WO2012098847A1 - Method of manufacturing plasma display panel - Google Patents

Method of manufacturing plasma display panel Download PDF

Info

Publication number
WO2012098847A1
WO2012098847A1 PCT/JP2012/000198 JP2012000198W WO2012098847A1 WO 2012098847 A1 WO2012098847 A1 WO 2012098847A1 JP 2012000198 W JP2012000198 W JP 2012000198W WO 2012098847 A1 WO2012098847 A1 WO 2012098847A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
front panel
panel
sealing
pdp
Prior art date
Application number
PCT/JP2012/000198
Other languages
French (fr)
Japanese (ja)
Inventor
憲輝 前田
修 種田
沖川 昌史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012098847A1 publication Critical patent/WO2012098847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/48Sealing, e.g. seals specially adapted for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/385Exhausting vessels

Definitions

  • the technology disclosed herein relates to a method for manufacturing a plasma display panel used for a display device or the like.
  • a thin glass substrate has been used as a glass substrate used for a front panel and a rear panel of a plasma display panel (hereinafter referred to as PDP).
  • PDP plasma display panel
  • the width of the partition wall is narrowed along with the higher definition of the PDP. In such PDPs, reduction of mechanical strength has become a problem.
  • the mechanical strength is improved by bringing the front panel and the rear panel into close contact with each other so that no gap is generated.
  • a technique for bonding the upper surface of the partition wall of the rear panel to the front panel is known (see, for example, Patent Document 1).
  • the manufacturing method of the PDP is to manufacture a front panel, to manufacture a back panel with partition walls for partitioning discharge cells, to place the front panel and the back panel facing each other, and to seal the periphery of the front panel and the back panel. Sealing with an attachment member, and exhausting the inside of the discharge cell.
  • a coupling member is arranged on the top of the partition wall, and the sealing temperature T0 when the periphery of the front panel and the rear panel is sealed with the sealing member, the yielding point T1 of the coupling member, the yielding point T2 of the sealing member, and the discharge cell.
  • the temperature T3 at which the pressure reduction starts is in a relationship of T0 ⁇ T1 ⁇ 30 ° C., T1 ⁇ T2 ⁇ T0, and T1 ⁇ T3 ⁇ T0.
  • FIG. 1 is a perspective view showing the structure of the PDP according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the discharge cell structure of the PDP according to the present embodiment.
  • FIG. 3 is a schematic diagram illustrating a configuration of a main part of the PDP according to the present embodiment.
  • FIG. 4 is a manufacturing process diagram of the PDP according to the present embodiment.
  • FIG. 5 is a diagram illustrating an example of a temperature profile in the sealing process, the exhaust process, and the discharge gas supply process in the manufacturing process of the PDP according to the present embodiment.
  • FIG. 6 is a first schematic diagram showing the configuration of the main part of the PDP in the manufacturing process of the PDP according to the present embodiment.
  • FIG. 1 is a perspective view showing the structure of the PDP according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the discharge cell structure of the PDP according to the present embodiment.
  • FIG. 3 is a schematic diagram illustrating a configuration of a main part
  • FIG. 7 is a second schematic diagram showing the configuration of the main part of the PDP in the manufacturing process of the PDP according to the present embodiment.
  • FIG. 8 is a plan view seen from the front plate side showing the configuration of the image display unit of the PDP according to the present embodiment.
  • FIG. 9 is a diagram showing the relationship between the bonding area, bonding strength, and driving voltage of the PDP according to the present embodiment.
  • FIG. 10 is a diagram illustrating an example of a temperature profile and a pressure profile in the sealing process and the exhaust process in the manufacturing process of the PDP according to the present embodiment.
  • the PDP 100 according to the present embodiment is an AC surface discharge type PDP.
  • FIGS. 1 and 2 a plurality of strip-shaped display electrodes 4 and black stripes (light-shielding layers) 5 each made up of a scanning electrode 2 and a sustaining electrode 3 are parallel to each other on a glass front substrate 1. Arranged in columns. Scan electrode 2 and sustain electrode 3 are arranged in a repeating pattern of scan electrode 2 -sustain electrode 3 -sustain electrode 3 -scan electrode 2.
  • the scan electrode 2 is a bus made of silver (Ag) or the like provided on a transparent electrode made of a conductive metal oxide such as indium tin oxide (ITO), tin dioxide (SnO 2 ), or zinc oxide (ZnO). Including electrodes.
  • a conductive metal oxide such as indium tin oxide (ITO), tin dioxide (SnO 2 ), or zinc oxide (ZnO).
  • the sustain electrode 3 includes a bus electrode made of Ag or the like provided on a transparent electrode made of a conductive metal oxide such as ITO, SnO 2 , or ZnO.
  • a dielectric layer 6 serving as a capacitor is formed on the front substrate 1 so as to cover the display electrode 4 and the light shielding layer 5.
  • the dielectric layer 6 is made of a dielectric material containing silica fine particles having a particle size of 100 nm or less.
  • the dielectric layer 6 has a thickness of 20 ⁇ m or less and a relative dielectric constant of 2 or more and 4 or less.
  • a dielectric material ink in which silica fine particles having a particle size of 8 nm to 20 nm and a relative dielectric constant of about 4 are dispersed in a siloxane polymer organic solvent is used.
  • a dielectric material ink in which silica fine particles such as colloidal silica having a particle size of 8 nm to 20 nm and a relative dielectric constant of about 4 is dispersed in an aqueous solution is used.
  • the dielectric material ink is applied on the front substrate 1 by a die coating method or the like so as to cover the display electrode 4 and the light shielding layer 5. Thereafter, a dielectric layer 6 having a thickness of 20 ⁇ m or less and a relative dielectric constant of 2 or more and 4 or less is formed through drying and firing.
  • a protective layer 7 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 6.
  • the front panel 50 includes a front substrate 1, display electrodes 4, a light shielding layer 5, a dielectric layer 6, and a protective layer 7.
  • the light shielding layer 5 may be omitted.
  • FIGS. 1 and 2 a plurality of data electrodes 9 made of a conductive material mainly composed of Ag parallel to each other are arranged on a glass back substrate 8.
  • a base dielectric layer 10 is provided so as to cover the data electrode 9.
  • the partition wall 11 includes a vertical partition wall 11 a disposed in parallel with the data electrode 9 and a horizontal partition wall 11 b formed in a direction intersecting with the data electrode 9.
  • the back panel 60 includes a back substrate 8, data electrodes 9, a base dielectric layer 10, barrier ribs 11 and a phosphor layer 12.
  • the front panel 50 and the back panel 60 are arranged to face each other so that the scan electrodes 2 and the sustain electrodes 3 and the data electrodes 9 are three-dimensionally crossed.
  • the peripheral portions of the front panel 50 and the back panel 60 are hermetically sealed by a sealing member made of glass frit or the like.
  • a discharge gas such as neon (Ne) and xenon (Xe) is sealed in a discharge space 13 inside the sealed PDP 100 at a pressure of 53 kPa to 80 kPa.
  • a discharge cell is formed at a portion where scan electrode 2 and sustain electrode 3 and data electrode 9 face each other. The discharge cell will be described in detail later.
  • the discharge gas mixed so that Xe is contained at 15% or more and 30% or less is enclosed in the discharge space 13.
  • the thickness of the bus electrode in the display electrode 4 is about 5 ⁇ m.
  • the films thickness of the dielectric layer 6 is 20 ⁇ m or less, the surfaces of the dielectric layer 6 and the protective layer 7 are raised by the step of the display electrode 4. That is, irregularities are formed on the surface of the front panel 50 so as to correspond to the display electrodes 4.
  • the protective layer 7 is omitted.
  • the PDP 100 When the PDP 100 is configured by superimposing the front panel 50 and the rear panel 60 on which irregularities are formed, a gap is formed between the vertical partition walls 11 a formed in parallel to the data electrodes 9 and the front panel 50. The mechanical strength of the PDP 100 decreases due to the gap.
  • a bonding layer 20 made of a glass material for bonding to the front panel 50 is provided at least on the uppermost portion of the vertical partition wall 11a.
  • the bonding layer 20 has a yield point lower than a sealing temperature when the front panel 50 and the back panel 60 are sealed with a glass frit as a sealing member. Further, the bonding layer 20 has a softening point equal to or higher than the sealing temperature. Further, the bonding layer 20 is made of a glass material containing Bi. Note that the bonding layer 20 may be provided not only on the vertical barrier ribs 11a but also on the horizontal barrier ribs 11b.
  • the bonding layer 20 is bonded to the front panel 50 by applying pressure uniformly over the entire surface of the front panel 50 and the back panel 60.
  • the pressure between the front panel 50 and the back panel 60 is reduced to cover the entire area of the front panel 50 and the back panel 60. It is possible to apply pressure uniformly.
  • the PDP according to the present embodiment is manufactured by a front panel creation process, a back panel creation process, a frit coating process, a sealing process, an exhaust process, and a discharge gas supply process.
  • a glass frit as a sealing member is applied to the outside of the image display area of the back panel 60. Thereafter, the back panel 60 is temporarily fired at a temperature of about 350 ° C. in order to remove the resin component of the glass frit.
  • the front panel 50 and the rear panel 60 are arranged to face each other so as to form a discharge space.
  • the periphery of the front panel 50 and the back panel 60 is sealed with a sealing member.
  • the gas in the discharge space 13 is exhausted to a vacuum.
  • a discharge gas mainly containing Ne and Xe is supplied to the exhausted discharge space 13.
  • the temperature is raised from the softening point to the sealing temperature during a period in which the temperature is raised from room temperature to the softening point of the glass frit as the sealing member (period 1), and held for a certain period of time. After that, it has a period (period 2) in which it is lowered to the softening point.
  • the exhaust process has a period (period 3) in which the temperature is lowered to room temperature after being held at a temperature near or slightly lower than the softening point temperature for a certain time.
  • the discharge gas supply step has a period (period 4) in which the discharge gas is supplied to the discharge space after being lowered to room temperature.
  • the yield point of the glass material is considered to be the temperature at which expansion stops apparently in the thermal expansion curve. Specifically, a temperature corresponding to a viscosity of about 10 10 to 10 11 dPa ⁇ s is regarded as a yield point.
