図示せず)を形成し、これをマスクとして、RIE法によりドリフト領域2dに達する垂直なトレンチ12を形成する。 After removing the mask layer, an Al film (not shown) is formed on a part of the source region 4 via an oxide film, and this is used as a mask to form a vertical trench 12 reaching the drift region 2d by the RIE method. Form.
 続いて、トレンチ12内に、ゲート絶縁膜5およびゲート電極8を形成する。ゲート絶縁膜5は、例えば炭化珪素層2の熱酸化によって形成された酸化膜である。 Subsequently, the gate insulating film 5 and the gate electrode 8 are formed in the trench 12. The gate insulating film 5 is an oxide film formed by, for example, thermal oxidation of the silicon carbide layer 2.
 ゲート電極8は、ゲート絶縁膜5上に、例えばLP-CVD(Low Pressure Chemical Vapor Deposition)法によりポリシリコンを堆積した後、パターニングすることによって形成される。また、炭化珪素層2の上に、ボディ領域3およびソース領域4の両方に跨るようにソース電極(ソース/ボディ電極)10を形成し、炭化珪素基板1の裏面上にドレイン電極9を形成する。このようにしてトレンチゲート構造を有するMISFETが完成する。 The gate electrode 8 is formed by depositing polysilicon on the gate insulating film 5 by LP-CVD (Low Pressure Chemical Vapor Deposition), for example, and then patterning. Further, source electrode (source / body electrode) 10 is formed on silicon carbide layer 2 so as to extend over both body region 3 and source region 4, and drain electrode 9 is formed on the back surface of silicon carbide substrate 1. . In this way, a MISFET having a trench gate structure is completed.
 トレンチゲート構造を有するMISFETでは、ソース電極10がアース電位に接続され、かつ、ゲート電極8がアース電位に接続されている時もしくはゲート電極8に負バイアスが印加されている時には、ソース領域4とドリフト領域2dとの間において、ボディ領域3とゲート絶縁膜5との界面近傍の領域に正孔が誘起された蓄積状態となり、伝導キャリアである電子の経路が遮断されるため電流が流れない(オフ状態)。この時、ドレイン電極9-ソース電極10間にドレイン電極9側が正となる高電圧を印加すると、ボディ領域3とドリフト領域2dとの間のpn接合が逆バイアス状態になるので、ボディ領域3およびドリフト領域2d内に空乏層が広がり、高電圧が維持される。 In the MISFET having the trench gate structure, when the source electrode 10 is connected to the ground potential and the gate electrode 8 is connected to the ground potential or when a negative bias is applied to the gate electrode 8, Between the drift region 2d, holes are induced in a region in the vicinity of the interface between the body region 3 and the gate insulating film 5, and an electron path as a conduction carrier is blocked, so that no current flows ( Off). At this time, when a high voltage is applied between the drain electrode 9 and the source electrode 10 so that the drain electrode 9 side is positive, the pn junction between the body region 3 and the drift region 2d becomes a reverse bias state. A depletion layer spreads in the drift region 2d, and a high voltage is maintained.
 また、ゲート電極8に閾値以上の正バイアスを印加すると、ソース領域4とドリフト領域2dとの間において、ボディ領域3とゲート絶縁膜5との界面近傍に電子が誘起されて反転状態となり、反転層が形成される。この結果、ソース電極10、ソース領域4、ボディ領域3の反転層(図示せず)、ドリフト領域2d、炭化珪素基板1およびドレイン電極9の順にキャリアが流れる(オン状態)。 In addition, when a positive bias of a threshold value or more is applied to the gate electrode 8, electrons are induced near the interface between the body region 3 and the gate insulating film 5 between the source region 4 and the drift region 2d, and the inversion state occurs. A layer is formed. As a result, carriers flow in the order of source electrode 10, source region 4, inversion layer (not shown) of body region 3, drift region 2d, silicon carbide substrate 1 and drain electrode 9 (ON state).
 プレーナ構造の縦型MISFETでは、隣接するユニットセルの間で寄生的にJFET(接合型電界効果トランジスタ Junction Field Effect Transistor)が形成され、抵抗成分(JFET抵抗)となる。JFET抵抗は、ユニットセルの間隔(隣接するボディ領域の間隔)が狭くなるほど大きくなるので、微細化のためにセルピッチを小さくするとJFET抵抗の増加に伴ってオン抵抗が増大する。 In a vertical MISFET having a planar structure, a JFET (junction field effect transistor) is formed parasitically between adjacent unit cells, and becomes a resistance component (JFET resistance). Since the JFET resistance increases as the unit cell interval (adjacent body region interval) decreases, the on-resistance increases as the JFET resistance increases as the cell pitch is reduced for miniaturization.
 これに対し、トレンチゲート構造のMISFETでは、JFET抵抗が存在しないため、セルピッチを小さくすれば単調にオン抵抗が減少するという長所がある。このため、ユニットセルのサイズの微細化に有利である。 On the other hand, in the MISFET having the trench gate structure, since there is no JFET resistance, there is an advantage that the on-resistance decreases monotonously when the cell pitch is reduced. This is advantageous for miniaturization of the unit cell size.
 しかしながら、トレンチゲート構造のMISFETでは、トレンチの底部においてゲート絶縁膜に印加される電界強度が非常に大きくなるという問題がある。以下に、図面を参照しながら詳しく説明する。 However, the MISFET having the trench gate structure has a problem that the electric field strength applied to the gate insulating film at the bottom of the trench becomes very large. Hereinafter, it will be described in detail with reference to the drawings.
 図7(a)は、図6に示す従来のMISFETの破線A内の構造を示す拡大断面図である。また、図7(b)および(c)は、それぞれ、図7(a)に破線で示すpn接合部30およびMIS構造部40におけるオフ状態(ドレイン電圧印加時)での電界強度分布を示す図である。pn接合部30は、ボディ領域3およびドリフト領域2dによって形成されている。MIS構造部40は、ゲート電極8、ゲート絶縁膜5およびドリフト領域2dによって形成されている。 FIG. 7A is an enlarged cross-sectional view showing a structure within a broken line A of the conventional MISFET shown in FIG. FIGS. 7B and 7C are diagrams showing electric field strength distributions in an off state (when a drain voltage is applied) in the pn junction 30 and the MIS structure 40 indicated by broken lines in FIG. 7A, respectively. It is. The pn junction 30 is formed by the body region 3 and the drift region 2d. The MIS structure portion 40 is formed by the gate electrode 8, the gate insulating film 5, and the drift region 2d.
 パワーデバイスとしてMISFETを用いる場合、MISFETは、理想的には、pn接合部30にかかるピーク電界強度がSiCの絶縁破壊電界強度(約10MV/cm)を超えるとブレイクダウンが発生するように設計される。しかしながら、pn接合部30にかかる電界強度が絶縁破壊電界強度に達する前に、トレンチ12の底部においてゲート絶縁膜(例えばSiO2膜)5にかかる電界強度が絶縁破壊電界強度に先に到達するおそれがある。このため、理論耐圧よりも低い電圧でブレイクダウンを起こす可能性がある。 When a MISFET is used as a power device, the MISFET is ideally designed so that breakdown occurs when the peak electric field strength applied to the pn junction 30 exceeds the dielectric breakdown field strength of SiC (about 10 MV / cm). The However, before the electric field strength applied to the pn junction 30 reaches the dielectric breakdown electric field strength, the electric field strength applied to the gate insulating film (for example, SiO 2 film) 5 at the bottom of the trench 12 may reach the dielectric breakdown electric field strength first. There is. For this reason, breakdown may occur at a voltage lower than the theoretical breakdown voltage.
 これは、SiCの比誘電率(4H-SiCで9.7)とSiO2膜の比誘電率(3.8)との差が、Siの比誘電率(11.9)とSiO2膜の比誘電率(3.8)との差より小さいため、SiCパワーデバイスでは、Siパワーデバイスよりも、MIS構造部40のゲート絶縁膜5に大きな電界強度がかかるからである。また、一般に、ゲート絶縁膜5のうちトレンチの底部およびコーナー部に位置する部分には電界が集中し、他の部分よりも高い電界がかかるからである。さらに、Siデバイスにおいては、Siの絶縁破壊電界強度が0.2MV/cmであり、SiO2膜の10MV/cmよりも2桁低いので、ほとんどの場合、ゲート絶縁膜で絶縁破壊が生じる前に、pn接合部でブレイクダウンが起きる。これに対し、SiCパワーデバイスでは、SiC(4H-SiC)の絶縁破壊電界強度は2MV/cmと大きく、SiO2膜の絶縁破壊電界強度との差が小さい(0.5~1桁程度)。従って、pn接合部30でブレイクダウンが起きる前に、MIS構造部40において、ゲート絶縁膜5の絶縁破壊によるブレイクダウンが生じる可能性があり、MIS構造部40でのゲート絶縁膜5の絶縁破壊の問題がより顕著になる。このように、ゲート絶縁膜5の絶縁破壊によってMISFETの耐圧が制限されるおそれがある。 This is because the difference between the relative dielectric constant of SiC (9.7 for 4H-SiC) and the relative dielectric constant of the SiO 2 film (3.8) is the difference between the relative dielectric constant of Si (11.9) and the SiO 2 film. This is because the SiC power device has a larger electric field strength on the gate insulating film 5 of the MIS structure portion 40 than the Si power device because it is smaller than the difference from the relative dielectric constant (3.8). Further, generally, the electric field concentrates on the portions of the gate insulating film 5 located at the bottom and corner portions of the trench, and a higher electric field is applied than the other portions. Furthermore, in Si devices, the dielectric breakdown electric field strength of Si is 0.2 MV / cm, which is two orders of magnitude lower than 10 MV / cm of the SiO 2 film, so in most cases before dielectric breakdown occurs in the gate insulating film. , Breakdown occurs at the pn junction. On the other hand, in the SiC power device, the breakdown electric field strength of SiC (4H—SiC) is as large as 2 MV / cm, and the difference from the breakdown electric field strength of the SiO 2 film is small (about 0.5 to 1 digit). Therefore, before breakdown occurs at the pn junction 30, breakdown due to dielectric breakdown of the gate insulating film 5 may occur in the MIS structure 40, and dielectric breakdown of the gate insulating film 5 at the MIS structure 40 may occur. The problem becomes more prominent. Thus, the breakdown voltage of the MISFET may be limited due to the dielectric breakdown of the gate insulating film 5.
 この問題を解決するため、特許文献1、2には、トレンチの底部でゲート絶縁膜を厚くして絶縁破壊電界を高める方法が提案されている。 In order to solve this problem, Patent Documents 1 and 2 propose a method of increasing the dielectric breakdown electric field by thickening the gate insulating film at the bottom of the trench.
 特許文献1には、酸化速度の速い(000-1)カーボン面をトレンチ底面として使用することにより、ゲート絶縁膜(熱酸化膜)のトレンチの底部に位置する部分の厚さを、トレンチの側部に位置する部分の厚さよりも大きくすることが提案されている。また、特許文献2に提案された方法では、トレンチ内部にポリシリコン膜を堆積した後、ポリシリコン膜のうちトレンチ底部に位置する部分のみを選択的に酸化して、トレンチの底部でゲート絶縁膜を厚くしている。この後、トレンチ側面上に残されたポリシリコン膜を除去する。 In Patent Document 1, the thickness of the portion of the gate insulating film (thermal oxide film) located at the bottom of the trench is determined by using the (000-1) carbon surface having a high oxidation rate as the bottom of the trench. It has been proposed that the thickness be larger than the thickness of the portion located in the portion. Further, in the method proposed in Patent Document 2, after depositing a polysilicon film inside the trench, only a portion of the polysilicon film located at the bottom of the trench is selectively oxidized, and a gate insulating film is formed at the bottom of the trench. Is thickened. Thereafter, the polysilicon film left on the side surface of the trench is removed.
特開平7-326755号公報JP 7-326755 A 特開2007-242943号公報JP 2007-242943 A
 しかしながら、本発明者が詳細に検討したところ、特許文献1、2に提案された方法によると、トレンチ側面(チャネル部)におけるゲート絶縁膜の厚さを所定の厚さに維持しつつ、トレンチ底部におけるゲート絶縁膜の厚さを十分に大きくすることは困難である。また、これらの従来方法によると、トレンチ側面およびトレンチ底面におけるゲート絶縁膜の厚さをそれぞれ独立して任意の厚さに制御することは難しい。詳しい説明は後述する。 However, when the present inventors examined in detail, according to the methods proposed in Patent Documents 1 and 2, the bottom of the trench is maintained while maintaining the thickness of the gate insulating film on the side surface of the trench (channel portion) at a predetermined thickness. It is difficult to sufficiently increase the thickness of the gate insulating film. Also, according to these conventional methods, it is difficult to independently control the thickness of the gate insulating film on the side surface of the trench and the bottom surface of the trench to an arbitrary thickness. Detailed description will be described later.
 本発明は、上記事情を鑑みてなされたものであり、その目的は、トレンチ構造を有する炭化珪素半導体装置において、素子特性を低下させることなく、トレンチ底部への電界集中による絶縁膜の絶縁破壊を抑制することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent dielectric breakdown of an insulating film due to electric field concentration at the bottom of a trench in a silicon carbide semiconductor device having a trench structure without deteriorating element characteristics. It is to suppress.
 本発明の半導体装置は、基板と、前記基板の主面上に配置された炭化珪素層と、前記炭化珪素層に配置された、底面および側面を有するトレンチと、前記トレンチの底面および側面に配置された絶縁膜と、前記トレンチ内に配置され、前記絶縁膜によって前記炭化珪素層と絶縁された導電層とを備え、前記導電層は、シリコンによって構成され、前記絶縁膜は、前記トレンチの底面および側面に配置された第1絶縁層と、前記第1絶縁層のうち前記トレンチの底面上に位置する部分と前記導電層との間に配置され、シリコンによって構成される第2絶縁層とを有し、前記第2絶縁層は前記導電層と接しており、前記絶縁膜の厚さは、前記トレンチの底面上で、前記トレンチの側面上の3倍以上である。 A semiconductor device according to the present invention includes a substrate, a silicon carbide layer disposed on the main surface of the substrate, a trench having a bottom surface and a side surface disposed on the silicon carbide layer, and a bottom surface and a side surface of the trench. And a conductive layer disposed in the trench and insulated from the silicon carbide layer by the insulating film. The conductive layer is made of silicon, and the insulating film is a bottom surface of the trench. And a first insulating layer disposed on a side surface, and a second insulating layer that is disposed between a portion of the first insulating layer located on the bottom surface of the trench and the conductive layer and is made of silicon. The second insulating layer is in contact with the conductive layer, and the thickness of the insulating film is three times or more on the side surface of the trench on the bottom surface of the trench.