  • the softening point of the glass material is a temperature at which the glass begins to be significantly softened and deformed by its own weight. Specifically, a temperature corresponding to a viscosity of about 10 7.6 dPa ⁇ s is regarded as the softening point.
  • the yield point and softening point of the glass frit in the present embodiment will be described later.
  • the sealing temperature is a temperature at which the front panel 50 and the rear panel 60 are sealed by the glass frit that is a sealing member.
  • the sealing temperature in the present embodiment will be described later.
  • the back panel 60 has a data electrode 9, a base dielectric layer 10, and a grid-like partition wall 11 on a glass back substrate 8.
  • the partition wall 11 is formed in a cross-beam shape by an exposure / development process after a glass material containing a photosensitive resin is applied on the underlying dielectric layer 10. Thereafter, the photosensitive resin and the like are burned through a baking process.
  • a bonding layer 20 made of a glass material containing Bi is provided on the top of the vertical partition wall 11a.
  • the glass material constituting the bonding layer 20 has a yield point that is lower than the sealing temperature and a softening point that is higher than the sealing temperature. Moreover, the glass material used for the partition 11 has a yield point and a softening point that are equal to or higher than the sealing temperature.
  • the bonding layer 20 is bonded to the front panel 50 as shown in FIG.
  • the sealing member is preferably a glass frit mainly composed of bismuth oxide or vanadium oxide.
  • the glass frit mainly composed of bismuth oxide for example, Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca and Mg, and M is Any one of Cu, Sb, and Fe)
  • a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite
  • a frit mainly composed of vanadium oxide for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 , cordierite or the like is added to a V 2 O 5 —BaO—TeO—WO glass material. Can be used.
  • glass frit containing bismuth oxide is desirable.
  • the glass frit containing bismuth oxide for example, Bi 2 O 3 —B 2 O 3 —ZnO—SiO 2 —RO glass powder is used.
  • a photosensitive paste can be manufactured using a glass frit containing bismuth oxide. When the photosensitive paste is used, a desired shape can be obtained by exposure and development after the photosensitive paste is applied onto the partition wall 11.
  • a printing paste can be manufactured using Bi 2 O 3 —B 2 O 3 —ZnO—SiO 2 —RO glass powder. When a printing paste is used, a desired shape can be obtained by silk printing on the partition wall 11.
  • the yield point temperature of the glass material is 487 ° C. to 489 ° C.
  • the softening point temperature is about 530 ° C.
  • the glass material constituting the bonding layer 20 has a yield point lower than the sealing temperature and a softening point higher than the sealing temperature will be described.
  • Sealing between glass substrates is generally performed at a temperature higher than the softening point temperature of the sealing member.
  • the glass material is in a so-called softening flow region.
  • the discharge voltage increases or the luminance decreases due to the glass material flowing into the discharge space 13 or the increase in the amount of gas released from the bonding layer 20.
  • the temperature is higher than the yield point of the glass material constituting the bonding layer 20. It was found that it can be bonded. In other words, the glass material constituting the bonding layer 20 could be stably bonded without causing a problem such as a voltage increase or a luminance decrease in a so-called sintered region not less than the yield point and not more than the softening point.
  • the front panel 50 and the back panel 60 are bonded by the bonding layer 20. That is, the front panel 50 and the back panel 60 can be brought into close contact so that no gap is generated. Therefore, the strength of the PDP 100 can be improved.
  • the scan electrodes 2 and the sustain electrodes 3 are alternately arranged in the row direction so as to be adjacent to each other with a discharge gap in each line of the matrix display.
  • the discharge cell 51 is a rectangular region centered on a portion partitioned by the plurality of vertical barrier ribs 11a and the plurality of horizontal barrier ribs 11b and perpendicular to the display electrodes 4 and the data electrodes 9.
  • the discharge cell 51 is a unit light emitting region in the PDP 100.
  • a non-discharge region 52 is formed between adjacent discharge cells 51.
  • black stripes 5 for improving the contrast are formed.
  • one discharge cell 51 is a region partitioned by a one-dot chain line.
  • the area of the discharge cell 51 is defined as S
  • the area where the front panel 50 and the back panel 60 are bonded to each other in the bonding layer 20 is 10% to 30% with respect to S. preferable.
  • the bonded area is the bonded area 53.
  • the adhesion region 53 is shown only around the discharge cell 51 defined by the one-dot chain line. However, the adhesion region 53 is also present in the other adjacent discharge cells 51 as well.
  • R be the bonding area between the front panel 50 and the back panel 60 in the region of the discharge cell 51. As shown in FIG. 9, it can be seen that the adhesive strength between the front panel 50 and the back panel 60 increases linearly according to the adhesion area. It has been confirmed that the mechanical strength of the PDP 100 increases according to the adhesive strength.
  • the adhesion area is preferably between 10% and 30%.
  • FIG. 10 the temperature profile of the sealing process and the exhaust process is shown by a solid line.
  • the pressure profile inside the PDP 100 is indicated by a broken line.
  • the sealing temperature (T0), the yield point temperature (T1) of the glass material constituting the bonding layer 20, the yield point (T2) of the glass frit of the sealing member, and the decompression start temperature (T3) Relationships are defined. That is, T0, T1, T2, and T3 have the following relationship. T0 ⁇ T1 ⁇ 30 ° C., T1 ⁇ T2 ⁇ T0, T1 ⁇ T3 ⁇ T0. By satisfying the above relationship, adhesion between the bonding layer 20 and the front panel 50 can be further strengthened.
  • a sample substrate a is prepared in which MgO having the same configuration as that of the protective film 7 is deposited on a raw glass on which no component is provided.
  • a sample substrate b having the same configuration as that of the back panel 60 is prepared.
  • Each of the sample substrate a and the sample substrate b is cut out so as to be a square having a side of 50 mm.
  • substrate b may contact.
  • a constant load is applied from both sides of the material substrate a and the material substrate b in the heating furnace.
  • T1 The temperature at which the displacement changes from increasing to decreasing.
  • the yield point temperature is calculated by calculating the slope of the tangent near the inflection point in the relationship between the displacement and the temperature.
  • Table 1 shows the relationship between T0 and T1.
  • All the PDPs 100 used for evaluation have the bonding layer 20.
  • the bonding layer 20 has five conditions. That is, T1 was fixed at 475 ° C.
  • T0 is five conditions of 490 ° C. (sample 1), 495 ° C. (sample 2), 500 ° C. (sample 3), 505 ° C. (sample 4) and 510 ° C. (sample 5).
  • Evaluation items are a steel ball drop test and a differential pressure test.
  • the steel ball drop test is a test in which a 500 g steel ball is dropped onto the PDP 100 at different heights. The height at which the bonding layer 20 peels off and the PDP 100 breaks is measured by the energy of the steel balls falling.
  • the differential pressure test is a test in which the pressure in the chamber is reduced while the PDP device installed in the chamber is lit.
  • the PDP device has a configuration in which a chassis, a circuit board, and the like are connected to the PDP 100.
  • the differential pressure P1-P2 when the coupling layer 20 peels off and the lighting state changes is measured with respect to the gas pressure P1 and the chamber internal pressure P2 inside the PDP 100. If the differential pressure is large, the bonding layer 20 adheres the front panel 50 and the back panel 60 more firmly.
  • Table 2 shows the relationship between T1 and T2.
  • All the PDPs 100 used for evaluation have the bonding layer 20.
  • the bonding layer 20 has two rights. That is, T1 was fixed at 475 ° C. T0 was fixed at 505 ° C. T2 is two conditions of 470 ° C. (sample 6) and 490 ° C. (sample 7).
  • the evaluation item is a package drop test.
  • the package drop test is a test in which the PDP device is dropped from a predetermined height in the shipping state.
  • the shipping state is a state in which the PDP device is wrapped with a protective material such as polystyrene foam and further packed with cardboard.
  • chipping may occur in the partition wall due to the impact of dropping.
  • the discharge cell may become unlit.
  • the total number of unlit lamps of 10 sets of 42-inch diagonal PDP devices was measured.
  • T3 is preferably higher than T1. This is because a substantially uniform pressure can be applied to the entire surface of the PDP 100 by reducing the pressure inside the PDP 100. Since the viscosity of the bonding layer 20 is lowered in this state, the bonding layer 20 and the front panel 50 are bonded uniformly. That is, by setting T1 ⁇ T3 ⁇ T0, the adhesion between the front panel 50 and the back panel 60 can be made in-plane uniform.
  • the PDP 100 having the protective layer 7 containing MgO and calcium oxide (CaO) was found to have a withstand voltage 1.2 times higher in the differential pressure test. That is, even if the structure of the coupling layer 20 is the same, it means that the breakdown voltage is 1.2 times. This is presumably because the reaction between the bonding layer 20 and the protective film 7 was promoted by the protective film 7 containing calcium (Ca).
  • the manufacturing method of the PDP 100 includes manufacturing the front panel 50, manufacturing the back panel 60 with the partition walls partitioning the discharge cells, disposing the front panel 50 and the back panel 60 facing each other, The periphery of the front panel 50 and the back panel 60 is sealed with a sealing member, and the inside of the discharge cell is evacuated.
  • a coupling member is arranged on the top of the partition wall, and a sealing temperature T0 when the periphery of the front panel 50 and the back panel 60 is sealed by the sealing member, a yielding point T1 of the coupling member, a yielding point T2 of the sealing member, and The temperature T3 at which pressure reduction in the discharge cell is started has a relationship of T0 ⁇ T1 ⁇ 30 ° C., T1 ⁇ T2 ⁇ T0, and T1 ⁇ T3 ⁇ T0. According to the above method, the mechanical strength of the PDP 100 can be improved.
  • the PDP 100 includes a front panel 50 and a rear panel 60 provided to face the front panel 50 and having partition walls that partition discharge cells.
  • the front panel 50 and the back panel 60 are sealed at the periphery, and the front panel 50 and the back panel 60 are bonded to each other at the upper part of the partition wall.
  • the area where the discharge cell is bonded to the front panel 50 or the back panel 60 is 10% or more and 30% or less. According to the above configuration, it is possible to suppress the occurrence of defects due to peeling or the like in the manufacturing process / market. Further, it is possible to realize the PDP 100 that suppresses an increase in driving voltage and has high mechanical strength.
  • the technique disclosed herein is useful for realizing a plasma display device with improved mechanical strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