 本発明の半導体装置の製造方法は、炭化珪素層を有する半導体装置の製造方法であって、(A)主面上に炭化珪素層が形成された基板を用意する工程と、(B)前記炭化珪素層に、底面および側面を有するトレンチを形成する工程と、(C)前記トレンチの底面および側面上に第1絶縁層を形成する工程と、(D)前記第1絶縁層上に、第1シリコン層と、前記第1シリコン層上に形成され、前記第1シリコン層よりも高い濃度で不純物を含む第2シリコン層とを含むシリコン膜を形成する工程と、(E)熱処理を行って前記シリコン膜に含まれる不純物を活性化させることにより導電層を形成し、前記シリコン膜のうち前記導電層が形成されなかった部分が第2絶縁層となる工程とを包含し、前記第2絶縁層は前記導電層と接しており、前記第1絶縁層と前記第2絶縁層とによって構成される絶縁膜の厚さは、前記トレンチの底面上で、前記トレンチの側面上の3倍以上である。 The method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device having a silicon carbide layer, wherein (A) a step of preparing a substrate having a silicon carbide layer formed on a main surface; Forming a trench having a bottom surface and a side surface in the silicon layer; (C) forming a first insulating layer on the bottom surface and side surface of the trench; and (D) a first layer on the first insulating layer. Forming a silicon film including a silicon layer and a second silicon layer formed on the first silicon layer and containing impurities at a higher concentration than the first silicon layer; and (E) performing a heat treatment to Including a step of forming a conductive layer by activating impurities contained in the silicon film, and a portion of the silicon film where the conductive layer is not formed becomes a second insulating layer, Is in contact with the conductive layer, Serial thickness of the first insulating layer and the second insulating layer and the formed insulating film, on the bottom surface of the trench is at least three times on the side of the trench.
 本発明によると、炭化珪素層に配置されたトレンチ内において、ゲート電極となる導電層と炭化珪素層との間に、トレンチの底面上でトレンチの側面上よりも厚い絶縁膜を形成することが可能になる。また、トレンチ側面およびトレンチ底部における絶縁膜の厚さを、互いに独立して、任意に制御することができる。従って、素子特性を維持しつつ、トレンチの底部において絶縁膜にかかる電界強度を低減し、絶縁破壊を抑制できる。 According to the present invention, in the trench arranged in the silicon carbide layer, an insulating film thicker on the bottom surface of the trench than on the side surface of the trench can be formed between the conductive layer serving as the gate electrode and the silicon carbide layer. It becomes possible. Further, the thickness of the insulating film on the side surface of the trench and the bottom of the trench can be arbitrarily controlled independently of each other. Therefore, the electric field strength applied to the insulating film at the bottom of the trench can be reduced while maintaining the element characteristics, and the dielectric breakdown can be suppressed.
(a)および(b)は、それぞれ、本発明による実施形態の半導体装置の模式的な断面図および平面図である。(A) And (b) is a typical sectional view and a top view of a semiconductor device of an embodiment by the present invention, respectively. (a)~(e)は、それぞれ、本発明の実施形態の半導体装置の製造方法を説明するための模式的な工程断面図である。FIGS. 4A to 4E are schematic process cross-sectional views for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention. (a)~(d)は、それぞれ、本発明の実施形態の半導体装置の製造方法を説明するための模式的な工程断面図である。FIGS. 4A to 4D are schematic process cross-sectional views for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention. (a)~(c)は、それぞれ、本発明の実施形態の半導体装置の他の製造方法を説明するための模式的な工程断面図である。FIGS. 4A to 4C are schematic process cross-sectional views for explaining another method for manufacturing the semiconductor device according to the embodiment of the present invention. 本発明による実施形態の他の半導体装置の模式的な断面図である。It is typical sectional drawing of the other semiconductor device of embodiment by this invention. トレンチゲート構造を有する従来のMISFETにおける1個のユニットセルの模式的な断面図である。It is typical sectional drawing of one unit cell in the conventional MISFET which has a trench gate structure. (a)は、図6に示す従来のMISFETにおける破線Aの拡大構造を示す断面図であり、(b)および(c)は、それぞれ、pn接合部30およびMIS構造部40におけるオフ状態(ドレイン電圧印加時)の電界強度分布を例示する図である。(A) is sectional drawing which shows the enlarged structure of the broken line A in the conventional MISFET shown in FIG. 6, (b) and (c) are the OFF states (drain) in the pn junction part 30 and the MIS structure part 40, respectively. It is a figure which illustrates electric field strength distribution at the time of voltage application. トレンチの底面における絶縁膜の厚さと、トレンチの底面で絶縁膜にかかる電界強度との関係についてのシミュレーション結果を示す図である。It is a figure which shows the simulation result about the relationship between the thickness of the insulating film in the bottom face of a trench, and the electric field strength concerning an insulating film in the bottom face of a trench. トレンチ底面における絶縁膜の厚さの、トレンチ側面における厚さに対する割合と、トレンチの底面にかかる電界の強さとの関係についてのシミュレーション結果を示す図である。It is a figure which shows the simulation result about the relationship between the ratio with respect to the thickness in the side surface of a trench of the thickness of the insulating film in a trench bottom face, and the strength of the electric field concerning a bottom face of a trench. (a)および(b)は、それぞれ、本発明の実施形態の半導体装置のさらに他の製造方法を説明するための模式的な工程断面図である。(A) And (b) is typical process sectional drawing for demonstrating the further another manufacturing method of the semiconductor device of embodiment of this invention, respectively. (a)~(c)は、それぞれ、本発明の実施形態の半導体装置のさらに他の製造方法を説明するための模式的な工程断面図である。FIGS. 4A to 4C are schematic process cross-sectional views for explaining still another method for manufacturing the semiconductor device according to the embodiment of the present invention.
 前述したように、本発明者は、特許文献1、2に提案された従来の方法によると、トレンチ側面におけるゲート絶縁膜の厚さを制御しつつ、トレンチ底部における絶縁破壊を抑制することが困難であることを見出した。以下、本発明者による検討結果を説明する。 As described above, according to the conventional methods proposed in Patent Documents 1 and 2, it is difficult for the inventor to suppress the dielectric breakdown at the bottom of the trench while controlling the thickness of the gate insulating film on the side surface of the trench. I found out. Hereinafter, the examination result by this inventor is demonstrated.
 図8は、本発明者によるシミュレーション結果を示す図であり、トレンチ底部におけるゲート絶縁膜(熱酸化膜)の厚さとトレンチ底部にかかる電界強度との関係を示している。ここでは、ドレイン電圧に1200Vを印加した場合に、トレンチ底部におけるゲート絶縁膜の厚さによって、トレンチ底部にかかる電界の強さがどのように変化するのかを計算している。トレンチ側面のチャネル部分におけるゲート絶縁膜の厚さを50nm、70nmおよび90nmとする。また、ドリフト領域とボディ領域とのジャンクション耐圧を1200V以上とする。 FIG. 8 is a diagram showing a simulation result by the present inventor, and shows a relationship between the thickness of the gate insulating film (thermal oxide film) at the bottom of the trench and the electric field strength applied to the bottom of the trench. Here, it is calculated how the strength of the electric field applied to the bottom of the trench changes depending on the thickness of the gate insulating film at the bottom of the trench when 1200 V is applied to the drain voltage. The thickness of the gate insulating film in the channel portion on the side surface of the trench is 50 nm, 70 nm, and 90 nm. Further, the junction breakdown voltage between the drift region and the body region is set to 1200 V or more.
 通常、熱酸化膜の破壊電界強度は10MV/cm以上であるが、電子デバイスに適用する場合には、長期間使用時の信頼性を担保するため、許容しうる電界強度を実際の破壊電界よりも十分に小さな値、例えば3~4MV/cmに設定する。つまり、トレンチ底部近傍にかかる電界強度を少なくとも4MV/cm以下に抑えることが好ましい。 Usually, the breakdown electric field strength of the thermal oxide film is 10 MV / cm or more. However, when applied to an electronic device, the allowable electric field strength is set to be higher than the actual breakdown electric field in order to ensure reliability during long-term use. Is set to a sufficiently small value, for example, 3 to 4 MV / cm. That is, it is preferable to suppress the electric field strength applied to the vicinity of the bottom of the trench to at least 4 MV / cm or less.
 図8に示すグラフから分かるように、トレンチ側面におけるゲート絶縁膜の厚さが50nmのとき、トレンチ底部におけるゲート絶縁膜の厚さを150nm以上に設定すると、トレンチ底部にかかる電界強度を4MV/cm以下に抑えることができる。また、トレンチ側面におけるゲート絶縁膜の厚さが70nmのときにはトレンチ底部におけるゲート絶縁膜の厚さを210nm以上、トレンチ側面におけるゲート絶縁膜の厚さが90nmのときにはトレンチ底部におけるゲート絶縁膜の厚さを270nm以上に設定すると、トレンチ底部にかかる電界強度を4MV/cm以下に抑えることができる。このように、トレンチ底部にかかる電界強度を所定の値以下に低減し得るゲート絶縁膜の厚さは、トレンチ側面におけるゲート絶縁膜の厚さによって異なる。 As can be seen from the graph shown in FIG. 8, when the thickness of the gate insulating film on the side surface of the trench is 50 nm and the thickness of the gate insulating film at the bottom of the trench is set to 150 nm or more, the electric field strength applied to the bottom of the trench is 4 MV / cm. The following can be suppressed. When the thickness of the gate insulating film on the side surface of the trench is 70 nm, the thickness of the gate insulating film at the bottom of the trench is 210 nm or more, and when the thickness of the gate insulating film on the side surface of the trench is 90 nm, the thickness of the gate insulating film at the bottom of the trench. Is set to 270 nm or more, the electric field strength applied to the bottom of the trench can be suppressed to 4 MV / cm or less. As described above, the thickness of the gate insulating film that can reduce the electric field strength applied to the bottom of the trench to a predetermined value or less varies depending on the thickness of the gate insulating film on the side surface of the trench.
 そこで、本発明者は、トレンチ底部におけるゲート絶縁膜の厚さを、トレンチ側面におけるゲート絶縁膜の厚さで規格化し、規格化した値とトレンチ底部にかかる電界強度との関係を検討した。 Therefore, the present inventor has normalized the thickness of the gate insulating film at the bottom of the trench with the thickness of the gate insulating film on the side of the trench, and examined the relationship between the normalized value and the electric field strength applied to the bottom of the trench.
 ドリフト領域とボディ領域のジャンクションでのアバランシェ耐圧が1200V以上であるトレンチ構造のMISFETに対し、ドレイン電圧を1200V印加した場合のトレンチ底部での電界強度をシミュレーションによって算出した。 The electric field strength at the bottom of the trench when a drain voltage of 1200 V was applied to a MISFET having a trench structure with an avalanche breakdown voltage of 1200 V or more at the junction of the drift region and the body region was calculated by simulation.
 図9は、本発明者によるシミュレーション結果を示す図である。横軸は、上記規格化した値、すなわちトレンチ底部におけるゲート絶縁膜(熱酸化膜)の厚さのトレンチ側面におけるゲート絶縁膜の厚さに対する割合(トレンチ底部の熱酸化膜の厚さ/トレンチ側面の熱酸化膜の厚さ)Rを表し、縦軸はトレンチ底部にかかる電界強度を表している。ここでは、ドレイン電圧に1200Vを印加した場合に、ゲート絶縁膜の厚さの割合Rによって、トレンチ底部にかかる電界の強さがどのように変化するのかを計算している。計算では、トレンチ側面のチャネル部分におけるゲート絶縁膜の厚さを50nm、70nmおよび90nmとする。なお、図8および図9において、黒丸はトレンチ側面のチャネル部分におけるゲート絶縁膜の厚さが50nmの場合のシミュレーション結果、三角はトレンチ側面のチャネル部分におけるゲート絶縁膜の厚さが70nmの場合のシミュレーション結果、白丸はトレンチ側面のチャネル部分におけるゲート絶縁膜の厚さが90nmの場合のシミュレーション結果をそれぞれ示す。 FIG. 9 is a diagram showing a simulation result by the present inventor. The horizontal axis represents the normalized value, that is, the ratio of the thickness of the gate insulating film (thermal oxide film) at the bottom of the trench to the thickness of the gate insulating film at the side of the trench (the thickness of the thermal oxide film at the bottom of the trench / the side of the trench). The thickness of the thermal oxide film) R), and the vertical axis represents the electric field strength applied to the bottom of the trench. Here, it is calculated how the strength of the electric field applied to the bottom of the trench varies depending on the thickness ratio R of the gate insulating film when 1200 V is applied to the drain voltage. In the calculation, the thickness of the gate insulating film in the channel portion on the side surface of the trench is 50 nm, 70 nm, and 90 nm. In FIGS. 8 and 9, black circles indicate simulation results when the thickness of the gate insulating film in the channel portion on the trench side surface is 50 nm, and triangles indicate results when the thickness of the gate insulating film in the channel portion on the trench side surface is 70 nm. As a result of the simulation, white circles show the simulation results when the thickness of the gate insulating film in the channel portion on the side surface of the trench is 90 nm.