This method of manufacturing a plasma display panel comprises manufacturing a front-face panel (50), manufacturing a back-face panel (60) that has arranged thereon partition walls (11) for partitioning discharge cells, arranging the front-face panel and the back-face panel so as to face each other, sealing the periphery of the front-face panel and the back-face panel with a sealing member, and evacuating the discharge cells. A conjoining member is arranged at the apexes of the partition walls. The sealing temperature (T0) upon sealing the surroundings of the front-face panel and the back-face panel with the sealing member, the yield temperature (T1) of the conjoining member, the yield temperature (T2) of the sealing member, and the temperature (T3) at which pressure reduction in the discharge cells is to be started have relationships of T0 - T1 ≥ 30°C, T1 < T2 <T0, and T1 < T3 ≤ T0.

Description

プラズマディスプレイパネルの製造方法Method for manufacturing plasma display panel
 ここに開示された技術は、表示デバイスなどに用いられるプラズマディスプレイパネルの製造方法に関する。 The technology disclosed herein relates to a method for manufacturing a plasma display panel used for a display device or the like.
 近年、プラズマディスプレイパネル(以下、PDPと称する)の前面パネルおよび背面パネルに使用されるガラス基板として、板厚の薄いガラス基板が使用されるようになっている。また、PDPの高精細化に伴い、隔壁の幅が狭小化されている。このようなPDPは、機械的強度の低下が課題となってきている。 In recent years, a thin glass substrate has been used as a glass substrate used for a front panel and a rear panel of a plasma display panel (hereinafter referred to as PDP). In addition, the width of the partition wall is narrowed along with the higher definition of the PDP. In such PDPs, reduction of mechanical strength has become a problem.
 一方、前面パネルと背面パネルとを隙間が生じないように密着させることにより、機械的強度が向上する。具体的には、背面パネルの隔壁の上面を前面パネルに接着させる技術が知られている(例えば、特許文献1参照)。 On the other hand, the mechanical strength is improved by bringing the front panel and the rear panel into close contact with each other so that no gap is generated. Specifically, a technique for bonding the upper surface of the partition wall of the rear panel to the front panel is known (see, for example, Patent Document 1).
特開平11-204040号公報JP-A-11-204040
 PDPの製造方法は、前面パネルを製造すること、放電セルを区画する隔壁を配した背面パネルを製造すること、前面パネルと背面パネルとを対向配置すること、前面パネルと背面パネルの周囲を封着部材により封着すること、放電セル内を排気すること、を備える。隔壁の頂部には結合部材を配し、前面パネルと背面パネルの周囲を封着部材により封着するときの封着温度T0、結合部材の屈伏点T1、封着部材の屈伏点T2および放電セル内の減圧を開始する温度T3とが、T0-T1≧30℃、T1<T2<T0、およびT1<T3≦T0の関係である。 The manufacturing method of the PDP is to manufacture a front panel, to manufacture a back panel with partition walls for partitioning discharge cells, to place the front panel and the back panel facing each other, and to seal the periphery of the front panel and the back panel. Sealing with an attachment member, and exhausting the inside of the discharge cell. A coupling member is arranged on the top of the partition wall, and the sealing temperature T0 when the periphery of the front panel and the rear panel is sealed with the sealing member, the yielding point T1 of the coupling member, the yielding point T2 of the sealing member, and the discharge cell. The temperature T3 at which the pressure reduction starts is in a relationship of T0−T1 ≧ 30 ° C., T1 <T2 <T0, and T1 <T3 ≦ T0.
図1は、本実施の形態にかかるPDPの構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of the PDP according to the present embodiment. 図2は、本実施の形態にかかるPDPの放電セル構造を示す断面図である。FIG. 2 is a cross-sectional view showing the discharge cell structure of the PDP according to the present embodiment. 図3は、本実施の形態にかかるPDPの要部の構成を示す概略図である。FIG. 3 is a schematic diagram illustrating a configuration of a main part of the PDP according to the present embodiment. 図4は、本実施の形態にかかるPDPの製造工程図である。FIG. 4 is a manufacturing process diagram of the PDP according to the present embodiment. 図5は、本実施の形態にかかるPDPの製造工程において、封着工程、排気工程、放電ガス供給工程の温度プロファイルの一例を示す図である。FIG. 5 is a diagram illustrating an example of a temperature profile in the sealing process, the exhaust process, and the discharge gas supply process in the manufacturing process of the PDP according to the present embodiment. 図6は、本実施の形態にかかるPDPの製造工程におけるPDPの要部の構成を示す第1の概略図である。FIG. 6 is a first schematic diagram showing the configuration of the main part of the PDP in the manufacturing process of the PDP according to the present embodiment. 図7は、本実施の形態にかかるPDPの製造工程におけるPDPの要部の構成を示す第2の概略図である。FIG. 7 is a second schematic diagram showing the configuration of the main part of the PDP in the manufacturing process of the PDP according to the present embodiment. 図8は、本実施の形態にかかるPDPの画像表示部の構成を示す前面板側からみた平面図である。FIG. 8 is a plan view seen from the front plate side showing the configuration of the image display unit of the PDP according to the present embodiment. 図9は、本実施の形態にかかるPDPの接着面積と接着強度、および駆動電圧の関係を示す図である。FIG. 9 is a diagram showing the relationship between the bonding area, bonding strength, and driving voltage of the PDP according to the present embodiment. 図10は、本実施の形態にかかるPDPの製造工程において、封着工程、排気工程の温度プロファイルおよび圧力プロファイルの一例を示す図である。FIG. 10 is a diagram illustrating an example of a temperature profile and a pressure profile in the sealing process and the exhaust process in the manufacturing process of the PDP according to the present embodiment.
 本実施の形態にかかるPDP100は、交流面放電型PDPである。 The PDP 100 according to the present embodiment is an AC surface discharge type PDP.
 [前面パネル50]
 図1および図2に示すように、ガラス製の前面基板1上には、走査電極2および維持電極3よりなる一対の帯状の表示電極4とブラックストライプ(遮光層)5が互いに平行にそれぞれ複数列配置されている。走査電極2および維持電極3は、走査電極2-維持電極3-維持電極3-走査電極2の繰返しパターンで配置されている。
[Front panel 50]
As shown in FIGS. 1 and 2, a plurality of strip-shaped display electrodes 4 and black stripes (light-shielding layers) 5 each made up of a scanning electrode 2 and a sustaining electrode 3 are parallel to each other on a glass front substrate 1. Arranged in columns. Scan electrode 2 and sustain electrode 3 are arranged in a repeating pattern of scan electrode 2 -sustain electrode 3 -sustain electrode 3 -scan electrode 2.
 走査電極2は、インジウム錫酸化物(ITO)、二酸化錫(SnO)、酸化亜鉛(ZnO)等の導電性金属酸化物などからなる透明電極上に設けられた銀(Ag)などからなるバス電極を含む。 The scan electrode 2 is a bus made of silver (Ag) or the like provided on a transparent electrode made of a conductive metal oxide such as indium tin oxide (ITO), tin dioxide (SnO 2 ), or zinc oxide (ZnO). Including electrodes.
 維持電極3は、ITO、SnO、ZnO等の導電性金属酸化物などからなる透明電極上に設けられたAgなどからなるバス電極を含む。 The sustain electrode 3 includes a bus electrode made of Ag or the like provided on a transparent electrode made of a conductive metal oxide such as ITO, SnO 2 , or ZnO.
 前面基板1上には、表示電極4と遮光層5とを覆うようにコンデンサとしての働きをする誘電体層6が形成されている。 A dielectric layer 6 serving as a capacitor is formed on the front substrate 1 so as to cover the display electrode 4 and the light shielding layer 5.
 誘電体層6は、粒径が100nm以下のシリカ微粒子を含む誘電体材料により構成されている。誘電体層6は、膜厚が20μm以下で比誘電率が2以上4以下である。シロキサン高分子系の有機溶剤に、例えば粒径が8nm以上20nm以下で比誘電率が4程度のシリカ微粒子が分散した誘電体材料インクが用いられる。または、水系溶液に、例えば粒径が8nm以上20nm以下で比誘電率が4程度のコロイダルシリカなどのシリカ微粒子が分散した誘電体材料インクが用いられる。誘電体材料インクは、表示電極4と遮光層5を覆うように前面基板1上にダイコート法などにより塗布される。その後、乾燥および焼成を経て膜厚が20μm以下で比誘電率が2以上4以下の誘電体層6が形成される。 The dielectric layer 6 is made of a dielectric material containing silica fine particles having a particle size of 100 nm or less. The dielectric layer 6 has a thickness of 20 μm or less and a relative dielectric constant of 2 or more and 4 or less. For example, a dielectric material ink in which silica fine particles having a particle size of 8 nm to 20 nm and a relative dielectric constant of about 4 are dispersed in a siloxane polymer organic solvent is used. Alternatively, a dielectric material ink in which silica fine particles such as colloidal silica having a particle size of 8 nm to 20 nm and a relative dielectric constant of about 4 is dispersed in an aqueous solution is used. The dielectric material ink is applied on the front substrate 1 by a die coating method or the like so as to cover the display electrode 4 and the light shielding layer 5. Thereafter, a dielectric layer 6 having a thickness of 20 μm or less and a relative dielectric constant of 2 or more and 4 or less is formed through drying and firing.
 誘電体層6の表面に酸化マグネシウム(MgO)などからなる保護層7が形成されている。 A protective layer 7 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 6.
 前面パネル50は、前面基板1、表示電極4、遮光層5、誘電体層6および保護層7を有する。なお、遮光層5は省略されてもよい。 The front panel 50 includes a front substrate 1, display electrodes 4, a light shielding layer 5, a dielectric layer 6, and a protective layer 7. The light shielding layer 5 may be omitted.
 [背面パネル60]
 図1および図2に示すように、ガラス製の背面基板8上に、互いに平行なAgを主成分とする導電性材料からなる複数のデータ電極9が配置されている。データ電極9を覆うように下地誘電体層10が設けられている。下地誘電体層10の上に井桁状の隔壁11が配置されている。下地誘電体層10の表面と隔壁11の側面とに、赤、緑、青各色の蛍光体層12が設けられている。隔壁11は、データ電極9と平行に配置された縦隔壁11aとデータ電極9と交差する方向に形成される横隔壁11bとにより構成されている。
[Rear panel 60]
As shown in FIGS. 1 and 2, a plurality of data electrodes 9 made of a conductive material mainly composed of Ag parallel to each other are arranged on a glass back substrate 8. A base dielectric layer 10 is provided so as to cover the data electrode 9. On the base dielectric layer 10, a grid-like partition wall 11 is disposed. Red, green, and blue phosphor layers 12 are provided on the surface of the base dielectric layer 10 and the side surfaces of the partition walls 11. The partition wall 11 includes a vertical partition wall 11 a disposed in parallel with the data electrode 9 and a horizontal partition wall 11 b formed in a direction intersecting with the data electrode 9.
 背面パネル60は、背面基板8、データ電極9、下地誘電体層10、隔壁11および蛍光体層12を有する。 The back panel 60 includes a back substrate 8, data electrodes 9, a base dielectric layer 10, barrier ribs 11 and a phosphor layer 12.