 図9に示す結果から、トレンチ底部におけるゲート絶縁膜の厚さが、トレンチ側面におけるゲート絶縁膜の厚さと同程度のとき、電界強度は9MV/cmを超えることが分かる。トレンチ底部におけるゲート絶縁膜の厚さをトレンチ側面における厚さの2倍に設定しても、5MV/cmの電界がトレンチ底部にかかることが分かる。また、トレンチ底部におけるゲート絶縁膜の厚さをトレンチ側面(チャネル部分)における厚さの3倍以上に設定すると、トレンチ底部にかかる電界強度を4MV/cm以下に抑制できることが分かる。従って、ゲート絶縁膜の厚さをトレンチ底部でトレンチ側面の3倍以上に設定することにより、トレンチ底部にかかる電界強度を4MV/cm以下にできることが確認された。以上の結果から、ゲート絶縁膜の厚さをトレンチ底部でトレンチ側面の3倍以上に設定することにより、1200Vのドレイン電圧が印加された場合であっても、ゲート絶縁膜の破壊を防ぐことができる。 The results shown in FIG. 9 indicate that the electric field strength exceeds 9 MV / cm when the thickness of the gate insulating film at the bottom of the trench is approximately the same as the thickness of the gate insulating film on the side surface of the trench. It can be seen that an electric field of 5 MV / cm is applied to the bottom of the trench even when the thickness of the gate insulating film at the bottom of the trench is set to twice the thickness on the side of the trench. It can also be seen that the electric field strength applied to the bottom of the trench can be suppressed to 4 MV / cm or less by setting the thickness of the gate insulating film at the bottom of the trench to 3 times or more the thickness of the side surface of the trench (channel portion). Therefore, it was confirmed that the electric field strength applied to the bottom of the trench can be reduced to 4 MV / cm or less by setting the thickness of the gate insulating film to 3 times or more of the side surface of the trench at the bottom of the trench. From the above results, it is possible to prevent the gate insulating film from being destroyed even when a drain voltage of 1200 V is applied by setting the thickness of the gate insulating film to three times or more of the side surface of the trench at the bottom of the trench. it can.
 特許文献1に提案された方法では、炭化珪素の酸化速度の面方位依存性を利用して、トレンチ底面におけるゲート絶縁膜の厚さを選択的に大きくする。この方法では、ゲート絶縁膜の厚さをトレンチ底部でトレンチ側面よりも大幅に(例えば3倍以上)大きくすることは困難である。その上、トレンチ底部および側面におけるゲート絶縁膜の厚さをそれぞれ独立して制御することができない。このため、トランジスタ特性を確保しつつ、トレンチ底部にかかる電界を所定の値以下まで緩和することは難しく、ゲート絶縁膜の絶縁破壊を確実に抑制できないおそれがある。 In the method proposed in Patent Document 1, the thickness of the gate insulating film on the bottom surface of the trench is selectively increased by utilizing the plane orientation dependence of the oxidation rate of silicon carbide. In this method, it is difficult to make the thickness of the gate insulating film significantly larger (for example, three times or more) than the side surface of the trench at the bottom of the trench. In addition, the thickness of the gate insulating film at the bottom and side surfaces of the trench cannot be controlled independently. For this reason, it is difficult to relax the electric field applied to the bottom of the trench to a predetermined value or less while ensuring the transistor characteristics, and there is a possibility that the dielectric breakdown of the gate insulating film cannot be reliably suppressed.
 また、特許文献1に提案された方法によると、酸化速度の速い(000-1)カーボン面をトレンチ底面に使用するためには、デバイスを作成するための主面を(000-1)カーボン面にする必要がある。しかし、カーボン面上にエピタキシャル膜を成長させる場合、シリコン面上よりも成長条件の制御が難しいという問題がある。このため、エピタキシャル膜の濃度や厚さを制御するだけでなく、結晶欠陥の少ない膜(低欠陥層)を形成することも難しい。従って、ドリフト領域やボディ領域の形成が困難であり、所望の素子特性を有するデバイスを容易に製造することができない可能性がある。 Further, according to the method proposed in Patent Document 1, in order to use the (000-1) carbon surface having a high oxidation rate as the bottom surface of the trench, the main surface for forming a device is the (000-1) carbon surface. It is necessary to. However, when the epitaxial film is grown on the carbon surface, there is a problem that it is difficult to control the growth conditions as compared with the silicon surface. For this reason, it is difficult not only to control the concentration and thickness of the epitaxial film, but also to form a film with few crystal defects (low defect layer). Therefore, it is difficult to form a drift region and a body region, and there is a possibility that a device having desired element characteristics cannot be easily manufactured.
 特許文献2に提案されている方法では、プロセスが複雑であるとともに、ポリシリコン膜を酸化した膜をゲート絶縁膜として使用することから、ゲート絶縁膜そのものの絶縁破壊電界強度がシリコンやSiCを熱酸化して形成した絶縁膜よりも低くなってしまうという問題がある。従って、絶縁破壊を確実に抑制するためには、より厚いポリシリコン膜を酸化させる必要がある。しかし、ポリシリコン膜が厚くなると熱酸化膜の形成が困難になるため、トレンチ底部におけるゲート絶縁膜の厚さを、トレンチ側面における厚さよりも大幅に大きくすることは難しい。 In the method proposed in Patent Document 2, the process is complicated, and a film obtained by oxidizing a polysilicon film is used as a gate insulating film. There is a problem that it becomes lower than the insulating film formed by oxidation. Therefore, in order to suppress dielectric breakdown with certainty, it is necessary to oxidize a thicker polysilicon film. However, if the polysilicon film is thick, it is difficult to form a thermal oxide film, so it is difficult to make the thickness of the gate insulating film at the bottom of the trench significantly larger than the thickness at the side of the trench.
 本発明者は、上述した種々の検討結果から得られた知見に基づいて、プロセスを複雑にすることなく、トレンチ底部におけるゲート絶縁膜の厚さを、トレンチ側面におけるゲート絶縁膜の厚さよりも大きく(例えば3倍以上)できる半導体装置の構造を検討し、本発明に至った。 Based on the knowledge obtained from the various examination results described above, the inventor makes the thickness of the gate insulating film at the bottom of the trench larger than the thickness of the gate insulating film on the side surface of the trench without complicating the process. The present inventors have studied the structure of a semiconductor device (for example, three times or more), and have reached the present invention.
 (第1の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の第1の実施形態を説明する。本実施形態の半導体装置は、トレンチゲート構造を有する炭化珪素MISFETである。
(First embodiment)
A semiconductor device according to a first embodiment of the present invention will be described below with reference to the drawings. The semiconductor device of this embodiment is a silicon carbide MISFET having a trench gate structure.
 図1は、本実施形態の半導体装置100の模式的な断面図である。半導体装置100は、二次元に配列された複数のユニットセルを備えている。 FIG. 1 is a schematic cross-sectional view of a semiconductor device 100 of the present embodiment. The semiconductor device 100 includes a plurality of unit cells arranged two-dimensionally.
 図1(a)は、半導体装置100におけるユニットセル100Uの断面図である。図1(b)は、半導体装置100の炭化珪素層表面において、ユニットセル100Uの配置の一例を示す平面図である。図1(a)は、図1(b)のI-I’線に沿った断面図である。 1A is a cross-sectional view of a unit cell 100U in the semiconductor device 100. FIG. FIG. 1B is a plan view showing an example of the arrangement of unit cells 100U on the surface of the silicon carbide layer of semiconductor device 100. FIG. FIG. 1A is a cross-sectional view taken along the line I-I ′ of FIG.
 半導体装置100のユニットセル100Uは、炭化珪素を含む基板1と、基板1の表面(主面)に配置された、炭化珪素により構成される炭化珪素層2を有している。炭化珪素層2は、基板1の主面上に形成された第1導電型(ここではn型)のドリフト領域2dと、ドリフト領域2dの上に形成された第2導電型(ここではp型)のボディ領域3とを有している。また、ボディ領域3の表面領域の一部には、第1導電型(n型)のソース領域4が配置されている。図示する例では、ソース領域4は、ボディ領域3に包囲されている。 The unit cell 100U of the semiconductor device 100 has a substrate 1 containing silicon carbide and a silicon carbide layer 2 made of silicon carbide and disposed on the surface (main surface) of the substrate 1. Silicon carbide layer 2 includes a first conductivity type (here, n-type) drift region 2d formed on the main surface of substrate 1, and a second conductivity type (here, p-type) formed on drift region 2d. ) Body region 3. A source region 4 of the first conductivity type (n-type) is disposed in a part of the surface region of the body region 3. In the illustrated example, the source region 4 is surrounded by the body region 3.
 炭化珪素層2には、ソース領域4およびボディ領域3を貫通し、ドリフト領域2dに達するトレンチ12が設けられている。トレンチ12の底面上および側面上には、絶縁膜11が配置されている。また、トレンチ12内には、ゲート電極8として機能する導電層が配置されている。ゲート電極(導電層)8と炭化珪素層2とは、絶縁膜11によって絶縁されている。 The silicon carbide layer 2 is provided with a trench 12 that penetrates the source region 4 and the body region 3 and reaches the drift region 2d. An insulating film 11 is disposed on the bottom and side surfaces of the trench 12. A conductive layer functioning as the gate electrode 8 is disposed in the trench 12. Gate electrode (conductive layer) 8 and silicon carbide layer 2 are insulated by insulating film 11.
 本実施形態における絶縁膜11は、トレンチ12の底面上および側面上に配置された第1絶縁層6と、トレンチ12の底部において第1絶縁層6の上に配置された第2絶縁層7とによって構成されている。第2絶縁層7は、第1絶縁層6のうちトレンチ12の底面上に位置する部分とゲート電極8との間に配置されている。 In the present embodiment, the insulating film 11 includes a first insulating layer 6 disposed on the bottom surface and side surfaces of the trench 12, and a second insulating layer 7 disposed on the first insulating layer 6 at the bottom of the trench 12. It is constituted by. The second insulating layer 7 is disposed between the portion of the first insulating layer 6 located on the bottom surface of the trench 12 and the gate electrode 8.
 第1絶縁層6は、熱酸化膜であってもよいし、窒化膜、酸化膜、あるいはこれらのうち少なくとも一方を含む積層膜であってもよい。第2絶縁層7およびゲート電極8はシリコンによって構成されている。ゲート電極8と第2絶縁層7とは、同一のシリコン膜を用いて一体的に形成されていてもよい。本実施形態では、ゲート電極8は1×1020cm-3以上の濃度でリンを含むドープされたポリシリコン層である。第2絶縁層7は、不純物を含まないか、あるいはゲート電極8と同じ不純物(ここではリン)を1×1018cm-3以下の濃度で含むポリシリコン層である。なお、本明細書では、不純物がドープされていないか、あるいは、不純物濃度の極めて低い(1×1018cm-3以下)シリコン層を「アンドープシリコン層」と称する。 The first insulating layer 6 may be a thermal oxide film, a nitride film, an oxide film, or a laminated film including at least one of them. The second insulating layer 7 and the gate electrode 8 are made of silicon. The gate electrode 8 and the second insulating layer 7 may be integrally formed using the same silicon film. In this embodiment, the gate electrode 8 is a doped polysilicon layer containing phosphorus at a concentration of 1 × 10 20 cm −3 or more. The second insulating layer 7 is a polysilicon layer that does not contain impurities or contains the same impurities (phosphorus in this case) as the gate electrode 8 at a concentration of 1 × 10 18 cm −3 or less. In the present specification, a silicon layer that is not doped with impurities or has an extremely low impurity concentration (1 × 10 18 cm −3 or less) is referred to as an “undoped silicon layer”.
 半導体装置100は、また、炭化珪素層2の上に設けられたソース電極10と、基板1の裏面に形成されたドレイン電極9とを備えている。ソース電極10は、ソース領域4およびボディ領域3と電気的に接続されている。ソース電極10およびゲート電極8の上には、層間絶縁膜(図示せず)が形成されている。層間絶縁膜の上にはソース配線(図示せず)が設けられている。ソース配線は、層間絶縁膜に形成されたコンタクトホール内で、ソース電極10と電気的に接続されている。 The semiconductor device 100 also includes a source electrode 10 provided on the silicon carbide layer 2 and a drain electrode 9 formed on the back surface of the substrate 1. Source electrode 10 is electrically connected to source region 4 and body region 3. An interlayer insulating film (not shown) is formed on the source electrode 10 and the gate electrode 8. A source wiring (not shown) is provided on the interlayer insulating film. The source wiring is electrically connected to the source electrode 10 in a contact hole formed in the interlayer insulating film.
 本実施形態によると、トレンチ12の側面および底面とゲート電極8との間に、第1および第2絶縁層6、7を備える絶縁膜11が配置される。絶縁膜11は、トレンチ12の底面上で、トレンチ12の側面上よりも厚くなる。例えば、トレンチ12の底面における絶縁膜11の厚さを、トレンチ12の側面に露出したボディ領域3の表面領域(チャネル部分)における絶縁膜11の厚さの3倍以上にできる。このため、トランジスタ特性を低下させることなく、トレンチ12の底部において絶縁膜11に生じる電界強度を低減でき、絶縁破壊を抑制することが可能となる。 According to the present embodiment, the insulating film 11 including the first and second insulating layers 6 and 7 is disposed between the side and bottom surfaces of the trench 12 and the gate electrode 8. The insulating film 11 is thicker on the bottom surface of the trench 12 than on the side surface of the trench 12. For example, the thickness of the insulating film 11 on the bottom surface of the trench 12 can be three times or more the thickness of the insulating film 11 in the surface region (channel portion) of the body region 3 exposed on the side surface of the trench 12. For this reason, the electric field strength generated in the insulating film 11 at the bottom of the trench 12 can be reduced without deteriorating the transistor characteristics, and the dielectric breakdown can be suppressed.
 本実施形態では、第2絶縁層7は、トレンチ12の底部にのみ選択的に配置され、第1絶縁層6は、トレンチ12の側面においてゲート電極8と接している。第2絶縁層7の上面はゲート電極8の下面と接していることが好ましい。第2絶縁層7の上面がゲート電極8と接している場合、ゲート電極8と第2絶縁層7との界面は、ドリフト領域2dとボディ領域3との界面よりも深い位置にあることが好ましい。言い換えると、第2絶縁層7は、ボディ領域3の表面のうちトレンチ12の側面に露出した部分(チャネル部分)上に配置されないことが好ましい。これにより、チャネル部分とゲート電極8との間に、ゲート絶縁膜として第1絶縁層6のみを介在させることができる。従って、第1絶縁層6の厚さを制御することにより、所望の厚さのゲート絶縁膜を得ることができるので、閾値電圧などの特性を確保できる。一方、トレンチ12の底面上には、第1絶縁層6に加えて第2絶縁層7が配置されている。従って、トレンチ12の底面上における絶縁膜11の厚さ(第1および第2絶縁層6、7の合計厚さ)を、トレンチ12の側面上における絶縁膜11の厚さ(第1絶縁層6のみの厚さ)よりも大きくすることができる。トレンチ12の底面および側面上で第1絶縁層6の厚さが略同じとすると、絶縁膜11の厚さは、トレンチ12の側面上で第2絶縁層7の厚さの分だけ大きくなる。従って、第2絶縁層7の厚さを制御することにより、トレンチ12の底面上に配置される絶縁膜11の厚さを調整できるので、より効果的に絶縁破壊を抑制することが可能になる。なお、第1絶縁層6が熱酸化膜であれば、酸化速度の面方位依存性により、第1絶縁層6の厚さは均一にはならない。その場合には、面方位による第1絶縁層6の厚さの不均一性を考慮して、第2絶縁層7の厚さを設定すればよい。このように、トレンチ12の側面(特にチャネル部分)における絶縁膜の厚さと、トレンチ12の底面における絶縁膜の厚さとを、互いに独立して、かつ、任意に設定できる。 In the present embodiment, the second insulating layer 7 is selectively disposed only at the bottom of the trench 12, and the first insulating layer 6 is in contact with the gate electrode 8 on the side surface of the trench 12. The upper surface of the second insulating layer 7 is preferably in contact with the lower surface of the gate electrode 8. When the upper surface of the second insulating layer 7 is in contact with the gate electrode 8, the interface between the gate electrode 8 and the second insulating layer 7 is preferably deeper than the interface between the drift region 2 d and the body region 3. . In other words, the second insulating layer 7 is preferably not disposed on a portion (channel portion) exposed on the side surface of the trench 12 in the surface of the body region 3. As a result, only the first insulating layer 6 can be interposed as a gate insulating film between the channel portion and the gate electrode 8. Therefore, by controlling the thickness of the first insulating layer 6, a gate insulating film having a desired thickness can be obtained, and characteristics such as a threshold voltage can be ensured. On the other hand, in addition to the first insulating layer 6, the second insulating layer 7 is disposed on the bottom surface of the trench 12. Therefore, the thickness of the insulating film 11 on the bottom surface of the trench 12 (the total thickness of the first and second insulating layers 6 and 7) is set to the thickness of the insulating film 11 on the side surface of the trench 12 (the first insulating layer 6). Only thicker). If the thickness of the first insulating layer 6 is substantially the same on the bottom surface and the side surface of the trench 12, the thickness of the insulating film 11 increases by the thickness of the second insulating layer 7 on the side surface of the trench 12. Therefore, by controlling the thickness of the second insulating layer 7, the thickness of the insulating film 11 disposed on the bottom surface of the trench 12 can be adjusted, so that the dielectric breakdown can be more effectively suppressed. . If the first insulating layer 6 is a thermal oxide film, the thickness of the first insulating layer 6 is not uniform due to the plane orientation dependence of the oxidation rate. In that case, the thickness of the second insulating layer 7 may be set in consideration of the non-uniformity of the thickness of the first insulating layer 6 due to the plane orientation. In this way, the thickness of the insulating film on the side surface (particularly the channel portion) of the trench 12 and the thickness of the insulating film on the bottom surface of the trench 12 can be set independently and arbitrarily.
 なお、後述する製造プロセスでは、シリコン膜の一部にのみ不純物をドープしてゲート電極8を形成し、シリコン膜のうち不純物がドープされなかった部分(アンドープシリコンのまま残る部分)を第2絶縁層7として残す。このようなプロセスを用いると、不純物の拡散の状態によっては、トレンチ12の側面におけるチャネル部分上にも第2絶縁層7が形成されることがある。このような場合でも、第2絶縁層7は、チャネル部分上で、トレンチ12の底面上よりも極めて薄くなるため、上述したような効果を得ることができる。 In the manufacturing process to be described later, the gate electrode 8 is formed by doping impurities only in a part of the silicon film, and the part of the silicon film that is not doped with impurities (the part that remains undoped silicon) is subjected to the second insulation. Leave as layer 7. When such a process is used, the second insulating layer 7 may be formed also on the channel portion on the side surface of the trench 12 depending on the state of impurity diffusion. Even in such a case, since the second insulating layer 7 is much thinner on the channel portion than on the bottom surface of the trench 12, the above-described effects can be obtained.
 第1絶縁層6および第2絶縁層7により構成される絶縁膜の厚さは、トレンチ12の側面上(特にチャネル部分上)で、トレンチ12の底面上の3倍以上である。より好ましくは5倍以上である。これにより、図8および図9を参照しながら説明したように、トレンチ12の底部において絶縁膜にかかる電界強度をより効果的に低減できる。 The thickness of the insulating film constituted by the first insulating layer 6 and the second insulating layer 7 is three times or more on the side surface of the trench 12 (particularly on the channel portion) and on the bottom surface of the trench 12. More preferably, it is 5 times or more. Thereby, as described with reference to FIGS. 8 and 9, the electric field strength applied to the insulating film at the bottom of the trench 12 can be more effectively reduced.
 本実施形態では、基板1の(0001)シリコン面を主面とし、主面上に炭化珪素層2が形成されていることが好ましい。従来の半導体装置では、シリコン面を主面とすると、シリコン面であるトレンチ底面における絶縁膜(熱酸化膜)の厚さが、トレンチ側面上の熱酸化膜の厚さよりも小さくなるという問題があった。これに対し、本実施形態によると、トレンチ底面に位置する絶縁膜の厚さをトレンチ側面に位置する絶縁膜の厚さよりも大きく(例えば3倍以上)できるので、より顕著な効果が得られる。 In this embodiment, it is preferable that the (0001) silicon surface of the substrate 1 is a main surface, and the silicon carbide layer 2 is formed on the main surface. In the conventional semiconductor device, when the silicon surface is the main surface, there is a problem that the thickness of the insulating film (thermal oxide film) on the bottom surface of the trench, which is the silicon surface, is smaller than the thickness of the thermal oxide film on the side surface of the trench. It was. On the other hand, according to the present embodiment, the thickness of the insulating film located on the bottom surface of the trench can be made larger (for example, three times or more) than the thickness of the insulating film located on the side surface of the trench, so that a more remarkable effect can be obtained.
 なお、上記では、本実施形態の半導体装置100の構成を、nチャネル型のMISFETを例に説明したが、半導体装置100はpチャネル型のMISFETであってもよい。pチャネル型のMISFETでは、SiC基板1、ドリフト領域2d、ソース領域4の導電型はp型、ボディ領域3の導電型はn型となる。 In the above description, the configuration of the semiconductor device 100 of the present embodiment has been described by taking an n-channel type MISFET as an example. However, the semiconductor device 100 may be a p-channel type MISFET. In the p-channel type MISFET, the conductivity type of the SiC substrate 1, the drift region 2d, and the source region 4 is p-type, and the conductivity type of the body region 3 is n-type.
 次に、図面を参照しながら、本実施形態の半導体装置100の製造方法の一例を説明する。 Next, an example of a method for manufacturing the semiconductor device 100 of this embodiment will be described with reference to the drawings.
 図2(a)~(e)および図3(a)~(d)は、それぞれ、半導体装置100の製造方法の一例を説明するための模式的な工程断面図である。 FIGS. 2A to 2E and FIGS. 3A to 3D are schematic process cross-sectional views for explaining an example of a method for manufacturing the semiconductor device 100, respectively.
 まず、図2(a)に示すように、基板1の主面上に、炭化珪素をエピタキシャル成長させることによって、第1導電型(ここではn型)のドリフト領域2dと、第2導電型(ここではp型)のボディ領域3とをこの順で形成し、炭化珪素層2を得る。この後、ボディ領域3内にソース領域4を形成する。 First, as shown in FIG. 2A, silicon carbide is epitaxially grown on the main surface of the substrate 1, so that a drift region 2 d of a first conductivity type (here, n-type) and a second conductivity type (here) Then, p-type) body region 3 is formed in this order, and silicon carbide layer 2 is obtained. Thereafter, the source region 4 is formed in the body region 3.
 基板1として、例えば3×1018cm-3の濃度で窒素を含む低抵抗のn型SiC基板を用いることができる。ドリフト領域2dには、例えば8×1015cm-3の濃度で窒素がドープされている。ドリフト領域2dの厚さは例えば12μmである。なお、ドリフト領域2dの厚さおよび濃度は、所望される耐圧によって決定されるものであり、上記に例示した厚さおよび濃度に限定されない。 As the substrate 1, for example, a low-resistance n-type SiC substrate containing nitrogen at a concentration of 3 × 10 18 cm −3 can be used. The drift region 2d is doped with nitrogen at a concentration of 8 × 10 15 cm −3 , for example. The thickness of the drift region 2d is, for example, 12 μm. Note that the thickness and concentration of the drift region 2d are determined by a desired breakdown voltage, and are not limited to the above-described thickness and concentration.
 ボディ領域3には、例えば2×1018cm-3の濃度でアルミニウムがドープされている。ボディ領域3の厚さは例えば1μmである。 The body region 3 is doped with aluminum at a concentration of 2 × 10 18 cm −3 , for example. The thickness of the body region 3 is 1 μm, for example.
 なお、ここでは、ボディ領域3をエピタキシャル成長によって形成しているが、代わりにイオン注入によって形成してもよい。具体的には、n型の炭化珪素層2をエピタキシャル成長によって形成した後、その表面領域にp型不純物をイオン注入することによってボディ領域3を形成してもよい。その場合、炭化珪素層2のうちp型不純物が注入されなかった領域がドリフト領域2dとなる。 Here, the body region 3 is formed by epitaxial growth, but may be formed by ion implantation instead. Specifically, after forming n-type silicon carbide layer 2 by epitaxial growth, body region 3 may be formed by ion-implanting p-type impurities into the surface region. In that case, the region of silicon carbide layer 2 where the p-type impurity is not implanted becomes drift region 2d.
 ソース領域4は、例えばイオン注入によって形成される。まず、炭化珪素層2の所定領域上にシリコン酸化膜からなるマスク層(図示せず)を配置する。次いで、マスク層を注入マスクとして、ボディ領域3のうちソース領域を形成しようとする部分にn型の不純物イオン(例えば窒素イオン)を注入する。ここでは、例えば、加速エネルギーを100keV、ドーズ量を5×1015cm-2とする。マスク層を除去した後、不活性ガス雰囲気中、例えば1700℃の温度で30分程度のアニール処理を行う。これにより、注入された不純物イオンが活性化され、ソース領域4が得られる。 The source region 4 is formed by ion implantation, for example. First, a mask layer (not shown) made of a silicon oxide film is disposed on a predetermined region of silicon carbide layer 2. Next, using the mask layer as an implantation mask, n-type impurity ions (for example, nitrogen ions) are implanted into the portion of the body region 3 where the source region is to be formed. Here, for example, the acceleration energy is 100 keV and the dose is 5 × 10 15 cm −2 . After removing the mask layer, annealing is performed in an inert gas atmosphere at a temperature of, for example, 1700 ° C. for about 30 minutes. Thereby, the implanted impurity ions are activated and the source region 4 is obtained.
 次いで、図2(b)に示すように、炭化珪素層2に、ソース領域4およびボディ領域3を貫通し、ドリフト領域2d内に底面を有するトレンチ(凹部)12を形成する。本実施形態では、まず、ソース領域4の一部の上に酸化膜を介してAl膜(図示せず)を形成する。次いで、このAl膜をマスクとし、反応性イオンエッチング(Reactive Ion Etching;RIE)により、炭化珪素層2にトレンチ(深さ:例えば1.5μm、幅:例えば1μm)12を形成する。図示する例では、トレンチ12の側面は、基板1の主面に対して略垂直であるが、トレンチ12は基板1の主面の法線方向に対して傾斜した側面を有してもよい(テーパー形状)。 Next, as shown in FIG. 2B, a trench (concave portion) 12 is formed in the silicon carbide layer 2 so as to penetrate the source region 4 and the body region 3 and have a bottom surface in the drift region 2d. In this embodiment, first, an Al film (not shown) is formed on a part of the source region 4 via an oxide film. Next, using this Al film as a mask, trenches (depth: 1.5 μm, width: 1 μm, for example) 12 are formed in the silicon carbide layer 2 by reactive ion etching (RIE). In the illustrated example, the side surface of the trench 12 is substantially perpendicular to the main surface of the substrate 1, but the trench 12 may have a side surface that is inclined with respect to the normal direction of the main surface of the substrate 1 ( Tapered shape).
 続いて、図2(c)に示すように、トレンチ12の内部に、第1絶縁層6およびシリコン膜16をこの順で形成する。図示する例では、第1絶縁層6およびシリコン膜16は、炭化珪素層2の上面上およびトレンチ12内に形成されているが、少なくともトレンチ12の底面上および側面上に形成されればよい。 Subsequently, as shown in FIG. 2C, the first insulating layer 6 and the silicon film 16 are formed in this order in the trench 12. In the illustrated example, the first insulating layer 6 and the silicon film 16 are formed on the upper surface of the silicon carbide layer 2 and in the trench 12, but may be formed at least on the bottom surface and side surfaces of the trench 12.