 [PDP100]
 走査電極2および維持電極3とデータ電極9とが立体交差するように、前面パネル50と背面パネル60とが対向配置されている。前面パネル50と背面パネル60の周縁部がガラスフリットなどからなる封着部材によって気密封着されている。封着されたPDP100内部の放電空間13に、ネオン(Ne)およびキセノン(Xe)などの放電ガスを53kPa~80kPaの圧力で封入されている。ここで、走査電極2および維持電極3とデータ電極9とが対向する部分に放電セルが形成されている。放電セルについては、後に詳述される。
[PDP100]
The front panel 50 and the back panel 60 are arranged to face each other so that the scan electrodes 2 and the sustain electrodes 3 and the data electrodes 9 are three-dimensionally crossed. The peripheral portions of the front panel 50 and the back panel 60 are hermetically sealed by a sealing member made of glass frit or the like. A discharge gas such as neon (Ne) and xenon (Xe) is sealed in a discharge space 13 inside the sealed PDP 100 at a pressure of 53 kPa to 80 kPa. Here, a discharge cell is formed at a portion where scan electrode 2 and sustain electrode 3 and data electrode 9 face each other. The discharge cell will be described in detail later.
 なお、本実施の形態においては、Xeが15%体積以上30%体積以下含まれるように混合された放電ガスが、放電空間13に封入された。 In the present embodiment, the discharge gas mixed so that Xe is contained at 15% or more and 30% or less is enclosed in the discharge space 13.
 図3に示すように、表示電極4におけるバス電極の膜厚は、約5μm程度である。誘電体層6の膜厚が20μm以下のときは、誘電体層6および保護層7の表面が表示電極4の段差によって盛り上がる。つまり、前面パネル50の表面には、表示電極4に対応するように凹凸が形成されてしまう。なお、図3には、保護層7が省略されている。 As shown in FIG. 3, the thickness of the bus electrode in the display electrode 4 is about 5 μm. When the film thickness of the dielectric layer 6 is 20 μm or less, the surfaces of the dielectric layer 6 and the protective layer 7 are raised by the step of the display electrode 4. That is, irregularities are formed on the surface of the front panel 50 so as to correspond to the display electrodes 4. In FIG. 3, the protective layer 7 is omitted.
 凹凸が形成された前面パネル50と背面パネル60とを重ね合わせてPDP100を構成すると、データ電極9に平行に形成される列方向の縦隔壁11aと前面パネル50との間に隙間ができる。隙間によって、PDP100の機械的強度が低下してしまう。 When the PDP 100 is configured by superimposing the front panel 50 and the rear panel 60 on which irregularities are formed, a gap is formed between the vertical partition walls 11 a formed in parallel to the data electrodes 9 and the front panel 50. The mechanical strength of the PDP 100 decreases due to the gap.
 そこで、本実施の形態においては、図3に示すように、少なくとも縦隔壁11aの最上部に前面パネル50に接着するためのガラス材料からなる結合層20が設けられる。結合層20は、前面パネル50と背面パネル60とを封着部材であるガラスフリットにより封着する際の封着温度より低い屈伏点を有する。また、結合層20は、軟化点が封着温度以上である。さらに、結合層20は、Biを含有するガラス材料により構成されている。なお、結合層20は、縦隔壁11aのみに設けるのではなく、横隔壁11bにも設けてもよい。 Therefore, in the present embodiment, as shown in FIG. 3, a bonding layer 20 made of a glass material for bonding to the front panel 50 is provided at least on the uppermost portion of the vertical partition wall 11a. The bonding layer 20 has a yield point lower than a sealing temperature when the front panel 50 and the back panel 60 are sealed with a glass frit as a sealing member. Further, the bonding layer 20 has a softening point equal to or higher than the sealing temperature. Further, the bonding layer 20 is made of a glass material containing Bi. Note that the bonding layer 20 may be provided not only on the vertical barrier ribs 11a but also on the horizontal barrier ribs 11b.
 本実施の形態においては、前面パネル50と背面パネル60とを封着部材であるガラスフリットにより封着する際に、結合層20を構成するガラス材料の屈伏点以上で軟化点以下の封着温度に維持される。このとき前面パネル50と背面パネル60に全面に亘って均一に圧力を印加することにより結合層20を前面パネル50に接着するものである。具体的には、前面パネル50と背面パネル60とを封着部材により封着する際に、前面パネル50と背面パネル60との間を減圧することにより前面パネル50と背面パネル60に全面に亘って均一に圧力を印加することが可能である。 In the present embodiment, when the front panel 50 and the back panel 60 are sealed with a glass frit that is a sealing member, a sealing temperature that is higher than the yield point of the glass material constituting the bonding layer 20 and lower than the softening point. Maintained. At this time, the bonding layer 20 is bonded to the front panel 50 by applying pressure uniformly over the entire surface of the front panel 50 and the back panel 60. Specifically, when the front panel 50 and the back panel 60 are sealed with the sealing member, the pressure between the front panel 50 and the back panel 60 is reduced to cover the entire area of the front panel 50 and the back panel 60. It is possible to apply pressure uniformly.
 [PDP100の製造]
 図4に示すように、本実施の形態にかかるPDPは、前面パネル作成工程、背面パネル作成工程、フリット塗布工程、封着工程、排気工程および放電ガス供給工程によって製造される。
[Production of PDP 100]
As shown in FIG. 4, the PDP according to the present embodiment is manufactured by a front panel creation process, a back panel creation process, a frit coating process, a sealing process, an exhaust process, and a discharge gas supply process.
 フリット塗布工程では、背面パネル60の画像表示領域外部に封着部材であるガラスフリットが塗布される。その後、背面パネル60は、ガラスフリットの樹脂成分等を除去するために350℃程度の温度で仮焼成される。 In the frit application process, a glass frit as a sealing member is applied to the outside of the image display area of the back panel 60. Thereafter, the back panel 60 is temporarily fired at a temperature of about 350 ° C. in order to remove the resin component of the glass frit.
 封着工程では、前面パネル50と背面パネル60とが放電空間を形成するように対向して配置される。前面パネル50と背面パネル60の周縁が封着部材で封着される。 In the sealing step, the front panel 50 and the rear panel 60 are arranged to face each other so as to form a discharge space. The periphery of the front panel 50 and the back panel 60 is sealed with a sealing member.
 排気工程では、放電空間13内のガスが真空に排気される。 In the exhaust process, the gas in the discharge space 13 is exhausted to a vacuum.
 放電ガス供給工程では、排気された放電空間13にNeおよびXeを主成分とする放電ガスが供給される。 In the discharge gas supply process, a discharge gas mainly containing Ne and Xe is supplied to the exhausted discharge space 13.
 図5に示すように、封着工程は、温度を、室温から封着部材であるガラスフリットの軟化点まで上昇させる期間(期間1)、軟化点から封着温度まで上昇させ、一定時間保持した後、軟化点まで低下させる期間(期間2)を有する。排気工程は、軟化点温度付近またはそれよりやや低い温度で一定時間保持した後、室温まで低下させる期間(期間3)を有する。放電ガス供給工程は、室温まで低下した後、放電空間に放電ガスを供給する期間(期間4)を有する。 As shown in FIG. 5, in the sealing step, the temperature is raised from the softening point to the sealing temperature during a period in which the temperature is raised from room temperature to the softening point of the glass frit as the sealing member (period 1), and held for a certain period of time. After that, it has a period (period 2) in which it is lowered to the softening point. The exhaust process has a period (period 3) in which the temperature is lowered to room temperature after being held at a temperature near or slightly lower than the softening point temperature for a certain time. The discharge gas supply step has a period (period 4) in which the discharge gas is supplied to the discharge space after being lowered to room temperature.
 ガラス材料の屈伏点とは、熱膨張曲線において見かけ上、膨張が停止する温度と考えられている。具体的には、約1010~1011dPa・sの粘度に相当する温度が屈伏点とみなされている。 The yield point of the glass material is considered to be the temperature at which expansion stops apparently in the thermal expansion curve. Specifically, a temperature corresponding to a viscosity of about 10 10 to 10 11 dPa · s is regarded as a yield point.
 ガラス材料の軟化点とは、ガラスが自重で顕著に軟化変形しはじめる温度である。具体的には、約107.6dPa・sの粘度に相当する温度が軟化点とみなされている。本実施の形態におけるガラスフリットの屈伏点と軟化点は後述される。 The softening point of the glass material is a temperature at which the glass begins to be significantly softened and deformed by its own weight. Specifically, a temperature corresponding to a viscosity of about 10 7.6 dPa · s is regarded as the softening point. The yield point and softening point of the glass frit in the present embodiment will be described later.
 また、封着温度とは、前面パネル50と背面パネル60とが封着部材であるガラスフリットにより封着される状態となる温度である。本実施の形態における封着温度は後述される。 Further, the sealing temperature is a temperature at which the front panel 50 and the rear panel 60 are sealed by the glass frit that is a sealing member. The sealing temperature in the present embodiment will be described later.
 図6に示すように、背面パネル60は、ガラス製の背面基板8上に、データ電極9、下地誘電体層10および井桁状の隔壁11を有する。隔壁11は、下地誘電体層10上に感光性樹脂を含むガラス材料が塗布された後、露光・現像工程により井桁形状に形成される。その後、焼成工程を経て感光性樹脂などが燃焼される。また、縦隔壁11aの最上部には、Biを含有するガラス材料からなる結合層20が設けられている。 As shown in FIG. 6, the back panel 60 has a data electrode 9, a base dielectric layer 10, and a grid-like partition wall 11 on a glass back substrate 8. The partition wall 11 is formed in a cross-beam shape by an exposure / development process after a glass material containing a photosensitive resin is applied on the underlying dielectric layer 10. Thereafter, the photosensitive resin and the like are burned through a baking process. In addition, a bonding layer 20 made of a glass material containing Bi is provided on the top of the vertical partition wall 11a.
 ここで、結合層20を構成するガラス材料は、屈伏点が封着温度以下、軟化点が封着温度以上である。また、隔壁11に用いられるガラス材料は、屈伏点及び軟化点が封着温度以上である。 Here, the glass material constituting the bonding layer 20 has a yield point that is lower than the sealing temperature and a softening point that is higher than the sealing temperature. Moreover, the glass material used for the partition 11 has a yield point and a softening point that are equal to or higher than the sealing temperature.
 本実施の形態にかかるPDP100は、図7に示すように、結合層20が前面パネル50に接着される。 In the PDP 100 according to the present embodiment, the bonding layer 20 is bonded to the front panel 50 as shown in FIG.
 封着部材は、酸化ビスマスや酸化バナジウムを主成分としたガラスフリットが望ましい。酸化ビスマスを主成分とするガラスフリットとしては、例えば、Bi-B-RO-MO系(ここでRは、Ba、Sr、Ca、Mgのいずれかであり、Mは、Cu、Sb、Feのいずれかである。)のガラス材料に、Al、SiO、コージライト等酸化物からなるフィラーを加えたものを用いることができる。また、酸化バナジウムを主成分とするフリットとしては、例えば、V-BaO-TeO-WO系のガラス材料に、Al、SiO、コージライトなどの酸化物からなるフィラーを加えたものを用いることができる。 The sealing member is preferably a glass frit mainly composed of bismuth oxide or vanadium oxide. As the glass frit mainly composed of bismuth oxide, for example, Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca and Mg, and M is Any one of Cu, Sb, and Fe)) and a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite can be used. In addition, as a frit mainly composed of vanadium oxide, for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 , cordierite or the like is added to a V 2 O 5 —BaO—TeO—WO glass material. Can be used.