 本実施形態では、第1絶縁層6として熱酸化膜を形成する。具体的には、ドライ酸化雰囲気中、1200℃の温度で3時間の熱処理を行う。これにより、炭化珪素層2の表面(トレンチ12の底面および側面に露出した部分を含む)が熱酸化され、第1絶縁層6が得られる。熱処理条件は、第1絶縁層6の厚さがトレンチ12の側面上で例えば70nmとなるように制御される。このとき、トレンチ12の底面における第1絶縁層6の厚さは、酸化速度の面方位依存性により、トレンチ12の側面における厚さとは異なることがある。トレンチ12の底面上において、第1絶縁層6の厚さは、主面の面方位にもよるが、例えば50~100nmとなる。 In this embodiment, a thermal oxide film is formed as the first insulating layer 6. Specifically, heat treatment is performed for 3 hours at a temperature of 1200 ° C. in a dry oxidation atmosphere. Thereby, the surface of silicon carbide layer 2 (including portions exposed at the bottom and side surfaces of trench 12) is thermally oxidized, and first insulating layer 6 is obtained. The heat treatment condition is controlled so that the thickness of the first insulating layer 6 is, for example, 70 nm on the side surface of the trench 12. At this time, the thickness of the first insulating layer 6 on the bottom surface of the trench 12 may be different from the thickness on the side surface of the trench 12 due to the surface orientation dependence of the oxidation rate. On the bottom surface of the trench 12, the thickness of the first insulating layer 6 is, for example, 50 to 100 nm although it depends on the plane orientation of the main surface.
 なお、熱酸化の代わりに、CVD法などの堆積法によって第1絶縁層6を形成してもよい。また、第1絶縁層6として、窒化膜、酸窒化膜あるいはこのうちの少なくとも一方を含む積層膜を形成してもよい。後述する熱処理工程において、これらの膜には不純物が拡散しにくいので、第1絶縁層6に不純物が拡散することによる膜質の低下(例えば酸化膜が破壊に至るまでの通過電荷量Qbdの低下)を防止できる。 Note that the first insulating layer 6 may be formed by a deposition method such as a CVD method instead of the thermal oxidation. Further, as the first insulating layer 6, a nitride film, an oxynitride film, or a laminated film including at least one of them may be formed. In the heat treatment process to be described later, since impurities are difficult to diffuse into these films, film quality deteriorates due to the diffusion of impurities into the first insulating layer 6 (for example, a decrease in passing charge amount Qbd until the oxide film is destroyed). Can be prevented.
 シリコン膜16は、アンドープのポリシリコン膜であってもよいし、アンドープのアモルファスシリコン膜であってもよい。ここでは、炭化珪素層2の上面およびトレンチ12の内部に、LP-CVD法によりアンドープのポリシリコン膜(厚さ:例えば800nm)を形成する。このとき、トレンチ12の内部にボイドが生じないように、トレンチ12の内部をシリコン膜16で埋め込む。 The silicon film 16 may be an undoped polysilicon film or an undoped amorphous silicon film. Here, an undoped polysilicon film (thickness: for example, 800 nm) is formed by LP-CVD on the upper surface of silicon carbide layer 2 and inside trench 12. At this time, the inside of the trench 12 is filled with the silicon film 16 so that no void is generated inside the trench 12.
 続いて、図2(d)に示すように、シリコン膜16の一部に不純物イオン(ここではリンイオン)を注入する。ここでは、基板1の上方から、基板1の表面全面にリンイオンを注入する。加速エネルギーを例えば60keV、ドーズ量を例えば5×1015cm-2とする。これにより、シリコン膜16の一部に、不純物拡散層(第2シリコン層ともいう)8aを形成する。シリコン膜16のうち不純物拡散層8aより深い位置にあり、不純物イオンがほとんど注入されなかった部分は、アンドープシリコン層(第1シリコン層ともいう)7aとして残る。注入条件は、トレンチ12の内部だけでなく、不純物拡散層8aと炭化珪素層2の上面との間にも薄くアンドープシリコン層が残るように調整されることが好ましい。なお、イオン注入の代わりに、熱拡散を利用して不純物拡散層8aを形成してもよい。 Subsequently, as shown in FIG. 2D, impurity ions (here, phosphorus ions) are implanted into a part of the silicon film 16. Here, phosphorus ions are implanted into the entire surface of the substrate 1 from above the substrate 1. The acceleration energy is set to 60 keV, for example, and the dose is set to 5 × 10 15 cm −2 . Thereby, an impurity diffusion layer (also referred to as a second silicon layer) 8a is formed in a part of the silicon film 16. A portion of the silicon film 16 that is deeper than the impurity diffusion layer 8a and into which impurity ions are hardly implanted remains as an undoped silicon layer (also referred to as a first silicon layer) 7a. The implantation conditions are preferably adjusted so that a thin undoped silicon layer remains not only inside trench 12 but also between impurity diffusion layer 8 a and the upper surface of silicon carbide layer 2. Instead of ion implantation, the impurity diffusion layer 8a may be formed using thermal diffusion.
 次いで、図2(e)に示すように、不純物拡散層8aの上に、トレンチ12の開口よりも一回り小さい開口部を有するレジストマスク21を形成する。この後、レジストマスク21を注入マスクとして、基板上方から不純物イオン(ここではリンイオン)を注入する。加速エネルギーを、図2(d)に示す注入工程における加速エネルギーよりも大きく、例えば300keVに設定する。また、ドーズ量を、図2(d)に示す注入工程におけるドーズ量と略同じ量(例えば5×1015cm-2)に設定する。これにより、トレンチ12の内部において、不純物拡散層8aよりも深い位置に、さらなる不純物拡散層(第3シリコン層ともいう)8bが形成される。 Next, as shown in FIG. 2E, a resist mask 21 having an opening that is slightly smaller than the opening of the trench 12 is formed on the impurity diffusion layer 8a. Thereafter, impurity ions (here, phosphorus ions) are implanted from above the substrate using the resist mask 21 as an implantation mask. The acceleration energy is set larger than the acceleration energy in the implantation step shown in FIG. 2D, for example, 300 keV. Further, to set the dose, approximately the same amount (e.g., 5 × 10 15 cm -2) and a dose of the implantation step illustrated in Figure 2 (d). As a result, a further impurity diffusion layer (also referred to as a third silicon layer) 8b is formed in the trench 12 at a position deeper than the impurity diffusion layer 8a.
 このようにして、シリコン膜16に、飛程(Rp)が表面(シリコン膜16の上面)から約0.4μm、ジャンクション深さ(Rp+3ΔRp)が表面から約0.7μmの不純物拡散層8a、8bが形成される。シリコン膜16のうち不純物拡散層8a、8bが形成されなかった部分は、アンドープシリコン層7bとして残る。アンドープシリコン層7bは、トレンチ12の底部で厚く、トレンチ12の側面上および炭化珪素層2の上面上で薄い。 Thus, the impurity diffusion layers 8a and 8b having a range (Rp) of about 0.4 μm from the surface (the upper surface of the silicon film 16) and a junction depth (Rp + 3ΔRp) of about 0.7 μm from the surface are formed on the silicon film 16. Is formed. A portion of the silicon film 16 where the impurity diffusion layers 8a and 8b are not formed remains as an undoped silicon layer 7b. Undoped silicon layer 7 b is thick at the bottom of trench 12 and thin on the side surface of trench 12 and the top surface of silicon carbide layer 2.
 レジストマスク21を除去した後、シリコン膜16内の不純物(リン)を拡散および活性化させるための熱処理を行う。ここでは、熱処理として、不活性ガス雰囲気中、1000℃の温度で60秒間のRTA(Rapid Thermal Anneal)処理を行う。これにより、図3(a)に示すように、不純物拡散層8a、8bのリンが拡散してゲート電極8として機能する活性層(導電層)となる。シリコン膜16のうちリンが拡散しなかった部分(あるいはリンの濃度が1018cm-3以下の部分)は、アンドープのポリシリコンによって構成される第2絶縁層7となる。このようにして、第1絶縁層6および第2絶縁層7によって構成される絶縁膜11が得られる。 After removing the resist mask 21, heat treatment for diffusing and activating impurities (phosphorus) in the silicon film 16 is performed. Here, as the heat treatment, an RTA (Rapid Thermal Anneal) process is performed in an inert gas atmosphere at a temperature of 1000 ° C. for 60 seconds. Thereby, as shown in FIG. 3A, phosphorus in the impurity diffusion layers 8a and 8b is diffused to become an active layer (conductive layer) functioning as the gate electrode 8. A portion of the silicon film 16 where phosphorus is not diffused (or a portion where the phosphorus concentration is 10 18 cm −3 or less) becomes the second insulating layer 7 made of undoped polysilicon. In this way, the insulating film 11 constituted by the first insulating layer 6 and the second insulating layer 7 is obtained.
 図示する例では、シリコン膜16内でリンが炭化珪素層2の上面およびトレンチ12のチャネル部分上にまで拡散し、ゲート電極8として、第1絶縁層6と接する導電層が得られる。また、アンドープのポリシリコンはトレンチ12の底部に選択的に残り、第2絶縁層7となる。第2絶縁層7とゲート電極8との界面は、ドリフト領域2dとボディ領域3との界面よりも深い位置にある。このため、トレンチ12の側面におけるチャネル部分上には第2絶縁層7が形成されていない。第2絶縁層7の厚さ、すなわち第2絶縁層7とゲート電極8との界面からトレンチ12の底面までの距離は、例えば350nmである。なお、シリコン膜16では、不純物濃度は深くなるにつれて低くなっていくが、その濃度プロファイルの勾配が比較的なだらかなときには、第2絶縁層7とゲート電極8との界面が明確に確認できない場合がある。そのような場合、シリコン膜16のうち不純物濃度が1×1018cm-3以下となる部分を「第2絶縁層7」、不純物濃度が1×1018cm-3よりも高い部分を「ゲート電極8」とする。 In the illustrated example, phosphorus diffuses into the upper surface of the silicon carbide layer 2 and the channel portion of the trench 12 in the silicon film 16, and a conductive layer in contact with the first insulating layer 6 is obtained as the gate electrode 8. Further, undoped polysilicon selectively remains at the bottom of the trench 12 and becomes the second insulating layer 7. The interface between the second insulating layer 7 and the gate electrode 8 is deeper than the interface between the drift region 2 d and the body region 3. For this reason, the second insulating layer 7 is not formed on the channel portion on the side surface of the trench 12. The thickness of the second insulating layer 7, that is, the distance from the interface between the second insulating layer 7 and the gate electrode 8 to the bottom surface of the trench 12 is, for example, 350 nm. In the silicon film 16, the impurity concentration decreases as the depth increases. However, when the gradient of the concentration profile is relatively gentle, the interface between the second insulating layer 7 and the gate electrode 8 may not be clearly confirmed. is there. In such a case, the portion of the silicon film 16 where the impurity concentration is 1 × 10 18 cm −3 or less is the “second insulating layer 7”, and the portion where the impurity concentration is higher than 1 × 10 18 cm −3 is the gate. This is referred to as electrode 8 ”.
 不純物をドープする際の条件や熱処理条件によっては、不純物の拡散距離が小さくなり、炭化珪素層2の上面またはトレンチ12のチャネル部分上において、導電層(ゲート電極8)と第1絶縁層6との間にアンドープシリコン層(第2絶縁層7)が薄く残る場合もある。このような場合でも、チャネル部分上における第2絶縁層7の厚さが、トレンチ12の底部における厚さよりも十分小さければ、本願発明の効果が得られる。ただし、少なくともチャネル部分上に第2絶縁層7が形成されないことが好ましい。 Depending on the conditions for doping impurities and the heat treatment conditions, the diffusion distance of the impurities becomes small, and the conductive layer (gate electrode 8) and the first insulating layer 6 are formed on the upper surface of the silicon carbide layer 2 or on the channel portion of the trench 12. In some cases, the undoped silicon layer (second insulating layer 7) remains thin. Even in such a case, the effect of the present invention can be obtained if the thickness of the second insulating layer 7 on the channel portion is sufficiently smaller than the thickness at the bottom of the trench 12. However, it is preferable that the second insulating layer 7 is not formed at least on the channel portion.
 続いて、図3(b)に示すように、ゲート電極8の上に、トレンチ12を覆うようにレジストマスク22を形成する。この後、図3(c)に示すように、レジストマスク22をエッチングマスクとして、ドライエッチングによりゲート電極8のパターニングを行う。 Subsequently, as shown in FIG. 3B, a resist mask 22 is formed on the gate electrode 8 so as to cover the trench 12. Thereafter, as shown in FIG. 3C, the gate electrode 8 is patterned by dry etching using the resist mask 22 as an etching mask.
 レジストマスク22を除去した後、図3(d)に示すように、炭化珪素層2の上面上に、ボディ領域3とソース領域4との両領域を跨ぐようにソース電極(ソース/ボディ電極)10を形成する。さらに、基板1の主面と反対側の面(裏面)にドレイン電極9を形成する。このようにして、半導体装置100が得られる。 After removing the resist mask 22, as shown in FIG. 3D, a source electrode (source / body electrode) is formed on the upper surface of the silicon carbide layer 2 so as to straddle both the body region 3 and the source region 4. 10 is formed. Further, the drain electrode 9 is formed on the surface (back surface) opposite to the main surface of the substrate 1. In this way, the semiconductor device 100 is obtained.
 このような半導体装置100では、トレンチ12の底面とゲート電極8との間には、厚さが50~100nm程度の第1絶縁層6と、アンドープのポリシリコン層である第2絶縁層7とが形成される。これらの絶縁層6、7の合計厚さは例えば400nm以上となる。このように、トレンチ12の底部に従来よりも厚い絶縁膜を配置できるので、トレンチ12の底部に生じる電界強度を例えば4MV/cm以下まで抑制することが可能となる。 In such a semiconductor device 100, between the bottom surface of the trench 12 and the gate electrode 8, the first insulating layer 6 having a thickness of about 50 to 100 nm and the second insulating layer 7 which is an undoped polysilicon layer are provided. Is formed. The total thickness of these insulating layers 6 and 7 is, for example, 400 nm or more. Thus, since a thicker insulating film than the conventional one can be arranged at the bottom of the trench 12, the electric field strength generated at the bottom of the trench 12 can be suppressed to 4 MV / cm or less, for example.
 上記方法では、トレンチ12の内部にアンドープのシリコン膜を設けた後、シリコン膜の一部に不純物をドープしてゲート電極8を形成するとともに、トレンチ12の底部にアンドープのシリコン膜を選択的に残す。これにより、製造工程数を増大させることなく、トレンチ12の底部において従来よりも厚い絶縁膜を配置することができる。また、トレンチ12のチャネル部分上に配置される絶縁膜の厚さとは別個に、トレンチ12の底部における絶縁膜の厚さを制御することが可能である。従って、所望のトランジスタ特性を確保しつつ、トレンチ12の底部における絶縁破壊を抑制できる。 In the above method, after an undoped silicon film is provided inside the trench 12, a part of the silicon film is doped with impurities to form the gate electrode 8, and an undoped silicon film is selectively formed at the bottom of the trench 12. leave. As a result, a thicker insulating film than the conventional one can be disposed at the bottom of the trench 12 without increasing the number of manufacturing steps. In addition, the thickness of the insulating film at the bottom of the trench 12 can be controlled separately from the thickness of the insulating film disposed on the channel portion of the trench 12. Therefore, dielectric breakdown at the bottom of the trench 12 can be suppressed while ensuring desired transistor characteristics.
 また、この方法によると、まず、シリコン膜16の上面全体からシリコン膜16に対して不純物をドープし(図2(d))、その後、シリコン膜16のうちトレンチ12内に位置する部分に対して不純物をドープする(図2(e))。このように2段階で不純物のドープを行うと、不純物拡散層8a、8bと炭化珪素層2との間に、所望の厚さのアンドープシリコン層をより確実に残すことができる。従って、その後の熱処理において、ゲート絶縁膜となる第1絶縁層6内に不純物が拡散することをより確実に抑制できる。 Also, according to this method, first, the silicon film 16 is doped with impurities from the entire upper surface of the silicon film 16 (FIG. 2D), and then the portion of the silicon film 16 located in the trench 12 is applied. Then, the impurity is doped (FIG. 2E). When the impurity is doped in two steps as described above, an undoped silicon layer having a desired thickness can be more reliably left between the impurity diffusion layers 8 a and 8 b and the silicon carbide layer 2. Therefore, in the subsequent heat treatment, it is possible to more reliably prevent impurities from diffusing into the first insulating layer 6 that becomes the gate insulating film.
 上記方法では、図2(d)に示す工程において、イオン注入によってシリコン膜に不純物拡散層8aを形成しているが、代わりに、PH3(フォスフィン)やPOCl3(ポックル)を用いて、シリコン膜16の表面からリンを熱拡散させることによって不純物拡散層8aを形成してもよい。この後の工程は上記方法と同様であってもよい。具体的には、図2(e)に示すように、シリコン膜16のトレンチ12内に位置する部分に不純物イオンを注入してもよい。 In the above method, the impurity diffusion layer 8a is formed in the silicon film by ion implantation in the step shown in FIG. 2 (d). Instead, using silicon (PH 3 ) or POCl 3 (pockle), The impurity diffusion layer 8 a may be formed by thermally diffusing phosphorus from the surface of the film 16. Subsequent steps may be the same as those described above. Specifically, as shown in FIG. 2E, impurity ions may be implanted into a portion of the silicon film 16 located in the trench 12.
 上記方法では、不純物拡散層8a、8bを2段階で形成しているが、図2(e)に示す工程に対応するイオン注入工程を行わずに、1段階で形成することもできる。図2(e)に示すイオン注入工程を行わない場合でも、その後の活性化処理(熱処理)において、不純物拡散層8aのリンをボディ領域3よりも深くまで拡散させることによって、ゲート電極8を形成できる。リンの拡散距離は、イオン注入エネルギーやイオン注入量などのリンの注入条件、活性化処理の温度や時間などによって調整できる。あるいは、以下に示す方法により、不純物拡散層を1段階で形成してもよい。 In the above method, the impurity diffusion layers 8a and 8b are formed in two stages. However, the impurity diffusion layers 8a and 8b can be formed in one stage without performing the ion implantation process corresponding to the process shown in FIG. Even when the ion implantation step shown in FIG. 2E is not performed, the gate electrode 8 is formed by diffusing phosphorus in the impurity diffusion layer 8a deeper than the body region 3 in the subsequent activation process (heat treatment). it can. The phosphorus diffusion distance can be adjusted by phosphorus implantation conditions such as ion implantation energy and ion implantation amount, temperature and time of activation treatment, and the like. Alternatively, the impurity diffusion layer may be formed in one step by the method described below.
 図4(a)~(c)は、それぞれ、半導体装置100の他の製造方法を例示する工程断面図である。 4A to 4C are process cross-sectional views illustrating another method for manufacturing the semiconductor device 100, respectively.
 図2(a)および(b)を参照して前述した方法と同様の方法で、基板1上に炭化珪素層2を形成した後、炭化珪素層2にトレンチ12を形成する。 After forming silicon carbide layer 2 on substrate 1 by the same method as described above with reference to FIGS. 2A and 2B, trench 12 is formed in silicon carbide layer 2.
 次いで、図4(a)に示すように、トレンチ12の内部および炭化珪素層2の上面上に第1絶縁層6およびシリコン膜26を形成する。第1絶縁層6として、熱酸化膜を形成してもよいが、ここでは、CVD法により窒化膜、酸窒化膜あるいはこのうちの少なくとも一方を含む積層膜を形成することが好ましい。また、前述した方法では、上面が略平坦なシリコン膜16(図2(c))を形成しているが、ここでは、トレンチ12上で凹部を有するシリコン膜26を形成する。 Next, as shown in FIG. 4A, the first insulating layer 6 and the silicon film 26 are formed inside the trench 12 and on the upper surface of the silicon carbide layer 2. Although a thermal oxide film may be formed as the first insulating layer 6, it is preferable here to form a nitride film, an oxynitride film, or a laminated film including at least one of them by a CVD method. In the above-described method, the silicon film 16 (FIG. 2C) having a substantially flat upper surface is formed. Here, however, a silicon film 26 having a recess is formed on the trench 12.
 この後、図4(b)に示すように、イオン注入または熱拡散により、シリコン膜26の表面から所定の深さまでの領域に不純物拡散層(第2シリコン層)8aを形成する。このとき、不純物拡散層8aの一部はトレンチ12内にも形成される。シリコン膜26のうち不純物拡散層8aが形成されなかった部分はアンドープシリコン層(第1シリコン層)7aとなる。 Thereafter, as shown in FIG. 4B, an impurity diffusion layer (second silicon layer) 8a is formed in a region from the surface of the silicon film 26 to a predetermined depth by ion implantation or thermal diffusion. At this time, a part of the impurity diffusion layer 8 a is also formed in the trench 12. A portion of the silicon film 26 where the impurity diffusion layer 8a is not formed becomes an undoped silicon layer (first silicon layer) 7a.
 次いで、図4(c)に示すように、熱処理を行い、シリコン膜26に含まれる不純物を活性化させることにより、ゲート電極8となる不純物活性層を形成する。熱処理の条件は、図3(a)を参照しながら前述した熱処理の条件と同様であってもよい。このとき、第1絶縁層6が熱酸化膜(SiO2膜)であれば、特にトレンチ12の開口の近傍で不純物が第1絶縁層6に拡散しやすくなる。これに対し、第1絶縁層6として窒化膜または酸窒化膜などの窒素を含有する膜を用いていると、不純物拡散層8aの不純物(リン)は第1絶縁層6の内部に拡散しにくいので、第1絶縁層6の特性(例えばQbd)の低下を防止できる。この後の工程は、図3(b)~(d)を参照しながら前述した工程と同様である。 Next, as shown in FIG. 4C, heat treatment is performed to activate the impurities contained in the silicon film 26, thereby forming an impurity active layer that becomes the gate electrode 8. The heat treatment conditions may be the same as the heat treatment conditions described above with reference to FIG. At this time, if the first insulating layer 6 is a thermal oxide film (SiO 2 film), impurities easily diffuse into the first insulating layer 6 particularly near the opening of the trench 12. On the other hand, when a film containing nitrogen such as a nitride film or an oxynitride film is used as the first insulating layer 6, the impurity (phosphorus) in the impurity diffusion layer 8 a is difficult to diffuse into the first insulating layer 6. Therefore, it is possible to prevent the characteristics (for example, Qbd) of the first insulating layer 6 from being deteriorated. Subsequent steps are the same as those described above with reference to FIGS. 3B to 3D.
 図4に示す方法によると、シリコン膜26の全表面から不純物をドープすればよく、トレンチ12内に位置する部分のみに対して選択的に不純物をドープする工程を行う必要がない。このため、注入マスクとなるレジストマスクを形成する工程を省略できるので、製造工程数を低減できる。 According to the method shown in FIG. 4, it suffices to dope impurities from the entire surface of the silicon film 26, and it is not necessary to perform a step of selectively doping impurities only in a portion located in the trench 12. For this reason, since the process of forming the resist mask used as an implantation mask can be omitted, the number of manufacturing processes can be reduced.
 本発明の半導体装置の製造方法は、図2~図4を参照しながら上述した方法に限定されない。 The semiconductor device manufacturing method of the present invention is not limited to the method described above with reference to FIGS.
 上述した方法では、シリコン膜16、26として、アンドープのポリシリコン膜を形成したが、代わりに、表面層にのみ不純物(例えばリン)がドープされたポリシリコン膜を形成してもよい。また、ポリシリコン膜の代わりにアモルファスシリコン膜を形成してもよい。シリコン膜16、26としてアモルファスシリコン膜を用いる場合、図3(a)または図4(c)に示す熱処理によって、アモルファスシリコン膜にドープされた不純物が拡散および活性化されるとともに、アモルファスシリコン膜が結晶化される。この結果、ドープされたポリシリコン層であるゲート電極8と、アンドープのポリシリコン層である第2絶縁層7が得られる。熱処理の条件は、例えば、不活性ガス雰囲気中、1000℃の温度で60秒間のRTA処理を行ってもよい。上記方法では、深さが1.5μmのトレンチ12を形成しているが、トレンチ12の深さはドリフト領域2dに達し、かつ、トレンチ12の底面上に所望の厚さの絶縁膜を形成できる深さに設定されればよく、特に限定されない。 In the above-described method, an undoped polysilicon film is formed as the silicon films 16 and 26. Alternatively, a polysilicon film doped with impurities (for example, phosphorus) only in the surface layer may be formed. Further, an amorphous silicon film may be formed instead of the polysilicon film. When an amorphous silicon film is used as the silicon films 16 and 26, the impurities doped in the amorphous silicon film are diffused and activated by the heat treatment shown in FIG. 3A or FIG. Crystallized. As a result, the gate electrode 8 which is a doped polysilicon layer and the second insulating layer 7 which is an undoped polysilicon layer are obtained. As the heat treatment conditions, for example, an RTA treatment for 60 seconds may be performed at a temperature of 1000 ° C. in an inert gas atmosphere. In the above method, the trench 12 having a depth of 1.5 μm is formed. However, the depth of the trench 12 reaches the drift region 2 d and an insulating film having a desired thickness can be formed on the bottom surface of the trench 12. There is no particular limitation as long as the depth is set.
 また、シリコン膜16、26の厚さは特に限定されず、トレンチ12の内部を全て埋め込むことができるように設定されればよい。そのようなシリコン膜16、26の厚さは、トレンチ12の幅によって異なるが、一般には、トレンチ12の幅の50~80%であることが好ましい。なお、トレンチ12の幅とは、基板1の主面の法線方向から見たときの、トレンチ12の開口の最大幅を指す。 Further, the thickness of the silicon films 16 and 26 is not particularly limited, and may be set so that the entire inside of the trench 12 can be buried. The thickness of such silicon films 16 and 26 varies depending on the width of the trench 12, but is generally preferably 50 to 80% of the width of the trench 12. The width of the trench 12 refers to the maximum width of the opening of the trench 12 when viewed from the normal direction of the main surface of the substrate 1.
 さらに、不純物拡散層8a、8bを形成するためのイオン注入条件、不純物拡散層8a、8b中の不純物を活性化させて活性層(ゲート電極8)を形成するための熱処理条件なども、上記で例示した条件に限定されない。特に、不純物イオンを注入する際の加速エネルギー、活性化のための熱処理の温度および時間は、第2絶縁層7となるアンドープシリコン層と、ゲート電極8となる活性層(ドープされたシリコン層)との界面が、ドリフト領域2dとボディ領域3との界面よりも深くなるように適宜設定されればよい。なお、本実施形態では、活性化のための熱処理としてRTAを行うことが好ましい。RTAによると、他の熱処理方法(例えば縦型拡散炉)よりも、アンドープシリコン層を厚く(例えば200nm以上)残すことができる。 Furthermore, the ion implantation conditions for forming the impurity diffusion layers 8a and 8b, the heat treatment conditions for activating the impurities in the impurity diffusion layers 8a and 8b to form the active layer (gate electrode 8), and the like are also described above. The conditions are not limited to the exemplified conditions. In particular, the acceleration energy at the time of implanting impurity ions, the temperature and time of the heat treatment for activation are as follows: an undoped silicon layer that becomes the second insulating layer 7 and an active layer (doped silicon layer) that becomes the gate electrode May be set as appropriate so that the interface between and the drift region 2d and the body region 3 is deeper. In the present embodiment, it is preferable to perform RTA as a heat treatment for activation. According to RTA, an undoped silicon layer can be left thicker (for example, 200 nm or more) than other heat treatment methods (for example, a vertical diffusion furnace).
 シリコン膜の形成方法は上述した方法に限定されない。本実施形態では、トレンチの底面および側面上に配置された第1シリコン層と、第1シリコン層の上に配置され、第1シリコン層よりも高い濃度で不純物を含む第2シリコン層とを含むシリコン膜を形成すればよい。このようなシリコン膜を形成すれば、熱処理によってシリコン膜に含まれる不純物を活性化させることにより、シリコン膜の一部から、ゲート電極として機能する導電層を得ることができる。 The method for forming the silicon film is not limited to the method described above. The present embodiment includes a first silicon layer disposed on the bottom and side surfaces of the trench, and a second silicon layer disposed on the first silicon layer and containing impurities at a higher concentration than the first silicon layer. A silicon film may be formed. When such a silicon film is formed, a conductive layer functioning as a gate electrode can be obtained from part of the silicon film by activating impurities contained in the silicon film by heat treatment.