 結合層20の材料としては、酸化ビスマスを含むガラスフリットが望ましい。酸化ビスマスを含むガラスフリットとしては、例えば、Bi-B-ZnO-SiO-RO系ガラス粉末が用いられる。例えば、酸化ビスマスを含むガラスフリットを用いて感光性ペーストを製造することができる。感光性ペーストを用いた場合、隔壁11上に感光性ペーストを塗布後、露光・現像によって所望の形状を得ることができる。また、他の例として、Bi-B-ZnO-SiO-RO系ガラス粉末を用いて、印刷用のペーストを製造することができる。印刷用ペーストを用いた場合、隔壁11上にシルク印刷することによって所望の形状を得ることができる。酸化ビスマスを含むガラス材料、例えば、Bi-B-ZnO-SiO-RO系ガラス粉末を用いた場合、ガラス材料の屈伏点温度は487℃から489℃である。軟化点温度は530℃程度である。 As a material for the bonding layer 20, glass frit containing bismuth oxide is desirable. As the glass frit containing bismuth oxide, for example, Bi 2 O 3 —B 2 O 3 —ZnO—SiO 2 —RO glass powder is used. For example, a photosensitive paste can be manufactured using a glass frit containing bismuth oxide. When the photosensitive paste is used, a desired shape can be obtained by exposure and development after the photosensitive paste is applied onto the partition wall 11. As another example, a printing paste can be manufactured using Bi 2 O 3 —B 2 O 3 —ZnO—SiO 2 —RO glass powder. When a printing paste is used, a desired shape can be obtained by silk printing on the partition wall 11. When a glass material containing bismuth oxide, for example, Bi 2 O 3 —B 2 O 3 —ZnO—SiO 2 —RO glass powder is used, the yield point temperature of the glass material is 487 ° C. to 489 ° C. The softening point temperature is about 530 ° C.
 次に、結合層20を構成するガラス材料が、封着温度より低い屈伏点と、封着温度より高い軟化点を有する理由について説明される。 Next, the reason why the glass material constituting the bonding layer 20 has a yield point lower than the sealing temperature and a softening point higher than the sealing temperature will be described.
 ガラス基板同士の封着(接着)は、一般に封着部材の軟化点温度以上で行われる。ところがPDP100の表示領域内で結合層20を構成するガラス材料の軟化点温度以上で接着させると、ガラス材料は、いわゆる軟化流動領域にある。つまり、従来は、ガラス材料が放電空間13内に流入したり、結合層20からのガス放出量の増加により、放電電圧が上昇したり輝度が低下するといった不具合が発生していた。 Sealing (adhesion) between glass substrates is generally performed at a temperature higher than the softening point temperature of the sealing member. However, when bonding is performed at a temperature higher than the softening point temperature of the glass material constituting the bonding layer 20 in the display region of the PDP 100, the glass material is in a so-called softening flow region. In other words, conventionally, there has been a problem that the discharge voltage increases or the luminance decreases due to the glass material flowing into the discharge space 13 or the increase in the amount of gas released from the bonding layer 20.
 そこで、本発明者らが検討した結果、接着時に前面パネル50と背面パネル60とに全面に亘って均一に圧力を印加することにより、結合層20を構成するガラス材料の屈伏点以上の温度で接着可能であることを見出した。つまり、結合層20を構成するガラス材料の屈伏点以上、軟化点以下のいわゆる焼結領域にて電圧上昇や輝度低下と言った不具合を生ずることなく安定に接着することができた。 Therefore, as a result of investigations by the present inventors, by applying a uniform pressure over the entire surface of the front panel 50 and the back panel 60 during bonding, the temperature is higher than the yield point of the glass material constituting the bonding layer 20. It was found that it can be bonded. In other words, the glass material constituting the bonding layer 20 could be stably bonded without causing a problem such as a voltage increase or a luminance decrease in a so-called sintered region not less than the yield point and not more than the softening point.
 本実施の形態によれば、前面パネル50と背面パネル60とが結合層20により結合される。つまり、前面パネル50と背面パネル60とが隙間が発生しないように密着させることができる。したがって、PDP100の強度を向上させることができる。 According to the present embodiment, the front panel 50 and the back panel 60 are bonded by the bonding layer 20. That is, the front panel 50 and the back panel 60 can be brought into close contact so that no gap is generated. Therefore, the strength of the PDP 100 can be improved.
 [前面パネル50と背面パネル60の接着面積]
 本実施の形態における前面パネル50と背面パネル60との結合層20での接着面積について説明される。図8に示すように、走査電極2と維持電極3は、マトリクス表示の各ラインにおいて、放電ギャップを挟んで隣接するように行方向に交互に配列されている。また、複数の縦隔壁11aと、複数の横隔壁11bとによって区画され表示電極4とデータ電極9とが直交する部分を中心とした方形の領域が、放電セル51である。放電セル51は、PDP100における単位発光領域である。
[Adhesion area of front panel 50 and rear panel 60]
The adhesion area in the bonding layer 20 between the front panel 50 and the back panel 60 in the present embodiment will be described. As shown in FIG. 8, the scan electrodes 2 and the sustain electrodes 3 are alternately arranged in the row direction so as to be adjacent to each other with a discharge gap in each line of the matrix display. Further, the discharge cell 51 is a rectangular region centered on a portion partitioned by the plurality of vertical barrier ribs 11a and the plurality of horizontal barrier ribs 11b and perpendicular to the display electrodes 4 and the data electrodes 9. The discharge cell 51 is a unit light emitting region in the PDP 100.
 隣接する放電セル51の間には、非放電領域52が形成されている。前面パネル50の領域にはコントラストを向上させる目的のブラックストライプ5が形成されている。図8に示すように、一つの放電セル51は、一点鎖線で区画された領域である。 A non-discharge region 52 is formed between adjacent discharge cells 51. In the region of the front panel 50, black stripes 5 for improving the contrast are formed. As shown in FIG. 8, one discharge cell 51 is a region partitioned by a one-dot chain line.
 本実施の形態では放電セル51の面積をSと定義した時、前面パネル50と背面パネル60とが結合層20において接着している面積が、Sに対して10%~30%であることが好ましい。図8に示すように、接着している領域は、接着領域53である。なお、図8においては、一点鎖線で区画された放電セル51の周辺のみ接着領域53が図示されている。しかし、その他の隣接する放電セル51においても同様に接着領域53が存在する。 In this embodiment, when the area of the discharge cell 51 is defined as S, the area where the front panel 50 and the back panel 60 are bonded to each other in the bonding layer 20 is 10% to 30% with respect to S. preferable. As shown in FIG. 8, the bonded area is the bonded area 53. In FIG. 8, the adhesion region 53 is shown only around the discharge cell 51 defined by the one-dot chain line. However, the adhesion region 53 is also present in the other adjacent discharge cells 51 as well.
 放電セル51の領域内における前面パネル50と背面パネル60との接着面積をRとする。図9に示すように、前面パネル50と背面パネル60の接着強度は、接着面積に応じて線形的に向上していくことが分かる。なお接着強度に応じてPDP100の機械的強度も上がっていくことが確認されている。 Let R be the bonding area between the front panel 50 and the back panel 60 in the region of the discharge cell 51. As shown in FIG. 9, it can be seen that the adhesive strength between the front panel 50 and the back panel 60 increases linearly according to the adhesion area. It has been confirmed that the mechanical strength of the PDP 100 increases according to the adhesive strength.
 しかしながら、R/Sが10%以下の領域では、製造段階での搬送過程で、振動に対する十分な接着強度が得られていないことによる接着剥がれが生じることが分かった。前面パネル50と隔壁11とが接着して各放電セルが隔離された状態と、接着せずに隣接放電セル間に隙間がある状態とでは、放電特性が異なる。つまり、上記のようにPDP100の面内に部分的な剥がれを生じると、電圧特性が面内で異なってくるため表示不良となってしまう。 However, it was found that in the region where the R / S is 10% or less, adhesion peeling occurs due to insufficient adhesion strength against vibration during the conveyance process in the manufacturing stage. Discharge characteristics differ between the state in which the front panel 50 and the partition 11 are bonded to isolate each discharge cell, and the state in which there is a gap between adjacent discharge cells without bonding. That is, when partial peeling occurs in the surface of the PDP 100 as described above, the voltage characteristics are different in the surface, resulting in a display defect.
 また、図9に示すように、逆に接着強度を高くするために接着面積が30%を越えると、駆動に必要な維持電圧が急激に増加することが明らかになった。これは接着面積の増大により隣接放電セル間の隔離が進行し、排気工程において十分な排気ができないことに起因するものと考えられる。発明者らは、接着面積には最適範囲がある事を見出した。接着面積は、10%から30%の間であることが好ましい。 In addition, as shown in FIG. 9, it has been clarified that when the bonding area exceeds 30% in order to increase the bonding strength, the sustain voltage required for driving increases rapidly. This is considered to be due to the fact that the separation between adjacent discharge cells proceeds due to the increase in the adhesion area, and sufficient exhaust cannot be performed in the exhaust process. The inventors have found that there is an optimum range for the bonding area. The adhesion area is preferably between 10% and 30%.
 [封着工程と排気工程の詳細]
 本実施の形態における封着工程と排気工程について説明される。図10には、封着工程と排気工程の温度プロファイルが実線で示されている。PDP100内部の圧力プロファイルは破線で示されている。
[Details of sealing process and exhaust process]
The sealing process and exhaust process in the present embodiment will be described. In FIG. 10, the temperature profile of the sealing process and the exhaust process is shown by a solid line. The pressure profile inside the PDP 100 is indicated by a broken line.
 本実施の形態では、封着温度(T0)、結合層20を構成するガラス材料の屈伏点温度(T1)、封着部材のガラスフリットの屈伏点(T2)、および減圧開始温度(T3)の関係が規定されている。つまり、T0、T1、T2およびT3は次の関係にある。T0-T1≧30℃、T1<T2<T0、T1<T3≦T0。上記の関係を満たすことにより、結合層20と前面パネル50との接着をより強固にすることができる。なお、図10には、T3=T0とした場合が示されている。 In the present embodiment, the sealing temperature (T0), the yield point temperature (T1) of the glass material constituting the bonding layer 20, the yield point (T2) of the glass frit of the sealing member, and the decompression start temperature (T3). Relationships are defined. That is, T0, T1, T2, and T3 have the following relationship. T0−T1 ≧ 30 ° C., T1 <T2 <T0, T1 <T3 ≦ T0. By satisfying the above relationship, adhesion between the bonding layer 20 and the front panel 50 can be further strengthened. FIG. 10 shows a case where T3 = T0.