 上述した方法では、シリコン膜16、26の一部に不純物イオンを注入することにより、シリコン膜16、26の不純物濃度を部分的に高めたが、代わりに、不純物濃度の低い第1シリコン層上に、第1シリコン層よりも不純物濃度の高い第2シリコン層を堆積させてもよい。 In the above-described method, the impurity concentration of the silicon films 16 and 26 is partially increased by implanting impurity ions into part of the silicon films 16 and 26, but instead, on the first silicon layer having a low impurity concentration. In addition, a second silicon layer having a higher impurity concentration than the first silicon layer may be deposited.
 図10(a)および(b)は、本実施形態の半導体装置の他の製造方法の一例を示す工程断面図である。この例では、アンドープシリコン層上にドープドシリコン層を堆積させることによって、シリコン膜を形成する。 10A and 10B are process cross-sectional views illustrating an example of another method for manufacturing the semiconductor device of the present embodiment. In this example, a silicon film is formed by depositing a doped silicon layer on an undoped silicon layer.
 まず、図2(a)および(b)を参照して前述した方法と同様の方法で、基板1上に炭化珪素層2を形成した後、炭化珪素層2にトレンチ12を形成する。 First, after silicon carbide layer 2 is formed on substrate 1 by the same method as described above with reference to FIGS. 2A and 2B, trench 12 is formed in silicon carbide layer 2.
 次いで、図10(a)に示すように、トレンチ12の内部および炭化珪素層2の上面上にシリコン層(第1シリコン層)36を形成する。この後、シリコン層36と、シリコン層36よりも高い濃度で不純物(例えばリン)を含むドープドシリコン層(第2シリコン層)37とをこの順で形成する。ドープドシリコン層37の不純物濃度は例えば8×1020cm-3である。このようにして、シリコン膜46を得る。 Next, as shown in FIG. 10A, a silicon layer (first silicon layer) 36 is formed inside the trench 12 and on the upper surface of the silicon carbide layer 2. Thereafter, a silicon layer 36 and a doped silicon layer (second silicon layer) 37 containing impurities (for example, phosphorus) at a higher concentration than the silicon layer 36 are formed in this order. The impurity concentration of the doped silicon layer 37 is, for example, 8 × 10 20 cm −3 . In this way, the silicon film 46 is obtained.
 シリコン層36とドープドシリコン層37とは連続的に形成(in situ)されることが好ましい。図示する例では、シリコン層36およびドープドシリコン層37の上面は、トレンチ12上で凹部を有しているが、これらの層36、37の上面は略平坦であってもよい。 It is preferable that the silicon layer 36 and the doped silicon layer 37 are formed continuously (in situ). In the illustrated example, the upper surfaces of the silicon layer 36 and the doped silicon layer 37 have recesses on the trench 12, but the upper surfaces of these layers 36 and 37 may be substantially flat.
 この後、熱処理を行うと、図10(b)に示すように、ドープドシリコン層37に含まれていた不純物(リン)の一部がシリコン層36に拡散するとともに、シリコン膜46に含まれる不純物が活性化され、ゲート電極8となる不純物活性層(導電層)が得られる。シリコン膜46のうち絶縁層として残った部分は第2絶縁層7となる。熱処理の条件は、図3(a)を参照しながら前述した熱処理の条件と同様であってもよい。 Thereafter, when heat treatment is performed, as shown in FIG. 10B, a part of the impurity (phosphorus) contained in the doped silicon layer 37 diffuses into the silicon layer 36 and is contained in the silicon film 46. The impurity is activated, and an impurity active layer (conductive layer) to be the gate electrode 8 is obtained. The remaining portion of the silicon film 46 as the insulating layer becomes the second insulating layer 7. The heat treatment conditions may be the same as the heat treatment conditions described above with reference to FIG.
 あるいは、図11(a)に示すように、シリコン層36およびドープドシリコン層37を含むシリコン膜46を形成した後、図11(b)に示すように、シリコン層36の一部に、リンイオンを注入することにより、不純物拡散層(第3シリコン層ともいう)38を形成してもよい。不純物拡散層38は、ドープドシリコン層37よりも深い位置に形成される。注入条件は、図2(e)を参照しながら前述した注入条件と同様であってもよい。 Alternatively, as shown in FIG. 11A, after a silicon film 46 including the silicon layer 36 and the doped silicon layer 37 is formed, phosphorus ions are formed on a part of the silicon layer 36 as shown in FIG. An impurity diffusion layer (also referred to as a third silicon layer) 38 may be formed by implanting. The impurity diffusion layer 38 is formed at a position deeper than the doped silicon layer 37. The injection conditions may be the same as the injection conditions described above with reference to FIG.
 続いて、熱処理を行うことにより、図11(c)に示すように、不純物拡散層38に含まれていたリンの一部がシリコン層36に拡散するとともに、これらの層36、37、38に含まれるリンが活性化される。これにより、シリコン膜46の一部からゲート電極8となる導電層が得られる。シリコン膜46のうち絶縁層として残った部分は第2絶縁層7となる。 Subsequently, by performing heat treatment, as shown in FIG. 11C, a part of phosphorus contained in the impurity diffusion layer 38 diffuses into the silicon layer 36, and in these layers 36, 37, 38, The contained phosphorus is activated. Thereby, a conductive layer to be the gate electrode 8 is obtained from a part of the silicon film 46. The remaining portion of the silicon film 46 as the insulating layer becomes the second insulating layer 7.
 上記方法では、基板1として4H-SiC基板を用いたが、他の結晶面や他のポリタイプのSiC基板を用いてもよい。また、4H-SiC基板を用いる場合、そのSi面に炭化珪素層2を形成し、C面にドレイン電極9を形成してもよいし、C面に炭化珪素層2、Si面にドレイン電極9を形成してもよい。 In the above method, a 4H—SiC substrate is used as the substrate 1, but other crystal planes or other polytype SiC substrates may be used. When a 4H—SiC substrate is used, the silicon carbide layer 2 may be formed on the Si surface, the drain electrode 9 may be formed on the C surface, the silicon carbide layer 2 on the C surface, and the drain electrode 9 on the Si surface. May be formed.
 図2~図4、図10および図11に示す断面図では、トレンチ12の側面と底面とが垂直に交わって角部(コーナー部)が形成されているが、トレンチ12がテーパー形状を有する場合には、側面と底面とは垂直に交わらなくてもよい。また、角部がエッチングもしくはエッチング以外の工程で丸みを帯びていても、上記と同様の効果を得ることができる。 In the cross-sectional views shown in FIGS. 2 to 4, 10, and 11, the side surface and the bottom surface of the trench 12 intersect perpendicularly to form a corner (corner portion), but the trench 12 has a tapered shape. However, the side surface and the bottom surface do not have to intersect perpendicularly. Even if the corner is rounded by etching or a process other than etching, the same effect as described above can be obtained.
 本発明の半導体装置の構成は、図1に示す構成に限定されない。図1に示す半導体装置100では、炭化珪素層2はボディ領域3、ソース領域4およびドリフト領域2dを有するが、さらに他の構成要素を有していてもよい。例えば、ドリフト領域2dのうちトレンチ12の底面近傍に位置する部分に、電界緩和のための第2導電型の不純物層を有していてもよい。また、トレンチ12の側面上にチャネル層が形成されていてもよい。 The configuration of the semiconductor device of the present invention is not limited to the configuration shown in FIG. In semiconductor device 100 shown in FIG. 1, silicon carbide layer 2 includes body region 3, source region 4, and drift region 2d, but may further include other components. For example, a portion of the drift region 2d located near the bottom surface of the trench 12 may have a second conductivity type impurity layer for electric field relaxation. A channel layer may be formed on the side surface of the trench 12.
 半導体装置100は、反転チャネル構造を有するMISFETであるが、本発明は蓄積チャネル構造を有するMISFETにも適用され、上記と同様の効果が得られる。 The semiconductor device 100 is a MISFET having an inverted channel structure, but the present invention is also applied to a MISFET having a storage channel structure, and the same effect as described above can be obtained.
 図5は、蓄積チャネル構造を有するMISFETを例示する断面図である。簡単のため、図1と同様の構成要素には、同じ参照符号を付し、説明を省略する。 FIG. 5 is a cross-sectional view illustrating a MISFET having a storage channel structure. For the sake of simplicity, the same components as those in FIG.
 図5に示す半導体装置のユニットセル200Uでは、トレンチ12の底面および側面上に、炭化珪素によって構成されるチャネル層18が形成されている。チャネル層18は、例えばエピタキシャル成長によって形成された第1導電型の炭化珪素層である。第1絶縁層6は、チャネル層18の表面部分を熱酸化することにより形成されていてもよい。その他の構成は、図1に示す構成と同様である。 In the unit cell 200U of the semiconductor device shown in FIG. 5, a channel layer 18 made of silicon carbide is formed on the bottom and side surfaces of the trench 12. Channel layer 18 is a silicon carbide layer of the first conductivity type formed by, for example, epitaxial growth. The first insulating layer 6 may be formed by thermally oxidizing the surface portion of the channel layer 18. Other configurations are the same as those shown in FIG.
 さらに、本発明は縦型MISFETに限定されず、炭化珪素層上に絶縁膜を介して電極が配置された構造を有する種々の半導体装置に適用され得る。例えば上記実施形態では、炭化珪素層(ドリフト領域)と同じ導電型の炭化珪素基板を用いてMISFETを製造しているが、炭化珪素層(ドリフト領域)と異なる導電型の炭化珪素基板を用いて絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を製造することもできる。 Furthermore, the present invention is not limited to a vertical MISFET, and can be applied to various semiconductor devices having a structure in which an electrode is disposed on a silicon carbide layer via an insulating film. For example, in the above embodiment, a MISFET is manufactured using a silicon carbide substrate having the same conductivity type as the silicon carbide layer (drift region). However, using a silicon carbide substrate having a conductivity type different from that of the silicon carbide layer (drift region). An insulated gate bipolar transistor (Insulated Gate Bipolar Transistor: IGBT) can also be manufactured.
 本発明は、炭化珪素層を用いた半導体装置に広く適用できる。特に、パワーMISFETなどのパワーSiCデバイス、およびそれを備えた種々の制御装置や駆動装置に好適に用いられる。 The present invention can be widely applied to semiconductor devices using a silicon carbide layer. In particular, it is suitably used for a power SiC device such as a power MISFET and various control devices and driving devices provided with the device.
 1  基板
 2  炭化珪素層
 2d ドリフト領域
 3  ボディ領域
 4  ソース領域
 5  ゲート絶縁膜
 6  第1絶縁層
 7  第2絶縁層
 7a、7b  アンドープシリコン層
 8  ゲート電極
 8a、8b  不純物拡散層
 9  ドレイン電極
 10 ソース電極
 11 絶縁膜
 12 トレンチ
 16、26、46  シリコン膜
 18 チャネル層
 21、22  レジストマスク
DESCRIPTION OF SYMBOLS 1 Substrate 2 Silicon carbide layer 2d Drift region 3 Body region 4 Source region 5 Gate insulating film 6 First insulating layer 7 Second insulating layer 7a, 7b Undoped silicon layer 8 Gate electrode 8a, 8b Impurity diffusion layer 9 Drain electrode 10 Source electrode 11 Insulating film 12 Trench 16, 26, 46 Silicon film 18 Channel layer 21, 22 Resist mask

Claims (15)

  1.  基板と、
     前記基板の主面上に配置された炭化珪素層と、
     前記炭化珪素層に配置された、底面および側面を有するトレンチと、
     前記トレンチの底面および側面に配置された絶縁膜と、
     前記トレンチ内に配置され、前記絶縁膜によって前記炭化珪素層と絶縁された導電層とを備え、
     前記導電層は、シリコンによって構成され、
     前記絶縁膜は、前記トレンチの底面および側面に配置された第1絶縁層と、前記第1絶縁層のうち前記トレンチの底面上に位置する部分と前記導電層との間に配置され、シリコンによって構成される第2絶縁層とを有し、
     前記第2絶縁層は前記導電層と接しており、
     前記絶縁膜の厚さは、前記トレンチの底面上で、前記トレンチの側面上の3倍以上である半導体装置。
    A substrate,
    A silicon carbide layer disposed on a main surface of the substrate;
    A trench having a bottom surface and a side surface disposed in the silicon carbide layer;
    Insulating films disposed on the bottom and side surfaces of the trench;
    A conductive layer disposed in the trench and insulated from the silicon carbide layer by the insulating film;
    The conductive layer is made of silicon;
    The insulating film is disposed between a first insulating layer disposed on a bottom surface and a side surface of the trench, a portion of the first insulating layer located on the bottom surface of the trench, and the conductive layer, and is made of silicon. A second insulating layer configured;
    The second insulating layer is in contact with the conductive layer;
    The thickness of the said insulating film is a semiconductor device which is 3 times or more on the side surface of the said trench on the bottom face of the said trench.
  2.  前記炭化珪素層は、第1導電型のドリフト領域と、前記ドリフト領域上に配置された第2導電型のボディ領域とを含み、
     前記トレンチは、前記ボディ領域を貫通し、前記ドリフト領域の内部に前記底面を有している請求項1に記載の半導体装置。
    The silicon carbide layer includes a first conductivity type drift region and a second conductivity type body region disposed on the drift region;
    The semiconductor device according to claim 1, wherein the trench penetrates the body region and has the bottom surface inside the drift region.
  3.  前記第2絶縁層の上面は前記導電層の下面と接しており、前記第2絶縁層と前記導電層との界面は、前記トレンチの側面における前記ボディ領域と前記ドリフト領域との界面よりも深い位置にある請求項2に記載の半導体装置。 The upper surface of the second insulating layer is in contact with the lower surface of the conductive layer, and the interface between the second insulating layer and the conductive layer is deeper than the interface between the body region and the drift region on the side surface of the trench. The semiconductor device according to claim 2, which is in a position.
  4.  前記第1絶縁層は、前記トレンチの側面上で前記導電層と接している請求項1から3のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the first insulating layer is in contact with the conductive layer on a side surface of the trench.