 結合層20の屈伏点の測定方法について説明される。まず、構成物が設けられていない素ガラス上に保護膜7と同様の構成のMgOが蒸着された試料基板aが準備される。また、背面パネル60と同様の構成を有する試料基板bが準備される。試料基板aと試料基板bのそれぞれは、一辺が50mmの正方形になるように切り出される。次に、試料基板aのMgOと試料基板bの結合層20とが接触するように配置される。次に、加熱炉内にて資料基板aと資料基板bの両側から一定の荷重がかけられる。この状態で、二つの試料基板の間の変位量と温度との関係が測定される。変位量が増加から減少に変化するときの温度が屈伏点温度(T1)である。屈伏点温度は、変位量と温度との関係において、変曲点付近の接線の傾きを計算することにより算出される。 The method for measuring the yield point of the bonding layer 20 will be described. First, a sample substrate a is prepared in which MgO having the same configuration as that of the protective film 7 is deposited on a raw glass on which no component is provided. A sample substrate b having the same configuration as that of the back panel 60 is prepared. Each of the sample substrate a and the sample substrate b is cut out so as to be a square having a side of 50 mm. Next, it arrange | positions so that MgO of the sample board | substrate a and the coupling layer 20 of the sample board | substrate b may contact. Next, a constant load is applied from both sides of the material substrate a and the material substrate b in the heating furnace. In this state, the relationship between the amount of displacement between the two sample substrates and the temperature is measured. The temperature at which the displacement changes from increasing to decreasing is the yield point temperature (T1). The yield point temperature is calculated by calculating the slope of the tangent near the inflection point in the relationship between the displacement and the temperature.
 次に、上記の温度範囲の根拠となる実験結果について説明される。表1は、T0とT1の関係を示す。 Next, the experimental results that serve as the basis for the above temperature range will be described. Table 1 shows the relationship between T0 and T1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 評価に用いられたPDP100は、いずれも結合層20を有する。結合層20は、5条件である。つまり、T1は、475℃に固定された。T0は、490℃(試料1)、495℃(試料2)、500℃(試料3)、505℃(試料4)および510℃(試料5)の5条件である。評価項目は、鋼球落下試験および差圧試験である。 All the PDPs 100 used for evaluation have the bonding layer 20. The bonding layer 20 has five conditions. That is, T1 was fixed at 475 ° C. T0 is five conditions of 490 ° C. (sample 1), 495 ° C. (sample 2), 500 ° C. (sample 3), 505 ° C. (sample 4) and 510 ° C. (sample 5). Evaluation items are a steel ball drop test and a differential pressure test.
 鋼球落下試験は、500gの鋼球を、高さを変えてPDP100に落下させる試験である。鋼球が落下するエネルギーによって、結合層20が剥れ、かつ、PDP100が割れるときの高さが測定される。 The steel ball drop test is a test in which a 500 g steel ball is dropped onto the PDP 100 at different heights. The height at which the bonding layer 20 peels off and the PDP 100 breaks is measured by the energy of the steel balls falling.
 差圧試験とは、チャンバー内に設置されたPDP装置が点灯した状態で、チャンバー内が減圧される試験である。PDP装置とは、PDP100にシャーシ、回路基板等が接続された構成を有する。このとき、PDP100内部のガス圧P1、チャンバー内圧P2に対して、結合層20が剥がれ、点灯状態が変化するときの差圧P1-P2が測定される。差圧が大きければ、結合層20がより強固に前面パネル50と背面パネル60とを接着させていることになる。 The differential pressure test is a test in which the pressure in the chamber is reduced while the PDP device installed in the chamber is lit. The PDP device has a configuration in which a chassis, a circuit board, and the like are connected to the PDP 100. At this time, the differential pressure P1-P2 when the coupling layer 20 peels off and the lighting state changes is measured with respect to the gas pressure P1 and the chamber internal pressure P2 inside the PDP 100. If the differential pressure is large, the bonding layer 20 adheres the front panel 50 and the back panel 60 more firmly.
 この結果、表1に示すように、T0-T1≧30℃となる条件での封着温度とすることで、鋼球落下試験および差圧試験が良好な結果を示すことがわかった。 As a result, as shown in Table 1, it was found that the steel ball drop test and the differential pressure test showed good results by setting the sealing temperature under the condition of T0−T1 ≧ 30 ° C.
 表2は、T1とT2との関係を示す。 Table 2 shows the relationship between T1 and T2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 評価に用いられたPDP100は、いずれも結合層20を有する。結合層20は、2条権である。つまり、T1は、475℃に固定された。T0は、505℃に固定された。T2は、470℃(試料6)および490℃(試料7)の2条件である。評価項目は、梱包落下試験である。 All the PDPs 100 used for evaluation have the bonding layer 20. The bonding layer 20 has two rights. That is, T1 was fixed at 475 ° C. T0 was fixed at 505 ° C. T2 is two conditions of 470 ° C. (sample 6) and 490 ° C. (sample 7). The evaluation item is a package drop test.
 梱包落下試験とは、PDP装置が、出荷の状態で所定の高さから落とされる試験である。出荷の状態とは、PDP装置が発泡スチロール等の保護材で包まれ、さらに、ダンボールで梱包された状態である。このとき、落下の衝撃で隔壁にチッピングが生じる場合がある。チッピングの程度によって、放電セルが不灯になる場合がある。本実施の形態においては、対角42インチのPDP装置10セットの不灯数の合計が測定された。 The package drop test is a test in which the PDP device is dropped from a predetermined height in the shipping state. The shipping state is a state in which the PDP device is wrapped with a protective material such as polystyrene foam and further packed with cardboard. At this time, chipping may occur in the partition wall due to the impact of dropping. Depending on the degree of chipping, the discharge cell may become unlit. In the present embodiment, the total number of unlit lamps of 10 sets of 42-inch diagonal PDP devices was measured.
 表2に示すように、T2=490℃の条件では、T2=470℃の条件より不灯数を低減できる。つまり、T1<T2<T0とすることで、PDP装置の不灯発生が抑制される。さらに、PDPの信頼性が向上する。 As shown in Table 2, under the condition of T2 = 490 ° C., the number of non-lights can be reduced as compared with the condition of T2 = 470 ° C. That is, by setting T1 <T2 <T0, the occurrence of non-lighting of the PDP device is suppressed. Furthermore, the reliability of the PDP is improved.
 さらに、T3もT1より高くすることが好ましい。PDP100の内部を減圧することによって、PDP100の全面にほぼ均一の圧力をかけることが可能となるからである。この状態で結合層20の粘度が低下しているため、結合層20と前面パネル50との接着が均一に行われる。つまり、T1<T3≦T0とすることで、前面パネル50と背面パネル60の接着を面内均一とすることができる。 Furthermore, T3 is preferably higher than T1. This is because a substantially uniform pressure can be applied to the entire surface of the PDP 100 by reducing the pressure inside the PDP 100. Since the viscosity of the bonding layer 20 is lowered in this state, the bonding layer 20 and the front panel 50 are bonded uniformly. That is, by setting T1 <T3 ≦ T0, the adhesion between the front panel 50 and the back panel 60 can be made in-plane uniform.
 なお、MgOおよび酸化カルシウム(CaO)とを含む保護層7を有するPDP100は、差圧試験における耐圧が1.2倍となることがわかった。つまり、結合層20の構成が同じであっても、耐圧が1.2倍になることを意味している。これは保護膜7がカルシウム(Ca)を含むことにより、結合層20と保護膜7との反応が促進したためと考えられる。 The PDP 100 having the protective layer 7 containing MgO and calcium oxide (CaO) was found to have a withstand voltage 1.2 times higher in the differential pressure test. That is, even if the structure of the coupling layer 20 is the same, it means that the breakdown voltage is 1.2 times. This is presumably because the reaction between the bonding layer 20 and the protective film 7 was promoted by the protective film 7 containing calcium (Ca).
 [まとめ]
 本実施の形態にかかるPDP100の製造方法は、前面パネル50を製造すること、放電セルを区画する隔壁を配した背面パネル60製造すること、前面パネル50と背面パネル60とを対向配置すること、前面パネル50と背面パネル60の周囲を封着部材により封着すること、放電セル内を排気すること、を備える。隔壁の頂部には結合部材を配し、前面パネル50と背面パネル60の周囲を封着部材により封着するときの封着温度T0、結合部材の屈伏点T1、封着部材の屈伏点T2および放電セル内の減圧を開始する温度T3とが、T0-T1≧30℃、T1<T2<T0、およびT1<T3≦T0の関係である。以上の方法によれば、PDP100の機械的強度を向上させることができる。
[Summary]
The manufacturing method of the PDP 100 according to the present embodiment includes manufacturing the front panel 50, manufacturing the back panel 60 with the partition walls partitioning the discharge cells, disposing the front panel 50 and the back panel 60 facing each other, The periphery of the front panel 50 and the back panel 60 is sealed with a sealing member, and the inside of the discharge cell is evacuated. A coupling member is arranged on the top of the partition wall, and a sealing temperature T0 when the periphery of the front panel 50 and the back panel 60 is sealed by the sealing member, a yielding point T1 of the coupling member, a yielding point T2 of the sealing member, and The temperature T3 at which pressure reduction in the discharge cell is started has a relationship of T0−T1 ≧ 30 ° C., T1 <T2 <T0, and T1 <T3 ≦ T0. According to the above method, the mechanical strength of the PDP 100 can be improved.
 また、本実施の形態にかかるPDP100は、前面パネル50と、前面パネル50と対向して設けられ、放電セルを区画する隔壁を有した背面パネル60とを備える。前面パネル50と背面パネル60とは、周囲が封着され、前面パネル50と背面パネル60とは、隔壁の上部において接着されている。放電セルを前面パネル50または背面パネル60に投影した面積に対して、接着されている面積は、10%以上、30%以下である。以上の構成によれば、製造工程・市場で剥がれ等による不良発生を抑制できる。また、駆動電圧の上昇を抑えて、かつ、機械的強度の高いPDP100を実現できる。 Further, the PDP 100 according to the present embodiment includes a front panel 50 and a rear panel 60 provided to face the front panel 50 and having partition walls that partition discharge cells. The front panel 50 and the back panel 60 are sealed at the periphery, and the front panel 50 and the back panel 60 are bonded to each other at the upper part of the partition wall. The area where the discharge cell is bonded to the front panel 50 or the back panel 60 is 10% or more and 30% or less. According to the above configuration, it is possible to suppress the occurrence of defects due to peeling or the like in the manufacturing process / market. Further, it is possible to realize the PDP 100 that suppresses an increase in driving voltage and has high mechanical strength.
 ここに開示された技術は、機械的強度を向上させたプラズマディスプレイ装置を実現する上で有用である。 The technique disclosed herein is useful for realizing a plasma display device with improved mechanical strength.
 1  前面基板
 2  走査電極
 3  維持電極
 4  表示電極
 6  誘電体層
 8  背面基板
 9  データ電極
 10  下地誘電体層
 11  隔壁
 11a  縦隔壁
 11b  横隔壁
 12  蛍光体層
 13  放電空間
 20  結合層
 50  前面パネル
 51  放電セル
 52  非放電領域
 53  接着領域
 60  背面パネル
 100  PDP
DESCRIPTION OF SYMBOLS 1 Front substrate 2 Scan electrode 3 Sustain electrode 4 Display electrode 6 Dielectric layer 8 Rear substrate 9 Data electrode 10 Base dielectric layer 11 Partition 11a Vertical partition 11b Horizontal partition 12 Phosphor layer 13 Discharge space 20 Coupling layer 50 Front panel 51 Discharge Cell 52 Non-discharge area 53 Adhesion area 60 Rear panel 100 PDP

Claims (1)

  1. 前面パネルを製造すること、
    放電セルを区画する隔壁を配した背面パネルを製造すること、
    前記前面パネルと前記背面パネルとを対向配置すること、
    前記前面パネルと前記背面パネルの周囲を封着部材により封着すること、
    前記放電セル内を排気すること、を備え、
     前記隔壁の頂部には結合部材を配し、
    前記前面パネルと前記背面パネルの周囲を封着部材により封着するときの封着温度T0、前記結合部材の屈伏点T1、前記封着部材の屈伏点T2、および前記放電セル内の減圧を開始する温度T3とが、T0-T1≧30℃、T1<T2<T0、およびT1<T3≦T0の関係である、
    プラズマディスプレイパネルの製造方法。
    Manufacturing the front panel,
    Manufacturing a rear panel with barrier ribs separating discharge cells;
    Disposing the front panel and the back panel opposite to each other;
    Sealing the periphery of the front panel and the back panel with a sealing member;
    Exhausting the inside of the discharge cell,
    A coupling member is arranged on the top of the partition wall,
    The sealing temperature T0 when the periphery of the front panel and the back panel is sealed with a sealing member, the yield point T1 of the coupling member, the yield point T2 of the seal member, and the pressure reduction in the discharge cell are started. The temperature T3 to be satisfied is T0−T1 ≧ 30 ° C., T1 <T2 <T0, and T1 <T3 ≦ T0.
    A method for manufacturing a plasma display panel.
PCT/JP2012/000198 2011-01-20 2012-01-16 Method of manufacturing plasma display panel WO2012098847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009629 2011-01-20
JP2011009629A JP2012151023A (en) 2011-01-20 2011-01-20 Method of manufacturing plasma display panel

Publications (1)

Publication Number Publication Date
WO2012098847A1 true WO2012098847A1 (en) 2012-07-26

Family

ID=46515483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000198 WO2012098847A1 (en) 2011-01-20 2012-01-16 Method of manufacturing plasma display panel

Country Status (2)

Country Link
JP (1) JP2012151023A (en)
WO (1) WO2012098847A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263731A (en) * 1990-03-12 1991-11-25 Mitsubishi Electric Corp Manufacture of color display device
JPH0458436A (en) * 1990-06-26 1992-02-25 Dainippon Printing Co Ltd Plasma display panel
JPH0950767A (en) * 1995-08-09 1997-02-18 Fujitsu Ltd Thin flat-panel display device
WO2007023564A1 (en) * 2005-08-26 2007-03-01 Fujitsu Hitachi Plasma Display Limited Plasma display panel and method of manufacturing the same
WO2011105036A1 (en) * 2010-02-25 2011-09-01 パナソニック株式会社 Plasma display panel and manufacturing method thereof
JP2012064370A (en) * 2010-09-15 2012-03-29 Panasonic Corp Plasma display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263731A (en) * 1990-03-12 1991-11-25 Mitsubishi Electric Corp Manufacture of color display device
JPH0458436A (en) * 1990-06-26 1992-02-25 Dainippon Printing Co Ltd Plasma display panel
JPH0950767A (en) * 1995-08-09 1997-02-18 Fujitsu Ltd Thin flat-panel display device
WO2007023564A1 (en) * 2005-08-26 2007-03-01 Fujitsu Hitachi Plasma Display Limited Plasma display panel and method of manufacturing the same
WO2011105036A1 (en) * 2010-02-25 2011-09-01 パナソニック株式会社 Plasma display panel and manufacturing method thereof
JP2012064370A (en) * 2010-09-15 2012-03-29 Panasonic Corp Plasma display panel

Also Published As

Publication number Publication date
JP2012151023A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP2004235042A (en) Gas discharge display device and method of manufacturing device
WO2009122676A1 (en) Plasma display panel and method for manufacturing the same
JP2008251318A (en) Plasma display panel
WO2012098847A1 (en) Method of manufacturing plasma display panel
US20100007585A1 (en) Plasma display panel
KR101136651B1 (en) Plasma display panel and method for manufacturing the same
US20080122356A1 (en) Plasma display panel
JP2005056834A (en) Method for manufacturing display panel
JP2003208851A (en) Ac type gas discharge display device and method of manufacturing the display device
KR101151116B1 (en) Method for manufacturing plasma display panel
JP2004247211A (en) Manufacturing method of thick film sheet electrode
JP2003208853A (en) Gas discharge display device and method of manufacturing the device
JP2004273328A (en) Ac type gas discharge display device
JP3152628B2 (en) Method of forming transparent thick film dielectric on conductive film
JP2012064370A (en) Plasma display panel
JP2008226517A (en) Display panel and manufacturing method therefor
JP5035210B2 (en) Plasma display panel
JP2010048513A (en) Burning device and method of manufacturing flat panel display
JP2004281095A (en) Ac type gas discharge display device and manufacturing method of the same
JP2004296145A (en) Ac type gas discharge display
JP2006228749A (en) Method of manufacturing display panel
JP2013105554A (en) Plasma display panel
JP2013109986A (en) Plasma display panel
WO2012101694A1 (en) Sealing material, plasma display panel and production method for plasma display panel
JP2013161774A (en) Method of manufacturing plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737151

Country of ref document: EP

Kind code of ref document: A1