  5.  前記第2絶縁層の厚さは、前記第1絶縁層の厚さの3倍以上である請求項1から4のいずれかに記載の半導体装置。 5. The semiconductor device according to claim 1, wherein a thickness of the second insulating layer is three times or more a thickness of the first insulating layer.
  6.  前記第1絶縁層は窒化膜および酸窒化膜のうち少なくとも一方を含む請求項1から5のいずれかに記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the first insulating layer includes at least one of a nitride film and an oxynitride film.
  7.  前記導電層は、1×1018cm-3よりも高い濃度で不純物がドープされたシリコン層であり、前記第2絶縁層は、前記不純物を含まないか、あるいは、1×1018cm-3以下の濃度で前記不純物を含むシリコン層である請求項1から6のいずれかに記載の半導体装置。 The conductive layer is a silicon layer doped with impurities at a concentration higher than 1 × 10 18 cm −3 , and the second insulating layer does not contain the impurities, or 1 × 10 18 cm −3. The semiconductor device according to claim 1, which is a silicon layer containing the impurity at the following concentration.
  8.  前記基板は炭化珪素基板であり、前記主面は(0001)シリコン面である請求項1から7のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the substrate is a silicon carbide substrate, and the main surface is a (0001) silicon surface.
  9.  炭化珪素層を有する半導体装置の製造方法であって、
     (A)主面上に炭化珪素層が形成された基板を用意する工程と、
     (B)前記炭化珪素層に、底面および側面を有するトレンチを形成する工程と、
     (C)前記トレンチの底面および側面上に第1絶縁層を形成する工程と、
     (D)前記第1絶縁層上に、第1シリコン層と、前記第1シリコン層上に形成され、前記第1シリコン層よりも高い濃度で不純物を含む第2シリコン層とを含むシリコン膜を形成する工程と、
     (E)熱処理を行って前記シリコン膜に含まれる不純物を活性化させることにより導電層を形成し、前記シリコン膜のうち前記導電層が形成されなかった部分が第2絶縁層となる工程と
    を包含し、
     前記第2絶縁層は前記導電層と接しており、
     前記第1絶縁層と前記第2絶縁層とによって構成される絶縁膜の厚さは、前記トレンチの底面上で、前記トレンチの側面上の3倍以上である半導体装置の製造方法。
    A method of manufacturing a semiconductor device having a silicon carbide layer,
    (A) preparing a substrate having a silicon carbide layer formed on the main surface;
    (B) forming a trench having a bottom surface and a side surface in the silicon carbide layer;
    (C) forming a first insulating layer on the bottom and side surfaces of the trench;
    (D) A silicon film including a first silicon layer on the first insulating layer and a second silicon layer formed on the first silicon layer and containing impurities at a higher concentration than the first silicon layer. Forming, and
    (E) performing a heat treatment to activate impurities contained in the silicon film to form a conductive layer, and a portion of the silicon film where the conductive layer is not formed becomes a second insulating layer; Contains
    The second insulating layer is in contact with the conductive layer;
    The method of manufacturing a semiconductor device, wherein a thickness of an insulating film formed by the first insulating layer and the second insulating layer is three times or more on a bottom surface of the trench and on a side surface of the trench.
  10.  前記工程(D)は、
      前記第1絶縁層上にシリコン膜を形成する工程(d1)と、
      前記シリコン膜に対して所定の深さまで不純物をドープすることにより、前記シリコン膜の一部に第2シリコン層を形成し、前記シリコン膜のうち前記第2シリコン層が形成されなかった部分が前記第1シリコン層となる工程(d2)と
    を含む請求項9に記載の半導体装置の製造方法。
    The step (D)
    Forming a silicon film on the first insulating layer (d1);
    A second silicon layer is formed in a part of the silicon film by doping impurities to a predetermined depth with respect to the silicon film, and a portion of the silicon film where the second silicon layer is not formed is The method for manufacturing a semiconductor device according to claim 9, further comprising a step (d <b> 2) of becoming a first silicon layer.
  11.  前記工程(D)は、前記第1絶縁層上に第1シリコン層を形成する工程と、前記第1シリコン層上に前記第2シリコン層を堆積する工程とを含む請求項9に記載の半導体装置の製造方法。 10. The semiconductor according to claim 9, wherein the step (D) includes a step of forming a first silicon layer on the first insulating layer and a step of depositing the second silicon layer on the first silicon layer. Device manufacturing method.
  12.  前記工程(A)において、前記炭化珪素層は、第1導電型のドリフト領域と、前記ドリフト領域上に配置された第2導電型のボディ領域とを含んでおり、
     前記工程(B)において、前記トレンチは、前記ボディ領域を貫通し、前記ドリフト領域の内部に前記底面を有するように形成し、
     前記工程(D)における前記第1シリコン層および前記第2シリコン層の厚さおよび不純物濃度、および、前記工程(E)における熱処理の条件は、前記導電層と前記第2絶縁層との界面が、前記トレンチの側面における前記ボディ領域と前記ドリフト領域との界面よりも深い位置になるように制御される請求項9から11のいずれかに記載の半導体装置の製造方法。
    In the step (A), the silicon carbide layer includes a first conductivity type drift region and a second conductivity type body region disposed on the drift region,
    In the step (B), the trench is formed so as to penetrate the body region and have the bottom surface inside the drift region;
    The thickness and impurity concentration of the first silicon layer and the second silicon layer in the step (D), and the heat treatment conditions in the step (E) are such that the interface between the conductive layer and the second insulating layer is The method of manufacturing a semiconductor device according to claim 9, wherein the semiconductor device is controlled so as to be deeper than an interface between the body region and the drift region on a side surface of the trench.
  13.  前記工程(D)において、前記シリコン膜は前記トレンチ内および前記炭化珪素層上に形成され、
     前記シリコン膜のうち前記トレンチ内に位置する部分に選択的に前記不純物のイオン注入を行うことにより、前記第2シリコン層よりも深い位置に第3シリコン層を形成する工程と
    を含み、
     前記工程(E)では、前記第2シリコン層および前記第3シリコン層内の不純物を活性化させる請求項9から12のいずれかに記載の半導体装置の製造方法。
    In the step (D), the silicon film is formed in the trench and on the silicon carbide layer,
    Forming a third silicon layer deeper than the second silicon layer by selectively ion-implanting the impurity into a portion of the silicon film located in the trench,
    13. The method for manufacturing a semiconductor device according to claim 9, wherein in the step (E), impurities in the second silicon layer and the third silicon layer are activated.
  14.  前記第1絶縁層は窒化膜および酸窒化膜のうち少なくとも一方を含む請求項9から13のいずれかに記載の半導体装置の製造方法。 14. The method of manufacturing a semiconductor device according to claim 9, wherein the first insulating layer includes at least one of a nitride film and an oxynitride film.
  15.  前記基板は炭化珪素基板であり、前記主面は(0001)シリコン面である請求項9から14のいずれかに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 9, wherein the substrate is a silicon carbide substrate, and the main surface is a (0001) silicon surface.
PCT/JP2012/000243 2011-01-17 2012-01-17 Semiconductor device and method for manufacturing same WO2012098861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006810 2011-01-17
JP2011006810 2011-01-17

Publications (1)

Publication Number Publication Date
WO2012098861A1 true WO2012098861A1 (en) 2012-07-26

Family

ID=46515497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000243 WO2012098861A1 (en) 2011-01-17 2012-01-17 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012098861A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041910A1 (en) * 2012-09-12 2014-03-20 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
WO2014041879A1 (en) * 2012-09-12 2014-03-20 住友電気工業株式会社 Silicon carbide semiconductor device
WO2014083943A1 (en) * 2012-11-28 2014-06-05 住友電気工業株式会社 Silicon carbide semiconductor device, and manufacturing method for same
WO2014148130A1 (en) * 2013-03-19 2014-09-25 住友電気工業株式会社 Silicon-carbide semiconductor device and manufacturing method therefor
US9087693B2 (en) 2012-09-12 2015-07-21 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
EP2988323A4 (en) * 2013-04-16 2016-11-30 Sumitomo Electric Industries Method for manufacturing silicon carbide semiconductor device
CN109390395A (en) * 2017-08-08 2019-02-26 三菱电机株式会社 Semiconductor device and power-converting device
JP2019033140A (en) * 2017-08-04 2019-02-28 富士電機株式会社 Semiconductor device and semiconductor device thereof
CN114597257A (en) * 2022-05-05 2022-06-07 南京微盟电子有限公司 Trench gate silicon carbide MOSFET device and process method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088429A (en) * 1994-06-22 1996-01-12 Nippondenso Co Ltd Semiconductor device
JPH10173175A (en) * 1996-12-09 1998-06-26 Toshiba Corp Semiconductor device and its manufacture
JPH1168102A (en) * 1997-08-21 1999-03-09 Toshiba Corp Production of semiconductor device
JP2002026323A (en) * 2000-06-08 2002-01-25 Siliconix Inc Method of manufacturing trench gate type mis device having thick polysilicon insulating layer at bottom of trench
JP2002261275A (en) * 2001-03-05 2002-09-13 Shikusuon:Kk Mos device
JP2007242943A (en) * 2006-03-09 2007-09-20 Fuji Electric Device Technology Co Ltd Process for fabrication of mos semiconductor device
JP2008218527A (en) * 2007-02-28 2008-09-18 Sharp Corp Trench type mosfet and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088429A (en) * 1994-06-22 1996-01-12 Nippondenso Co Ltd Semiconductor device
JPH10173175A (en) * 1996-12-09 1998-06-26 Toshiba Corp Semiconductor device and its manufacture
JPH1168102A (en) * 1997-08-21 1999-03-09 Toshiba Corp Production of semiconductor device
JP2002026323A (en) * 2000-06-08 2002-01-25 Siliconix Inc Method of manufacturing trench gate type mis device having thick polysilicon insulating layer at bottom of trench
JP2002261275A (en) * 2001-03-05 2002-09-13 Shikusuon:Kk Mos device
JP2007242943A (en) * 2006-03-09 2007-09-20 Fuji Electric Device Technology Co Ltd Process for fabrication of mos semiconductor device
JP2008218527A (en) * 2007-02-28 2008-09-18 Sharp Corp Trench type mosfet and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543412B2 (en) 2012-09-12 2017-01-10 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
WO2014041879A1 (en) * 2012-09-12 2014-03-20 住友電気工業株式会社 Silicon carbide semiconductor device
JP2014056914A (en) * 2012-09-12 2014-03-27 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method
US9679986B2 (en) 2012-09-12 2017-06-13 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US8927368B2 (en) 2012-09-12 2015-01-06 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US9087693B2 (en) 2012-09-12 2015-07-21 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
WO2014041910A1 (en) * 2012-09-12 2014-03-20 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
WO2014083943A1 (en) * 2012-11-28 2014-06-05 住友電気工業株式会社 Silicon carbide semiconductor device, and manufacturing method for same
US9362121B2 (en) 2012-11-28 2016-06-07 Sumitomo Electric Industries, Ltd. Method of manufacturing a silicon carbide semiconductor device
JPWO2014148130A1 (en) * 2013-03-19 2017-02-16 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US9666681B2 (en) 2013-03-19 2017-05-30 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
WO2014148130A1 (en) * 2013-03-19 2014-09-25 住友電気工業株式会社 Silicon-carbide semiconductor device and manufacturing method therefor
JP2018088527A (en) * 2013-03-19 2018-06-07 住友電気工業株式会社 Silicon carbide semiconductor device
EP2988323A4 (en) * 2013-04-16 2016-11-30 Sumitomo Electric Industries Method for manufacturing silicon carbide semiconductor device
US9793365B2 (en) 2013-04-16 2017-10-17 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device having trench
JP2019033140A (en) * 2017-08-04 2019-02-28 富士電機株式会社 Semiconductor device and semiconductor device thereof
CN109390395A (en) * 2017-08-08 2019-02-26 三菱电机株式会社 Semiconductor device and power-converting device
JP2019033163A (en) * 2017-08-08 2019-02-28 三菱電機株式会社 Semiconductor device and power conversion device
CN109390395B (en) * 2017-08-08 2021-10-29 三菱电机株式会社 Semiconductor device and power conversion device
CN114597257A (en) * 2022-05-05 2022-06-07 南京微盟电子有限公司 Trench gate silicon carbide MOSFET device and process method thereof

Similar Documents

Publication Publication Date Title
WO2012098861A1 (en) Semiconductor device and method for manufacturing same
US9490338B2 (en) Silicon carbide semiconductor apparatus and method of manufacturing same
JP5395309B2 (en) Semiconductor device and manufacturing method thereof
US9673288B2 (en) Silicon carbide semiconductor device including conductivity layer in trench
JP4761942B2 (en) Semiconductor device
WO2013001677A1 (en) Semiconductor device and method for manufacturing same
JP6032831B2 (en) SiC semiconductor device and manufacturing method thereof
US10304930B2 (en) Semiconductor device implanted with arsenic and nitrogen
US9673315B2 (en) Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP2018046163A (en) Semiconductor device and semiconductor device manufacturing method
CN108604600B (en) Silicon carbide semiconductor device and method for manufacturing same
US20180366549A1 (en) Semiconductor device and method of manufacturing a semiconductor device
JP2013197167A (en) SiC SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
JP5676923B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4842527B2 (en) Manufacturing method of semiconductor device
WO2012105170A1 (en) Semiconductor device and manufacturing method thereof
US20210043765A1 (en) Silicon carbide semiconductor device and manufacturing method of same
US10418478B2 (en) Semiconductor device
US10147797B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP5059989B1 (en) Semiconductor device and manufacturing method thereof
US20220285489A1 (en) Super junction silicon carbide semiconductor device and manufacturing method thereof
JP6090986B2 (en) SiC semiconductor device and manufacturing method thereof
JP2021010027A (en) Semiconductor device and manufacturing method of semiconductor device
WO2015111177A1 (en) Semiconductor device, power module, power conversion device, and railway vehicle
JP2017092364A (en) Semiconductor device and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737036

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP