WO2012098734A1 - Resin composition, cured object, resin film, and wiring board - Google Patents

Resin composition, cured object, resin film, and wiring board Download PDF

Info

Publication number
WO2012098734A1
WO2012098734A1 PCT/JP2011/071494 JP2011071494W WO2012098734A1 WO 2012098734 A1 WO2012098734 A1 WO 2012098734A1 JP 2011071494 W JP2011071494 W JP 2011071494W WO 2012098734 A1 WO2012098734 A1 WO 2012098734A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
group
polyimide
polyfunctional
Prior art date
Application number
PCT/JP2011/071494
Other languages
French (fr)
Japanese (ja)
Inventor
足立 弘明
透 日下部
洋朗 佐々木
山本 正樹
康史 飯塚
華菜子 水村
下田 浩一朗
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN201180061317.0A priority Critical patent/CN103270070B/en
Priority to KR1020137016231A priority patent/KR101516103B1/en
Priority to JP2012553556A priority patent/JP5820825B2/en
Publication of WO2012098734A1 publication Critical patent/WO2012098734A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/60Polyamides or polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a resin composition useful as a material for a surface protective film of a semiconductor element, an interlayer insulating film, a semiconductor package substrate, a bonding sheet, and a protective insulating film for a printed wiring board, a cured product using the resin composition, and a resin composition
  • the present invention relates to a resin film using, and a wiring board using them.
  • polyimide resin compositions As a material for the surface protection film of semiconductor elements, interlayer insulation films, and protection insulation films for printed wiring boards, polyimide resin compositions having excellent heat resistance are being used. In particular, when a polyimide resin composition is used as an insulating material for a flexible printed wiring board, it is required that there is little warpage after curing in addition to heat resistance.
  • a polyimide-based ink composed of an ester-terminated oligomer and an amine-terminated oligomer has been proposed as a polyimide-based resin composition that has excellent heat resistance and can reduce warping after curing (see, for example, Patent Document 1).
  • the polyimide-based ink described in Patent Document 1 is used after being applied onto a flexible wiring circuit and then heat-treated at a temperature of 250 ° C. or higher to be imidized.
  • the polyimide resin to be formed contracts due to the stress caused by the ring closure reaction accompanying solvent removal and oligomer imidization. For this reason, suppression of curvature is not necessarily sufficient, and a problem also arises in workability.
  • copper foil is used as the circuit material, there is a problem that the carboxyl group and the wiring material react with each other by heat treatment at 250 ° C. or more, and the wiring material is oxidized.
  • polyimide precursors that can be imidized at low temperatures and can reduce warping after curing have been developed.
  • examples of such polyimide precursors include non-silicone polyimide precursors using alkyl ether diamines (for example, see Patent Document 2), and silicone-based polyimide precursors using diaminosiloxane as a diamine component (for example, patents). Reference 3 and Patent Document 4).
  • the polyimide precursor described in Patent Document 2 has a polyamic acid structure derived from an alkyl ether diamine and a polyimide structure derived from an aromatic diamine as structural units. For this reason, when it uses for the insulating material of a flexible printed wiring board as a polyimide-type resin composition, the polyimide site
  • the polyimide precursors described in Patent Document 3 and Patent Document 4 are silicone-based polyimide precursors, they are applied to a circuit board as a polyimide-based resin composition and imidized to form a circuit protective film.
  • the silicone part segregates on the surface in the subsequent prepreg or bonding process, and the surface of the protective film may have low surface tension and high water repellency, which may repel the adhesive component. For this reason, the adhesive force between a protective film and an adhesive sheet is insufficient, and there is a problem that sufficient performance as a protective film is not necessarily obtained.
  • the present invention has been made in view of the above points, and can reduce warping during curing, has excellent heat resistance, and is a surface protective film for semiconductor elements, an interlayer insulating film, a protective insulating film for printed wiring boards, and an interlayer insulating film. It aims at providing the resin composition which can be used conveniently as materials, such as a film
  • the resin composition of the present invention comprises (A) a polymer compound, (B) a polyfunctional hydroxyl group-containing compound having two or more hydroxyl groups, and (C) the polymer compound and / or the polyfunctional hydroxyl group-containing compound.
  • the polymer compound has an imide group and / or an amide group, and the three-dimensional crosslinking includes a C ⁇ O group and / or an NH group.
  • the polyfunctional hydroxyl group-containing compound and / or the polyfunctional crosslinkable compound is preferably trifunctional or more.
  • the polymer compound preferably has a hydroxyl group and / or a carboxyl group.
  • the polyfunctional hydroxyl group-containing compound includes at least one selected from both-end phenol-modified silicone, polybutadiene polyol, hydrogenated polybutadiene polyol, and polycarbonate polyol.
  • the polyfunctional hydroxyl group-containing compound preferably has an aliphatic structure.
  • the polyfunctional hydroxyl group-containing compound is preferably a polycarbonate polyol.
  • the resin composition of the present invention preferably contains a polyfunctional isocyanate compound having two or more isocyanate groups as the polyfunctional crosslinkable compound.
  • the polyfunctional crosslinkable compound preferably contains two or more blocked isocyanate groups.
  • the content of the polyfunctional hydroxyl group-containing compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound.
  • the content of the polyfunctional crosslinkable compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound.
  • the polyfunctional hydroxyl group-containing compound preferably has a number average molecular weight of 500 to 3,000.
  • the said high molecular compound has a repeating structure represented by following General formula (1).
  • Y 1 represents a divalent organic group
  • Z 1 represents a tetravalent organic group
  • a represents an integer of 1 to 50.
  • the polymer compound is preferably polyimide.
  • the said high molecular compound has a repeating structure represented by following General formula (2).
  • Z 1 and Z 2 represent a tetravalent organic group, and Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are each independently 1 to 5 carbon atoms. And may be branched.
  • B, c and d each independently represents an integer of 1 to 50.
  • the polymer compound may have a polyimide structure represented by the following general formula (3) and a polyamic acid structure represented by the following general formula (4) as repeating structural units, respectively. preferable.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom.
  • it represents a monovalent organic group having 1 to 20 carbon atoms
  • R 3 , R 6 , R 9 , R 12 , and R 15 are each independently a tetravalent organic group having 1 to 20 carbon atoms.
  • M, n, and p each independently represents an integer of 0 to 100.
  • R 16 represents a tetravalent organic group
  • R 17 represents a divalent group having 1 to 90 carbon atoms. Represents an organic group of
  • the diamine represented by the following general formula (5) is included as a diamine component which comprises the polyimide represented by the said General formula (3).
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms
  • R 3 , R 6 , R 9 , R 12 , and R 15 each independently represents a tetravalent organic group having 1 to 20 carbon atoms
  • N and p are each independently an integer of 0 or more and 30 or less and satisfy 1 ⁇ (m + n + p) ⁇ 30.)
  • the polymer compound preferably has a structure represented by the following general formula (6) as a repeating unit.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms
  • R 3 , R 6 , R 9 , R 12 , and R 15 represent a tetravalent organic group having 1 to 20 carbon atoms
  • m, n, p Each independently represents an integer of 0 to 30.
  • R 16 represents a tetravalent organic group
  • R 17 represents a divalent organic group having 1 to 90 carbon atoms
  • A, B, C represents mol% of each unit and satisfies 0.10 ⁇ (A + B) / (A + B + C) ⁇ 0.85.
  • the polymer compound preferably has a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as structural units.
  • Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following General Formula (9), and are the same as each other.
  • R 18 is a divalent organic group having 1 to 30 carbon atoms
  • R 19 is a monovalent organic group having 1 to 30 carbon atoms
  • e is 1 or more and 20 Represents the following integers.
  • the resin composition of the present invention preferably contains (D) a (meth) acrylate compound having two or more unsaturated groups capable of photopolymerization and (E) a photopolymerization initiator.
  • the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds preferably includes a (meth) acrylate compound having three or more double bonds.
  • the compound represented by following General formula (10) is included as a (meth) acrylate compound which has three or more of the said double bonds.
  • R 20 represents a hydrogen atom or a methyl group, and a plurality of E's each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different.
  • f is an integer of 1 to 10.
  • the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds is a (meth) acrylate compound having two double bonds and three double bonds. It is preferable to contain the (meth) acrylate compound having the above.
  • the resin composition of the present invention preferably contains (F) a phosphorus compound.
  • the resin composition of the present invention has an interlayer insulation resistance of 10 9 ⁇ or more in an insulation reliability test at a temperature of 85 ° C., a humidity of 85%, and 1000 hours, and a viscosity at 120 ° C. to 220 ° C. of 5000 Pa ⁇ S to 100000 Pa ⁇ S. And having an elastic region with an elongation of less than 20% and a plastic region with an elongation of 50% or more, and the film thickness of the interlayer insulating layer is 40 ⁇ m or less.
  • the cured product of the present invention is obtained by heating the resin composition at 100 ° C. to 130 ° C. for 5 minutes to 60 minutes and then heating at 160 ° C. to 200 ° C. for 15 minutes to 60 minutes. .
  • the resin film of the present invention includes a base material and the resin composition provided on the base material.
  • the substrate is preferably a carrier film.
  • the resin film of the present invention preferably includes a cover film provided on the resin composition.
  • the base material is preferably a copper foil.
  • the wiring board of the present invention is characterized by comprising a base material having wiring and the resin composition provided so as to cover the wiring.
  • warpage during curing can be reduced, heat resistance is excellent, and it can be suitably used as a material for a surface protection film of a semiconductor element, an interlayer insulating film, a protective insulating film for a printed wiring board, an interlayer insulating film, and the like.
  • a resin composition, a resin film using the resin composition, and a wiring board using them can be provided.
  • Epoxy resins and polyimide resins are used in the manufacturing process of flexible printed circuit boards, but when using an epoxy resin as a protective film, the high insulation reliability required for thinning the flexible printed circuit board , Flexibility, low resilience, and flame retardancy are not always sufficiently obtained. Moreover, since epoxy resin has reactivity, it lacks storage stability. In addition, even when a conventional polyimide resin is used, a polyimide resin that can realize a reduction in warpage and heat resistance is expensive, and a resin composition that has a good reduction in warpage and heat resistance of a cured product accompanying imidization. Is desired.
  • the present inventors paid attention to a polyfunctional crosslinkable compound capable of forming a three-dimensional crosslink with a polymer compound or a polyfunctional hydroxyl group-containing compound. And the present inventors heated the resin composition containing a polymer compound and / or a polyfunctional hydroxyl group-containing compound and a polyfunctional crosslinkable compound, thereby producing a polyfunctional crosslinkable compound and a polyfunctional hydroxyl group-containing compound. The idea was to form a three-dimensional network by three-dimensional crosslinking formed between the two. Furthermore, the present inventors have found that this three-dimensional network can reduce warping during curing and can realize a resin composition having excellent heat resistance, and have completed the present invention.
  • the resin composition according to the present invention includes (A) a polymer compound, (B) a polyfunctional hydroxyl group-containing compound having two or more hydroxyl groups, and (C) a polymer compound and / or a polyfunctional hydroxyl group-containing compound.
  • a three-dimensional bridge can be formed.
  • the polymer compound has an imide group and / or an amide group
  • the three-dimensional crosslinking formed between the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is C ⁇ O. It preferably contains groups and / or NH groups.
  • an interaction mainly including hydrogen bonding occurs between the C ⁇ O group and / or NH group included in the three-dimensional crosslinking and the imide group and / or amide group of the polymer compound.
  • the compatibility between the compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is further improved. Thereby, the curvature at the time of hardening can be reduced more and heat resistance improves further.
  • the polyfunctional hydroxyl group-containing compound and / or the polyfunctional crosslinkable compound is trifunctional or more.
  • a plurality of hydroxyl groups of the polyfunctional hydroxyl group containing compound and a plurality of crosslinkable functional groups of the polyfunctional crosslinkable compound for example, , An isocyanate group, an oxazoline group
  • a three-dimensional network including a plurality of C ⁇ O groups and / or NH groups
  • shrinkage of the polymer compound can be suppressed by a three-dimensional network between the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound formed without using the polymer compound, and sufficient warpage can be reduced. And excellent heat resistance is exhibited.
  • the shrinkage of the polymer compound is suppressed by the three-dimensional network formed between the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound.
  • the effects of the present invention can be achieved without being limited by the molecular structure of the polymer compound. For this reason, for example, even when an inexpensive polymer compound having no complicated molecular structure is used, warpage during curing of the resin composition can be reduced, and excellent heat resistance is exhibited.
  • the polymer compound has a hydroxyl group and / or a carboxyl group.
  • the hydroxyl group and / or carboxyl group of the polymer compound and the crosslinkable functional group of the polyfunctional crosslinkable compound for example, isocyanate group, oxazoline.
  • Crosslinks are also formed between these groups.
  • a three-dimensional network is formed between the polymer compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound via the polymer compound.
  • the compatibility of the functional compound is improved, and the shrinkage of the polymer compound can be further suppressed. In particular, the warpage during curing of the resin composition can be reduced, and excellent heat resistance is exhibited.
  • three-dimensional crosslinking is formed via the polymer compound, so that at least one of the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinking compound is not trifunctional or higher. In both cases, a three-dimensional network can be formed. Moreover, since a three-dimensional network is formed via the polymer compound, the compatibility between the polymer compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is further improved. For this reason, even when a polymer compound having low compatibility with the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is used, a practical resin composition that can be used in the production process of a flexible printed wiring board is obtained. .
  • each component will be described in detail.
  • polymer compound As the polymer compound, various polymer compounds can be used as long as the effects of the present invention are exhibited.
  • the polymer compound include polyamide, polyamideimide, polyamic acid, polyimide obtained by imidizing polyamic acid, and the like.
  • the term “polyimide” includes both a polyimide precursor in which a part of polyamic acid is imidized with all polyamic acids and a polyimide in which all polyamic acids are imidized.
  • the polymer compound is not limited to the molecular structure, and various polymer compounds such as polyimide described above can be used. Among these, as the polymer compound, it is preferable to use polyimide from the viewpoints of heat resistance and moisture absorption resistance.
  • a polymer compound having a hydroxyl group and / or a carboxyl group in the molecular chain is used.
  • a polymer compound polyamic acid, polyimide having a hydroxyl group or a carboxyl group in a molecular chain, or the like can be used.
  • Polyimide is obtained by reacting acid dianhydride and diamine.
  • polyimide for example, polyimide having mainly a polyimide structure as a repeating structural unit may be used, or polyimide having a polyimide structure and a polyamic acid structure as repeating structural units may be used.
  • polymer compound for example, a compound having a repeating structural unit represented by the following general formula (1) can be used.
  • Y 1 represents a divalent organic group
  • Z 1 represents a tetravalent organic group
  • a represents an integer of 1 to 50.
  • the non-silicone-type polyimide obtained by making alkyl ether diamine and acid dianhydride react The silicone type obtained by making diaminosiloxane and acid dianhydride react.
  • the polyimide may be used.
  • the polymer compound it is preferable to use a compound having a repeating structure represented by the following general formula (2). Since the polymer compound has an oxyalkylene group, the molecular chain is given flexibility and the solvent solubility of the polymer compound is improved.
  • Z 1 and Z 2 represent a tetravalent organic group, and Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are each independently 1 to 5 carbon atoms. And may be branched.
  • B, c and d each independently represents an integer of 1 to 50.
  • each the polyimide structure represented by following General formula (3), and the polyamic acid structure represented by following General formula (4) as a repeating structural unit.
  • This polymer compound contains an alkyl ether structure in the polyimide structure and a polyamic acid structure, so that flexibility is imparted to the molecular chain without impairing the molecular weight stability, thereby improving development stability.
  • the carboxyl group of the polyamic acid structure contained in the following general formula (4) reacts with the crosslinkable functional group (for example, isocyanate group, oxazoline group, etc.) of the polyfunctional crosslinkable compound.
  • the crosslinkable functional group for example, isocyanate group, oxazoline group, etc.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom.
  • R 3 , R 6 , R 9 , R 12 , and R 15 are each independently a tetravalent organic group having 1 to 20 carbon atoms.
  • M, n, and p each independently represents an integer of 0 to 100.
  • R 16 represents a tetravalent organic group, and R 17 represents a divalent group having 1 to 90 carbon atoms. Represents an organic group of
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon atom having 1 to carbon atoms.
  • R 3 , R 6 , R 9 , R 12 and R 15 each independently represents a tetravalent organic group having 1 to 20 carbon atoms, m, n , P are each independently an integer of 0-30, which satisfies 1 ⁇ (m + n + p) ⁇ 30.)
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms
  • R 3 , R 6 , R 9 , R 12 , and R 15 represent a tetravalent organic group having 1 to 20 carbon atoms
  • m, n, p Each independently represents an integer of 0 or more and 30 or less
  • R 16 represents a tetravalent organic group
  • R 17 represents a divalent organic group having 1 to 90 carbon atoms.
  • C represents mol% of each unit, and satisfies 0.10 ⁇ (A + B) / (A + B + C) ⁇ 0.85.)
  • the alkyl ether structure in the molecular chain is increased, and the molecular chain of the polymer compound is increased. Since the flexibility is improved, warping after curing can be reduced. Further, by satisfying (A + B) / (A + B + C) ⁇ 0.85, the carboxyl group in the molecular chain increases, so that the solubility of the cured product in the alkaline developer is developed and the developability is improved.
  • a high molecular compound it is preferable to use what has a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as a repeating structural unit.
  • the siloxane part is contained in the polyimide structure, the polyimide structure is imparted with appropriate flexibility, so that the shrinkage of the molecular chain of the high molecular compound can be suppressed, and the warpage after curing can be suppressed.
  • Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following general formula (9), and are the same as each other.
  • R 18 is a divalent organic group having 1 to 30 carbon atoms
  • R 19 is a monovalent organic group having 1 to 30 carbon atoms
  • e is 1 or more and 20 or less. Represents an integer.
  • a polyamic acid structure is used.
  • the carboxyl group contained in reacts with the crosslinkable functional group (for example, isocyanate group) of the polyfunctional crosslinkable compound.
  • a high molecular compound is taken in into the three-dimensional network between a polyfunctional hydroxyl-containing compound and a polyfunctional crosslinkable compound, and can suppress the segregation to the surface of the hardened
  • a good adhesive force can be obtained even when a protective film is used.
  • polyfunctional hydroxyl group-containing compound a common polyfunctional hydroxyl group-containing compound can be used in the resin composition according to the first and second embodiments.
  • polyfunctional hydroxyl group-containing compound various hydroxyl group-containing compounds can be used as long as they have two or more hydroxyl groups in the molecular chain within the scope of the effects of the present invention.
  • polyfunctional hydroxyl group-containing compound for example, various diols as a bifunctional hydroxyl group-containing compound containing two hydroxyl groups may be used, or various polyols containing three or more hydroxyl groups may be used.
  • polyfunctional hydroxyl group-containing compound for example, polyfunctional isocyanate or polyfunctional oxazoline compound
  • polyfunctional crosslinkable compound for example, polyfunctional isocyanate or polyfunctional oxazoline compound
  • the polyfunctional hydroxyl group-containing compound preferably contains at least one selected from both-ends phenol-modified silicones, polybutadiene polyols, hydrogenated polybutadiene polyols, and polycarbonate polyols from the viewpoint of enhancing insulation.
  • a polyfunctional hydroxyl-containing compound what has an aliphatic structure is preferable. Thereby, since water resistance improves and it becomes low elasticity, curvature and insulation reliability can be improved.
  • the polyfunctional hydroxyl group-containing compound among the specific examples given above, hydrogenated polybutadiene polyol and polycarbonate polyol are preferable, and polycarbonate polyol is preferably used from the viewpoint of reducing warpage.
  • the content of the polyfunctional hydroxyl group-containing compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polyimide.
  • the polyfunctional hydroxyl group-containing compound is 5 parts by mass or more, sufficient crosslinking can be formed with the polyfunctional crosslinkable compound, so that it is possible to reduce warpage during curing.
  • the excessive hydroxyl group in a resin composition reduces because a polyfunctional hydroxyl-containing compound is 60 mass parts or less, the insulation reliability after hardening of a resin composition improves.
  • the content of the polyfunctional hydroxyl group-containing compound is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the polyimide.
  • the polyfunctional hydroxyl group-containing compound those having a number average molecular weight of 500 to 3000 are preferably used.
  • the number average molecular weight means the number average molecular weight of styrene conversion molecular weight measured by gel permeation chromatography. If the polyfunctional hydroxyl group-containing compound has a number average molecular weight of 500 or more, the resin composition has low elasticity, and thus warpage can be reduced. Moreover, since the viscosity of a resin composition can be reduced if the number average molecular weight of a polyfunctional hydroxyl-containing compound is 3000 or less, the embedding property to the wiring part and through-hole part of a wiring board becomes favorable. Furthermore, the number average molecular weight of the polyfunctional hydroxyl group-containing compound is preferably 500 to 2,000 from the viewpoint of low elasticity and viscosity reduction of the resin composition.
  • polyfunctional crosslinkable compound As a polyfunctional crosslinkable compound, the common polyfunctional crosslinkable compound can be used in the resin composition which concerns on a 1st aspect and a 2nd aspect.
  • various polyfunctional crosslinkable compounds can be used as long as they have two or more crosslinkable functional groups within the scope of the effects of the present invention.
  • the crosslinkable functional group refers to a functional group capable of forming a crosslink between the hydroxyl group or carboxyl group of the polymer compound and the hydroxyl group of the polyfunctional hydroxyl group-containing compound.
  • the crosslinkable functional group include, but are not limited to, an isocyanate group and an oxazoline group.
  • the bifunctional crosslinkable compound which has two crosslinkable functional groups may be used, and the crosslinkable compound which has 3 or more crosslinkable functional groups may be used.
  • the polyfunctional crosslinking compound include a polyfunctional isocyanate compound having two or more isocyanate groups and a polyfunctional oxazoline compound having two or more oxazoline groups.
  • the polyfunctional crosslinkable compound it is preferable to use a polyfunctional isocyanate compound containing two or more isocyanate groups. With this configuration, a three-dimensional network is formed via a urethane bond between the isocyanate group of the polyfunctional isocyanate compound and the hydroxyl group of the polyfunctional hydroxyl group-containing compound, and the imide group and amide group contained in the polymer compound. Alternatively, an interaction due to a hydrogen bond occurs between a hydroxyl group and a carboxyl group and a C ⁇ O group and an NH group contained in the urethane structure.
  • the low resilience of the resin composition can be improved, and appropriate fluidity is expressed in the resin composition by combining the plasticity of the polymer compound and the elasticity of the resin composition.
  • two conflicting physical properties (fluidity and viscosity) required when the resin composition is used as an interlayer insulating film of a multilayer flexible printed wiring board can be achieved. Performance can be ensured.
  • the polyfunctional isocyanate compound various isocyanate compounds can be used as long as they have two or more isocyanate groups within the scope of the effects of the present invention.
  • the resin composition according to the present invention is used as an interlayer insulating film such as a multilayer flexible wiring board
  • the resin composition is required to flow into the wiring part or through-hole part of the wiring board. Is required to be held to some extent without flowing out of the end of the wiring board. This is because the resin composition generally flows out from the end of the wiring board when attempting to sufficiently flow into the through hole in the press process under high pressure, and the thickness of the insulating layer at the end of the wiring board It is because there exists a possibility that insulation may fall and it may become thin.
  • the polyfunctional crosslinkable compound a blocked isocyanate containing a blocked isocyanate group obtained by reacting a blocking agent with a polyfunctional isocyanate compound containing two or more isocyanate groups may be used.
  • the polyfunctional crosslinkable compound contains two or more blocked isocyanate groups from the viewpoints of polymerization by reaction with a hydroxyl group of the polyfunctional hydroxyl group-containing compound, heat resistance improvement by crosslink formation, and chemical resistance. Those that do are preferred.
  • a polyfunctional isocyanate compound or a blocked isocyanate containing two or more isocyanates it is preferable to use a polyfunctional isocyanate compound or a blocked isocyanate containing two or more isocyanates as the polyfunctional hydroxyl group-containing compound.
  • a polyfunctional oxazoline compound having two or more oxazoline groups as the polyfunctional crosslinkable compound.
  • the oxazoline group of the polyfunctional oxazoline compound reacts with the hydroxyl group of the polyfunctional hydroxyl group-containing compound to form an amide bond.
  • the polymer compound has a hydroxyl group or a carboxyl group
  • the oxazoline group of the polyfunctional oxazoline compound reacts with the hydroxyl group or the carboxyl group to contain an amide bond and / or an amide ester (three-dimensional Cross-linking) is formed.
  • a three-dimensional network is formed between the polymer compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound by three-dimensional crosslinking including an amide bond and / or an amide ester.
  • the flexibility of the polyfunctional hydroxyl group-containing compound can be effectively reflected in the polymer compound by the interaction such as hydrogen bond and chemical bond with the polymer compound, and sufficient warpage reduction and excellent heat resistance can be realized.
  • the polyfunctional oxazoline compound various oxazoline compounds can be used as long as they have two or more oxazoline groups as long as the effects of the present invention are achieved.
  • the content of the polyfunctional crosslinkable compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound. If content of a polyfunctional crosslinking compound is 5 mass parts or more, since sufficient bridge
  • the resin composition according to the present invention can be used as a photosensitive resin composition by containing a photosensitizer.
  • a photosensitizer a common photosensitizer can be used in the resin composition according to the first aspect and the second aspect.
  • the photosensitizer is not particularly limited as long as it is a compound having a property that the structure is changed by light irradiation and the solubility in a solvent is changed, and various compounds can be used.
  • the photosensitive agent for example, a (meth) acrylate compound having two or more unsaturated double bonds capable of photopolymerization can be preferably used.
  • 3 double bonds are used as a (meth) acrylate compound which has two or more unsaturated double bonds which can be photopolymerized. It is preferable to include at least one (meth) acrylate compound.
  • the (meth) acrylate compound having three or more double bonds is a compound represented by the following general formula (10).
  • the compound represented by the following general formula (10) is not incorporated into the skeleton of the polymer compound and forms a crosslinked product as the second component, so that the polymer compound can be prevented from shrinking during curing and curving is suppressed. can do.
  • the compound represented by the following general formula (10) does not have a functional group such as a hydroxyl group that reduces electrical insulation, a rigid cross-linked body is formed, and the glass transition point (Tg) of the cured film is formed.
  • R 20 represents a hydrogen atom or a methyl group, and a plurality of E's each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different.
  • F is an integer from 1 to 10.
  • the resin composition of the present invention has two (meth) double bonds as a (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds from the viewpoint of developability and insulation reliability. It is preferable to include an acrylate compound and a (meth) acrylate compound having three or more double bonds. Since the (meth) acrylate compound having three or more double bonds forms a rigid cross-linked body with the polyfunctional hydroxyl group-containing compound, the elastic modulus and glass transition point (Tg) of the cured film are increased, and the insulation It is estimated that reliability is improved.
  • (E) Photopolymerization initiator In the resin composition according to the present invention, when the above-described photosensitive agent is used, it is preferably used in combination with a photopolymerization initiator.
  • a photoinitiator the common photoinitiator can be used in the resin composition which concerns on a 1st aspect and a 2nd aspect.
  • the photopolymerization initiator various compounds can be used as long as they are compounds activated by various actinic rays, ultraviolet rays and the like to start polymerization.
  • the photopolymerization initiator for example, oxime esters can be suitably used.
  • the resin composition according to the present invention preferably contains a (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds and a photopolymerization initiator. Thereby, it can use suitably as a photosensitive resin composition.
  • the resin composition according to the present invention preferably contains a flame retardant.
  • a flame retardant a common flame retardant can be used in the resin composition according to the first aspect and the second aspect.
  • a halogen-containing compound, a nitrogen-containing compound, a phosphorus-containing compound, an inorganic flame retardant, etc. are mentioned.
  • a phosphorus compound if it is a compound which contains a phosphorus atom in a structure as a phosphorus compound, it will not specifically limit.
  • Examples of phosphorus compounds include phosphate ester compounds and phosphazene compounds.
  • One kind of these flame retardants may be used, or two or more kinds may be mixed and used.
  • the addition amount of the flame retardant is not particularly limited, and can be appropriately changed according to the type of the flame retardant used.
  • the resin composition according to the present invention preferably contains a phosphorus compound. Thereby, the flame retardance of a resin composition improves.
  • a phosphoric acid ester compound and / or a phosphazene compound is included as the phosphorus compound.
  • a phosphoric acid ester compound and / or a phosphazene compound is included as the phosphorus compound.
  • a cured product (cured film) can be obtained by heating or drying at a predetermined temperature.
  • cured material can be used as a resin film, for example by apply
  • the photosensitive resin composition containing the photosensitive agent can also be used as a photosensitive film. These resin films and photosensitive films can be suitably used, for example, as an interlayer insulating film / wiring protective film of a flexible printed board.
  • the cured product according to the present invention can be obtained by heating the resin composition at 100 ° C. to 130 ° C. for 5 minutes to 60 minutes and then heating at 160 ° C. to 200 ° C. for 15 minutes to 60 minutes.
  • the resin film according to the present invention includes a base material and a resin composition provided on the base material.
  • a base material copper foil, a carrier film, etc. can be used as a base material.
  • a copper foil is used as a base material, and the resin composition can be provided on the copper foil.
  • the resin composition can use suitably as interlayer insulation films, such as a multilayer flexible wiring board, by providing and drying a resin composition on copper foil.
  • the resin composition according to the present invention since it contains a low molecular weight polyfunctional hydroxyl group-containing compound and a polyfunctional crosslinkable compound that are well compatible with the polymer compound, the viscosity of the resin composition is reduced and the fluidity is reduced. improves. Thereby, in the manufacturing process of the flexible printed wiring board, the through hole provided in the insulating substrate of the wiring board and the embedding property in the wiring pattern are improved, so it is suitable as an interlayer insulating film for multilayer flexible wiring boards and a wiring protective film. Can be used.
  • a double-sided flexible substrate 10 including an insulating substrate 11 and copper foils 12a and 12b provided on both main surfaces of the insulating substrate layer 11 is used for manufacturing a multilayer flexible wiring board.
  • a part of the copper foils 12a and 12b is removed by exposure / development of the dry film and etching of the copper foils 12a and 12b. Hole 13 is formed.
  • copper plating 14 is formed on the surface of the through hole 13 to electrically connect the copper foils 12a and 12b on both sides (see FIG. 1B).
  • the copper foil 12b in the region to be the flexible portion 16 is removed by etching.
  • the resin composition according to the present invention is filled in the through holes 13 and insulated.
  • the resin composition according to the present invention when a polyfunctional isocyanate compound is used as the polyfunctional crosslinkable compound and a hydroxyl group and / or a carboxyl group is used as the polymer compound, the resin composition Appropriate fluidity and viscosity are developed in the object. Thereby, even if the minute through hole 13 is provided, the through hole 13 can be filled.
  • the resin composition according to the present invention when polyimide is used as the polymer compound, imidization after coating becomes unnecessary. Thereby, the post-curing process after lamination
  • the copper plating 14 is applied to the copper foil 15a as the external conductive layer and the copper foils 12a and 12b as the internal conductive layers. And electrically connect.
  • the copper foil 15a is patterned by a subtractive method or the like to form a wiring pattern.
  • the protective film 17 is formed by applying the resin composition according to the present invention on the copper foil 15a having the wiring pattern processed.
  • the resin composition according to the present invention when a polyfunctional isocyanate compound is used as the polyfunctional crosslinkable compound and a hydroxyl group and / or a carboxyl group is used as the polymer compound, the resin composition Appropriate fluidity and viscosity are developed in the object. Thereby, even when a fine wiring pattern is formed, the resin composition is filled between the wiring patterns, and insulation protection can be performed.
  • the resin film according to the present invention has an interlayer insulation resistance of 10 9 ⁇ or more in an insulation reliability test at a temperature of 85 ° C., a humidity of 85%, and 1000 hours, and a viscosity of 120 ° C. to 220 ° C. is 5000 Pa ⁇ S to 100000 Pa.
  • -It is S
  • the through-hole portion can be satisfactorily filled and used suitably without the resin flow at the end of the wiring board.
  • the resin composition is required to be held to some extent without flowing out from the end portion of the wiring board. This is because the resin composition generally flows out from the end of the wiring board when attempting to sufficiently flow into the through hole in the press process under high pressure, and the thickness of the insulating layer at the end of the wiring board It is because there exists a possibility that insulation may fall and it may become thin.
  • the resin composition flows out from the end of the wiring board. If prevention and good embedding property are obtained and the viscosity is 100000 Pa ⁇ S or less, the film can be well laminated by a general-purpose laminating apparatus such as a vacuum press. In addition, the resin composition can be prevented from flowing out from the end of the wiring board in an elastic region of less than 20% elongation of the resin film, and good embedding can be achieved by the plastic region of the resin film having an elongation of 50% or more. it can.
  • the film thickness of the interlayer insulating layer is 40 ⁇ m or less, it exhibits very good low resilience, so that it can be easily incorporated into a small portable electronic device, and the insulation reliability test at a temperature of 85 ° C., a humidity of 85%, and 1000 hours.
  • the interlayer insulation resistance at 10 is 9 9 ⁇ or more, good insulation reliability can be obtained even when the thickness of the interlayer insulation layer is 40 ⁇ m or less.
  • the resin composition according to the second aspect will be mainly described.
  • the following first to fourth embodiments will be described.
  • the present inventors have focused on (A) using a polyimide containing a polyamic acid structure and a polyimide structure as structural units as a polymer compound.
  • the inventors of the present invention contain (A) a polyimide as a polymer compound, (B) a polyfunctional hydroxyl group-containing compound, and (C) an isocyanate compound (block isocyanate compound) as a polyfunctional crosslinkable compound.
  • the polyfunctional hydroxyl group-containing compound is not incorporated into the polyimide skeleton and is present as the second component, and three-dimensional crosslinking is formed between the polyfunctional hydroxyl group-containing compound and the blocked isocyanate compound.
  • the shrinkage of the molecular chain of the polyimide during curing can be suppressed, the warpage can be suppressed, and the melt viscosity of the resin composition before curing can be reduced to improve the through-hole embedding property.
  • a polyimide has the polyamic acid structure which has a heat crosslinkable functional group as a structural unit, the three-dimensional network through a polyimide is formed between a polyfunctional hydroxyl-containing compound and a block isocyanate compound.
  • the isocyanate group reacts with a hydroxyl group to form a urethane structure, but the isocyanate group remains because the amount of the isocyanate group is excessive with respect to the hydroxyl group.
  • the surplus isocyanate group reacts with the carboxyl group of the polyamic acid structure contained in the polyimide remaining after the imidation reaction to form an amide structure, a urea structure, or the like.
  • the polyimide used for the resin composition according to the present embodiment can be obtained, for example, by reacting tetracarboxylic dianhydride and diamine.
  • tetracarboxylic dianhydride A conventionally well-known tetracarboxylic dianhydride can be used.
  • tetracarboxylic dianhydride aromatic tetracarboxylic acid, aliphatic tetracarboxylic dianhydride, etc. are applicable.
  • limiting in the diamine to be used A conventionally well-known diamine can be used.
  • aromatic tetracarboxylic acid examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′- Benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1- Bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicadicar
  • aliphatic tetracarboxylic dianhydride examples include cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5,6-cyclohexanetetracarboxylic Acid dianhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] oct-7 -Ene-2,3,5,6 tetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride and the like.
  • tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic acid from the viewpoint of heat resistance and polymerization rate of polyimide.
  • Particularly preferred are dianhydrides, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and bis (3,4-dicarboxyphenyl) sulfone dianhydride.
  • diamines include, for example, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,3-bis (3-amino Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (3- (3-aminophenoxy) phenyl) ether, bis (4- (4-aminophenoxy) phenyl) ether, 1,3-bis (3- (3-aminophenoxy) phenoxy) benzene, 1,4-bis (4- (4-aminophenoxy) phenoxy) benzene, bis (3- (3- (3-aminophenoxy) phenoxy) phenyl) ether, Bis (4- (4-aminophenoxy) phenoxy) phenyl) ether, 1,3-bis ( -(3- (3-aminophenoxy)
  • diamine examples include ⁇ , ⁇ -bis (2-aminoethyl) polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane, and ⁇ , ⁇ -bis (4-aminobutyl) polydimethylsiloxane.
  • ⁇ , ⁇ -bis (4-aminophenyl) polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydiphenylsiloxane, and the like are also preferable.
  • polyoxyethylene diamine polyoxypropylene diamine
  • polyoxyalkylene diamines containing oxyalkylene groups having different numbers of carbon chains from the viewpoint of reducing the warpage of the cured product of the resin composition.
  • polyoxyalkylenediamines include polyoxyethylenediamines such as Jeffamine ED-600, ED-900, ED-2003, EDR-148, and HK-511 manufactured by Huntsman, Inc., and Jeffamine D-230 and D-400.
  • polyoxypropylene diamines such as polyetheramines D-230, D-400, and D-2000 manufactured by BASF, Germany
  • polytetramethylenes such as Jeffamine XTJ-542, XTJ533, and XTJ536 Examples thereof include those having an ethylene group.
  • EDR-148, D-230, D-400, HK-511, etc. having a relatively low molecular weight can be polymers having a relatively high glass transition temperature, and thus are preferable in applications requiring heat resistance and chemical resistance. Used.
  • D-2000 having a relatively high molecular weight is excellent in flexibility.
  • the weight average molecular weight of polyoxyalkylene diamine is preferably 400 to 3000, particularly preferably 400 to 2000, D-400, D- 2000, ED-600, ED-900, and XTJ-542 are preferably used.
  • the polyimide used in the resin composition according to the present embodiment has a polyimide structure and a polyamic acid structure as structural units.
  • a polyimide structure part having good compatibility with other components and a polyamic acid structure part having a heat-crosslinkable functional group the remaining carboxyl group at the time of low-temperature curing can be reacted with a blocked isocyanate. It can be inactivated and warpage can be suppressed by the blocked isocyanate and the polyfunctional hydroxyl group-containing compound.
  • the polyimide used in the resin composition according to the present embodiment includes a polyimide having a polyether structure. This is because by having the polyether structure in the skeleton, the glass transition temperature and the elastic modulus of the cured product after thermosetting can be controlled, and warpage can be further reduced. In addition, after thermosetting, chemical crosslinking is formed between the polyimide having a polyether structure and the compound having a thermally crosslinkable functional group, and the polyimide having a polyether structure has a polyoxyalkylene chain. This is because a three-dimensional network is formed by local interaction between polymer chains, and heat resistance can be expressed.
  • polyimide it is preferable to use a polyimide including a polyimide part having a structure of the following general formula (2). This is for improving the solvent solubility of polyimide.
  • Z 1 and Z 2 represent a tetravalent organic group.
  • Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 represent an alkylene group having 1 to 5 carbon atoms. And may have a side chain.
  • B, c, and d represent an integer of 1 to 50.
  • polyimide it is also preferable to use a polyimide including a polyimide portion having a structure of the following general formula (11).
  • the solvent solubility of polyimide is also improved by including a polyimide part having the structure of the following general formula (11).
  • polyimide it is preferable to use a polyimide containing a polyimide part having the structure of the above general formula (2) or the following general formula (11).
  • Z 5 and Z 6 it is .
  • Y 6, Y 7, Y 8 , Y 9, Y 10, Y 11, Y 12 and Y 13 which represents a tetravalent organic group, a hydrocarbon group (G represents an integer of 3 to 100)
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 are alkylene groups having 1 to 5 carbon atoms, such as methylene group, ethylene group, propylene group, isopropylene. Group, butylene group and isobutylene group.
  • b, c, and d represent an integer of 1 to 50, preferably 3 to 40, and more preferably 5 to 30.
  • Z 5 and Z 6 represent a tetravalent organic group, and examples thereof include a phenyl group, a biphenyl group, a diphenyl ether group, a benzophenone group, a diphenyl sulfone group, and a naphthalene group.
  • a biphenyl group, a diphenyl ether group, a benzophenone group, and a diphenyl sulfone group are preferable, and a diphenyl ether group is more preferable.
  • Y 6 , Y 7 , Y 8 , Y 9 , Y 10 , Y 11 , Y 12 and Y 13 represent a hydrocarbon group.
  • Y 6 and Y 7 include alkylene groups having 1 to 5 carbon atoms such as a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, and an isobutylene group.
  • Examples of Y 8 , Y 9 , Y 10 , Y 11 , Y 12 and Y 13 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group.
  • a methyl group, an ethyl group, a propyl group, and a butyl group are preferable, and a methyl group, an ethyl group, and a propyl group are more preferable.
  • g represents an integer of 3 to 100, preferably 5 to 70, and more preferably 10 to 50.
  • the content of diamine having the structure of the following general formula (12) is 15 mol% or more and 85 mol% or less. This is for improving the solvent solubility and lowering the elastic modulus of polyimide.
  • Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 represent an alkylene group having 1 to 5 carbon atoms and may have a side chain.
  • B, c, and d represents an integer of 1 to 50.
  • Y 2 , Y 3 , Y 4 and Y 5 preferably have two or more types of alkylene groups from the viewpoint of adhesion to the substrate.
  • the content rate of the diamine which has the structure of following General formula (13) is 15 mol% or more and 95 mol% or less in all the diamines in a polyimide. This is for improving the solvent solubility and lowering the elastic modulus of polyimide.
  • Y 6 , Y 7 , Y 8 , Y 9 , Y 10 , Y 11 , Y 12 and Y 13 represent a hydrocarbon group.
  • G represents an integer of 3 to 100
  • the imidation ratio of the polyimide is preferably 25% or more and less than 100% from the viewpoint of forming a crosslink between the polyimide and an isocyanate compound as a polyfunctional crosslinkable compound having a crosslinkable functional group. % To 98% is more preferable. If the imidization ratio of the polyimide is 98% or less, the carboxyl group in the polyimide precursor that crosslinks with the compound having a thermally crosslinkable functional group remains sufficiently, and thus exhibits chemical resistance and heat resistance after curing. Moreover, if the imidation ratio of polyimide is 25% or more, the carboxyl residue soluble in the alkaline solution decreases after curing, and chemical resistance and heat resistance can be exhibited.
  • the resin composition according to the second aspect using a polyimide containing a polyimide structure and a polyamic acid structure has been described.
  • the polyamic acid structure is within the scope of the effects of the present invention.
  • Examples of the solvent used in such a reaction include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 1,3 -Dioxane, 1,4-dioxane, dimethyl sulfoxide, benzene, toluene, xylene, mesitylene, phenol, cresol, ethyl benzoate, butyl benzoate and the like. These may be used alone or in combination of two or more.
  • the concentration of the reaction raw material in this reaction is usually 2% by mass to 80% by mass, preferably 30% by mass to 70% by mass.
  • the molar ratio of tetracarboxylic dianhydride to be reacted and diamine is in the range of 0.8 to 1.2. Within this range, the molecular weight can be increased, and the elongation and the like are excellent. Preferably it is 0.9 to 1.1, more preferably 0.95 to 1.05.
  • the weight average molecular weight of the polyimide is preferably 5000 or more and 100,000 or less.
  • the weight average molecular weight means a weight average molecular weight measured by gel permeation chromatography using polystyrene having a known number average molecular weight as a standard.
  • the weight average molecular weight is more preferably from 10,000 to 60,000, and most preferably from 20,000 to 50,000.
  • the warp of the protective film obtained using the resin composition is improved, and the low resilience and heat resistance are excellent.
  • printing can be performed without bleeding at a desired film thickness during coating printing, and mechanical properties such as elongation of the obtained protective film are excellent.
  • a polyimide having a polyimide structure and a polyamic acid structure by carrying out a reaction at 80 ° C. to 220 ° C. to advance both the production of a polyimide having a polyamic acid structure and a thermal imidization reaction. That is, by suspending or dissolving a diamine component and an acid dianhydride component in an organic solvent and reacting them under heating at 80 ° C. to 220 ° C., both generation of polyimide and dehydration imidization are performed. It is also preferable to obtain a polyimide.
  • the end of the polymer main chain of polyimide can be end-capped with an end-capping agent made of a monoamine derivative or a carboxylic acid derivative.
  • an end-capping agent made of a monoamine derivative or a carboxylic acid derivative.
  • terminal blocking agent comprising a monoamine derivative
  • examples of the terminal blocking agent comprising a monoamine derivative include aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-xylidine, 2,6-xylidine, 3,4-xylidine, and 3,5-xylidine.
  • the polyimide obtained by the above-described method can be used in the resin composition according to the present embodiment as it is or without further solvent addition, without further solvent removal.
  • the polyfunctional hydroxyl group-containing compound used in the resin composition according to the present embodiment refers to a compound containing two or more hydroxyl groups per molecular chain.
  • the skeleton include those containing hydrocarbon groups such as aliphatic, aromatic, and alicyclic groups, and those having a structure represented by the following formula (14) in the skeleton from the viewpoint of enhancing the insulating properties. It is preferable that it is an aliphatic compound from the viewpoint of warpage suppression. This is because by having an aliphatic skeleton, hygroscopicity can be suppressed without impairing the effect of suppressing warpage, and high insulating properties can be expressed even during moisture absorption.
  • X is an aromatic
  • Y is an aliphatic having 1 to 10 carbon atoms
  • Z is a functional group selected from an ether group, an ester group, a carbonate group, a urethane group, and a urea group.
  • H represents an integer from 0 to 2
  • i represents an integer from 0 to 1
  • j represents an integer from 1 to 1000.
  • polyfunctional hydroxyl group-containing compound examples include polytetramethylene diol such as PTMG1000 (manufactured by Mitsubishi Chemical Corporation), polybutadiene diol such as G-1000 (manufactured by Nippon Soda Co., Ltd.), and GI-1000 (manufactured by Nippon Soda Co., Ltd.).
  • PTMG1000 manufactured by Mitsubishi Chemical Corporation
  • G-1000 manufactured by Nippon Soda Co., Ltd.
  • GI-1000 manufactured by Nippon Soda Co., Ltd.
  • polybutadiene diol hydrogenated polybutadiene diol, and polycarbonate diol are preferable from the viewpoint of enhancing the insulating properties, and polycarbonate diol is preferable from the viewpoint of reducing warpage.
  • the polyfunctional hydroxyl group-containing compound is preferably a liquid compound at room temperature in terms of warpage reduction and solubility in an organic solvent.
  • the molecular weight is preferably 500 to 3000, and particularly preferably 500 to 2000.
  • the polyfunctional hydroxyl group-containing compound is preferably contained in an amount of 3 parts by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of achieving both reduction in warpage, solder heat resistance and chemical resistance. More preferably, it is contained in parts by mass.
  • polyfunctional hydroxyl-containing compound containing two hydroxyl groups was demonstrated as (B) polyfunctional hydroxyl-containing compound, it contains two or more hydroxyl groups in the range with the effect of this invention. Polyols can also be used.
  • (C-1) Blocked isocyanate compound The blocked isocyanate compound used in the resin composition according to this embodiment is obtained by reacting a blocking agent with an isocyanate having two or more isocyanate groups in the molecule. The resulting compound.
  • isocyanate compounds having two or more isocyanate groups in the molecule include 1,6-hexane diisocyanate, 4,4′-diphenylmethane diisocyanate, and 2,4-tolylene diisocyanate.
  • Blocking agents include alcohols, phenols, ⁇ -caprolactam, oximes, active methylenes, mercaptans, amines, imides, acid amides, imidazoles, ureas, carbamates , Imines, or sulfites.
  • the blocked isocyanate compound examples include trade names Duranate SBN-70D, TPA-B80E, TPA-B80X, 17B-60PX, MF-B60X, E402-B80T, ME20-B80S, MF-K60X, K6000 manufactured by Asahi Kasei Chemicals Corporation. And hexamethylene diisocyanate (hereinafter also referred to as “HDI”) block isocyanate.
  • the Mitsui Chemicals Polyurethane products include the product name Takenate B-882N, the product name Takenate B-830, which is a tolylene diisocyanate block isocyanate, and the 4,4′-diphenylmethane diisocyanate block isocyanate.
  • the resin composition may contain an organic solvent in addition to the polyimide, the polyfunctional hydroxyl group-containing compound, and the blocked isocyanate compound. It is because it can use preferably as a varnish by setting it as the state melt
  • organic solvents may be used alone or in combination.
  • ⁇ -butyrolactone triglyme, butyl benzoate, and ethyl benzoate.
  • the resin composition may further contain a flame retardant.
  • the kind of flame retardant is not particularly limited, and examples thereof include halogen-containing compounds, phosphorus-containing compounds, and inorganic flame retardants. One kind of these flame retardants may be used, or two or more kinds may be mixed and used.
  • the addition amount of the flame retardant is not particularly limited, and can be appropriately changed according to the type of the flame retardant used. For example, it can be used in the range of 5% by mass to 50% based on the polyimide content.
  • halogen-containing compounds include organic compounds containing chlorine and compounds containing bromine. Specific examples include pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane tetrabromobisphenol A, and the like.
  • phosphorus-containing compound phosphorus compounds such as phosphazene, phosphine, phosphine oxide, phosphate ester, and phosphite ester are fried.
  • phosphazene, phosphioxide, or phosphate ester it is preferable to use phosphazene, phosphioxide, or phosphate ester.
  • phosphorus-containing compounds include phosphazene derivatives FP100, FP110, FP300, and FP400 manufactured by Fushimi Pharmaceutical Co., Ltd.
  • Inorganic flame retardants include antimony compounds and metal hydroxides.
  • Antimony compounds include antimony trioxide and antimony pentoxide.
  • Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide.
  • the particle size of the powder is preferably 100 ⁇ m or less. If the particle size is 100 ⁇ m or less, it is easy to be mixed into the polyimide composition, and the transparency of the cured resin is not impaired. In order to sufficiently increase the flame retardancy, the particle size of the powder is preferably 50 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • a nitrogen-containing compound may be used as the flame retardant.
  • One of the nitrogen-containing compounds may be used as a flame retardant, or two or more of the above-described halogen-containing compounds, phosphorus-containing compounds, and indefinite flame retardants and nitrogen-containing compounds may be mixed and used as a flame retardant.
  • the amount of the nitrogen-containing compound added is not particularly limited and can be changed according to the type of flame retardant used. As addition amount of a nitrogen-containing compound, it can use in the range of 5 mass% to 50 mass% on the basis of content of a polyimide like the flame retardant mentioned above, for example.
  • Examples of the nitrogen-containing compound include melamine cyanurate manufactured by Nissan Chemical Co., Ltd. and Sakai Chemical Industry Co., Ltd.
  • the viscosity and thixotropy are adjusted according to the coating method. If necessary, a filler or a thixotropic agent can be added and used. It is also possible to add additives such as known antifoaming agents, leveling agents and pigments.
  • a urethanization catalyst may be added and used.
  • U-CAT SA registered trademark
  • U-CAT registered trademark 1102 manufactured by San Apro
  • an organozirconium compound manufactured by Matsumoto Fine Chemical Co. an organozirconium compound manufactured by Matsumoto Fine Chemical Co.
  • zirconium K-KAT manufactured by Enomoto Kasei Co., Ltd. Etc.
  • the resin composition may further contain a compound having a thermally crosslinkable functional group.
  • a compound having a thermally crosslinkable functional group examples include triazine compounds, benzoxazine compounds, and epoxy compounds.
  • melamines and melamine cyanurates are preferable.
  • melamines include melamine derivatives, condensates of compounds having a structure similar to melamine and melamine, and the like.
  • Specific examples of melamines include, for example, methylolated melamine, ammelide, ammelin, formoguanamine, guanylmelamine, cyanomelamine, arylguanamine, melam, melem, melon and the like.
  • melamine cyanurates include molar reactants such as cyanuric acid and melamines.
  • some of the amino groups or hydroxyl groups in melamine cyanurate may be substituted with other substituents.
  • the benzoxazine compound may be composed only of monomers, or several molecules may be polymerized into an oligomer state. Moreover, you may use the benzoxazine compound which has a different structure simultaneously. Among these, bisphenol benzoxazine is preferably used.
  • the resin composition can be used as a negative photosensitive resin composition by further adding an acrylic monomer and a photo radical generator. Moreover, it can be used as a positive photosensitive resin composition by adding a photoacid generator.
  • a cured product can be obtained by heating the resin composition described above.
  • the mode of heating is not particularly limited, but it is preferable to heat for 5 minutes to 60 minutes in a two-step temperature range. After heating at 100 ° C. to 130 ° C. for 5 minutes to 60 minutes, 15 ° C. at 160 ° C. to 200 ° C. It is more preferable to heat for 60 minutes.
  • cure in two types of temperature ranges, the reaction between the compounds contained in a resin composition can be controlled, and a three-dimensional network can be formed. And thereby, the heat resistance and chemical resistance of hardened
  • the maximum temperature is set in the range of 150 ° C. to 220 ° C. with an oven or a hot plate, for 5 to 100 minutes, air or nitrogen, etc.
  • the solvent is removed by heating in an inert atmosphere.
  • the heating temperature may be constant over the entire processing time or may be gradually raised.
  • the resin composition film can be formed by printing on the surface of a flexible printed circuit board or a semiconductor wafer by known screen printing or a precision dispensing method.
  • the resin composition exhibits excellent heat resistance when thermally cured, it is useful as a surface cured film for semiconductor elements, interlayer insulating films, bonding sheets, protective insulating films for printed wiring boards, surface protective films for printed circuit boards, etc. And is applied to various electronic components.
  • Espanex M manufactured by Nippon Steel Chemical Co., Ltd.
  • insulating layer thickness 25 ⁇ m
  • conductor layer copper foil F2-WS (18 ⁇ m)
  • the composition is applied and cured.
  • the part not coated can be used as an external terminal by applying electrolytic nickel-gold plating.
  • the surface protective film thus formed exhibits good insulating properties.
  • thermosetting of the resin composition in the present embodiment is performed under relatively low temperature conditions (for example, 160 ° C. to 200 ° C.), copper oxidation does not occur.
  • Such low-temperature curing is possible because carboxylic acid reacts with a blocked isocyanate compound (more precisely, an isocyanate compound that has been unblocked by heating), so complete imidization is unnecessary and high-temperature heating as high as 250 ° C is not required. Because it becomes.
  • the resin composition according to the present embodiment can be used as a resin film by coating on a substrate and drying.
  • the thickness of the surface protective film is preferably 1 ⁇ m to 50 ⁇ m. When the film thickness is 1 ⁇ m or more, the handling becomes easy, and when the film thickness is 50 ⁇ m or less, it is easy to bend and incorporate easily.
  • the resin composition which concerns on this Embodiment can also be used as a photosensitive resin composition by containing the (D) photosensitive agent.
  • the photosensitive film can also be obtained by apply
  • the resin composition according to the present embodiment can be suitably used as an interlayer insulating film such as a multilayer flexible wiring board by providing a resin composition on a copper foil and drying it.
  • the resin composition according to the present embodiment can be suitably used as a protective film for a wiring pattern on a wiring board by providing the resin composition so as to cover the wiring pattern formed on the substrate.
  • the hydroxyl group of the bifunctional hydroxyl group-containing compound and the isocyanate group of the blocked isocyanate compound react to form a urethane structure, and the bifunctional hydroxyl group-containing compound is not taken into the polyimide skeleton, Present as the second component in the photosensitive resin composition.
  • skeleton at the time of hardening can be prevented, and reduction of curvature can be achieved.
  • an aliphatic diamine component is contained in the polyimide structure of polyimide, it is possible to suppress a decrease in molecular weight due to depolymerization of the polyamic acid structure.
  • the photosensitive resin composition according to the second embodiment of the present invention includes (a) a polyimide, (b) a bifunctional hydroxyl group-containing compound, (c-1) an isocyanate compound (block isocyanate compound), and a photosensitive agent.
  • polyimide in the photosensitive resin composition according to the present embodiment will be described.
  • polyimide can be obtained, for example, by reacting tetracarboxylic dianhydride and diamine.
  • tetracarboxylic dianhydride A conventionally well-known tetracarboxylic dianhydride can be used.
  • tetracarboxylic dianhydride aromatic tetracarboxylic acid, aliphatic tetracarboxylic dianhydride, etc. are applicable.
  • diamine there is no restriction
  • limiting in the diamine to be used A conventionally well-known diamine can be used.
  • the polyimide is represented by the polyimide structure represented by the following general formula (3) and the following general formula (4) from the viewpoint of developability and molecular weight stability. It is preferable that each has a polyamic acid structure as a repeating structural unit.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom.
  • a monovalent organic group having 1 to 20 carbon atoms which may be the same or different, and R 3 , R 6 , R 9 , R 12 , and R 15 each have 1 to carbon atoms 20 represents a tetravalent organic group, and m, n, and p each independently represent an integer of 0 to 100.
  • R 16 represents a tetravalent organic group, and R 17 represents 1 carbon atom. Represents a divalent organic group having 90 carbon atoms.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, and may be the same or different, and R 3 , R 6 , R 9 , R 12 , and R 15 are tetravalent having 1 to 20 carbon atoms.
  • M, n, and p are each independently an integer of 0 to 30, and satisfy 1 ⁇ (m + n + p) ⁇ 30.)
  • tetracarboxylic dianhydride and aliphatic diamine represented by the general formula (15) are polymerized and cyclized to obtain a polyimide, and then tetracarboxylic dianhydride and the following: Examples include a synthesis method in which the diamine represented by the general formula (16) is polymerized.
  • R 17 represents a divalent organic group having 1 to 90 carbon atoms.
  • tetracarboxylic dianhydride examples include biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter abbreviated as “BPDA”), benzophenone-3,3 ′, 4,4′- Tetracarboxylic dianhydride (hereinafter abbreviated as “BTDA”), oxydiphthalic dianhydride (hereinafter abbreviated as “ODPA”), diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid dianhydride
  • TMEG ethylene glycol bis (trimellitic acid monoester acid anhydride)
  • TMEG ethylene glycol bis (trimellitic acid monoester acid anhydride)
  • TMEG ethylene glycol bis (trimellitic acid monoester acid anhydride)
  • TMEG ethylene glycol bis (trimellitic acid monoester acid anhydride)
  • TMEG p-phenylene bis (
  • tetracarboxylic dianhydrides described above may be used alone or in combination of two or more. From the viewpoint of polyimide developability, BPDA, ODPA, BTDA, TMEG, 5-BTA, and decanediol bis (trimellitic acid monoester acid anhydride) are more preferable.
  • the diamine represented by the general formula (15) is not limited as long as it has the structure represented by the general formula (15), but may be 1,8-diamino-3,6-dioxyoctane or the like.
  • Polyoxyethylenediamine compounds, polyoxyalkylenediamine compounds such as Huntsman's Jeffamine EDR-148 and EDR-176, Jeffamine D-230, D-400, D-2000, D-4000, polyether amine manufactured by BASF Examples include polyoxypropylenediamine compounds such as D-230, D-400, and D-2000, and compounds having different oxyalkylene groups such as HK-511, ED-600, ED-900, ED-2003, and XTJ-542. It is done. By using these compounds having an oxyalkylene group, warpage of FPC after baking of the polyimide can be reduced.
  • m, n, and p are each independently an integer of 0 or more and 30 or less. From the viewpoint of insulation reliability, 1 ⁇ (m + n + p) ⁇ 30 is preferable, and 3 ⁇ (m + n + p) ⁇ 10 is more preferable. Since the skeleton having an oxyalkylene group is short as 1 ⁇ (m + n + p) ⁇ 30, it can be estimated that the elastic modulus of polyimide is increased and the insulation reliability is improved. In addition, usually when such an oxyalkylene group skeleton is short, warping tends to occur. In this embodiment, warpage is in a good state by using a bifunctional hydroxyl group-containing compound and blocked isocyanate in combination. It is estimated that the insulation reliability can be further improved while maintaining the above.
  • the polyimide which concerns on this Embodiment has a polyimide structure and a polyamic-acid structure as a repeating structural unit, respectively, by introduce
  • the diamine of the above general formula (15) is introduced into the polyamic acid structure, the aliphatic diamine has a high basicity, and the depolymerization of the polyamic acid proceeds and the molecular weight decreases remarkably as compared with the conventional polyamic acid.
  • the molecular weight is stabilized without being affected by the basicity of the aliphatic diamine.
  • Examples of the diamine represented by the general formula (16) include 1,3-bis (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) alkane, 1,5-bis (4-aminophenoxy). ) Alkane, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3, 3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3, 7-diamino-dimethyldibenzothiophene-5,5-dioxide, 4,4'-diamin
  • the polyimide has a structure represented by the following general formula (6) as a repeating unit.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, and may be the same or different, and R 3 , R 6 , R 9 , R 12 , and R 15 are tetravalent having 1 to 20 carbon atoms.
  • M, n, and p each independently represents an integer of 0 or more and 30 or less, R 16 represents a tetravalent organic group, and R 17 represents a divalent having 1 to 90 carbon atoms.
  • A, B, and C represent mol% of each unit, and satisfy 0.10 ⁇ (A + B) / (A + B + C) ⁇ 0.85.
  • (A + B) which is a structure containing the diamine represented by the general formula (15) is 0.85 or less with respect to the whole, a decrease in elastic modulus and glass transition point (Tg) is suppressed, Insulation reliability is maintained. Furthermore, when (A + B) which is a polyimide structure is 0.85 or less with respect to the whole, the solubility with respect to the alkaline developer is developed, and the developability is improved.
  • the main chain terminal of the polyimide is not particularly limited as long as it does not affect the performance.
  • a terminal derived from an acid dianhydride or a diamine used for producing polyimide may be used, or the terminal may be sealed with another acid anhydride or an amine compound.
  • the weight average molecular weight of the polyimide is preferably from 1,000 to 1,000,000.
  • the weight average molecular weight refers to a molecular weight measured by gel permeation chromatography using polystyrene having a known weight average molecular weight as a standard.
  • the weight average molecular weight is preferably 1000 or more from the viewpoint of the strength of the polyimide film. Moreover, it is preferable that it is 1000000 or less from a viewpoint of the viscosity of a polyimide containing resin composition and a moldability.
  • the weight average molecular weight is more preferably from 5,000 to 500,000, particularly preferably from 10,000 to 300,000, and most preferably from 20,000 to 50,000.
  • a polyimide having a polyimide structure and a polyamic acid structure as repeating units, respectively, is a process of synthesizing a first-stage polyimide site by reacting acid dianhydride and diamine in an unequal molar amount (process 1), followed by a second stage. It can be produced by the step of synthesizing the polyamic acid moiety (step 2).
  • process 1 the process of synthesizing a first-stage polyimide site by reacting acid dianhydride and diamine in an unequal molar amount
  • step 2 the step of synthesizing the polyamic acid moiety
  • the process of synthesizing the first stage polyimide site will be described.
  • the step of synthesizing the first-stage polyimide site is not particularly limited, and a known method can be applied. More specifically, it is obtained by the following method. First, diamine is dissolved and / or dispersed in a polymerization solvent, and acid dianhydride powder is added thereto. Then, a solvent that is azeotroped with water is added, and the mixture is heated and stirred for 0.5 to 96 hours, preferably 0.5 to 30 hours, while removing by-product water azeotropically using a mechanical stirrer. In this case, the monomer concentration is 0.5% by mass or more and 95% by mass or less, preferably 1% by mass or more and 90% by mass or less.
  • the polyimide part can be obtained by adding a known imidation catalyst or by using no catalyst.
  • the imidization catalyst is not particularly limited, but an acid anhydride such as acetic anhydride, a lactone compound such as ⁇ -valerolactone, ⁇ -butyrolactone, ⁇ -tetronic acid, ⁇ -phthalide, ⁇ -coumarin, and ⁇ -phthalido acid, Examples thereof include tertiary amines such as pyridine, quinoline, N-methylmorpholine, and triethylamine. Moreover, 1 type or 2 or more types of mixtures may be sufficient as needed. Among these, a mixed system of ⁇ -valerolactone and pyridine and a non-catalyst are particularly preferable from the viewpoint of high reactivity and influence on the next reaction.
  • the amount of the imidization catalyst added is preferably 50 parts by mass or less, and more preferably 30 parts by mass or less when the polyamic acid is 100 parts by mass.
  • ketone compound having 2 to 6 carbon atoms such as acetone and methyl ethyl ketone; saturated hydrocarbon compound having 5 to 10 carbon atoms such as normal pentane, cyclopentane, normal hexane, cyclohexane, methylcyclohexane and decalin; benzene, Aromatic hydrocarbon compounds having 6 to 10 carbon atoms such as toluene, xylene, mesitylene, tetralin; methyl acetate, ethyl acetate, ⁇ -butyrolactone Ester compounds having 3 to 12 carbon atoms such as methyl benzoate; halogen-containing compounds having 1 to 10 carbon atoms such as chloroform, methylene chloride, and 1,2-dichloroethane; acetonitrile, N, N-dimethylformamide, N , N-dimethylacetamide, N-methyl-2-pyrrolidone and other nitrogen-containing compounds having 2
  • Particularly preferred solvents include ether compounds having 2 to 9 carbon atoms, ester compounds having 3 to 12 carbon atoms, aromatic hydrocarbon compounds having 6 to 10 carbon atoms, and nitrogen-containing compounds having 2 to 10 carbon atoms. Can be mentioned. These can be arbitrarily selected in consideration of industrial productivity and influence on the next reaction.
  • the reaction temperature is preferably 15 ° C. or higher and 250 ° C. or lower. If the reaction temperature is 15 ° C. or higher, the reaction starts, and if it is 250 ° C. or lower, there is no deactivation of the catalyst. Preferably they are 20 degreeC or more and 220 degrees C or less, More preferably, they are 20 degreeC or more and 200 degrees C or less.
  • the time required for the reaction varies depending on the purpose or reaction conditions, but is usually within 96 hours, particularly preferably in the range of 30 minutes to 30 hours.
  • the synthesis of the polyamic acid moiety in the second stage can be carried out by using the polyimide moiety obtained in Step 1 as a starting material and adding diamine and / or acid dianhydride for polymerization.
  • the polymerization temperature in the synthesis of the second stage polyamic acid moiety is preferably 0 ° C. or higher and 250 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower, and particularly preferably 0 ° C. or higher and 80 ° C. or lower.
  • the time required for the reaction during the synthesis of the polyamic acid varies depending on the purpose or reaction conditions, but is usually within 96 hours, particularly preferably in the range of 30 minutes to 30 hours.
  • ether compounds having 2 to 9 carbon atoms such as dimethyl ether, diethyl ether, methyl ethyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether; acetone, methyl ethyl ketone, and the like.
  • Ketone compounds having 2 to 6 carbon atoms saturated hydrocarbon compounds having 5 to 10 carbon atoms such as normal pentane, cyclopentane, normal hexane, cyclohexane, methylcyclohexane, decalin; benzene, toluene, xylene, mesitylene, tetralin Aromatic hydrocarbon compounds having 6 to 10 carbon atoms, such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, methyl benzoate More than 12 ester compounds; halogen-containing compounds having 1 to 10 carbon atoms such as chloroform, methylene chloride, 1,2-dichloroethane; acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Nitrogen-containing compounds having 2 to 10 carbon atoms such as -2-pyrrolidone; sulfur-containing compounds such as dimethyl sulfoxide.
  • polyimide purification method examples include a method of removing insoluble acid dianhydride and diamine in the reaction solution by vacuum filtration, pressure filtration, or the like. Moreover, the purification method by what is called reprecipitation which adds a reaction solution to a poor solvent and precipitates can be implemented. Furthermore, when a particularly high-purity polyimide is required, a purification method by extraction using supercritical carbon dioxide is also possible.
  • insulation reliability is improved and warpage can be suppressed by containing a bifunctional hydroxyl group-containing compound and blocked isocyanate. It is presumed that the insulation reliability is improved by the formation of a crosslinked body by the reaction between the hydroxyl group contained in the bifunctional hydroxyl group-containing compound and the isocyanate group contained in the blocked isocyanate.
  • the bifunctional hydroxyl group-containing compound is present as the second component without being taken into the polyimide skeleton, shrinkage of the polyimide skeleton during curing can be prevented and warpage can be suppressed.
  • the inclusion of the blocked isocyanate inactivates the carboxyl group at a low temperature and enables low-temperature curing. Therefore, it is considered that the shrinkage of the polyimide skeleton during curing can be prevented and the warpage can be suppressed.
  • polyimide is used as the polymer compound (A)
  • polymer compound polyimide that does not include a polyamic acid structure
  • polyamide that does not include a polyimide structure it is also possible to use a polyamideimide containing both a polyamic acid structure and a polyimide structure.
  • bifunctional hydroxyl group-containing compound is the same as the polyfunctional hydroxyl group-containing compound used in the resin composition according to the first embodiment as long as the effects of the present invention are achieved. Can be used.
  • (C-1) Blocked isocyanate compound As the blocked isocyanate compound, the same compounds as those used for the resin composition according to the first embodiment can be used. Moreover, similarly to the resin composition according to the first embodiment, other polyfunctional isocyanate compounds and polyfunctional oxazoline compounds can also be used within the range where the effects of the present invention are exhibited.
  • the photosensitive resin composition according to the present embodiment includes a (meth) acrylate compound having at least two or more photopolymerizable unsaturated double bonds as a photosensitive agent, and further includes (E) light. It preferably contains a polymerization initiator.
  • the photosensitive agent in the photosensitive resin composition according to the present embodiment represents a compound having a property that the structure is changed by light irradiation and the solubility in a solvent is changed.
  • two or more light is contained by including the (meth) acrylate compound and photoinitiator which have two or more photopolymerizable unsaturated double bonds. Since a crosslinked body is formed also by the (meth) acrylate compound having a polymerizable unsaturated double bond, developability and insulation reliability are improved.
  • Examples of the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds include tricyclodecane dimethylol diacrylate, ethylene oxide (EO) modified bisphenol A dimethacrylate, EO modified hydrogenated bisphenol A diacrylate, 1,6-hexanediol (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 2-di (p-hydroxyphenyl) propanedi ( (Meth) acrylate, tris (2-acryloxyethyl) isocyanurate, ⁇ -caprolactone modified tris (acryloxyethyl) isocyanurate, glycerol tri (meth) acrylate, trimethylolprop Tri (meth) acrylate, polyoxypropyltrimethylolpropane tri (meth) acrylate, polyoxye
  • EO-modified bisphenol A dimethacrylate EO-modified hydrogenated bisphenol A diacrylate, and pentaerythritol tri / tetra (meth) acrylate are preferable from the viewpoint of developability and warpage after firing.
  • a combination of a compound having two double bonds and a compound having three or more double bonds is preferable. It is estimated that the compound having three or more double bonds forms a rigid cross-linked body, whereby the elastic modulus and glass transition point (Tg) of the cured film are increased, and the insulation reliability is improved.
  • the bifunctional hydroxyl group-containing compound is present as a second component in the photosensitive resin composition without forming a crosslinked structure with the compound having a double bond, thereby reducing warpage. can do.
  • Examples of the compound having three or more double bonds include pentaerythritol tri / tetraacrylate (trade name: Aronix (registered trademark) M-306, manufactured by Toagosei Co., Ltd.), trimethylolpropane PO-modified triacrylate (trade name: Aronix M).
  • the amount of the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds is preferably 5 parts by mass or more and 60 parts by mass or less from the viewpoint of developability when the amount of polyimide is 100 parts by mass. 10 parts by mass or more and 40 parts by mass or less are more preferable.
  • Photopolymerization initiators include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one, benzyl dipropyl ketals, benzyl diphenyl ketals, benzoin Methyl ethers, benzoin ethyl ether, thioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-isopropylthioxanthone, 2-fluorothioxanthone, 4-fluorothioxanthone 2-chlorothioxanthone, 4-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, benzophenone, 4,4′-bis (dimethylamino) benzophenone [Michler'
  • the amount of the photopolymerization initiator is preferably 0.01 parts by mass or more and 40 parts by mass or less from the viewpoint of sensitivity and resolution when the amount of polyimide is 100 parts by mass. 0.5 parts by mass or more and 35 parts by mass or less are more preferable.
  • the photosensitive resin composition contains a phosphorus compound.
  • a phosphorus compound will not be limited if it is a phosphorus atom containing compound which contains a phosphorus atom in a structure. Examples of such phosphorus compounds include phosphate ester compounds having a phosphate ester structure and phosphazene compounds having a phosphazene structure.
  • Phosphoric acid ester compounds such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, triisobutyl phosphate, tris (2-ethylhexyl) phosphate, etc., phosphoric acid ester substituted with an aliphatic hydrocarbon group, tris (butoxyethyl) phosphate, etc.
  • Phosphorus ester, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, resorcinol bis (diphenyl phosphate) and other aromatic organic groups as substituents Examples include acid ester compounds. Among these, tris (butoxyethyl) phosphate and triisobutyl phosphate are preferable from the viewpoint of developability.
  • Examples of the phosphazene compound include structures represented by the following general formula (17) and the following general formula (18).
  • R 21 , R 22 , R 23 , and R 24 in the phosphazene compound represented by the general formula (17) and the general formula (18) are not limited as long as they are organic groups having 1 to 20 carbon atoms.
  • a carbon number of 1 or more is preferable because flame retardancy tends to be exhibited.
  • a carbon number of 20 or less is preferred because it tends to be compatible with polyimide.
  • a functional group derived from an aromatic compound having 6 to 18 carbon atoms is particularly preferable from the viewpoint of flame retardancy.
  • Such functional groups include phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 2-cyanophenyl.
  • V in the phosphazene compound represented by the general formula (17) is not limited as long as it is 3 or more and 25 or less. When it is 3 or more, flame retardancy is exhibited, and when it is 25 or less, the solubility in an organic solvent is high. Among these, it is preferable that v is 3 or more and 10 or less because of availability.
  • W in the phosphazene compound represented by the general formula (18) is not limited as long as it is 3 or more and 10,000 or less. When it is 3 or more, flame retardancy is exhibited, and when it is 10,000 or less, the solubility in organic solvents is high. Among these, 3 or more and 100 or less are preferable in view of availability.
  • G and J in the phosphazene compound represented by the general formula (18) are not limited as long as they are organic groups having 3 to 30 carbon atoms.
  • G —N ⁇ P (OC 6 H 5 ) 3 , —N ⁇ P (OC 6 H 5 ) 2 (OC 6 H 4 OH), —N ⁇ P (OC 6 H 5 ) ( OC 6 H 4 OH) 2 , —N ⁇ P (OC 6 H 4 OH) 3 , —N ⁇ P (O) (OC 6 H 5 ), —N ⁇ P (O) (OC 6 H 4 OH) preferable.
  • J includes -P (OC 6 H 5 ) 4 , -P (OC 6 H 5 ) 3 (OC 6 H 4 OH), -P (OC 6 H 5 ) 2 (OC 6 H 4 OH) 2 ,- P (OC 6 H 5 ) (OC 6 H 4 OH) 3 , —P (OC 6 H 4 OH) 4 , —P (O) (OC 6 H 5 ) 2 , —P (O) (OC 6 H 4 OH) 2 , —P (O) (OC 6 H 5 ) (OC 6 H 4 OH) and the like are preferable.
  • phosphorus compound one type of phosphorus compound may be used, or two or more types of phosphorus compounds may be used in combination.
  • the addition amount of the phosphorus compound in the photosensitive resin composition is preferably 50 parts by mass or less from the viewpoint of developability and the like when the amount of polyimide is 100 parts by mass. From the viewpoint of flame retardancy of the cured product, 45 parts by mass or less is more preferable. Moreover, if it is 5 mass parts or more, an effect is exhibited.
  • the photosensitive resin composition may contain other compounds as long as the performance is not adversely affected.
  • specific examples include thermosetting resins used for improving the toughness, solvent resistance, and heat resistance (thermal stability) of the fired film, and compounds having reactivity with polyimide.
  • the heterocyclic compound used for adhesiveness improvement, the pigment, dye, etc. which are used for coloring of a film are mentioned.
  • thermosetting resin examples include epoxy resins, cyanate ester resins, unsaturated polyester resins, benzoxazine resins, benzoxazolines, phenol resins, melamine resins, and maleimide compounds.
  • Examples of the compound having reactivity with polyimide include a compound capable of reacting with a carboxyl group, amino group or terminal acid anhydride in a polymer to form a three-dimensional crosslinked structure.
  • a so-called thermal base generator compound that generates an amino group as a base by heating is preferable.
  • a compound obtained by protecting the amino group of a base compound such as an amine with an acid chloride compound, which forms a salt structure with an acid such as sulfonic acid is protected with a dicarbonate compound. Thereby, it is stable without exhibiting basicity at room temperature, and can be a thermal base generator that generates a base by deprotection by heating.
  • the heterocyclic compound is not limited as long as it is a cyclic compound containing a hetero atom.
  • the hetero atoms in this embodiment include oxygen, sulfur, nitrogen, and phosphorus.
  • Specific examples include 2-methylimidazole, 2-undecylimidazole, 2-ethyl-4-methylimidazole, imidazole such as 2-phenylimidazole, N-alkyl group-substituted imidazole such as 1,2-dimethylimidazole, Aromatic group-containing imidazole such as 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl Cyano group-containing imidazoles such as -2-undecylimidazole and 1-cyanoethyl-2-phenylimidazole, imidazole
  • pigments and dyes examples include phthalocyanine compounds.
  • the addition amount of other compounds is not limited as long as it is 0.01 parts by mass or more and 30 parts by mass or less. If it is 0.01 mass part or more, there exists a tendency for adhesiveness and the coloring property to a film to fully improve, and if it is 30 mass parts or less, there will be no bad influence on photosensitivity.
  • the photosensitive resin composition may optionally contain an organic solvent.
  • the organic solvent is not limited as long as it can uniformly dissolve and / or disperse the polyimide.
  • organic solvents include ether compounds having 2 to 9 carbon atoms such as dimethyl ether, diethyl ether, methyl ethyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether; acetone, methyl ethyl ketone, and the like.
  • Ketone compounds having 2 to 6 carbon atoms saturated hydrocarbon compounds having 5 to 10 carbon atoms such as normal pentane, cyclopentane, normal hexane, cyclohexane, methylcyclohexane and decalin; benzene, toluene, xylene, mesitylene, tetralin Aromatic hydrocarbon compounds having 6 to 10 carbon atoms such as: carbons such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, methyl benzoate 3 to 9 ester compounds; halogen-containing compounds having 1 to 10 carbon atoms such as chloroform, methylene chloride and 1,2-dichloroethane; acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N- Examples thereof include nitrogen-containing compounds having 2 to 10 carbon atoms such as methyl-2-pyrrolidone; sulfur-containing compounds such as dimethyl sulfoxide
  • organic solvents include ether compounds having 2 to 9 carbon atoms, ester compounds having 3 to 9 carbon atoms, aromatic hydrocarbon compounds having 6 to 10 carbon atoms, and nitrogen-containing compounds having 2 to 10 carbon atoms. Or a mixture of two or more of them. From the viewpoint of polyimide solubility, triethylene glycol dimethyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, and N, N-dimethylacetamide are preferable.
  • the concentration of polyimide in the resin composition composed of polyimide and an organic solvent is not particularly limited as long as it is a concentration capable of forming a resin molded body.
  • the polyimide concentration is preferably 1% by mass or more from the viewpoint of the film thickness of the resin molded body to be produced, and the polyimide concentration is preferably 90% by mass or less from the uniformity of the film thickness of the resin molded body. From the viewpoint of the film thickness of the obtained resin molding, it is more preferably 2% by mass or more and 80% by mass or less.
  • the photosensitive resin composition which concerns on this Embodiment can be used suitably for formation of a photosensitive film.
  • the photosensitive film which concerns on this Embodiment is obtained by apply
  • the photosensitive film according to the present embodiment includes a carrier film, the photosensitive resin composition provided on the carrier film, and a cover film formed on the photosensitive resin. Is preferred.
  • the polyimide concentration in the photosensitive resin composition is preferably 1% by mass or more and 90% by mass or less.
  • concentration of a polyimide 1 mass% or more is preferable from a viewpoint of the film thickness of a photosensitive film, and 90 mass% or less is preferable from a viewpoint of the viscosity of the photosensitive resin composition, and the uniformity of a film thickness. From a viewpoint of the film thickness of the obtained photosensitive film, 2 mass% or more and 80 mass% or less are more preferable.
  • the substrate is coated with the photosensitive resin composition.
  • a base material if it is a base material which is not damaged in the case of photosensitive film formation, it will not be limited.
  • examples of such a substrate include a silicon wafer, glass, ceramic, heat resistant resin, and carrier film.
  • the carrier film include a polyethylene terephthalate film and a metal film. A heat-resistant resin and a carrier film are preferable from the viewpoint of easy handling, and a polyethylene terephthalate film is particularly preferable from the viewpoint of peelability after pressure bonding to the substrate.
  • coating methods include bar coating, roller coating, die coating, blade coating, dip coating, doctor knife, spray coating, flow coating, spin coating, slit coating, and brush coating.
  • a heat treatment called pre-baking may be performed with a hot plate or the like.
  • the solution of the photosensitive resin composition is apply
  • drying the photosensitive resin composition into a dry film for example, a laminated film having a carrier film and a photosensitive film is obtained.
  • a laminate film may be formed by providing at least one layer of an optional antifouling or protective cover film on the photosensitive film.
  • the cover film is not limited as long as it is a film that protects a photosensitive film such as low-density polyethylene.
  • the photosensitive film which concerns on this Embodiment can be used suitably for a flexible printed wiring board.
  • the flexible printed wiring board according to the present embodiment includes a base material having wiring and the photosensitive film provided so as to cover the wiring on the base material.
  • This flexible wiring board can be obtained by pressure-bonding a photosensitive film on a substrate having wiring, alkali-developing, and then baking.
  • Examples of the substrate having wiring in the flexible printed wiring board include a hard substrate such as a glass epoxy substrate and a glass maleimide substrate, or a flexible substrate such as a copper clad laminate. Among these, a flexible substrate is preferable from the viewpoint of bendability.
  • the formation method of the flexible printed wiring board is not limited as long as the photosensitive film is formed on the substrate so as to cover the wiring.
  • a forming method hot pressing, thermal laminating, thermal vacuum pressing, thermal vacuum laminating, or the like is performed in a state where the wiring side of the substrate having wiring and the photosensitive film according to the present embodiment are in contact with each other.
  • the method etc. are mentioned.
  • a heat vacuum press or a heat vacuum laminate is preferable.
  • the heating temperature when laminating the photosensitive film on the substrate having wiring is not limited as long as the photosensitive film can be in close contact with the substrate. From the viewpoint of adhesion to the substrate and from the viewpoint of decomposition of the photosensitive film and side reactions, 30 ° C. or more and 400 ° C. or less are preferable. More preferably, it is 50 degreeC or more and 150 degrees C or less.
  • the surface treatment of the substrate having wiring is not particularly limited, and examples thereof include hydrochloric acid treatment, sulfuric acid treatment, and sodium persulfate aqueous solution treatment.
  • the photosensitive film can be subjected to negative photolithography by irradiating with light and then dissolving the portion other than the light irradiated portion by alkali development.
  • the light source used for light irradiation include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a xenon lamp, a fluorescent lamp, a tungsten lamp, an argon laser, and a helium cadmium laser.
  • a high pressure mercury lamp and an ultrahigh pressure mercury lamp are preferable.
  • the aqueous alkali solution used for development is not limited as long as it is a solution that can dissolve other than the light irradiation site.
  • aqueous sodium carbonate solution an aqueous potassium carbonate solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous tetramethylammonium hydroxide solution.
  • an aqueous sodium carbonate solution and an aqueous sodium hydroxide solution are preferred.
  • Examples of the development method include spray development, immersion development, and paddle development.
  • a printed wiring board is formed by firing the printed wiring board to which the photosensitive film is pressure-bonded. Firing is preferably carried out at a temperature of 30 ° C. or higher and 400 ° C. or lower from the viewpoints of solvent removal, side reactions and decomposition. More preferably, it is 100 degreeC or more and 300 degrees C or less.
  • the reaction atmosphere in the firing can be performed in an air atmosphere or an inert gas atmosphere.
  • the time required for the firing varies depending on the reaction conditions, but is usually within 24 hours, and particularly preferably in the range of 1 to 8 hours.
  • the polyimide and the photosensitive resin composition according to the present embodiment have good warpage after curing, good developability, and chemical resistance when used as a cured product.
  • a protective film that protects wiring formed on a silicon wafer, a copper clad laminate, a printed wiring board, or the like is called a coverlay.
  • the polyimide and the photosensitive resin composition according to the present embodiment include a flexible printed circuit (FPC) substrate, a tape automation bonding (TAB) substrate, an electrical insulating film and a liquid crystal display substrate in various electronic devices, It can be suitably used for an organic electroluminescence (EL) display substrate, an electronic paper substrate, a solar cell substrate, particularly a coverlay for a flexible printed circuit.
  • FPC flexible printed circuit
  • TAB tape automation bonding
  • EL organic electroluminescence
  • EL organic electroluminescence
  • a resin composition containing a polyimide having a polyamic acid structure having a siloxane moiety using silicone diamine as a diamine component and a polyimide structure has been proposed as a material used in the manufacturing process of the flexible printed circuit board.
  • the siloxane moiety exists only in the polyamic acid structure.
  • the polyimide structure shrinks and warps during curing, the molecular weight of the polyamic acid structure is remarkably lowered, and the development time of the dry film (resin film) becomes unstable.
  • a high acceleration test HAST
  • a material with high insulation reliability having HAST resistance and warpage suppressed for improving connection reliability Is required.
  • the inventors of the present invention have focused on (A) using a polyimide structure having a siloxane moiety and a polyamic acid structure as a structural unit as a polymer compound.
  • A a polyimide having a siloxane moiety as a polymer compound and a polyimide having a polyamic acid structure as a structural unit,
  • D a (meth) acrylate compound having a specific structure as a photosensitizer
  • E light It has been found that a photosensitive resin composition having excellent HAST resistance can be realized by a photosensitive resin composition containing a polymerization initiator.
  • the siloxane portion is contained in the polyimide structure, it is possible to suppress a decrease in the molecular weight of the polyamic acid structure, and thus it is possible to suppress a decrease in developability. Moreover, since moderate softness
  • the third embodiment of the present invention will be described in detail.
  • the photosensitive resin composition according to the third embodiment of the present invention includes (a) a polyimide having a polyimide structure and a polyamic acid structure as constituent units, and (D) two unsaturated double bonds capable of photopolymerization.
  • the (meth) acrylate compound having the above and (E) a photopolymerization initiator are contained.
  • each component will be described in detail.
  • the polyimide according to the present embodiment is a block copolymer having a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as repeating structural units. It is a coalescence.
  • the polyimide according to the present embodiment is synthesized using an acid dianhydride and a diamine.
  • Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following general formula (9), and are the same.
  • R 18 represents a divalent organic group having 1 to 30 carbon atoms
  • R 19 represents a monovalent organic group having 1 to 30 carbon atoms
  • e is 1 represents an integer of 1 to 20.
  • the polyimide since the polyimide includes a polyimide structure represented by the general formula (7), a siloxane site is included in the polyimide structure. Thereby, since moderate softness
  • polyamic acid structure and polyimide structure of polyimide contain a tetravalent organic group derived from the tetracarboxylic dianhydride represented by the general formula (9), moderate rigidity is imparted to the molecular chain, Heat resistance is improved and insulation reliability (HAST resistance) is improved.
  • Examples of the acid dianhydride used in this embodiment include pyromellitic anhydride (hereinafter also abbreviated as “PMDA”), oxydiphthalic dianhydride (hereinafter also abbreviated as “ODPA”), biphenyltetracarboxylic dianhydride. Product (hereinafter also abbreviated as “BPDA”).
  • PMDA pyromellitic anhydride
  • ODPA oxydiphthalic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene Is mentioned.
  • 1,3-bis (3-aminophenoxy) benzene having flexibility is preferable.
  • silicone diamine used in the present embodiment is not particularly limited as long as it is a structure represented by the following general formula (19).
  • e is an integer that satisfies 1 ⁇ e ⁇ 20. If e is 20 or less, alkali solubility and HAST resistance will become favorable.
  • the e in the general formula (19) is preferably 1 or more and 15 or less, more preferably 1 or more and 12 or less, from the viewpoint of Tg of the polyimide to be produced and flame retardancy.
  • R 18 is not limited as long as it is a divalent organic group having 1 to 30 carbon atoms.
  • the divalent organic group (R 19 ) having 1 to 30 carbon atoms is represented by CH 2 , C 2 H 4 , C 3 H 6 , C 4 H 8 , etc. from the viewpoint of flame retardancy.
  • a divalent organic group derived from an aliphatic saturated hydrocarbon having 10 or less carbon atoms is preferred.
  • R 19 represents an organic group having 1 to 30 carbon atoms, which may be the same or different.
  • Examples of the organic group (R 19 ) having 1 to 30 carbon atoms include an aliphatic saturated hydrocarbon group, an aliphatic unsaturated hydrocarbon group, an organic group containing a cyclic structure, and a group obtained by combining them.
  • Examples of the aliphatic saturated hydrocarbon group include primary hydrocarbon groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group, secondary hydrocarbon groups such as isobutyl group and isopentyl group, and tertiary hydrocarbon groups such as a t-butyl group.
  • Examples of the aliphatic unsaturated hydrocarbon group include a hydrocarbon group containing a double bond such as a vinyl group and an allyl group, and a hydrocarbon group containing a triple bond such as an ethynyl group.
  • Examples of the functional group containing a cyclic structure include a monocyclic functional group such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclodecyl group, and a cyclooctyl group; a polycyclic functional group such as a norbornyl group and an adamantyl group; pyrrole, furan, A heterocyclic functional group having a thiophene, imidazole, oxazole, thiazole, tetrahydrofuran, dioxane structure; an aromatic hydrocarbon group containing a benzene ring, a naphthalene ring, an anthracene ring, or a phenanthrene ring structure.
  • a monocyclic functional group such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclo
  • the organic group (R 19 ) having 1 to 30 carbon atoms may contain a halogen atom, a hetero atom and a metal atom.
  • halogen atom include fluorine, chlorine, bromine and iodine.
  • oxygen, sulfur, nitrogen, and phosphorus are mentioned as a hetero atom.
  • metal atom include silicon and titanium.
  • R 19 when the organic group (R 19 ) having 1 to 30 carbon atoms contains a hetero atom and / or a metal atom, R 19 may be directly bonded to the bonded hetero atom and / or metal atom. And / or may be bonded via a metal atom.
  • the number of carbon atoms of R 19 in the general formula (7) and the general formula (19), taking into account the flame retardant, 1 to 20 are preferred. Furthermore, from the viewpoint of solvent solubility of the polyimide to be produced, the number of carbon atoms is particularly preferably 1 or more and 10 or less.
  • compounds represented by R 18 : propylene group and R 19 : methyl group include PAM-E (n ⁇ 2), KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd.). n ⁇ 10), X-22-161A (n ⁇ 20), BY16-871 (n ⁇ 2), and BY16-853U (n ⁇ 10) manufactured by Toray Dow Corning.
  • Examples of the compound represented by R 18 : propylene group and R 19 : phenyl group include X-22-1660B-3 (n ⁇ 20) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the main chain terminal of the polyimide is not particularly limited as long as it does not affect the performance.
  • the main chain terminal derived from the acid dianhydride and diamine used when producing polyimide may be used, or the main chain terminal may be sealed with another acid anhydride or an amine compound.
  • the weight average molecular weight of the polyimide is preferably 1,000 or more and 1,000,000 or less.
  • the weight average molecular weight refers to a molecular weight measured by gel permeation chromatography using polystyrene having a known weight average molecular weight as a standard.
  • the weight average molecular weight is preferably 1000 or more from the viewpoint of the strength of the polyimide film. Moreover, it is preferable that it is 1000000 or less from a viewpoint of the viscosity of a polyimide containing resin composition and a moldability.
  • the weight average molecular weight is more preferably from 5,000 to 500,000, particularly preferably from 10,000 to 300,000, and most preferably from 25,000 to 50,000.
  • the production method shown in the second embodiment can be used.
  • the resin composition according to the second embodiment using (A) a polyimide structure having a siloxane moiety as a polymer compound and a polyimide having a polyamic acid structure as a structural unit has been described. It is also possible to use the resin composition according to the first aspect by using a polyimide that does not substantially contain a polyamic acid structure as long as the effects of the present invention are achieved.
  • the photosensitive resin composition according to the present embodiment preferably contains a bifunctional hydroxyl group-containing compound and a blocked isocyanate compound. Since the bifunctional hydroxyl group-containing compound does not have a direct bond with polyimide, it is not taken into the skeleton and exists as the second component. Thereby, shrinkage
  • bifunctional hydroxyl group-containing compound the same compounds as those used in the resin composition according to the first embodiment can be used.
  • the polyfunctional hydroxyl-containing compound containing a 2 or more hydroxyl group can also be used in the range with the effect of this invention.
  • the bifunctional hydroxyl group-containing compound is contained in an amount of 1 part by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of achieving both reduction in warpage, solder heat resistance and chemical resistance.
  • the content is preferably 1 part by mass to 60 parts by mass.
  • (C-1) Blocked isocyanate compound As the blocked isocyanate compound, the same compounds as those used for the resin composition according to the first embodiment can be used.
  • the example using a blocked isocyanate compound was demonstrated as (C) polyfunctional crosslinking
  • (D) (Meth) acrylate compound As the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds, tricyclodecane dimethylol diacrylate, ethylene oxide (EO) modified bisphenol A dimethacrylate, EO modified Hydrogenated bisphenol A diacrylate, 1,6-hexanediol (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2-di ( p-hydroxyphenyl) propane di (meth) acrylate, tris (2-acryloxyethyl) isocyanurate, ⁇ -caprolactone modified tris (acryloxyethyl) isocyanurate, glycerol tri (meth) acrylic , Trimethylolpropane tri (meth) acrylate, polyoxyethylenetrimethylolpropane tri (me
  • the photosensitive resin composition according to the present embodiment contains a (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds. From the viewpoint of resolution and HAST resistance, it is preferable to include a (meth) acrylate compound having three or more double bonds.
  • Examples of (meth) acrylate compounds having three or more double bonds include pentaerythritol tri / tetraacrylate (Toagosei Co., Ltd., Aronix M-306), pentaerythritol tetraacrylate (Shin-Nakamura Chemical Co., Ltd., A-TMMT) , EO-modified glycerol tri (meth) acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-GLY-9E (EO-modified 9 mol)), ditrimethylolpropane tetraacrylate (manufactured by Toagosei Co., Ltd., Aronix M-408), dipentaerythritol penta And hexaacrylate (Aronix M-403, manufactured by Toagosei Co., Ltd.).
  • pentaerythritol tri / tetraacrylate Toagosei Co.
  • the (meth) acrylate compound having three or more double bonds may be a compound represented by the following general formula (10) from the viewpoint of insulation resistance (HAST resistance) and warpage. More preferred. This is because the compound represented by the following general formula (10) is not taken into the skeleton of the polyimide and forms a crosslinked body as the second component, thereby preventing the polyimide skeleton from shrinking at the time of curing and suppressing warpage. It is. In addition, since it does not have a functional group such as a hydroxyl group that reduces electrical insulation, a rigid cross-linked body is formed in the polyimide matrix according to this embodiment, and the Tg and elastic modulus of the cured film are high. Therefore, it is estimated that HAST resistance is improved.
  • HAST resistance insulation resistance
  • R 20 represents a hydrogen atom or a methyl group.
  • a plurality of E each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different.
  • F is an integer from 1 to 10.
  • examples of the alkylene group having 2 to 6 carbon atoms (E) include an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a pentylene group, and a neopentyl group.
  • E is more preferably 2 or 3 alkylene groups.
  • f is particularly preferably 1 or more and 5 or less.
  • Examples of the compound represented by the general formula (10) include Aronix M-350 (E: ethylene group, f: 1), M-360 (E: ethylene group, f: 2), M-310 manufactured by Toagosei Co., Ltd. (E: propylene group, f: 1), M-321 (E: propylene group, f: 2), SR502 (E: ethylene group, f: 3), SR9035 (E: ethylene group, f: manufactured by SARTOMER) 5). These may be used alone or in combination.
  • the photosensitive resin composition which concerns on this Embodiment it has the (meth) acrylate compound which has two double bonds, and three or more double bonds from the viewpoint of the curvature after baking and resolution ( It is preferable to use together with a (meth) acrylate compound.
  • (Meth) acrylate compounds having two double bonds are classified into aliphatic di (meth) acrylates and aromatic di (meth) acrylates having a bisphenol structure.
  • aliphatic di (meth) acrylate examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, and polyethylene / polypropylene glycol di (meth) acrylate.
  • nonaethylene glycol diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., 9G
  • heptapropylene glycol dimethacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., 9PG
  • the like are preferable from the viewpoint of suppressing warpage.
  • examples of the aromatic di (meth) acrylate include compounds represented by the following general formula (20).
  • R 25 and R 26 each represent a hydrogen atom or a methyl group.
  • a plurality of E's each independently represents an alkylene group having 2 to 6 carbon atoms, which may be the same or different. May be.
  • examples of the alkylene group having 2 to 6 carbon atoms (E) include ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, neopentyl group, and the like. It is done.
  • l and k are each an integer of 1 to 10, and 2 ⁇ l + k ⁇ 20. If l and k are 10 or less, flame retardancy and HAST resistance are improved. Further, from the viewpoint of warpage and resolution, l and k in the general formula (20) are more preferably 3 or more and 6 or less and 6 ⁇ l + k ⁇ 12, respectively.
  • Specific examples of the general formula (20) include Aronix M-208 (R 25 , R 26 : hydrogen atom, E: ethylene group, l, k ⁇ 2) manufactured by Toagosei Co., Ltd., Shin-Nakamura Chemical Co., Ltd.
  • AB1206PE the following general formula (21)
  • R 25 hydrogen atom
  • R 26 methyl group
  • E 1 ethylene
  • E 2 propylene group
  • the amount of the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds is 5 parts by mass or more and 60 parts by mass or less from the viewpoint of resolution when the amount of polyimide is 100 parts by mass.
  • 10 parts by mass or more and 40 parts by mass or less are more preferable.
  • the resin composition which concerns on this Embodiment when not using as a photosensitive resin, it is not necessarily required to contain the (D) (meth) acrylate compound as a photosensitive agent.
  • (E) Photopolymerization initiator As the photopolymerization initiator, those similar to those shown in the second embodiment can be used.
  • (F) Phosphorus compound As the phosphorus compound, the same compounds as those described in the second embodiment can be used.
  • (H) Photosensitive film Moreover, the photosensitive resin composition which concerns on this Embodiment can be used for formation of a photosensitive film similarly to the photosensitive resin composition which concerns on the said 2nd Embodiment.
  • the present inventors have focused on using a solvent-soluble polyimide having a hydroxyl group and / or a carboxyl group and a siloxane moiety as the polymer compound (A). And, the present inventors have (A) a solvent-soluble polyimide as a polymer compound, (B) a bifunctional hydroxyl group-containing compound as a polyfunctional hydroxyl group-containing compound, and (C) an oxazoline compound as a polyfunctional crosslinkable compound. Can be processed with a solvent or an aqueous alkali solution before the crosslinking reaction, exhibits good through-hole embedding properties, and has an excellent resistance to an aqueous solvent and an aqueous alkali solution after the crosslinking reaction. It was found that can be realized.
  • the fourth embodiment of the present invention will be specifically described.
  • the resin composition according to the fourth embodiment of the present invention includes (a) a polyimide having a hydroxyl group and / or a carboxyl group, (b) a bifunctional hydroxyl group-containing compound, and (c-2) an oxazoline compound.
  • the content of the bifunctional hydroxyl group-containing compound and the oxazoline compound is from 2 parts by mass to 45 parts by mass with respect to 100 parts by mass of the polyimide.
  • the through-hole embedding property is excellent before crosslinking. It is soluble in an ant potassium solution and becomes insoluble in an alkaline solution after crosslinking. Moreover, when a polyimide has a hydroxyl group and / or a carboxyl group, it can react with an oxazoline compound and suppress warpage.
  • the bifunctional hydroxyl group-containing compound is present as the second component without being taken into the polyimide skeleton, shrinkage of the polyimide skeleton during curing can be prevented and warpage can be suppressed.
  • the inclusion of the oxazoline compound inactivates the carboxyl group at a low temperature and enables low-temperature curing, thus preventing shrinkage of the polyimide skeleton during curing and suppressing warpage.
  • the polyimide since the polyimide has a hydroxyl group and / or a carboxyl group, it becomes soluble in an alkaline aqueous solution before curing, becomes insoluble in an alkaline aqueous solution after curing, and has high heat resistance (for example, high solder heat resistance). Is expressed. Moreover, the curvature at the time of hardening can be suppressed by the said structure.
  • the polyimide structure has a hydroxyl group and / or a carboxyl group
  • the presence of a bifunctional hydroxyl group-containing compound in the resin composition can prevent the polyimide skeleton from shrinking during curing. That is, the curvature of the hardened
  • an oxazoline compound insolubility in an alkaline aqueous solution and higher heat resistance can be realized by polymerizing and crosslinking by reaction with a hydroxyl group.
  • the content of the bifunctional hydroxyl group-containing compound and the oxazoline compound is 2 to 45 parts by mass with respect to 100 parts by mass of the polyimide, and the polyimide is excessive with respect to other components.
  • the oxazoline group reacts with a hydroxyl group to form a structure containing a C ⁇ O group or an NH group, but the oxazoline group further reacts with a hydroxyl group and / or carboxylic acid contained in the polyimide remaining after the imidization reaction, An amide structure or a urea structure containing a C ⁇ O group or an NH group is formed.
  • the polyimide used for the resin composition according to the present embodiment has a hydroxyl group and / or a carboxyl group as a structural unit.
  • the polyimide structure part reacts with the crosslinkable functional group of the polyfunctional crosslinkable compound and cures, it shows insolubility in the alkaline aqueous solution after curing.
  • the polyimide used in the resin composition according to the present embodiment has a hydroxyl group and / or a carboxyl group as a structural unit.
  • a hydroxyl group and / or a carboxyl group can be introduced into polyimide by using a diamine having a hydroxyl group and / or a carboxyl group.
  • Such diamines include 2,5-diaminophenol, 3,5-diaminophenol, 4,4 ′-(3,3′-dihydroxy) diaminobiphenyl, 4,4 ′-(2,2 '-Dihydroxy) diaminobiphenyl, 2,2'-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3-hydroxy-4-aminobiphenyl (HAB), 4,4'-(3,3'- Dicarboxy) diphenylamine, methylenebisaminobenzoic acid (MBAA), 2,5-diaminobenzoic acid (DABA), 3,3′-dicarboxy-4,4′-diaminodiphenyl ether, and the like.
  • MBAA methylenebisaminobenzoic acid
  • DABA 2,5-diaminobenzoic acid
  • 3′-dicarboxy-4,4′-diaminodiphenyl ether and the like.
  • the resin composition according to the second aspect using the solvent-soluble polyimide having a hydroxyl group and / or a carboxyl group and a siloxane moiety as the polymer compound (A) has been described. It is also possible to use the resin composition according to the first aspect by using a polyimide that does not substantially contain a polyamic acid structure as long as the effects of the present invention are achieved.
  • the bifunctional hydroxyl group-containing compound used in the resin composition according to the present embodiment refers to a compound containing two hydroxyl groups per molecular chain.
  • the skeleton include those containing hydrocarbon groups such as aliphatic, aromatic, and alicyclic groups.
  • the skeleton is represented by the following formula (14) from the viewpoint of enhancing insulation. Those having a structure in the skeleton are preferred, and compounds containing aliphatic groups are preferred from the viewpoint of warpage suppression.
  • X is aromatic
  • Y is aliphatic having 1 to 10 carbon atoms
  • Z is a functional group selected from an ether group, an ester group, a carbonate group, a urethane group, and a urea group
  • h 0 represents an integer of 0 to 2
  • i represents an integer of 0 to 1
  • j represents an integer of 1 to 1000.
  • a polyphenol-terminated compound is preferable for crosslinking with the oxazoline compound.
  • halogen such as fluorine and chlorine are preferable.
  • bifunctional hydroxyl group-containing compound examples include polytetramethylene diol such as PTMG1000 manufactured by Mitsubishi Chemical Corporation, polybutadiene diol such as G-1000 manufactured by Nippon Soda Co., Ltd., hydrogenated polybutadiene diol such as GI-1000, Asahi Kasei Chemicals Corporation DURANOL T5651, DURANOL T5652, DURANOL T4671, and polycarbonate diols such as Placel CD manufactured by Daicel Chemical Co., Ltd.
  • polytetramethylene diol such as PTMG1000 manufactured by Mitsubishi Chemical Corporation
  • polybutadiene diol such as G-1000 manufactured by Nippon Soda Co., Ltd.
  • hydrogenated polybutadiene diol such as GI-1000, Asahi Kasei Chemicals Corporation DURANOL T5651, DURANOL T5652, DURANOL T4671
  • polycarbonate diols such as Placel CD manufactured by Daice
  • Hydrogenated bisphenols such as HB, phenol-modified silicones at both ends such as X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd., BY16-752 manufactured by Dow Corning, and BY16-799 are listed. It is.
  • a both-ends phenol-modified silicone, polybutadiene diol, hydrogenated polybutadiene diol, and polycarbonate diol are preferable from the viewpoint of improving insulation, and a both-end phenol-modified silicone and polycarbonate diol are preferable from the viewpoint of reducing warpage.
  • the bifunctional hydroxyl group-containing compound is preferably a liquid compound at room temperature from the viewpoint of warpage reduction and solubility in an organic solvent.
  • the number average molecular weight is preferably 500 to 3000, and particularly preferably the number average molecular weight is 500 to 2000.
  • the bifunctional hydroxyl group-containing compound is preferably contained in an amount of 3 parts by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of achieving both warpage reduction, solder heat resistance and chemical resistance. More preferably, it is contained in parts by mass.
  • bifunctional hydroxyl-containing compound containing two hydroxyl groups was demonstrated as (B) polyfunctional hydroxyl-containing compound, it contains two or more hydroxyl groups in the range with the effect of this invention. Polyols can also be used.
  • the oxazoline compound used in the resin composition according to the present embodiment is a compound having two or more oxazoline groups in the molecule.
  • the oxazoline compound one having at least two C ⁇ O groups and / or NH groups in the cross-linking when the cross-linking is formed between the polyimide (polymer compound) and / or the bifunctional hydroxyl group-containing compound is preferable. .
  • oxazoline compound examples include 1,3-bis (4,5-dihydro-2-oxazolyl) benzene, K-2010E, K-2020E, K-2030E, and 2,6-bis (4 -Isopropyl-2-oxazolin-2-yl) pyridine, 2,6-bis (4-phenyl-2-oxazolin-2-yl) pyridine, 2,2'-isopropylidenebis (4-phenyl-2-oxazoline) 2,2′-isopropylidenebis (4-tertiarybutyl-2-oxazoline) and the like. These oxazoline compounds may be used alone or in combination of two or more.
  • a cured product can be obtained by heating the resin composition described above.
  • the mode of heating is not particularly limited, but it is preferable to heat at 50 ° C. to 140 ° C. for 1 minute to 60 minutes in order to make it soluble in an antkari aqueous solution.
  • a crosslinking reaction mainly occurs by heating in a high temperature region (for example, 160 ° C. to 200 ° C.), and becomes insoluble in an alkaline aqueous solution.
  • the maximum temperature is set in the range of 150 ° C. to 220 ° C. with an oven or a hot plate, and air or nitrogen is not used for 5 to 100 minutes. It crosslinks by heating in an active atmosphere.
  • the heating temperature may be constant over the entire processing time or may be gradually raised.
  • the resin composition film can be formed by printing on the surface of a flexible printed circuit board or a semiconductor wafer by known screen printing or a precision dispensing method.
  • the resin composition exhibits excellent heat resistance by thermosetting, the surface cured film of the semiconductor element, the interlayer insulating film, the bonding sheet, the protective insulating film for the printed wiring board, the surface protective film / interlayer insulating of the printed circuit board It is useful as a film and is applied to various electronic components.
  • the resin composition can be applied to copper foil F2-WS (12 ⁇ m) and dried at 95 ° C. for 12 minutes to produce a copper foil with resin having an insulating layer thickness of 15 ⁇ m.
  • Espanex M manufactured by Nippon Steel Chemical Co., Ltd.
  • insulating layer thickness 25 ⁇ m, conductor layer copper foil F2-WS (18 ⁇ m) is used.
  • thermosetting of the resin composition in the present embodiment is performed under relatively low temperature conditions (for example, 160 ° C. to 200 ° C.), copper oxidation does not occur.
  • a circuit board on which double-sided components were mounted was prepared using a double-sided copper-clad board of ESPANEX M (manufactured by Nippon Steel Chemical Co., Ltd., insulation layer thickness 25 ⁇ m, conductor layer copper foil F2-WS (18 ⁇ m)). Even if the resin composition is coated and dried on the substrate, cured after being processed with an alkaline aqueous solution, and the resin composition is used as a surface protective film, good insulating properties are exhibited.
  • the thickness of the surface protective film is preferably 1 ⁇ m to 50 ⁇ m. When the film thickness is 1 ⁇ m or more, the handling becomes easy, and when the film thickness is 50 ⁇ m or less, it is easy to bend and incorporate easily.
  • the resin composition which concerns on this Embodiment can also be used as a photosensitive resin composition by containing the (D) photosensitive agent.
  • the photosensitive film can also be obtained by apply
  • the resin composition according to the present embodiment can be used by containing (F) a phosphorus compound from the viewpoint of improving flame retardancy.
  • a phosphorus compound a phosphate ester compound or a phosphazene compound can be used.
  • the resin composition according to the present embodiment can be suitably used as an interlayer insulating film such as a multilayer flexible wiring board by providing a resin composition on a copper foil and drying it.
  • the resin composition according to the present embodiment can be suitably used as a protective film for a wiring pattern on a wiring board by providing the resin composition so as to cover the wiring pattern formed on the substrate.
  • the resin composition may contain an organic solvent in addition to polyimide, a bifunctional hydroxyl group-containing compound, an oxazoline compound, and the like. It is because it can use preferably as a varnish by setting it as the state melt
  • organic solvents examples include amide solvents such as N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone, ⁇ - Lactone solvents such as butyrolactone and ⁇ -valerolactone, sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide and hexamethyl sulfoxide, phenol solvents such as cresol and phenol, diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), Examples include ether solvents such as tetraglyme, dioxane, tetrahydrofuran, butyl benzoate, ethyl benzoate, and methyl benzoate.
  • amide solvents such as N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethyl
  • organic solvents may be used alone or in combination.
  • ⁇ -butyrolactone triglyme, butyl benzoate, and ethyl benzoate.
  • Example 1 The resin composition according to the first embodiment of the present invention will be described with reference to the following Example 1 and Comparative Example 1.
  • Sample 1 to Sample 32 are the resin composition according to the second aspect
  • Sample 33 to Sample 35 are the resin composition according to the first aspect.
  • Example 1 Sample 1 including a cured film of the resin composition was prepared, and its characteristics were confirmed.
  • a resin composition a polyimide varnish having an imidization ratio of 88% (hereinafter referred to as polyimide A), a polycarbonate diol, DURANOL T5651 manufactured by Asahi Kasei Chemicals Co., Ltd. (molecular weight 1000; hereinafter, polyfunctional hydroxyl group-containing compound A) And Duranate SBN-70D (NCO content: 10.2 wt%; hereinafter referred to as isocyanate compound A) manufactured by Asahi Kasei Chemicals, which is a hexamethylene diisocyanate block isocyanate, was used.
  • a method for synthesizing polyimide A, a method for producing a cured film, and a method for evaluating each property will be described.
  • Polyimide A A method for synthesizing polyimide A will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask.
  • the imidation ratio mentioned above was calculated
  • the imidation rate C calculated in the above formula is a value that makes the imidization rate during heat treatment at 220 ° C. for 60 minutes 100%.
  • the warpage was evaluated by lifting the four corners of the sample. Specifically, the sample 1 described above was cut into 5 cm ⁇ 5 cm in an environment of 23 ° C. and a humidity of 50%, and the distance at which the corner was raised relative to the central portion was measured as a warp. Those having a warp of 10 mm or less were evaluated as “good”, those having a warp of 5 mm or less were evaluated as “good”, ⁇ ⁇ being 15 mm or less, “ ⁇ ”, and those exceeding 15 mm were evaluated as “poor”.
  • solder resistance (heat resistance)
  • the solder resistance was evaluated by immersing Sample 1 cut to 3 cm ⁇ 3 cm in a solder bath at 260 ° C. for 60 seconds in accordance with the JPCA-BM02 standard. Visually inspect the external appearance to confirm the presence or absence of changes such as deformation and dissolution traces. If no change is observed in 90% or more of the total area, the circle is marked as ⁇ , and the area is 50% to 90%. The case where no change was observed was indicated by ⁇ , and the case where the region where no change was observed was less than 50% was indicated by ⁇ .
  • the viscosity of 100 ° C. to 220 ° C. was obtained by laminating 27 resin films obtained by etching and removing copper foil from a resin film having a copper foil as a base material using a measuring instrument AR-G2 manufactured by TA Instruments. Using the sample, evaluation was made with a rotor: 8 mm diameter parallel plate, strain: 0.1%, frequency: 1 Hz, and normal stress: 0.1 N (100 g). A case where the viscosity at 100 ° C. to 220 ° C. is in the range of 5000 Pa ⁇ s to 100000 Pa ⁇ s was marked with “ ⁇ ”, and a case where there was a region less than 5000 Pa ⁇ s or exceeded 100,000 Pa ⁇ s was marked with “X”.
  • Interlayer insulation resistance uses Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulation layer thickness 25 ⁇ m, conductor layer copper foil F2-WS (18 ⁇ m)) as the base material for flexible printed circuit boards.
  • Espanex M manufactured by Nippon Steel Chemical Co., Ltd.
  • insulation layer thickness 25 ⁇ m, conductor layer copper foil F2-WS (18 ⁇ m) As the base material for flexible printed circuit boards.
  • the insulation resistance between the resin films is 10 9 ⁇ or more. And the case where it did not reach 10 9 ⁇ was marked as x.
  • the through-hole embedding property was evaluated by an optical microscope after embedding the produced four-layer wiring board with an epoxy resin, cutting and polishing the wiring board.
  • the case where resin was embedded in the through hole without a gap was marked with ⁇ , and the case where a gap was observed in the through hole was marked with x.
  • thermal shock test In the thermal shock test, the produced four-layer wiring board was evaluated at ⁇ 40 ° C., 120 ° C. and 1000 cycles according to the JPCA-HD01-2003 standard. The case where the fluctuation of the connection resistance during the cycle was within 10% was marked as ⁇ , and the case where it exceeded 10% was marked as x.
  • the resin flowability was determined by visually checking the resin protrusion at the end of the sample after laminating a 20 cm square resin sheet based on copper foil with copper foil F2-WS (12 ⁇ m) and vacuum press (180 ° C., 20 minutes, 4 MPa). And evaluated. The case where the protrusion of the resin was 1 mm or less was evaluated as “ ⁇ ”, and the case where the resin exceeded 1 mm was evaluated as “X”.
  • Sample 1 The evaluation results of Sample 1 (Sample 1A, Sample 1B) are shown in Table 1 below.
  • Table 1 the cured product using the resin composition according to Sample 1 is sufficiently suppressed in warping during curing and is excellent in solder resistance (that is, heat resistance). Moreover, it turns out that it is excellent also in chemical resistance and the insulation of high temperature, high humidity conditions.
  • the cured product using the resin composition according to Sample 1 has good evaluation results in any of the evaluation of the elastic region and the plastic region, interlayer insulation resistance, through-hole embedding property, thermal shock test, and resin flow property. It was.
  • a cured film was prepared using a resin composition prepared under conditions different from those of Sample 1, and the characteristics of Sample 2 to Sample 21 were confirmed.
  • Samples 2 to 5 were prepared using a resin composition containing polyimide A, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A in the same manner as sample 1.
  • the main difference between Sample 2 to Sample 5 is the content of the polyfunctional hydroxyl group-containing compound A and the isocyanate compound A.
  • Sample 2 was prepared using a resin composition obtained by adding 7.5 parts by mass of polyfunctional hydroxyl group-containing compound A and 7.5 parts by mass of isocyanate compound A to 100 parts by mass of polyimide A.
  • Sample 3 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 4 was prepared using a resin composition in which 15 parts by mass of polyfunctional hydroxyl group-containing compound A and 15 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 5 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 15 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. The preparation method and evaluation method of Sample 2 to Sample 5 are the same as Sample 1.
  • Samples 6 to 9 were prepared using a resin composition containing polyimide (hereinafter referred to as polyimide B) having an imidization rate of 28%, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A, which will be described later.
  • the main difference between Samples 6 to 9 is the content of the polyfunctional hydroxyl group-containing compound A and the blocked isocyanate A.
  • Sample 6 was prepared using a resin composition in which polyfunctional hydroxyl group-containing compound A was added by 7.5 parts by mass and isocyanate compound A was added by 7.5 parts by mass with respect to 100 parts by mass of polyimide B.
  • Sample 7 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B.
  • Sample 8 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound A and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B.
  • Sample 9 was prepared using a resin composition in which 60 parts by mass of polyfunctional hydroxyl group-containing compound A and 60 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B.
  • the production method and evaluation method of Sample 6 to Sample 9 are the same as those of Sample 1.
  • Polyimide B A method for synthesizing polyimide B is as follows. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. In an ice-water bath at 0 ° C., Jeffamine XTJ-542 (manufactured by Huntsman, weight average molecular weight 1000) 40 g, ⁇ -butyrolactone (GBL) 60 g, ethyl benzoate (BAEE) 60 g, toluene 20 g, ⁇ -valerolactone 12 g, pyridine 18 g And stirred until uniform.
  • GBL ⁇ -butyrolactone
  • BAEE ethyl benzoate
  • Samples 10 to 15 were prepared using a resin composition containing polyimide A and isocyanate compound A.
  • the main difference between samples 10 to 15 is that any one of polyfunctional hydroxyl group-containing compounds B to F is used as the polyfunctional hydroxyl group-containing compound.
  • polyfunctional hydroxyl group-containing compound B polycarbonate diol Duranol T5652 (molecular weight 2000) manufactured by Asahi Kasei Chemicals Corporation was used.
  • polycarbonate diol Duranol T4671 molecular weight 1000 manufactured by Asahi Kasei Chemicals Corporation was used.
  • polyfunctional hydroxyl group-containing compound D polybutadienediol G-1000 (molecular weight 1000) manufactured by Nippon Soda Co., Ltd. was used.
  • polyfunctional hydroxyl group-containing compound E GI-1000 (molecular weight 1000) manufactured by Nippon Soda Co., Ltd., which is a hydrogenated polybutadiene diol, was used.
  • polyfunctional hydroxyl group-containing compound F PTMG1000 (molecular weight 1000) manufactured by Mitsubishi Chemical Corporation, which is polytetramethylene diol, was used.
  • Sample 10 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound B and 5 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 11 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound C and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 12 was prepared using a resin composition obtained by adding 30 parts by mass of polyfunctional hydroxyl group-containing compound D and 30 parts by mass of isocyanate compound A to 100 parts by mass of polyimide A.
  • Sample 13 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound E and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 14 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound F and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 15 was prepared using a resin composition in which 7.5 parts by mass of polyfunctional hydroxyl group-containing compound B and 7.5 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • the production method and evaluation method of Sample 10 to Sample 15 are the same as those of Sample 1.
  • Samples 16 and 17 were prepared using a resin composition containing polyimide A and polyfunctional hydroxyl group-containing compound A.
  • the main difference between Sample 16 and Sample 17 is that any of isocyanate compounds B and C is used as the isocyanate compound.
  • Sample 16 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 9 parts by mass of isocyanate compound B were added to 100 parts by mass of polyimide A.
  • Sample 17 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 14 parts by mass of isocyanate compound C were added to 100 parts by mass of polyimide A.
  • the production method and evaluation method of Sample 16 and Sample 17 are the same as Sample 1.
  • Samples 18 and 19 were prepared using a resin composition containing polyimide B, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A.
  • the main differences between Sample 18 and Sample 19 are the content of polyfunctional hydroxyl group-containing compound A and isocyanate compound A, and the heating conditions during curing.
  • Sample 18 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B.
  • Sample 19 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound A and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B.
  • the heating conditions for curing were 180 ° C. for 60 minutes, then 180 ° C. for 60 minutes (that is, 180 ° C., 60 minutes ⁇ 2).
  • the production method and evaluation method of Sample 18 and Sample 19 excluding the heating conditions are the same as those of Sample 1.
  • Sample 20 and Sample 21 were prepared using a resin composition containing polyimide A, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A in the same manner as Sample 1.
  • the main difference between Sample 20 and Sample 21 is the content of polyfunctional hydroxyl group-containing compound A and isocyanate compound A.
  • Sample 20 was prepared using a resin composition in which 3 parts by mass of polyfunctional hydroxyl group-containing compound A and 3 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A.
  • Sample 21 was prepared using a resin composition obtained by adding 70 parts by mass of polyfunctional hydroxyl group-containing compound A and 70 parts by mass of isocyanate compound A to 100 parts by mass of polyimide A.
  • the preparation method and evaluation method of the sample 20 and the sample 21 are the same as those of the sample 1.
  • the evaluation results of Sample 2 to Sample 21 are shown in Table 1 below.
  • the cured product using the resin composition in this example has sufficiently suppressed warpage during curing, and is excellent in solder resistance (ie, heat resistance). It also has excellent chemical resistance and insulation under high temperature and high humidity conditions.
  • polybutadiene diol, hydrogenated polybutadiene diol, and polycarbonate diol are preferably used as the polyfunctional hydroxyl group-containing compound from the viewpoint of enhancing the insulation.
  • the heat treatment in the low temperature region (100 to 130 ° C) and the heat treatment in the high temperature region (160 to 200 ° C) are combined from the viewpoint of improving heat resistance and chemical resistance. It can be seen that it is preferable to use them.
  • the heat treatment conditions are not limited to this.
  • a cured film was prepared using a resin composition prepared under conditions different from those of Sample 1 to Sample 21, and the characteristics of Sample 22 to Sample 29 were confirmed.
  • Samples 22 to 25 were prepared in the same manner as Sample 1 using a resin composition containing polyimides C to F, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A.
  • the main difference between sample 22 to sample 25 is the imidization ratio of polyimide.
  • Samples 22 to 25 were prepared using a resin composition in which 15 parts by mass of the polyfunctional hydroxyl group-containing compound A and 15 parts by mass of the isocyanate compound A were added to 100 parts by mass of polyimides C to F. .
  • the preparation method and evaluation method of Samples 22 to 25 are the same as Sample 1.
  • Polyimide C A method for synthesizing polyimide C will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of ⁇ -butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of 4,4′-oxydiphthalic dianhydride (manac, ODPA) Stir until uniform.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • Polyimide D A method for synthesizing polyimide D will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature of 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of ⁇ -butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of ODPA were added and stirred until uniform. Thereafter, the temperature was raised to 80 ° C., 11.30 g (13.78 mmol) of KF-8010 was added, and the mixture was further stirred for 2 hours.
  • Polyimide E A method for synthesizing polyimide E will be described. The polyimide F synthesis method except that the first APB-N is 4.03 g (13.78 mmol) and the second APB-N is 1.97 g (6.73 mmol). Similarly, a polyimide E varnish having an imidization ratio of 80% was obtained.
  • Polyimide F A method for synthesizing polyimide F will be described. The polyimide D synthesis method except that the first APB-N is 4.86 g (16.62 mmol) and the second APB-N is 1.03 g (3.52 mmol). Similarly, a polyimide F varnish having an imidization ratio of 90% was obtained.
  • Sample 26 was prepared in the same manner as Sample 1 using a resin composition containing polyimide C, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A.
  • the main difference between sample 26 and sample 22 is the addition of flame retardant components.
  • 15 parts by mass of polyfunctional hydroxyl group-containing compound A and 15 parts by mass of isocyanate compound A with respect to 100 parts by mass of polyimide C, phosphazene derivative FP-300 manufactured by Fushimi Pharmaceutical Co., Ltd. ) was added using 23 parts by mass of the resin composition.
  • the preparation method and evaluation method of the sample 26 are the same as those of the sample 1.
  • Sample 27 was prepared using the same resin composition as Sample 26. The main difference between the sample 27 and the sample 26 is the substrate used in [Preparation of cured film]. Specifically, in Sample 27, a 12 ⁇ m-thick copper foil F2-WS film manufactured by Furukawa Circuit Foil Co., Ltd. was used as the substrate, and a cured film was formed on the mat surface of the copper foil. The film thickness after drying and curing was about 30 ⁇ m. Other manufacturing methods and evaluation methods of the sample 27 are the same as those of the sample 1.
  • Sample 28 was prepared in the same manner as Sample 1 using a resin composition containing polyimide C, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A.
  • the main difference between the sample 28 and the sample 22 is the addition of a flame retardant component and the addition of a catalyst.
  • Sample 28 is 18 parts by mass of polyfunctional hydroxyl group-containing compound A, 18 parts by mass of isocyanate compound A, and 27 parts by mass of phosphazene derivative FP-300 (flame retardant A) manufactured by Fushimi Pharmaceutical Co., Ltd. with respect to 100 parts by mass of polyimide C.
  • Sample 29 was prepared using the same resin composition as Sample 28. The main difference between sample 29 and sample 29 is only the catalyst species. Specifically, 0.18 parts by mass of U-CAT (registered trademark) 1102 (catalyst B) manufactured by San Apro was used. Other manufacturing methods and evaluation methods of the sample 29 are the same as those of the sample 28.
  • Sample 30 to Sample 32 were prepared using the resin films prepared from Sample 27 to Sample 29, and their characteristics were confirmed.
  • Sample 30 was produced using the resin film obtained in Sample 27.
  • the main difference between the sample 30 and the sample 30 is that a resin film is laminated on a wiring board.
  • Espanex M manufactured by Nippon Steel Chemical Co., Ltd.
  • insulation layer thickness 25 ⁇ m, conductor layer copper foil F2-WS (18 ⁇ m) is used as the base material of the flexible printed wiring board, and the diameter is 0.1 mm.
  • a four-layer wiring board was prepared by copper plating and connecting 25 vias in a daisy chain.
  • Sample 31 was sample 28 and sample 32 was sample 29.
  • a wiring board was prepared by the same method as sample 30 and evaluated by the same method as sample 30.
  • a resin film was prepared using a resin composition prepared under conditions different from those of Sample 1 to Sample 32, and the characteristics of the prepared Sample 33 to Sample 35 were confirmed.
  • Sample 33 is a varnish of polyimide G having an imidization ratio of 100%, polyfunctional hydroxyl group-containing compound A, and Duranate TPA-100 manufactured by Asahi Kasei Chemicals, which is a hexamethylene diisocyanate-based isocyanate (NCO content: 23.1 wt%; What added the isocyanate compound C) was used.
  • Polyfunctional hydroxyl-containing compound A was 10 parts by mass and isocyanate compound C was 4.4 parts by mass with respect to 100 parts by mass of polyimide G.
  • Polyimide G A method for synthesizing polyimide G will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of ⁇ -butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of 4,4′-oxydiphthalic dianhydride (manac, ODPA) Stir until uniform.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • Sample 34 was obtained by adding Polyurethane G varnish to polycarbonate diol, Duranol T5650E (molecular weight 500) manufactured by Asahi Kasei Chemicals, and isocyanate compound D.
  • T5650E was 5 parts by mass and isocyanate compound D was 4.4 parts by mass with respect to 100 parts by mass of polyimide G.
  • the polyimide H might be 30 mass% with respect to the resin composition.
  • a wiring board was produced in the same manner as in Sample 30 and evaluated in the same manner as in Sample 30.
  • Sample 35 was obtained by adding polycarbonate polyol A having an average hydroxyl number of 3.6 as polycarbonate polyol and hexamethylene diisocyanate (hereinafter referred to as isocyanate compound E) to the varnish of polyimide G.
  • the polycarbonate polyol A was 6.2 parts by mass and the hexamethylene diisocyanate was 2 parts by mass with respect to 100 parts by mass of the polyimide G.
  • polyimide G might be 30 mass% with respect to the resin composition.
  • the yield was 1200 g.
  • the resin film using the resin composition according to Sample 30 to Sample 35 is excellent in interlayer insulation resistance, through-hole embedding property, solder resistance (that is, heat resistance), and thermal shock resistance.
  • the same effects as those of the resin compositions according to Sample 1 to Sample 21 shown in Table 1 below were obtained.
  • polyimide with 100% imidization ratio (sample 33 to sample 35)
  • trifunctional or higher polyfunctional hydroxyl group-containing compound (sample 35), using bifunctional isocyanate compound (sample) 35)
  • Comparative Example 1 As a comparative example, a cured film was prepared using a resin composition prepared under conditions different from those of Example 1 described above, and the characteristics of the prepared sample were confirmed. In this comparative example, Comparative Sample 1 to Comparative Sample 8 were prepared and their characteristics were confirmed.
  • Comparative samples 1 to 3 were prepared using a resin composition containing polyimide A.
  • the main differences between Comparative Sample 1 to Comparative Sample 3 are components other than polyimide A.
  • Comparative Sample 1 was prepared using a resin composition not containing polyfunctional hydroxyl group-containing compound A and isocyanate compound A.
  • the comparative sample 2 was produced using the resin composition which added polyfunctional hydroxyl-containing compound A by 5 mass parts with respect to 100 mass parts of polyimide A.
  • the comparative sample 3 was produced using the resin composition which added the isocyanate compound A at 5 mass parts with respect to 100 mass parts of polyimide A.
  • the preparation method and evaluation method of Comparative Sample 1 to Comparative Sample 3 are the same as those in Example 1.
  • Comparative sample 4 and comparative sample 5 were prepared using a resin composition containing polyimide A, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A.
  • the main difference between the comparative samples 4 and 5 is that the content of the isocyanate compound A with respect to the polyfunctional hydroxyl group-containing compound A (that is, the molar ratio between the hydroxyl group contained in the functional hydroxyl group-containing compound and the isocyanate group contained in the isocyanate compound A). It is.
  • the preparation method and evaluation method of the comparative samples 4 and 5 are the same as those in Example 1.
  • Comparative sample 6 was prepared using a resin composition containing polyfunctional hydroxyl group-containing compound A and isocyanate compound A. That is, the comparative sample 6 was produced using the resin composition which does not contain a polyimide. The preparation method and evaluation method of the comparative sample 6 are the same as those in Example 1.
  • Comparative sample 7 was prepared using a resin composition containing a polyfunctional hydroxyl group-containing compound and a polyimide having a imidization ratio of 100% in which a blocked isocyanate was incorporated into the skeleton (polyimide not containing a polyamic acid structure; hereinafter, polyimide H). did. Polyimide H contains a polyfunctional hydroxyl group-containing compound and a blocked isocyanate, and therefore does not contain a polyfunctional hydroxyl group-containing compound and a blocked isocyanate as a component of the resin composition. The preparation method and evaluation method of the comparative sample 7 are the same as those in Example 1.
  • Polyimide H The synthesis method of polyimide H is as follows. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. Asahi Kasei Chemicals Co., Ltd. Duranol T5651 (molecular weight 1000) 78.88 g, hexamethylene diisocyanate 26.91 g, ⁇ -butyrolactone (GBL) 177 g was charged. After stirring at 200 rpm for 15 minutes at room temperature in a nitrogen atmosphere, the temperature was raised to 140 ° C. and stirred for 1 hour.
  • the polyimide H does not contain a polyamic acid structure in the polyimide in the resin composition and incorporates a polyfunctional hydroxyl group-containing compound and a blocked isocyanate into the polyimide skeleton, not as components in the resin composition. It corresponds to.
  • Example 1 and Comparative Example 1 contain a polyimide having a polyimide structure and a polyamic acid structure as structural units, a polyfunctional hydroxyl group-containing compound, and an isocyanate compound.
  • the resin composition according to the second embodiment of the present invention will be described with reference to the following Example 2 to Example 12 and Comparative Example 2 to Comparative Example 6.
  • the following Examples 2 to 12 are resin compositions according to the second aspect.
  • E Photopolymerization initiator: Ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (trade name: IRGACURE OXE-02 , Made by Ciba Japan)
  • Phosphorus compound Phosphazene compound (trade name: FP-300, manufactured by Fushimi Pharmaceutical Co., Ltd.)
  • Others Toluene (Wako Pure Chemical Industries, for organic synthesis), ⁇ -butyrolactone (Wako Pure Chemical Industries), sodium carbonate (Wako Pure Chemical Industries)
  • GPC Gel permeation chromatography
  • the coating method of the photosensitive resin composition was performed by a doctor blade method using FILMCOATER (manufactured by TESTER SANGYO, PI1210).
  • the photosensitive resin composition was dropped onto a PET film (Teijin Deyupon Film Co., Ltd., G2) and coated with a clearance of 150 ⁇ m.
  • the coated film was dried at 95 ° C. for 12 minutes using a dryer (manufactured by ESPEC, SPHH-10 l) to obtain a photosensitive film.
  • Lamination was performed using a vacuum press (manufactured by Meiki Seisakusho).
  • the press temperature was 70 ° C.
  • the press pressure was 0.5 MPa
  • the press time was 30 seconds.
  • the obtained photosensitive film was laminated on Kapton (registered trademark) (12 ⁇ m) under the above laminating conditions, and then baked at 180 ° C. for 2 hours. This film was cut into 5 cm squares, and those having a floating height of 5 mm or less at the end were indicated by ⁇ , those having a height of 5 to 10 mm or less were indicated by ⁇ , and those having a floating height higher than that were indicated by ⁇ .
  • Kapton registered trademark
  • IM resistance evaluation> The insulation reliability evaluation was performed as follows. A photosensitive film was laminated on the comb substrate having a line and space of 20 ⁇ m / 20 ⁇ m under the above laminating conditions, then exposed and developed under the above conditions, and baked at 180 ° C. for 2 hours. A migration tester cable was soldered to the film, and an insulation reliability test was conducted under the following conditions.
  • Appearance Comb substrate after IM test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon Corp.) under the conditions of transmitted light, 200 times. ⁇ .
  • ⁇ Polyimide (1)> In a nitrogen atmosphere, a separable flask equipped with a Dean Stark apparatus and a refluxer was charged with ⁇ -butyrolactone (255 g), toluene (51.0 g), polyetheramine D-400 (86.8 g (201.9 mmol)), BPDA. (120 g (407.9 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (48.4 g (165.7 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours. Obtained. The weight average molecular weight of the obtained polyimide (1) is shown in Table 5 below.
  • ⁇ Polyimide (3)> In a nitrogen atmosphere, a separable flask equipped with a Dean Stark apparatus and a refluxer was charged with ⁇ -butyrolactone (99.0 g), toluene (20.0 g), and polyetheramine D-400 (32.0 g (74.42 mmol)). BPDA (30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (5.00 g (17.10 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours to obtain a polyimide (3) solution. Obtained. The weight average molecular weight of the obtained polyimide (3) is shown in Table 5 below.
  • ⁇ Polyimide (5)> In a nitrogen atmosphere, a separable flask equipped with a Dean-Stark apparatus and a refluxer was charged with ⁇ -butyrolactone (107 g), toluene (21.0 g), Jeffamine XTJ-542 (25.7 g (25.70 mmol)), BPDA ( 30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour.
  • ⁇ -butyrolactone 107 g
  • toluene 21.0 g
  • Jeffamine XTJ-542 25.7 g (25.70 mmol)
  • BPDA 30.0 g (102.0 mmol)
  • ⁇ Polyimide (6)> In a nitrogen atmosphere, a separable flask equipped with a Dean-Stark apparatus and a refluxer was charged with ⁇ -butyrolactone (120 g), toluene (24.0 g), Jeffamine D-2000 (27.4 g (13.70 mmol)), BPDA ( 30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (22.2 g (75.94 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours to obtain a polyimide (6) solution. The weight average molecular weight of the obtained polyimide (6) is shown in Table 5 below.
  • T4671 (6 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1) with respect to 100 parts by mass of polyimide (1) Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition.
  • the obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film.
  • the photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
  • Example 4 With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), TPA-B80E (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition.
  • the obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film.
  • the photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
  • Example 5 With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (10 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition.
  • the obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film.
  • the photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
  • Example 7 With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (6 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 Part by mass) was mixed to prepare a photosensitive resin composition.
  • the obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film.
  • the photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
  • Example 8 to 12 For each 100 parts by mass of polyimide (2) to (6), T5651 (6 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition.
  • the obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film.
  • the photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
  • Examples 2 to 12 have better developability, warpage, and insulation reliability than Comparative Examples 2 to 6.
  • the molar ratio of the hydroxyl group of the bifunctional hydroxyl group-containing compound to the isocyanate group of the isocyanate compound is smaller than 0.5.
  • warping occurred see Comparative Example 5
  • dendrites were generated (see Comparative Example 6).
  • Example 13 to Example 24 are resin compositions according to the second aspect.
  • silicone diamine manufactured by Shin-Etsu Chemical Co., Ltd., KF-8010
  • 1,3-bis (3-aminophenoxy) benzene manufactured by Mitsui Chemicals, APB-N
  • Tetramethylene oxide-di-p-aminobenzoate Ihara Chemical Co., abbreviation PMAB, the following general formula (22)
  • 4,4′-oxydiphthalic dianhydride Manac Co., abbreviation ODPA
  • 3,3 ′ , 4,4'-biphenyltetracarboxylic dianhydride Mitsubishii Chemicals, abbreviation BPDA
  • pyromellitic anhydride Daicel Chemical Industries, abbreviation PMDA
  • ethylene glycol bis trimellitic acid monoester anhydride
  • the insulation reliability evaluation was performed as follows. A photosensitive dry film was laminated on the comb substrate having a line-and-space of 20 ⁇ m / 20 ⁇ m under the above-mentioned laminating conditions, then exposed and developed under the above conditions, and baked at 180 ° C. for 1 hour. A migration tester cable was soldered to the photosensitive dry film, and an insulation reliability test was performed under the following conditions. Insulation deterioration evaluation system: SIR-12 (Enomoto Kasei Co., Ltd.) HAST chamber: EHS-211M (Espec Corp.) Temperature: 110 ° C Humidity: 85% Applied voltage: 2V Application time: 528 hours
  • Insulation resistance 1.0 ⁇ a ⁇ less than 10 6 Omega, less than 1.0 ⁇ 10 6 ⁇ ⁇ 1.0 ⁇ 10 7 ⁇ ⁇ and then, 1.0 ⁇ 10 7 ⁇ ⁇ 1.0 ⁇ 10 8 A value less than ⁇ was rated as ⁇ , and a value of 1.0 ⁇ 10 8 ⁇ or more was rated as ⁇ .
  • Appearance The comb substrate after the HAST test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon Corp.) under the conditions of transmitted light and 200 times. ⁇ .
  • Appearance (swelling and discoloration): Comb substrate after HAST test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon), bright field, 100 times condition, swelling and / or swelling of insulating film having a diameter of 50 ⁇ m ⁇ or more Those in which discoloration was observed were evaluated as x, those in which swelling and / or discoloration of an insulating film of 10 ⁇ m ⁇ or more and less than 50 ⁇ m ⁇ were observed were evaluated as ⁇ , and those having swelling and discoloration of 10 ⁇ m ⁇ or less were evaluated as ⁇ .
  • the obtained photosensitive dry film was laminated on Kapton (registered trademark) under the above-mentioned lamination conditions, and then baked at 180 ° C. for 1 hour.
  • a photosensitive dry film was cut out into 5 cm squares, and those with a floating height of less than 5 mm were marked with ⁇ , those with a height of less than 5 to 10 mm were marked with ⁇ , and those with a floating height higher than that were marked with ⁇ .
  • the resolution evaluation was performed as follows. A photosensitive dry film was laminated on the copper clad laminate under the above-mentioned lamination conditions, and then exposed at 30 to 270 mJ / cm 2 . Subsequently, alkaline development with a 1% by mass aqueous sodium carbonate solution and rinsing with water were performed, and the pattern was evaluated with an optical microscope after drying. A 50 ⁇ m to 100 ⁇ m line and space (L / S) pattern was used for the mask. The remaining film ratio of the exposed part (cured part) was 100% by development, and the part where the copper surface of the unexposed part (dissolved part) appeared was read. The case where 70 ⁇ m L / S could be resolved was marked with ⁇ , the case where 100 ⁇ m L / S pattern could be resolved was marked with ⁇ , and the case where 100 ⁇ m could not be resolved was marked with ⁇ .
  • APB-N (6.10 g (20.87 mmol) was added, and the mixture was stirred at 25 ° C. for 8 hours to obtain a solution of polyimide (8).
  • the weight average molecular weight is shown in Table 7 below.
  • APB-N (6.65 g (22.75 mmol) was subsequently added and stirred for 8 hours at 25 ° C. to obtain a solution of polyimide (9).
  • the weight average molecular weight is shown in Table 7 below.
  • polyimide (11) After cooling, APB-N (7.20 g (24.63 mmol) was added and stirred at 25 ° C. for 8 hours to obtain a solution of polyimide (11).
  • the weight average molecular weight of the obtained polyimide (11) was It shows in Table 7 below.
  • Example 13 to 15 BPE-500 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass) with respect to 100 parts by mass of polyimide (7), polyimide (8), polyimide (9), FP-300 (25 parts by mass) and TBXP (15 parts by mass) were mixed to prepare a photosensitive resin composition.
  • the obtained photosensitive resin composition was made into a dry film by the dry film manufacturing method described above to obtain a photosensitive film.
  • This photosensitive film was laminated on a comb-type substrate under the above-mentioned laminating conditions. The insulation reliability of the obtained laminated film was evaluated. The results are shown in Table 8 below. In Examples 13 and 14, the warpage was ⁇ and the resolution was ⁇ , and in Example 15 the warp was ⁇ and the resolution was ⁇ .
  • Example 16 BPE-500 (40 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts by mass) are mixed with 100 parts by mass of polyimide (7).
  • a resin composition was prepared.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was x.
  • Example 17 M-310 (40 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts by mass) are mixed with 100 parts by mass of polyimide (7).
  • a resin composition was prepared.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. Further, the warpage was ⁇ , and the resolution was ⁇ .
  • Example 18 BPE-900 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was ⁇ .
  • Example 20 BPE-500 (20 parts by mass), M-350 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was ⁇ .
  • Example 21 BPE-500 (20 parts by mass), M-306 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was ⁇ .
  • Example 22 BPE-500 (20 parts by weight), A-TMMT (20 parts by weight), OXE-02 (1 part by weight), FP-300 (25 parts by weight), TBXP (15 parts per 100 parts by weight of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was ⁇ .
  • Example 23 BPE-500 (20 parts by mass), A-GLY-9E (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP with respect to 100 parts by mass of polyimide (7) (15 parts by mass) was mixed to prepare a photosensitive resin composition.
  • a laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was ⁇ .
  • Example 24 BPE-500 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass), T5651 (3 parts by mass), and SBN-70D (3 parts by mass) were mixed to prepare a photosensitive resin composition.
  • a laminated film was produced from the obtained photosensitive resin composition by the same method as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ⁇ and the resolution was ⁇ .
  • Example 13 to 13 using photosensitive resin compositions containing the polyimide structure represented by the general formula (7) and the polyamic acid structure represented by the general formula (8) were used.
  • Example 24 it can be seen that the insulation reliability (HAST resistance) is excellent as compared with Comparative Example 7 and Comparative Example 8.
  • Example 13 and Example 20 are compared with Example 22 and Example 23, resin containing the (meth) acrylate compound which has three or more double bonds of the structure shown by the said General formula (10). It can be seen that the composition has better insulation reliability (HAST resistance).
  • Example 25 and Example 26 are the resin compositions which concern on a 2nd aspect.
  • Example 25 As a resin composition, a varnish of polyimide Z having an imidization ratio of 100%, a bifunctional hydroxyl-containing compound, both-end type phenol-modified silicone X-22-1821 (hydroxyl value 38 mgKOH) manufactured by Shin-Etsu Chemical Co., Ltd. / G), 1,3-bis (4,5-dihydro-2-oxazolyl) benzene (hereinafter referred to as BPO) as an oxazoline compound, and flame retardant A (see Example 1) were used.
  • BPO 1,3-bis (4,5-dihydro-2-oxazolyl) benzene
  • a material obtained by adding 5 parts by mass of double-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd., 13 parts by mass of BPO, and 33 parts by mass of flame retardant A to 100 parts by mass of polyimide Z was used.
  • This resin composition was applied to a copper foil and dried at 95 ° C. for 12 minutes to obtain a resin film having a thickness of 30 ⁇ m.
  • This resin film was used for evaluation of antkari solubility.
  • the resin film was heated at 180 ° C. for 60 minutes to obtain a cured product. This cured product was used for evaluation of alkali resistance.
  • a method for synthesizing polyimide Z will be described.
  • Polyimide Z A method for synthesizing polyimide Z will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of ⁇ -butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of 4,4′-oxydiphthalic dianhydride (manac, ODPA) Stir until uniform.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • the warpage was evaluated by lifting the four corners of the resin film. Specifically, the sample 1 described above was cut into 5 cm ⁇ 5 cm in an environment of 23 ° C. and a humidity of 50%, and the distance at which the corner was raised relative to the central portion was measured as a warp. Those having a warp of 10 mm or less were evaluated as “good”, those having a warp of 5 mm or less were evaluated as “good”, ⁇ ⁇ were determined as 15 mm or less, and those exceeding 15 mm were evaluated as “poor”.
  • solder resistance was evaluated by immersing a cured product cut to 3 cm ⁇ 3 cm in a solder bath at 260 ° C. for 60 seconds in accordance with the JPCA-BM02 standard. Visually inspect the external appearance to confirm the presence or absence of changes such as deformation and dissolution traces. If no change is observed in 90% or more of the total area, the circle is marked as ⁇ , and the area is 50% to 90%. The case where no change was observed was indicated by ⁇ , and the case where the region where no change was observed was less than 50% was indicated by ⁇ .
  • Example 26 As a resin composition, 10 parts by mass of a both-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd. as a bifunctional hydroxyl group-containing compound and 100 parts by mass of polyimide Z as an oxazoline compound A product obtained by adding 20 parts by mass of BPO and 33 parts by mass of flame retardant A was used. Others were produced and evaluated in the same manner as in Example 25 by preparing resin films and cured products.
  • a resin composition 10 parts by mass of a both-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd. as a bifunctional hydroxyl group-containing compound and 100 parts by mass of polyimide Z as an oxazoline compound A product obtained by adding 20 parts by mass of BPO and 33 parts by mass of flame retardant A was used. Others were produced and evaluated in the same manner as in Example 25 by preparing resin films and cured products.
  • Table 9 below shows the evaluation results of Example 25, Example 26, and Comparative Examples 9 to 11.
  • the resin films using the resin compositions according to Example 25 and Example 26 show alkali-solubility while the cured product exhibits alkali resistance, and further has low warpage and excellent solder resistance. The effect similar to the resin composition which concerns on the other Example mentioned above was acquired.
  • Comparative Examples 9 to 11 it can be seen that the evaluation of solder resistance, warpage, and the like deteriorates when any of the polyimide, bifunctional hydroxyl group-containing compound and oxazoline compound is not included.
  • the present invention has an effect that a sufficient warpage reduction during curing and a resin composition capable of realizing excellent heat resistance can be realized, and in particular, a surface protection film for semiconductor elements, an interlayer insulating film, a bonding sheet It can be suitably used as a semiconductor package substrate, a protective layer for circuit boards, a protective insulating film for printed wiring boards, and a protective insulating film for flexible printed boards.

Abstract

Provided is a resin composition with which cure warpage can be mitigated and which has excellent heat resistance and is suitable for use as a material for the surface-protective film or interlayer dielectric of a semiconductor element or for a protective dielectric, interlayer dielectric, or the like for printed wiring boards. Also provided are a resin film obtained using the resin composition and a wiring board obtained using the composition or film. This resin composition is characterized by comprising (A) a polymer, (B) a polyfunctional hydroxylated compound having two or more hydroxy groups, and (C) a polyfunctional crosslinking compound having two or more crosslinking functional groups which form crosslinks between the crosslinking compound and the polymer and/or polyfunctional hydroxylated compound, the polyfunctional crosslinking compound being capable of forming three-dimensional crosslinks between the crosslinking compound and the polymer and/or polyfunctional hydroxylated compound.

Description

樹脂組成物、硬化物、樹脂フィルム及び配線板Resin composition, cured product, resin film and wiring board
 本発明は、半導体素子の表面保護膜、層間絶縁膜、半導体パッケージ基板、ボンディングシート、プリント配線板用保護絶縁膜の材料として有用な樹脂組成物、樹脂組成物を用いた硬化物、樹脂組成物を用いた樹脂フィルム、及びそれらを用いた配線板に関する。 The present invention relates to a resin composition useful as a material for a surface protective film of a semiconductor element, an interlayer insulating film, a semiconductor package substrate, a bonding sheet, and a protective insulating film for a printed wiring board, a cured product using the resin composition, and a resin composition The present invention relates to a resin film using, and a wiring board using them.
 半導体素子の表面保護膜、層間絶縁膜、プリント配線板用保護絶縁膜の材料として、耐熱性に優れるポリイミド系の樹脂組成物が用いられるようになっている。特に、ポリイミド系の樹脂組成物をフレキシブルプリント配線板の絶縁材料として用いる場合、耐熱性に加えて硬化後の反りが少ないことが求められる。耐熱性に優れ、且つ、硬化後の反りを低減できるポリイミド系の樹脂組成物として、エステル末端オリゴマー及びアミン末端オリゴマーからなるポリイミド系インクが提案されている(例えば、特許文献1参照)。 As a material for the surface protection film of semiconductor elements, interlayer insulation films, and protection insulation films for printed wiring boards, polyimide resin compositions having excellent heat resistance are being used. In particular, when a polyimide resin composition is used as an insulating material for a flexible printed wiring board, it is required that there is little warpage after curing in addition to heat resistance. A polyimide-based ink composed of an ester-terminated oligomer and an amine-terminated oligomer has been proposed as a polyimide-based resin composition that has excellent heat resistance and can reduce warping after curing (see, for example, Patent Document 1).
 特許文献1に記載のポリイミド系インクは、フレキシブル配線回路上に塗布された後、250℃以上の温度で熱処理されてイミド化して用いられる。このイミド化工程においては、脱溶媒やオリゴマーのイミド化に伴う閉環反応に起因する応力から、形成されるポリイミド樹脂の収縮が生じる。このため、反りの抑制が必ずしも十分ではなく、加工性にも問題が生じる。また、回路材料に銅箔を用いる場合には、250℃以上の熱処理によってカルボキシル基と配線材料とが反応し、配線材料が酸化してしまうという問題もある。 The polyimide-based ink described in Patent Document 1 is used after being applied onto a flexible wiring circuit and then heat-treated at a temperature of 250 ° C. or higher to be imidized. In this imidization process, the polyimide resin to be formed contracts due to the stress caused by the ring closure reaction accompanying solvent removal and oligomer imidization. For this reason, suppression of curvature is not necessarily sufficient, and a problem also arises in workability. Further, when copper foil is used as the circuit material, there is a problem that the carboxyl group and the wiring material react with each other by heat treatment at 250 ° C. or more, and the wiring material is oxidized.
 また、低温でのイミド化を可能とし、硬化後の反りを低減できるポリイミド前駆体も開発されている。このようなポリイミド前駆体としては、アルキルエーテルジアミンを用いた非シリコーン系のポリイミド前駆体や(例えば、特許文献2参照)、ジアミノシロキサンをジアミン成分として使用したシリコーン系のポリイミド前駆体(例えば、特許文献3、特許文献4参照)などが挙げられる。 Also, polyimide precursors that can be imidized at low temperatures and can reduce warping after curing have been developed. Examples of such polyimide precursors include non-silicone polyimide precursors using alkyl ether diamines (for example, see Patent Document 2), and silicone-based polyimide precursors using diaminosiloxane as a diamine component (for example, patents). Reference 3 and Patent Document 4).
特開平2-145664号公報JP-A-2-145664 特開2006-321924号公報JP 2006-321924 A 特開昭57-143328号公報JP-A-57-143328 特開昭58-13631号公報JP 58-13631 A
 しかしながら、特許文献2に記載のポリイミド前駆体は、アルキルエーテルジアミンに由来するポリアミド酸構造と、芳香族ジアミンに由来するポリイミド構造とを構成単位として有する。このため、ポリイミド系の樹脂組成物としてフレキシブルプリント配線板の絶縁材料に用いた場合には、芳香族ジアミンに由来するポリイミド部位が収縮し、硬化時の反りを必ずしも十分に抑制できない問題がある。 However, the polyimide precursor described in Patent Document 2 has a polyamic acid structure derived from an alkyl ether diamine and a polyimide structure derived from an aromatic diamine as structural units. For this reason, when it uses for the insulating material of a flexible printed wiring board as a polyimide-type resin composition, the polyimide site | part originating in aromatic diamine shrink | contracts and there exists a problem which cannot fully suppress the curvature at the time of hardening.
 また、特許文献3及び特許文献4に記載のポリイミド前駆体は、シリコーン系のポリイミド前駆体であることから、ポリイミド系の樹脂組成物として回路基板に塗布してイミド化させて回路の保護膜を形成する場合、その後のプリプレグやボンディング工程で、シリコーン部位が表面に偏析して保護膜の表面が低表面張力・高撥水性となり、接着成分をはじいてしまう場合がある。このため、保護膜と接着シートとの間の接着力が不足し、保護膜として必ずしも十分な性能が得られない問題がある。 Further, since the polyimide precursors described in Patent Document 3 and Patent Document 4 are silicone-based polyimide precursors, they are applied to a circuit board as a polyimide-based resin composition and imidized to form a circuit protective film. In the case of forming, the silicone part segregates on the surface in the subsequent prepreg or bonding process, and the surface of the protective film may have low surface tension and high water repellency, which may repel the adhesive component. For this reason, the adhesive force between a protective film and an adhesive sheet is insufficient, and there is a problem that sufficient performance as a protective film is not necessarily obtained.
 本発明は、かかる点に鑑みてなされたものであり、硬化時における反りを低減でき、耐熱性に優れると共に、半導体素子の表面保護膜、層間絶縁膜、プリント配線板用保護絶縁膜、層間絶縁膜などの材料として好適に使用できる樹脂組成物、樹脂組成物を用いた樹脂フィルム及びそれらを用いた配線板を提供することを目的とする。 The present invention has been made in view of the above points, and can reduce warping during curing, has excellent heat resistance, and is a surface protective film for semiconductor elements, an interlayer insulating film, a protective insulating film for printed wiring boards, and an interlayer insulating film. It aims at providing the resin composition which can be used conveniently as materials, such as a film | membrane, the resin film using the resin composition, and a wiring board using them.
 本発明の樹脂組成物は、(A)高分子化合物と、(B)2以上の水酸基を有する多官能水酸基含有化合物と、(C)前記高分子化合物及び/又は前記多官能水酸基含有化合物との間で架橋結合を形成する2以上の架橋性官能基を有する多官能架橋性化合物と、を含有し、前記多官能架橋性化合物が、前記高分子化合物及び/又は前記多官能水酸基含有化合物との間で3次元架橋を形成し得ることを特徴とする。 The resin composition of the present invention comprises (A) a polymer compound, (B) a polyfunctional hydroxyl group-containing compound having two or more hydroxyl groups, and (C) the polymer compound and / or the polyfunctional hydroxyl group-containing compound. A polyfunctional crosslinkable compound having two or more crosslinkable functional groups that form a crosslink between them, wherein the polyfunctional crosslinkable compound is the polymer compound and / or the polyfunctional hydroxyl group-containing compound. It is characterized in that a three-dimensional bridge can be formed between them.
 本発明の樹脂組成物においては、前記高分子化合物が、イミド基及び/又はアミド基を有し、前記3次元架橋が、C=O基及び/又はNH基を含むことが好ましい。 In the resin composition of the present invention, it is preferable that the polymer compound has an imide group and / or an amide group, and the three-dimensional crosslinking includes a C═O group and / or an NH group.
 本発明の樹脂組成物においては、前記多官能水酸基含有化合物及び/又は前記多官能架橋性化合物が、3官能以上であることが好ましい。 In the resin composition of the present invention, the polyfunctional hydroxyl group-containing compound and / or the polyfunctional crosslinkable compound is preferably trifunctional or more.
 本発明の樹脂組成物においては、前記高分子化合物が、水酸基及び/又はカルボキシル基を有することが好ましい。 In the resin composition of the present invention, the polymer compound preferably has a hydroxyl group and / or a carboxyl group.
 本発明の樹脂組成物においては、前記多官能水酸基含有化合物として、両末端フェノール変性シリコーン、ポリブタジエンポリオール、水添ポリブタジエンポリオール、及びポリカーボネートポリオールから選ばれる少なくとも1種を含むことが好ましい。 In the resin composition of the present invention, it is preferable that the polyfunctional hydroxyl group-containing compound includes at least one selected from both-end phenol-modified silicone, polybutadiene polyol, hydrogenated polybutadiene polyol, and polycarbonate polyol.
 本発明の樹脂組成物においては、前記多官能水酸基含有化合物が、脂肪族構造を有することが好ましい。 In the resin composition of the present invention, the polyfunctional hydroxyl group-containing compound preferably has an aliphatic structure.
 本発明の樹脂組成物においては、前記多官能水酸基含有化合物が、ポリカーボネートポリオールであることが好ましい。 In the resin composition of the present invention, the polyfunctional hydroxyl group-containing compound is preferably a polycarbonate polyol.
 本発明の樹脂組成物においては、前記多官能架橋性化合物として、2以上のイソシアネート基を有する多官能イソシアネート化合物を含むことが好ましい。 The resin composition of the present invention preferably contains a polyfunctional isocyanate compound having two or more isocyanate groups as the polyfunctional crosslinkable compound.
 本発明の樹脂組成物においては、前記多官能架橋性化合物が、2以上のブロックイソシアネート基を含むことが好ましい。 In the resin composition of the present invention, the polyfunctional crosslinkable compound preferably contains two or more blocked isocyanate groups.
 本発明の樹脂組成物においては、前記多官能水酸基含有化合物に含まれる水酸基と、前記多官能架橋性化合物に含まれる架橋性官能基とのモル比が、水酸基/架橋性官能基=0.5~1であることが好ましい。 In the resin composition of the present invention, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the crosslinkable functional group contained in the polyfunctional crosslinkable compound is hydroxyl group / crosslinkable functional group = 0.5. Is preferably .about.1.
 本発明の樹脂組成物においては、前記高分子化合物100質量部に対して、前記多官能水酸基含有化合物の含有量が5質量部~60質量部であることが好ましい。 In the resin composition of the present invention, the content of the polyfunctional hydroxyl group-containing compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound.
 本発明の樹脂組成物においては、前記高分子化合物100質量部に対して、前記多官能架橋性化合物の含有量が5質量部~60質量部であることが好ましい。 In the resin composition of the present invention, the content of the polyfunctional crosslinkable compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound.
 本発明の樹脂組成物においては、前記多官能水酸基含有化合物の数平均分子量が、500~3000であることが好ましい。 In the resin composition of the present invention, the polyfunctional hydroxyl group-containing compound preferably has a number average molecular weight of 500 to 3,000.
 本発明の樹脂組成物においては、前記高分子化合物が、下記一般式(1)で表される繰り返し構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Yは、2価の有機基を表し、Zは、4価の有機基を表す。aは、1~50の整数を表す。)
In the resin composition of this invention, it is preferable that the said high molecular compound has a repeating structure represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000009
(In Formula (1), Y 1 represents a divalent organic group, Z 1 represents a tetravalent organic group, and a represents an integer of 1 to 50.)
 本発明の樹脂組成物においては、前記高分子化合物が、ポリイミドであることが好ましい。 In the resin composition of the present invention, the polymer compound is preferably polyimide.
 本発明の樹脂組成物においては、前記高分子化合物が、下記一般式(2)で表される繰り返し構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(2)中、Z及びZは、4価の有機基を表し、Y、Y、Y、Y、及びYは、それぞれ独立して炭素数1~炭素数5のアルキレン基を表し、分岐していてもよい。b、c、及びdは、それぞれ独立して1~50の整数を表す。)
In the resin composition of this invention, it is preferable that the said high molecular compound has a repeating structure represented by following General formula (2).
Figure JPOXMLDOC01-appb-C000010
(In formula (2), Z 1 and Z 2 represent a tetravalent organic group, and Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are each independently 1 to 5 carbon atoms. And may be branched. B, c and d each independently represents an integer of 1 to 50.)
 本発明の樹脂組成物においては、前記高分子化合物が、下記一般式(3)で表されるポリイミド構造及び下記一般式(4)で表されるポリアミド酸構造をそれぞれ繰り返し構成単位として有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
(式(3)及び式(4)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、それぞれ独立して炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上100以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。)
In the resin composition of the present invention, the polymer compound may have a polyimide structure represented by the following general formula (3) and a polyamic acid structure represented by the following general formula (4) as repeating structural units, respectively. preferable.
Figure JPOXMLDOC01-appb-C000011
(In Formula (3) and Formula (4), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom. Alternatively, it represents a monovalent organic group having 1 to 20 carbon atoms, and R 3 , R 6 , R 9 , R 12 , and R 15 are each independently a tetravalent organic group having 1 to 20 carbon atoms. M, n, and p each independently represents an integer of 0 to 100. R 16 represents a tetravalent organic group, and R 17 represents a divalent group having 1 to 90 carbon atoms. Represents an organic group of
 本発明の樹脂組成物においては、前記一般式(3)で表されるポリイミドを構成するジアミン成分として、下記一般式(5)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(5)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、それぞれ独立して炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上30以下の整数であり、1≦(m+n+p)≦30を満たす。)
In the resin composition of this invention, it is preferable that the diamine represented by the following general formula (5) is included as a diamine component which comprises the polyimide represented by the said General formula (3).
Figure JPOXMLDOC01-appb-C000012
(In formula (5), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, R 3 , R 6 , R 9 , R 12 , and R 15 each independently represents a tetravalent organic group having 1 to 20 carbon atoms; , N and p are each independently an integer of 0 or more and 30 or less and satisfy 1 ≦ (m + n + p) ≦ 30.)
 本発明の樹脂組成物においては、前記高分子化合物が、下記一般式(6)で表される構造を繰り返し単位として有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(6)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、炭素数1~炭素数20の4価の有機基を表し、m、n、pはそれぞれ独立して0以上30以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。A、B、Cは、各単位のmol%を表し、0.10≦(A+B)/(A+B+C)≦0.85を満たす。)
In the resin composition of the present invention, the polymer compound preferably has a structure represented by the following general formula (6) as a repeating unit.
Figure JPOXMLDOC01-appb-C000013
(In formula (6), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, R 3 , R 6 , R 9 , R 12 , and R 15 represent a tetravalent organic group having 1 to 20 carbon atoms, m, n, p Each independently represents an integer of 0 to 30. R 16 represents a tetravalent organic group, R 17 represents a divalent organic group having 1 to 90 carbon atoms, A, B, C represents mol% of each unit and satisfies 0.10 ≦ (A + B) / (A + B + C) ≦ 0.85.
 本発明の樹脂組成物においては、前記高分子化合物が、下記一般式(7)で表されるポリイミド構造及び下記一般式(8)で表されるポリアミド酸構造を構成単位として有することが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(7)及び式(8)中、Z及びZは、下記一般式(9)で表されるテトラカルボン酸二無水物に由来する4価の有機基であり、それぞれ同じであっても異なっていてもよい。R18は、炭素数1~炭素数30の2価の有機基、R19は、炭素数1~炭素数30の1価の有機基、eは、1以上20以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
In the resin composition of the present invention, the polymer compound preferably has a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as structural units.
Figure JPOXMLDOC01-appb-C000014
(In Formula (7) and Formula (8), Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following General Formula (9), and are the same as each other. R 18 is a divalent organic group having 1 to 30 carbon atoms, R 19 is a monovalent organic group having 1 to 30 carbon atoms, and e is 1 or more and 20 Represents the following integers.)
Figure JPOXMLDOC01-appb-C000015
 本発明の樹脂組成物においては、(D)光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物と、(E)光重合開始剤と、を含有することが好ましい。 The resin composition of the present invention preferably contains (D) a (meth) acrylate compound having two or more unsaturated groups capable of photopolymerization and (E) a photopolymerization initiator.
 本発明の樹脂組成物においては、前記光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物として、二重結合を3つ以上有する(メタ)アクリレート化合物を含むことが好ましい。 In the resin composition of the present invention, the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds preferably includes a (meth) acrylate compound having three or more double bonds.
 本発明の樹脂組成物においては、前記二重結合を3つ以上有する(メタ)アクリレート化合物として、下記一般式(10)で表わされる化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式(10)中、R20は水素原子又はメチル基を表わし、複数のEは各々独立に炭素数2~炭素数5のアルキレン基を表わし、それぞれ同じであっても異なっていてもよい。fは1~10の整数である。)
In the resin composition of this invention, it is preferable that the compound represented by following General formula (10) is included as a (meth) acrylate compound which has three or more of the said double bonds.
Figure JPOXMLDOC01-appb-C000016
(In the formula (10), R 20 represents a hydrogen atom or a methyl group, and a plurality of E's each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different. f is an integer of 1 to 10.)
 本発明の樹脂組成物においては、前記光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物として、二重結合を2つ有する(メタ)アクリレート化合物と二重結合を3つ以上有する(メタ)アクリレート化合物とを含むことが好ましい。 In the resin composition of the present invention, the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds is a (meth) acrylate compound having two double bonds and three double bonds. It is preferable to contain the (meth) acrylate compound having the above.
 本発明の樹脂組成物においては、(F)リン化合物を含有することが好ましい。 The resin composition of the present invention preferably contains (F) a phosphorus compound.
 本発明の樹脂組成物においては、前記リン化合物として、リン酸エステル化合物及び/又はホスファゼン化合物を含むことが好ましい。 In the resin composition of the present invention, it is preferable that the phosphorus compound includes a phosphate ester compound and / or a phosphazene compound.
 本発明の樹脂組成物は、温度85℃、湿度85%、1000時間の絶縁信頼性試験における層間絶縁抵抗が10Ω以上であり、120℃~220℃の粘度が5000Pa・S~100000Pa・Sであって、伸度20%未満の弾性域と伸度50%以上の塑性域とを有し、層間絶縁層の膜厚が40μm以下であることを特徴とする。 The resin composition of the present invention has an interlayer insulation resistance of 10 9 Ω or more in an insulation reliability test at a temperature of 85 ° C., a humidity of 85%, and 1000 hours, and a viscosity at 120 ° C. to 220 ° C. of 5000 Pa · S to 100000 Pa · S. And having an elastic region with an elongation of less than 20% and a plastic region with an elongation of 50% or more, and the film thickness of the interlayer insulating layer is 40 μm or less.
 本発明の硬化物は、上記樹脂組成物を、100℃~130℃において5分~60分加熱した後に、160℃~200℃において15分~60分加熱することで得られることを特徴とする。 The cured product of the present invention is obtained by heating the resin composition at 100 ° C. to 130 ° C. for 5 minutes to 60 minutes and then heating at 160 ° C. to 200 ° C. for 15 minutes to 60 minutes. .
 本発明の樹脂フィルムは、基材と、前記基材上に設けられた上記樹脂組成物とを具備することを特徴とする。 The resin film of the present invention includes a base material and the resin composition provided on the base material.
 本発明の樹脂フィルムにおいては、前記基材がキャリアフィルムであることが好ましい。 In the resin film of the present invention, the substrate is preferably a carrier film.
 本発明の樹脂フィルムにおいては、前記樹脂組成物上に設けられたカバーフィルムを具備することが好ましい。 The resin film of the present invention preferably includes a cover film provided on the resin composition.
 本発明の樹脂フィルムにおいては、前記基材が銅箔であることが好ましい。 In the resin film of the present invention, the base material is preferably a copper foil.
 本発明の配線板は、配線を有する基材と、前記配線を覆うように設けられた上記樹脂組成物と、を具備することを特徴とする。 The wiring board of the present invention is characterized by comprising a base material having wiring and the resin composition provided so as to cover the wiring.
 本発明によれば、硬化時における反りを低減でき、耐熱性に優れると共に、半導体素子の表面保護膜、層間絶縁膜、プリント配線板用保護絶縁膜、層間絶縁膜などの材料として好適に使用できる樹脂組成物、樹脂組成物を用いた樹脂フィルム及びそれらを用いた配線板を提供することができる。 According to the present invention, warpage during curing can be reduced, heat resistance is excellent, and it can be suitably used as a material for a surface protection film of a semiconductor element, an interlayer insulating film, a protective insulating film for a printed wiring board, an interlayer insulating film, and the like. A resin composition, a resin film using the resin composition, and a wiring board using them can be provided.
本実施の形態に係る多層フレキシブル配線板の製造工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of the multilayer flexible wiring board which concerns on this Embodiment.
 近年、携帯電話などの電子機器の高機能化及び軽量化に伴い、各種電子機器に用いられるフレキシブルプリント基板の薄型化や部品実装などの高機能化が進められている。フレキシブルプリント基板の製造工程においては、エポキシ系樹脂やポリイミド系樹脂が用いられているが、エポキシ系の樹脂を保護膜として用いた場合には、フレキシブルプリント基板の薄型化で必要となる高絶縁信頼性や、柔軟性、低反発性、難燃性が必ずしも十分に得られない。また、エポキシ系樹脂は、反応性を有するため保存安定性に欠ける。また、従来のポリイミド系樹脂を用いた場合においても、反りの低減や耐熱性を実現できるポリイミド系樹脂は高価であると共に、イミド化に伴う硬化物の反りの低減や耐熱性が良い樹脂組成物が望まれている。 In recent years, with the increase in functionality and weight of electronic devices such as mobile phones, the flexible printed circuit boards used in various electronic devices have been improved in functionality such as thinning and component mounting. Epoxy resins and polyimide resins are used in the manufacturing process of flexible printed circuit boards, but when using an epoxy resin as a protective film, the high insulation reliability required for thinning the flexible printed circuit board , Flexibility, low resilience, and flame retardancy are not always sufficiently obtained. Moreover, since epoxy resin has reactivity, it lacks storage stability. In addition, even when a conventional polyimide resin is used, a polyimide resin that can realize a reduction in warpage and heat resistance is expensive, and a resin composition that has a good reduction in warpage and heat resistance of a cured product accompanying imidization. Is desired.
 本発明者らは、高分子化合物や多官能水酸基含有化合物との間で3次元架橋を形成し得る多官能架橋性化合物に着目した。そして、本発明者らは、高分子化合物及び/又は多官能水酸基含有化合物と、多官能架橋性化合物と、を含む樹脂組成物を加熱することにより、多官能架橋性化合物と多官能水酸基含有化合物との間に形成される3次元架橋によって3次元的なネットワークを形成することを着想した。さらに、本発明者らは、この3次元的なネットワークにより、硬化時の反りを低減でき、優れた耐熱性を有する樹脂組成物を実現できることを見出し、本発明を完成させるに至った。 The present inventors paid attention to a polyfunctional crosslinkable compound capable of forming a three-dimensional crosslink with a polymer compound or a polyfunctional hydroxyl group-containing compound. And the present inventors heated the resin composition containing a polymer compound and / or a polyfunctional hydroxyl group-containing compound and a polyfunctional crosslinkable compound, thereby producing a polyfunctional crosslinkable compound and a polyfunctional hydroxyl group-containing compound. The idea was to form a three-dimensional network by three-dimensional crosslinking formed between the two. Furthermore, the present inventors have found that this three-dimensional network can reduce warping during curing and can realize a resin composition having excellent heat resistance, and have completed the present invention.
 すなわち、本発明に係る樹脂組成物は、(A)高分子化合物と、(B)2以上の水酸基を有する多官能水酸基含有化合物と、(C)高分子化合物及び/又は多官能水酸基含有化合物との間で架橋結合を形成する2以上の架橋性官能基を有する多官能架橋性化合物と、を含有し、多官能架橋性化合物が、高分子化合物及び/又は多官能水酸基含有化合物との間で3次元架橋を形成し得るものである。 That is, the resin composition according to the present invention includes (A) a polymer compound, (B) a polyfunctional hydroxyl group-containing compound having two or more hydroxyl groups, and (C) a polymer compound and / or a polyfunctional hydroxyl group-containing compound. A polyfunctional crosslinkable compound having two or more crosslinkable functional groups that form a crosslink between the polyfunctional crosslinkable compound and the polymer compound and / or the polyfunctional hydroxyl group-containing compound. A three-dimensional bridge can be formed.
 この樹脂組成物においては、加熱によって多官能架橋性化合物の架橋性官能基と多官能水酸基含有化合物の水酸基との間で3次元架橋が形成され、この3次元架橋によって3次元的なネットワークが形成される。これにより、樹脂組成物の硬化時の高分子化合物の収縮を抑制できると共に、高分子化合物、多官能水酸基含有化合物及び多官能架橋性化合物間の相溶性が向上する。この結果、硬化時における反りを低減でき、耐熱性に優れると共に、半導体素子の表面保護膜、層間絶縁膜、プリント配線板用保護絶縁膜、層間絶縁膜などの材料として好適に使用できる樹脂組成物を実現できる。 In this resin composition, three-dimensional crosslinking is formed between the crosslinking functional group of the polyfunctional crosslinking compound and the hydroxyl group of the polyfunctional hydroxyl group-containing compound by heating, and a three-dimensional network is formed by this three-dimensional crosslinking. Is done. Thereby, while shrinkage | contraction of the high molecular compound at the time of hardening of a resin composition can be suppressed, the compatibility between a high molecular compound, a polyfunctional hydroxyl-containing compound, and a polyfunctional crosslinkable compound improves. As a result, it is possible to reduce warping during curing, excellent heat resistance, and a resin composition that can be suitably used as a material for semiconductor device surface protective films, interlayer insulating films, protective insulating films for printed wiring boards, interlayer insulating films, etc. Can be realized.
 本発明に係る樹脂組成物においては、高分子化合物がイミド基及び/又はアミド基を有し、多官能水酸基含有化合物及び多官能架橋性化合物の間に形成される3次元架橋が、C=O基及び/又はNH基を含むことが好ましい。この構成により、3次元架橋に含まれるC=O基及び/又はNH基と高分子化合物のイミド基及び/又はアミド基との間で、水素結合を主とした相互作用が生じるので、高分子化合物、多官能水酸基含有化合物及び多官能架橋性化合物間の相溶性が更に向上する。これにより、硬化時の反りをより低減でき、耐熱性がさらに向上する。 In the resin composition according to the present invention, the polymer compound has an imide group and / or an amide group, and the three-dimensional crosslinking formed between the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is C═O. It preferably contains groups and / or NH groups. With this configuration, an interaction mainly including hydrogen bonding occurs between the C═O group and / or NH group included in the three-dimensional crosslinking and the imide group and / or amide group of the polymer compound. The compatibility between the compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is further improved. Thereby, the curvature at the time of hardening can be reduced more and heat resistance improves further.
 本発明に係る樹脂組成物においては、高分子化合物、多官能水酸基含有化合物及び多官能架橋性化合物としては、加熱などによって高分子化合物及び/又は多官能水酸基含有化合物と多官能架橋性化合物との間に3次元架橋を形成するものであれば、本発明の効果を奏する範囲で各種化合物を組み合わせて用いることができる。以下、本発明に係る樹脂組成物の態様について詳細に説明する。 In the resin composition according to the present invention, the polymer compound, the polyfunctional hydroxyl group-containing compound, and the polyfunctional crosslinkable compound include a polymer compound and / or a polyfunctional hydroxyl group-containing compound and a polyfunctional crosslinkable compound by heating or the like. Various compounds can be used in combination as long as they form a three-dimensional bridge between them as long as the effects of the present invention are achieved. Hereinafter, embodiments of the resin composition according to the present invention will be described in detail.
(第1の態様)
 本発明の第1の態様に係る樹脂組成物は、多官能水酸基含有化合物及び/又は多官能架橋性化合物が3官能以上である。このように、多官能水酸基含有化合物又は多官能架橋性化合物の少なくとも一方が3官能以上であれば、多官能水酸基含有化合物の複数の水酸基と多官能架橋性化合物の複数の架橋性官能基(例えば、イソシアネート基、オキサゾリン基)との間の架橋反応によって複数のC=O基及び/又はNH基を含む3次元架橋が形成され、3次元的なネットワークを形成できる。この場合、高分子化合物を介さずに形成された多官能水酸基含有化合物と多官能架橋性化合物との間の3次元ネットワークによって高分子化合物の収縮を抑制することが可能となり、十分な反りの低減及び優れた耐熱性が発現する。
(First aspect)
In the resin composition according to the first aspect of the present invention, the polyfunctional hydroxyl group-containing compound and / or the polyfunctional crosslinkable compound is trifunctional or more. Thus, if at least one of the polyfunctional hydroxyl group-containing compound or the polyfunctional crosslinkable compound is trifunctional or more, a plurality of hydroxyl groups of the polyfunctional hydroxyl group containing compound and a plurality of crosslinkable functional groups of the polyfunctional crosslinkable compound (for example, , An isocyanate group, an oxazoline group) to form a three-dimensional network including a plurality of C═O groups and / or NH groups, thereby forming a three-dimensional network. In this case, shrinkage of the polymer compound can be suppressed by a three-dimensional network between the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound formed without using the polymer compound, and sufficient warpage can be reduced. And excellent heat resistance is exhibited.
 本発明の第1の態様に係る樹脂組成物においては、多官能水酸基含有化合物と多官能架橋性化合物との間に形成された3次元的なネットワークによって、高分子化合物の収縮を抑制するので、高分子化合物の分子構造に制限されずに、本発明の効果を奏することが可能となる。このため、例えば、複雑な分子構造を有さない安価な高分子化合物を用いた場合においても、樹脂組成物の硬化時の反りを低減でき、優れた耐熱性が発現する。 In the resin composition according to the first aspect of the present invention, the shrinkage of the polymer compound is suppressed by the three-dimensional network formed between the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound. The effects of the present invention can be achieved without being limited by the molecular structure of the polymer compound. For this reason, for example, even when an inexpensive polymer compound having no complicated molecular structure is used, warpage during curing of the resin composition can be reduced, and excellent heat resistance is exhibited.
(第2の態様)
 本発明の第2の態様に係る樹脂組成物においては、高分子化合物が、水酸基及び/又はカルボキシル基を有する。このように、高分子化合物が、水酸基及びカルボキシル基のいずれか一方を有することにより、高分子化合物の水酸基及び/又はカルボキシル基と多官能架橋性化合物の架橋性官能基(例えば、イソシアネート基、オキサゾリン基)との間にも架橋結合が形成される。これにより、高分子化合物、多官能水酸基含有化合物及び多官能架橋性化合物間に高分子化合物を介した3次元的なネットワークが形成されるので、高分子化合物、多官能水酸基含有化合物及び多官能架橋性化合物の相溶性が向上し、高分子化合物の収縮を更に抑制することが可能となり、特に樹脂組成物の硬化時の反りを低減でき、優れた耐熱性が発現する。
(Second aspect)
In the resin composition according to the second aspect of the present invention, the polymer compound has a hydroxyl group and / or a carboxyl group. As described above, when the polymer compound has one of a hydroxyl group and a carboxyl group, the hydroxyl group and / or carboxyl group of the polymer compound and the crosslinkable functional group of the polyfunctional crosslinkable compound (for example, isocyanate group, oxazoline). Crosslinks are also formed between these groups. As a result, a three-dimensional network is formed between the polymer compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound via the polymer compound. The compatibility of the functional compound is improved, and the shrinkage of the polymer compound can be further suppressed. In particular, the warpage during curing of the resin composition can be reduced, and excellent heat resistance is exhibited.
 本発明の第2の態様に係る樹脂組成物においては、高分子化合物を介して3次元架橋が形成されるので、多官能水酸基含有化合物及び多官能架橋性化合物の少なくとも一方が3官能以上でなくとも、3次元的なネットワークを形成することが可能となる。また、高分子化合物を介した3次元的なネットワークが形成されるので、高分子化合物と多官能水酸基含有化合物及び多官能架橋性化合物との相溶性が更に向上する。このため、多官能水酸基含有化合物及び多官能架橋性化合物との相溶性が低い高分子化合物を用いた場合においても、フレキシブルプリント配線板の製造工程などに使用できる実用的な樹脂組成物が得られる。以下、各構成要素について詳細に説明する。 In the resin composition according to the second aspect of the present invention, three-dimensional crosslinking is formed via the polymer compound, so that at least one of the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinking compound is not trifunctional or higher. In both cases, a three-dimensional network can be formed. Moreover, since a three-dimensional network is formed via the polymer compound, the compatibility between the polymer compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is further improved. For this reason, even when a polymer compound having low compatibility with the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound is used, a practical resin composition that can be used in the production process of a flexible printed wiring board is obtained. . Hereinafter, each component will be described in detail.
(A)高分子化合物
 高分子化合物としては、本発明の効果を奏する範囲で各種高分子化合物を用いることができる。高分子化合物としては、例えば、ポリアミド、ポリアミドイミド、ポリアミド酸、ポリアミド酸がイミド化されたポリイミドなどが挙げられる。なお、本発明において、ポリイミドとは、ポリアミド酸の一部が全てのポリアミド酸がイミド化されたポリイミド前駆体及びポリアミド酸の全てがイミド化されたポリイミドの双方を含むものとする。
(A) Polymer compound As the polymer compound, various polymer compounds can be used as long as the effects of the present invention are exhibited. Examples of the polymer compound include polyamide, polyamideimide, polyamic acid, polyimide obtained by imidizing polyamic acid, and the like. In the present invention, the term “polyimide” includes both a polyimide precursor in which a part of polyamic acid is imidized with all polyamic acids and a polyimide in which all polyamic acids are imidized.
 第1の態様に係る樹脂組成物においては、高分子化合物としては、分子構造に制限されず、上述したポリイミドなどの各種高分子化合物を用いることができる。これらの中でも、高分子化合物としては、耐熱性及び耐吸湿性の観点から、ポリイミドを用いることが好ましい。 In the resin composition according to the first aspect, the polymer compound is not limited to the molecular structure, and various polymer compounds such as polyimide described above can be used. Among these, as the polymer compound, it is preferable to use polyimide from the viewpoints of heat resistance and moisture absorption resistance.
 第2の態様に係る樹脂組成物においては、高分子化合物としては、分子鎖中に水酸基及び/又はカルボキシル基を有するものを用いる。このような高分子化合物としては、ポリアミド酸や分子鎖中に水酸基又はカルボキシル基を有するポリイミドなどを用いることができる。 In the resin composition according to the second embodiment, a polymer compound having a hydroxyl group and / or a carboxyl group in the molecular chain is used. As such a polymer compound, polyamic acid, polyimide having a hydroxyl group or a carboxyl group in a molecular chain, or the like can be used.
 ポリイミドは、酸二無水物とジアミンとを反応させることにより得られる。高分子化合物としてポリイミドを用いる場合には、例えば、ポリイミド構造を主に繰り返し構成単位として有するポリイミドを用いてもよく、ポリイミド構造とポリアミド酸構造とを繰り返し構成単位として有するポリイミドを用いてもよい。 Polyimide is obtained by reacting acid dianhydride and diamine. When polyimide is used as the polymer compound, for example, polyimide having mainly a polyimide structure as a repeating structural unit may be used, or polyimide having a polyimide structure and a polyamic acid structure as repeating structural units may be used.
 高分子化合物としては、例えば、下記一般式(1)で表される繰り返し構成単位を有するものを用いることができる。 As the polymer compound, for example, a compound having a repeating structural unit represented by the following general formula (1) can be used.
Figure JPOXMLDOC01-appb-C000017
(式(1)中、Yは、2価の有機基を表し、Zは、4価の有機基を表す。aは、1~50の整数を表す。)
Figure JPOXMLDOC01-appb-C000017
(In Formula (1), Y 1 represents a divalent organic group, Z 1 represents a tetravalent organic group, and a represents an integer of 1 to 50.)
 また、高分子化合物としては、アルキルエーテルジアミンと酸二無水物とを反応させて得られる非シリコーン系のポリイミドを用いてもよく、ジアミノシロキサンと酸二無水物とを反応させて得られるシリコーン系のポリイミドを用いてもよい。 Moreover, as a high molecular compound, you may use the non-silicone-type polyimide obtained by making alkyl ether diamine and acid dianhydride react, The silicone type obtained by making diaminosiloxane and acid dianhydride react. The polyimide may be used.
 高分子化合物としては、下記一般式(2)で表される繰り返し構造を有するものを用いることが好ましい。この高分子化合物においては、オキシアルキレン基を有することから、分子鎖に柔軟性が付与され、高分子化合物の溶剤可溶性が向上する。
Figure JPOXMLDOC01-appb-C000018
(式(2)中、Z及びZは、4価の有機基を表し、Y、Y、Y、Y、及びYは、それぞれ独立して炭素数1~炭素数5のアルキレン基を表し、分岐していてもよい。b、c、及びdは、それぞれ独立して1~50の整数を表す。)
As the polymer compound, it is preferable to use a compound having a repeating structure represented by the following general formula (2). Since the polymer compound has an oxyalkylene group, the molecular chain is given flexibility and the solvent solubility of the polymer compound is improved.
Figure JPOXMLDOC01-appb-C000018
(In formula (2), Z 1 and Z 2 represent a tetravalent organic group, and Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are each independently 1 to 5 carbon atoms. And may be branched. B, c and d each independently represents an integer of 1 to 50.)
 また、高分子化合物としては、下記一般式(3)で表されるポリイミド構造及び下記一般式(4)で表されるポリアミド酸構造をそれぞれ繰り返し構成単位として有するものを用いることが好ましい。この高分子化合物においては、ポリイミド構造にアルキルエーテル構造を含有すると共に、ポリアミド酸構造を含有することから、分子量安定性を損なうことなく分子鎖に柔軟性が付与されるので、現像安定性が向上する。また、この高分子化合物においては、下記一般式(4)に含まれるポリアミド酸構造のカルボキシル基が、多官能架橋性化合物の架橋性官能基(例えば、イソシアネート基、オキサゾリン基など)と反応するので、高分子化合物と多官能架橋性化合物との間にも架橋が形成され、硬化時のポリイミドの収縮をさらに抑制できる。また、カルボキシル基が架橋性官能基と反応することにより、硬化物中のカルボキシル基が減少するので、絶縁性に優れた硬化物を得ることができる。
Figure JPOXMLDOC01-appb-C000019
(式(3)及び式(4)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、それぞれ独立して炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上100以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。)
Moreover, as a high molecular compound, it is preferable to use what has each the polyimide structure represented by following General formula (3), and the polyamic acid structure represented by following General formula (4) as a repeating structural unit. This polymer compound contains an alkyl ether structure in the polyimide structure and a polyamic acid structure, so that flexibility is imparted to the molecular chain without impairing the molecular weight stability, thereby improving development stability. To do. Further, in this polymer compound, the carboxyl group of the polyamic acid structure contained in the following general formula (4) reacts with the crosslinkable functional group (for example, isocyanate group, oxazoline group, etc.) of the polyfunctional crosslinkable compound. Further, cross-linking is also formed between the polymer compound and the polyfunctional crosslinkable compound, and the shrinkage of the polyimide during curing can be further suppressed. Moreover, since the carboxyl group in hardened | cured material reduces because a carboxyl group reacts with a crosslinkable functional group, the hardened | cured material excellent in insulation can be obtained.
Figure JPOXMLDOC01-appb-C000019
(In Formula (3) and Formula (4), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom. Alternatively, it represents a monovalent organic group having 1 to 20 carbon atoms, and R 3 , R 6 , R 9 , R 12 , and R 15 are each independently a tetravalent organic group having 1 to 20 carbon atoms. M, n, and p each independently represents an integer of 0 to 100. R 16 represents a tetravalent organic group, and R 17 represents a divalent group having 1 to 90 carbon atoms. Represents an organic group of
 また、高分子化合物としては、上記一般式(3)で表される高分子化合物を構成するジアミン成分として、下記一般式(5)で表されるジアミンを含むものが好ましい。
Figure JPOXMLDOC01-appb-C000020
(式(5)中、R、R、R、R、R、R、R10、R11、R13、及びR14はそれぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15はそれぞれ独立して炭素数1~炭素数20の4価の有機基を表し、m、n、pはそれぞれ独立して0以上30以下の整数であり、1≦(m+n+p)≦30を満たす。)
Moreover, as a high molecular compound, what contains the diamine represented by the following general formula (5) as a diamine component which comprises the high molecular compound represented by the said General formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000020
(In Formula (5), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon atom having 1 to carbon atoms. And R 3 , R 6 , R 9 , R 12 and R 15 each independently represents a tetravalent organic group having 1 to 20 carbon atoms, m, n , P are each independently an integer of 0-30, which satisfies 1 ≦ (m + n + p) ≦ 30.)
 また、高分子化合物としては、下記一般式(6)で表される構造を繰り返し単位として有するものを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000021
(式(6)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上30以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。A、B、Cは、各単位のmol%を表し、0.10≦(A+B)/(A+B+C)≦0.85を満たす。)
Moreover, as a high molecular compound, it is preferable to use what has a structure represented by following General formula (6) as a repeating unit.
Figure JPOXMLDOC01-appb-C000021
(In formula (6), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, R 3 , R 6 , R 9 , R 12 , and R 15 represent a tetravalent organic group having 1 to 20 carbon atoms, m, n, p Each independently represents an integer of 0 or more and 30 or less, R 16 represents a tetravalent organic group, and R 17 represents a divalent organic group having 1 to 90 carbon atoms. , C represents mol% of each unit, and satisfies 0.10 ≦ (A + B) / (A + B + C) ≦ 0.85.)
 上記一般式(6)で表される高分子化合物においては、0.10≦(A+B)/(A+B+C)を満たすことにより、分子鎖中のアルキルエーテル構造が増大し、高分子化合物の分子鎖の柔軟性が向上するので、硬化後の反りを低減することができる。また、(A+B)/(A+B+C)≦0.85を満たすことにより、分子鎖中のカルボキシル基が増大するので、硬化物のアルカリ現像液に対する溶解性が発現すると共に、現像性が良好となる。 In the polymer compound represented by the general formula (6), by satisfying 0.10 ≦ (A + B) / (A + B + C), the alkyl ether structure in the molecular chain is increased, and the molecular chain of the polymer compound is increased. Since the flexibility is improved, warping after curing can be reduced. Further, by satisfying (A + B) / (A + B + C) ≦ 0.85, the carboxyl group in the molecular chain increases, so that the solubility of the cured product in the alkaline developer is developed and the developability is improved.
 さらに、高分子化合物としては、下記一般式(7)で表されるポリイミド構造及び下記一般式(8)で表されるポリアミド酸構造を繰り返し構成単位として有するものを用いることが好ましい。この高分子化合物においては、シロキサン部位がポリイミド構造に含まれることから、ポリイミド構造に適度な柔軟性が付与されるので、高分子化合物の分子鎖の収縮を抑制でき、硬化後の反りを抑制できる。また、ポリアミド酸構造に芳香環が含まれることから、ポリアミド酸構造の分子量の低下を抑制でき、樹脂組成物の保存安定性及び樹脂組成物から得られるドライフィルムの現像時間安定性が向上する。さらに、ポリイミド構造及びポリアミド酸構造がテトラカルボン酸二無水物由来の4価の有機基を含むので、分子鎖に適度な剛直性が付与され、耐熱性が向上して絶縁信頼性が向上する。
Figure JPOXMLDOC01-appb-C000022
(式(7)及び式(8)中、Z及びZは、下記一般式(9)で表されるテトラカルボン酸二無水物に由来する4価の有機基であり、それぞれ同じであっても異なっていてもよい。R18は、炭素数1~炭素数30の2価の有機基、R19は、炭素数1~炭素数30の1価の有機基、eは1以上20以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000023
Furthermore, as a high molecular compound, it is preferable to use what has a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as a repeating structural unit. In this high molecular compound, since the siloxane part is contained in the polyimide structure, the polyimide structure is imparted with appropriate flexibility, so that the shrinkage of the molecular chain of the high molecular compound can be suppressed, and the warpage after curing can be suppressed. . Moreover, since an aromatic ring is contained in the polyamic acid structure, a decrease in the molecular weight of the polyamic acid structure can be suppressed, and the storage stability of the resin composition and the development time stability of the dry film obtained from the resin composition are improved. Furthermore, since the polyimide structure and the polyamic acid structure contain a tetravalent organic group derived from tetracarboxylic dianhydride, moderate rigidity is imparted to the molecular chain, heat resistance is improved, and insulation reliability is improved.
Figure JPOXMLDOC01-appb-C000022
(In formula (7) and formula (8), Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following general formula (9), and are the same as each other. R 18 is a divalent organic group having 1 to 30 carbon atoms, R 19 is a monovalent organic group having 1 to 30 carbon atoms, and e is 1 or more and 20 or less. Represents an integer.)
Figure JPOXMLDOC01-appb-C000023
 さらに、高分子化合物として、上記一般式(7)で表されるポリイミド構造及び上記一般式(8)で表されるポリアミド酸構造を繰り返し構成単位として有するものを用いた場合には、ポリアミド酸構造に含まれるカルボキシル基が、多官能架橋性化合物の架橋性官能基(例えば、イソシアネート基)と反応する。これにより、高分子化合物が多官能水酸基含有化合物と多官能架橋性化合物との間の3次元ネットワークに取り込まれ、シリコーン部位の硬化物の表面への偏析を抑制できる。これにより、表面張力の低下及び撥水性の発現を抑制できるので、保護膜とした場合においても、良好な接着力が得られる。 Furthermore, when a polymer compound having a polyimide structure represented by the general formula (7) and a polyamic acid structure represented by the general formula (8) as a repeating structural unit is used, a polyamic acid structure is used. The carboxyl group contained in reacts with the crosslinkable functional group (for example, isocyanate group) of the polyfunctional crosslinkable compound. Thereby, a high molecular compound is taken in into the three-dimensional network between a polyfunctional hydroxyl-containing compound and a polyfunctional crosslinkable compound, and can suppress the segregation to the surface of the hardened | cured material of a silicone part. Thereby, since the decrease in surface tension and the expression of water repellency can be suppressed, a good adhesive force can be obtained even when a protective film is used.
(B)多官能水酸基含有化合物
 多官能水酸基含有化合物としては、第1の態様及び第2の態様に係る樹脂組成物において、共通する多官能水酸基含有化合物を用いることができる。多官能水酸基含有化合物としては、分子鎖中に2以上の水酸基を有するものであれば、本発明の効果を奏する範囲で各種水酸基含有化合物を用いることができる。多官能水酸基含有化合物としては、例えば、2つの水酸基を含有する2官能水酸基含有化合物としての各種ジオールを用いてもよく、3以上の水酸基を含有する各種ポリオールを用いてもよい。これらの中でも、多官能水酸基含有化合物と多官能架橋性化合物(例えば、多官能イソシアネートや、多官能オキサゾリン化合物)との間で複数の架橋結合を形成する観点から、多官能水酸基含有化合物としては、2以上の水酸基を含有する多官能水酸基含有化合物を用いることが好ましい。
(B) Polyfunctional hydroxyl group-containing compound As the polyfunctional hydroxyl group-containing compound, a common polyfunctional hydroxyl group-containing compound can be used in the resin composition according to the first and second embodiments. As the polyfunctional hydroxyl group-containing compound, various hydroxyl group-containing compounds can be used as long as they have two or more hydroxyl groups in the molecular chain within the scope of the effects of the present invention. As a polyfunctional hydroxyl group-containing compound, for example, various diols as a bifunctional hydroxyl group-containing compound containing two hydroxyl groups may be used, or various polyols containing three or more hydroxyl groups may be used. Among these, from the viewpoint of forming a plurality of cross-linking bonds between a polyfunctional hydroxyl group-containing compound and a polyfunctional crosslinkable compound (for example, polyfunctional isocyanate or polyfunctional oxazoline compound), as the polyfunctional hydroxyl group-containing compound, It is preferable to use a polyfunctional hydroxyl group-containing compound containing two or more hydroxyl groups.
 多官能水酸基含有化合物としては、絶縁性を高める観点から、両末端フェノール変性シリコーン、ポリブタジエンポリオール、水添ポリブタジエンポリオール、及びポリカーボネートポリオールから選ばれる少なくとも1種を含むことが好ましい。また、多官能水酸基含有化合物としては、脂肪族構造を有するものが好ましい。これにより、耐水性が向上すると共に低弾性となるので、反りと絶縁信頼性を向上することができる。以上のような観点から、多官能水酸基含有化合物としては、上記で挙げた具体例のうち、水添ポリブタジエンポリオール、ポリカーボネートポリオールが好ましく、特に反りの低減できる観点から、ポリカーボネートポリオールを用いることが好ましい。 The polyfunctional hydroxyl group-containing compound preferably contains at least one selected from both-ends phenol-modified silicones, polybutadiene polyols, hydrogenated polybutadiene polyols, and polycarbonate polyols from the viewpoint of enhancing insulation. Moreover, as a polyfunctional hydroxyl-containing compound, what has an aliphatic structure is preferable. Thereby, since water resistance improves and it becomes low elasticity, curvature and insulation reliability can be improved. From the above viewpoint, as the polyfunctional hydroxyl group-containing compound, among the specific examples given above, hydrogenated polybutadiene polyol and polycarbonate polyol are preferable, and polycarbonate polyol is preferably used from the viewpoint of reducing warpage.
 本発明に係る樹脂組成物においては、ポリイミド100質量部に対して、多官能水酸基含有化合物の含有量が5質量部~60質量部であることが好ましい。多官能水酸基含有化合物が5質量部以上であることにより、多官能架橋性化合物との間で十分な架橋を形成できるので、硬化時の反りの低減が可能となる。また、多官能水酸基含有化合物が60質量部以下であることにより、樹脂組成物中の過剰な水酸基が減少するので、樹脂組成物の硬化後の絶縁信頼性が向上する。さらに、ポリイミド100質量部に対して、多官能水酸基含有化合物の含有量が5質量部~30質量部であることが好ましい。 In the resin composition according to the present invention, the content of the polyfunctional hydroxyl group-containing compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polyimide. When the polyfunctional hydroxyl group-containing compound is 5 parts by mass or more, sufficient crosslinking can be formed with the polyfunctional crosslinkable compound, so that it is possible to reduce warpage during curing. Moreover, since the excessive hydroxyl group in a resin composition reduces because a polyfunctional hydroxyl-containing compound is 60 mass parts or less, the insulation reliability after hardening of a resin composition improves. Further, the content of the polyfunctional hydroxyl group-containing compound is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the polyimide.
 多官能水酸基含有化合物としては、数平均分子量が500~3000であるものを用いることが好ましい。ここで、数平均分子量とは、ゲルパーミエーションクロマトグラフィーにより測定したスチレン換算分子量の数平均分子量をいう。多官能水酸基含有化合物の数平均分子量が500以上であれば、樹脂組成物が低弾性となるので、反りを低減できる。また、多官能水酸基含有化合物の数平均分子量が3000以下であれば、樹脂組成物の粘度を低減できるので、配線板の配線部やスルーホール部への埋め込み性が良好となる。さらに、多官能水酸基含有化合物の数平均分子量としては、樹脂組成物の低弾性及び粘度の低減の観点から、500~2000であることが好ましい。 As the polyfunctional hydroxyl group-containing compound, those having a number average molecular weight of 500 to 3000 are preferably used. Here, the number average molecular weight means the number average molecular weight of styrene conversion molecular weight measured by gel permeation chromatography. If the polyfunctional hydroxyl group-containing compound has a number average molecular weight of 500 or more, the resin composition has low elasticity, and thus warpage can be reduced. Moreover, since the viscosity of a resin composition can be reduced if the number average molecular weight of a polyfunctional hydroxyl-containing compound is 3000 or less, the embedding property to the wiring part and through-hole part of a wiring board becomes favorable. Furthermore, the number average molecular weight of the polyfunctional hydroxyl group-containing compound is preferably 500 to 2,000 from the viewpoint of low elasticity and viscosity reduction of the resin composition.
(C)多官能架橋性化合物
 多官能架橋性化合物としては、第1の態様及び第2の態様に係る樹脂組成物において、共通する多官能架橋性化合物を用いることができる。多官能架橋性化合物としては、2以上の架橋性官能基を有するものであれば、本発明の効果を奏する範囲で各種多官能架橋性化合物を用いることができる。ここで、架橋性官能基とは、高分子化合物の水酸基又はカルボキシル基、及び多官能水酸基含有化合物の水酸基との間で架橋結合を形成し得る官能基をいう。架橋性官能基としては、例えば、イソシアネート基、オキサゾリン基などが挙げられるが、これらに限定されるものではない。また、多官能架橋性化合物としては、2つの架橋性官能基を有する2官能架橋性化合物を用いてもよく、3以上の架橋性官能基を有する架橋性化合物を用いてもよい。多官能架橋性化合物としては、例えば、2以上のイソシアネート基を有する多官能イソシアネート化合物や、2以上のオキサゾリン基を有する多官能オキサゾリン化合物などが挙げられる。
(C) Polyfunctional crosslinkable compound As a polyfunctional crosslinkable compound, the common polyfunctional crosslinkable compound can be used in the resin composition which concerns on a 1st aspect and a 2nd aspect. As the polyfunctional crosslinkable compound, various polyfunctional crosslinkable compounds can be used as long as they have two or more crosslinkable functional groups within the scope of the effects of the present invention. Here, the crosslinkable functional group refers to a functional group capable of forming a crosslink between the hydroxyl group or carboxyl group of the polymer compound and the hydroxyl group of the polyfunctional hydroxyl group-containing compound. Examples of the crosslinkable functional group include, but are not limited to, an isocyanate group and an oxazoline group. Moreover, as a polyfunctional crosslinkable compound, the bifunctional crosslinkable compound which has two crosslinkable functional groups may be used, and the crosslinkable compound which has 3 or more crosslinkable functional groups may be used. Examples of the polyfunctional crosslinking compound include a polyfunctional isocyanate compound having two or more isocyanate groups and a polyfunctional oxazoline compound having two or more oxazoline groups.
 多官能架橋性化合物としては、2以上のイソシアネート基を含有する多官能イソシアネート化合物を用いることが好ましい。この構成により、多官能イソシアネート化合物のイソシアネート基と多官能水酸基含有化合物の水酸基との間でウレタン結合を介して3次元的なネットワークが形成されると共に、高分子化合物に含まれるイミド基及びアミド基、又は水酸基及びカルボキシル基とウレタン構造に含まれるC=O基及びNH基との間で水素結合による相互作用が生じる。これにより、樹脂組成物の低反発性を向上させることができると共に、高分子化合物の塑性と樹脂組成物の弾性との複合化により、樹脂組成物に適度な流動性が発現する。この結果、例えば、樹脂組成物を多層フレキシブルプリント配線板の層間絶縁膜として用いる場合に必要とされる相反する2つの物性(流動性及び粘性)を両立することができるので、層間絶縁膜として優れた性能を確保することができる。多官能イソシアネート化合物としては、2以上のイソシアネート基を有するものであれば、本発明の効果を奏する範囲で各種イソシアネート化合物を用いることができる。 As the polyfunctional crosslinkable compound, it is preferable to use a polyfunctional isocyanate compound containing two or more isocyanate groups. With this configuration, a three-dimensional network is formed via a urethane bond between the isocyanate group of the polyfunctional isocyanate compound and the hydroxyl group of the polyfunctional hydroxyl group-containing compound, and the imide group and amide group contained in the polymer compound. Alternatively, an interaction due to a hydrogen bond occurs between a hydroxyl group and a carboxyl group and a C═O group and an NH group contained in the urethane structure. Thereby, the low resilience of the resin composition can be improved, and appropriate fluidity is expressed in the resin composition by combining the plasticity of the polymer compound and the elasticity of the resin composition. As a result, for example, two conflicting physical properties (fluidity and viscosity) required when the resin composition is used as an interlayer insulating film of a multilayer flexible printed wiring board can be achieved. Performance can be ensured. As the polyfunctional isocyanate compound, various isocyanate compounds can be used as long as they have two or more isocyanate groups within the scope of the effects of the present invention.
 また、本発明に係る樹脂組成物を多層フレキシブル配線板などの層間絶縁膜として用いる場合においては、配線板の配線部やスルーホール部への樹脂組成物の流れ込みが求められる一方で、樹脂組成物が配線板の端部から流れ出さずにある程度保持されることが求められる。これは、高圧力下のプレス工程で、スルーホールへの流れ込みを十分に行おうと試みると、一般的に、配線板の端部から樹脂組成物が流れ出し、配線板の端部の絶縁層の厚みが薄くなり絶縁性が低下する恐れがあるためである。このため、例えば、上述した樹脂組成物のうち、多官能架橋性化合物として、多官能イソシアネート化合物を用いた場合には、多官能イソシアネート化合物のイソシアネート基と多官能水酸基含有化合物の水酸基との間で形成されるウレタン結合により、多官能水酸基含有化合物と多官能イソシアネート化合物とが結合されると共に、ウレタン構造と高分子化合物との間の水素結合による相互作用が生じる。これにより、高分子化合物の塑性と樹脂組成物の弾性との複合化により、相反する配線部への樹脂組成物の流れ込みに必要な流動性と、配線部の端部の絶縁膜の厚みを確保するために樹脂組成物の流出防止に必要な適度な粘度とを両立できる。この結果、配線板の端部からの樹脂組成物の流出が防止され樹脂組成物が配線板の端部から流出されずにある程度保持されるので、非常に良好な埋め込み性を達成することができる。 In the case where the resin composition according to the present invention is used as an interlayer insulating film such as a multilayer flexible wiring board, the resin composition is required to flow into the wiring part or through-hole part of the wiring board. Is required to be held to some extent without flowing out of the end of the wiring board. This is because the resin composition generally flows out from the end of the wiring board when attempting to sufficiently flow into the through hole in the press process under high pressure, and the thickness of the insulating layer at the end of the wiring board It is because there exists a possibility that insulation may fall and it may become thin. Therefore, for example, in the above-described resin composition, when a polyfunctional isocyanate compound is used as the polyfunctional crosslinkable compound, between the isocyanate group of the polyfunctional isocyanate compound and the hydroxyl group of the polyfunctional hydroxyl group-containing compound. By the urethane bond formed, the polyfunctional hydroxyl group-containing compound and the polyfunctional isocyanate compound are bonded to each other, and an interaction by a hydrogen bond between the urethane structure and the polymer compound occurs. This ensures the fluidity necessary for the flow of the resin composition into the opposite wiring part and the thickness of the insulating film at the end of the wiring part by combining the plasticity of the polymer compound and the elasticity of the resin composition. Therefore, it is possible to achieve both an appropriate viscosity necessary for preventing the resin composition from flowing out. As a result, the resin composition is prevented from flowing out from the end portion of the wiring board and the resin composition is held to some extent without flowing out from the end portion of the wiring board, so that very good embedding can be achieved. .
 また、多官能架橋性化合物としては、2以上のイソシアネート基を含有する多官能イソシアネ-ト化合物にブロック剤を反応させることにより得られるブロックイソシアネート基を含有するブロックイソシアネートを用いてもよい。この場合においては、多官能架橋性化合物としては、多官能水酸基含有化合物の水酸基との反応による高分子化、架橋形成による耐熱性向上及び耐薬品性の観点から、2以上のブロックイソシアネート基を含有するものが好ましい。さらに、多官能水酸基含有化合物とイソシアネート化合物との間の架橋結合を形成する観点から、多官能水酸基含有化合物としては、2以上のイソシアネートを含有する多官能イソシアネート化合物又はブロックイソシアネートを用いることが好ましい。 Further, as the polyfunctional crosslinkable compound, a blocked isocyanate containing a blocked isocyanate group obtained by reacting a blocking agent with a polyfunctional isocyanate compound containing two or more isocyanate groups may be used. In this case, the polyfunctional crosslinkable compound contains two or more blocked isocyanate groups from the viewpoints of polymerization by reaction with a hydroxyl group of the polyfunctional hydroxyl group-containing compound, heat resistance improvement by crosslink formation, and chemical resistance. Those that do are preferred. Furthermore, from the viewpoint of forming a cross-linking bond between the polyfunctional hydroxyl group-containing compound and the isocyanate compound, it is preferable to use a polyfunctional isocyanate compound or a blocked isocyanate containing two or more isocyanates as the polyfunctional hydroxyl group-containing compound.
 また、多官能架橋性化合物としては、2以上のオキサゾリン基を有する多官能オキサゾリン化合物を用いることも好ましい。この構成により、多官能オキサゾリン化合物のオキサゾリン基が、多官能水酸基含有化合物の水酸基との間で反応してアミド結合が形成される。また、高分子化合物が水酸基やカルボキシル基を有する場合には、多官能オキサゾリン化合物のオキサゾリン基が、水酸基やカルボキシル基との間で反応してアミド結合及び/又はアミドエステルを含む架橋構造(3次元架橋)が形成される。これにより、高分子化合物、多官能水酸基含有化合物及び多官能架橋性化合物間にアミド結合及び/又はアミドエステルを含む3次元架橋による3次元的なネットワークが形成されるので、架橋構造と高分子化合物との間の水素結合などの相互作用及び化学結合により、多官能水酸基含有化合物の柔軟性を高分子化合物に有効に反映でき、十分な反りの低減及び優れた耐熱性を実現できる。多官能オキサゾリン化合物としては、2以上のオキサゾリン基を有するものであれば、本発明の効果を奏する範囲で各種オキサゾリン化合物を用いることができる。 In addition, it is also preferable to use a polyfunctional oxazoline compound having two or more oxazoline groups as the polyfunctional crosslinkable compound. With this configuration, the oxazoline group of the polyfunctional oxazoline compound reacts with the hydroxyl group of the polyfunctional hydroxyl group-containing compound to form an amide bond. Further, when the polymer compound has a hydroxyl group or a carboxyl group, the oxazoline group of the polyfunctional oxazoline compound reacts with the hydroxyl group or the carboxyl group to contain an amide bond and / or an amide ester (three-dimensional Cross-linking) is formed. As a result, a three-dimensional network is formed between the polymer compound, the polyfunctional hydroxyl group-containing compound and the polyfunctional crosslinkable compound by three-dimensional crosslinking including an amide bond and / or an amide ester. The flexibility of the polyfunctional hydroxyl group-containing compound can be effectively reflected in the polymer compound by the interaction such as hydrogen bond and chemical bond with the polymer compound, and sufficient warpage reduction and excellent heat resistance can be realized. As the polyfunctional oxazoline compound, various oxazoline compounds can be used as long as they have two or more oxazoline groups as long as the effects of the present invention are achieved.
 本発明に係る樹脂組成物においては、高分子化合物100質量部に対して、多官能架橋性化合物の含有量が5質量部~60質量部であることが好ましい。多官能架橋性化合物の含有量が5質量部以上であれば、多官能水酸基含有化合物との間で十分な架橋が形成できるので、硬化時の反りを低減できる。また、多官能架橋性化合物の含有量が60質量部以下であれば、高分子化合物が加熱加圧時に良流動性となるので、スルーホール埋め込み性が向上できる。さらに、多官能架橋性化合物の含有量としては、高分子化合物100質量部に対して、5質量部~30質量部であることが好ましい。 In the resin composition according to the present invention, the content of the polyfunctional crosslinkable compound is preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound. If content of a polyfunctional crosslinking compound is 5 mass parts or more, since sufficient bridge | crosslinking can be formed between polyfunctional hydroxyl-containing compounds, the curvature at the time of hardening can be reduced. Moreover, if content of a polyfunctional crosslinking compound is 60 mass parts or less, since a high molecular compound will become a good fluidity at the time of heating-pressing, a through-hole embedding property can be improved. Further, the content of the polyfunctional crosslinkable compound is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the polymer compound.
 本発明に係る樹脂組成物においては、多官能水酸基含有化合物に含まれる水酸基と、多官能架橋性化合物に含まれる架橋性官能基とのモル比が、水酸基/架橋性官能基=0.5~1であることが好ましい。これにより、多官能水酸基含有化合物に含まれる水酸基が、多官能架橋性化合物の架橋性官能基に対して過剰となるので、多官能水酸基含有化合物と多官能架橋性化合物との間の架橋結合が適度に形成される。このため、樹脂組成物の硬化に伴うポリイミドの収縮を抑制でき、硬化時における十分な反りの低減及び優れた耐熱性を実現できる。 In the resin composition according to the present invention, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the crosslinkable functional group contained in the polyfunctional crosslinkable compound is hydroxyl group / crosslinkable functional group = 0.5 to 1 is preferable. Thereby, since the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound becomes excessive with respect to the crosslinkable functional group of the polyfunctional crosslinking compound, the crosslinking bond between the multifunctional hydroxyl group-containing compound and the multifunctional crosslinking compound is reduced. Moderately formed. For this reason, the shrinkage | contraction of the polyimide accompanying hardening of a resin composition can be suppressed, and sufficient reduction of the curvature at the time of hardening and the outstanding heat resistance are realizable.
(D)感光剤
 本発明に係る樹脂組成物は、感光剤を含有することにより、感光性樹脂組成物として用いることができる。感光剤としては、第1の態様及び第2の態様に係る樹脂組成物において、共通する感光剤を用いることができる。感光剤としては、光照射により構造が変化し、溶媒に対する溶解性が変化する性質を有する化合物であれば特に限定されず、各種化合物を用いることができる。感光剤としては、例えば、光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物などを好適に用いることができる。
(D) Photosensitizer The resin composition according to the present invention can be used as a photosensitive resin composition by containing a photosensitizer. As the photosensitizer, a common photosensitizer can be used in the resin composition according to the first aspect and the second aspect. The photosensitizer is not particularly limited as long as it is a compound having a property that the structure is changed by light irradiation and the solubility in a solvent is changed, and various compounds can be used. As the photosensitive agent, for example, a (meth) acrylate compound having two or more unsaturated double bonds capable of photopolymerization can be preferably used.
 また、本発明に係る樹脂組成物においては、解像性及び絶縁性を向上する観点から、光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物として、二重結合を3つ以上有する(メタ)アクリレート化合物を含むことが好ましい。 Moreover, in the resin composition which concerns on this invention, from a viewpoint of improving resolution and insulation, 3 double bonds are used as a (meth) acrylate compound which has two or more unsaturated double bonds which can be photopolymerized. It is preferable to include at least one (meth) acrylate compound.
 さらに、本発明の樹脂組成物においては、絶縁抵抗値や反りを低減する観点から、二重結合を3つ以上有する(メタ)アクリレート化合物が、下記一般式(10)で表わされる化合物であることが好ましい。下記一般式(10)で表される化合物は、高分子化合物の骨格に取り込まれずに第二成分として架橋体を形成するので、硬化時の高分子化合物の収縮を防ぐことができ、反りを抑制することができる。しかも、下記一般式(10)で表される化合物は、水酸基などの電気絶縁性を低下させる官能基を有していないことから、剛直な架橋体が形成され、硬化膜のガラス転移点(Tg)や弾性率が高くなり、絶縁抵抗値が向上すると推定される。
Figure JPOXMLDOC01-appb-C000024
(式(10)中、R20は、水素原子又はメチル基を表わし、複数のEは、各々独立に炭素数2~炭素数5のアルキレン基を表わし、それぞれ同じであっても異なっていてもよい。fは、1~10の整数である。)
Furthermore, in the resin composition of the present invention, from the viewpoint of reducing the insulation resistance value and warpage, the (meth) acrylate compound having three or more double bonds is a compound represented by the following general formula (10). Is preferred. The compound represented by the following general formula (10) is not incorporated into the skeleton of the polymer compound and forms a crosslinked product as the second component, so that the polymer compound can be prevented from shrinking during curing and curving is suppressed. can do. In addition, since the compound represented by the following general formula (10) does not have a functional group such as a hydroxyl group that reduces electrical insulation, a rigid cross-linked body is formed, and the glass transition point (Tg) of the cured film is formed. ) And the elastic modulus is increased, and the insulation resistance value is estimated to be improved.
Figure JPOXMLDOC01-appb-C000024
(In the formula (10), R 20 represents a hydrogen atom or a methyl group, and a plurality of E's each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different. F is an integer from 1 to 10.)
 本発明の樹脂組成物においては、現像性及び絶縁信頼性の観点から、光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物として、二重結合を2つ有する(メタ)アクリレート化合物と二重結合を3つ以上有する(メタ)アクリレート化合物とを含むことが好ましい。二重結合を3つ以上有する(メタ)アクリレート化合物は、多官能水酸基含有化合物との間で剛直な架橋体を形成するので、硬化膜の弾性率及びガラス転移点(Tg)が高くなり、絶縁信頼性が向上すると推定される。 The resin composition of the present invention has two (meth) double bonds as a (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds from the viewpoint of developability and insulation reliability. It is preferable to include an acrylate compound and a (meth) acrylate compound having three or more double bonds. Since the (meth) acrylate compound having three or more double bonds forms a rigid cross-linked body with the polyfunctional hydroxyl group-containing compound, the elastic modulus and glass transition point (Tg) of the cured film are increased, and the insulation It is estimated that reliability is improved.
(E)光重合開始剤
 本発明に係る樹脂組成物において、上述した感光剤を用いる場合には、光重合開始剤と組み合わせて用いることが好ましい。光重合開始剤としては、第1の態様及び第2の態様に係る樹脂組成物において、共通する光重合開始剤を用いることができる。光重合開始剤としては、各種の活性光線、紫外線などにより活性化され、重合を開始する化合物であれば、各種化合物を用いることができる。光重合開始剤としては、例えば、オキシムエステル類などを好適に用いることができる。
(E) Photopolymerization initiator In the resin composition according to the present invention, when the above-described photosensitive agent is used, it is preferably used in combination with a photopolymerization initiator. As a photoinitiator, the common photoinitiator can be used in the resin composition which concerns on a 1st aspect and a 2nd aspect. As the photopolymerization initiator, various compounds can be used as long as they are compounds activated by various actinic rays, ultraviolet rays and the like to start polymerization. As the photopolymerization initiator, for example, oxime esters can be suitably used.
 本発明に係る樹脂組成物においては、光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物と、光重合開始剤と、を含有することが好ましい。これにより、感光性樹脂組成物として好適に用いることができる。 The resin composition according to the present invention preferably contains a (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds and a photopolymerization initiator. Thereby, it can use suitably as a photosensitive resin composition.
(F)難燃剤
 本発明に係る樹脂組成物においては、難燃剤を含有することが好ましい。難燃剤としては、第1の態様及び第2の態様に係る樹脂組成物において、共通する難燃剤を用いることができる。難燃剤の種類としては、特に限定されないが含ハロゲン化合物、含窒素化合物、含リン化合物及び無機難燃剤などが挙げられる。また、リン化合物としては、リン化合物としては、構造中にリン原子を含む化合物であれば特に限定されない。リン化合物としては、例えば、リン酸エステル化合物、ホスファゼン化合物などが挙げられる。これらの難燃剤を一種用いてもよいし、二種以上を混合して用いてもよい。難燃剤の添加量は特に限定されることなく、用いる難燃剤の種類に応じて適宜変更できる。
(F) Flame retardant The resin composition according to the present invention preferably contains a flame retardant. As the flame retardant, a common flame retardant can be used in the resin composition according to the first aspect and the second aspect. Although it does not specifically limit as a kind of flame retardant, A halogen-containing compound, a nitrogen-containing compound, a phosphorus-containing compound, an inorganic flame retardant, etc. are mentioned. Moreover, as a phosphorus compound, if it is a compound which contains a phosphorus atom in a structure as a phosphorus compound, it will not specifically limit. Examples of phosphorus compounds include phosphate ester compounds and phosphazene compounds. One kind of these flame retardants may be used, or two or more kinds may be mixed and used. The addition amount of the flame retardant is not particularly limited, and can be appropriately changed according to the type of the flame retardant used.
 本発明に係る樹脂組成物においては、リン化合物を含むことが好ましい。これにより、樹脂組成物の難燃性が向上する。 The resin composition according to the present invention preferably contains a phosphorus compound. Thereby, the flame retardance of a resin composition improves.
 また、本発明に係る樹脂組成物においては、リン化合物として、リン酸エステル化合物及び/又はホスファゼン化合物を含むことが好ましい。これにより、特に樹脂組成物の難燃性が向上する。 In the resin composition according to the present invention, it is preferable that a phosphoric acid ester compound and / or a phosphazene compound is included as the phosphorus compound. Thereby, especially the flame retardance of a resin composition improves.
 本発明に係る樹脂組成物においては、所定温度で加熱又は乾燥することにより硬化物(硬化膜)を得ることができる。この硬化物は、例えば、本発明に係る樹脂組成物を基材上に塗布して乾燥することにより、樹脂フィルムとして用いることができる。また、感光剤を含有した感光性樹脂組成物は、感光性フィルムとして用いることもできる。これらの樹脂フィルム及び感光性フィルムは、例えば、フレキシブルプリント基板の層間絶縁膜・配線保護膜として好適に用いることができる。 In the resin composition according to the present invention, a cured product (cured film) can be obtained by heating or drying at a predetermined temperature. This hardened | cured material can be used as a resin film, for example by apply | coating the resin composition which concerns on this invention on a base material, and drying. Moreover, the photosensitive resin composition containing the photosensitive agent can also be used as a photosensitive film. These resin films and photosensitive films can be suitably used, for example, as an interlayer insulating film / wiring protective film of a flexible printed board.
 本発明に係る硬化物は、上記樹脂組成物を、100℃~130℃において5分~60分加熱した後に、160℃~200℃において15分~60分加熱することで得られる。 The cured product according to the present invention can be obtained by heating the resin composition at 100 ° C. to 130 ° C. for 5 minutes to 60 minutes and then heating at 160 ° C. to 200 ° C. for 15 minutes to 60 minutes.
 本発明に係る樹脂フィルムは、基材と、この基材上に設けられた樹脂組成物とを具備する。この場合においては、基材として、銅箔やキャリアフィルムなどを用いることができる。また、本発明に係る樹脂フィルムにおいては、キャリアフィルムと、このキャリアフィルム上に設けられた樹脂組成物と、この樹脂組成物上に設けられたカバーフィルムを具備することが好ましい。これにより、樹脂フィルムの表面を保護することができる。 The resin film according to the present invention includes a base material and a resin composition provided on the base material. In this case, copper foil, a carrier film, etc. can be used as a base material. Moreover, in the resin film which concerns on this invention, it is preferable to comprise the carrier film, the resin composition provided on this carrier film, and the cover film provided on this resin composition. Thereby, the surface of the resin film can be protected.
 本発明に係る樹脂フィルムにおいては、基材として銅箔を用い、この銅箔上に上記樹脂組成物を設けることができる。このように、銅箔上に樹脂組成物を設けて乾燥することにより、多層フレキシブル配線板などの層間絶縁膜として好適に用いることができる。 In the resin film according to the present invention, a copper foil is used as a base material, and the resin composition can be provided on the copper foil. Thus, it can use suitably as interlayer insulation films, such as a multilayer flexible wiring board, by providing and drying a resin composition on copper foil.
 本発明に係る配線板は、配線を有する基材と、前記配線を覆うように設けられた上記樹脂組成物と、を具備する。このように、配線を覆うように樹脂組成物を設けることにより、配線板の配線パターンの保護膜として好適に用いることができる。 The wiring board according to the present invention includes a base material having wiring and the resin composition provided so as to cover the wiring. Thus, by providing the resin composition so as to cover the wiring, it can be suitably used as a protective film for the wiring pattern of the wiring board.
 本発明に係る樹脂組成物においては、高分子化合物と良好に相溶する低分子量の多官能水酸基含有化合物及び多官能架橋性化合物を含むことから、樹脂組成物の粘度が低減されて流動性が向上する。これにより、フレキシブルプリント配線板の製造工程において、配線板の絶縁基板に設けたスルーホールや、配線パターンへの埋込性が向上するので、多層フレキシブル配線板用層間絶縁膜、配線保護膜として好適に用いることができる。 In the resin composition according to the present invention, since it contains a low molecular weight polyfunctional hydroxyl group-containing compound and a polyfunctional crosslinkable compound that are well compatible with the polymer compound, the viscosity of the resin composition is reduced and the fluidity is reduced. improves. Thereby, in the manufacturing process of the flexible printed wiring board, the through hole provided in the insulating substrate of the wiring board and the embedding property in the wiring pattern are improved, so it is suitable as an interlayer insulating film for multilayer flexible wiring boards and a wiring protective film. Can be used.
 ここで、図1を参照して本発明に係る配線板の製造工程の概略について説明する。図1Aに示すように、多層フレキシブル配線板の製造には、絶縁基板11と、この絶縁基板層11の両主面上に設けられた銅箔12a,12bとを備えた両面フレキシブル基板10を用いる。まず、銅箔12,12bにドライフィルムをラミネートした後、ドライフィルムの露光・現像、及び銅箔12a,12bのエッチングにより、銅箔12a,12bの一部を除去した後、絶縁基板11にスルーホール13を形成する。次に、スルーホール13の表面に銅めっき14を形成して両面の銅箔12a,12bを電気的に接続する(図1B参照)。 Here, the outline of the manufacturing process of the wiring board according to the present invention will be described with reference to FIG. As shown in FIG. 1A, a double-sided flexible substrate 10 including an insulating substrate 11 and copper foils 12a and 12b provided on both main surfaces of the insulating substrate layer 11 is used for manufacturing a multilayer flexible wiring board. . First, after laminating a dry film on the copper foils 12 and 12b, a part of the copper foils 12a and 12b is removed by exposure / development of the dry film and etching of the copper foils 12a and 12b. Hole 13 is formed. Next, copper plating 14 is formed on the surface of the through hole 13 to electrically connect the copper foils 12a and 12b on both sides (see FIG. 1B).
 次に、図1Cに示すように、フレキシブル部16となる領域の銅箔12bをエッチングによって除去する。次に、本発明に係る樹脂組成物をスルーホール13内に充填して絶縁処理する。ここで、上述したように、本発明に係る樹脂組成物において、多官能架橋性化合物として多官能イソシアネート化合物を用い、高分子化合物として、水酸基及び/又はカルボキシル基を用いた場合には、樹脂組成物に適度な流動性及び粘性が発現される。これにより、微小なスルーホール13を設けた場合であっても、スルーホール13内に充填することが可能となる。 Next, as shown in FIG. 1C, the copper foil 12b in the region to be the flexible portion 16 is removed by etching. Next, the resin composition according to the present invention is filled in the through holes 13 and insulated. Here, as described above, in the resin composition according to the present invention, when a polyfunctional isocyanate compound is used as the polyfunctional crosslinkable compound and a hydroxyl group and / or a carboxyl group is used as the polymer compound, the resin composition Appropriate fluidity and viscosity are developed in the object. Thereby, even if the minute through hole 13 is provided, the through hole 13 can be filled.
 次に、図1Dに示すように、銅箔15aと、この銅箔15a上に本発明に係る樹脂組成物を塗布した得られた保護層15bとを備えた積層体15を銅箔12a,12b上にそれぞれ積層する。ここで、本発明に係る樹脂組成物おいて、高分子化合物としてポリイミドを用いた場合には、塗布後のイミド化が不要となる。これにより、積層後の後硬化処理を必要とせず、クイックプレスによる積層が可能となる。 Next, as shown to FIG. 1D, the laminated body 15 provided with the copper foil 15a and the protective layer 15b obtained by apply | coating the resin composition which concerns on this copper foil 15a to copper foil 12a, 12b Laminate each on top. Here, in the resin composition according to the present invention, when polyimide is used as the polymer compound, imidization after coating becomes unnecessary. Thereby, the post-curing process after lamination | stacking is not required but lamination | stacking by a quick press is attained.
 次に、図1Eに示すように、エッチングなどによって銅箔15a及び保護層15bを除去した後、銅めっき14を施して外部導電層としての銅箔15aと内部導電層としての銅箔12a,12bとを電気的に接続する。次に、サブトラクティブ法などによって、銅箔15aをパターニングして配線パターンを形成する。最後に、図1Fに示すように、配線パターン加工された銅箔15a上に本発明に係る樹脂組成物を塗布して保護膜17を形成する。ここで、上述したように、本発明に係る樹脂組成物において、多官能架橋性化合物として多官能イソシアネート化合物を用い、高分子化合物として、水酸基及び/又はカルボキシル基を用いた場合には、樹脂組成物に適度な流動性及び粘性が発現される。これにより、微細な配線パターンを形成した場合においても、配線パターン間に樹脂組成物が充填され、絶縁保護することができる。 Next, as shown in FIG. 1E, after the copper foil 15a and the protective layer 15b are removed by etching or the like, the copper plating 14 is applied to the copper foil 15a as the external conductive layer and the copper foils 12a and 12b as the internal conductive layers. And electrically connect. Next, the copper foil 15a is patterned by a subtractive method or the like to form a wiring pattern. Finally, as shown in FIG. 1F, the protective film 17 is formed by applying the resin composition according to the present invention on the copper foil 15a having the wiring pattern processed. Here, as described above, in the resin composition according to the present invention, when a polyfunctional isocyanate compound is used as the polyfunctional crosslinkable compound and a hydroxyl group and / or a carboxyl group is used as the polymer compound, the resin composition Appropriate fluidity and viscosity are developed in the object. Thereby, even when a fine wiring pattern is formed, the resin composition is filled between the wiring patterns, and insulation protection can be performed.
 また、本発明に係る樹脂フィルムは、温度85℃、湿度85%、1000時間の絶縁信頼性試験における層間絶縁抵抗が10Ω以上であり、120℃~220℃の粘度が5000Pa・S~100000Pa・Sであって、伸度20%未満の弾性域と伸度50%以上の塑性域とを有し、層間絶縁層の膜厚が40μm以下であることが望ましい。これにより、樹脂フィルム及び銅箔に形成した樹脂フィルムを配線板に積層する際に、良好にスルーホール部を埋め込み、配線板端部に樹脂流れ無く好適に用いることができる。層間絶縁膜として用いる場合、配線板の配線部やスルーホール部への樹脂の流れ込みが求められる一方で、樹脂組成物が配線板の端部から流れ出さずにある程度保持されることが求められる。これは、高圧力下のプレス工程で、スルーホールへの流れ込みを十分に行おうと試みると、一般的に、配線板の端部から樹脂組成物が流れ出し、配線板の端部の絶縁層の厚みが薄くなり絶縁性が低下する恐れがあるためである。上記構成の場合、樹脂フィルムの120℃~220℃の粘度と樹脂フィルムの弾性域と塑性域を制御することにより、従来技術では困難であった互い相反するスルーホールへの流れ込みと配線板の端部からの樹脂組成物の流出防止とを両立することができ、非常に良好な埋め込み性を達成することができる。 In addition, the resin film according to the present invention has an interlayer insulation resistance of 10 9 Ω or more in an insulation reliability test at a temperature of 85 ° C., a humidity of 85%, and 1000 hours, and a viscosity of 120 ° C. to 220 ° C. is 5000 Pa · S to 100000 Pa. -It is S, it is desirable to have an elastic region with an elongation of less than 20% and a plastic region with an elongation of 50% or more, and the thickness of the interlayer insulating layer is 40 μm or less. Thereby, when laminating the resin film and the resin film formed on the copper foil on the wiring board, the through-hole portion can be satisfactorily filled and used suitably without the resin flow at the end of the wiring board. When used as an interlayer insulating film, it is required that the resin flow into the wiring portion and through-hole portion of the wiring board, while the resin composition is required to be held to some extent without flowing out from the end portion of the wiring board. This is because the resin composition generally flows out from the end of the wiring board when attempting to sufficiently flow into the through hole in the press process under high pressure, and the thickness of the insulating layer at the end of the wiring board It is because there exists a possibility that insulation may fall and it may become thin. In the case of the above configuration, by controlling the viscosity of the resin film at 120 ° C. to 220 ° C. and the elastic region and the plastic region of the resin film, the flow into the mutually opposing through holes and the end of the wiring board, which were difficult in the prior art, are controlled. It is possible to achieve both prevention of outflow of the resin composition from the part and achieve very good embedding properties.
 すなわち樹脂フィルムの120℃~220℃の粘度が、積層の際に使用する120℃~220℃の間において、粘度が5000Pa・S以上であれば、配線板の端部からの樹脂組成物の流出防止と良好な埋め込み性が得られ、粘度が100000Pa・S以下であれば、汎用の積層装置、例えば真空プレスなどで良好に積層できる。また、樹脂フィルムの伸度20%未満の弾性域で配線板の端部からの樹脂組成物の流出防止となり、樹脂フィルムの伸度50%以上の塑性域により良好な埋め込み性を達成することができる。さらに層間絶縁層の膜厚が40μm以下で極めて良好な低反発性を発現することにより、小型携帯電子機器への組み込み性が良好となり、温度85℃、湿度85%、1000時間の絶縁信頼性試験における層間絶縁抵抗が10Ω以上であることにより、層間絶縁層の膜厚が40μm以下でも良好な絶縁信頼性が得られる。 That is, when the viscosity of the resin film is 120 ° C. to 220 ° C. and the viscosity is 5000 Pa · S or more between 120 ° C. and 220 ° C. used for lamination, the resin composition flows out from the end of the wiring board. If prevention and good embedding property are obtained and the viscosity is 100000 Pa · S or less, the film can be well laminated by a general-purpose laminating apparatus such as a vacuum press. In addition, the resin composition can be prevented from flowing out from the end of the wiring board in an elastic region of less than 20% elongation of the resin film, and good embedding can be achieved by the plastic region of the resin film having an elongation of 50% or more. it can. Furthermore, when the film thickness of the interlayer insulating layer is 40 μm or less, it exhibits very good low resilience, so that it can be easily incorporated into a small portable electronic device, and the insulation reliability test at a temperature of 85 ° C., a humidity of 85%, and 1000 hours. When the interlayer insulation resistance at 10 is 9 9 Ω or more, good insulation reliability can be obtained even when the thickness of the interlayer insulation layer is 40 μm or less.
 以下、上述した本発明の実施の形態について、詳細に説明する。なお、以下の第1の実施の形態~第4の実施の形態においては、主に上記第2の態様に係る樹脂組成物について説明するが、以下の第1の実施の形態~第4の実施の形態においては、使用する高分子化合物を適宜選択することにより、第1の態様に係る樹脂組成物として用いることも可能である。 Hereinafter, the above-described embodiment of the present invention will be described in detail. In the following first to fourth embodiments, the resin composition according to the second aspect will be mainly described. However, the following first to fourth embodiments will be described. In this form, it is also possible to use the resin composition according to the first aspect by appropriately selecting the polymer compound to be used.
(第1の実施の形態)
 フレキシブルプリント基板の製造に用いられる材料としては、ポリアミド酸の一部をイミド化したポリイミド前駆体を含む樹脂組成物が提案されている。この樹脂組成物においては、ポリアミド酸の一部をイミド化したポリイミド前駆体を用いることにより、ポリイミドの収縮に伴う反りを低減し、低温でのイミド化を可能にしてイミド化に伴うポリイミド前駆体と配線材料との反応を抑制すると共に、アルカリ水溶液による現像処理を容易にしている。しかしながら、近年のフレキシブルプリント基板の高機能化及び軽量化により、従来のポリイミド前駆体を含む樹脂を用いた場合でも、必ずしも十分に反りを低減できず、また、耐熱性についても改善が望まれている。
(First embodiment)
As a material used for manufacturing a flexible printed circuit board, a resin composition including a polyimide precursor obtained by imidizing a part of polyamic acid has been proposed. In this resin composition, by using a polyimide precursor obtained by imidizing a part of the polyamic acid, the warpage accompanying the shrinkage of the polyimide is reduced, and the polyimide precursor accompanying the imidization can be achieved by enabling imidization at a low temperature. In addition to suppressing the reaction between the wiring material and the wiring material, development with an aqueous alkali solution is facilitated. However, due to the recent increase in functionality and weight of flexible printed circuit boards, even when a resin containing a conventional polyimide precursor is used, it is not always possible to sufficiently reduce warpage, and improvement in heat resistance is desired. Yes.
 本発明者らは、(A)高分子化合物として、ポリアミド酸構造及びポリイミド構造を構成単位として含有するポリイミドを用いることに着目した。そして、本発明者らは、(A)高分子化合物としてのポリイミド、(B)多官能水酸基含有化合物、及び(C)多官能架橋性化合物としてのイソシアネート化合物(ブロックイソシアネート化合物)を含有し、多官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネート化合物に含まれるイソシアネート基とのモル比を所定範囲内とすることにより、硬化時における反りの低減、及び優れた耐熱性が実現可能であり、半導体素子の表面保護膜、層間絶縁膜、プリント配線板用保護絶縁膜、層間絶縁膜などの材料として好適に使用可能な樹脂組成物が得られることを見出した。 The present inventors have focused on (A) using a polyimide containing a polyamic acid structure and a polyimide structure as structural units as a polymer compound. The inventors of the present invention contain (A) a polyimide as a polymer compound, (B) a polyfunctional hydroxyl group-containing compound, and (C) an isocyanate compound (block isocyanate compound) as a polyfunctional crosslinkable compound. By setting the molar ratio of the hydroxyl group contained in the functional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate compound within a predetermined range, it is possible to reduce warpage during curing and to achieve excellent heat resistance. It has been found that a resin composition that can be suitably used as a material such as a surface protective film of an element, an interlayer insulating film, a protective insulating film for a printed wiring board, and an interlayer insulating film can be obtained.
 この樹脂組成物においては、多官能水酸基含有化合物が、ポリイミドの骨格中に取り込まれずに第二成分として存在し、多官能水酸基含有化合物とブロックイソシアネート化合物との間に3次元架橋が形成されるので、硬化時のポリイミドの分子鎖の収縮を抑制でき、反りを抑制できると共に、硬化前の樹脂組成物の溶融粘度を低下させスルーホール埋め込み性が向上する。また、ポリイミドが、熱架橋性官能基を有するポリアミド酸構造を構成単位として有することから、多官能水酸基含有化合物とブロックイソシアネート化合物との間にポリイミドを介した3次元ネットワークが形成される。これらにより、硬化時の反りを低減できる。さらに、ポリイミドが、他の成分との相溶性が良好であり、3次元構造または相互貫通網目構造[InterPenetrationNetwork(IPN)]を形成するポリイミド構造を構成単位として有することから、高い耐熱性(例えば、高いはんだ耐熱性)が発現する。また、ブロックイソシアネート化合物が含まれることにより、低温でカルボキシル基を不活性化し、低温硬化が可能となるため、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できる。以下、本発明の第1の実施の形態について具体的に説明する。 In this resin composition, the polyfunctional hydroxyl group-containing compound is not incorporated into the polyimide skeleton and is present as the second component, and three-dimensional crosslinking is formed between the polyfunctional hydroxyl group-containing compound and the blocked isocyanate compound. The shrinkage of the molecular chain of the polyimide during curing can be suppressed, the warpage can be suppressed, and the melt viscosity of the resin composition before curing can be reduced to improve the through-hole embedding property. Moreover, since a polyimide has the polyamic acid structure which has a heat crosslinkable functional group as a structural unit, the three-dimensional network through a polyimide is formed between a polyfunctional hydroxyl-containing compound and a block isocyanate compound. By these, the curvature at the time of hardening can be reduced. Furthermore, since polyimide has good compatibility with other components and has a polyimide structure as a structural unit that forms a three-dimensional structure or an interpenetrating network structure [InterPenetration Network (IPN)], high heat resistance (for example, High solder heat resistance). Further, since the blocked isocyanate compound is contained, the carboxyl group is inactivated at a low temperature and can be cured at a low temperature. Therefore, shrinkage of the polyimide skeleton at the time of curing can be prevented and warpage can be suppressed. Hereinafter, the first embodiment of the present invention will be described in detail.
 本発明の第1の実施の形態に係る樹脂組成物は、(a)ポリイミド、(B)多官能水酸基含有化合物、及び(c-1)イソシアネート化合物(ブロックイソシアネート化合物)を含有し、ポリイミドが、ポリイミド構造及びポリアミド酸構造を構成単位として有し、多官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネート化合物に含まれるイソシアネート基とのモル比が、水酸基/イソシアネート基=0.5~1である。 The resin composition according to the first embodiment of the present invention contains (a) a polyimide, (B) a polyfunctional hydroxyl group-containing compound, and (c-1) an isocyanate compound (block isocyanate compound). It has a polyimide structure and a polyamic acid structure as constituent units, and the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate compound is hydroxyl group / isocyanate group = 0.5 to 1. .
 この樹脂組成物においては、多官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネートに含まれるイソシアネート基とのモル比が水酸基/イソシアネート基=0.5~1であり、水酸基に対してイソシアネート基の量が過剰である。この構成により、以下のような機構によって耐熱性が発現すると推測される。イソシアネート基は、水酸基と反応してウレタン構造を形成するが、水酸基に対してイソシアネート基の量が過剰であるため、イソシアネート基は余る。余ったイソシアネート基は、イミド化反応後に残存するポリイミド中に含まれるポリアミド酸構造のカルボキシル基と反応し、アミド構造やウレア構造などを形成する。つまり、熱硬化によって、ポリイミドとブロックイソシアネート化合物との間の化学的な架橋と、多官能水酸基含有化合物とブロックイソシアネート化合物との間の化学的な架橋とが形成されると考えられる。このように、イソシアネート同士の反応など複数種類の架橋によって3次元的なネットワークが形成されることにより、さらなる耐熱性が発現する。 In this resin composition, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate is hydroxyl group / isocyanate group = 0.5 to 1, and The amount is excessive. With this configuration, it is presumed that heat resistance is exhibited by the following mechanism. The isocyanate group reacts with a hydroxyl group to form a urethane structure, but the isocyanate group remains because the amount of the isocyanate group is excessive with respect to the hydroxyl group. The surplus isocyanate group reacts with the carboxyl group of the polyamic acid structure contained in the polyimide remaining after the imidation reaction to form an amide structure, a urea structure, or the like. That is, it is considered that chemical crosslinking between the polyimide and the blocked isocyanate compound and chemical crosslinking between the polyfunctional hydroxyl group-containing compound and the blocked isocyanate compound are formed by thermosetting. Thus, further heat resistance is expressed by forming a three-dimensional network by a plurality of types of crosslinking such as reaction between isocyanates.
 次に、樹脂組成物を構成する各構成要素について詳細に説明する。 Next, each component constituting the resin composition will be described in detail.
(a)ポリイミド
 本実施の形態に係る樹脂組成物に用いられるポリイミドは、例えば、テトラカルボン酸二無水物とジアミンとを反応させる事によって得ることができる。使用するテトラカルボン酸二無水物に制限はなく、従来公知のテトラカルボン酸二無水物を用いることができる。テトラカルボン酸二無水物としては、芳香族テトラカルボン酸や脂肪族テトラカルボン酸二無水物などを適用することができる。また、使用するジアミンに制限はなく、従来公知のジアミンを用いることができる。
(A) Polyimide The polyimide used for the resin composition according to the present embodiment can be obtained, for example, by reacting tetracarboxylic dianhydride and diamine. There is no restriction | limiting in the tetracarboxylic dianhydride to be used, A conventionally well-known tetracarboxylic dianhydride can be used. As tetracarboxylic dianhydride, aromatic tetracarboxylic acid, aliphatic tetracarboxylic dianhydride, etc. are applicable. Moreover, there is no restriction | limiting in the diamine to be used, A conventionally well-known diamine can be used.
 芳香族テトラカルボン酸の具体例としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、3,3’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ジヒドロ-1,3-ジオキソ-5-イソベンゾフランカルボン酸-1,4-フェニレンエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物などが挙げられる。 Specific examples of the aromatic tetracarboxylic acid include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′- Benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1- Bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-Zika Ruboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,3′-oxydiphthalic dianhydride, 4,4′-oxydiphthalic dianhydride, 2,2- Bis (4- (4-aminophenoxy) phenyl) propane, 1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic acid-1,4-phenylene ester, 4- (2,5-dioxotetrahydrofuran) -3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7- Naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,2-bis (3,4 Dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) hexafluoropropane dianhydride, 2,2-bis (4- (3,4- And dicarboxybenzoyloxy) phenyl) hexafluoropropane dianhydride, 2,2′-bis (trifluoromethyl) -4,4′-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, and the like.
 脂肪族テトラカルボン酸二無水物の具体例としては、シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5,6-シクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物などが挙げられる。 Specific examples of the aliphatic tetracarboxylic dianhydride include cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5,6-cyclohexanetetracarboxylic Acid dianhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] oct-7 -Ene-2,3,5,6 tetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride and the like.
 上述したテトラカルボン酸二無水物は単独で用いてもよいし、2種以上混合して用いてもよい。なお、ポリイミドの耐熱性や重合速度の観点から、上述したテトラカルボン酸二無水物の中で、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物が特に好ましいものとして挙げられる。 The above-described tetracarboxylic dianhydrides may be used alone or in combination of two or more. Of the tetracarboxylic dianhydrides described above, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic acid, from the viewpoint of heat resistance and polymerization rate of polyimide. Particularly preferred are dianhydrides, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and bis (3,4-dicarboxyphenyl) sulfone dianhydride.
 ジアミンの具体例としては、例えば、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(3-(3-アミノフェノキシ)フェニル)エーテル、ビス(4-(4-アミノフェノキシ)フェニル)エーテル、1,3-ビス(3-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(4-(4-アミノフェノキシ)フェノキシ)ベンゼン、ビス(3-(3-(3-アミノフェノキシ)フェノキシ)フェニル)エーテル、ビス(4-(4-(4-アミノフェノキシ)フェノキシ)フェニル)エーテル、1,3-ビス(3-(3-(3-アミノフェノキシ)フェノキシ)フェノキシ)ベンゼン、1,4-ビス(4-(4-(4-アミノフェノキシ)フェノキシ)フェノキシ)ベンゼン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、ビス(3-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルホキシド、ビス(4-アミノフェニル)スルホキシド、ビス(3-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ブタン、α,ω-ビス(2-アミノエチル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(4-アミノブチル)ポリジメチルシロキサン、α,ω-ビス(4-アミノフェニル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジフェニルシロキサンなどが挙げられるが、これらに限定されない。好ましくは、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(3-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ポリオキシアルキレンジアミンである。 Specific examples of diamines include, for example, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,3-bis (3-amino Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (3- (3-aminophenoxy) phenyl) ether, bis (4- (4-aminophenoxy) phenyl) ether, 1,3-bis (3- (3-aminophenoxy) phenoxy) benzene, 1,4-bis (4- (4-aminophenoxy) phenoxy) benzene, bis (3- (3- (3-aminophenoxy) phenoxy) phenyl) ether, Bis (4- (4- (4-aminophenoxy) phenoxy) phenyl) ether, 1,3-bis ( -(3- (3-aminophenoxy) phenoxy) phenoxy) benzene, 1,4-bis (4- (4- (4-aminophenoxy) phenoxy) phenoxy) benzene, 4,4'-bis (3-aminophenoxy) ) Biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl ] Propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) Phenyl] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, bis (3-amino Enyl) sulfide, bis (4-aminophenyl) sulfide, bis (3-aminophenyl) sulfoxide, bis (4-aminophenyl) sulfoxide, bis (3-aminophenyl) sulfone, bis (4-aminophenyl) sulfone, 2 , 2-bis [4- (3-aminophenoxy) phenyl] butane, α, ω-bis (2-aminoethyl) polydimethylsiloxane, α, ω-bis (3-aminopropyl) polydimethylsiloxane, α, ω -Bis (4-aminobutyl) polydimethylsiloxane, α, ω-bis (4-aminophenyl) polydimethylsiloxane, α, ω-bis (3-aminopropyl) polydiphenylsiloxane, and the like. Not. Preferably, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3- (3-aminophenoxy) phenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, polyoxy Alkylene diamine.
 また、ジアミンとしては、α,ω-ビス(2-アミノエチル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(4-アミノブチル)ポリジメチルシロキサン、α,ω-ビス(4-アミノフェニル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジフェニルシロキサンなども好ましい。 Examples of the diamine include α, ω-bis (2-aminoethyl) polydimethylsiloxane, α, ω-bis (3-aminopropyl) polydimethylsiloxane, and α, ω-bis (4-aminobutyl) polydimethylsiloxane. Α, ω-bis (4-aminophenyl) polydimethylsiloxane, α, ω-bis (3-aminopropyl) polydiphenylsiloxane, and the like are also preferable.
 上述したジアミンにおいて、樹脂組成物の硬化物の反りを低減させる観点から、ポリオキシエチレンジアミンや、ポリオキシプロピレンジアミン、その他炭素鎖数の異なるオキシアルキレン基を含むポリオキシアルキレンジアミンなどを用いることが好ましい。ポリオキシアルキレンジアミン類としては、米ハンツマン社製のジェファーミンED-600、ED-900、ED-2003、EDR-148、HK-511などのポリオキシエチレンジアミンや、ジェファーミンD-230、D-400、D-2000、D-4000、独BASF社製のポリエーテルアミンD-230、D-400、D-2000などのポリオキシプロピレンジアミンや、ジェファーミンXTJ-542、XTJ533、XTJ536などのポリテトラメチレンエチレン基を有するものなどが挙げられる。 In the diamine described above, it is preferable to use polyoxyethylene diamine, polyoxypropylene diamine, and other polyoxyalkylene diamines containing oxyalkylene groups having different numbers of carbon chains from the viewpoint of reducing the warpage of the cured product of the resin composition. . Examples of polyoxyalkylenediamines include polyoxyethylenediamines such as Jeffamine ED-600, ED-900, ED-2003, EDR-148, and HK-511 manufactured by Huntsman, Inc., and Jeffamine D-230 and D-400. , D-2000, D-4000, polyoxypropylene diamines such as polyetheramines D-230, D-400, and D-2000 manufactured by BASF, Germany, and polytetramethylenes such as Jeffamine XTJ-542, XTJ533, and XTJ536 Examples thereof include those having an ethylene group.
 中でも、比較的分子量の低いEDR-148、D-230、D-400、HK-511などは、比較的高いガラス転移温度をもつポリマーとなり得るため、耐熱性、耐薬品性が必要な用途において好ましく用いられる。一方、比較的分子量の高いD-2000などは、柔軟性などに優れる。また、耐熱性、耐薬品性と柔軟性、溶剤可溶性のバランスの点から、ポリオキシアルキレンジアミンの重量平均分子量としては、400~3000が好ましく、400~2000が特に好ましく、D-400、D-2000、ED-600、ED-900、XTJ-542が好ましく用いられる。 Among them, EDR-148, D-230, D-400, HK-511, etc. having a relatively low molecular weight can be polymers having a relatively high glass transition temperature, and thus are preferable in applications requiring heat resistance and chemical resistance. Used. On the other hand, D-2000 having a relatively high molecular weight is excellent in flexibility. From the viewpoint of balance between heat resistance, chemical resistance and flexibility, and solvent solubility, the weight average molecular weight of polyoxyalkylene diamine is preferably 400 to 3000, particularly preferably 400 to 2000, D-400, D- 2000, ED-600, ED-900, and XTJ-542 are preferably used.
 本実施の形態に係る樹脂組成物に用いられるポリイミドは、ポリイミド構造及びポリアミド酸構造を構成単位として有している。このように他の成分と相溶性の良いポリイミド構造部分と、熱架橋性官能基を有するポリアミド酸構造部分とを共に有することで、低温硬化の際に残存したカルボキシル基をブロックイソシアネートとの反応で不活性化させ、ブロックイソシアネートと多官能水酸基含有化合物により反りを抑制することができる。 The polyimide used in the resin composition according to the present embodiment has a polyimide structure and a polyamic acid structure as structural units. Thus, by having both a polyimide structure part having good compatibility with other components and a polyamic acid structure part having a heat-crosslinkable functional group, the remaining carboxyl group at the time of low-temperature curing can be reacted with a blocked isocyanate. It can be inactivated and warpage can be suppressed by the blocked isocyanate and the polyfunctional hydroxyl group-containing compound.
 また、本実施の形態に係る樹脂組成物に用いられるポリイミドとしては、ポリエーテル構造を有するポリイミドを含むことが好ましい。ポリエーテル構造を骨格中に有することで、熱硬化後の硬化物のガラス転移温度と弾性率を制御することができ、さらに反りを低減することができるためである。また、熱硬化後に、ポリエーテル構造を有するポリイミドと熱架橋性官能基を有する化合物との間で化学的な架橋が形成されると共に、ポリエーテル構造を有するポリイミドがポリオキシアルキレン鎖を有することから、高分子鎖間の局部的な相互作用で、3次元的なネットワークが形成され、耐熱性を発現できるためである。 Moreover, it is preferable that the polyimide used in the resin composition according to the present embodiment includes a polyimide having a polyether structure. This is because by having the polyether structure in the skeleton, the glass transition temperature and the elastic modulus of the cured product after thermosetting can be controlled, and warpage can be further reduced. In addition, after thermosetting, chemical crosslinking is formed between the polyimide having a polyether structure and the compound having a thermally crosslinkable functional group, and the polyimide having a polyether structure has a polyoxyalkylene chain. This is because a three-dimensional network is formed by local interaction between polymer chains, and heat resistance can be expressed.
 また、ポリイミドとしては、下記一般式(2)の構造を有するポリイミド部を含むポリイミドを用いることが好ましい。ポリイミドの溶剤可溶性向上のためである。 Further, as the polyimide, it is preferable to use a polyimide including a polyimide part having a structure of the following general formula (2). This is for improving the solvent solubility of polyimide.
Figure JPOXMLDOC01-appb-C000025
(式(2)中、Z及びZは、4価の有機基を表す。Y、Y、Y、Y、及びYは、炭素数1~炭素数5のアルキレン基を表し、側鎖があってもよい。b、c、及びdは、1~50の整数を表す。)
Figure JPOXMLDOC01-appb-C000025
(In Formula (2), Z 1 and Z 2 represent a tetravalent organic group. Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 represent an alkylene group having 1 to 5 carbon atoms. And may have a side chain. B, c, and d represent an integer of 1 to 50.)
 また、ポリイミドとしては、下記一般式(11)の構造を有するポリイミド部を含むポリイミドを用いることも好ましい。下記一般式(11)の構造を有するポリイミド部を含むことによっても、ポリイミドの溶剤可溶性が向上する。ポリイミドとしては、上記一般式(2)又は下記一般式(11)の構造を有するポリイミド部を含むポリイミドを用いることが好ましい。 Moreover, as the polyimide, it is also preferable to use a polyimide including a polyimide portion having a structure of the following general formula (11). The solvent solubility of polyimide is also improved by including a polyimide part having the structure of the following general formula (11). As the polyimide, it is preferable to use a polyimide containing a polyimide part having the structure of the above general formula (2) or the following general formula (11).
Figure JPOXMLDOC01-appb-C000026
(式(11)中、Z及びZは、4価の有機基を表す。Y、Y、Y、Y、Y10、Y11、Y12及びY13は、炭化水素基を表す。gは、3~100の整数を表す)
Figure JPOXMLDOC01-appb-C000026
(In the formula (11), Z 5 and Z 6, it is .Y 6, Y 7, Y 8 , Y 9, Y 10, Y 11, Y 12 and Y 13 which represents a tetravalent organic group, a hydrocarbon group (G represents an integer of 3 to 100)
 上記一般式(2)において、Y、Y、Y、Y、Yは、炭素数1~炭素数5のアルキレン基であり、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基が挙げられる。b、c、及びdは、1~50の整数を表し、3~40が好ましく、さらに5~30が好ましい。 In the general formula (2), Y 1 , Y 2 , Y 3 , Y 4 , Y 5 are alkylene groups having 1 to 5 carbon atoms, such as methylene group, ethylene group, propylene group, isopropylene. Group, butylene group and isobutylene group. b, c, and d represent an integer of 1 to 50, preferably 3 to 40, and more preferably 5 to 30.
 上記一般式(11)において、Z及びZは、4価の有機基を表すが、例えば、フェニル基、ビフェニル基、ジフェニルエーテル基、ベンゾフェノン基、ジフェニルスルホン基、ナフタレン基が挙げられる。この中でもビフェニル基、ジフェニルエーテル基、ベンゾフェノン基、ジフェニルスルホン基が好ましく、さらにジフェニルエーテル基が好ましい。 In the general formula (11), Z 5 and Z 6 represent a tetravalent organic group, and examples thereof include a phenyl group, a biphenyl group, a diphenyl ether group, a benzophenone group, a diphenyl sulfone group, and a naphthalene group. Among these, a biphenyl group, a diphenyl ether group, a benzophenone group, and a diphenyl sulfone group are preferable, and a diphenyl ether group is more preferable.
 また、上記一般式(11)において、Y、Y、Y、Y、Y10、Y11、Y12及びY13は、炭化水素基を表す。Y、Yとしては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基などの炭素数1~炭素数5のアルキレン基が挙げられる。また、Y、Y、Y10、Y11、Y12及びY13としては、例えば、メチル基、エチル基、ブロピル基、ブチル基、フェニル基が挙げられる。この中でもメチル基、エチル基、ブロピル基、ブチル基が好ましく、さらにメチル基、エチル基、ブロピル基が好ましい。gは、3~100の整数を表し、5~70が好ましく、10~50がより好ましい。 In the general formula (11), Y 6 , Y 7 , Y 8 , Y 9 , Y 10 , Y 11 , Y 12 and Y 13 represent a hydrocarbon group. Examples of Y 6 and Y 7 include alkylene groups having 1 to 5 carbon atoms such as a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, and an isobutylene group. Examples of Y 8 , Y 9 , Y 10 , Y 11 , Y 12 and Y 13 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group. Among these, a methyl group, an ethyl group, a propyl group, and a butyl group are preferable, and a methyl group, an ethyl group, and a propyl group are more preferable. g represents an integer of 3 to 100, preferably 5 to 70, and more preferably 10 to 50.
 さらに、ポリイミド中の全ジアミンにおいて、下記一般式(12)の構造を有するジアミンの含有率が15モル%以上85モル%以下であることが好ましい。ポリイミドの溶剤可溶性向上と低弾性率化のためである。 Furthermore, in all diamines in the polyimide, it is preferable that the content of diamine having the structure of the following general formula (12) is 15 mol% or more and 85 mol% or less. This is for improving the solvent solubility and lowering the elastic modulus of polyimide.
Figure JPOXMLDOC01-appb-C000027
(式(12)中、Y、Y、Y、Y、及びYは、炭素数1~炭素数5のアルキレン基を表し、側鎖があってもよい。b、c、及びdは、1~50の整数を表す。)
Figure JPOXMLDOC01-appb-C000027
(In Formula (12), Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 represent an alkylene group having 1 to 5 carbon atoms and may have a side chain. B, c, and d represents an integer of 1 to 50.)
 なお、上記一般式(12)において、基板との密着性の観点から、Y、Y、Y及びYは2種類以上のアルキレン基を有することが好ましい。 In the general formula (12), Y 2 , Y 3 , Y 4 and Y 5 preferably have two or more types of alkylene groups from the viewpoint of adhesion to the substrate.
 さらに、ポリイミド中の全ジアミンにおいて、下記一般式(13)の構造を有するジアミンの含有率が15モル%以上95モル%以下であることが好ましい。ポリイミドの溶剤可溶性向上と低弾性率化のためである。
Figure JPOXMLDOC01-appb-C000028
(式(13)中、Y、Y、Y、Y、Y10、Y11、Y12及びY13は、炭化水素基を表す。gは、3~100の整数を表す)
Furthermore, it is preferable that the content rate of the diamine which has the structure of following General formula (13) is 15 mol% or more and 95 mol% or less in all the diamines in a polyimide. This is for improving the solvent solubility and lowering the elastic modulus of polyimide.
Figure JPOXMLDOC01-appb-C000028
(In Formula (13), Y 6 , Y 7 , Y 8 , Y 9 , Y 10 , Y 11 , Y 12 and Y 13 represent a hydrocarbon group. G represents an integer of 3 to 100)
 また、上記ポリイミドのイミド化率としては、ポリイミドと架橋性官能基を有する多官能架橋性化合物としてのイソシアネート化合物との架橋を形成する観点から、25%以上100%未満であることが好ましく、25%以上98%以下であることがより好ましい。ポリイミドのイミド化率が98%以下であれば、熱架橋性官能基を有する化合物と架橋するポリイミド前駆体中のカルボキシル基が十分残っているため、硬化後に耐薬品性、耐熱性を発揮する。また、ポリイミドのイミド化率が25%以上であれば、硬化後、アルカリ性溶液に可溶なカルボキシル残基が少なくなり、耐薬品性、耐熱性を発揮できる。 The imidation ratio of the polyimide is preferably 25% or more and less than 100% from the viewpoint of forming a crosslink between the polyimide and an isocyanate compound as a polyfunctional crosslinkable compound having a crosslinkable functional group. % To 98% is more preferable. If the imidization ratio of the polyimide is 98% or less, the carboxyl group in the polyimide precursor that crosslinks with the compound having a thermally crosslinkable functional group remains sufficiently, and thus exhibits chemical resistance and heat resistance after curing. Moreover, if the imidation ratio of polyimide is 25% or more, the carboxyl residue soluble in the alkaline solution decreases after curing, and chemical resistance and heat resistance can be exhibited.
 なお、上述した実施の形態においては、ポリイミド構造とポリアミド酸構造とを含有するポリイミドを用いた上記第2の態様に係る樹脂組成物について説明したが、本発明の効果を奏する範囲でポリアミド酸構造を実質的に含まないポリイミドを用いることにより、上記第1の態様に係る樹脂組成物として用いることも可能である。この場合には、ポリイミドのイミド化率が100%となるので、イミド化反応の必要が無く、配線層の劣化を抑制し良好な絶縁信頼性、耐熱性を発揮する。 In the above-described embodiment, the resin composition according to the second aspect using a polyimide containing a polyimide structure and a polyamic acid structure has been described. However, the polyamic acid structure is within the scope of the effects of the present invention. It is also possible to use the resin composition according to the first aspect by using a polyimide that does not substantially contain. In this case, since the imidization ratio of the polyimide is 100%, there is no need for an imidization reaction, and deterioration of the wiring layer is suppressed and good insulation reliability and heat resistance are exhibited.
 次に、ポリイミドの製造方法について述べる。本実施の形態に係るポリイミドの製造方法は、公知方法を含め、ポリイミドを製造可能な全ての方法を適用できる。中でも、有機溶媒中で反応を行う方法を用いることが好ましい。このような反応において用いられる溶媒として、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、ジメチルスルホキシド、ベンゼン、トルエン、キシレン、メシチレン、フェノール、クレゾール、安息香酸エチル、安息香酸ブチルなどが挙げられる。これらは単独あるいは2種以上混合して用いられる。なお、この反応における反応原料の濃度は、通常、2質量%~80質量%、好ましくは30質量%~70質量%である。 Next, a method for producing polyimide will be described. As a method for producing polyimide according to the present embodiment, all methods capable of producing polyimide, including known methods, can be applied. Among them, it is preferable to use a method of performing the reaction in an organic solvent. Examples of the solvent used in such a reaction include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 1,3 -Dioxane, 1,4-dioxane, dimethyl sulfoxide, benzene, toluene, xylene, mesitylene, phenol, cresol, ethyl benzoate, butyl benzoate and the like. These may be used alone or in combination of two or more. The concentration of the reaction raw material in this reaction is usually 2% by mass to 80% by mass, preferably 30% by mass to 70% by mass.
 反応させるテトラカルボン酸二無水物とジアミンとのモル比は、0.8~1.2の範囲内である。この範囲内の場合、分子量を上げることができ、伸度などにも優れる。好ましくは0.9~1.1、より好ましくは0.95~1.05である。 The molar ratio of tetracarboxylic dianhydride to be reacted and diamine is in the range of 0.8 to 1.2. Within this range, the molecular weight can be increased, and the elongation and the like are excellent. Preferably it is 0.9 to 1.1, more preferably 0.95 to 1.05.
 ポリイミドの重量平均分子量は、5000以上100000以下であることが好ましい。ここで、重量平均分子量とは、既知の数平均分子量のポリスチレンを標準として、ゲルパーミエーションクロマトグラフィーによって測定される重量平均分子量をいう。重量平均分子量は10000以上60000以下がより好ましく、20000以上50000以下が最も好ましい。重量平均分子量が5000以上100000以下であると樹脂組成物を用いて得られる保護膜の反りが改善され、低反発性、及び耐熱性に優れる。さらに塗工印刷時に所望する膜厚にて滲み無く印刷でき、また、得られた保護膜の伸度などの機械物性に優れる。 The weight average molecular weight of the polyimide is preferably 5000 or more and 100,000 or less. Here, the weight average molecular weight means a weight average molecular weight measured by gel permeation chromatography using polystyrene having a known number average molecular weight as a standard. The weight average molecular weight is more preferably from 10,000 to 60,000, and most preferably from 20,000 to 50,000. When the weight average molecular weight is 5,000 or more and 100,000 or less, the warp of the protective film obtained using the resin composition is improved, and the low resilience and heat resistance are excellent. Furthermore, printing can be performed without bleeding at a desired film thickness during coating printing, and mechanical properties such as elongation of the obtained protective film are excellent.
 ポリイミドは、以下のような方法で得られる。まず反応原料を室温で重縮合反応することにより、ポリアミド酸構造からなるポリイミドが製造される。次に、このポリイミドを好ましくは100℃~400℃に加熱してイミド化するか、又は無水酢酸などのイミド化剤を用いて化学イミド化することにより、ポリアミド酸に対応する繰り返し単位構造を有するポリイミド構造を含むポリイミドが得られる。加熱してイミド化する場合、副生する水を除去するために、共沸剤(好ましくは、トルエンやキシレン)を共存させて、ディーンシュターク型脱水装置を用いて、還流下、脱水を行うことも好ましい。 Polyimide can be obtained by the following method. First, a polyimide having a polyamic acid structure is produced by subjecting a reaction raw material to a polycondensation reaction at room temperature. Next, this polyimide is preferably heated to 100 ° C. to 400 ° C. for imidization or chemically imidized using an imidizing agent such as acetic anhydride to have a repeating unit structure corresponding to polyamic acid. A polyimide containing a polyimide structure is obtained. In the case of imidization by heating, in order to remove by-product water, dehydration is carried out under reflux using a Dean-Stark type dehydrator in the presence of an azeotropic agent (preferably toluene or xylene). Is also preferable.
 また、80℃~220℃で反応を行うことにより、ポリアミド酸構造を含むポリイミドの生成と熱イミド化反応を共に進行させて、ポリイミド構造とポリアミド酸構造を含むポリイミドを得ることも好ましい。すなわち、ジアミン成分と酸二無水物成分とを有機溶媒中に懸濁又は溶解させ、80℃~220℃の加熱下において反応させて、ポリイミドの生成と脱水イミド化とを共に行わせることにより、ポリイミドを得ることも好ましい。 It is also preferable to obtain a polyimide having a polyimide structure and a polyamic acid structure by carrying out a reaction at 80 ° C. to 220 ° C. to advance both the production of a polyimide having a polyamic acid structure and a thermal imidization reaction. That is, by suspending or dissolving a diamine component and an acid dianhydride component in an organic solvent and reacting them under heating at 80 ° C. to 220 ° C., both generation of polyimide and dehydration imidization are performed. It is also preferable to obtain a polyimide.
 また、ポリイミドのポリマー主鎖の末端が、モノアミン誘導体又はカルボン酸誘導体からなる末端封止剤で末端封止することも可能である。ポリイミドのポリマー主鎖の末端が封止されることで、末端官能基に由来する貯蔵安定性に優れる。 Also, the end of the polymer main chain of polyimide can be end-capped with an end-capping agent made of a monoamine derivative or a carboxylic acid derivative. By sealing the terminal of the polymer main chain of polyimide, the storage stability derived from the terminal functional group is excellent.
 モノアミン誘導体からなる末端封止剤としては、例えば、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,3-キシリジン、2,6-キシリジン、3,4-キシリジン、3,5-キシリジン、o-クロロアニリン、m-クロロアニリン、p-クロロアニリン、o-ブロモアニリン、m-ブロモアニリン、p-ブロモアニリン、o-ニトロアニリン、p-ニトロアニリン、m-ニトロアニリン、o-アミノフェノール、p-アミノフェノール、m-アミノフェノール,o-アニシジン、m-アニシジン、p-アニシジン,o-フェネチジン、m-フェネチジン、p-フェネチジン、o-アミノベンズアルデヒド、p-アミノベンズアルデヒド、m-アミノベンズアルデヒド、o-アミノベンズニトリル、p-アミノベンズニトリル、m-アミノベンズニトリル,2-アミノビフェニル,3-アミノビフェニル、4-アミノビフェニル、2-アミノフェニルフェニルエーテル、3-アミノフェニルフェニルエーテル,4-アミノフェニルフェニルエーテル、2-アミノベンゾフェノン、3-アミノベンゾフェノン、4-アミノベンゾフェノン、2-アミノフェニルフェニルスルフィド、3-アミノフェニルフェニルスルフィド、4-アミノフェニルフェニルスルフィド、2-アミノフェニルフェニルスルホン、3-アミノフェニルフェニルスルホン、4-アミノフェニルフェニルスルホン、α-ナフチルアミン、β-ナフチルアミン、1-アミノ-2-ナフトール、5-アミノ-1-ナフトール、2-アミノ-1-ナフトール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、7-アミノ-2-ナフトール、8-アミノ-1-ナフトール、8-アミノ-2-ナフトール、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセンなどの芳香族モノアミンを挙げることができる。中でも、アニリンの誘導体が好ましく使用される。これらは単独で用いてもよいし、2種以上を混合して用いることもできる。 Examples of the terminal blocking agent comprising a monoamine derivative include aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-xylidine, 2,6-xylidine, 3,4-xylidine, and 3,5-xylidine. , O-chloroaniline, m-chloroaniline, p-chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline, o-nitroaniline, p-nitroaniline, m-nitroaniline, o-aminophenol P-aminophenol, m-aminophenol, o-anisidine, m-anisidine, p-anisidine, o-phenetidine, m-phenetidine, p-phenetidine, o-aminobenzaldehyde, p-aminobenzaldehyde, m-aminobenzaldehyde, o-Aminobenzonitrile, p-aminobenz Tolyl, m-aminobenzonitrile, 2-aminobiphenyl, 3-aminobiphenyl, 4-aminobiphenyl, 2-aminophenylphenyl ether, 3-aminophenylphenyl ether, 4-aminophenylphenyl ether, 2-aminobenzophenone, 3 -Aminobenzophenone, 4-aminobenzophenone, 2-aminophenyl phenyl sulfide, 3-aminophenyl phenyl sulfide, 4-aminophenyl phenyl sulfide, 2-aminophenyl phenyl sulfone, 3-aminophenyl phenyl sulfone, 4-aminophenyl phenyl sulfone , Α-naphthylamine, β-naphthylamine, 1-amino-2-naphthol, 5-amino-1-naphthol, 2-amino-1-naphthol, 4-amino-1-naphthol, 5-a Aromatic monoamines such as no-2-naphthol, 7-amino-2-naphthol, 8-amino-1-naphthol, 8-amino-2-naphthol, 1-aminoanthracene, 2-aminoanthracene and 9-aminoanthracene; Can be mentioned. Among these, aniline derivatives are preferably used. These may be used alone or in combination of two or more.
 カルボン酸誘導体からなる末端封止剤としては、主に無水カルボン酸誘導体が挙げられる。無水カルボン酸誘導体としては、例えば、無水フタル酸、2,3-ベンゾフェノンジカルボン酸無水物、3,4-ベンゾフェノンジカルボン酸無水物、2,3-ジカルボキシフェニルフェニルエーテル無水物、3,4-ジカルボキシフェニルフェニルエーテル無水物、2,3-ビフェニルジカルボン酸無水物、3,4-ビフェニルジカルボン酸無水物、2,3-ジカルボキシフェニルフェニルスルホン無水物、3,4-ジカルボキシフェニルフェニルスルホン無水物、2,3-ジカルボキシフェニルフェニルスルフィド無水物、3,4-ジカルボキシフェニルフェニルスルフィド無水物、1,2-ナフタレンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、1,8-ナフタレンジカルボン酸無水物、1,2-アントラセンジカルボン酸無水物、2,3-アントラセンジカルボン酸無水物、1,9-アントラセンジカルボン酸無水物などの芳香族ジカルボン酸無水物が挙げられる。これらの芳香族ジカルボン酸無水物の中で、好ましくは無水フタル酸が使用される。これらは単独で用いてもよいし、2種以上を混合して用いることもできる。 Examples of the end-capping agent comprising a carboxylic acid derivative mainly include carboxylic anhydride derivatives. Examples of the carboxylic anhydride derivative include phthalic anhydride, 2,3-benzophenone dicarboxylic anhydride, 3,4-benzophenone dicarboxylic anhydride, 2,3-dicarboxyphenyl phenyl ether anhydride, 3,4-di Carboxyphenyl phenyl ether anhydride, 2,3-biphenyl dicarboxylic acid anhydride, 3,4-biphenyl dicarboxylic acid anhydride, 2,3-dicarboxyphenyl phenyl sulfone anhydride, 3,4-dicarboxyphenyl phenyl sulfone anhydride 2,3-dicarboxyphenyl phenyl sulfide anhydride, 3,4-dicarboxyphenyl phenyl sulfide anhydride, 1,2-naphthalenedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, 1,8-naphthalene Dicarboxylic anhydride, 1,2-anthracenedica Bon acid anhydride, 2,3-anthracene dicarboxylic acid anhydride, 1,9-aromatic dicarboxylic acid anhydrides such as anthracene dicarboxylic acid anhydride. Of these aromatic dicarboxylic acid anhydrides, phthalic anhydride is preferably used. These may be used alone or in combination of two or more.
 上述した方法で得られるポリイミドは、脱溶剤することなく、そのまま、又はさらに必要な溶剤、添加剤などを配合して本実施の形態に係る樹脂組成物に用いることができる。 The polyimide obtained by the above-described method can be used in the resin composition according to the present embodiment as it is or without further solvent addition, without further solvent removal.
 なお、上述した実施の形態においては、(A)高分子化合物として脂肪族ジアミン成分が含まれるポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドを用いた第2の態様に係る樹脂組成物について説明したが、本発明の効果を奏する範囲でポリアミド酸構造を実質的に含まないポリイミドを用いることにより、上記第1の態様に係る樹脂組成物として用いることも可能である。 In the above-described embodiment, (A) the resin composition according to the second aspect using a polyimide structure containing an aliphatic diamine component as a polymer compound and a polyimide having a polyamic acid structure as a structural unit is described. However, it is also possible to use the resin composition according to the first aspect by using a polyimide that does not substantially contain a polyamic acid structure within the range where the effects of the present invention are exhibited.
(B)多官能水酸基含有化合物
 本実施の形態に係る樹脂組成物に用いられる多官能水酸基含有化合物とは、分子鎖一本に対して2以上の水酸基を含むものを指す。骨格中には、脂肪族、芳香族、脂環基などの炭化水素基を含むものが挙げられ、絶縁性を高める点から下記式(14)で表されるような構造を骨格中に有するものが好ましく、反り抑制の点から脂肪族を含む化合物であることが好ましい。脂肪族の骨格を有することにより、反りを抑制の効果を損なうことなく吸湿性を抑えることができ、吸湿時においても高い絶縁性を発現できるためである。なお、長鎖の脂肪族基を含む場合には反り抑制の効果が高まるため好ましい。
Figure JPOXMLDOC01-appb-C000029
(式(14)中、Xは、芳香族、Yは、炭素数1から炭素数10の脂肪族、Zは、エーテル基、エステル基、カーボネート基、ウレタン基、ウレア基から選ばれる官能基で、h=0~2の整数、i=0~1の整数、j=1~1000の整数を表す。)
(B) Polyfunctional hydroxyl group-containing compound The polyfunctional hydroxyl group-containing compound used in the resin composition according to the present embodiment refers to a compound containing two or more hydroxyl groups per molecular chain. Examples of the skeleton include those containing hydrocarbon groups such as aliphatic, aromatic, and alicyclic groups, and those having a structure represented by the following formula (14) in the skeleton from the viewpoint of enhancing the insulating properties. It is preferable that it is an aliphatic compound from the viewpoint of warpage suppression. This is because by having an aliphatic skeleton, hygroscopicity can be suppressed without impairing the effect of suppressing warpage, and high insulating properties can be expressed even during moisture absorption. In addition, it is preferable to include a long-chain aliphatic group because the effect of suppressing warpage is enhanced.
Figure JPOXMLDOC01-appb-C000029
(In the formula (14), X is an aromatic, Y is an aliphatic having 1 to 10 carbon atoms, and Z is a functional group selected from an ether group, an ester group, a carbonate group, a urethane group, and a urea group. H represents an integer from 0 to 2, i represents an integer from 0 to 1, and j represents an integer from 1 to 1000.)
 また、特に電子材料用途では、フッ素や塩素などのハロゲンを含まないものが好ましい。 In particular, for electronic materials, those not containing halogen such as fluorine and chlorine are preferable.
 多官能水酸基含有化合物の具体例としては、PTMG1000(三菱化学社製)などのポリテトラメチレンジオール、G-1000(日本曹達社製)などのポリブタジエンジオール、GI-1000(日本曹達社製)などの水添ポリブタジエンジオール、デュラノールT5651、デュラノールT5652、デュラノールT4671(旭化成ケミカルズ社製)及びプラクセルCD(ダイセル化学社製)などのポリカーボネートジオール、プラクセル200(ダイセル化学社製)などのポリカプロラクトンジオール、ビスフェノールA(ダイセル化学社製)などのビスフェノール類、リカビノールHB(新日本理化社製)などの水添ビスフェノール類などが挙げられる。 Specific examples of the polyfunctional hydroxyl group-containing compound include polytetramethylene diol such as PTMG1000 (manufactured by Mitsubishi Chemical Corporation), polybutadiene diol such as G-1000 (manufactured by Nippon Soda Co., Ltd.), and GI-1000 (manufactured by Nippon Soda Co., Ltd.). Hydrogenated polybutadiene diol, polycarbonate diols such as Duranol T5651, Duranol T5652, Duranol T4671 (Asahi Kasei Chemicals) and Plaxel CD (Daicel Chemical), polycaprolactone diols such as Plaxel 200 (Daicel Chemical), bisphenol A ( Bisphenols such as Daicel Chemical Industries, Ltd., and hydrogenated bisphenols such as Ricabinol HB (Shin Nihon Rika Co., Ltd.).
 中でも、絶縁性を高める点からポリブタジエンジオール、水添ポリブタジエンジオール、ポリカーボネートジオールが好ましく、反りの低減の点からポリカーボネートジオールが好ましい。 Of these, polybutadiene diol, hydrogenated polybutadiene diol, and polycarbonate diol are preferable from the viewpoint of enhancing the insulating properties, and polycarbonate diol is preferable from the viewpoint of reducing warpage.
 また、多官能水酸基含有化合物は、反り低減と有機溶剤への溶解性の点から室温おいて液状のものが好ましい。分子量としては500~3000のものが好ましく、特に分子量が500~2000のものが好ましい。 In addition, the polyfunctional hydroxyl group-containing compound is preferably a liquid compound at room temperature in terms of warpage reduction and solubility in an organic solvent. The molecular weight is preferably 500 to 3000, and particularly preferably 500 to 2000.
 多官能水酸基含有化合物は、反り低減、半田耐熱性及び耐薬品性を両立させるという点から樹脂組成物100質量部に対し、3質量部~70質量部含有することが好ましく、5質量部~60質量部含有することがさらに好ましい。 The polyfunctional hydroxyl group-containing compound is preferably contained in an amount of 3 parts by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of achieving both reduction in warpage, solder heat resistance and chemical resistance. More preferably, it is contained in parts by mass.
 なお、本実施の形態においては、(B)多官能水酸基含有化合物として、2つの水酸基を含有する多官能水酸基含有化合物について説明したが、本発明の効果を奏する範囲で2以上の水酸基を含有するポリオールなども用いることが可能である。 In addition, in this Embodiment, although the polyfunctional hydroxyl-containing compound containing two hydroxyl groups was demonstrated as (B) polyfunctional hydroxyl-containing compound, it contains two or more hydroxyl groups in the range with the effect of this invention. Polyols can also be used.
(c-1)ブロックイソシアネート化合物
 本実施の形態に係る樹脂組成物に用いられるブロックイソシアネート化合物とは、分子内に2個以上のイソシアネ-ト基を有するイソシアネ-トにブロック剤を反応させることにより得られる化合物である。分子内に2個以上のイソシアネ-ト基を有するイソシアネ-ト化合物としては、1,6-ヘキサンジイソシアネ-ト、4,4’-ジフェニルメタンジイソシアネ-ト、2,4-トリレンジイソシアネ-ト、2,6-トリレンジイソシアネ-ト、キシリレンジイソシアネ-ト、4,4’-ジシクロヘキシルメタンジイソシアネート、4,4’-水酸化ジイソシアネ-ト、イソホロンジイソシアネ-ト、1,5-ナフタレンジイソシアネ-ト、4,4-ジフェニルジイソシアネ-ト、1,3―ビス(イソシアネートメチル)シクロヘキサン、フェニレン1,4-ジイソシアネ-ト、フェニレン2,6-ジイソシアネ-ト、1,3,6-ヘキサメチレントリイソシアネ-ト、又はヘキサメチレンジイソシアネートなどが挙げられる。ブロック剤としては、アルコ-ル類、フェノ-ル類、ε-カプロラクタム、オキシム類、活性メチレン類、メルカプタン類、アミン類、イミド類、酸アミド類、イミダゾ-ル類、尿素類、カルバミン酸塩類、イミン類、又は亜硫酸塩類、などが挙げられる。
(C-1) Blocked isocyanate compound The blocked isocyanate compound used in the resin composition according to this embodiment is obtained by reacting a blocking agent with an isocyanate having two or more isocyanate groups in the molecule. The resulting compound. Examples of isocyanate compounds having two or more isocyanate groups in the molecule include 1,6-hexane diisocyanate, 4,4′-diphenylmethane diisocyanate, and 2,4-tolylene diisocyanate. Nate, 2,6-tolylene diisocyanate, xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 4,4'-hydroxylated diisocyanate, isophorone diisocyanate, 1 , 5-naphthalene diisocyanate, 4,4-diphenyl diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, phenylene 1,4-diisocyanate, phenylene 2,6-diisocyanate, Examples thereof include 1,3,6-hexamethylene triisocyanate and hexamethylene diisocyanate. Blocking agents include alcohols, phenols, ε-caprolactam, oximes, active methylenes, mercaptans, amines, imides, acid amides, imidazoles, ureas, carbamates , Imines, or sulfites.
 ブロックイソシアネート化合物の具体例としては、旭化成ケミカルズ社製の商品名デュラネートSBN-70D、TPA-B80E、TPA-B80X、17B-60PX、MF-B60X、E402-B80T、ME20-B80S、MF-K60X、K6000などのヘキサメチレンジイソシアネート(以下、「HDI」とも言う。)系ブロックイソシアネートが挙げられる。また、三井化学ポリウレタン社製品としては、商品名タケネートB-882Nや、トリレンジイソシアネート系ブロックイソシアネートである商品名タケネートB-830や、4,4’-ジフェニルメタンジイソシアネ-ト系ブロックイソシアネートである商品名タケネートB-815N、1,3―ビス(イソシアネートメチル)シクロヘキサン系ブロックイソシアネートであるタケネートB-846Nが挙げられる。また、日本ポリウレタン工業社製の商品名コロネートAP-M2503、2515、2507、2513、又はミリオネートMS-50などや、イソホロンジイソシアネート系ブロックイソシアネートであるBaxenden社製の品番7950,7951,7990などが挙げられる。これらのブロックイソシアネート化合物は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Specific examples of the blocked isocyanate compound include trade names Duranate SBN-70D, TPA-B80E, TPA-B80X, 17B-60PX, MF-B60X, E402-B80T, ME20-B80S, MF-K60X, K6000 manufactured by Asahi Kasei Chemicals Corporation. And hexamethylene diisocyanate (hereinafter also referred to as “HDI”) block isocyanate. The Mitsui Chemicals Polyurethane products include the product name Takenate B-882N, the product name Takenate B-830, which is a tolylene diisocyanate block isocyanate, and the 4,4′-diphenylmethane diisocyanate block isocyanate. Trade name Takenate B-815N, Takenate B-846N which is a 1,3-bis (isocyanatemethyl) cyclohexane block isocyanate. Moreover, the product name Coronate AP-M2503, 2515, 2507, 2513, or Millionate MS-50 manufactured by Nippon Polyurethane Industry Co., Ltd., or the product number 7950, 7951, 7990 manufactured by Baxenden, which is an isophorone diisocyanate block isocyanate, can be used. . These blocked isocyanate compounds may be used alone or in combination of two or more.
 なお、本実施の形態においては、(C)多官能架橋性化合物として、ブロックイソシアネート化合物を用いる例について説明したが、ブロックイソシアネート化合物に代えて上述した2以上のイソシアネート基を有する多官能イソシアネート化合物を用いることも可能である。さらに、本発明の効果を奏する範囲で多官能イソシアネート化合物に代えて多官能オキサゾリン化合物を用いることもできる。 In addition, in this Embodiment, although the example using a block isocyanate compound was demonstrated as (C) polyfunctional crosslinking | crosslinked compound, it replaced with the block isocyanate compound and the polyfunctional isocyanate compound which has two or more isocyanate groups mentioned above is used. It is also possible to use it. Furthermore, a polyfunctional oxazoline compound can also be used in place of the polyfunctional isocyanate compound within the range where the effects of the present invention are exhibited.
 なお、樹脂組成物は、ポリイミド、多官能水酸基含有化合物、ブロックイソシアネート化合物の他に、有機溶媒を含有してもよい。有機溶媒に溶解した状態とすることにより、ワニスとして好ましく使用することができるためである。 In addition, the resin composition may contain an organic solvent in addition to the polyimide, the polyfunctional hydroxyl group-containing compound, and the blocked isocyanate compound. It is because it can use preferably as a varnish by setting it as the state melt | dissolved in the organic solvent.
 このような有機溶媒としては、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドンなどのアミド溶媒、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン溶媒、ジメチルスルホキシド、ジエチルスルホキシド、ヘキサメチルスルホキシドなどの含硫黄系溶媒、クレゾール、フェノールなどのフェノール系溶媒、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラグライム、ジオキサン、テトラヒドロフラン、安息香酸ブチル、安息香酸エチル、安息香酸メチルなどのエーテル溶媒が挙げられる。また、これらの有機溶媒は、単独で使用してもよいし、複数併用してもよい。特に、高沸点と低吸水性の点から、γ-ブチロラクトン、トリグライム、安息香ブチル、安息香酸エチルを用いることが好ましい。 Examples of such organic solvents include amide solvents such as N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone, γ- Lactone solvents such as butyrolactone and γ-valerolactone, sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide and hexamethyl sulfoxide, phenol solvents such as cresol and phenol, diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), Examples include ether solvents such as tetraglyme, dioxane, tetrahydrofuran, butyl benzoate, ethyl benzoate, and methyl benzoate. These organic solvents may be used alone or in combination. In particular, from the viewpoint of high boiling point and low water absorption, it is preferable to use γ-butyrolactone, triglyme, butyl benzoate, and ethyl benzoate.
(F)難燃剤
 樹脂組成物は、更に難燃剤を含有してもよい。難燃剤の種類は特に限定されないが、含ハロゲン化合物、含リン化合物及び無機難燃剤などが挙げられる。これらの難燃剤を一種用いてもよいし、二種以上を混合して用いてもよい。難燃剤の添加量は特に限定されることなく、用いる難燃剤の種類に応じて適宜変更できる。例えば、ポリイミドの含有量を基準として、5質量%から50%の範囲で用いることができる。
(F) Flame retardant The resin composition may further contain a flame retardant. The kind of flame retardant is not particularly limited, and examples thereof include halogen-containing compounds, phosphorus-containing compounds, and inorganic flame retardants. One kind of these flame retardants may be used, or two or more kinds may be mixed and used. The addition amount of the flame retardant is not particularly limited, and can be appropriately changed according to the type of the flame retardant used. For example, it can be used in the range of 5% by mass to 50% based on the polyimide content.
 含ハロゲン化合物として、塩素を含む有機化合物と臭素を含む化合物などが挙げられる。具体的には、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカンテトラブロモビスフェノールAなどが挙げられる。 Examples of halogen-containing compounds include organic compounds containing chlorine and compounds containing bromine. Specific examples include pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane tetrabromobisphenol A, and the like.
 含リン化合物として、ホスファゼン、ホスフィン、ホスフィンオキサイド、リン酸エステル、及び亜リン酸エステルなどのリン化合物が揚げられる。特にポリイミド組成物との相溶性の面から、ホスファゼン、ホスファイオキサイド、又はリン酸エステルを用いることが好ましい。 As the phosphorus-containing compound, phosphorus compounds such as phosphazene, phosphine, phosphine oxide, phosphate ester, and phosphite ester are fried. In particular, from the viewpoint of compatibility with the polyimide composition, it is preferable to use phosphazene, phosphioxide, or phosphate ester.
 含リン化合物の具体例としては、伏見製薬所社製のホスファゼン誘導体FP100、FP110、FP300、FP400などが挙げられる。 Specific examples of phosphorus-containing compounds include phosphazene derivatives FP100, FP110, FP300, and FP400 manufactured by Fushimi Pharmaceutical Co., Ltd.
 無機難燃剤として、アンチモン化合物と金属水酸化物などが挙げられる。アンチモン化合物として、三酸化アンチモンと五酸化アンチモンが挙げられる。金属水酸化物として、水酸化アルミニウム、水酸化マグネシウムなどが挙げられる。なお、アンチモン化合物と上記含ハロゲン化合物とを併用することにより、プラスチックの熱分解温度域で、酸化アンチモンが難燃剤からハロゲン原子を引き抜いてハロゲン化アンチモンが生成されるため、相乗的に難燃性を高めることができる。 Inorganic flame retardants include antimony compounds and metal hydroxides. Antimony compounds include antimony trioxide and antimony pentoxide. Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide. By using an antimony compound in combination with the above halogen-containing compound, antimony oxide is extracted from the flame retardant to produce antimony halide in the thermal decomposition temperature range of the plastic. Can be increased.
 無機難燃剤は有機溶媒に溶解しないため、その粉末の粒径は100μm以下であることが好ましい。粒径が100μm以下であれば、ポリイミド組成物に混入しやすく、硬化後の樹脂の透明性を損ねることないためである。難燃性を十分に高めるためには、粉末の粒径は50μm以下であることが好ましく、10μm以下とすると特に好ましい。 Since the inorganic flame retardant does not dissolve in the organic solvent, the particle size of the powder is preferably 100 μm or less. If the particle size is 100 μm or less, it is easy to be mixed into the polyimide composition, and the transparency of the cured resin is not impaired. In order to sufficiently increase the flame retardancy, the particle size of the powder is preferably 50 μm or less, particularly preferably 10 μm or less.
 また、難燃剤としては、含窒素化合物を用いてもよい。含窒素化合物は、一種を難燃剤として用いてもよく、上述した含ハロゲン化合物、含リン化合物及び無期難燃剤と含窒素化合物とを二種以上を混合して難燃剤として用いてもよい。含窒素化合物の添加量としては、特に限定されることなく、用いる難燃剤の種類に応じて変更可能である。含窒素化合物の添加量としては、例えば、上述した難燃剤と同様に、ポリイミドの含有量を基準として、5質量%から50質量%の範囲で用いることができる。含窒素化合物としては、例えば、日産化学社製、堺化学工業社製のメラミンシアヌレートなどが挙げられる。 Further, a nitrogen-containing compound may be used as the flame retardant. One of the nitrogen-containing compounds may be used as a flame retardant, or two or more of the above-described halogen-containing compounds, phosphorus-containing compounds, and indefinite flame retardants and nitrogen-containing compounds may be mixed and used as a flame retardant. The amount of the nitrogen-containing compound added is not particularly limited and can be changed according to the type of flame retardant used. As addition amount of a nitrogen-containing compound, it can use in the range of 5 mass% to 50 mass% on the basis of content of a polyimide like the flame retardant mentioned above, for example. Examples of the nitrogen-containing compound include melamine cyanurate manufactured by Nissan Chemical Co., Ltd. and Sakai Chemical Industry Co., Ltd.
 塗工膜を形成する際には、その塗工方式に応じて粘度とチクソトロピーの調整を行う。必要に応じて、フィラーやチクソトロピー性付与剤を添加して用いることも可能である。また、公知の消泡剤やレベリング剤や顔料などの添加剤を加えることも可能である。 When forming a coating film, the viscosity and thixotropy are adjusted according to the coating method. If necessary, a filler or a thixotropic agent can be added and used. It is also possible to add additives such as known antifoaming agents, leveling agents and pigments.
 また、塗工膜を形成する際には、ウレタン化触媒を添加して用いてもよい。ウレタン化触媒としてはサンアプロ社製のU-CAT SA(登録商標)102、603、506、U-CAT(登録商標)1102、マツモトファインケミカル社製の有機ジルコニウム化合物、楠本化成社製のジルコニウムK-KATなどが挙げられる。 Also, when forming a coating film, a urethanization catalyst may be added and used. U-CAT SA (registered trademark) 102, 603, 506, U-CAT (registered trademark) 1102 manufactured by San Apro, an organozirconium compound manufactured by Matsumoto Fine Chemical Co., and zirconium K-KAT manufactured by Enomoto Kasei Co., Ltd. Etc.
 樹脂組成物は、更に熱架橋性官能基を有する化合物を含有してもよい。熱架橋性官能基を有する化合物としては、トリアジン系化合物、ベンゾオキサジン化合物、及びエポキシ化合物などが挙げられる。 The resin composition may further contain a compound having a thermally crosslinkable functional group. Examples of the compound having a thermally crosslinkable functional group include triazine compounds, benzoxazine compounds, and epoxy compounds.
 トリアジン系化合物としては、メラミン類及びシアヌル酸メラミン類が好ましい。メラミン類としては、メラミン誘導体、メラミンと類似の構造を有する化合物とメラミンとの縮合物などが挙げられる。メラミン類の具体例としては、例えば、メチロール化メラミン、アンメリド、アンメリン、ホルモグアナミン、グアニルメラミン、シアノメラミン、アリールグアナミン、メラム、メレム、メロンなどが挙げられる。シアヌル酸メラミン類としては、シアヌル酸とメラミン類とのなどモル反応物が挙げられる。また、シアヌル酸メラミン類中のアミノ基又は水酸基のいくつかが、他の置換基で置換されていてもよい。ベンゾオキサジン化合物は、モノマーのみからなるものでもよいし、数分子が重合してオリゴマー状態となっていてもよい。また、異なる構造を有するベンゾオキサジン化合物を同時に用いてもよい。中でも、ビスフェノールベンゾオキサジンが好ましく用いられる。 As the triazine compound, melamines and melamine cyanurates are preferable. Examples of melamines include melamine derivatives, condensates of compounds having a structure similar to melamine and melamine, and the like. Specific examples of melamines include, for example, methylolated melamine, ammelide, ammelin, formoguanamine, guanylmelamine, cyanomelamine, arylguanamine, melam, melem, melon and the like. Examples of melamine cyanurates include molar reactants such as cyanuric acid and melamines. Moreover, some of the amino groups or hydroxyl groups in melamine cyanurate may be substituted with other substituents. The benzoxazine compound may be composed only of monomers, or several molecules may be polymerized into an oligomer state. Moreover, you may use the benzoxazine compound which has a different structure simultaneously. Among these, bisphenol benzoxazine is preferably used.
 なお、樹脂組成物は、更にアクリルモノマーと光ラジカル発生剤を加えることにより、ネガ型感光性樹脂組成物として使用することができる。また、光酸発生剤を加えることにより、ポジ型感光性樹脂組成物として使用することができる。 In addition, the resin composition can be used as a negative photosensitive resin composition by further adding an acrylic monomer and a photo radical generator. Moreover, it can be used as a positive photosensitive resin composition by adding a photoacid generator.
 上述した樹脂組成物を加熱することによって硬化物を得ることができる。加熱の態様については特に限定されないが、2段階の温度領域で5分~60分ずつ加熱することが好ましく、100℃~130℃において5分~60分加熱した後に、160℃~200℃において15分~60分加熱するとより好ましい。このように2種類の温度領域で硬化させることで、樹脂組成物中に含まれる化合物間の反応をコントロールし、3次元のネットワークを形成させることができる。そして、これにより、硬化物の耐熱性や耐薬品性を高めることができる。より具体的には、下記の通りである。まず、低温領域(例えば100℃~130℃)で主として多官能水酸基含有化合物とブロックイソシアネート化合物とが反応してウレタン構造が生じる。これにより多官能水酸基含有化合物とブロックイソシアネート化合物との間の化学的な架橋Iが形成される(以下「工程(I)」とする)。その後、高温領域(例えば160℃~200℃)で主としてポリイミドのイミド化反応が生じる。そして、イミド化されずに残存したポリイミド中のポリアミド酸のカルボン酸とイソシアネート基との反応が生じてアミド構造やウレア構造などが形成される。これにより、ポリアミド酸とイソシアネートとの間の化学的な架橋IIが形成される(以下「工程(II)」とする)。この架橋I及び架橋IIによって形成される3次元のネットワークにより、耐熱性に優れた硬化物を得ることができる。なお、架橋IIの形成後に残存したイソシアネート基は、残存したイソシアネート基同士で反応する。これによって活性種が無くなり、硬化物の絶縁性が高められることになる。 A cured product can be obtained by heating the resin composition described above. The mode of heating is not particularly limited, but it is preferable to heat for 5 minutes to 60 minutes in a two-step temperature range. After heating at 100 ° C. to 130 ° C. for 5 minutes to 60 minutes, 15 ° C. at 160 ° C. to 200 ° C. It is more preferable to heat for 60 minutes. Thus, by making it harden | cure in two types of temperature ranges, the reaction between the compounds contained in a resin composition can be controlled, and a three-dimensional network can be formed. And thereby, the heat resistance and chemical resistance of hardened | cured material can be improved. More specifically, it is as follows. First, in the low temperature range (for example, 100 ° C. to 130 ° C.), a polyfunctional hydroxyl group-containing compound and a blocked isocyanate compound react to produce a urethane structure. Thereby, the chemical bridge | crosslinking I between a polyfunctional hydroxyl-containing compound and a block isocyanate compound is formed (henceforth "process (I)"). Thereafter, an imidization reaction of polyimide mainly occurs in a high temperature region (for example, 160 ° C. to 200 ° C.). Then, a reaction between the carboxylic acid of the polyamic acid in the polyimide remaining without being imidized and an isocyanate group occurs to form an amide structure or a urea structure. Thereby, the chemical bridge | crosslinking II between a polyamic acid and isocyanate is formed (henceforth "process (II)"). A cured product having excellent heat resistance can be obtained by the three-dimensional network formed by the crosslinks I and II. In addition, the isocyanate group remaining after the formation of the bridge II reacts with the remaining isocyanate groups. This eliminates the active species and enhances the insulation of the cured product.
 上記工程(II)においては、形成される樹脂組成物膜の厚さにもよるが、オーブンあるいはホットプレートにより最高温度を150℃~220℃の範囲とし、5分間~100分間、空気又は窒素などの不活性雰囲気下で加熱することにより、脱溶媒される。加熱温度は、処理時間の全体に亘って一定であっても良く、徐々に昇温させてもよい。樹脂組成物膜は、公知のスクリーン印刷、又は、精密ディスペンス法により、フレキシブルプリント回路基板や半導体ウエハー表面に印刷し形成することができる。 In the above step (II), depending on the thickness of the resin composition film to be formed, the maximum temperature is set in the range of 150 ° C. to 220 ° C. with an oven or a hot plate, for 5 to 100 minutes, air or nitrogen, etc. The solvent is removed by heating in an inert atmosphere. The heating temperature may be constant over the entire processing time or may be gradually raised. The resin composition film can be formed by printing on the surface of a flexible printed circuit board or a semiconductor wafer by known screen printing or a precision dispensing method.
 樹脂組成物は、熱硬化させることにより優れた耐熱性を示すので、半導体素子の表面硬化膜、層間絶縁膜、ボンディングシート、プリント配線板用保護絶縁膜、プリント回路基板の表面保護膜などとして有用であり、種々の電子部品に適用される。例えば、フレキシブルなプリント回路基板として、エスパネックスM(新日鉄化学社製)(絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))を用い、この回路基板上の一部に樹脂組成物を塗布し、硬化させる。塗布しなかった部分には電解ニッケル-金メッキを施すことで外部端子として用いることができる。このようにして形成された表面保護膜は、良好な絶縁特性を発揮する。なお、本実施の形態における樹脂組成物の熱硬化は、比較的低い温度条件(例えば160℃~200℃)で行われるため、銅の酸化は生じない。このような低温硬化が可能なのは、カルボン酸がブロックイソシアネート化合物(正確には、加熱によりブロックが外れたイソシアネート化合物)と反応するため、完全なイミド化が不要となり、250℃もの高温加熱が不要になるためである。 Since the resin composition exhibits excellent heat resistance when thermally cured, it is useful as a surface cured film for semiconductor elements, interlayer insulating films, bonding sheets, protective insulating films for printed wiring boards, surface protective films for printed circuit boards, etc. And is applied to various electronic components. For example, Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulating layer thickness: 25 μm, conductor layer: copper foil F2-WS (18 μm)) is used as a flexible printed circuit board. The composition is applied and cured. The part not coated can be used as an external terminal by applying electrolytic nickel-gold plating. The surface protective film thus formed exhibits good insulating properties. In addition, since the thermosetting of the resin composition in the present embodiment is performed under relatively low temperature conditions (for example, 160 ° C. to 200 ° C.), copper oxidation does not occur. Such low-temperature curing is possible because carboxylic acid reacts with a blocked isocyanate compound (more precisely, an isocyanate compound that has been unblocked by heating), so complete imidization is unnecessary and high-temperature heating as high as 250 ° C is not required. Because it becomes.
 また、本実施の形態に係る樹脂組成物は、基材上に塗布して乾燥することにより、樹脂フィルムとして用いることができる。 Also, the resin composition according to the present embodiment can be used as a resin film by coating on a substrate and drying.
 また、エスパネックスM(新日鉄化学社製)(絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))の両面銅張板を用いて、両面部品実装回路基板を作成し、この回路基板の部品実装部以外に樹脂組成物を塗布、硬化して、樹脂組成物を表面保護膜として用いても良好な絶縁特性を発揮する。ここで、表面保護膜の膜厚は1μm~50μmであることが好ましい。膜厚を1μm以上とすることにより取り扱いが容易となり、50μm以下とすることにより折り曲げやすく組み込みが容易となるためである。 In addition, using a double-sided copper-clad board of Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulating layer thickness 25 μm, conductor layer copper foil F2-WS (18 μm)), a double-sided component-mounted circuit board was created. Even if the resin composition is applied and cured in addition to the component mounting portion of the circuit board, good insulating properties are exhibited even if the resin composition is used as a surface protective film. Here, the thickness of the surface protective film is preferably 1 μm to 50 μm. When the film thickness is 1 μm or more, the handling becomes easy, and when the film thickness is 50 μm or less, it is easy to bend and incorporate easily.
 なお、本実施の形態に係る樹脂組成物は、(D)感光剤を含有することにより、感光性樹脂組成物として用いることもできる。また、感光性樹脂組成物を基材上に塗布することにより、感光性フィルムを得ることもできる。 In addition, the resin composition which concerns on this Embodiment can also be used as a photosensitive resin composition by containing the (D) photosensitive agent. Moreover, the photosensitive film can also be obtained by apply | coating the photosensitive resin composition on a base material.
 さらに、本実施の形態に係る樹脂組成物は、銅箔上に樹脂組成物を設けて乾燥することにより、多層フレキシブル配線板などの層間絶縁膜として好適に用いることができる。また、本実施の形態に係る樹脂組成物は、基材上に形成された配線パターンを覆うように樹脂組成物を設けることにより、配線板の配線パターンの保護膜として好適に用いることができる。 Furthermore, the resin composition according to the present embodiment can be suitably used as an interlayer insulating film such as a multilayer flexible wiring board by providing a resin composition on a copper foil and drying it. Moreover, the resin composition according to the present embodiment can be suitably used as a protective film for a wiring pattern on a wiring board by providing the resin composition so as to cover the wiring pattern formed on the substrate.
(第2の実施の形態)
 フレキシブルプリント基板の製造工程においては、電気絶縁信頼性、折り曲げ耐性、耐熱性、難燃性に優れたカバーレイが必要されている。このようなカバーレイを実現するため、脂肪族ジアミンをジアミン成分として用いたポリアミド酸を含む樹脂組成物が提案されている。この樹脂組成物においては、脂肪族ジアミンがポリアミド酸に含まれることから、樹脂組成物を溶剤に溶解させたワニスの分子量低下が大きく、リソグラフィーによるパターン形成時における残膜率の低下及びパターン形状の歪みなどにより、現像性が低下する場合がある。
(Second Embodiment)
In the manufacturing process of a flexible printed circuit board, a cover lay excellent in electrical insulation reliability, bending resistance, heat resistance, and flame retardancy is required. In order to realize such a coverlay, a resin composition containing a polyamic acid using an aliphatic diamine as a diamine component has been proposed. In this resin composition, since the aliphatic diamine is contained in the polyamic acid, the molecular weight of the varnish in which the resin composition is dissolved in the solvent is greatly reduced. The developability may deteriorate due to distortion or the like.
 本発明者らは、(A)高分子化合物として、脂肪族ジアミン成分が含まれるポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドを用いることに着目した。そして、本発明者らは、(A)高分子化合物としての脂肪族ジアミン成分が含まれるポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドと、(B)多官能水酸基含有化合物としての2官能水酸基含有化合物と、(C)多官能架橋性化合物としてのブロックイソシアネート化合物と、(D)感光剤と、を含有することにより、現像性及び反りが良好であり、優れた絶縁性を有する感光性組成物を実現できることを見出した。 The present inventors have focused on (A) using a polyimide having a polyimide structure containing an aliphatic diamine component and a polyamic acid structure as a structural unit as a polymer compound. The present inventors then (A) a polyimide having a polyimide structure and a polyamic acid structure containing an aliphatic diamine component as a polymer compound as structural units, and (B) a bifunctional hydroxyl group as a polyfunctional hydroxyl group-containing compound. Photosensitive composition having good developability and warpage and having excellent insulating properties by containing a containing compound, (C) a blocked isocyanate compound as a polyfunctional crosslinkable compound, and (D) a photosensitive agent. I found out that things can be realized.
 この感光性樹脂組成物においては、2官能水酸基含有化合物の水酸基とブロックイソシアネート化合物のイソシアネート基とが反応してウレタン構造を形成し、かつ、2官能水酸基含有化合物はポリイミド骨格中に取り込まれずに、感光性樹脂組成物中で第二成分として存在する。これにより、硬化時のポリイミド骨格の収縮を防ぐことができ、反りの低減を達成することができる。また、ポリイミドのポリイミド構造に脂肪族ジアミン成分が含まれることから、ポリアミド酸構造の解重合による分子量低下を抑制できる。これにより、分子量が安定化するので、リソグラフィーによるパターン時における残膜率の低下やパターン形状の歪みを抑制でき、現像性の低下を抑制できる。以下、本発明の第2の実施の形態について具体的に説明する。 In this photosensitive resin composition, the hydroxyl group of the bifunctional hydroxyl group-containing compound and the isocyanate group of the blocked isocyanate compound react to form a urethane structure, and the bifunctional hydroxyl group-containing compound is not taken into the polyimide skeleton, Present as the second component in the photosensitive resin composition. Thereby, the shrinkage | contraction of the polyimide frame | skeleton at the time of hardening can be prevented, and reduction of curvature can be achieved. Moreover, since an aliphatic diamine component is contained in the polyimide structure of polyimide, it is possible to suppress a decrease in molecular weight due to depolymerization of the polyamic acid structure. Thereby, since molecular weight is stabilized, the fall of the remaining film rate at the time of the pattern by lithography and distortion of a pattern shape can be suppressed, and the fall of developability can be suppressed. Hereinafter, the second embodiment of the present invention will be described in detail.
 本発明の第2の実施の形態に係る感光性樹脂組成物は、(a)ポリイミドと、(b)2官能水酸基含有化合物と、(c-1)イソシアネート化合物(ブロックイソシアネート化合物)と、感光剤と、を含有し、2官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネート化合物に含まれるイソシアネート基とのモル比が、水酸基/イソシアネート基=0.5~1である。 The photosensitive resin composition according to the second embodiment of the present invention includes (a) a polyimide, (b) a bifunctional hydroxyl group-containing compound, (c-1) an isocyanate compound (block isocyanate compound), and a photosensitive agent. The molar ratio of the hydroxyl group contained in the bifunctional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate compound is hydroxyl group / isocyanate group = 0.5-1.
 この樹脂組成物においては、2官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネート化合物に含まれるイソシアネート基とのモル比が、水酸基/イソシアネート基=0.5~1であることによって、過剰なイソシアネート基がポリイミドに含まれるポリアミド酸構造のカルボン酸と反応する。これにより、3次元的なネットワークが形成され、優れた絶縁信頼性を達成することができる。以下、各構成要素について詳細に説明する。 In this resin composition, when the molar ratio of the hydroxyl group contained in the bifunctional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate compound is hydroxyl group / isocyanate group = 0.5 to 1, excess isocyanate The group reacts with a carboxylic acid having a polyamic acid structure contained in polyimide. Thereby, a three-dimensional network is formed, and excellent insulation reliability can be achieved. Hereinafter, each component will be described in detail.
(a)ポリイミド
 まず、本実施の形態に係る感光性樹脂組成物におけるポリイミドについて説明する。本実施の形態に係る感光性樹脂組成物において、ポリイミドは、例えば、テトラカルボン酸二無水物とジアミンとを反応させることによって得ることができる。使用するテトラカルボン酸二無水物に制限はなく、従来公知のテトラカルボン酸二無水物を用いることができる。テトラカルボン酸二無水物としては、芳香族テトラカルボン酸や脂肪族テトラカルボン酸二無水物などを適用することができる。また、使用するジアミンに制限はなく、従来公知のジアミンを用いることができる。
(A) Polyimide First, the polyimide in the photosensitive resin composition according to the present embodiment will be described. In the photosensitive resin composition according to the present embodiment, polyimide can be obtained, for example, by reacting tetracarboxylic dianhydride and diamine. There is no restriction | limiting in the tetracarboxylic dianhydride to be used, A conventionally well-known tetracarboxylic dianhydride can be used. As tetracarboxylic dianhydride, aromatic tetracarboxylic acid, aliphatic tetracarboxylic dianhydride, etc. are applicable. Moreover, there is no restriction | limiting in the diamine to be used, A conventionally well-known diamine can be used.
 本実施の形態に係る感光性樹脂組成物において、ポリイミドとしては、現像性及び分子量安定性の観点から、下記一般式(3)で表されるポリイミド構造、及び下記一般式(4)で表されるポリアミド酸構造をそれぞれ繰り返し構成単位として有することが好ましい。 In the photosensitive resin composition according to the present embodiment, the polyimide is represented by the polyimide structure represented by the following general formula (3) and the following general formula (4) from the viewpoint of developability and molecular weight stability. It is preferable that each has a polyamic acid structure as a repeating structural unit.
Figure JPOXMLDOC01-appb-C000030
(式(3)及び式(4)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表し、同じであっても異なっていてもよい。R、R、R、R12、及びR15は、炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上100以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000030
(In Formula (3) and Formula (4), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom. Or a monovalent organic group having 1 to 20 carbon atoms, which may be the same or different, and R 3 , R 6 , R 9 , R 12 , and R 15 each have 1 to carbon atoms 20 represents a tetravalent organic group, and m, n, and p each independently represent an integer of 0 to 100. R 16 represents a tetravalent organic group, and R 17 represents 1 carbon atom. Represents a divalent organic group having 90 carbon atoms.
 また、ポリイミドとしては、上記一般式(3)で表されるポリイミド構造を構成するジアミン成分として、下記一般式(15)で表されるジアミンを含むことが好ましい。 In addition, the polyimide preferably contains a diamine represented by the following general formula (15) as a diamine component constituting the polyimide structure represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000031
(式(15)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表し、同じであっても異なっていてもよい。R、R、R、R12、及びR15は、炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上30以下の整数であり、1≦(m+n+p)≦30を満たす。)
Figure JPOXMLDOC01-appb-C000031
(In formula (15), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, and may be the same or different, and R 3 , R 6 , R 9 , R 12 , and R 15 are tetravalent having 1 to 20 carbon atoms. M, n, and p are each independently an integer of 0 to 30, and satisfy 1 ≦ (m + n + p) ≦ 30.)
 ポリイミドの合成法としては、テトラカルボン酸二無水物と、上記一般式(15)で表される脂肪族ジアミンとを重合、環化させてポリイミドを得てから、テトラカルボン酸二無水物と下記一般式(16)で表されるジアミンを重合させる合成法が挙げられる。 As a method for synthesizing polyimide, tetracarboxylic dianhydride and aliphatic diamine represented by the general formula (15) are polymerized and cyclized to obtain a polyimide, and then tetracarboxylic dianhydride and the following: Examples include a synthesis method in which the diamine represented by the general formula (16) is polymerized.
Figure JPOXMLDOC01-appb-C000032
(式(16)中、R17は、炭素数1~炭素数90の2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000032
(In the formula (16), R 17 represents a divalent organic group having 1 to 90 carbon atoms.)
 テトラカルボン酸二無水物としては、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物(以下、「BPDA」と略称する)、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物(以下、「BTDA」と略称する)、オキシジフタル酸二無水物(以下、「ODPA」と略称する)、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、エチレングリコールビス(トリメリット酸モノエステル酸無水物)(以下、「TMEG」と略称する)、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-フェニレンビス(トリメリット酸モノエステル酸無水物)、o-フェニレンビス(トリメリット酸モノエステル酸無水物)、ペンタンジオールビス(トリメリット酸モノエステル酸無水物)(以下、「5-BTA」と略称する)、デカンジオールビス(トリメリット酸モノエステル酸無水物)、無水ピロメリット酸、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、メタ-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1-カルボキシメチル-2,3,5-シクロペンタトリカルボン酸-2,6:3,5-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、などが挙げられる。上述したテトラカルボン酸二無水物は単独で用いてもよいし、2種以上混合して用いてもよい。なお、ポリイミドの現像性の観点から、BPDA、ODPA、BTDA、TMEG、5-BTA、デカンジオールビス(トリメリット酸モノエステル酸無水物)がより好ましい。 Examples of the tetracarboxylic dianhydride include biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter abbreviated as “BPDA”), benzophenone-3,3 ′, 4,4′- Tetracarboxylic dianhydride (hereinafter abbreviated as “BTDA”), oxydiphthalic dianhydride (hereinafter abbreviated as “ODPA”), diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid dianhydride Anhydride, ethylene glycol bis (trimellitic acid monoester acid anhydride) (hereinafter abbreviated as “TMEG”), p-phenylene bis (trimellitic acid monoester acid anhydride), p-biphenylene bis (trimellitic acid) Monoester acid anhydride), m-phenylenebis (trimellitic acid monoester acid anhydride), o-phenylenebis (trimellitic acid monoester acid anhydride) ), Pentanediol bis (trimellitic acid monoester acid anhydride) (hereinafter abbreviated as “5-BTA”), decanediol bis (trimellitic acid monoester acid anhydride), pyromellitic anhydride, bis (3 , 4-Dicarboxyphenyl) ether dianhydride, 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, meta-terphenyl-3,3 ′, 4,4′-tetracarboxylic Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, Cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1-carboxymethyl-2,3,5-cyclopentatricarboxylic acid-2,6: 3,5-dianhydride, 4- (2, 5- Oxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1 , 2-dicarboxylic acid anhydride, and the like. The tetracarboxylic dianhydrides described above may be used alone or in combination of two or more. From the viewpoint of polyimide developability, BPDA, ODPA, BTDA, TMEG, 5-BTA, and decanediol bis (trimellitic acid monoester acid anhydride) are more preferable.
 上記一般式(15)で表されるジアミンとしては、上記一般式(15)で表される構造を有していれば限定されないが、1,8-ジアミノ-3,6-ジオキシオクタンなどのポリオキシエチレンジアミン化合物、ハンツマン社製ジェファーミンEDR-148、EDR-176などのポリオキシアルキレンジアミン化合物、ジェファーミンD-230、D-400、D-2000、D-4000、BASF社製のポリエーテルアミンD-230、D-400、D-2000などのポリオキシプロピレンジアミン化合物、HK-511、ED-600、ED-900、ED-2003、XTJ-542などの異なるオキシアルキレン基を有する化合物などが挙げられる。これらのオキシアルキレン基を有する化合物を用いることによりポリイミドの焼成後のFPCの反りを低減させることができる。 The diamine represented by the general formula (15) is not limited as long as it has the structure represented by the general formula (15), but may be 1,8-diamino-3,6-dioxyoctane or the like. Polyoxyethylenediamine compounds, polyoxyalkylenediamine compounds such as Huntsman's Jeffamine EDR-148 and EDR-176, Jeffamine D-230, D-400, D-2000, D-4000, polyether amine manufactured by BASF Examples include polyoxypropylenediamine compounds such as D-230, D-400, and D-2000, and compounds having different oxyalkylene groups such as HK-511, ED-600, ED-900, ED-2003, and XTJ-542. It is done. By using these compounds having an oxyalkylene group, warpage of FPC after baking of the polyimide can be reduced.
 上記一般式(15)で表されるジアミンにおいて、m、n、pは、それぞれ独立して0以上30以下の整数である。絶縁信頼性の観点から、1≦(m+n+p)≦30であることが好ましく、3≦(m+n+p)≦10であることがより好ましい。1≦(m+n+p)≦30のように、オキシアルキレン基を有する骨格が短いことによって、ポリイミドの弾性率が高くなり、絶縁信頼性が向上したと推定できる。また、通常このようなオキシアルキレン基骨格が短い場合、反りが発現する傾向にあるが、本実施の形態においては、2官能水酸基含有化合物とブロックイソシアネートとを併用することにより、反りは良好な状態で維持したまま、より絶縁信頼性を向上させることができると推定される。 In the diamine represented by the general formula (15), m, n, and p are each independently an integer of 0 or more and 30 or less. From the viewpoint of insulation reliability, 1 ≦ (m + n + p) ≦ 30 is preferable, and 3 ≦ (m + n + p) ≦ 10 is more preferable. Since the skeleton having an oxyalkylene group is short as 1 ≦ (m + n + p) ≦ 30, it can be estimated that the elastic modulus of polyimide is increased and the insulation reliability is improved. In addition, usually when such an oxyalkylene group skeleton is short, warping tends to occur. In this embodiment, warpage is in a good state by using a bifunctional hydroxyl group-containing compound and blocked isocyanate in combination. It is estimated that the insulation reliability can be further improved while maintaining the above.
 本実施の形態に係るポリイミドは、ポリイミド構造、ポリアミド酸構造をそれぞれ繰り返し構成単位として有するが、ポリイミド構造中に上記一般式(15)で表されるジアミンを導入することにより、ポリイミドワニス及びフィルムの分子量が安定する。上記一般式(15)のジアミンをポリアミド酸構造に導入すると、脂肪族ジアミンの塩基性が高く、従来のポリアミド酸と比較して、ポリアミド酸の解重合が進み、分子量低下が著しくなる。ポリイミド構造に導入することにより脂肪族ジアミンの塩基性の影響を受けずに分子量が安定化する。 Although the polyimide which concerns on this Embodiment has a polyimide structure and a polyamic-acid structure as a repeating structural unit, respectively, by introduce | transducing the diamine represented by the said General formula (15) in a polyimide structure, a polyimide varnish and a film of The molecular weight is stable. When the diamine of the above general formula (15) is introduced into the polyamic acid structure, the aliphatic diamine has a high basicity, and the depolymerization of the polyamic acid proceeds and the molecular weight decreases remarkably as compared with the conventional polyamic acid. By introducing into the polyimide structure, the molecular weight is stabilized without being affected by the basicity of the aliphatic diamine.
 上記一般式(16)で表されるジアミンとしては、1,3-ビス(4-アミノフェノキシ)アルカン、1,4-ビス(4-アミノフェノキシ)アルカン、1,5-ビス(4-アミノフェノキシ)アルカン、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、5-アミノ-1-(4-アミノメチル)-1,3,3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン(以下、APBと略称する)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4、4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン(以下、BAPPと略称する)、トリメチレン-ビス(4-アミノベンゾエート)(以下TMABと略称する)、4-アミノフェニル-4-アミノベンゾエート、2-メチル-4-アミノフェニル-4-アミノベンゾエート、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,5-ジアミノ安息香酸、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシベンゼン)などが挙げられる。この中で、ポリイミドの低Tg、現像性の観点から、APB、BAPP、TMABが好ましい。これらのジアミンを、一部、ポリイミドに用いるジアミンとしても用いることができる。 Examples of the diamine represented by the general formula (16) include 1,3-bis (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) alkane, 1,5-bis (4-aminophenoxy). ) Alkane, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3, 3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3, 7-diamino-dimethyldibenzothiophene-5,5-dioxide, 4,4'-diaminobenzophenone, 3,3'-diaminoben Phenone, 4,4′-bis (4-aminophenyl) sulfide, 4,4′-diaminobenzanilide, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane, 1,2-bis [ 2- (4-aminophenoxy) ethoxy] ethane, 9,9-bis (4-aminophenyl) fluorene, 5-amino-1- (4-aminomethyl) -1,3,3-trimethylindane, 1,4 -Bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene (hereinafter abbreviated as APB), 4,4'-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis (4-aminophenoxyphenyl) propane (hereinafter abbreviated as BAPP) Trimethylene-bis (4-aminobenzoate) (hereinafter abbreviated as TMAB), 4-aminophenyl-4-aminobenzoate, 2-methyl-4-aminophenyl-4-aminobenzoate, bis [4- (4 -Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1-amino-3-aminomethyl -3,5,5-trimethylcyclohexane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 1 , 3-bis (4-aminophenoxybenzene) and the like. Among these, APB, BAPP, and TMAB are preferable from the viewpoint of low Tg of polyimide and developability. Some of these diamines can also be used as diamines used in polyimide.
 さらに、本実施の形態においては、ポリイミドが、下記一般式(6)で表される構造を繰り返し単位として有することが好ましい。 Furthermore, in the present embodiment, it is preferable that the polyimide has a structure represented by the following general formula (6) as a repeating unit.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式(6)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表し、同じであっても異なっていてもよい。R、R、R、R12、及びR15は、炭素数1~炭素数20の4価の有機基を表す。m、n、pは、それぞれ独立して0以上30以下の整数を表す。R16は4価の有機基を表し、R17は炭素数1~炭素数90の2価の有機基を表す。A、B、Cは各単位のmol%を表し、0.10≦(A+B)/(A+B+C)≦0.85を満たす。) (In formula (6), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, and may be the same or different, and R 3 , R 6 , R 9 , R 12 , and R 15 are tetravalent having 1 to 20 carbon atoms. M, n, and p each independently represents an integer of 0 or more and 30 or less, R 16 represents a tetravalent organic group, and R 17 represents a divalent having 1 to 90 carbon atoms. A, B, and C represent mol% of each unit, and satisfy 0.10 ≦ (A + B) / (A + B + C) ≦ 0.85.
 上記一般式(6)で表される構造の中でも、現像性、反り、及び絶縁信頼性の観点から、0.10≦(A+B)/(A+B+C)≦0.85であることが好ましく、0.15≦(A+B)/(A+B+C)≦0.8がより好ましく、0.2≦(A+B)/(A+B+C)≦0.7がさらに好ましい。上記一般式(15)で表されるジアミンを含む構造である(A+B)が全体に対して0.10以上であることで、反りを低減させる事ができる。また、上記一般式(15)で表されるジアミンを含む構造である(A+B)が全体に対して0.85以下であることで、弾性率及びガラス転移点(Tg)の低下が抑えられ、絶縁信頼性が保たれる。さらに、ポリイミド構造である(A+B)が全体に対して0.85以下であることで、アルカリ現像液に対して溶解性が発現し、現像性が良好となる。 Among the structures represented by the general formula (6), from the viewpoints of developability, warpage, and insulation reliability, 0.10 ≦ (A + B) / (A + B + C) ≦ 0.85 is preferable. 15 ≦ (A + B) / (A + B + C) ≦ 0.8 is more preferable, and 0.2 ≦ (A + B) / (A + B + C) ≦ 0.7 is more preferable. When (A + B) which is a structure containing the diamine represented by the general formula (15) is 0.10 or more based on the whole, warpage can be reduced. Moreover, since the (A + B) which is a structure containing the diamine represented by the general formula (15) is 0.85 or less with respect to the whole, a decrease in elastic modulus and glass transition point (Tg) is suppressed, Insulation reliability is maintained. Furthermore, when (A + B) which is a polyimide structure is 0.85 or less with respect to the whole, the solubility with respect to the alkaline developer is developed, and the developability is improved.
 ポリイミドの主鎖末端は、性能に影響を与えない構造であれば、特に限定されない。ポリイミドを製造する際に用いる酸二無水物、ジアミンに由来する末端でもよいし、その他の酸無水物、アミン化合物などにより末端を封止することもできる。 The main chain terminal of the polyimide is not particularly limited as long as it does not affect the performance. A terminal derived from an acid dianhydride or a diamine used for producing polyimide may be used, or the terminal may be sealed with another acid anhydride or an amine compound.
 ポリイミドの重量平均分子量としては、1000以上1000000以下であることが好ましい。ここで、重量平均分子量とは、既知の重量平均分子量のポリスチレンを標準として、ゲルパーミエーションクロマトグラフィーによって測定される分子量をいう。重量平均分子量はポリイミド膜の強度の観点から、1000以上であることが好ましい。またポリイミド含有樹脂組成物の粘度、成型性の観点から、1000000以下であることが好ましい。重量平均分子量は5000以上、500000以下がより好ましく、10000以上300000以下が特に好ましく、20000以上、50000以下が最も好ましい。 The weight average molecular weight of the polyimide is preferably from 1,000 to 1,000,000. Here, the weight average molecular weight refers to a molecular weight measured by gel permeation chromatography using polystyrene having a known weight average molecular weight as a standard. The weight average molecular weight is preferably 1000 or more from the viewpoint of the strength of the polyimide film. Moreover, it is preferable that it is 1000000 or less from a viewpoint of the viscosity of a polyimide containing resin composition and a moldability. The weight average molecular weight is more preferably from 5,000 to 500,000, particularly preferably from 10,000 to 300,000, and most preferably from 20,000 to 50,000.
 ポリイミド構造及びポリアミド酸構造をそれぞれ繰り返し単位として有するポリイミドは、酸二無水物とジアミンを非等モル量で反応させて1段階目のポリイミド部位を合成する工程(工程1)、続いて2段階目のポリアミド酸部位を合成する工程(工程2)により作製することができる。以下、それぞれの工程について説明する。 A polyimide having a polyimide structure and a polyamic acid structure as repeating units, respectively, is a process of synthesizing a first-stage polyimide site by reacting acid dianhydride and diamine in an unequal molar amount (process 1), followed by a second stage. It can be produced by the step of synthesizing the polyamic acid moiety (step 2). Hereinafter, each process will be described.
(工程1)
 1段階目のポリイミド部位を合成する工程について説明する。1段階目のポリイミド部位を合成する工程としては特に限定されず、公知の方法を適用することができる。より具体的には、以下の方法により得られる。まずジアミンを重合溶媒に溶解及び/又は分散し、これに酸二無水物粉末を添加する。そして、水と共沸する溶媒を加え、メカニカルスターラーを用い、副生する水を共沸除去しながら、0.5時間~96時間好ましくは0.5時間~30時間加熱撹拌する。この際モノマー濃度は0.5質量%以上、95質量%以下、好ましくは1質量%以上、90質量%以下である。
(Process 1)
The process of synthesizing the first stage polyimide site will be described. The step of synthesizing the first-stage polyimide site is not particularly limited, and a known method can be applied. More specifically, it is obtained by the following method. First, diamine is dissolved and / or dispersed in a polymerization solvent, and acid dianhydride powder is added thereto. Then, a solvent that is azeotroped with water is added, and the mixture is heated and stirred for 0.5 to 96 hours, preferably 0.5 to 30 hours, while removing by-product water azeotropically using a mechanical stirrer. In this case, the monomer concentration is 0.5% by mass or more and 95% by mass or less, preferably 1% by mass or more and 90% by mass or less.
 ポリイミド部位を合成する際は、公知のイミド化触媒を添加することによっても、無触媒によっても、ポリイミド部位を得ることができる。イミド化触媒は特に制限されないが、無水酢酸のような酸無水物、γ―バレロラクトン、γ―ブチロラクトン、γ-テトロン酸、γ-フタリド、γ-クマリン、γ-フタリド酸のようなラクトン化合物、ピリジン、キノリン、N-メチルモルホリン、トリエチルアミンのような三級アミンなどが挙げられる。また、必要に応じて1種、あるいは2種以上の混合物であってもよい。この中でも特に、反応性の高さ及び次反応への影響の観点からγ-バレロラクトンとピリジンの混合系及び無触媒が特に好ましい。 When synthesizing the polyimide part, the polyimide part can be obtained by adding a known imidation catalyst or by using no catalyst. The imidization catalyst is not particularly limited, but an acid anhydride such as acetic anhydride, a lactone compound such as γ-valerolactone, γ-butyrolactone, γ-tetronic acid, γ-phthalide, γ-coumarin, and γ-phthalido acid, Examples thereof include tertiary amines such as pyridine, quinoline, N-methylmorpholine, and triethylamine. Moreover, 1 type or 2 or more types of mixtures may be sufficient as needed. Among these, a mixed system of γ-valerolactone and pyridine and a non-catalyst are particularly preferable from the viewpoint of high reactivity and influence on the next reaction.
 イミド化触媒の添加量としては、ポリアミド酸を100質量部とすると、50質量部以下が好ましく、30質量部以下がより好ましい。 The amount of the imidization catalyst added is preferably 50 parts by mass or less, and more preferably 30 parts by mass or less when the polyamic acid is 100 parts by mass.
 ポリイミド部位の合成の際に使用される反応溶媒としては、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルのような炭素数2以上9以下のエーテル化合物;アセトン、メチルエチルケトンのような炭素数2以上6以下のケトン化合物;ノルマルペンタン、シクロペンタン、ノルマルヘキサン、シクロヘキサン、メチルシクロヘキサン、デカリンのような炭素数5以上10以下の飽和炭化水素化合物;ベンゼン、トルエン、キシレン、メシチレン、テトラリンのような炭素数6以上10以下の芳香族炭化水素化合物;酢酸メチル、酢酸エチル、γ―ブチロラクトン、安息香酸メチルのような炭素数3以上12以下のエステル化合物;クロロホルム、塩化メチレン、1,2-ジクロロエタンのような炭素数1以上10以下の含ハロゲン化合物;アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンのような炭素数2以上10以下の含窒素化合物;ジメチルスルホキシドのような含硫黄化合物が挙げられる。これらは必要に応じて1種、あるいは2種以上の混合物であってもよい。特に好ましい溶媒としては、炭素数2以上9以下のエーテル化合物、炭素数3以上12以下のエステル化合物、炭素数6以上10以下の芳香族炭化水素化合物、炭素数2以上10以下の含窒素化合物が挙げられる。これらは工業的な生産性、次反応への影響などを考慮して任意に選択可能である。 The reaction solvent used in the synthesis of the polyimide moiety is an ether having 2 to 9 carbon atoms, such as dimethyl ether, diethyl ether, methyl ethyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether. Compound; ketone compound having 2 to 6 carbon atoms such as acetone and methyl ethyl ketone; saturated hydrocarbon compound having 5 to 10 carbon atoms such as normal pentane, cyclopentane, normal hexane, cyclohexane, methylcyclohexane and decalin; benzene, Aromatic hydrocarbon compounds having 6 to 10 carbon atoms such as toluene, xylene, mesitylene, tetralin; methyl acetate, ethyl acetate, γ-butyrolactone Ester compounds having 3 to 12 carbon atoms such as methyl benzoate; halogen-containing compounds having 1 to 10 carbon atoms such as chloroform, methylene chloride, and 1,2-dichloroethane; acetonitrile, N, N-dimethylformamide, N , N-dimethylacetamide, N-methyl-2-pyrrolidone and other nitrogen-containing compounds having 2 to 10 carbon atoms; sulfur-containing compounds such as dimethyl sulfoxide. These may be one kind or a mixture of two or more kinds as required. Particularly preferred solvents include ether compounds having 2 to 9 carbon atoms, ester compounds having 3 to 12 carbon atoms, aromatic hydrocarbon compounds having 6 to 10 carbon atoms, and nitrogen-containing compounds having 2 to 10 carbon atoms. Can be mentioned. These can be arbitrarily selected in consideration of industrial productivity and influence on the next reaction.
 ポリイミド部位の合成においては、反応温度は15℃以上、250℃以下で実施することが好ましい。反応温度が15℃以上であれば反応が開始され、また250℃以下であれば触媒の失活が無い。好ましくは20℃以上、220℃以下、さらに好ましくは20℃以上、200℃以下である。 In the synthesis of the polyimide part, the reaction temperature is preferably 15 ° C. or higher and 250 ° C. or lower. If the reaction temperature is 15 ° C. or higher, the reaction starts, and if it is 250 ° C. or lower, there is no deactivation of the catalyst. Preferably they are 20 degreeC or more and 220 degrees C or less, More preferably, they are 20 degreeC or more and 200 degrees C or less.
 反応に要する時間は、目的あるいは反応条件によって異なるが、通常は96時間以内であり、特に好適には30分から30時間の範囲で実施される。 The time required for the reaction varies depending on the purpose or reaction conditions, but is usually within 96 hours, particularly preferably in the range of 30 minutes to 30 hours.
(工程2)
 次に、2段階目のポリアミド酸部位を合成する工程について説明する。2段階目のポリアミド酸部位の合成は、工程1で得られたポリイミド部位を出発原料として用い、ジアミン及び/又は酸二無水物を追添して重合させることで実施できる。2段階目のポリアミド酸部位の合成の際の重合温度としては、0℃以上250℃以下が好ましく、0℃以上100℃以下がさらに好ましく、0℃以上80℃以下が特に好ましい。
(Process 2)
Next, the process for synthesizing the second stage polyamic acid moiety will be described. The synthesis of the polyamic acid moiety in the second stage can be carried out by using the polyimide moiety obtained in Step 1 as a starting material and adding diamine and / or acid dianhydride for polymerization. The polymerization temperature in the synthesis of the second stage polyamic acid moiety is preferably 0 ° C. or higher and 250 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower, and particularly preferably 0 ° C. or higher and 80 ° C. or lower.
 ポリアミド酸の合成の際の反応に要する時間は、目的あるいは反応条件によって異なるが、通常は96時間以内であり、特に好適には30分から30時間の範囲で実施される。 The time required for the reaction during the synthesis of the polyamic acid varies depending on the purpose or reaction conditions, but is usually within 96 hours, particularly preferably in the range of 30 minutes to 30 hours.
 反応溶媒としては、工程1でポリイミド部位の合成に使用したものと同じものを用いることができる。その場合、工程1の反応溶液をそのまま用いてポリアミド酸部位の合成を行うことができる。また、ポリイミド部位の合成に用いたものと異なる溶媒を用いてもよい。 As the reaction solvent, the same solvent used for the synthesis of the polyimide moiety in Step 1 can be used. In that case, the polyamic acid moiety can be synthesized using the reaction solution of Step 1 as it is. Moreover, you may use the solvent different from what was used for the synthesis | combination of a polyimide site | part.
 このような溶媒としては、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルのような炭素数2以上9以下のエーテル化合物;アセトン、メチルエチルケトンのような炭素数2以上6以下のケトン化合物;ノルマルペンタン、シクロペンタン、ノルマルヘキサン、シクロヘキサン、メチルシクロヘキサン、デカリンのような炭素数5以上10以下の飽和炭化水素化合物;ベンゼン、トルエン、キシレン、メシチレン、テトラリンのような炭素数6以上10以下の芳香族炭化水素化合物;酢酸メチル、酢酸エチル、γ―ブチロラクトン、安息香酸メチルのような炭素数3以上12以下のエステル化合物;クロロホルム、塩化メチレン、1,2-ジクロロエタンのような炭素数1以上10以下の含ハロゲン化合物;アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンのような炭素数2以上10以下の含窒素化合物;ジメチルスルホキシドのような含硫黄化合物が挙げられる。 Examples of such a solvent include ether compounds having 2 to 9 carbon atoms such as dimethyl ether, diethyl ether, methyl ethyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether; acetone, methyl ethyl ketone, and the like. Ketone compounds having 2 to 6 carbon atoms; saturated hydrocarbon compounds having 5 to 10 carbon atoms such as normal pentane, cyclopentane, normal hexane, cyclohexane, methylcyclohexane, decalin; benzene, toluene, xylene, mesitylene, tetralin Aromatic hydrocarbon compounds having 6 to 10 carbon atoms, such as methyl acetate, ethyl acetate, γ-butyrolactone, methyl benzoate More than 12 ester compounds; halogen-containing compounds having 1 to 10 carbon atoms such as chloroform, methylene chloride, 1,2-dichloroethane; acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Nitrogen-containing compounds having 2 to 10 carbon atoms such as -2-pyrrolidone; sulfur-containing compounds such as dimethyl sulfoxide.
 これらは必要に応じて1種、あるいは2種以上の混合物であってもよい。特に好ましい溶媒としては、炭素数2以上9以下のエーテル化合物、炭素数3以上12以下のエステル化合物、炭素数6以上10以下の芳香族炭化水素化合物、炭素数2以上10以下の含窒素化合物が挙げられる。これらは工業的な生産性、次反応への影響などを考慮して任意に選択可能である。 These may be one kind or a mixture of two or more kinds as required. Particularly preferred solvents include ether compounds having 2 to 9 carbon atoms, ester compounds having 3 to 12 carbon atoms, aromatic hydrocarbon compounds having 6 to 10 carbon atoms, and nitrogen-containing compounds having 2 to 10 carbon atoms. Can be mentioned. These can be arbitrarily selected in consideration of industrial productivity and influence on the next reaction.
 製造終了後のポリイミドは、反応溶媒に溶かしたまま用いてもよいし、以下の方法で回収・精製してもよい。また、製造終了後のポリイミドの回収は、反応溶液中の溶媒を減圧留去することに行うことができる。 After completion of production, the polyimide may be used as it is dissolved in the reaction solvent, or may be recovered and purified by the following method. Moreover, the collection | recovery of the polyimide after completion | finish of manufacture can be performed by depressurizingly distilling the solvent in a reaction solution.
 ポリイミドの精製方法としては、反応溶液中の不溶解な酸二無水物及びジアミンを減圧濾過、加圧濾過などで除去する方法が挙げられる。また、反応溶液を貧溶媒に加え析出させる、いわゆる再沈殿による精製方法を実施することができる。更に特別に高純度なポリイミドが必要な場合は超臨界二酸化炭素を用いた抽出による精製方法も可能である。 Examples of the polyimide purification method include a method of removing insoluble acid dianhydride and diamine in the reaction solution by vacuum filtration, pressure filtration, or the like. Moreover, the purification method by what is called reprecipitation which adds a reaction solution to a poor solvent and precipitates can be implemented. Furthermore, when a particularly high-purity polyimide is required, a purification method by extraction using supercritical carbon dioxide is also possible.
 本実施の形態に係る感光性樹脂組成物においては、2官能水酸基含有化合物と、ブロックイソシアネートと、を含有することで絶縁信頼性が向上し、かつ反りを抑制できる。2官能水酸基含有化合物に含まれる水酸基とブロックイソシアネートに含まれるイソシアネート基との反応による架橋体形成により、絶縁信頼性が向上すると推定される。また、2官能水酸基含有化合物が、ポリイミドの骨格中に取り込まれずに第二成分として存在することで、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できる。さらに、ブロックイソシアネートが含まれることにより、低温でカルボキシル基を不活性化し、低温硬化が可能となるため、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できると考えられる。 In the photosensitive resin composition according to the present embodiment, insulation reliability is improved and warpage can be suppressed by containing a bifunctional hydroxyl group-containing compound and blocked isocyanate. It is presumed that the insulation reliability is improved by the formation of a crosslinked body by the reaction between the hydroxyl group contained in the bifunctional hydroxyl group-containing compound and the isocyanate group contained in the blocked isocyanate. In addition, since the bifunctional hydroxyl group-containing compound is present as the second component without being taken into the polyimide skeleton, shrinkage of the polyimide skeleton during curing can be prevented and warpage can be suppressed. Furthermore, the inclusion of the blocked isocyanate inactivates the carboxyl group at a low temperature and enables low-temperature curing. Therefore, it is considered that the shrinkage of the polyimide skeleton during curing can be prevented and the warpage can be suppressed.
 なお、上述した実施の形態においては、(A)高分子化合物としてポリイミドを用いる例について説明したが、(A)高分子化合物としては、ポリアミド酸構造を含まないポリイミド、ポリイミド構造を含まないポリアミド、ポリアミド酸構造とポリイミド構造とを共に含むポリアミドイミドなどを用いることも可能である。 In the above-described embodiment, the example in which polyimide is used as the polymer compound (A) has been described. However, as the polymer compound, polyimide that does not include a polyamic acid structure, polyamide that does not include a polyimide structure, It is also possible to use a polyamideimide containing both a polyamic acid structure and a polyimide structure.
 また、本実施の形態に係る樹脂組成物においては、耐熱性の観点から、2官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネートに含まれるイソシアネート基とのモル比が、水酸基/イソシアネート基=0.5~1であることが好ましい。 In the resin composition according to the present embodiment, from the viewpoint of heat resistance, the molar ratio of the hydroxyl group contained in the bifunctional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate is hydroxyl group / isocyanate group = 0. It is preferably 5 to 1.
(b)2官能水酸基含有化合物
 2官能水酸基含有化合物としては、本発明の効果を奏する範囲で、上記第1の実施の形態に係る樹脂組成物に用いた多官能水酸基含有化合物と同様のものを用いることができる。
(B) Bifunctional hydroxyl group-containing compound The bifunctional hydroxyl group-containing compound is the same as the polyfunctional hydroxyl group-containing compound used in the resin composition according to the first embodiment as long as the effects of the present invention are achieved. Can be used.
(c-1)ブロックイソシアネート化合物
 ブロックイソシアネート化合物としては、上記第1の実施の形態に係る樹脂組成物に用いるものと同様のものを用いることができる。また、第1の実施の形態に係る樹脂組成物と同様に、本発明の効果を奏する範囲で、他の多官能イソシアネート化合物や多官能オキサゾリン化合物を用いることもできる。
(C-1) Blocked isocyanate compound As the blocked isocyanate compound, the same compounds as those used for the resin composition according to the first embodiment can be used. Moreover, similarly to the resin composition according to the first embodiment, other polyfunctional isocyanate compounds and polyfunctional oxazoline compounds can also be used within the range where the effects of the present invention are exhibited.
(D)感光剤
 本実施の形態に係る感光性樹脂組成物は、感光剤として少なくとも2つ以上の光重合可能な不飽和二重結合を有する(メタ)アクリレート化合物を含み、さらに(E)光重合開始剤を含むことが好ましい。本実施の形態に係る感光性樹脂組成物における感光剤とは、光照射により構造が変化し、溶媒に対する溶解性が変化する性質を有する化合物を表す。本実施の形態に係る感光性樹脂組成物においては、2つ以上の光重合可能な不飽和二重結合を有する(メタ)アクリレート化合物と光重合開始剤とを含むことにより、2つ以上の光重合可能な不飽和二重結合を有する(メタ)アクリレート化合物によっても架橋体が形成されるので、現像性、及び絶縁信頼性が向上する。
(D) Photosensitive agent The photosensitive resin composition according to the present embodiment includes a (meth) acrylate compound having at least two or more photopolymerizable unsaturated double bonds as a photosensitive agent, and further includes (E) light. It preferably contains a polymerization initiator. The photosensitive agent in the photosensitive resin composition according to the present embodiment represents a compound having a property that the structure is changed by light irradiation and the solubility in a solvent is changed. In the photosensitive resin composition which concerns on this Embodiment, two or more light is contained by including the (meth) acrylate compound and photoinitiator which have two or more photopolymerizable unsaturated double bonds. Since a crosslinked body is formed also by the (meth) acrylate compound having a polymerizable unsaturated double bond, developability and insulation reliability are improved.
 2つ以上の光重合可能な不飽和二重結合を有する(メタ)アクリレート化合物としては、トリシクロデカンジメチロールジアクリレート、エチレンオキシド(EO)変性ビスフェノールAジメタクリレート、EO変性水添ビスフェノールAジアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,4-シクロヘキサンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-ジ(p-ヒドロキシフェニル)プロパンジ(メタ)アクリレート、トリス(2-アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリオキシプロピルトリメチロールプロパントリ(メタ)アクリレート、ポリオキシエチルトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリグリシジルエーテル(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、β―ヒドロキシプロピル-β’-(アクリロイルキシ)-プロピルフタレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ/テトラ(メタ)アクリレートなどが挙げられる。その中で、現像性や焼成後の反りの観点から、EO変性ビスフェノールAジメタクリレート、EO変性水添ビスフェノールAジアクリレート、ペンタエリスリトールトリ/テトラ(メタ)アクリレートが好ましい。 Examples of the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds include tricyclodecane dimethylol diacrylate, ethylene oxide (EO) modified bisphenol A dimethacrylate, EO modified hydrogenated bisphenol A diacrylate, 1,6-hexanediol (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 2-di (p-hydroxyphenyl) propanedi ( (Meth) acrylate, tris (2-acryloxyethyl) isocyanurate, ε-caprolactone modified tris (acryloxyethyl) isocyanurate, glycerol tri (meth) acrylate, trimethylolprop Tri (meth) acrylate, polyoxypropyltrimethylolpropane tri (meth) acrylate, polyoxyethyltrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane triglycidyl ether (meth) acrylate, Bisphenol A diglycidyl ether di (meth) acrylate, β-hydroxypropyl-β '-(acryloyloxy) -propyl phthalate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, pentaerythritol tri (meth) Acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri / tetra (meth) acrylate, etc. And the like. Among them, EO-modified bisphenol A dimethacrylate, EO-modified hydrogenated bisphenol A diacrylate, and pentaerythritol tri / tetra (meth) acrylate are preferable from the viewpoint of developability and warpage after firing.
 また、現像性と絶縁信頼性の観点から、二重結合を2つ有する化合物と二重結合を3つ以上有する化合物の組合せであることが好ましい。二重結合を3つ以上有する化合物が剛直な架橋体を形成することにより、硬化膜の弾性率やガラス転移点(Tg)が高くなり、絶縁信頼性が向上すると推定される。 In addition, from the viewpoint of developability and insulation reliability, a combination of a compound having two double bonds and a compound having three or more double bonds is preferable. It is estimated that the compound having three or more double bonds forms a rigid cross-linked body, whereby the elastic modulus and glass transition point (Tg) of the cured film are increased, and the insulation reliability is improved.
 通常二重結合を3つ以上有する化合物を含む場合には、架橋点が増えることから反りが発生する傾向にある。しかしながら、本実施の形態においては、2官能水酸基含有化合物が、二重結合を有する化合物と架橋構造を形成することなく、感光性樹脂組成物中に第二成分として存在することによって、反りを軽減することができる。 In general, when a compound having three or more double bonds is included, warping tends to occur because the number of crosslinking points increases. However, in this embodiment, the bifunctional hydroxyl group-containing compound is present as a second component in the photosensitive resin composition without forming a crosslinked structure with the compound having a double bond, thereby reducing warpage. can do.
 二重結合を3つ以上有する化合物としては、ペンタエリスリトールトリ/テトラアクリレート(商品名:アロニックス(登録商標)M-306、東亞合成社製)、トリメチロールプロパンPO変性トリアクリレート(商品名:アロニックスM-310、東亞合成社製)、ペンタエリスリトールテトラアクリレート(商品名:A-TMMT、新中村化学工業社製)、EO変性グリセロールトリ(メタ)アクリレート(商品名:A-GLY-9E(EO変性9mol)、新中村化学工業社製)、ジトリメチロールプロパンテトラアクリレート(商品名:アロニックスM-408、東亞合成社製)、ジペンタエリスリトールペンタ及びヘキサアクリレート(商品名:アロニックスM-403、東亞合成社製)などが挙げられる。 Examples of the compound having three or more double bonds include pentaerythritol tri / tetraacrylate (trade name: Aronix (registered trademark) M-306, manufactured by Toagosei Co., Ltd.), trimethylolpropane PO-modified triacrylate (trade name: Aronix M). -310, manufactured by Toagosei Co., Ltd., pentaerythritol tetraacrylate (trade name: A-TMMT, Shin-Nakamura Chemical Co., Ltd.), EO-modified glycerol tri (meth) acrylate (trade name: A-GLY-9E (EO-modified 9 mol) ), Shin-Nakamura Chemical Co., Ltd.), ditrimethylolpropane tetraacrylate (trade name: Aronix M-408, manufactured by Toagosei Co., Ltd.), dipentaerythritol pentaacrylate and hexaacrylate (trade name: Aronix M-403, manufactured by Toagosei Co., Ltd.) ) And the like.
 2つ以上の光重合可能な不飽和二重結合を有する(メタ)アクリレート化合物の量は、ポリイミドの量を100質量部とした場合、現像性の観点から5質量部以上60質量部以下が好ましく、10質量部以上40質量部以下がより好ましい。 The amount of the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds is preferably 5 parts by mass or more and 60 parts by mass or less from the viewpoint of developability when the amount of polyimide is 100 parts by mass. 10 parts by mass or more and 40 parts by mass or less are more preferable.
 なお、本実施の形態に係る樹脂組成物においては、感光性樹脂として用いない場合には、必ずしも(D)感光剤を用いる必要はない。 In the resin composition according to the present embodiment, when not used as a photosensitive resin, it is not always necessary to use (D) a photosensitive agent.
(E)光重合開始剤
 光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンのようなベンジルジメチルケタール類、ベンジルジプロピルケタール類、ベンジルジフェニルケタール類、ベンゾインメチルエーテル類、ベンゾインエチルエーテル、チオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-イソプロピルチオキサントン、2-フルオロチオキサントン、4-フルオロチオキサントン、2-クロロチオキサントン、4-クロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン[ミヒラーズケトン]、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,2-ジメトキシ-2-フェニルアセトフェノンなどの芳香族ケトン化合物、ロフィン二量体などのトリアリールイミダゾール二量体、9-フェニルアクリジンなどのアクリジン化合物、α、α―ジメトキシ-α-モルホリノ-メチルチオフェニルアセトフェノン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、N-アリール-α―アミノ酸などのオキシムエステル化合物、p-ジメチルアミノ安息香酸、p-ジメチルアミノ安息香酸、p-ジエチルアミノ安息香酸、p-ジイソプロピルアミノ安息香酸、p-安息香酸エステル、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンなどのα―ヒドロキシアルキルフェノン類、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホニル)フェニル]-1-ブタノンなどのα―アミノアルキルフェノン類、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどのアシルフォスフィンオキサイド類、1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などのオキシムエステル類などが挙げられる。これらの中で、感度の観点から、オキシムエステル類が好ましい。
(E) Photopolymerization initiator Photopolymerization initiators include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one, benzyl dipropyl ketals, benzyl diphenyl ketals, benzoin Methyl ethers, benzoin ethyl ether, thioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-isopropylthioxanthone, 2-fluorothioxanthone, 4-fluorothioxanthone 2-chlorothioxanthone, 4-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, benzophenone, 4,4′-bis (dimethylamino) benzophenone [Michler's ketone], 4,4′- Aromatic ketone compounds such as su (diethylamino) benzophenone, 2,2-dimethoxy-2-phenylacetophenone, triarylimidazole dimers such as lophine dimer, acridine compounds such as 9-phenylacridine, α, α-dimethoxy Oxime ester compounds such as -α-morpholino-methylthiophenylacetophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, N-aryl-α-amino acid, p-dimethylaminobenzoic acid, p-dimethylaminobenzoic acid, p- Diethylaminobenzoic acid, p-diisopropylaminobenzoic acid, p-benzoic acid ester, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-Hydro Xyloxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4-[(2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2 Α-hydroxyalkylphenones such as methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2- (dimethylamino) -2- [ Α-aminoalkylphenones such as (4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis Acylphosphine oxides such as (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1,2-octyl Tandione 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O And oxime esters such as -acetyloxime). Among these, oxime esters are preferable from the viewpoint of sensitivity.
 光重合開始剤の量は、ポリイミドの量を100質量部とした場合、感度及び解像度の観点から、0.01質量部以上40質量部以下が好ましい。0.5質量部以上35質量部以下がより好ましい。 The amount of the photopolymerization initiator is preferably 0.01 parts by mass or more and 40 parts by mass or less from the viewpoint of sensitivity and resolution when the amount of polyimide is 100 parts by mass. 0.5 parts by mass or more and 35 parts by mass or less are more preferable.
(F)リン化合物
 感光性樹脂組成物は、リン化合物を含有することが好ましい。リン化合物は、構造中にリン原子を含むリン原子含有化合物であれば限定されない。このようなリン化合物としては、リン酸エステル構造を有するリン酸エステル化合物、又はホスファゼン構造を有するホスファゼン化合物などが挙げられる。
(F) Phosphorus compound It is preferable that the photosensitive resin composition contains a phosphorus compound. A phosphorus compound will not be limited if it is a phosphorus atom containing compound which contains a phosphorus atom in a structure. Examples of such phosphorus compounds include phosphate ester compounds having a phosphate ester structure and phosphazene compounds having a phosphazene structure.
 リン酸エステル化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリイソブチルホスフェート、トリス(2-エチルヘキシル)ホスフェートなどの脂肪族炭化水素基を置換基とするリン酸エステル、トリス(ブトキシエチル)ホスフェートなどの酸素原子を含む脂肪族有機基を置換基とするリン酸エステル、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)などの芳香族有機基を置換基とするリン酸エステル化合物などが挙げられる。これらの中で、現像性の観点からトリス(ブトキシエチル)ホスフェート、トリイソブチルホスフェートが好ましい。 Phosphoric acid ester compounds such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, triisobutyl phosphate, tris (2-ethylhexyl) phosphate, etc., phosphoric acid ester substituted with an aliphatic hydrocarbon group, tris (butoxyethyl) phosphate, etc. Phosphorus ester, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, resorcinol bis (diphenyl phosphate) and other aromatic organic groups as substituents Examples include acid ester compounds. Among these, tris (butoxyethyl) phosphate and triisobutyl phosphate are preferable from the viewpoint of developability.
 ホスファゼン化合物としては、下記一般式(17)、下記一般式(18)で表される構造などが挙げられる。 Examples of the phosphazene compound include structures represented by the following general formula (17) and the following general formula (18).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 上記一般式(17)及び上記一般式(18)で表されるホスファゼン化合物におけるR21、R22、R23、R24としては、炭素数1以上20以下の有機基であれば限定されない。炭素数1以上であれば、難燃性が発現する傾向にあるため好ましい。炭素数20以下であれば、ポリイミドと相溶する傾向にあるため好ましい。この中で、難燃性発現の観点から、炭素数6以上18以下の芳香族性化合物に由来する官能基が特に好ましい。このような官能基として、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-ヒドロキシフェニル基、3-ヒドロキシフェニル基、4-ヒドロキシフェニル基、2-シアノフェニル基、3-シアノフェニル基、4-シアノフェニル基などのフェニル基を有する官能基、1-ナフチル基、2-ナフチル基などのナフチル基を有する官能基、ピリジン、イミダゾール、トリアゾール、テトラゾールなどの含窒素複素環化合物に由来する官能基などが挙げられる。これらの化合物は、必要に応じて1種類でも2種類以上の組み合わせで用いてもよい。この中で、入手の容易さからフェニル基、3-メチルフェニル基、4-ヒドロキシフェニル基、4-シアノフェニル基を有する化合物が好ましい。 R 21 , R 22 , R 23 , and R 24 in the phosphazene compound represented by the general formula (17) and the general formula (18) are not limited as long as they are organic groups having 1 to 20 carbon atoms. A carbon number of 1 or more is preferable because flame retardancy tends to be exhibited. A carbon number of 20 or less is preferred because it tends to be compatible with polyimide. Among these, a functional group derived from an aromatic compound having 6 to 18 carbon atoms is particularly preferable from the viewpoint of flame retardancy. Such functional groups include phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 2-cyanophenyl. Groups, functional groups having a phenyl group such as 3-cyanophenyl group, 4-cyanophenyl group, functional groups having a naphthyl group such as 1-naphthyl group, 2-naphthyl group, pyridine, imidazole, triazole, tetrazole, etc. Examples include functional groups derived from nitrogen heterocyclic compounds. These compounds may be used alone or in combination of two or more as required. Of these, compounds having a phenyl group, a 3-methylphenyl group, a 4-hydroxyphenyl group, and a 4-cyanophenyl group are preferred because of their availability.
 上記一般式(17)で表されるホスファゼン化合物におけるvは、3以上25以下であれば限定されない。3以上であれば、難燃性を発現し、25以下であれば、有機溶剤に対する溶解性が高い。この中で特に、入手の容易さからvが3以上10以下であることが好ましい。 V in the phosphazene compound represented by the general formula (17) is not limited as long as it is 3 or more and 25 or less. When it is 3 or more, flame retardancy is exhibited, and when it is 25 or less, the solubility in an organic solvent is high. Among these, it is preferable that v is 3 or more and 10 or less because of availability.
 上記一般式(18)で表されるホスファゼン化合物におけるwは、3以上10000以下であれば限定されない。3以上であれば難燃性を発現し、10000以下であれば、有機溶剤に対する溶解性が高い。この中で特に、入手の容易さから3以上100以下が好ましい。 W in the phosphazene compound represented by the general formula (18) is not limited as long as it is 3 or more and 10,000 or less. When it is 3 or more, flame retardancy is exhibited, and when it is 10,000 or less, the solubility in organic solvents is high. Among these, 3 or more and 100 or less are preferable in view of availability.
 上記一般式(18)で表されるホスファゼン化合物におけるG及びJは、炭素数3以上30以下の有機基であれば限定されない。この中で、Gとしては、-N=P(OC、-N=P(OC(OCOH)、-N=P(OC)(OCOH)、-N=P(OCOH)、-N=P(O)(OC)、-N=P(O)(OCOH)が好ましい。Jとしては、-P(OC、-P(OC(OCOH)、-P(OC(OCOH)、-P(OC)(OCOH)、-P(OCOH)、-P(O)(OC、-P(O)(OCOH)、-P(O)(OC)(OCOH)などが好ましい。 G and J in the phosphazene compound represented by the general formula (18) are not limited as long as they are organic groups having 3 to 30 carbon atoms. In this, as G, —N═P (OC 6 H 5 ) 3 , —N═P (OC 6 H 5 ) 2 (OC 6 H 4 OH), —N═P (OC 6 H 5 ) ( OC 6 H 4 OH) 2 , —N═P (OC 6 H 4 OH) 3 , —N═P (O) (OC 6 H 5 ), —N═P (O) (OC 6 H 4 OH) preferable. J includes -P (OC 6 H 5 ) 4 , -P (OC 6 H 5 ) 3 (OC 6 H 4 OH), -P (OC 6 H 5 ) 2 (OC 6 H 4 OH) 2 ,- P (OC 6 H 5 ) (OC 6 H 4 OH) 3 , —P (OC 6 H 4 OH) 4 , —P (O) (OC 6 H 5 ) 2 , —P (O) (OC 6 H 4 OH) 2 , —P (O) (OC 6 H 5 ) (OC 6 H 4 OH) and the like are preferable.
 リン化合物としては、1種類のリン化合物を用いてもよく、2種類以上のリン化合物を組み合わせて用いてもよい。 As the phosphorus compound, one type of phosphorus compound may be used, or two or more types of phosphorus compounds may be used in combination.
 感光性樹脂組成物におけるリン化合物の添加量は、ポリイミドの量を100質量部とした場合、現像性などの観点から、50質量部以下が好ましい。硬化体の難燃性の観点から、45質量部以下がより好ましい。また、5質量部以上あれば効果を発揮する。 The addition amount of the phosphorus compound in the photosensitive resin composition is preferably 50 parts by mass or less from the viewpoint of developability and the like when the amount of polyimide is 100 parts by mass. From the viewpoint of flame retardancy of the cured product, 45 parts by mass or less is more preferable. Moreover, if it is 5 mass parts or more, an effect is exhibited.
(G)その他化合物
 感光性樹脂組成物においては、その性能に悪影響を及ぼさない範囲で、その他化合物を含むことが出来る。具体的には、焼成後のフィルムの靭性や耐溶剤性、耐熱性(熱安定性)を向上させるために用いられる熱硬化性樹脂、及びポリイミドと反応性を有する化合物などが挙げられる。また、密着性向上のために用いられる複素環化合物、及びフィルムの着色のために用いられる顔料や染料などが挙げられる。
(G) Other compounds The photosensitive resin composition may contain other compounds as long as the performance is not adversely affected. Specific examples include thermosetting resins used for improving the toughness, solvent resistance, and heat resistance (thermal stability) of the fired film, and compounds having reactivity with polyimide. Moreover, the heterocyclic compound used for adhesiveness improvement, the pigment, dye, etc. which are used for coloring of a film are mentioned.
 熱硬化性樹脂としては、エポキシ樹脂、シアネートエステル樹脂、不飽和ポリエステル樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾリン、フェノール樹脂、メラミン樹脂、マレイミド化合物などがあげられる。 Examples of the thermosetting resin include epoxy resins, cyanate ester resins, unsaturated polyester resins, benzoxazine resins, benzoxazolines, phenol resins, melamine resins, and maleimide compounds.
 ポリイミドと反応性を有する化合物としては、ポリマー中のカルボキシル基、アミノ基や末端の酸無水物と反応し、3次元架橋構造を形成できる化合物などが挙げられる。その中で、加熱することで塩基であるアミノ基を発生する、いわゆる熱塩基発生剤化合物が好ましい。例えば、アミンなどの塩基化合物のアミノ基を、スルホン酸などの酸で塩構造を作る、ジカーボネート化合物により保護する、酸クロライド化合物により保護することにより得られる化合物がある。それにより、室温では塩基性を発現せず安定であり、加熱により脱保護し、塩基を発生させる熱塩基発生剤とすることができる。 Examples of the compound having reactivity with polyimide include a compound capable of reacting with a carboxyl group, amino group or terminal acid anhydride in a polymer to form a three-dimensional crosslinked structure. Among them, a so-called thermal base generator compound that generates an amino group as a base by heating is preferable. For example, there is a compound obtained by protecting the amino group of a base compound such as an amine with an acid chloride compound, which forms a salt structure with an acid such as sulfonic acid, is protected with a dicarbonate compound. Thereby, it is stable without exhibiting basicity at room temperature, and can be a thermal base generator that generates a base by deprotection by heating.
 複素環化合物とはヘテロ原子を含む環式化合物であれば限定されない。ここで、本実施の形態におけるヘテロ原子には、酸素、硫黄、窒素、リンが挙げられる。具体例としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールのようなイミダゾール、1,2-ジメチルイミダゾールのようなN-アルキル基置換イミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールなどの芳香族基含有イミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾールなどのシアノ基含有イミダゾール、イミダゾールシランなどのケイ素含有イミダゾールなどのイミダゾール化合物、5-メチルベンゾトリアゾール、1-(1’、2’-ジカルボキシエチルベンゾトリアゾール)、1-(2-エチルヘキシアミノメチルベンゾトリアゾール)などのトリアゾール化合物、2-メチル-5-フェニルベンゾオキサゾールなどオキサゾール化合物などが挙げられる。 The heterocyclic compound is not limited as long as it is a cyclic compound containing a hetero atom. Here, the hetero atoms in this embodiment include oxygen, sulfur, nitrogen, and phosphorus. Specific examples include 2-methylimidazole, 2-undecylimidazole, 2-ethyl-4-methylimidazole, imidazole such as 2-phenylimidazole, N-alkyl group-substituted imidazole such as 1,2-dimethylimidazole, Aromatic group-containing imidazole such as 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl Cyano group-containing imidazoles such as -2-undecylimidazole and 1-cyanoethyl-2-phenylimidazole, imidazole compounds such as silicon-containing imidazoles such as imidazole silane, 5-methylbenzotriazole, 1- (1 ′, 2′-dica Bo carboxyethyl benzotriazole), triazole compounds such as 1- (2-ethyl-F carboxymethyl aminomethyl benzotriazole), etc. oxazole compounds 2-methyl-5-phenyl-benzoxazole and the like.
 顔料や染料としては、フタロシアニン系化合物があげられる。 Examples of pigments and dyes include phthalocyanine compounds.
 その他化合物の添加量は、0.01質量部以上、30質量部以下であれば限定されない。0.01質量部以上であれば十分に密着性やフィルムへの着色性が向上する傾向にあり、30質量部以下であれば感光性などへの悪影響がない。感光性樹脂組成物は、任意で、有機溶剤を含有してもよい。 The addition amount of other compounds is not limited as long as it is 0.01 parts by mass or more and 30 parts by mass or less. If it is 0.01 mass part or more, there exists a tendency for adhesiveness and the coloring property to a film to fully improve, and if it is 30 mass parts or less, there will be no bad influence on photosensitivity. The photosensitive resin composition may optionally contain an organic solvent.
 有機溶剤は、ポリイミドを均一に溶解及び/又は分散させうるものであれば限定されない。このような有機溶剤としては、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルのような炭素数2以上9以下のエーテル化合物;アセトン、メチルエチルケトンのような炭素数2以上6以下のケトン化合物;ノルマルペンタン、シクロペンタン、ノルマルヘキサン、シクロヘキサン、メチルシクロヘキサン、デカリンのような炭素数5以上10以下の飽和炭化水素化合物;ベンゼン、トルエン、キシレン、メシチレン、テトラリンのような炭素数6以上10以下の芳香族炭化水素化合物;酢酸メチル、酢酸エチル、γ-ブチロラクトン、安息香酸メチルのような炭素数3以上9以下のエステル化合物;クロロホルム、塩化メチレン、1,2-ジクロロエタンのような炭素数1以上10以下の含ハロゲン化合物;アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンのような炭素数2以上10以下の含窒素化合物;ジメチルスルホキシドのような含硫黄化合物が挙げられる。 The organic solvent is not limited as long as it can uniformly dissolve and / or disperse the polyimide. Examples of such organic solvents include ether compounds having 2 to 9 carbon atoms such as dimethyl ether, diethyl ether, methyl ethyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether; acetone, methyl ethyl ketone, and the like. Ketone compounds having 2 to 6 carbon atoms; saturated hydrocarbon compounds having 5 to 10 carbon atoms such as normal pentane, cyclopentane, normal hexane, cyclohexane, methylcyclohexane and decalin; benzene, toluene, xylene, mesitylene, tetralin Aromatic hydrocarbon compounds having 6 to 10 carbon atoms such as: carbons such as methyl acetate, ethyl acetate, γ-butyrolactone, methyl benzoate 3 to 9 ester compounds; halogen-containing compounds having 1 to 10 carbon atoms such as chloroform, methylene chloride and 1,2-dichloroethane; acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N- Examples thereof include nitrogen-containing compounds having 2 to 10 carbon atoms such as methyl-2-pyrrolidone; sulfur-containing compounds such as dimethyl sulfoxide.
 これらは必要に応じて1種、あるいは2種以上の混合物であってもよい。特に好ましい有機溶剤としては、炭素数2以上9以下のエーテル化合物、炭素数3以上9以下のエステル化合物、炭素数6以上10以下の芳香族炭化水素化合物、炭素数2以上10以下の含窒素化合物や、それらの1種、あるいは2種以上の混合物が挙げられる。また、ポリイミドの溶解性の観点から、トリエチレングリコールジメチルエーテル、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが好ましい。 These may be one kind or a mixture of two or more kinds as required. Particularly preferable organic solvents include ether compounds having 2 to 9 carbon atoms, ester compounds having 3 to 9 carbon atoms, aromatic hydrocarbon compounds having 6 to 10 carbon atoms, and nitrogen-containing compounds having 2 to 10 carbon atoms. Or a mixture of two or more of them. From the viewpoint of polyimide solubility, triethylene glycol dimethyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, and N, N-dimethylacetamide are preferable.
 ポリイミドと有機溶剤とからなる樹脂組成物におけるポリイミドの濃度としては、樹脂成型体を形成可能な濃度であれば、特に制限されない。作製する樹脂成型体の膜厚の観点からポリイミドの濃度が1質量%以上、樹脂成型体の膜厚の均一性からポリイミドの濃度が90質量%以下であることが好ましい。得られる樹脂成型体の膜厚の観点から、2質量%以上、80質量%以下がより好ましい。 The concentration of polyimide in the resin composition composed of polyimide and an organic solvent is not particularly limited as long as it is a concentration capable of forming a resin molded body. The polyimide concentration is preferably 1% by mass or more from the viewpoint of the film thickness of the resin molded body to be produced, and the polyimide concentration is preferably 90% by mass or less from the uniformity of the film thickness of the resin molded body. From the viewpoint of the film thickness of the obtained resin molding, it is more preferably 2% by mass or more and 80% by mass or less.
(H)感光性フィルム
 本実施の形態に係る感光性樹脂組成物は、感光性フィルムの形成に好適に用いることができる。本実施の形態に係る感光性フィルムは、感光性樹脂組成物を基材上に塗布して得られる。また、本実施の形態に係る感光性フィルムにおいては、キャリアフィルムと、このキャリアフィルム上に設けられた上記感光性樹脂組成物と、この感光性樹脂上に形成されたカバーフィルムとを具備するものが好ましい。
(H) Photosensitive film The photosensitive resin composition which concerns on this Embodiment can be used suitably for formation of a photosensitive film. The photosensitive film which concerns on this Embodiment is obtained by apply | coating the photosensitive resin composition on a base material. The photosensitive film according to the present embodiment includes a carrier film, the photosensitive resin composition provided on the carrier film, and a cover film formed on the photosensitive resin. Is preferred.
 感光性フィルムを製造するという観点からは、感光性樹脂組成物におけるポリイミドの濃度としては、1質量%以上、90質量%以下が好ましい。ポリイミドの濃度としては、感光性フィルムの膜厚の観点から1質量%以上が好ましく、感光性樹脂組成物の粘度、膜厚の均一性の観点から90質量%以下が好ましい。得られる感光性フィルムの膜厚の観点から、2質量%以上、80質量%以下がより好ましい。 From the viewpoint of producing a photosensitive film, the polyimide concentration in the photosensitive resin composition is preferably 1% by mass or more and 90% by mass or less. As a density | concentration of a polyimide, 1 mass% or more is preferable from a viewpoint of the film thickness of a photosensitive film, and 90 mass% or less is preferable from a viewpoint of the viscosity of the photosensitive resin composition, and the uniformity of a film thickness. From a viewpoint of the film thickness of the obtained photosensitive film, 2 mass% or more and 80 mass% or less are more preferable.
 次に、感光性フィルムの製造方法について説明する。まず、感光性樹脂組成物を基材にコートする。基材としては、感光性フィルム形成の際に損傷しない基材であれば、限定されない。このような基材としては、シリコンウエハ、ガラス、セラミック、耐熱性樹脂、キャリアフィルムなどが挙げられる。キャリアフィルムとしては、ポリエチレンテレフタレートフィルムや金属フィルムが挙げられる。取扱いの良さから、耐熱性樹脂及びキャリアフィルムが好ましく、基板圧着後の剥離性の観点から、ポリエチレンテレフタレートフィルムが特に好ましい。 Next, a method for producing a photosensitive film will be described. First, the substrate is coated with the photosensitive resin composition. As a base material, if it is a base material which is not damaged in the case of photosensitive film formation, it will not be limited. Examples of such a substrate include a silicon wafer, glass, ceramic, heat resistant resin, and carrier film. Examples of the carrier film include a polyethylene terephthalate film and a metal film. A heat-resistant resin and a carrier film are preferable from the viewpoint of easy handling, and a polyethylene terephthalate film is particularly preferable from the viewpoint of peelability after pressure bonding to the substrate.
 コート方法としてはバーコート、ローラーコート、ダイコート、ブレードコート、ディップコート、ドクターナイフ、スプレーコート、フローコート、スピンコート、スリットコート、はけ塗りなどが例示できる。コート後、必要に応じてホットプレートなどによりプリベークと呼ばれる加熱処理を行ってもよい。 Examples of coating methods include bar coating, roller coating, die coating, blade coating, dip coating, doctor knife, spray coating, flow coating, spin coating, slit coating, and brush coating. After the coating, if necessary, a heat treatment called pre-baking may be performed with a hot plate or the like.
 感光性樹脂組成物で構成された感光性フィルムを製造する場合は、感光性樹脂組成物の溶液を任意の方法で任意の基材(キャリアフィルム)上に塗布する。次に、感光性樹脂組成物を乾燥してドライフィルム化した後、例えばキャリアフィルムと感光性フィルムとを有する積層フィルムとする。 When manufacturing the photosensitive film comprised with the photosensitive resin composition, the solution of the photosensitive resin composition is apply | coated on arbitrary base materials (carrier film) by arbitrary methods. Next, after drying the photosensitive resin composition into a dry film, for example, a laminated film having a carrier film and a photosensitive film is obtained.
 また、感光性フィルム上に、任意の防汚用や保護用のカバーフィルムを少なくとも一層設けて積層フィルムとしてもよい。本実施の形態に係る積層フィルムおいて、カバーフィルムとしては、低密度ポリエチレンなど感光性フィルムを保護するフィルムであれば限定されない。 In addition, a laminate film may be formed by providing at least one layer of an optional antifouling or protective cover film on the photosensitive film. In the laminated film according to the present embodiment, the cover film is not limited as long as it is a film that protects a photosensitive film such as low-density polyethylene.
(I)フレキシブルプリント配線板
 本実施の形態に係る感光性フィルムは、フレキシブルプリント配線板に好適に用いることが可能である。本実施の形態に係るフレキシブルプリント配線板は、配線を有する基材と、この基材上の配線を覆うように設けられた上記感光性フィルムとを具備する。このフレキシブル配線板は、配線を有する基材上に感光性フィルムを圧着し、アルカリ現像した後、焼成を行うことにより得ることができる。
(I) Flexible printed wiring board The photosensitive film which concerns on this Embodiment can be used suitably for a flexible printed wiring board. The flexible printed wiring board according to the present embodiment includes a base material having wiring and the photosensitive film provided so as to cover the wiring on the base material. This flexible wiring board can be obtained by pressure-bonding a photosensitive film on a substrate having wiring, alkali-developing, and then baking.
 フレキシブルプリント配線板における配線を有する基材としては、ガラスエポキシ基板、ガラスマレイミド基板などのような硬質基材、あるいは銅張積層板などのフレキシブルな基板などが挙げられる。この中で、折り曲げ可能の観点からフレキシブルな基板が好ましい。 Examples of the substrate having wiring in the flexible printed wiring board include a hard substrate such as a glass epoxy substrate and a glass maleimide substrate, or a flexible substrate such as a copper clad laminate. Among these, a flexible substrate is preferable from the viewpoint of bendability.
 フレキシブルプリント配線板の形成方法は、感光性フィルムが配線を覆うように基材に形成されれば限定されない。このような形成方法としては、配線を有する基材の配線側と本実施の形態に係る感光性フィルムとを接触させた状態で、熱プレス、熱ラミネート、熱真空プレス、熱真空ラミネートなどを行う方法などが挙げられる。この中で、配線間への感光性フィルムの埋め込みの観点から、熱真空プレス、熱真空ラミネートが好ましい。 The formation method of the flexible printed wiring board is not limited as long as the photosensitive film is formed on the substrate so as to cover the wiring. As such a forming method, hot pressing, thermal laminating, thermal vacuum pressing, thermal vacuum laminating, or the like is performed in a state where the wiring side of the substrate having wiring and the photosensitive film according to the present embodiment are in contact with each other. The method etc. are mentioned. Among these, from the viewpoint of embedding the photosensitive film between the wirings, a heat vacuum press or a heat vacuum laminate is preferable.
 配線を有する基材上に感光性フィルムを積層する際の加熱温度は、感光性フィルムが基材に密着しうる温度であれば限定されない。基材への密着の観点や感光性フィルムの分解や副反応の観点から、30℃以上、400℃以下が好ましい。より好ましくは、50℃以上、150℃以下である。 The heating temperature when laminating the photosensitive film on the substrate having wiring is not limited as long as the photosensitive film can be in close contact with the substrate. From the viewpoint of adhesion to the substrate and from the viewpoint of decomposition of the photosensitive film and side reactions, 30 ° C. or more and 400 ° C. or less are preferable. More preferably, it is 50 degreeC or more and 150 degrees C or less.
 配線を有する基材の整面処理は、特に限定されないが、塩酸処理、硫酸処理、過硫酸ナトリウム水溶液処理などが挙げられる。 The surface treatment of the substrate having wiring is not particularly limited, and examples thereof include hydrochloric acid treatment, sulfuric acid treatment, and sodium persulfate aqueous solution treatment.
 感光性フィルムは、光照射後、光照射部位以外をアルカリ現像にて溶解することにより、ネガ型のフォトリソグラフィーが可能である。この場合において、光照射に用いる光源は、高圧水銀灯、超高圧水銀灯、低圧水銀灯、メタルハライドランプ、キセノンランプ、蛍光灯、タングステンランプ、アルゴンレーザー、ヘリウムカドミウムレーザーなどが挙げられる。この中で、高圧水銀灯、超高圧水銀灯が好ましい。 The photosensitive film can be subjected to negative photolithography by irradiating with light and then dissolving the portion other than the light irradiated portion by alkali development. In this case, examples of the light source used for light irradiation include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a xenon lamp, a fluorescent lamp, a tungsten lamp, an argon laser, and a helium cadmium laser. Among these, a high pressure mercury lamp and an ultrahigh pressure mercury lamp are preferable.
 現像に用いるアルカリ水溶液としては、光照射部位以外を、溶解しうる溶液であれば限定されない。このような溶液としては、炭酸ナトリウム水溶液、炭酸カリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、テトラメチルアンモニウムヒドロキシド水溶液などが挙げられる。現像性の観点から、炭酸ナトリウム水溶液及び水酸化ナトリウム水溶液が好ましい。現像方法としては、スプレー現像、浸漬現像、パドル現像などが挙げられる。 The aqueous alkali solution used for development is not limited as long as it is a solution that can dissolve other than the light irradiation site. Examples of such a solution include an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous tetramethylammonium hydroxide solution. From the viewpoint of developability, an aqueous sodium carbonate solution and an aqueous sodium hydroxide solution are preferred. Examples of the development method include spray development, immersion development, and paddle development.
 次いで、感光性フィルムを圧着したプリント配線板を焼成することによりプリント配線板を形成する。焼成は、溶媒の除去の観点や副反応や分解などの観点から、30℃以上、400℃以下の温度で実施することが好ましい。より好ましくは、100℃以上、300℃以下である。 Next, a printed wiring board is formed by firing the printed wiring board to which the photosensitive film is pressure-bonded. Firing is preferably carried out at a temperature of 30 ° C. or higher and 400 ° C. or lower from the viewpoints of solvent removal, side reactions and decomposition. More preferably, it is 100 degreeC or more and 300 degrees C or less.
 焼成における反応雰囲気は、空気雰囲気下でも不活性ガス雰囲気下でも実施可能である。プリント配線板の製造において、前記焼成に要する時間は、反応条件によって異なるが、通常は24時間以内であり、特に好適には1時間から8時間の範囲で実施される。 The reaction atmosphere in the firing can be performed in an air atmosphere or an inert gas atmosphere. In the production of a printed wiring board, the time required for the firing varies depending on the reaction conditions, but is usually within 24 hours, and particularly preferably in the range of 1 to 8 hours.
 本実施の形態に係るポリイミド及び感光性樹脂組成物は、キュア後の反りが良好であり、かつ現像性も良好であり、硬化体とした際に耐薬品性を示すことから、エレクトロニクス分野で各種電子機器の操作パネルなどに使用されるプリント配線板や回路基板の保護層形成、積層基板の絶縁層形成、半導体装置に使用されるシリコンウエハ、半導体チップ、半導体装置周辺の部材、半導体搭載用基板、放熱板、リードピン、半導体自身などの保護や絶縁及び接着に使用するための電子部品への膜形成用途に利用される。このように、シリコンウエハ、銅張積層板、プリント配線板などの上に形成された配線を保護する保護膜をカバーレイという。 The polyimide and the photosensitive resin composition according to the present embodiment have good warpage after curing, good developability, and chemical resistance when used as a cured product. Formation of protective layers for printed wiring boards and circuit boards used for operation panels of electronic devices, insulation layers for laminated substrates, silicon wafers used in semiconductor devices, semiconductor chips, peripheral members of semiconductor devices, semiconductor mounting substrates It is used for film formation on electronic parts for protection, insulation and adhesion of heat sinks, lead pins, semiconductors, etc. A protective film that protects wiring formed on a silicon wafer, a copper clad laminate, a printed wiring board, or the like is called a coverlay.
 また、本実施の形態に係るポリイミド及び感光性樹脂組成物は、フレキシブルプリント配線回路(FPC)用基板、テープオートメーションボンディング(TAB)用基材、各種電子デバイスにおける電気絶縁膜及び液晶ディスプレー用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、特にフレキシブルプリント配線回路用のカバーレイに好適に用いることができる。 Moreover, the polyimide and the photosensitive resin composition according to the present embodiment include a flexible printed circuit (FPC) substrate, a tape automation bonding (TAB) substrate, an electrical insulating film and a liquid crystal display substrate in various electronic devices, It can be suitably used for an organic electroluminescence (EL) display substrate, an electronic paper substrate, a solar cell substrate, particularly a coverlay for a flexible printed circuit.
(第3の実施の形態)
 フレキシブルプリント基板の製造工程に用いられる材料として、ジアミン成分としてシリコーンジアミンを用いたシロキサン部位を有するポリアミド酸構造とポリイミド構造とを有するポリイミドを含む樹脂組成物が提案されている。これらの樹脂組成物においては、シロキサン部位がポリアミド酸構造にのみ存在する。このため、硬化時にポリイミド構造が収縮して反りが生じると共に、ポリアミド酸構造の分子量の低下が著しく、ドライフィルム(樹脂フィルム)の現像時間が不安定となる問題がある。また、近年、フレキシブルプリント基板の部品実装信頼性として、高加速試験(HAST)が行なわれるようになり、HAST耐性を有する高い絶縁信頼性と、接続信頼性向上のために反りの抑制された材料が求められている。
(Third embodiment)
A resin composition containing a polyimide having a polyamic acid structure having a siloxane moiety using silicone diamine as a diamine component and a polyimide structure has been proposed as a material used in the manufacturing process of the flexible printed circuit board. In these resin compositions, the siloxane moiety exists only in the polyamic acid structure. For this reason, there is a problem that the polyimide structure shrinks and warps during curing, the molecular weight of the polyamic acid structure is remarkably lowered, and the development time of the dry film (resin film) becomes unstable. In recent years, as a component mounting reliability of a flexible printed circuit board, a high acceleration test (HAST) has been carried out, and a material with high insulation reliability having HAST resistance and warpage suppressed for improving connection reliability. Is required.
 本発明者らは、(A)高分子化合物として、シロキサン部位を有するポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドを用いることに着目した。そして、(A)高分子化合物としてのシロキサン部位を有するポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドと、(D)感光剤としての特定構造を有する(メタ)アクリレート化合物と、(E)光重合開始剤とを含有する感光性樹脂組成物により、優れたHAST耐性を有する感光性樹脂組成物を実現できることを見出した。 The inventors of the present invention have focused on (A) using a polyimide structure having a siloxane moiety and a polyamic acid structure as a structural unit as a polymer compound. (A) a polyimide having a siloxane moiety as a polymer compound and a polyimide having a polyamic acid structure as a structural unit, (D) a (meth) acrylate compound having a specific structure as a photosensitizer, and (E) light It has been found that a photosensitive resin composition having excellent HAST resistance can be realized by a photosensitive resin composition containing a polymerization initiator.
 この感光性樹脂組成物においては、シロキサン部位がポリイミド構造に含まれことから、ポリアミド酸構造の分子量の低下を抑制できるので、現像性の低下を抑制できる。また、分子鎖のポリイミド部位に適度な柔軟性が付与されるので、硬化時の樹脂フィルムの反りを低減できる。さらに、2官能水酸基含有化合物及びブロックイソシアネート化合物を含むことにより、シリコーン部位を有するポリイミドの収縮及び偏析を抑制でき、硬化時の反りの低減及び耐熱性が向上すると共に、基材との接着性の低下を抑制できる。以下、本発明の第3の実施の形態について具体的に説明する。 In this photosensitive resin composition, since the siloxane portion is contained in the polyimide structure, it is possible to suppress a decrease in the molecular weight of the polyamic acid structure, and thus it is possible to suppress a decrease in developability. Moreover, since moderate softness | flexibility is provided to the polyimide site | part of a molecular chain, the curvature of the resin film at the time of hardening can be reduced. Furthermore, by including a bifunctional hydroxyl group-containing compound and a blocked isocyanate compound, shrinkage and segregation of the polyimide having a silicone moiety can be suppressed, and the reduction in warpage and the heat resistance during curing are improved, and the adhesiveness to the substrate is improved. Reduction can be suppressed. Hereinafter, the third embodiment of the present invention will be described in detail.
 本発明の第3の実施の形態に係る感光性樹脂組成物は、(a)ポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドと、(D)光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物と、(E)光重合開始剤とを含有する。以下、各構成要素について詳細に説明する。 The photosensitive resin composition according to the third embodiment of the present invention includes (a) a polyimide having a polyimide structure and a polyamic acid structure as constituent units, and (D) two unsaturated double bonds capable of photopolymerization. The (meth) acrylate compound having the above and (E) a photopolymerization initiator are contained. Hereinafter, each component will be described in detail.
(a)ポリイミド
 本実施の形態に係るポリイミドは、下記一般式(7)で表されるポリイミド構造及び、下記一般式(8)で表されるポリアミド酸構造をそれぞれ繰り返し構成単位として有するブロック共重合体である。本実施の形態に係るポリイミドは、酸二無水物及びジアミンを用いて合成される。
(A) Polyimide The polyimide according to the present embodiment is a block copolymer having a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as repeating structural units. It is a coalescence. The polyimide according to the present embodiment is synthesized using an acid dianhydride and a diamine.
Figure JPOXMLDOC01-appb-C000035
(式(7)及び式(8)中、Z、Zは、下記一般式(9)で表されるテトラカルボン酸二無水物に由来する4価の有機基であり、それぞれ同じであっても異なっていてもよい。R18は、炭素数1~炭素数30の2価の有機基を表し、R19は、炭素数1~炭素数30の1価の有機基を表し、eは、1以上20以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000035
(In the formulas (7) and (8), Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following general formula (9), and are the same. R 18 represents a divalent organic group having 1 to 30 carbon atoms, R 19 represents a monovalent organic group having 1 to 30 carbon atoms, and e is 1 represents an integer of 1 to 20.)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 本実施の形態においては、ポリイミドが、上記一般式(7)で表されるポリイミド構造を含むことから、シロキサン部位がポリイミド構造に含まれる。これにより、分子鎖のポリイミド部位に適度な柔軟性が付与されるので、焼成後のフィルムの反りを低減できる。また、ポリイミドが、上記一般式(8)で表されるポリアミド酸構造を含むことから、分子鎖に芳香環が導入される。これにより、ポリアミド酸構造の分子量の低下を抑制できるので、感光性樹脂組成物の保存安定性及びドライフィルムの現像時間安定性が向上する。さらに、ポリイミドのポリアミド酸構造及びポリイミド構造が、上記一般式(9)で表されるテトラカルボン酸二無水物由来の4価の有機基を含むので、分子鎖に適度な剛直性が付与され、耐熱性が向上して絶縁信頼性(HAST耐性)が向上する。 In the present embodiment, since the polyimide includes a polyimide structure represented by the general formula (7), a siloxane site is included in the polyimide structure. Thereby, since moderate softness | flexibility is provided to the polyimide site | part of a molecular chain, the curvature of the film after baking can be reduced. Moreover, since a polyimide contains the polyamic acid structure represented by the said General formula (8), an aromatic ring is introduce | transduced into a molecular chain. Thereby, since the fall of the molecular weight of a polyamic acid structure can be suppressed, the storage stability of the photosensitive resin composition and the development time stability of a dry film improve. Furthermore, since the polyamic acid structure and polyimide structure of polyimide contain a tetravalent organic group derived from the tetracarboxylic dianhydride represented by the general formula (9), moderate rigidity is imparted to the molecular chain, Heat resistance is improved and insulation reliability (HAST resistance) is improved.
 本実施の形態に用いる酸二無水物としては、無水ピロメリット酸(以下、「PMDA」とも略称する)、オキシジフタル酸二無水物(以下、「ODPA」とも略称する)、ビフェニルテトラカルボン酸二無水物(以下、「BPDA」とも略称する)が挙げられる。オキシジフタル酸二無水物、ビフェニルテトラカルボン酸二無水物については、構造異性体が存在するがその構造は特に限定されない。またこれらの酸二無水物は、単独で使用してもよいし、複数併用してもよい。 Examples of the acid dianhydride used in this embodiment include pyromellitic anhydride (hereinafter also abbreviated as “PMDA”), oxydiphthalic dianhydride (hereinafter also abbreviated as “ODPA”), biphenyltetracarboxylic dianhydride. Product (hereinafter also abbreviated as “BPDA”). For oxydiphthalic dianhydride and biphenyltetracarboxylic dianhydride, there are structural isomers, but the structure is not particularly limited. These acid dianhydrides may be used alone or in combination.
 本実施の形態に用いる芳香族ジアミンとしては、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンが挙げられる。反りの観点から屈曲性を有する1,3-ビス(3-アミノフェノキシ)ベンゼンが好ましい。 As the aromatic diamine used in this embodiment, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene Is mentioned. From the viewpoint of warping, 1,3-bis (3-aminophenoxy) benzene having flexibility is preferable.
 また、本実施の形態に用いるシリコーンジアミンとしては、下記一般式(19)で表される構造であれば特に限定されない。 Further, the silicone diamine used in the present embodiment is not particularly limited as long as it is a structure represented by the following general formula (19).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記一般式(7)及び上記一般式(19)において、eは、1≦e≦20を満たす整数である。eが20以下であれば、アルカリ可溶性及びHAST耐性が良好となる。上記一般式(19)におけるeとしては、生成するポリイミドのTg及び難燃性の観点から、1以上15以下であることが好ましく、1以上12以下がより好ましい。 In the general formula (7) and the general formula (19), e is an integer that satisfies 1 ≦ e ≦ 20. If e is 20 or less, alkali solubility and HAST resistance will become favorable. The e in the general formula (19) is preferably 1 or more and 15 or less, more preferably 1 or more and 12 or less, from the viewpoint of Tg of the polyimide to be produced and flame retardancy.
 上記一般式(7)及び上記一般式(19)において、R18は、炭素数1以上30以下である2価の有機基であれば限定されない。炭素数1以上30以下である2価の有機基(R19)としては、難燃性の観点から、CH、C、C、C、などで表される炭素数10以下の脂肪族飽和炭化水素に由来する2価の有機基が好ましい。 In the general formula (7) and the general formula (19), R 18 is not limited as long as it is a divalent organic group having 1 to 30 carbon atoms. The divalent organic group (R 19 ) having 1 to 30 carbon atoms is represented by CH 2 , C 2 H 4 , C 3 H 6 , C 4 H 8 , etc. from the viewpoint of flame retardancy. A divalent organic group derived from an aliphatic saturated hydrocarbon having 10 or less carbon atoms is preferred.
 上記一般式(7)及び上記一般式(19)において、R19は炭素数1以上30以下の有機基を表し、それぞれ同じであっても異なっていてもよい。炭素数1以上30以下の有機基(R19)としては、脂肪族飽和炭化水素基、脂肪族不飽和炭化水素基、環状構造を含む有機基、及びそれらを組み合わせた基などが挙げられる。 In the general formula (7) and the general formula (19), R 19 represents an organic group having 1 to 30 carbon atoms, which may be the same or different. Examples of the organic group (R 19 ) having 1 to 30 carbon atoms include an aliphatic saturated hydrocarbon group, an aliphatic unsaturated hydrocarbon group, an organic group containing a cyclic structure, and a group obtained by combining them.
 上記脂肪族飽和炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの第一級炭化水素基、イソブチル基、イソペンチル基などの第二級炭化水素基、t-ブチル基などの第三級炭化水素基などが挙げられる。 Examples of the aliphatic saturated hydrocarbon group include primary hydrocarbon groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group, secondary hydrocarbon groups such as isobutyl group and isopentyl group, and tertiary hydrocarbon groups such as a t-butyl group.
 上記脂肪族不飽和炭化水素基としては、ビニル基、アリル基などの二重結合を含む炭化水素基、エチニル基などの三重結合を含む炭化水素基などが挙げられる。 Examples of the aliphatic unsaturated hydrocarbon group include a hydrocarbon group containing a double bond such as a vinyl group and an allyl group, and a hydrocarbon group containing a triple bond such as an ethynyl group.
 上記環状構造を含む官能基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロデシル基、シクロオクチル基などの単環式官能基;ノルボルニル基、アダマンチル基などの多環式官能基;ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、テトラヒドロフラン、ジオキサン構造を有する複素環式官能基;ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環構造を含む芳香族炭化水素基などが挙げられる。 Examples of the functional group containing a cyclic structure include a monocyclic functional group such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclodecyl group, and a cyclooctyl group; a polycyclic functional group such as a norbornyl group and an adamantyl group; pyrrole, furan, A heterocyclic functional group having a thiophene, imidazole, oxazole, thiazole, tetrahydrofuran, dioxane structure; an aromatic hydrocarbon group containing a benzene ring, a naphthalene ring, an anthracene ring, or a phenanthrene ring structure.
 炭素数1以上30以下の有機基(R19)としては、ハロゲン原子、ヘテロ原子及び金属原子を含むものであってもよい。ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。また、ヘテロ原子としては、酸素、硫黄、窒素、リンが挙げられる。また、金属原子としては、ケイ素及びチタンが挙げられる。 The organic group (R 19 ) having 1 to 30 carbon atoms may contain a halogen atom, a hetero atom and a metal atom. Examples of the halogen atom include fluorine, chlorine, bromine and iodine. Moreover, oxygen, sulfur, nitrogen, and phosphorus are mentioned as a hetero atom. Examples of the metal atom include silicon and titanium.
 また、炭素数1以上30以下の有機基(R19)がヘテロ原子及び/又は金属原子を含む場合、R19は結合するヘテロ原子及び/又は金属原子に直接結合していてもよく、ヘテロ原子及び/又は金属原子を介して結合していてもよい。 Further, when the organic group (R 19 ) having 1 to 30 carbon atoms contains a hetero atom and / or a metal atom, R 19 may be directly bonded to the bonded hetero atom and / or metal atom. And / or may be bonded via a metal atom.
 上記一般式(7)及び上記一般式(19)のR19の炭素数としては、難燃性を考慮して、1以上20以下が好ましい。さらに、生成するポリイミドの溶媒溶解性の観点から、炭素数としては、1以上10以下が特に好ましい。 The number of carbon atoms of R 19 in the general formula (7) and the general formula (19), taking into account the flame retardant, 1 to 20 are preferred. Furthermore, from the viewpoint of solvent solubility of the polyimide to be produced, the number of carbon atoms is particularly preferably 1 or more and 10 or less.
 上記一般式(19)で表される化合物として、R18:プロピレン基、R19:メチル基で表わされる化合物としては、信越化学工業社製のPAM-E(n≒2)、KF-8010(n≒10)、X-22-161A(n≒20)、東レダウコーニング社製のBY16-871(n≒2)、及びBY16-853U(n≒10)が挙げられる。また、R18:プロピレン基、R19:フェニル基で表わされる化合物としては、信越化学工業社製のX-22-1660B-3(n≒20)が挙げられる。 As the compound represented by the general formula (19), compounds represented by R 18 : propylene group and R 19 : methyl group include PAM-E (n≈2), KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd.). n≈10), X-22-161A (n≈20), BY16-871 (n≈2), and BY16-853U (n≈10) manufactured by Toray Dow Corning. Examples of the compound represented by R 18 : propylene group and R 19 : phenyl group include X-22-1660B-3 (n≈20) manufactured by Shin-Etsu Chemical Co., Ltd.
 ポリイミドの主鎖末端は、性能に影響を与えない構造であれば、特に限定されない。ポリイミドを製造する際に用いる酸二無水物、ジアミンに由来する主鎖末端でもよいし、その他の酸無水物、アミン化合物などにより主鎖末端を封止したものであってもよい。 The main chain terminal of the polyimide is not particularly limited as long as it does not affect the performance. The main chain terminal derived from the acid dianhydride and diamine used when producing polyimide may be used, or the main chain terminal may be sealed with another acid anhydride or an amine compound.
 ポリイミドの重量平均分子量は1000以上1000000以下であることが好ましい。ここで、重量平均分子量とは、既知の重量平均分子量のポリスチレンを標準として、ゲルパーミエーションクロマトグラフィーによって測定される分子量をいう。重量平均分子量はポリイミド膜の強度の観点から、1000以上であることが好ましい。またポリイミド含有樹脂組成物の粘度、成型性の観点から、1000000以下であることが好ましい。重量平均分子量は5000以上、500000以下がより好ましく、10000以上300000以下が特に好ましく、25000以上、50000以下が最も好ましい。 The weight average molecular weight of the polyimide is preferably 1,000 or more and 1,000,000 or less. Here, the weight average molecular weight refers to a molecular weight measured by gel permeation chromatography using polystyrene having a known weight average molecular weight as a standard. The weight average molecular weight is preferably 1000 or more from the viewpoint of the strength of the polyimide film. Moreover, it is preferable that it is 1000000 or less from a viewpoint of the viscosity of a polyimide containing resin composition and a moldability. The weight average molecular weight is more preferably from 5,000 to 500,000, particularly preferably from 10,000 to 300,000, and most preferably from 25,000 to 50,000.
 ポリイミド構造及びポリアミド酸構造をそれぞれ繰り返し単位として有するポリイミの製造方法は、上記第2の実施の形態に示した製造方法を用いることができる。 As a method for producing a polyimi having a polyimide structure and a polyamic acid structure as repeating units, the production method shown in the second embodiment can be used.
 なお、上述した実施の形態においては、(A)高分子化合物としてシロキサン部位を有するポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドを用いた第2の態様に係る樹脂組成物について説明したが、本発明の効果を奏する範囲でポリアミド酸構造を実質的に含まないポリイミドを用いることにより、上記第1の態様に係る樹脂組成物として用いることも可能である。 In the above-described embodiment, the resin composition according to the second embodiment using (A) a polyimide structure having a siloxane moiety as a polymer compound and a polyimide having a polyamic acid structure as a structural unit has been described. It is also possible to use the resin composition according to the first aspect by using a polyimide that does not substantially contain a polyamic acid structure as long as the effects of the present invention are achieved.
(b)2官能水酸基含有化合物
 本実施の形態に係る感光性樹脂組成物においては、2官能水酸基含有化合物、及びブロックイソシアネート化合物を含有することが好ましい。2官能水酸基含有化合物は、ポリイミドと直接的結合を有しないため、骨格中に取り込まれずに第二成分として存在する。これにより、硬化時のポリイミド骨格の収縮を防ぐことができ、反りを抑制できる。さらに、ブロックイソシアネート化合物が含まれることにより、低温でポリイミドのカルボキシル基を不活性化し、低温硬化が可能となるため、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できるためである。
(B) Bifunctional hydroxyl group-containing compound The photosensitive resin composition according to the present embodiment preferably contains a bifunctional hydroxyl group-containing compound and a blocked isocyanate compound. Since the bifunctional hydroxyl group-containing compound does not have a direct bond with polyimide, it is not taken into the skeleton and exists as the second component. Thereby, shrinkage | contraction of the polyimide frame | skeleton at the time of hardening can be prevented, and curvature can be suppressed. Further, the inclusion of the blocked isocyanate compound inactivates the carboxyl group of the polyimide at low temperature and enables low temperature curing, thereby preventing shrinkage of the polyimide skeleton during curing and suppressing warpage.
 また、本実施の形態に係る感光性樹脂組成物においては、耐熱性の観点から、2官能水酸基含有化合物に含まれる水酸基と、ブロックイソシアネートに含まれるイソシアネート基とのモル比は、水酸基/イソシアネート基=0.5~1であることが好ましい。 In the photosensitive resin composition according to the present embodiment, from the viewpoint of heat resistance, the molar ratio of the hydroxyl group contained in the bifunctional hydroxyl group-containing compound to the isocyanate group contained in the blocked isocyanate is hydroxyl group / isocyanate group. = 0.5 to 1 is preferable.
 2官能水酸基含有化合物としては、上記第1の実施の形態に係る樹脂組成物に用いるものと同様のものを用いることができる。なお、2官能水酸基含有化合物としては、本発明の効果を奏する範囲で、2以上の水酸基を含有する多官能水酸基含有化合物を用いることもできる。 As the bifunctional hydroxyl group-containing compound, the same compounds as those used in the resin composition according to the first embodiment can be used. In addition, as a bifunctional hydroxyl-containing compound, the polyfunctional hydroxyl-containing compound containing a 2 or more hydroxyl group can also be used in the range with the effect of this invention.
 本実施の形態においては、2官能水酸基含有化合物は、反り低減、半田耐熱性及び耐薬品性を両立させるという点から、樹脂組成物100質量部に対し、1質量部~70質量部含有することが好ましく、1質量部~60質量部含有することがさらに好ましい。 In the present embodiment, the bifunctional hydroxyl group-containing compound is contained in an amount of 1 part by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of achieving both reduction in warpage, solder heat resistance and chemical resistance. The content is preferably 1 part by mass to 60 parts by mass.
(c-1)ブロックイソシアネート化合物
 ブロックイソシアネート化合物としては、上記第1の実施の形態に係る樹脂組成物に用いるものと同様のものを用いることができる。なお、本実施の形態においては、(C)多官能架橋性化合物として、ブロックイソシアネート化合物を用いる例について説明したが、本発明の効果を奏する範囲で2以上のイソシアネート基を有する多官能イソシアネート化合物や、2以上の架橋性官能基を有する多官能架橋性化合物や、多官能オキサゾリン化合物を用いることも可能である。
(C-1) Blocked isocyanate compound As the blocked isocyanate compound, the same compounds as those used for the resin composition according to the first embodiment can be used. In addition, in this Embodiment, although the example using a blocked isocyanate compound was demonstrated as (C) polyfunctional crosslinking | crosslinked compound, in the range with the effect of this invention, the polyfunctional isocyanate compound which has two or more isocyanate groups, It is also possible to use a polyfunctional crosslinkable compound having two or more crosslinkable functional groups or a polyfunctional oxazoline compound.
(d)(メタ)アクリレート化合物
 光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物としては、トリシクロデカンジメチロールジアクリレート、エチレンオキシド(EO)変性ビスフェノールAジメタクリレート、EO変性水添ビスフェノールAジアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,4-シクロヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2-ジ(p-ヒドロキシフェニル)プロパンジ(メタ)アクリレート、トリス(2-アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリオキシエチレントリメチロールプロパントリ(メタ)アクリレート、ポリオキシプロピレントリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリグリシジルエーテル(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、β―ヒドロキシプロピル-β’-(アクリロイルオキシ)-プロピルフタレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ/テトラ(メタ)アクリレートなどが挙げられる。
(D) (Meth) acrylate compound As the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds, tricyclodecane dimethylol diacrylate, ethylene oxide (EO) modified bisphenol A dimethacrylate, EO modified Hydrogenated bisphenol A diacrylate, 1,6-hexanediol (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2-di ( p-hydroxyphenyl) propane di (meth) acrylate, tris (2-acryloxyethyl) isocyanurate, ε-caprolactone modified tris (acryloxyethyl) isocyanurate, glycerol tri (meth) acrylic , Trimethylolpropane tri (meth) acrylate, polyoxyethylenetrimethylolpropane tri (meth) acrylate, polyoxypropylenetrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane triglycidyl Ether (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, β-hydroxypropyl-β ′-(acryloyloxy) -propyl phthalate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, Pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol And re / tetra (meth) acrylate.
 本実施の形態に係る感光性樹脂組成物においては、2つ以上の光重合可能な不飽和二重結合を有する(メタ)アクリレート化合物を含有する。解像性やHAST耐性の観点から、二重結合を3つ以上有する(メタ)アクリレート化合物を含むことが好ましい。 The photosensitive resin composition according to the present embodiment contains a (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds. From the viewpoint of resolution and HAST resistance, it is preferable to include a (meth) acrylate compound having three or more double bonds.
 二重結合を3つ以上有する(メタ)アクリレート化合物としては、ペンタエリスリトールトリ/テトラアクリレート(東亞合成社製、アロニックスM-306)、ペンタエリスリトールテトラアクリレート(新中村化学工業社製、A-TMMT)、EO変性グリセロールトリ(メタ)アクリレート(新中村化学工業社製、A-GLY-9E(EO変性9mol))、ジトリメチロールプロパンテトラアクリレート(東亞合成社製、アロニックスM-408)、ジペンタエリスリトールペンタ及びヘキサアクリレート(東亞合成社製、アロニックスM-403)などが挙げられる。 Examples of (meth) acrylate compounds having three or more double bonds include pentaerythritol tri / tetraacrylate (Toagosei Co., Ltd., Aronix M-306), pentaerythritol tetraacrylate (Shin-Nakamura Chemical Co., Ltd., A-TMMT) , EO-modified glycerol tri (meth) acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-GLY-9E (EO-modified 9 mol)), ditrimethylolpropane tetraacrylate (manufactured by Toagosei Co., Ltd., Aronix M-408), dipentaerythritol penta And hexaacrylate (Aronix M-403, manufactured by Toagosei Co., Ltd.).
 また本実施の形態において、二重結合を3つ以上有する(メタ)アクリレート化合物としては、絶縁抵抗値(HAST耐性)や反りの観点から、下記一般式(10)で表わされる化合物であることがより好ましい。これは下記一般式(10)で表される化合物が、ポリイミドの骨格中に取り込まれずに第二成分として架橋体を形成することで、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できるためである。これに加えて、水酸基などの電気絶縁性を低下させる官能基を持っていないことから、本実施の形態に係るポリイミドマトリックス中に剛直な架橋体が形成され、硬化膜のTgや弾性率が高くなり、HAST耐性が向上すると推定される。 In the present embodiment, the (meth) acrylate compound having three or more double bonds may be a compound represented by the following general formula (10) from the viewpoint of insulation resistance (HAST resistance) and warpage. More preferred. This is because the compound represented by the following general formula (10) is not taken into the skeleton of the polyimide and forms a crosslinked body as the second component, thereby preventing the polyimide skeleton from shrinking at the time of curing and suppressing warpage. It is. In addition, since it does not have a functional group such as a hydroxyl group that reduces electrical insulation, a rigid cross-linked body is formed in the polyimide matrix according to this embodiment, and the Tg and elastic modulus of the cured film are high. Therefore, it is estimated that HAST resistance is improved.
Figure JPOXMLDOC01-appb-C000038
(式(10)中、R20は、水素原子又はメチル基を表わす。複数のEは各々独立に炭素数2~炭素数5のアルキレン基を表わし、それぞれ同じであっても異なっていてもよい。fは、1~10の整数である。)
Figure JPOXMLDOC01-appb-C000038
(In the formula (10), R 20 represents a hydrogen atom or a methyl group. A plurality of E each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different. F is an integer from 1 to 10.)
 上記式(10)において、炭素数2~炭素数6のアルキレン基(E)としては、例えば、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチル基などが挙げられる。解像性の観点から、Eとしては、2又は3のアルキレン基であることがより好ましい。また、上記式(10)において、難燃性の観点から、fとしては、1以上5以下が特に好ましい。 In the above formula (10), examples of the alkylene group having 2 to 6 carbon atoms (E) include an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a pentylene group, and a neopentyl group. . From the viewpoint of resolution, E is more preferably 2 or 3 alkylene groups. In the above formula (10), from the viewpoint of flame retardancy, f is particularly preferably 1 or more and 5 or less.
 上記一般式(10)で表わされる化合物としては、東亞合成社製のアロニックスM-350(E:エチレン基、f:1)、M-360(E:エチレン基、f:2)、M-310(E:プロピレン基、f:1)、M-321(E:プロピレン基、f:2)、SARTOMER社製のSR502(E:エチレン基、f:3)、SR9035(E:エチレン基、f:5)などが挙げられる。これらは単独で使用してもよいし、複数併用してもよい。 Examples of the compound represented by the general formula (10) include Aronix M-350 (E: ethylene group, f: 1), M-360 (E: ethylene group, f: 2), M-310 manufactured by Toagosei Co., Ltd. (E: propylene group, f: 1), M-321 (E: propylene group, f: 2), SR502 (E: ethylene group, f: 3), SR9035 (E: ethylene group, f: manufactured by SARTOMER) 5). These may be used alone or in combination.
 また、本実施の形態に係る感光性樹脂組成物においては、焼成後の反りや解像性の観点から、二重結合を2つ有する(メタ)アクリレート化合物と二重結合を3つ以上有する(メタ)アクリレート化合物とを併用することが好ましい。 Moreover, in the photosensitive resin composition which concerns on this Embodiment, it has the (meth) acrylate compound which has two double bonds, and three or more double bonds from the viewpoint of the curvature after baking and resolution ( It is preferable to use together with a (meth) acrylate compound.
 二重結合を2つ有する(メタ)アクリレート化合物としては、脂肪族系ジ(メタ)アクリレートとビスフェノール構造を有する芳香族系ジ(メタ)アクリレートに分けられる。脂肪族系ジ(メタ)アクリレートとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、ポリエチレン・ポリプロピレングリコールジ(メタ)アクリレートなどが挙げられる。具体的には、ノナエチレングリコールジアクリレート(新中村化学工業社製、9G)、ヘプタプロピレングリコ-ルジメタクリレ-ト(新中村化学工業社製、9PG)などが反り抑制の観点から、好ましい。 (Meth) acrylate compounds having two double bonds are classified into aliphatic di (meth) acrylates and aromatic di (meth) acrylates having a bisphenol structure. Examples of the aliphatic di (meth) acrylate include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, and polyethylene / polypropylene glycol di (meth) acrylate. Specifically, nonaethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., 9G), heptapropylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., 9PG) and the like are preferable from the viewpoint of suppressing warpage.
 また芳香族系ジ(メタ)アクリレートとしては、下記一般式(20)で表わされる化合物が挙げられる。 Further, examples of the aromatic di (meth) acrylate include compounds represented by the following general formula (20).
Figure JPOXMLDOC01-appb-C000039
(式(20)中、R25及びR26は、水素原子又はメチル基を表わす。複数のEは、各々独立に炭素数2~炭素数6のアルキレン基を表わし、それぞれ同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000039
(In the formula (20), R 25 and R 26 each represent a hydrogen atom or a methyl group. A plurality of E's each independently represents an alkylene group having 2 to 6 carbon atoms, which may be the same or different. May be.)
 上記一般式(20)において、炭素数2~炭素数6のアルキレン基(E)としては、例えば、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチル基などが挙げられる。 In the general formula (20), examples of the alkylene group having 2 to 6 carbon atoms (E) include ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, neopentyl group, and the like. It is done.
 上記一般式(20)において、l及びkは、それぞれ1以上10以下の整数であり、2≦l+k≦20である。l及びkが、それぞれ10以下であると難燃性及びHAST耐性が向上する。また反り及び解像性の観点から、一般式(20)におけるl及びkとしては、それぞれ3以上6以下、6≦l+k≦12がより好ましい。 In the general formula (20), l and k are each an integer of 1 to 10, and 2 ≦ l + k ≦ 20. If l and k are 10 or less, flame retardancy and HAST resistance are improved. Further, from the viewpoint of warpage and resolution, l and k in the general formula (20) are more preferably 3 or more and 6 or less and 6 ≦ l + k ≦ 12, respectively.
 上記一般式(20)における具体的な例としては、東亞合成社製のアロニックスM-208(R25、R26:水素原子、E:エチレン基、l、k≒2)、新中村化学工業社製のBPE-500(R25、R26:メチル基、E:エチレン基、l+k=10)、BPE-900(R25、R26:メチル基、E:エチレン基、l+k=17)、A-BPE-500(R25、R26:水素原子、E:エチレン基、l+k=10)、A-B1206PE(下記一般式(21)、R25:水素原子、R26:メチル基、E:エチレン基、E:プロピレン基、l1+k1=6、l2+k2=12)などが挙げられる。
Figure JPOXMLDOC01-appb-C000040
Specific examples of the general formula (20) include Aronix M-208 (R 25 , R 26 : hydrogen atom, E: ethylene group, l, k≈2) manufactured by Toagosei Co., Ltd., Shin-Nakamura Chemical Co., Ltd. Made in BPE-500 (R 25, R 26: methyl group, E: ethylene, l + k = 10), BPE-900 (R 25, R 26: methyl group, E: ethylene, l + k = 17), A- BPE-500 (R 25 , R 26 : hydrogen atom, E: ethylene group, l + k = 10), AB1206PE (the following general formula (21), R 25 : hydrogen atom, R 26 : methyl group, E 1 : ethylene) Group, E 2 : propylene group, l1 + k1 = 6, l2 + k2 = 12) and the like.
Figure JPOXMLDOC01-appb-C000040
 光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物の量としては、ポリイミドの量を100質量部とした場合、解像性の観点から5質量部以上60質量部以下が好ましく、10質量部以上40質量部以下がより好ましい。 The amount of the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds is 5 parts by mass or more and 60 parts by mass or less from the viewpoint of resolution when the amount of polyimide is 100 parts by mass. Preferably, 10 parts by mass or more and 40 parts by mass or less are more preferable.
 なお、本実施の形態に係る樹脂組成物においては、感光性樹脂として用いない場合には、必ずしも(D)感光剤としての(メタ)アクリレート化合物を含有する必要はない。 In addition, in the resin composition which concerns on this Embodiment, when not using as a photosensitive resin, it is not necessarily required to contain the (D) (meth) acrylate compound as a photosensitive agent.
(E)光重合開始剤
 光重合開始剤としては、上記第2の実施の形態に示したものと同様のものを用いることができる。
(E) Photopolymerization initiator As the photopolymerization initiator, those similar to those shown in the second embodiment can be used.
(F)リン化合物
 リン化合物としては、上記第2の実施の形態に示したものと同様のものを用いることができる。また、上記一般式(17)に示したホスファゼン化合物としては、具体的には、Rabitle(登録商標)FP-300、FP-390、(伏見製薬所社製、略称FP-300(R21=R22=4-シアノフェニル基)、略称FP-390(R21=R22=3-メチルフェニル基)が挙げられる。
(F) Phosphorus compound As the phosphorus compound, the same compounds as those described in the second embodiment can be used. Specific examples of the phosphazene compound represented by the general formula (17) include Rabitle (registered trademark) FP-300, FP-390 (abbreviated as FP-300 (R 21 = R 22 = 4-cyanophenyl group) and abbreviation FP-390 (R 21 = R 22 = 3-methylphenyl group).
(G)その他化合物
 また、本実施の形態に係る感光性樹脂組成物においては、その性能に悪影響を及ぼさない範囲でその他化合物を含むことができる。その他化合物としては、上記第2の実施の形態に示したものと同様のものが挙げられる。
(G) Other compounds Moreover, in the photosensitive resin composition which concerns on this Embodiment, another compound can be included in the range which does not have a bad influence on the performance. Examples of other compounds include the same compounds as those described in the second embodiment.
(H)感光性フィルム
 また、本実施の形態に係る感光性樹脂組成物は、上記第2の実施の形態に係る感光性樹脂組成物と同様に、感光性フィルムの形成に用いることができる。
(H) Photosensitive film Moreover, the photosensitive resin composition which concerns on this Embodiment can be used for formation of a photosensitive film similarly to the photosensitive resin composition which concerns on the said 2nd Embodiment.
(I)フレキシブルプリント配線板
 また、本実施の形態に係る感光性樹脂組成物は、上記第2の実施の形態に係る感光性樹脂組成物と同様に、フレキシブルプリント配線板に好適に用いることが可能である。
(I) Flexible printed wiring board Moreover, the photosensitive resin composition which concerns on this Embodiment should be used suitably for a flexible printed wiring board similarly to the photosensitive resin composition which concerns on the said 2nd Embodiment. Is possible.
(第4の実施の形態)
 フレキシブルプリント基板の製造に用いられる材料としては、ポリアミド酸の全てをイミド化し水酸基及び/又はカルボキシル基を含むアリカリ水溶液可溶・溶剤可溶ポリイミドを含む樹脂組成物が提案されている。この樹脂組成物においては、フレキシブルプリント配線板の製造で用いられるレーザービア加工を不要とし、アリカリ水溶液や溶剤でビア加工する層間絶縁材料として使用できる。しかしながら、フレキシブルプリント配線板の製造工程で使用される溶剤やアルカリ水溶液に対する耐性に乏しい為、改善が要求されている。また脱溶媒したフィルム形態の絶縁材料を加熱加圧プレス法で配線板に積層し層間絶縁膜として使用する場合、高分子化合物である為、樹脂流動性に乏しくスルーホール埋め込み性に乏しく、改善が望まれている。
(Fourth embodiment)
As a material used for the production of a flexible printed circuit board, a resin composition containing an arikari aqueous solution-soluble / solvent-soluble polyimide containing all of the polyamic acid and imidized with a hydroxyl group and / or a carboxyl group has been proposed. In this resin composition, the laser via processing used in the production of a flexible printed wiring board is not required, and it can be used as an interlayer insulating material for via processing using an antkari aqueous solution or a solvent. However, since the resistance to the solvent and alkaline aqueous solution used in the manufacturing process of the flexible printed wiring board is poor, improvement is required. In addition, when an insulating material in the form of a film that has been desolvated is laminated on a wiring board by a heat and pressure press method and used as an interlayer insulating film, since it is a polymer compound, resin fluidity is poor and through-hole embedding is poor, improving It is desired.
 本発明者らは、(A)高分子化合物として、水酸基及び/又はカルボキシル基とシロキサン部位とを有する溶剤可溶ポリイミドを用いることに着目した。そして、本発明者らは、(A)高分子化合物としての溶剤可溶性ポリイミドと、(B)多官能水酸基含有化合物としての2官能水酸基含有化合物と、(C)多官能架橋性化合物としてのオキサゾリン化合物を含むことにより、架橋反応前は溶剤やアルカリ水溶液による加工が可能で、良好なスルーホール埋め込み性を示し、架橋反応後は優れた溶剤およびアルカリ水溶液への耐性を有するアルカリ可溶の樹脂組成物を実現できることを見出した。以下、本発明の第4の実施の形態について具体的に説明する。 The present inventors have focused on using a solvent-soluble polyimide having a hydroxyl group and / or a carboxyl group and a siloxane moiety as the polymer compound (A). And, the present inventors have (A) a solvent-soluble polyimide as a polymer compound, (B) a bifunctional hydroxyl group-containing compound as a polyfunctional hydroxyl group-containing compound, and (C) an oxazoline compound as a polyfunctional crosslinkable compound. Can be processed with a solvent or an aqueous alkali solution before the crosslinking reaction, exhibits good through-hole embedding properties, and has an excellent resistance to an aqueous solvent and an aqueous alkali solution after the crosslinking reaction. It was found that can be realized. Hereinafter, the fourth embodiment of the present invention will be specifically described.
 本発明の第4の実施の形態に係る樹脂組成物は、(a)水酸基及び/又はカルボキシル基を有するポリイミドと、(b)2官能水酸基含有化合物と、(c-2)オキサゾリン化合物とを含有し、ポリイミド100質量部に対して、2官能水酸基含有化合物及びオキサゾリン化合物の含有量が2質量部から45質量部である。 The resin composition according to the fourth embodiment of the present invention includes (a) a polyimide having a hydroxyl group and / or a carboxyl group, (b) a bifunctional hydroxyl group-containing compound, and (c-2) an oxazoline compound. The content of the bifunctional hydroxyl group-containing compound and the oxazoline compound is from 2 parts by mass to 45 parts by mass with respect to 100 parts by mass of the polyimide.
 この樹脂組成物においては、ポリイミドが、水酸基及び/又はカルボキシル基を有すること、及び2官能水酸基含有化合物とオキサゾリン化合物の含有量が所定範囲内であることにより、架橋前はスルーホール埋め込み性に優れ、アリカリ水溶液に可溶で、架橋後にアルカリ水溶液に不溶となる。また、ポリイミドが、水酸基及び/又はカルボキシル基を有することにより、オキサゾリン化合物と反応し、反りを抑制できる。また、2官能水酸基含有化合物が、ポリイミドの骨格中に取り込まれずに第二成分として存在することで、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できる。また、オキサゾリン化合物が含まれることにより、低温でカルボキシル基を不活性化し、低温硬化が可能となるため、硬化時のポリイミド骨格の収縮を防ぎ、反りを抑制できる。 In this resin composition, since the polyimide has a hydroxyl group and / or a carboxyl group, and the content of the bifunctional hydroxyl group-containing compound and the oxazoline compound is within a predetermined range, the through-hole embedding property is excellent before crosslinking. It is soluble in an ant potassium solution and becomes insoluble in an alkaline solution after crosslinking. Moreover, when a polyimide has a hydroxyl group and / or a carboxyl group, it can react with an oxazoline compound and suppress warpage. In addition, since the bifunctional hydroxyl group-containing compound is present as the second component without being taken into the polyimide skeleton, shrinkage of the polyimide skeleton during curing can be prevented and warpage can be suppressed. In addition, the inclusion of the oxazoline compound inactivates the carboxyl group at a low temperature and enables low-temperature curing, thus preventing shrinkage of the polyimide skeleton during curing and suppressing warpage.
 この樹脂組成物では、ポリイミドが、水酸基及び/又はカルボキシル基を有することにより、硬化前にアルカリ水溶液へ可溶となり、硬化後にアルカリ水溶液に不溶となり、かつ高い耐熱性(例えば、高いはんだ耐熱性)が発現する。また、上記構造により、硬化時の反りを抑制できる。 In this resin composition, since the polyimide has a hydroxyl group and / or a carboxyl group, it becomes soluble in an alkaline aqueous solution before curing, becomes insoluble in an alkaline aqueous solution after curing, and has high heat resistance (for example, high solder heat resistance). Is expressed. Moreover, the curvature at the time of hardening can be suppressed by the said structure.
 また、ポリイミドの構造中に水酸基及び/又はカルボキシル基を有するが、樹脂組成物中に2官能水酸基含有化合物を存在させることで、硬化時のポリイミド骨格の収縮を防ぐことができる。つまり、2官能水酸基含有化合物が、骨格中に取り込まれずに第二成分として含有されることで、樹脂組成物から得られる硬化物の反りをさらに低減することができる。また、オキサゾリン化合物を含有することで、水酸基との反応による高分子化、架橋形成により、アルカリ水溶液への不溶性とさらに高い耐熱性を実現できる。 In addition, although the polyimide structure has a hydroxyl group and / or a carboxyl group, the presence of a bifunctional hydroxyl group-containing compound in the resin composition can prevent the polyimide skeleton from shrinking during curing. That is, the curvature of the hardened | cured material obtained from a resin composition can further be reduced by containing a bifunctional hydroxyl-containing compound as a 2nd component, without being taken in in frame | skeleton. Further, by containing an oxazoline compound, insolubility in an alkaline aqueous solution and higher heat resistance can be realized by polymerizing and crosslinking by reaction with a hydroxyl group.
 また、2官能水酸基含有化合物と、オキサゾリン化合物の含有量は、ポリイミド100質量部に対して2質量部から45質量部であり、ポリイミドが他の成分に対して過剰である。この構成により、以下のような機構によって耐熱性が発現すると推測される。オキサゾリン基は、水酸基と反応してC=O基やNH基を含む構造を形成するが、更にオキサゾリン基は、イミド化反応後に残存するポリイミド中に含まれる水酸基及び/又はカルボン酸と反応し、C=O基やNH基を含むアミド構造やウレア構造などを形成する。つまり、熱硬化によって、ポリイミドとオキサゾリン化合物との間の化学的な架橋と、2官能水酸基含有化合物とオキサゾリン化合物との間の化学的な架橋とが形成されると考えられる。このように、複数種類の架橋によって3次元架橋形成されることにより、さらに耐熱性に優れたポリイミドを過剰とすることにより、さらなる耐熱性が発現する。 Further, the content of the bifunctional hydroxyl group-containing compound and the oxazoline compound is 2 to 45 parts by mass with respect to 100 parts by mass of the polyimide, and the polyimide is excessive with respect to other components. With this configuration, it is presumed that heat resistance is exhibited by the following mechanism. The oxazoline group reacts with a hydroxyl group to form a structure containing a C═O group or an NH group, but the oxazoline group further reacts with a hydroxyl group and / or carboxylic acid contained in the polyimide remaining after the imidization reaction, An amide structure or a urea structure containing a C═O group or an NH group is formed. That is, it is considered that chemical crosslinking between the polyimide and the oxazoline compound and chemical crosslinking between the bifunctional hydroxyl group-containing compound and the oxazoline compound are formed by thermosetting. As described above, by forming a three-dimensional cross-link by a plurality of types of cross-links, the heat resistance is further increased by making the polyimide excellent in heat resistance excessive.
 次に、樹脂組成物を構成する各組成物の詳細を説明する。 Next, details of each composition constituting the resin composition will be described.
(a)ポリイミド
 本実施の形態に係る樹脂組成物に用いられるポリイミドは、水酸基及び/又はカルボキシル基を構成単位として有している。このようにポリイミド構造部分が多官能架橋性化合物の架橋性官能基と反応して硬化することにより、硬化後のアルカリ水溶液への不溶性を示す。また、低温硬化の際に残存したカルボキシル基をオキサゾリン化合物及び/又はブロックイソシアネート化合物との反応で不活性化させ、オキサゾリン化合物及び/又はブロックイソシアネート化合物と2官能水酸基含有化合物により反りを抑制することができる。
(A) Polyimide The polyimide used for the resin composition according to the present embodiment has a hydroxyl group and / or a carboxyl group as a structural unit. Thus, when the polyimide structure part reacts with the crosslinkable functional group of the polyfunctional crosslinkable compound and cures, it shows insolubility in the alkaline aqueous solution after curing. In addition, it is possible to inactivate a carboxyl group remaining during low-temperature curing by a reaction with an oxazoline compound and / or a blocked isocyanate compound, and to suppress warping by the oxazoline compound and / or the blocked isocyanate compound and a bifunctional hydroxyl group-containing compound. it can.
 本実施の形態に係る樹脂組成物に用いられるポリイミドは、水酸基及び/又はカルボキシル基を構成単位として有している。水酸基及び/又はカルボキシル基は、水酸基及び/又はカルボキシル基を有するジアミンを用いることでポリイミドに導入できる。このようなジアミンとしては、2,5-ジアミノフェノ-ル、3,5-ジアミノフェノ-ル、4,4’-(3,3’-ジヒドロキシ)ジアミノビフェニル、4,4’-(2,2’-ジヒドロキシ)ジアミノビフェニル、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3-ヒドロキシ-4-アミノビフェニル(HAB)、4,4’-(3,3’-ジカルボキシ)ジフェニルアミン、メチレンビスアミノ安息香酸(MBAA)、2,5-ジアミノ安息香酸(DABA)、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルエ-テルなどが挙げられる。 The polyimide used in the resin composition according to the present embodiment has a hydroxyl group and / or a carboxyl group as a structural unit. A hydroxyl group and / or a carboxyl group can be introduced into polyimide by using a diamine having a hydroxyl group and / or a carboxyl group. Such diamines include 2,5-diaminophenol, 3,5-diaminophenol, 4,4 ′-(3,3′-dihydroxy) diaminobiphenyl, 4,4 ′-(2,2 '-Dihydroxy) diaminobiphenyl, 2,2'-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3-hydroxy-4-aminobiphenyl (HAB), 4,4'-(3,3'- Dicarboxy) diphenylamine, methylenebisaminobenzoic acid (MBAA), 2,5-diaminobenzoic acid (DABA), 3,3′-dicarboxy-4,4′-diaminodiphenyl ether, and the like.
 ポリイミドのその他の構成については、上記第1の実施の形態と同様のものを用いることができる。なお、上述した実施の形態においては、(A)高分子化合物として水酸基及び/又はカルボキシル基とシロキサン部位とを有する溶剤可溶ポリイミドを用いた第2の態様に係る樹脂組成物について説明したが、本発明の効果を奏する範囲でポリアミド酸構造を実質的に含まないポリイミドを用いることにより、上記第1の態様に係る樹脂組成物として用いることも可能である。 As for other configurations of the polyimide, those similar to those in the first embodiment can be used. In the above-described embodiment, the resin composition according to the second aspect using the solvent-soluble polyimide having a hydroxyl group and / or a carboxyl group and a siloxane moiety as the polymer compound (A) has been described. It is also possible to use the resin composition according to the first aspect by using a polyimide that does not substantially contain a polyamic acid structure as long as the effects of the present invention are achieved.
 本実施の形態に係るポリイミドの製造方法としては、上述した第1の実施の形態で示したポリイミドの製造方法と同様の方法を用いることができる。 As a method for manufacturing polyimide according to the present embodiment, the same method as the method for manufacturing polyimide described in the first embodiment described above can be used.
(b)2官能水酸基含有化合物
 本実施の形態に係る樹脂組成物に用いられる2官能水酸基含有化合物とは、分子鎖一本に対して2つの水酸基を含むものを指す。骨格中には、脂肪族、芳香族、脂環基などの炭化水素基を含むものが挙げられ、オキサゾリン化合物と架橋させる場合は絶縁性を高める点から下記式(14)で表されるような構造を骨格中に有するものが好ましく、反り抑制の点から脂肪族を含む化合物であることが好ましい。脂肪族の骨格を有することにより、反りを抑制の効果を損なうことなく吸湿性を抑えることができ、吸湿時においても高い絶縁性を発現できるためである。なお、長鎖の脂肪族基を含む場合には反り抑制の効果が高まるため好ましい。
(B) Bifunctional hydroxyl group-containing compound The bifunctional hydroxyl group-containing compound used in the resin composition according to the present embodiment refers to a compound containing two hydroxyl groups per molecular chain. Examples of the skeleton include those containing hydrocarbon groups such as aliphatic, aromatic, and alicyclic groups. When crosslinked with an oxazoline compound, the skeleton is represented by the following formula (14) from the viewpoint of enhancing insulation. Those having a structure in the skeleton are preferred, and compounds containing aliphatic groups are preferred from the viewpoint of warpage suppression. This is because by having an aliphatic skeleton, hygroscopicity can be suppressed without impairing the effect of suppressing warpage, and high insulating properties can be expressed even during moisture absorption. In addition, it is preferable to include a long-chain aliphatic group because the effect of suppressing warpage is enhanced.
Figure JPOXMLDOC01-appb-C000041
(式(14)中、Xは、芳香族、Yは、炭素数1から10の脂肪族、Zは、エーテル基、エステル基、カーボネート基、ウレタン基、ウレア基から選ばれる官能基で、h=0~2の整数、i=0~1の整数、j=1~1000の整数を表す。)
Figure JPOXMLDOC01-appb-C000041
(In the formula (14), X is aromatic, Y is aliphatic having 1 to 10 carbon atoms, Z is a functional group selected from an ether group, an ester group, a carbonate group, a urethane group, and a urea group, h = 0 represents an integer of 0 to 2, i represents an integer of 0 to 1, and j represents an integer of 1 to 1000.)
 また、オキサゾリン化合物と架橋させるのには、ポリフェノール末端化合物が好ましい。また、特に電子材料用途では、フッ素や塩素などのハロゲンを含まないものが好ましい。 Also, a polyphenol-terminated compound is preferable for crosslinking with the oxazoline compound. In particular, for electronic materials, those not containing halogen such as fluorine and chlorine are preferable.
 2官能水酸基含有化合物の具体例としては、三菱化学社製のPTMG1000などのポリテトラメチレンジオール、日本曹達社製のG-1000などのポリブタジエンジオール、GI-1000などの水添ポリブタジエンジオール、旭化成ケミカルズ社製のデュラノールT5651、デュラノールT5652、デュラノールT4671及びダイセル化学社製のプラクセルCDなどのポリカーボネートジオール、ダイセル化学社製のプラクセル200などのポリカプロラクトンジオール、ビスフェノールAなどのビスフェノール類、新日本理化社製のリカビノールHBなどの水添ビスフェノール類、信越化学社製X-22-1821、ダウコーニング社製BY16-752、BY16-799などの両末端フェノール変性シリコーンなどが挙げられる。 Specific examples of the bifunctional hydroxyl group-containing compound include polytetramethylene diol such as PTMG1000 manufactured by Mitsubishi Chemical Corporation, polybutadiene diol such as G-1000 manufactured by Nippon Soda Co., Ltd., hydrogenated polybutadiene diol such as GI-1000, Asahi Kasei Chemicals Corporation DURANOL T5651, DURANOL T5652, DURANOL T4671, and polycarbonate diols such as Placel CD manufactured by Daicel Chemical Co., Ltd. Hydrogenated bisphenols such as HB, phenol-modified silicones at both ends such as X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd., BY16-752 manufactured by Dow Corning, and BY16-799 are listed. It is.
 これらの中でも、絶縁性を高める点から両末端フェノール変性シリコーン、ポリブタジエンジオール、水添ポリブタジエンジオール、ポリカーボネートジオールが好ましく、反りの低減の点から両末端フェノール変性シリコーン、ポリカーボネートジオールが好ましい。 Among these, a both-ends phenol-modified silicone, polybutadiene diol, hydrogenated polybutadiene diol, and polycarbonate diol are preferable from the viewpoint of improving insulation, and a both-end phenol-modified silicone and polycarbonate diol are preferable from the viewpoint of reducing warpage.
 また、2官能水酸基含有化合物は、反り低減と有機溶剤への溶解性の点から室温おいて液状のものが好ましい。数平均分子量としては500~3000のものが好ましく、特に数平均分子量が500~2000のものが好ましい。 In addition, the bifunctional hydroxyl group-containing compound is preferably a liquid compound at room temperature from the viewpoint of warpage reduction and solubility in an organic solvent. The number average molecular weight is preferably 500 to 3000, and particularly preferably the number average molecular weight is 500 to 2000.
 2官能水酸基含有化合物は、反り低減、半田耐熱性及び耐薬品性を両立させるという点から樹脂組成物100質量部に対し、3質量部~70質量部含有することが好ましく、5質量部~60質量部含有することがさらに好ましい。 The bifunctional hydroxyl group-containing compound is preferably contained in an amount of 3 parts by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of achieving both warpage reduction, solder heat resistance and chemical resistance. More preferably, it is contained in parts by mass.
 なお、本実施の形態においては、(B)多官能水酸基含有化合物として、2つの水酸基を含有する2官能水酸基含有化合物について説明したが、本発明の効果を奏する範囲で2以上の水酸基を含有するポリオールなども用いることが可能である。 In addition, in this Embodiment, although the bifunctional hydroxyl-containing compound containing two hydroxyl groups was demonstrated as (B) polyfunctional hydroxyl-containing compound, it contains two or more hydroxyl groups in the range with the effect of this invention. Polyols can also be used.
(c-2)オキサゾリン化合物
 本実施の形態に係る樹脂組成物に用いられるオキサゾリン化合物とは、分子内に2個以上のオキサゾリン基を有する化合物である。オキサゾリン化合物としては、ポリイミド(高分子化合物)及び/又は2官能水酸基含有化合物との間で架橋を形成した際に、当該架橋にC=O基及び/又はNH基を少なくとも2つ有するものが好ましい。
(C-2) Oxazoline Compound The oxazoline compound used in the resin composition according to the present embodiment is a compound having two or more oxazoline groups in the molecule. As the oxazoline compound, one having at least two C═O groups and / or NH groups in the cross-linking when the cross-linking is formed between the polyimide (polymer compound) and / or the bifunctional hydroxyl group-containing compound is preferable. .
 オキサゾリン化合物の具体例としては、1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、日本触媒社製のK-2010E、K-2020E、K-2030E、2,6-ビス(4-イソプロピル-2-オキサゾリン-2-イル)ピリジン、2,6-ビス(4-フェニル-2-オキサゾリン-2-イル)ピリジン、2,2‘-イソプロピリデンビス(4-フェニル-2-オキサゾリン)、2,2‘-イソプロピリデンビス(4-ターシャルブチル-2-オキサゾリン)などが挙げられる。これらのオキサゾリン化合物は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Specific examples of the oxazoline compound include 1,3-bis (4,5-dihydro-2-oxazolyl) benzene, K-2010E, K-2020E, K-2030E, and 2,6-bis (4 -Isopropyl-2-oxazolin-2-yl) pyridine, 2,6-bis (4-phenyl-2-oxazolin-2-yl) pyridine, 2,2'-isopropylidenebis (4-phenyl-2-oxazoline) 2,2′-isopropylidenebis (4-tertiarybutyl-2-oxazoline) and the like. These oxazoline compounds may be used alone or in combination of two or more.
 上述した樹脂組成物を加熱することによって硬化物を得ることができる。加熱の態様については特に限定されないが、アリカリ水溶液に可溶とするため、50℃~140℃において1分間~60分間加熱することが好ましい。さらに高温領域(例えば160℃~200℃)の加熱で主として架橋反応が生じ、アルカリ水溶液へ不溶となる。 A cured product can be obtained by heating the resin composition described above. The mode of heating is not particularly limited, but it is preferable to heat at 50 ° C. to 140 ° C. for 1 minute to 60 minutes in order to make it soluble in an antkari aqueous solution. Furthermore, a crosslinking reaction mainly occurs by heating in a high temperature region (for example, 160 ° C. to 200 ° C.), and becomes insoluble in an alkaline aqueous solution.
 上記高温領域においては、形成される樹脂組成物膜の厚さにもよるが、オーブンあるいはホットプレートにより最高温度を150℃~220℃の範囲とし、5分間~100分間、空気又は窒素などの不活性雰囲気下で加熱することにより、架橋する。加熱温度は、処理時間の全体に亘って一定であっても良く、徐々に昇温させてもよい。樹脂組成物膜は、公知のスクリーン印刷、又は、精密ディスペンス法により、フレキシブルプリント回路基板や半導体ウエハー表面に印刷し形成することができる。 In the above high temperature region, depending on the thickness of the resin composition film to be formed, the maximum temperature is set in the range of 150 ° C. to 220 ° C. with an oven or a hot plate, and air or nitrogen is not used for 5 to 100 minutes. It crosslinks by heating in an active atmosphere. The heating temperature may be constant over the entire processing time or may be gradually raised. The resin composition film can be formed by printing on the surface of a flexible printed circuit board or a semiconductor wafer by known screen printing or a precision dispensing method.
 樹脂組成物は、熱硬化させることにより優れた耐熱性を示すので、半導体素子の表面硬化膜、層間絶縁膜、ボンディングシート、プリント配線板用保護絶縁膜、プリント回路基板の表面保護膜・層間絶縁膜などとして有用であり、種々の電子部品に適用される。例えば、銅箔F2-WS(12μm)に樹脂組成物を塗工し95℃12分乾燥し、絶縁層の厚さ15μmの樹脂付き銅箔を作成できる。フレキシブルなプリント回路基板としては、エスパネックスM(新日鉄化学社製)(絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))を用い、この回路基板上に樹脂付き銅箔を真空プレスにて100℃1分間、4MPaで積層し、銅箔上に感光性エッチングレジスト層を形成しアルカリ水溶液にてエッチングレジストと樹脂組成物を溶解しビアを形成した後、レジストを剥離し、180℃1時間硬化することにより層間絶縁膜が得られる。このようにして形成された層間絶縁膜は、良好な絶縁特性を発揮する。なお、本実施の形態における樹脂組成物の熱硬化は、比較的低い温度条件(例えば160℃~200℃)で行われるため、銅の酸化は生じない。 Since the resin composition exhibits excellent heat resistance by thermosetting, the surface cured film of the semiconductor element, the interlayer insulating film, the bonding sheet, the protective insulating film for the printed wiring board, the surface protective film / interlayer insulating of the printed circuit board It is useful as a film and is applied to various electronic components. For example, the resin composition can be applied to copper foil F2-WS (12 μm) and dried at 95 ° C. for 12 minutes to produce a copper foil with resin having an insulating layer thickness of 15 μm. As a flexible printed circuit board, Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulating layer thickness 25 μm, conductor layer copper foil F2-WS (18 μm)) is used. After laminating at 4 MPa at 100 ° C. for 1 minute in a vacuum press, forming a photosensitive etching resist layer on the copper foil, dissolving the etching resist and the resin composition with an alkaline aqueous solution to form vias, and then peeling the resist, An interlayer insulating film is obtained by curing at 180 ° C. for 1 hour. The interlayer insulating film formed in this way exhibits good insulating properties. In addition, since the thermosetting of the resin composition in the present embodiment is performed under relatively low temperature conditions (for example, 160 ° C. to 200 ° C.), copper oxidation does not occur.
 また、エスパネックスM(新日鉄化学社製、絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))の両面銅張板を用いて、両面部品実装回路基板を作成し、この回路基板に樹脂組成物を塗工乾燥し、アルカリ水溶液による加工後に硬化して、樹脂組成物を表面保護膜として用いても、良好な絶縁特性を発揮する。ここで、表面保護膜の膜厚は1μm~50μmであることが好ましい。膜厚を1μm以上とすることにより取り扱いが容易となり、50μm以下とすることにより折り曲げやすく組み込みが容易となるためである。 In addition, a circuit board on which double-sided components were mounted was prepared using a double-sided copper-clad board of ESPANEX M (manufactured by Nippon Steel Chemical Co., Ltd., insulation layer thickness 25 μm, conductor layer copper foil F2-WS (18 μm)). Even if the resin composition is coated and dried on the substrate, cured after being processed with an alkaline aqueous solution, and the resin composition is used as a surface protective film, good insulating properties are exhibited. Here, the thickness of the surface protective film is preferably 1 μm to 50 μm. When the film thickness is 1 μm or more, the handling becomes easy, and when the film thickness is 50 μm or less, it is easy to bend and incorporate easily.
 なお、本実施の形態に係る樹脂組成物は、(D)感光剤を含有することにより、感光性樹脂組成物として用いることもできる。また、感光性樹脂組成物を基材上に塗布することにより、感光性フィルムを得ることもできる。 In addition, the resin composition which concerns on this Embodiment can also be used as a photosensitive resin composition by containing the (D) photosensitive agent. Moreover, the photosensitive film can also be obtained by apply | coating the photosensitive resin composition on a base material.
 また、本実施の形態に係る樹脂組成物は、難燃性を向上する観点から、(F)リン化合物を含有させて用いることもできる。(F)リン化合物としては、リン酸エステル化合物又はホスファゼン化合物などを用いることができる。 Also, the resin composition according to the present embodiment can be used by containing (F) a phosphorus compound from the viewpoint of improving flame retardancy. (F) As a phosphorus compound, a phosphate ester compound or a phosphazene compound can be used.
 さらに、本実施の形態に係る樹脂組成物は、銅箔上に樹脂組成物を設けて乾燥することにより、多層フレキシブル配線板などの層間絶縁膜として好適に用いることができる。また、本実施の形態に係る樹脂組成物は、基材上に形成された配線パターンを覆うように樹脂組成物を設けることにより、配線板の配線パターンの保護膜として好適に用いることができる。 Furthermore, the resin composition according to the present embodiment can be suitably used as an interlayer insulating film such as a multilayer flexible wiring board by providing a resin composition on a copper foil and drying it. Moreover, the resin composition according to the present embodiment can be suitably used as a protective film for a wiring pattern on a wiring board by providing the resin composition so as to cover the wiring pattern formed on the substrate.
 なお、樹脂組成物は、ポリイミド、2官能水酸基含有化合物、オキサゾリン化合物及びの他に、有機溶媒を含有してもよい。有機溶媒に溶解した状態とすることにより、ワニスとして好ましく使用することができるためである。 The resin composition may contain an organic solvent in addition to polyimide, a bifunctional hydroxyl group-containing compound, an oxazoline compound, and the like. It is because it can use preferably as a varnish by setting it as the state melt | dissolved in the organic solvent.
 このような有機溶媒としては、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドンなどのアミド溶媒、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン溶媒、ジメチルスルホキシド、ジエチルスルホキシド、ヘキサメチルスルホキシドなどの含硫黄系溶媒、クレゾール、フェノールなどのフェノール系溶媒、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラグライム、ジオキサン、テトラヒドロフラン、安息香酸ブチル、安息香酸エチル、安息香酸メチルなどのエーテル溶媒が挙げられる。また、これらの有機溶媒は、単独で使用してもよいし、複数併用してもよい。特に、高沸点と低吸水性の点から、γ-ブチロラクトン、トリグライム、安息香ブチル、安息香酸エチルを用いることが好ましい。 Examples of such organic solvents include amide solvents such as N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone, γ- Lactone solvents such as butyrolactone and γ-valerolactone, sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide and hexamethyl sulfoxide, phenol solvents such as cresol and phenol, diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), Examples include ether solvents such as tetraglyme, dioxane, tetrahydrofuran, butyl benzoate, ethyl benzoate, and methyl benzoate. These organic solvents may be used alone or in combination. In particular, from the viewpoint of high boiling point and low water absorption, it is preferable to use γ-butyrolactone, triglyme, butyl benzoate, and ethyl benzoate.
 以下、本発明の効果を明確にするために行った実施例について説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, examples performed to clarify the effects of the present invention will be described. In addition, this invention is not limited at all by the following examples.
 本発明の第1の実施の形態に係る樹脂組成物について、以下の実施例1及び比較例1を参照して説明する。なお、以下の実施例1において、試料1から試料32は、第2の態様に係る樹脂組成物であり、試料33から試料35は、第1の態様に係る樹脂組成物である。 The resin composition according to the first embodiment of the present invention will be described with reference to the following Example 1 and Comparative Example 1. In Example 1 below, Sample 1 to Sample 32 are the resin composition according to the second aspect, and Sample 33 to Sample 35 are the resin composition according to the first aspect.
(実施例1)
 樹脂組成物の硬化膜を含む試料1を作製し、その特性を確認した。本実施例では、樹脂組成物として、イミド化率88%のポリイミド(以下、ポリイミドA)のワニスに、ポリカーボネートジオールである旭化成ケミカルズ社製デュラノールT5651(分子量1000;以下、多官能水酸基含有化合物A)と、ヘキサメチレンジイソシアネート系ブロックイソシアネートである旭化成ケミカルズ社製デュラネートSBN-70D(NCO含有量10.2wt%;以下、イソシアネート化合物A)とを加えたものを用いた。ポリイミドA100質量部に対し、多官能水酸基含有化合物Aは5質量部、イソシアネート化合物Aは5質量部とした。また、樹脂組成物に対し、ポリイミドAが30質量%になるよう調合した。この場合、多官能水酸基含有化合物に含まれる水酸基と、イソシアネート化合物Aに含まれるイソシアネート基とのモル比は、水酸基/イソシアネート基=0.9であった。以下、ポリイミドAの合成方法、硬化膜の作製方法、及び各特性の評価方法について説明する。
Example 1
Sample 1 including a cured film of the resin composition was prepared, and its characteristics were confirmed. In this example, as a resin composition, a polyimide varnish having an imidization ratio of 88% (hereinafter referred to as polyimide A), a polycarbonate diol, DURANOL T5651 manufactured by Asahi Kasei Chemicals Co., Ltd. (molecular weight 1000; hereinafter, polyfunctional hydroxyl group-containing compound A) And Duranate SBN-70D (NCO content: 10.2 wt%; hereinafter referred to as isocyanate compound A) manufactured by Asahi Kasei Chemicals, which is a hexamethylene diisocyanate block isocyanate, was used. Polyfunctional hydroxyl group-containing compound A was 5 parts by mass and isocyanate compound A was 5 parts by mass with respect to 100 parts by mass of polyimide A. Moreover, it prepared so that the polyimide A might be 30 mass% with respect to the resin composition. In this case, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the isocyanate compound A was hydroxyl group / isocyanate group = 0.9. Hereinafter, a method for synthesizing polyimide A, a method for producing a cured film, and a method for evaluating each property will be described.
[ポリイミドA]
 ポリイミドAの合成方法について説明する。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。氷水浴0℃で、ジェファーミンXTJ-542(ハンツマン社製、重量平均分子量1000)40g、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)23.519g、無水フタル酸2.027g、γ-ブチロラクトン(GBL)60g、安息香酸エチル(BAEE)60g、トルエン20g、γ-バレロラクトン12g、ピリジン18gを入れ、均一になるまで攪拌した。さらに、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)18.966gと、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)19.616gとを少しずつ添加した。0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。系を60℃まで冷却した後、BTDA5.293g、APB4.780gを添加した。5時間後、室温まで冷却した。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率88%のポリイミドAワニスを得た。
[Polyimide A]
A method for synthesizing polyimide A will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. In an ice water bath at 0 ° C., 40 g of Jeffermine XTJ-542 (manufactured by Huntsman, weight average molecular weight 1000), 23.519 g of 1,3-bis (3-aminophenoxy) benzene (APB), 2.027 g of phthalic anhydride, γ -60 g of butyrolactone (GBL), 60 g of ethyl benzoate (BAEE), 20 g of toluene, 12 g of γ-valerolactone and 18 g of pyridine were added and stirred until uniform. Furthermore, 18.966 g of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and 19,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) 19. 616 g was added in small portions. After stirring for 0.5 hour, the temperature was raised to 170 ° C. and heated for 4 hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. After the system was cooled to 60 ° C., 5.293 g of BTDA and 4.780 g of APB were added. After 5 hours, it was cooled to room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide A varnish having an imidization ratio of 88%.
 なお、上述したイミド化率は、IR法で求めた。具体的には、1480cm-1近傍のベンゼン環に基づくピークを基準とし、1380cm-1近傍のイミド環生成に基づくピークの吸光度との比からイミド化率を求めた。任意の温度におけるイミド化率Cは、任意の温度における1480cm-1の吸光度をA3、1380cm-1の吸光度をB3として、C=((B3/A3―B1/A1)/(B2/A2―B1/A1))×100(%)の式から算出される。ここで、50℃にて合成し80℃で乾燥した樹脂の1480cm-1における吸光度をA1、1380cm-1の吸光度をB1とした。また、大気雰囲気で220℃、60分間熱処理した樹脂の1480cm-1における吸光度をA2、1380cm-1の吸光度をB2とした。また、各ピークに関し、ピーク前後でピークの谷と谷を結ぶように適宜ベースラインを引き、ベースラインからの各ピークの高さ(つまり、各ピーク点と、各ピークからベースラインへ降ろした線とベースラインとの交点まで距離)をそれぞれの吸光度と定義した。なお、上記式において算出されるイミド化率Cは、220℃、60分間熱処理時のイミド化率を100%とする値である。 In addition, the imidation ratio mentioned above was calculated | required by IR method. Specifically, the imidation rate was determined from the ratio of the peak based on the imide ring formation near 1380 cm −1 to the peak based on the benzene ring near 1480 cm −1 as a reference. The imidation ratio C at an arbitrary temperature is expressed by C = ((B3 / A3-B1 / A1) / (B2 / A2-B1) where A3 is an absorbance at 1480 cm -1 and B3 is an absorbance at 1380 cm -1 at an arbitrary temperature. / A1)) × 100 (%). Here, the absorbance at 1480 cm −1 of the resin synthesized at 50 ° C. and dried at 80 ° C. was A1, and the absorbance at 1380 cm −1 was B1. Further, the absorbance at 1480 cm −1 of the resin heat-treated at 220 ° C. for 60 minutes in the air atmosphere was A2, and the absorbance at 1380 cm −1 was B2. Also, for each peak, draw a baseline so that the valleys of the peaks are connected before and after the peak, and the height of each peak from the baseline (that is, each peak point and a line that descends from each peak to the baseline). And the distance to the intersection with the baseline) was defined as the respective absorbance. The imidation rate C calculated in the above formula is a value that makes the imidization rate during heat treatment at 220 ° C. for 60 minutes 100%.
[硬化膜の作製]
 上述した樹脂組成物をバーコーターで基板に塗工し、室温で5分間~10分間レベリングを行い、熱風オーブンにて120℃、60分間、次いで180℃、30分間加熱して乾燥硬化し、試料1を作製した。基板としては、東レ・デュポン社製のカプトン(登録商標)100ENを用いた。また、樹脂組成物は基板の片面に塗工した。乾燥硬化後の膜厚は約20μmとした。
[Preparation of cured film]
The above resin composition is applied to a substrate with a bar coater, leveled at room temperature for 5 to 10 minutes, dried and cured by heating in a hot air oven at 120 ° C. for 60 minutes, then at 180 ° C. for 30 minutes. 1 was produced. As the substrate, Kapton (registered trademark) 100EN manufactured by Toray DuPont was used. The resin composition was applied to one side of the substrate. The film thickness after drying and curing was about 20 μm.
[反りの評価]
 反りの評価は、試料四隅の持ち上がりによって評価した。具体的には、23℃、湿度50%の環境下にて、上述した試料1を5cm×5cmに切断し、中央部に対する角の浮き上がった距離を反りとして測定した。反りが10mm以下であるものは良好として○とし、5mm以下であるものは更に良好として◎とし、15mm以下であるものは△、15mmを超えるものは不良として×とした。
[Evaluation of warpage]
The warpage was evaluated by lifting the four corners of the sample. Specifically, the sample 1 described above was cut into 5 cm × 5 cm in an environment of 23 ° C. and a humidity of 50%, and the distance at which the corner was raised relative to the central portion was measured as a warp. Those having a warp of 10 mm or less were evaluated as “good”, those having a warp of 5 mm or less were evaluated as “good”, も の being 15 mm or less, “Δ”, and those exceeding 15 mm were evaluated as “poor”.
[半田耐性(耐熱性)の評価]
 半田耐性は、JPCA-BM02規格に準じ、3cm×3cmに切断した試料1をハンダ浴に260℃で60秒間浸漬して評価した。外観を目視にて検査して、変形・溶解跡などの変化の有無を確認し、全体の面積の90%以上に変化が見られない場合を○とし、全体の面積の50%~90%に変化が見られない場合を△とし、変化が見られない領域が50%未満の場合を×とした。
[Evaluation of solder resistance (heat resistance)]
The solder resistance was evaluated by immersing Sample 1 cut to 3 cm × 3 cm in a solder bath at 260 ° C. for 60 seconds in accordance with the JPCA-BM02 standard. Visually inspect the external appearance to confirm the presence or absence of changes such as deformation and dissolution traces. If no change is observed in 90% or more of the total area, the circle is marked as ○, and the area is 50% to 90%. The case where no change was observed was indicated by Δ, and the case where the region where no change was observed was less than 50% was indicated by ×.
[耐薬品性の評価]
 上述した試料1を、室温でメチルエチルケトン中に10分間浸漬させ、塗膜外観を目視にて検査し、変形・溶解跡などの変化の有無を確認した。全体の面積の90%以上に変化が見られない場合を○とし、全体の面積の50%~90%に変化が見られない場合を△とし、変化が見られない領域が50%未満の場合を×とした。
[Evaluation of chemical resistance]
Sample 1 described above was immersed in methyl ethyl ketone for 10 minutes at room temperature, and the appearance of the coating film was visually inspected to confirm the presence or absence of changes such as deformation and dissolution traces. The case where no change is observed in 90% or more of the entire area is marked as ◯, the case where no change is seen in 50% to 90% of the total area is marked as △, and the region where no change is seen is less than 50% Was set as x.
[温度85℃・湿度85%における絶縁抵抗の評価]
 フレキシブルなプリント回路基板の基材としてエスパネックスM(新日鉄化学社製)(絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))を使用し、ライン/スペース:50μm/50μmの櫛形配線板を作製した。この回路基板上の一部に、硬化後の膜厚が15μmとなる様に樹脂組成物を塗布し硬化させ、試料1Bとした。硬化の条件は、試料1Aと同様である。その後、DC50V、85℃、湿度85%の条件下で8時間放置しながら抵抗を測定し、絶縁抵抗が10Ωを越える場合を○とし、10Ωに達しない場合を×とした。
[Evaluation of insulation resistance at 85 ° C and 85% humidity]
Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulating layer thickness 25 μm, conductor layer copper foil F2-WS (18 μm)) is used as the base material of the flexible printed circuit board. Line / space: 50 μm / 50 μm A comb-shaped wiring board was produced. A resin composition was applied to a part of the circuit board so as to have a film thickness after curing of 15 μm and cured to obtain Sample 1B. The curing conditions are the same as those of sample 1A. Thereafter, the resistance was measured while standing for 8 hours under the conditions of DC 50 V, 85 ° C., and humidity 85%. The case where the insulation resistance exceeded 10 9 Ω was rated as “◯”, and the case where it did not reach 10 9 Ω was marked as “X”.
[100℃から220℃の粘度の評価]
 100℃から220℃の粘度は、TAインスツルメント社製測定機AR-G2を使用し、銅箔を基材とした樹脂フィルムから銅箔をエッチング除去して得た樹脂フィルムを27枚積層した試料を用い、ローター:8mm径パラレルプレート、歪:0.1%、周波数:1Hz、法線応力:0.1N(100g)で評価した。100℃から220℃の粘度が5000Pa・sから100000Pa・sの範囲にある場合を○とし、5000Pa・s未満または100000Pa・sを越えた領域がある場合を×とした。
[Evaluation of viscosity from 100 ° C. to 220 ° C.]
The viscosity of 100 ° C. to 220 ° C. was obtained by laminating 27 resin films obtained by etching and removing copper foil from a resin film having a copper foil as a base material using a measuring instrument AR-G2 manufactured by TA Instruments. Using the sample, evaluation was made with a rotor: 8 mm diameter parallel plate, strain: 0.1%, frequency: 1 Hz, and normal stress: 0.1 N (100 g). A case where the viscosity at 100 ° C. to 220 ° C. is in the range of 5000 Pa · s to 100000 Pa · s was marked with “◯”, and a case where there was a region less than 5000 Pa · s or exceeded 100,000 Pa · s was marked with “X”.
[弾性域と塑性域の評価]
 弾性域と塑性域は、JIS-C-2151規格に準じ、幅5mm、長さ100mmの試料をチャック間距離50mm、100mm/minで引っ張り試験を行い、降伏点までの伸度を弾性域、降伏点から破断点までの伸度を塑性域として評価した。弾性域が伸度20%未満で伸度50%以上の塑性域の場合を○とし、弾性域が20%以上又は伸度50%未満の塑性域の場合を×とした。
[Evaluation of elastic region and plastic region]
In accordance with JIS-C-2151 standard, the elastic region and plastic region are subjected to a tensile test with a sample of 5 mm in width and 100 mm in length at a distance between chucks of 50 mm and 100 mm / min, and the elongation to the yield point is determined as the elastic region and yield. The elongation from the point to the breaking point was evaluated as a plastic region. A case where the elastic region was a plastic region having an elongation of less than 20% and an elongation of 50% or more was rated as ○, and a case of a plastic region having an elastic region of 20% or more or an elongation of less than 50% was evaluated as x.
[層間絶縁抵抗の評価]
 層間絶縁抵抗は、フレキシブルなプリント回路基板の基材としてエスパネックスM(新日鉄化学社製)(絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))を使用し、銅箔を基材とした樹脂フィルムを積層し、その後、DC50V、85℃、湿度85%の条件下で1000時間放置しながら抵抗を測定し、樹脂フィルムの間の絶縁抵抗が10Ω以上の場合を○とし、10Ωに達しない場合を×とした。
[Evaluation of interlayer insulation resistance]
Interlayer insulation resistance uses Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulation layer thickness 25 μm, conductor layer copper foil F2-WS (18 μm)) as the base material for flexible printed circuit boards. When a resin film as a base material is laminated, and then the resistance is measured for 1000 hours under conditions of DC 50 V, 85 ° C. and humidity 85%, the insulation resistance between the resin films is 10 9 Ω or more. And the case where it did not reach 10 9 Ω was marked as x.
[スルーホール埋め込み性の評価]
 スルーホール埋め込み性は、作製した4層の配線板をエポキシ樹脂で包埋し、切断・研磨し光学顕微鏡にて評価した。スルーホールに隙間無く樹脂が埋め込まれている場合を○とし、スルーホール内に隙間が観察された場合を×とした。
[Evaluation of through hole embedding]
The through-hole embedding property was evaluated by an optical microscope after embedding the produced four-layer wiring board with an epoxy resin, cutting and polishing the wiring board. The case where resin was embedded in the through hole without a gap was marked with ◯, and the case where a gap was observed in the through hole was marked with x.
[冷熱衝撃試験の評価]
 冷熱衝撃試験は、JPCA-HD01-2003規格に準じ、作製した4層の配線板を-40℃、120℃、1000サイクルで評価した。サイクル中の接続抵抗の変動が10%以内の場合を○とし、10%を越えた場合を×とした。
[Evaluation of thermal shock test]
In the thermal shock test, the produced four-layer wiring board was evaluated at −40 ° C., 120 ° C. and 1000 cycles according to the JPCA-HD01-2003 standard. The case where the fluctuation of the connection resistance during the cycle was within 10% was marked as ◯, and the case where it exceeded 10% was marked as x.
[樹脂流れ性の評価]
 樹脂流れ性は、銅箔を基材とした樹脂シート20cm角を銅箔F2-WS(12μm)と真空プレス(180℃、20分間、4MPa)積層した後に試料端部の樹脂のはみ出しを目視にて評価した。樹脂のはみ出しが1mm以下の場合を○とし、1mmを越えた場合を×とした。
[Evaluation of resin flow]
The resin flowability was determined by visually checking the resin protrusion at the end of the sample after laminating a 20 cm square resin sheet based on copper foil with copper foil F2-WS (12 μm) and vacuum press (180 ° C., 20 minutes, 4 MPa). And evaluated. The case where the protrusion of the resin was 1 mm or less was evaluated as “◯”, and the case where the resin exceeded 1 mm was evaluated as “X”.
 試料1(試料1A、試料1B)の評価結果を下記表1に示す。下記表1から分かるように、試料1に係る樹脂組成物を用いた硬化物は、硬化時の反りが十分に抑制され、半田耐性(すなわち耐熱性)に優れている。また、耐薬品性や、高温高湿条件の絶縁性にも優れることが分かる。 The evaluation results of Sample 1 (Sample 1A, Sample 1B) are shown in Table 1 below. As can be seen from Table 1 below, the cured product using the resin composition according to Sample 1 is sufficiently suppressed in warping during curing and is excellent in solder resistance (that is, heat resistance). Moreover, it turns out that it is excellent also in chemical resistance and the insulation of high temperature, high humidity conditions.
 また、試料1に係る樹脂組成物を用いた硬化物は、弾性域と塑性域の評価、層間絶縁抵抗、スルーホール埋め込み性、冷熱衝撃試験、樹脂流れ性のいずれにおいても良好な評価結果が得られた。 Moreover, the cured product using the resin composition according to Sample 1 has good evaluation results in any of the evaluation of the elastic region and the plastic region, interlayer insulation resistance, through-hole embedding property, thermal shock test, and resin flow property. It was.
 次に、試料1とは異なる条件で調合した樹脂組成物を用いて硬化膜を作製し、作製された試料2~試料21の特性を確認した。 Next, a cured film was prepared using a resin composition prepared under conditions different from those of Sample 1, and the characteristics of Sample 2 to Sample 21 were confirmed.
[試料2~試料5]
 試料2~試料5は、試料1と同様に、ポリイミドA、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。試料2~試料5の主な相違点は多官能水酸基含有化合物Aとイソシアネート化合物Aの含有量である。具体的には、試料2は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを7.5質量部、イソシアネート化合物Aを7.5質量部で加えた樹脂組成物を用いて作製した。試料3は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Aを10質量部で加えた樹脂組成物を用いて作製した。試料4は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを15質量部、イソシアネート化合物Aを15質量部で加えた樹脂組成物を用いて作製した。試料5は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Aを15質量部で加えた樹脂組成物を用いて作製した。試料2~試料5の作製方法や評価方法などは、試料1と同様である。
[Sample 2 to Sample 5]
Samples 2 to 5 were prepared using a resin composition containing polyimide A, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A in the same manner as sample 1. The main difference between Sample 2 to Sample 5 is the content of the polyfunctional hydroxyl group-containing compound A and the isocyanate compound A. Specifically, Sample 2 was prepared using a resin composition obtained by adding 7.5 parts by mass of polyfunctional hydroxyl group-containing compound A and 7.5 parts by mass of isocyanate compound A to 100 parts by mass of polyimide A. Sample 3 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 4 was prepared using a resin composition in which 15 parts by mass of polyfunctional hydroxyl group-containing compound A and 15 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 5 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 15 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. The preparation method and evaluation method of Sample 2 to Sample 5 are the same as Sample 1.
[試料6~試料9]
 試料6~試料9は、後述するイミド化率28%のポリイミド(以下、ポリイミドB)、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。試料6~試料9の主な相違点は多官能水酸基含有化合物AとブロックイソシアネートAの含有量である。具体的には、試料6は、ポリイミドB100質量部に対し、多官能水酸基含有化合物Aを7.5質量部、イソシアネート化合物Aを7.5質量部で加えた樹脂組成物を用いて作製した。試料7は、ポリイミドB100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Aを10質量部で加えた樹脂組成物を用いて作製した。試料8は、ポリイミドB100質量部に対し、多官能水酸基含有化合物Aを30質量部、イソシアネート化合物Aを30質量部で加えた樹脂組成物を用いて作製した。試料9は、ポリイミドB100質量部に対し、多官能水酸基含有化合物Aを60質量部、イソシアネート化合物Aを60質量部で加えた樹脂組成物を用いて作製した。試料6~試料9の作製方法や評価方法などについては、試料1と同様である。
[Sample 6 to Sample 9]
Samples 6 to 9 were prepared using a resin composition containing polyimide (hereinafter referred to as polyimide B) having an imidization rate of 28%, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A, which will be described later. The main difference between Samples 6 to 9 is the content of the polyfunctional hydroxyl group-containing compound A and the blocked isocyanate A. Specifically, Sample 6 was prepared using a resin composition in which polyfunctional hydroxyl group-containing compound A was added by 7.5 parts by mass and isocyanate compound A was added by 7.5 parts by mass with respect to 100 parts by mass of polyimide B. Sample 7 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B. Sample 8 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound A and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B. Sample 9 was prepared using a resin composition in which 60 parts by mass of polyfunctional hydroxyl group-containing compound A and 60 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B. The production method and evaluation method of Sample 6 to Sample 9 are the same as those of Sample 1.
[ポリイミドB]
 ポリイミドBの合成方法は次の通りである。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。氷水浴0℃で、ジェファーミンXTJ-542(ハンツマン社製、重量平均分子量1000)40g、γ-ブチロラクトン(GBL)60g、安息香酸エチル(BAEE)60g、トルエン20g、γ-バレロラクトン12g、ピリジン18gを入れ、均一になるまで攪拌した。さらに、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)11.760gを少しずつ添加した。0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。系を60℃まで冷却した後、BPDA35.6g、APB29.738gを添加した。5時間後、室温まで冷却した。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率28%のポリイミドBワニスを得た。
[Polyimide B]
A method for synthesizing polyimide B is as follows. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. In an ice-water bath at 0 ° C., Jeffamine XTJ-542 (manufactured by Huntsman, weight average molecular weight 1000) 40 g, γ-butyrolactone (GBL) 60 g, ethyl benzoate (BAEE) 60 g, toluene 20 g, γ-valerolactone 12 g, pyridine 18 g And stirred until uniform. Further, 11.760 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) was added little by little. After stirring for 0.5 hour, the temperature was raised to 170 ° C. and heated for 4 hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. After cooling the system to 60 ° C., 35.6 g of BPDA and 29.738 g of APB were added. After 5 hours, it was cooled to room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide B varnish having an imidization rate of 28%.
[試料10~試料15]
 試料10~試料15は、ポリイミドA、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。試料10~試料15の主な相違点は、多官能水酸基含有化合物として、多官能水酸基含有化合物B~Fのいずれかを用いた点である。多官能水酸基含有化合物Bとしては、ポリカーボネートジオールである旭化成ケミカルズ社製デュラノールT5652(分子量2000)を用いた。多官能水酸基含有化合物Cとしては、ポリカーボネートジオールである旭化成ケミカルズ社製デュラノールT4671(分子量1000)を用いた。多官能水酸基含有化合物Dとしては、ポリブタジエンジオールである日本曹達社製G-1000(分子量1000)を用いた。多官能水酸基含有化合物Eとしては、水添ポリブタジエンジオールである日本曹達社製GI-1000(分子量1000)を用いた。多官能水酸基含有化合物Fとしては、ポリテトラメチレンジオールである三菱化学社製PTMG1000(分子量1000)を用いた。
[Sample 10 to Sample 15]
Samples 10 to 15 were prepared using a resin composition containing polyimide A and isocyanate compound A. The main difference between samples 10 to 15 is that any one of polyfunctional hydroxyl group-containing compounds B to F is used as the polyfunctional hydroxyl group-containing compound. As the polyfunctional hydroxyl group-containing compound B, polycarbonate diol Duranol T5652 (molecular weight 2000) manufactured by Asahi Kasei Chemicals Corporation was used. As the polyfunctional hydroxyl group-containing compound C, polycarbonate diol Duranol T4671 (molecular weight 1000) manufactured by Asahi Kasei Chemicals Corporation was used. As polyfunctional hydroxyl group-containing compound D, polybutadienediol G-1000 (molecular weight 1000) manufactured by Nippon Soda Co., Ltd. was used. As the polyfunctional hydroxyl group-containing compound E, GI-1000 (molecular weight 1000) manufactured by Nippon Soda Co., Ltd., which is a hydrogenated polybutadiene diol, was used. As the polyfunctional hydroxyl group-containing compound F, PTMG1000 (molecular weight 1000) manufactured by Mitsubishi Chemical Corporation, which is polytetramethylene diol, was used.
 試料10は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Bを10質量部、イソシアネート化合物Aを5質量部で加えた樹脂組成物を用いて作製した。試料11は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Cを10質量部、イソシアネート化合物Aを10質量部で加えた樹脂組成物を用いて作製した。試料12は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Dを30質量部、イソシアネート化合物Aを30質量部で加えた樹脂組成物を用いて作製した。試料13は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Eを30質量部、イソシアネート化合物Aを30質量部で加えた樹脂組成物を用いて作製した。試料14は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Fを30質量部、イソシアネート化合物Aを30質量部で加えた樹脂組成物を用いて作製した。試料15は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Bを7.5質量部、イソシアネート化合物Aを7.5質量部で加えた樹脂組成物を用いて作製した。試料10~試料15の作製方法や評価方法などについては、試料1と同様である。 Sample 10 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound B and 5 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 11 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound C and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 12 was prepared using a resin composition obtained by adding 30 parts by mass of polyfunctional hydroxyl group-containing compound D and 30 parts by mass of isocyanate compound A to 100 parts by mass of polyimide A. Sample 13 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound E and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 14 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound F and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 15 was prepared using a resin composition in which 7.5 parts by mass of polyfunctional hydroxyl group-containing compound B and 7.5 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. The production method and evaluation method of Sample 10 to Sample 15 are the same as those of Sample 1.
[試料16、試料17]
 試料16、試料17は、ポリイミドA、多官能水酸基含有化合物Aを含む樹脂組成物を用いて作製した。試料16、試料17の主な相違点は、イソシアネート化合物として、イソシアネート化合物B、Cのいずれかを用いた点である。イソシアネート化合物Bとしては、ヘキサメチレンジイソシアネート系ブロックイソシアネートである旭化成ケミカルズ社製デュラネートTPA-B80E(NCO含有量=12.5wt%)を用いた。イソシアネート化合物Cとしては、イソホロンジイソシアネート系ブロックイソシアネートであるBaxenden社製の品番7951(NCO含有量=7.80wt%)を用いた。
[Sample 16, Sample 17]
Samples 16 and 17 were prepared using a resin composition containing polyimide A and polyfunctional hydroxyl group-containing compound A. The main difference between Sample 16 and Sample 17 is that any of isocyanate compounds B and C is used as the isocyanate compound. As the isocyanate compound B, hexamethylene diisocyanate block isocyanate, Duranate TPA-B80E (NCO content = 12.5 wt%) manufactured by Asahi Kasei Chemicals Corporation was used. As isocyanate compound C, product number 7951 (NCO content = 7.80 wt%) manufactured by Baxenden, which is an isophorone diisocyanate-based blocked isocyanate, was used.
 試料16は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Bを9質量部で加えた樹脂組成物を用いて作製した。試料17は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Cを14質量部で加えた樹脂組成物を用いて作製した。試料16、試料17の作製方法や評価方法などについては、試料1と同様である。 Sample 16 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 9 parts by mass of isocyanate compound B were added to 100 parts by mass of polyimide A. Sample 17 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 14 parts by mass of isocyanate compound C were added to 100 parts by mass of polyimide A. The production method and evaluation method of Sample 16 and Sample 17 are the same as Sample 1.
[試料18、試料19]
 試料18、試料19は、ポリイミドB、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。試料18、試料19の主な相違点は、多官能水酸基含有化合物Aとイソシアネート化合物Aの含有量、及び硬化時の加熱条件である。具体的には、試料18は、ポリイミドB100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Aを10質量部で加えた樹脂組成物を用いて作製した。試料19は、ポリイミドB100質量部に対し、多官能水酸基含有化合物Aを30質量部、イソシアネート化合物Aを30質量部で加えた樹脂組成物を用いて作製した。また、硬化時の加熱条件は、180℃、60分間、ついで180℃、60分間(つまり、180℃、60分間×2)とした。加熱条件を除く試料18、試料19の作製方法、評価方法などについては、試料1と同様である。
[Sample 18, Sample 19]
Samples 18 and 19 were prepared using a resin composition containing polyimide B, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A. The main differences between Sample 18 and Sample 19 are the content of polyfunctional hydroxyl group-containing compound A and isocyanate compound A, and the heating conditions during curing. Specifically, Sample 18 was prepared using a resin composition in which 10 parts by mass of polyfunctional hydroxyl group-containing compound A and 10 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B. Sample 19 was prepared using a resin composition in which 30 parts by mass of polyfunctional hydroxyl group-containing compound A and 30 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide B. The heating conditions for curing were 180 ° C. for 60 minutes, then 180 ° C. for 60 minutes (that is, 180 ° C., 60 minutes × 2). The production method and evaluation method of Sample 18 and Sample 19 excluding the heating conditions are the same as those of Sample 1.
[試料20、試料21]
 試料20、試料21は、試料1と同様に、ポリイミドA、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。試料20、試料21の主な相違点は多官能水酸基含有化合物Aとイソシアネート化合物Aの含有量である。具体的には、試料20は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを3質量部、イソシアネート化合物Aを3質量部で加えた樹脂組成物を用いて作製した。試料21は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを70質量部、イソシアネート化合物Aを70質量部で加えた樹脂組成物を用いて作製した。試料20、試料21の作製方法や評価方法などは、試料1と同様である。
[Sample 20, Sample 21]
Sample 20 and Sample 21 were prepared using a resin composition containing polyimide A, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A in the same manner as Sample 1. The main difference between Sample 20 and Sample 21 is the content of polyfunctional hydroxyl group-containing compound A and isocyanate compound A. Specifically, Sample 20 was prepared using a resin composition in which 3 parts by mass of polyfunctional hydroxyl group-containing compound A and 3 parts by mass of isocyanate compound A were added to 100 parts by mass of polyimide A. Sample 21 was prepared using a resin composition obtained by adding 70 parts by mass of polyfunctional hydroxyl group-containing compound A and 70 parts by mass of isocyanate compound A to 100 parts by mass of polyimide A. The preparation method and evaluation method of the sample 20 and the sample 21 are the same as those of the sample 1.
 試料2~試料21の評価結果を下記表1に示す。下記表1から分かるように、本実施例における樹脂組成物を用いた硬化物は、硬化時の反りが十分に抑制され、半田耐性(すなわち耐熱性)に優れている。また、耐薬品性や、高温高湿条件の絶縁性にも優れる。なお、試料10~試料15などの評価結果より、絶縁性を高める点からは、多官能水酸基含有化合物として、ポリブタジエンジオール、水添ポリブタジエンジオール、ポリカーボネートジオールを用いることが好ましいことが分かる。また、反り低減の点からは、樹脂組成物100質量部に対し、ポリイミドを少なくとも3質量部~70質量部含有することが好ましく、5質量部~70質量部含有することがより好ましく、5質量部~60質量部含有することがさらに好ましいことが分かる。また、試料18、試料19などの評価結果より、耐熱性や耐薬品性を高める点からは、低温領域(100~130℃)の熱処理と、高温領域(160~200℃)の熱処理とを併せて用いることが好ましいことが分かる。ただし、熱処理の条件はこれに限定されない。 The evaluation results of Sample 2 to Sample 21 are shown in Table 1 below. As can be seen from Table 1 below, the cured product using the resin composition in this example has sufficiently suppressed warpage during curing, and is excellent in solder resistance (ie, heat resistance). It also has excellent chemical resistance and insulation under high temperature and high humidity conditions. From the evaluation results of Sample 10 to Sample 15 and the like, it can be seen that polybutadiene diol, hydrogenated polybutadiene diol, and polycarbonate diol are preferably used as the polyfunctional hydroxyl group-containing compound from the viewpoint of enhancing the insulation. From the viewpoint of reducing warpage, it is preferable to contain at least 3 parts by mass to 70 parts by mass of polyimide, more preferably 5 parts by mass to 70 parts by mass with respect to 100 parts by mass of the resin composition. It can be seen that the content is more preferably 60 parts by mass to 60 parts by mass. From the evaluation results of Sample 18 and Sample 19, the heat treatment in the low temperature region (100 to 130 ° C) and the heat treatment in the high temperature region (160 to 200 ° C) are combined from the viewpoint of improving heat resistance and chemical resistance. It can be seen that it is preferable to use them. However, the heat treatment conditions are not limited to this.
 次に、試料1~試料21とは異なる条件で調合した樹脂組成物を用いて硬化膜を作製し、作製された試料22~試料29の特性を確認した。 Next, a cured film was prepared using a resin composition prepared under conditions different from those of Sample 1 to Sample 21, and the characteristics of Sample 22 to Sample 29 were confirmed.
[試料22~試料25]
 試料22~試料25は、ポリイミドC~F、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて試料1と同様に作製した。試料22~試料25の主な相違点はポリイミドのイミド化率である。具体的には、試料22~試料25は、ポリイミドC~F100質量部に対し、多官能水酸基含有化合物Aを15質量部、イソシアネート化合物Aを15質量部で加えた樹脂組成物を用いて作製した。試料22~試料25の作製方法や評価方法などは、試料1と同様である。
[Sample 22 to Sample 25]
Samples 22 to 25 were prepared in the same manner as Sample 1 using a resin composition containing polyimides C to F, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A. The main difference between sample 22 to sample 25 is the imidization ratio of polyimide. Specifically, Samples 22 to 25 were prepared using a resin composition in which 15 parts by mass of the polyfunctional hydroxyl group-containing compound A and 15 parts by mass of the isocyanate compound A were added to 100 parts by mass of polyimides C to F. . The preparation method and evaluation method of Samples 22 to 25 are the same as Sample 1.
[ポリイミドC]
 ポリイミドCの合成方法について説明する。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。室温25℃で、トリエチレングリコールジメチルエーテル15g、γ-ブチロラクトン35g、トルエン20.0g、4,4’-オキシジフタル酸二無水物(マナック社製、略称ODPA)10.86g(35.00mmol)を入れ、均一になるまで攪拌した。その後、80℃に昇温しシリコーンジアミン(信越化学工業社製、略称KF-8010)11.30g(13.78mmol)を加え、更に0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。系を100℃まで冷却した後、無水マレイン酸0.14gを加え0.5時間攪拌した。12時間室温25℃にて静置、冷却した後に1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学社製、略称APB-N)6.00g(20.52mmol)を添加した。5時間、室温25℃で攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率40%のポリイミドCワニスを得た。
[Polyimide C]
A method for synthesizing polyimide C will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of γ-butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of 4,4′-oxydiphthalic dianhydride (manac, ODPA) Stir until uniform. Thereafter, the temperature was raised to 80 ° C., 11.30 g (13.78 mmol) of silicone diamine (manufactured by Shin-Etsu Chemical Co., Ltd., abbreviation KF-8010) was added, and the mixture was further stirred for 0.5 hour, and then heated to 170 ° C. Heated for hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. After cooling the system to 100 ° C., 0.14 g of maleic anhydride was added and stirred for 0.5 hour. After standing at room temperature for 25 hours and cooling, 6.00 g (20.52 mmol) of 1,3-bis (3-aminophenoxy) benzene (Mitsui Chemicals, abbreviated as APB-N) was added. Stir for 5 hours at room temperature 25 ° C. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide C varnish having an imidization ratio of 40%.
[ポリイミドD]
 ポリイミドDの合成方法について説明する。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。室温25℃で、トリエチレングリコールジメチルエーテル15g、γ-ブチロラクトン35g、トルエン20.0g、ODPA10.86g(35.00mmol)を入れ、均一になるまで攪拌した。その後、80℃に昇温しKF-8010を11.30g(13.78mmol)加え、更に2時間攪拌した後、第一回目のAPB-Nを2.17g(7.42mmol)を入れ0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。系を100℃まで冷却した後、無水マレイン酸0.14gを加え0.5時間攪拌した。12時間室温25℃にて静置、冷却した後に第二回目のAPB-Nを3.83g(13.10mmol)を添加した。5時間、室温25℃で攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率60%のポリイミドDワニスを得た。
[Polyimide D]
A method for synthesizing polyimide D will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature of 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of γ-butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of ODPA were added and stirred until uniform. Thereafter, the temperature was raised to 80 ° C., 11.30 g (13.78 mmol) of KF-8010 was added, and the mixture was further stirred for 2 hours. Then, 2.17 g (7.42 mmol) of APB-N for the first time was added to 0.5%. After stirring for an hour, the temperature was raised to 170 ° C. and heated for 4 hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. After cooling the system to 100 ° C., 0.14 g of maleic anhydride was added and stirred for 0.5 hour. After allowing to stand at room temperature for 25 hours and cooling, 3.83 g (13.10 mmol) of the second APB-N was added. Stir for 5 hours at room temperature 25 ° C. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide D varnish having an imidization ratio of 60%.
[ポリイミドE]
 ポリイミドEの合成方法について説明する。ポリイミドFの合成方法の第一回目のAPB-Nを4.03g(13.78mmol)、第二回目のAPB-Nを1.97g(6.73mmol)とする以外は、ポリイミドDの合成方法と同様にしてイミド化率80%のポリイミドEワニスを得た。
[Polyimide E]
A method for synthesizing polyimide E will be described. The polyimide F synthesis method except that the first APB-N is 4.03 g (13.78 mmol) and the second APB-N is 1.97 g (6.73 mmol). Similarly, a polyimide E varnish having an imidization ratio of 80% was obtained.
[ポリイミドF]
 ポリイミドFの合成方法について説明する。ポリイミドDの合成方法の第一回目のAPB-Nを4.86g(16.62mmol)、第二回目のAPB-Nを1.03g(3.52mmol)とする以外は、ポリイミドDの合成方法と同様にしてイミド化率90%のポリイミドFワニスを得た。
[Polyimide F]
A method for synthesizing polyimide F will be described. The polyimide D synthesis method except that the first APB-N is 4.86 g (16.62 mmol) and the second APB-N is 1.03 g (3.52 mmol). Similarly, a polyimide F varnish having an imidization ratio of 90% was obtained.
[試料26]
 試料26は、ポリイミドC、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて試料1と同様に作製した。試料22に対する試料26の主な相違点は難燃成分の添加である。具体的には、試料26は、ポリイミドC100質量部に対し、多官能水酸基含有化合物Aを15質量部、イソシアネート化合物Aを15質量部、伏見製薬所社製のホスファゼン誘導体FP-300(難燃剤A)を23質量部で加えた樹脂組成物を用いて作製した。試料26の作製方法や評価方法などは、試料1と同様である。
[Sample 26]
Sample 26 was prepared in the same manner as Sample 1 using a resin composition containing polyimide C, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A. The main difference between sample 26 and sample 22 is the addition of flame retardant components. Specifically, for sample 26, 15 parts by mass of polyfunctional hydroxyl group-containing compound A and 15 parts by mass of isocyanate compound A with respect to 100 parts by mass of polyimide C, phosphazene derivative FP-300 manufactured by Fushimi Pharmaceutical Co., Ltd. ) Was added using 23 parts by mass of the resin composition. The preparation method and evaluation method of the sample 26 are the same as those of the sample 1.
[試料27]
 試料27は、試料26と同じ樹脂組成物を用いて作製した。試料26に対する試料27の主な相違点は[硬化膜の作製]に使用した基板である。具体的には、試料27では、基板として古河サーキットフォイル社製の銅箔F2-WSの12μm膜厚品を使用し、銅箔のマット面の上に硬化膜を形成した。乾燥硬化後の膜厚は約30μmとした。試料27の他の作製方法や評価方法などは、試料1と同様である。
[Sample 27]
Sample 27 was prepared using the same resin composition as Sample 26. The main difference between the sample 27 and the sample 26 is the substrate used in [Preparation of cured film]. Specifically, in Sample 27, a 12 μm-thick copper foil F2-WS film manufactured by Furukawa Circuit Foil Co., Ltd. was used as the substrate, and a cured film was formed on the mat surface of the copper foil. The film thickness after drying and curing was about 30 μm. Other manufacturing methods and evaluation methods of the sample 27 are the same as those of the sample 1.
[試料28]
 試料28は、ポリイミドC、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて試料1と同様に作製した。試料22に対する試料28の主な相違点は難燃成分の添加と触媒の添加である。試料28は、ポリイミドC100質量部に対し、多官能水酸基含有化合物Aを18質量部、イソシアネート化合物Aを18質量部、伏見製薬所社製のホスファゼン誘導体FP-300(難燃剤A)を27質量部、堺化学工業社製のメラミンシアヌレートMC-20NJ粉砕品(難燃剤B:平均粒径1.1μm、最大粒径3μm)を18質量部、サンアプロ社製のU-CAT SA(登録商標)102(触媒A)を0.18質量部で加えた樹脂組成物を用いて作製した。試料28の作製方法や評価方法などは、基板として古河サーキットフォイル社製の銅箔F2-WSの12μm膜厚品を使用し、銅箔のマット面の上に硬化膜を形成し、120℃、10分間及び200℃、15分間加熱して乾燥硬化し、硬化後の膜厚は約30μmとした以外は試料1と同様である。
[Sample 28]
Sample 28 was prepared in the same manner as Sample 1 using a resin composition containing polyimide C, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A. The main difference between the sample 28 and the sample 22 is the addition of a flame retardant component and the addition of a catalyst. Sample 28 is 18 parts by mass of polyfunctional hydroxyl group-containing compound A, 18 parts by mass of isocyanate compound A, and 27 parts by mass of phosphazene derivative FP-300 (flame retardant A) manufactured by Fushimi Pharmaceutical Co., Ltd. with respect to 100 parts by mass of polyimide C. 18 parts by mass of melamine cyanurate MC-20NJ pulverized product (flame retardant B: average particle size 1.1 μm, maximum particle size 3 μm) manufactured by Sakai Chemical Industry Co., Ltd., U-CAT SA (registered trademark) 102 manufactured by San Apro It was prepared using a resin composition to which (Catalyst A) was added at 0.18 parts by mass. For the preparation method and evaluation method of the sample 28, a 12 μm-thick copper foil F2-WS film manufactured by Furukawa Circuit Foil Co., Ltd. was used as a substrate, and a cured film was formed on the mat surface of the copper foil. It is the same as Sample 1 except that it is dried and cured by heating for 10 minutes and 200 ° C. for 15 minutes, and the cured film thickness is about 30 μm.
[試料29]
 試料29は、試料28と同様の樹脂組成物を用いて作製した。試料28に対する試料29の主な相違点は触媒種だけである。具体的には、サンアプロ社製のU-CAT(登録商標)1102(触媒B)を0.18質量部使用した。試料29の他の作製方法や評価方法などは、試料28と同様である。
[Sample 29]
Sample 29 was prepared using the same resin composition as Sample 28. The main difference between sample 29 and sample 29 is only the catalyst species. Specifically, 0.18 parts by mass of U-CAT (registered trademark) 1102 (catalyst B) manufactured by San Apro was used. Other manufacturing methods and evaluation methods of the sample 29 are the same as those of the sample 28.
 試料22~試料29の評価結果を下記表2に示す。下記表2から分かるように、試料22~試料29に係る樹脂組成物を用いた硬化物は、硬化時の反りが十分に抑制され、半田耐性(すなわち耐熱性)に優れている。また、耐薬品性や、高温高湿条件の絶縁性にも優れており、下記表1に示した試料1から試料21に係る樹脂組成物と同様の効果が得られた。 The evaluation results of Sample 22 to Sample 29 are shown in Table 2 below. As can be seen from Table 2 below, the cured products using the resin compositions according to Samples 22 to 29 are sufficiently suppressed in warping during curing and have excellent solder resistance (ie, heat resistance). Further, it was excellent in chemical resistance and insulation under high temperature and high humidity conditions, and the same effects as those of the resin compositions according to Sample 1 to Sample 21 shown in Table 1 below were obtained.
 次に、試料27~試料29で作製した樹脂フィルムを用いて試料30~試料32を作製し、その特性を確認した。 Next, Sample 30 to Sample 32 were prepared using the resin films prepared from Sample 27 to Sample 29, and their characteristics were confirmed.
[試料30]
 試料30は、試料27で得られた樹脂フィルムを用いて作製した。試料27に対する試料30の主な相違点は、配線板に樹脂フィルムを積層して作製した点である。具体的にはフレキシブルなプリント配線板の基材としてエスパネックスM(新日鉄化学社製)(絶縁層の厚さ25μm、導体層は銅箔F2-WS(18μm))を使用し、直径0.1mmのスルーホールを4mm間隔でドリル加工し銅メッキ後、パターン加工した配線板の両面に樹脂フィルムを真空プレス(180℃、20分間、4MPa)積層し、パターン加工後にスルーホール間中央にレーザービア加工の上、銅メッキし25個のビアをディジーチェーン接続した4層の配線板を作製した。
[Sample 30]
Sample 30 was produced using the resin film obtained in Sample 27. The main difference between the sample 30 and the sample 30 is that a resin film is laminated on a wiring board. Specifically, Espanex M (manufactured by Nippon Steel Chemical Co., Ltd.) (insulating layer thickness 25 μm, conductor layer copper foil F2-WS (18 μm)) is used as the base material of the flexible printed wiring board, and the diameter is 0.1 mm. Drill holes at 4 mm intervals, copper plating, and then laminate a resin film on both sides of the patterned wiring board by vacuum press (180 ° C, 20 minutes, 4 MPa), and after patterning, laser via processing in the center between the through holes A four-layer wiring board was prepared by copper plating and connecting 25 vias in a daisy chain.
[試料31、試料32]
 試料31は試料28を、試料32は試料29を用い、試料30と同じ方法で配線板を作製し試料30と同じ方法で評価した。
[Sample 31, Sample 32]
Sample 31 was sample 28 and sample 32 was sample 29. A wiring board was prepared by the same method as sample 30 and evaluated by the same method as sample 30.
 次に、試料1~試料32とは異なる条件で調合した樹脂組成物を用いて樹脂フィルムを作製し、作製された試料33~試料35の特性を確認した。 Next, a resin film was prepared using a resin composition prepared under conditions different from those of Sample 1 to Sample 32, and the characteristics of the prepared Sample 33 to Sample 35 were confirmed.
[試料33]
 試料33は、イミド化率100%のポリイミドGのワニスに、多官能水酸基含有化合物Aと、ヘキサメチレンジイソシアネート系イソシアネートである旭化成ケミカルズ社製デュラネートTPA-100(NCO含有量23.1wt%;以下、イソシアネート化合物C)とを加えたものを用いた。ポリイミドG100質量部に対し、多官能水酸基含有化合物Aは10質量部、イソシアネート化合物Cは4.4質量部とした。また、樹脂組成物に対し、ポリイミドGが30質量%になるよう調合した。この場合、多官能水酸基含有化合物に含まれる水酸基とイソシアネート化合物Dに含まれるイソシアネート基とのモル比は、水酸基/イソシアネート基=0.9であった。この樹脂組成物を使用し試料30と同じ方法で配線板を作製し試料30と同じ方法で評価した。
[Sample 33]
Sample 33 is a varnish of polyimide G having an imidization ratio of 100%, polyfunctional hydroxyl group-containing compound A, and Duranate TPA-100 manufactured by Asahi Kasei Chemicals, which is a hexamethylene diisocyanate-based isocyanate (NCO content: 23.1 wt%; What added the isocyanate compound C) was used. Polyfunctional hydroxyl-containing compound A was 10 parts by mass and isocyanate compound C was 4.4 parts by mass with respect to 100 parts by mass of polyimide G. Moreover, it prepared so that polyimide G might be 30 mass% with respect to the resin composition. In this case, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the isocyanate compound D was hydroxyl group / isocyanate group = 0.9. Using this resin composition, a wiring board was produced in the same manner as in Sample 30 and evaluated in the same manner as in Sample 30.
[ポリイミドG]
 ポリイミドGの合成方法について説明する。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。室温25℃で、トリエチレングリコールジメチルエーテル15g、γ-ブチロラクトン35g、トルエン20.0g、4,4’-オキシジフタル酸二無水物(マナック社製、略称ODPA)10.86g(35.00mmol)を入れ、均一になるまで攪拌した。その後、80℃に昇温しシリコーンジアミン(信越化学工業社製、略称KF-8010)11.30g(13.78mmol)を加え、更に0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。系を100℃まで冷却した後、無水マレイン酸0.14gを加え0.5時間攪拌した。12時間室温25℃にて静置、冷却した後に1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学社製、略称APB-N)6.00g(20.52mmol)、γ-ブチロラクトン35g、トルエン20.0gを添加した。0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率100%のポリイミドGワニスを得た。
[Polyimide G]
A method for synthesizing polyimide G will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of γ-butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of 4,4′-oxydiphthalic dianhydride (manac, ODPA) Stir until uniform. Thereafter, the temperature was raised to 80 ° C., 11.30 g (13.78 mmol) of silicone diamine (manufactured by Shin-Etsu Chemical Co., Ltd., abbreviation KF-8010) was added, and the mixture was further stirred for 0.5 hour, and then heated to 170 ° C. Heated for hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. After cooling the system to 100 ° C., 0.14 g of maleic anhydride was added and stirred for 0.5 hour. After standing at room temperature for 25 hours and cooling, 1,3-bis (3-aminophenoxy) benzene (Mitsui Chemicals, abbreviation APB-N) 6.00 g (20.52 mmol), γ-butyrolactone 35 g, 20.0 g of toluene was added. After stirring for 0.5 hour, the temperature was raised to 170 ° C. and heated for 4 hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide G varnish having an imidization rate of 100%.
[試料34]
 試料34は、ポリイミドGのワニスに、ポリカーボネートジオールである旭化成ケミカルズ社製デュラノールT5650E(分子量500)と、イソシアネート化合物Dとを加えたものを用いた。ポリイミドG100質量部に対し、T5650Eは5質量部、イソシアネート化合物Dは4.4質量部とした。また、樹脂組成物に対し、ポリイミドHが30質量%になるよう調合した。この場合、多官能水酸基含有化合物に含まれる水酸基と、イソシアネート化合物Dに含まれるイソシアネート基とのモル比は、水酸基/イソシアネート基=0.9であった。この樹脂組成物を使用し試料30と同じ方法で配線板を作製し試料30と同じ方法で評価した。
[Sample 34]
Sample 34 was obtained by adding Polyurethane G varnish to polycarbonate diol, Duranol T5650E (molecular weight 500) manufactured by Asahi Kasei Chemicals, and isocyanate compound D. T5650E was 5 parts by mass and isocyanate compound D was 4.4 parts by mass with respect to 100 parts by mass of polyimide G. Moreover, it prepared so that the polyimide H might be 30 mass% with respect to the resin composition. In this case, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the isocyanate compound D was hydroxyl group / isocyanate group = 0.9. Using this resin composition, a wiring board was produced in the same manner as in Sample 30 and evaluated in the same manner as in Sample 30.
[試料35]
 試料35は、ポリイミドGのワニスに、ポリカーボネートポリオールとして平均水酸基数3.6のポリカーボネートポリオールAと、ヘキサメチレンジイソシアネート(以下、イソシアネート化合物E)とを加えたものを用いた。ポリイミドG100質量部に対し、ポリカーボネートポリオールAは6.2質量部、ヘキサメチレンジイソシアネートは2質量部とした。また、樹脂組成物に対し、ポリイミドGが30質量%になるよう調合した。この場合、多官能水酸基含有化合物に含まれる水酸基と、イソシアネート化合物Eに含まれるイソシアネート基とのモル比は、水酸基/イソシアネート基=0.9であった。この樹脂組成物を使用し試料30と同じ方法で配線板を作製し試料30と同じ方法で評価した。試料30~試料35の評価結果を下記表3に示す。
[Sample 35]
Sample 35 was obtained by adding polycarbonate polyol A having an average hydroxyl number of 3.6 as polycarbonate polyol and hexamethylene diisocyanate (hereinafter referred to as isocyanate compound E) to the varnish of polyimide G. The polycarbonate polyol A was 6.2 parts by mass and the hexamethylene diisocyanate was 2 parts by mass with respect to 100 parts by mass of the polyimide G. Moreover, it prepared so that polyimide G might be 30 mass% with respect to the resin composition. In this case, the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the isocyanate compound E was hydroxyl group / isocyanate group = 0.9. Using this resin composition, a wiring board was produced in the same manner as in Sample 30 and evaluated in the same manner as in Sample 30. The evaluation results of Sample 30 to Sample 35 are shown in Table 3 below.
[ポリカーボネートポリオールA]
 ポリカーボネートポリオールAの合成方法について説明する。デイクソンパッキングを充填した直径10mm、長さ300mmの蒸留塔及び温度計、攪拌機付の2リットルフラスコにエチレンカーボネート:EC 871.6g(9.9モル)トリメチロールプロパン:TMP 530.8g(3.96モル)、1.6-ヘキサンジオール:HDL 351.6g(2.98モル)、1.5-ペンタンジオール:PDL310g(2.98モル)を加え、20torrの減圧下に加熱攪拌し、内温が120℃~130℃になるようにコントロールした。蒸留塔のTopから共沸組成のECとエチレングリコールを溜出させながら、18時間反応を行なった。次に蒸留塔を取りはずして、減圧度を4Torrにして未反応のECとジオールを回収した。未反応物の溜出の終了後、内温を190℃にし、その温度を保ったままジオールを溜出させることにより自己縮合反応を行なった。反応を5時間行なった後GPC(ゲルパーミエーションクロマトグラフィー)分析により数平均分子量1014(ポリスチレン換算)の無色透明な粘性の液体を得た。収量は1200gであった。この液体は、次の物性を有していた。組成(モル%);HDL:PDL:TMP=30.0:21.7:45.4、その他エーテル結合を含むユニットが0.4%存在、OH価(mgKOH/g)=198.8、平均水酸基数=3.6であった。
[Polycarbonate polyol A]
A method for synthesizing the polycarbonate polyol A will be described. In a 2 liter flask equipped with a 10 mm diameter, 300 mm long distillation column and a thermometer and a stirrer packed with Dickson packing, ethylene carbonate: EC 871.6 g (9.9 mol) trimethylolpropane: TMP 530.8 g (3. 96 mol), 1.61.6 hexanediol: HDL (351.6 g, 2.98 mol) and 1.5-pentanediol: PDL (310 g, 2.98 mol) were added, and the mixture was heated and stirred under a reduced pressure of 20 torr. Was controlled to be 120 ° C to 130 ° C. The reaction was carried out for 18 hours while distilling EC and ethylene glycol having an azeotropic composition from the top of the distillation column. Next, the distillation column was removed, and the degree of vacuum was set at 4 Torr to recover unreacted EC and diol. After completion of distillation of the unreacted substance, the internal temperature was set to 190 ° C., and the diol was distilled while maintaining the temperature to perform a self-condensation reaction. After carrying out the reaction for 5 hours, a colorless transparent viscous liquid having a number average molecular weight of 1014 (polystyrene conversion) was obtained by GPC (gel permeation chromatography) analysis. The yield was 1200 g. This liquid had the following physical properties. Composition (mol%); HDL: PDL: TMP = 30.0: 21.7: 45.4, 0.4% of other units containing an ether bond, OH value (mgKOH / g) = 198.8, average The number of hydroxyl groups was 3.6.
[多官能水酸基含有化合物の分子量の評価]
 多官能水酸基含有化合物の分子量は、ゲルパーミエーションクロマトグラフィー(東ソー社製)により測定し、スチレン換算分子量の数平均分子量で評価した。
[Evaluation of molecular weight of polyfunctional hydroxyl group-containing compound]
The molecular weight of the polyfunctional hydroxyl group-containing compound was measured by gel permeation chromatography (manufactured by Tosoh Corporation) and evaluated by the number average molecular weight of the styrene equivalent molecular weight.
 下記表3から分かるように、試料30から試料35に係る樹脂組成物を用いた樹脂フィルムは、層間絶縁抵抗、スルーホール埋め込み性、半田耐性(すなわち耐熱性)、冷熱衝撃耐性に優れており、下記表1に示した試料1から試料21に係る樹脂組成物と同様の効果が得られた。また、イミド化率100%のポリイミドを用いた場合(試料33~試料35)、3官能以上の多官能水酸基含有化合物を用いた場合(試料35)、2官能のイソシアネート化合物を用いた場合(試料35)、ブロックイソシアネート以外のイソシアネート化合物を用いた場合(試料33~試料35)においても良好な結果が得られることが分かる。 As can be seen from Table 3 below, the resin film using the resin composition according to Sample 30 to Sample 35 is excellent in interlayer insulation resistance, through-hole embedding property, solder resistance (that is, heat resistance), and thermal shock resistance. The same effects as those of the resin compositions according to Sample 1 to Sample 21 shown in Table 1 below were obtained. Also, when using polyimide with 100% imidization ratio (sample 33 to sample 35), using trifunctional or higher polyfunctional hydroxyl group-containing compound (sample 35), using bifunctional isocyanate compound (sample) 35), it can be seen that good results can be obtained even when an isocyanate compound other than the blocked isocyanate is used (sample 33 to sample 35).
(比較例1)
 比較例として、上述した実施例1とは異なる条件で調合した樹脂組成物を用いて硬化膜を作製し、作製された試料の特性を確認した。本比較例では、比較試料1~比較試料8を作製し、その特性を確認した。
(Comparative Example 1)
As a comparative example, a cured film was prepared using a resin composition prepared under conditions different from those of Example 1 described above, and the characteristics of the prepared sample were confirmed. In this comparative example, Comparative Sample 1 to Comparative Sample 8 were prepared and their characteristics were confirmed.
[比較試料1~比較試料3]
 比較試料1~比較試料3は、ポリイミドAを含む樹脂組成物を用いて作製した。比較試料1~比較試料3の主な相違点は、ポリイミドA以外の成分である。具体的には、比較試料1は、多官能水酸基含有化合物A及びイソシアネート化合物Aを含まない樹脂組成物を用いて作製した。比較試料2は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを5質量部で加えた樹脂組成物を用いて作製した。比較試料3は、ポリイミドA100質量部に対し、イソシアネート化合物Aを5質量部で加えた樹脂組成物を用いて作製した。比較試料1~比較試料3の作製方法や評価方法などは、実施例1と同様である。
[Comparative Sample 1 to Comparative Sample 3]
Comparative samples 1 to 3 were prepared using a resin composition containing polyimide A. The main differences between Comparative Sample 1 to Comparative Sample 3 are components other than polyimide A. Specifically, Comparative Sample 1 was prepared using a resin composition not containing polyfunctional hydroxyl group-containing compound A and isocyanate compound A. The comparative sample 2 was produced using the resin composition which added polyfunctional hydroxyl-containing compound A by 5 mass parts with respect to 100 mass parts of polyimide A. The comparative sample 3 was produced using the resin composition which added the isocyanate compound A at 5 mass parts with respect to 100 mass parts of polyimide A. The preparation method and evaluation method of Comparative Sample 1 to Comparative Sample 3 are the same as those in Example 1.
[比較試料4、比較試料5]
 比較試料4、比較試料5は、ポリイミドA、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。比較試料4、5の主な相違点は多官能水酸基含有化合物Aに対するイソシアネート化合物Aの含有量(つまり、官能水酸基含有化合物に含まれる水酸基と、イソシアネート化合物Aに含まれるイソシアネート基とのモル比)である。より具体的には、比較試料4は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Aを6質量部で加えることにより、水酸基とイソシアネート基とのモル比を、水酸基/イソシアネート基=1.4とした樹脂組成物を用いて作製した。比較試料5は、ポリイミドA100質量部に対し、多官能水酸基含有化合物Aを10質量部、イソシアネート化合物Aを20質量部で加えることにより、水酸基とイソシアネート基とのモル比を、水酸基/イソシアネート基=0.4とした樹脂組成物を用いて作製した。比較試料4、5の作製方法や評価方法などは、実施例1と同様である。
[Comparative Sample 4 and Comparative Sample 5]
Comparative sample 4 and comparative sample 5 were prepared using a resin composition containing polyimide A, polyfunctional hydroxyl group-containing compound A, and isocyanate compound A. The main difference between the comparative samples 4 and 5 is that the content of the isocyanate compound A with respect to the polyfunctional hydroxyl group-containing compound A (that is, the molar ratio between the hydroxyl group contained in the functional hydroxyl group-containing compound and the isocyanate group contained in the isocyanate compound A). It is. More specifically, the comparative sample 4 adds 10 parts by mass of the polyfunctional hydroxyl group-containing compound A and 6 parts by mass of the isocyanate compound A with respect to 100 parts by mass of the polyimide A, so that the molar ratio between the hydroxyl group and the isocyanate group is increased. It was produced using a resin composition in which hydroxyl group / isocyanate group = 1.4. The comparative sample 5 adds 10 parts by mass of the polyfunctional hydroxyl group-containing compound A and 20 parts by mass of the isocyanate compound A with respect to 100 parts by mass of the polyimide A, whereby the molar ratio of hydroxyl group to isocyanate group is determined by hydroxyl group / isocyanate group = It produced using the resin composition made into 0.4. The preparation method and evaluation method of the comparative samples 4 and 5 are the same as those in Example 1.
[比較試料6]
 比較試料6は、多官能水酸基含有化合物A、イソシアネート化合物Aを含む樹脂組成物を用いて作製した。つまり、比較試料6は、ポリイミドを含まない樹脂組成物を用いて作製した。比較試料6の作製方法や評価方法などは、実施例1と同様である。
[Comparative Sample 6]
Comparative sample 6 was prepared using a resin composition containing polyfunctional hydroxyl group-containing compound A and isocyanate compound A. That is, the comparative sample 6 was produced using the resin composition which does not contain a polyimide. The preparation method and evaluation method of the comparative sample 6 are the same as those in Example 1.
[比較試料7]
 比較試料7は、多官能水酸基含有化合物及びブロックイソシアネートが骨格中に取り込まれたイミド化率100%のポリイミド(ポリアミド酸構造を含まないポリイミド;以下、ポリイミドH)を含む樹脂組成物を用いて作製した。ポリイミドHには、多官能水酸基含有化合物及びブロックイソシアネートが取り込まれているため、樹脂組成物の成分としては多官能水酸基含有化合物及びブロックイソシアネートを含んでいない。比較試料7の作製方法や評価方法などは、実施例1と同様である。
[Comparative Sample 7]
Comparative sample 7 was prepared using a resin composition containing a polyfunctional hydroxyl group-containing compound and a polyimide having a imidization ratio of 100% in which a blocked isocyanate was incorporated into the skeleton (polyimide not containing a polyamic acid structure; hereinafter, polyimide H). did. Polyimide H contains a polyfunctional hydroxyl group-containing compound and a blocked isocyanate, and therefore does not contain a polyfunctional hydroxyl group-containing compound and a blocked isocyanate as a component of the resin composition. The preparation method and evaluation method of the comparative sample 7 are the same as those in Example 1.
[ポリイミドH]
 ポリイミドHの合成方法は次の通りである。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。旭化成ケミカルズ社製デュラノールT5651(分子量1000)78.88g、ヘキサメチレンジイソシアネート26.91g、γ-ブチロラクトン(GBL)177gを仕込んだ。室温、窒素雰囲気下、200rpmで15分攪拌した後、140℃に昇温して1時間攪拌した。ついで、4,4’-オキシジフタル酸二無水物62.04g(200ミリモル)、GBL176gを加え、170℃、200rpmで攪拌しながら1.5時間反応させた。さらに、室温に冷却しBPDA5.88g、APB40.55g、GBL353g、トルエン70g、γ-バレロラクトン2.2g、ピリジン3.5gを加え、170℃、200rpmで攪拌しながら3.5時間反応させた。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率100%のポリイミドHワニスを得た。つまり、ポリイミドHとは、樹脂組成物中のポリイミドにおいてポリアミド酸構造を含まず、かつ多官能水酸基含有化合物及びブロックイソシアネートを樹脂組成物中の成分としてではなく、ポリイミドの骨格中に取り込んでいるものに相当する。
[Polyimide H]
The synthesis method of polyimide H is as follows. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. Asahi Kasei Chemicals Co., Ltd. Duranol T5651 (molecular weight 1000) 78.88 g, hexamethylene diisocyanate 26.91 g, γ-butyrolactone (GBL) 177 g was charged. After stirring at 200 rpm for 15 minutes at room temperature in a nitrogen atmosphere, the temperature was raised to 140 ° C. and stirred for 1 hour. Then, 62.04 g (200 mmol) of 4,4′-oxydiphthalic dianhydride and 176 g of GBL were added and reacted at 170 ° C. and 200 rpm with stirring for 1.5 hours. Further, after cooling to room temperature, 5.88 g of BPDA, 40.55 g of APB, 353 g of GBL, 70 g of toluene, 2.2 g of γ-valerolactone and 3.5 g of pyridine were added and reacted for 3.5 hours while stirring at 170 ° C. and 200 rpm. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide H varnish having an imidization rate of 100%. That is, the polyimide H does not contain a polyamic acid structure in the polyimide in the resin composition and incorporates a polyfunctional hydroxyl group-containing compound and a blocked isocyanate into the polyimide skeleton, not as components in the resin composition. It corresponds to.
 比較試料1~比較試料7の評価結果を下記表4に示す。比較試料1~3、6より、ポリイミド、多官能水酸基含有化合物、イソシアネート化合物のいずれかが欠けた場合には良好な硬化物は得られないことが確認された。また、比較試料4、5より、イソシアネート化合物が過剰となる水酸基/イソシアネート基=0.4では、イソシアネート化合物同士の反応により生じ反りが生じ、多官能水酸基含有化合物が過剰となる水酸基/イソシアネート基=1.4では、未反応物が増え耐薬品性が低下することが確認された。つまり、水酸基/イソシアネート基=0.5~1でない場合には良好な硬化物は得られないことが確認された。また、比較試料7より、多官能水酸基含有化合物及びイソシアネート化合物が骨格中に取り込まれ、樹脂組成物の成分としては多官能水酸基含有化合物及びイソシアネート化合物を含まない場合には、良好な硬化物は得られないことが確認された。 The evaluation results of Comparative Sample 1 to Comparative Sample 7 are shown in Table 4 below. From Comparative Samples 1 to 3 and 6, it was confirmed that when any of polyimide, polyfunctional hydroxyl group-containing compound and isocyanate compound was missing, a good cured product could not be obtained. Further, from Comparative Samples 4 and 5, when the hydroxyl group / isocyanate group is excessive in the isocyanate compound = 0.4, the warpage occurs due to the reaction between the isocyanate compounds, and the hydroxyl group / isocyanate group in which the polyfunctional hydroxyl group-containing compound is excessive = In 1.4, it was confirmed that unreacted substances increased and the chemical resistance decreased. That is, it was confirmed that when the hydroxyl group / isocyanate group was not 0.5 to 1, a good cured product could not be obtained. Further, from Comparative Sample 7, when a polyfunctional hydroxyl group-containing compound and an isocyanate compound are incorporated into the skeleton and the resin composition does not contain a polyfunctional hydroxyl group-containing compound and an isocyanate compound, a good cured product is obtained. It was confirmed that it was not possible.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表1~表4から分かるように、実施例1及び比較例1の評価結果により、ポリイミド構造及びポリアミド酸構造を構成単位として有するポリイミドと、多官能水酸基含有化合物と、イソシアネート化合物とを含有し、多官能水酸基含有化合物に含まれる水酸基と、イソシアネート化合物に含まれるイソシアネート基とのモル比が、水酸基/イソシアネート基=0.5~1である樹脂組成物を用いることによって、反りが十分に抑制され、優れた耐熱性を有する硬化膜が得られることが確認された。 As can be seen from Tables 1 to 4, the evaluation results of Example 1 and Comparative Example 1 contain a polyimide having a polyimide structure and a polyamic acid structure as structural units, a polyfunctional hydroxyl group-containing compound, and an isocyanate compound. By using a resin composition in which the molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the isocyanate group contained in the isocyanate compound is hydroxyl group / isocyanate group = 0.5 to 1, warpage is sufficiently suppressed. It was confirmed that a cured film having excellent heat resistance was obtained.
 また、表1から表3から分かるように、実施例1に係る樹脂組成物を用いた試料1から試料35に係る樹脂フィルムにおいては、120℃から220℃の粘度と樹脂フィルムの弾性域及び塑性域とを制御できるので、樹脂流れ性、スルーホール埋め込み性、冷熱衝撃耐性が良好となることが分かる。このため、配線板の製造工程に用いた場合に、スルーホールへの埋め込み性と、配線板の端部からの樹脂組成物の流出防止とを両立することができる。 Further, as can be seen from Table 1 to Table 3, in the resin films according to Sample 1 to Sample 35 using the resin composition according to Example 1, the viscosity of 120 ° C. to 220 ° C., the elastic region of the resin film, and the plasticity It can be seen that the resin flowability, through-hole embedding property, and thermal shock resistance are improved. For this reason, when it uses for the manufacturing process of a wiring board, the embedding property to a through hole and the prevention of the outflow of the resin composition from the edge part of a wiring board can be made compatible.
 本発明の第2の実施の形態に係る樹脂組成物について、以下の実施例2から実施例12及び比較例2から比較例6を参照して説明する。なお、以下の実施例2から実施例12は、第2の態様に係る樹脂組成物である。 The resin composition according to the second embodiment of the present invention will be described with reference to the following Example 2 to Example 12 and Comparative Example 2 to Comparative Example 6. In addition, the following Examples 2 to 12 are resin compositions according to the second aspect.
<試薬>
 実施例及び比較例において、用いた試薬は以下である。なお、以下の実施例2から実施例12及び比較例2から比較例6並びに表5及び表6では、以下の試薬の略称を表記している。
<Reagent>
In the examples and comparative examples, the reagents used are as follows. In addition, in the following Example 2 to Example 12, Comparative Example 2 to Comparative Example 6, and Tables 5 and 6, abbreviations of the following reagents are indicated.
 (a)ポリイミド成分:BPDA(三井化学社製)、APB(商品名:APB-N、三井化学社製)、一般式(5)で表されるジアミン:ポリエーテルアミン(商品名:ポリエーテルアミンD-400(以下、単に「D-400」と表記する)、BASF社製、m+n+p=6.1)、ジェファーミン(商品名:ジェファーミンD-230(以下、単に「D-230」と表記する)、ハンツマン社製、m+n+p=2.5)、ジェファーミン(商品名:ジェファーミンXTJ-542(以下、単に「XJT-400」と表記する)、ハンツマン社製、m+n+p=15)、ジェファーミン(商品名:ジェファーミンD-2000、ハンツマン社製、m+n+p=33)
 (b)2官能水酸基含有化合物:ポリカーボネートジオール(商品名:デュラノールT5651(以下、単に「T5651」と表記する)、旭化成ケミカルズ社製)、ポリカーボネートジオール(商品名:デュラノールT4671(以下、単に「T4671」と表記する)、旭化成ケミカルズ社製)
 (c-1)イソシアネート化合物:ブロックイソシアネート(商品名:デュラネートSBN-70D(以下、単に「SBN-70D」と表記する)、旭化成ケミカルズ社製)、ブロックイソシアネート(商品名:デュラネートTPA-B80E(以下、単に「TPA-B80E」と表記する)、旭化成ケミカルズ社製)
 (D)感光剤1(二重結合を2つ有する化合物):EO変性ビスフェノールAジメタクリレート(商品名:BPE-500、新中村化学工業社製)
 (D)感光剤2(二重結合を3つ以上有する化合物):トリメチロールプロパンPO変性トリアクリレート(商品名:アロニックスM-310(以下、単に「M-310」と表記する)、東亞合成社製、二重結合を3つ有する化合物に相当)
 (E)光重合開始剤:エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(商標名:IRGACURE OXE-02、チバ・ジャパン社製)
 (F)リン化合物:ホスファゼン化合物(商品名:FP-300、伏見製薬所社製)
 (その他):トルエン(和光純薬工業社製、有機合成用)、γ―ブチロラクトン(和光純薬工業社製)、炭酸ナトリウム(和光純薬工業社製)
(A) Polyimide component: BPDA (manufactured by Mitsui Chemicals), APB (trade name: APB-N, manufactured by Mitsui Chemicals), diamine represented by the general formula (5): polyetheramine (trade name: polyetheramine) D-400 (hereinafter simply referred to as “D-400”), manufactured by BASF, m + n + p = 6.1), Jeffamine (trade name: Jeffamine D-230 (hereinafter simply referred to as “D-230”) ), Manufactured by Huntsman, m + n + p = 2.5), Jeffermin (trade name: Jeffamine XTJ-542 (hereinafter simply referred to as “XJT-400”), manufactured by Huntsman, m + n + p = 15), Jeffermin (Product name: Jeffermin D-2000, manufactured by Huntsman, m + n + p = 33)
(B) Bifunctional hydroxyl group-containing compound: polycarbonate diol (trade name: Duranol T5651 (hereinafter simply referred to as “T5651”), manufactured by Asahi Kasei Chemicals), polycarbonate diol (trade name: Duranol T4671 (hereinafter simply “T4671”) And Asahi Kasei Chemicals)
(C-1) Isocyanate compound: Blocked isocyanate (trade name: Duranate SBN-70D (hereinafter simply referred to as “SBN-70D”), manufactured by Asahi Kasei Chemicals), Block isocyanate (trade name: Duranate TPA-B80E (hereinafter referred to as “Duranate TPA-B80E”) , Simply referred to as “TPA-B80E”), manufactured by Asahi Kasei Chemicals Corporation)
(D) Photosensitive agent 1 (compound having two double bonds): EO-modified bisphenol A dimethacrylate (trade name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(D) Photosensitive agent 2 (compound having three or more double bonds): trimethylolpropane PO-modified triacrylate (trade name: Aronix M-310 (hereinafter simply referred to as “M-310”), Toagosei Co., Ltd. Manufactured, equivalent to a compound having three double bonds)
(E) Photopolymerization initiator: Ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (trade name: IRGACURE OXE-02 , Made by Ciba Japan)
(F) Phosphorus compound: Phosphazene compound (trade name: FP-300, manufactured by Fushimi Pharmaceutical Co., Ltd.)
(Others): Toluene (Wako Pure Chemical Industries, for organic synthesis), γ-butyrolactone (Wako Pure Chemical Industries), sodium carbonate (Wako Pure Chemical Industries)
<重量平均分子量測定>
 重量平均分子量の測定法であるゲルパーミエーションクロマトグラフィー(GPC)は、下記の条件により測定を行った。溶媒としてN,N-ジメチルホルムアミド(和光純薬工業社製、高速液体クロマトグラフ用)を用い、測定前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えたものを使用した。
  カラム:Shodex KD-806M(昭和電工社製)
  流速:1.0mL/分
  カラム温度:40℃
  ポンプ:PU-2080Plus(JASCO社製)
  検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)
  UV―2075Plus(UV-VIS:紫外可視吸光計、JASCO社製)
 また、重量平均分子量を算出するための検量線は、スタンダードポリスチレン(東ソー社製)を用いて作成した。
<Weight average molecular weight measurement>
Gel permeation chromatography (GPC), which is a method for measuring the weight average molecular weight, was measured under the following conditions. N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) was used as a solvent, and 24.8 mmol / L lithium bromide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd. 99.5%) and 63.2 mmol / L phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) were used.
Column: Shodex KD-806M (made by Showa Denko)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Pump: PU-2080 Plus (manufactured by JASCO)
Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO)
UV-2075 Plus (UV-VIS: UV-Visible Absorber, manufactured by JASCO)
A calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Tosoh Corporation).
<膜厚測定>
 硬化体の膜厚測定は、膜厚計(Mitutoyo社製、ID-C112B)を用いて行った。
<Film thickness measurement>
The film thickness of the cured product was measured using a film thickness meter (ID-C112B manufactured by Mitutoyo).
<感光性フィルムの製造方法>
 感光性樹脂組成物のコート方法は、FILMCOATER(TESTER SANGYO社製、PI1210)を用いるドクターブレード法により行った。PETフィルム(帝人デユポンフィルム社製、G2)に前記感光性樹脂組成物を滴下し、クリアランス150μmでコートを行った。コートした前記フィルムを、乾燥器(ESPEC社製、SPHH-10l)を用いて95℃で12分間乾燥することにより、感光性フィルムを得た。
<Method for producing photosensitive film>
The coating method of the photosensitive resin composition was performed by a doctor blade method using FILMCOATER (manufactured by TESTER SANGYO, PI1210). The photosensitive resin composition was dropped onto a PET film (Teijin Deyupon Film Co., Ltd., G2) and coated with a clearance of 150 μm. The coated film was dried at 95 ° C. for 12 minutes using a dryer (manufactured by ESPEC, SPHH-10 l) to obtain a photosensitive film.
<ラミネート条件>
 ラミネートは、真空プレス機(名機製作所製)を用いて行った。プレス温度70℃、プレス圧0.5MPa、プレス時間30秒間にて行った。
<Lamination conditions>
Lamination was performed using a vacuum press (manufactured by Meiki Seisakusho). The press temperature was 70 ° C., the press pressure was 0.5 MPa, and the press time was 30 seconds.
<現像性評価>
 現像性評価は、銅張積層板上に、感光性フィルムを用いて、上記のラミネート条件でラミネートした後に、30-300mJ/cmにて露光を行い、続いて1質量%炭酸ナトリウム水溶液によるアルカリ現像処理と水によるリンスを行い、乾燥後にパターンを光学顕微鏡にて評価することにより行った。マスクには100μm径の円形パターン(間隔100μmピッチ)を用いた。現像により、未露光部で銅面が現れており、かつ残膜率が90%以上でパターンの崩れが見られないものを○とし、残膜率が90%以上であるがパターンの崩れが見られるものを△とした。
<Developability evaluation>
Evaluation of developability was carried out by laminating on a copper-clad laminate using a photosensitive film under the above-mentioned laminating conditions, followed by exposure at 30-300 mJ / cm 2 , followed by alkaline with 1% by mass sodium carbonate aqueous solution. Development and rinsing with water were performed, and after drying, the pattern was evaluated with an optical microscope. A circular pattern having a 100 μm diameter (interval of 100 μm pitch) was used as the mask. The development shows that the copper surface appears in the unexposed area and the remaining film rate is 90% or more and the pattern is not destroyed. The result is ○, and the remaining film rate is 90% or more, but the pattern is broken. △ was given.
<焼成後の反り測定>
 得られた感光性フィルムを、カプトン(登録商標)(12μm)に上記ラミネート条件にてラミネートした後に、180℃で2時間焼成を行った。このフィルムを5cm角に切り出し、端部の浮き高さが5mm以内のものを○とし、5~10mm以内のものを△とし、それ以上に浮き高さがあるものを×とした。
<Measurement of warpage after firing>
The obtained photosensitive film was laminated on Kapton (registered trademark) (12 μm) under the above laminating conditions, and then baked at 180 ° C. for 2 hours. This film was cut into 5 cm squares, and those having a floating height of 5 mm or less at the end were indicated by ◯, those having a height of 5 to 10 mm or less were indicated by Δ, and those having a floating height higher than that were indicated by ×.
<絶縁信頼性(IM耐性)評価>
 絶縁信頼性評価は、以下のように実施した。ラインアンドスペースが20μm/20μmのくし型基板上に、感光性フィルムを上記ラミネート条件でラミネートした後、上記条件にて露光・現像を行い、180℃で2時間焼成を行った。フィルムにマイグレーションテスタのケーブルをはんだ付けし、下記条件にて絶縁信頼性試験を行った。
  絶縁劣化評価システム:SIR-12(楠本化成社製)
  IMチャンバー:EHS-211M(エスペック社製)
  温度:85℃
  湿度:85%
  印加電圧:20V
  印加時間:1000時間
  絶縁抵抗値:1.0×10Ω未満を×とし、1.0×10Ω~1.0×10Ω未満を△とし、1.0×10Ω~1.0×10Ω未満を○とし、1.0×10Ω以上を◎とした。
<Insulation reliability (IM resistance) evaluation>
The insulation reliability evaluation was performed as follows. A photosensitive film was laminated on the comb substrate having a line and space of 20 μm / 20 μm under the above laminating conditions, then exposed and developed under the above conditions, and baked at 180 ° C. for 2 hours. A migration tester cable was soldered to the film, and an insulation reliability test was conducted under the following conditions.
Insulation deterioration evaluation system: SIR-12 (Enomoto Kasei Co., Ltd.)
IM chamber: EHS-211M (Espec Corp.)
Temperature: 85 ° C
Humidity: 85%
Applied voltage: 20V
Application time: 1000 hours insulation resistance: 1.0 × 10 was less than 6 Omega and ×, less than 1.0 × 10 6 Ω ~ 1.0 × 10 7 Ω △ and then, 1.0 × 10 7 Ω ~ 1 less than .0 × 10 8 Ω and ○, was 1.0 × 10 8 Ω or more ◎ with.
 外観(デンドライト):IM試験後のくし型基板を光学顕微鏡(ECLIPS LV100 ニコン社製)、透過光、200倍の条件で観察し、デンドライトの発生が見られるものを×とし、見られないものを○とした。 Appearance (Dendrite): Comb substrate after IM test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon Corp.) under the conditions of transmitted light, 200 times. ○.
 外観(膨れ及び変色):IM試験後のくし型基板を光学顕微鏡(ECLIPS LV100 ニコン社製)、明視野100倍の条件で観察し、絶縁皮膜の膨れ及び変色が見られるものを×とし、絶縁皮膜の膨れのみ発生が見られるものを△とし、膨れ及び変色が見られないものを○とした。 Appearance (swelling and discoloration): Comb substrate after IM test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon) under conditions of 100 times bright field. The case where only the swelling of the film was observed was indicated by Δ, and the case where no swelling or discoloration was observed was indicated by ○.
<ポリイミド(1)>
 窒素雰囲気下、ディーンシュタルク装置及び還流器を備えたセパラブルフラスコに、γ-ブチロラクトン(255g)、トルエン(51.0g)、ポリエーテルアミンD-400(86.8g(201.9mmol))、BPDA(120g(407.9mmol))を入れ、180℃まで昇温し、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に、40℃まで冷却し、続いてAPB-N(48.4g(165.7mmol))を加え、40℃で4時間撹拌し、ポリイミド(1)の溶液を得た。得られたポリイミド(1)の重量平均分子量を下記表5に示す。
<Polyimide (1)>
In a nitrogen atmosphere, a separable flask equipped with a Dean Stark apparatus and a refluxer was charged with γ-butyrolactone (255 g), toluene (51.0 g), polyetheramine D-400 (86.8 g (201.9 mmol)), BPDA. (120 g (407.9 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (48.4 g (165.7 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours. Obtained. The weight average molecular weight of the obtained polyimide (1) is shown in Table 5 below.
<ポリイミド(2)>
 窒素雰囲気下、ディーンシュタルク装置及び還流器を備えたセパラブルフラスコに、γ-ブチロラクトン(87.0g)、トルエン(17.0g)、ポリエーテルアミンD-400(5.00g(11.63mmol))、BPDA(30.0g(102.0mmol))を入れ、180℃まで昇温し、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に、40℃まで冷却し、続いてAPB-N(23.5g(80.39mmol))を加え、40℃で4時間撹拌し、ポリイミド(2)の溶液を得た。得られたポリイミド(2)の重量平均分子量を下記表5に示す。
<Polyimide (2)>
Under a nitrogen atmosphere, in a separable flask equipped with a Dean Stark apparatus and a refluxer, γ-butyrolactone (87.0 g), toluene (17.0 g), polyetheramine D-400 (5.00 g (11.63 mmol)) BPDA (30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (23.5 g (80.39 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours. Obtained. The weight average molecular weight of the obtained polyimide (2) is shown in Table 5 below.
<ポリイミド(3)>
 窒素雰囲気下、ディーンシュタルク装置及び還流器を備えたセパラブルフラスコに、γ-ブチロラクトン(99.0g)、トルエン(20.0g)、ポリエーテルアミンD-400(32.0g(74.42mmol))、BPDA(30.0g(102.0mmol))を入れ、180℃まで昇温し、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に、40℃まで冷却し、続いてAPB-N(5.00g(17.10mmol))を加え、40℃で4時間撹拌し、ポリイミド(3)の溶液を得た。得られたポリイミド(3)の重量平均分子量を下記表5に示す。
<Polyimide (3)>
In a nitrogen atmosphere, a separable flask equipped with a Dean Stark apparatus and a refluxer was charged with γ-butyrolactone (99.0 g), toluene (20.0 g), and polyetheramine D-400 (32.0 g (74.42 mmol)). BPDA (30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (5.00 g (17.10 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours to obtain a polyimide (3) solution. Obtained. The weight average molecular weight of the obtained polyimide (3) is shown in Table 5 below.
<ポリイミド(4)>
 窒素雰囲気下、ディーンシュタルク装置及び還流器を備えたセパラブルフラスコに、γ-ブチロラクトン(80.0g)、トルエン(16.0g)、ポリエーテルアミンD-230(16.8g(73.04mmol))、BPDA(30.0g(102.0mmol))を入れ、180℃まで昇温し、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に、40℃まで冷却し、続いてAPB-N(5.60g(19.16mmol)を加え、40℃で4時間撹拌し、ポリイミド(4)の溶液を得た。得られたポリイミド(4)の重量平均分子量を下記表5に示す。
<Polyimide (4)>
Under a nitrogen atmosphere, in a separable flask equipped with a Dean Stark apparatus and a refluxer, γ-butyrolactone (80.0 g), toluene (16.0 g), polyetheramine D-230 (16.8 g (73.04 mmol)) BPDA (30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene, which is an azeotropic solvent, the solution was cooled to 40 ° C., then APB-N (5.60 g (19.16 mmol) was added, and the mixture was stirred at 40 ° C. for 4 hours to obtain a polyimide (4) solution. The weight average molecular weight of the obtained polyimide (4) is shown in Table 5 below.
<ポリイミド(5)>
 窒素雰囲気下、ディーンシュタルク装置及び還流器を備えたセパラブルフラスコに、γ-ブチロラクトン(107g)、トルエン(21.0g)、ジェファーミンXTJ-542(25.7g(25.70mmol))、BPDA(30.0g(102.0mmol))を入れ、180℃まで昇温し、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に、40℃まで冷却し、続いてAPB-N(18.9g(64.65mmol)を加え、40℃で4時間撹拌し、ポリイミド(5)の溶液を得た。得られたポリイミド(5)の重量平均分子量を下記表5に示す。
<Polyimide (5)>
In a nitrogen atmosphere, a separable flask equipped with a Dean-Stark apparatus and a refluxer was charged with γ-butyrolactone (107 g), toluene (21.0 g), Jeffamine XTJ-542 (25.7 g (25.70 mmol)), BPDA ( 30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene, which is an azeotropic solvent, the solution was cooled to 40 ° C., then APB-N (18.9 g (64.65 mmol) was added, and the mixture was stirred at 40 ° C. for 4 hours to obtain a polyimide (5) solution. The weight average molecular weight of the obtained polyimide (5) is shown in Table 5 below.
<ポリイミド(6)>
 窒素雰囲気下、ディーンシュタルク装置及び還流器を備えたセパラブルフラスコに、γ-ブチロラクトン(120g)、トルエン(24.0g)、ジェファーミンD-2000(27.4g(13.70mmol))、BPDA(30.0g(102.0mmol))を入れ、180℃まで昇温し、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に、40℃まで冷却し、続いてAPB-N(22.2g(75.94mmol)を加え、40℃で4時間撹拌し、ポリイミド(6)の溶液を得た。得られたポリイミド(6)の重量平均分子量を下記表5に示す。
<Polyimide (6)>
In a nitrogen atmosphere, a separable flask equipped with a Dean-Stark apparatus and a refluxer was charged with γ-butyrolactone (120 g), toluene (24.0 g), Jeffamine D-2000 (27.4 g (13.70 mmol)), BPDA ( 30.0 g (102.0 mmol)) was added, the temperature was raised to 180 ° C., and the mixture was heated and stirred at 180 ° C. for 1 hour. After removing toluene as an azeotropic solvent, the mixture was cooled to 40 ° C., APB-N (22.2 g (75.94 mmol)) was added, and the mixture was stirred at 40 ° C. for 4 hours to obtain a polyimide (6) solution. The weight average molecular weight of the obtained polyimide (6) is shown in Table 5 below.
[実施例2]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、SBN-70D(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Example 2]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[実施例3]
 ポリイミド(1)100質量部に対して、T4671(6質量部)、SBN-70D(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Example 3]
T4671 (6 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1) with respect to 100 parts by mass of polyimide (1) Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[実施例4]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、TPA-B80E(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Example 4]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), TPA-B80E (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[実施例5]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、SBN-70D(10質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Example 5]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (10 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[実施例6]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、SBN-70D(6質量部)、BPE-500(40質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Example 6]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), OXE-02 (1 part by mass), FP-300 (25 Part by mass) was mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[実施例7]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、SBN-70D(6質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Example 7]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (6 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 Part by mass) was mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[実施例8から実施例12]
 ポリイミド(2)~(6)各100質量部に対して、T5651(6質量部)、SBN-70D(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Examples 8 to 12]
For each 100 parts by mass of polyimide (2) to (6), T5651 (6 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[比較例2]
 ポリイミド(1)100質量部に対して、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Comparative Example 2]
BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass) are mixed with 100 parts by mass of polyimide (1). A photosensitive resin composition was prepared. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[比較例3]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Comparative Example 3]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 Part by mass) was mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[比較例4]
 ポリイミド(1)100質量部に対して、SBN-70D(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Comparative Example 4]
SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 with respect to 100 parts by mass of polyimide (1) (25 parts by mass) was mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[比較例5]
 ポリイミド(1)100質量部に対して、T5651(6質量部)、SBN-70D(15質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Comparative Example 5]
With respect to 100 parts by mass of polyimide (1), T5651 (6 parts by mass), SBN-70D (15 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
[比較例6]
 ポリイミド(1)100質量部に対して、T5651(15質量部)、SBN-70D(6質量部)、BPE-500(40質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述の方法にてドライフィルム化し、感光性フィルムを得た。この感光性フィルムを上述の方法にて、現像性、焼成後の反り、絶縁信頼性(IM耐性)について評価した。結果を下記表6に示す。
[Comparative Example 6]
With respect to 100 parts by mass of polyimide (1), T5651 (15 parts by mass), SBN-70D (6 parts by mass), BPE-500 (40 parts by mass), M-310 (20 parts by mass), OXE-02 (1 Part by mass) and FP-300 (25 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was formed into a dry film by the above-described method to obtain a photosensitive film. The photosensitive film was evaluated for developability, warpage after firing, and insulation reliability (IM resistance) by the above-described methods. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表5、表6に示す結果から、実施例2から実施例12は比較例2から比較例6と比較して、現像性、反り、絶縁信頼性が良好であることが分かる。特に、実施例2から実施例12においては、0.10≦(A+B)/(A+B+C)≦0.85のいずれの場合においても、現像性、反り、及び絶縁信頼性を有することが分かる。 From the results shown in Tables 5 and 6, it can be seen that Examples 2 to 12 have better developability, warpage, and insulation reliability than Comparative Examples 2 to 6. In particular, in Examples 2 to 12, it can be seen that in any case of 0.10 ≦ (A + B) / (A + B + C) ≦ 0.85, developability, warpage, and insulation reliability are obtained.
 これに対して、2官能水酸基含有化合物及びイソシアネート化合物を含有しない感光性組成物においては、反り及びデンドライトが生じた(比較例2参照)。また、2官能水酸基含有化合物を含有する場合であっても、イソシアネート化合物を含有しない感光性樹脂組成物においては、反りについては改善が見られたが、デンドライトが生じた(比較例3参照)さらに、イソシアネート化合物を含有する場合であっても、2官能水酸基含有化合物を含有しない感光性樹脂組成物においては、デンドライトについては、改善が見られたが、反りが生じる結果となった(比較例4参照)。これらの結果は、反りの低減に効果がある2官能水酸基含有化合物や、ポリイミド及び二官能水酸基含有化合物と架橋構造を形成するイソシアネート化合物を含有しないために、反り及びデンドライトが生じたものと考えらえる。 On the other hand, warpage and dendrite occurred in the photosensitive composition containing no bifunctional hydroxyl group-containing compound and isocyanate compound (see Comparative Example 2). Even in the case of containing a bifunctional hydroxyl group-containing compound, in the photosensitive resin composition not containing an isocyanate compound, an improvement was seen in warpage, but dendrite was generated (see Comparative Example 3). Even in the case of containing an isocyanate compound, in the photosensitive resin composition not containing a bifunctional hydroxyl group-containing compound, dendrite was improved, but warping occurred (Comparative Example 4). reference). These results are considered that warpage and dendrite were caused because they did not contain a bifunctional hydroxyl group-containing compound effective in reducing warpage or an isocyanate compound that forms a crosslinked structure with polyimide and a bifunctional hydroxyl group-containing compound. Yeah.
 また、2官能水酸基含有化合物及びイソシアネート化合物を含有する場合であっても、二官能水酸基含有化合物の水酸基とイソシアネート化合物のイソシアネート基とのモル比が、0.5より小さい感光性樹脂組成物においては反りが生じる結果となり(比較例5参照)、1.0を超える感光性樹脂組成物においては、デンドライトが生じる結果となった(比較例6参照)。これらの結果は、反りの低減に効果がある2官能水酸基含有化合物の割合が少ないために反りが生じたり、イソシアネート化合物の割合が少ないためにポリイミドと十分な架橋構造を形成できずデンドライトが生じたと考えられる。 Further, even when the bifunctional hydroxyl group-containing compound and the isocyanate compound are contained, in the photosensitive resin composition, the molar ratio of the hydroxyl group of the bifunctional hydroxyl group-containing compound to the isocyanate group of the isocyanate compound is smaller than 0.5. As a result, warping occurred (see Comparative Example 5), and in the photosensitive resin composition exceeding 1.0, dendrites were generated (see Comparative Example 6). These results show that warping occurred because the proportion of the bifunctional hydroxyl group-containing compound effective in reducing warpage was small, or that dendrites were not formed because a sufficient crosslinking structure could not be formed with polyimide because the proportion of isocyanate compound was small. Conceivable.
 本発明の第3の実施の形態に係る樹脂組成物について、以下の実施例13から実施例24及び比較例7、比較例8を参照して説明する。なお、以下の実施例13から実施例24は、第2の態様に係る樹脂組成物である。 The resin composition according to the third embodiment of the present invention will be described with reference to the following Example 13 to Example 24, Comparative Example 7, and Comparative Example 8. In addition, the following Example 13 to Example 24 are resin compositions according to the second aspect.
<試薬>
 実施例及び比較例において、用いた試薬であるシリコーンジアミン(信越化学工業社製、KF-8010)、1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学社製、APB-N)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート(イハラケミカル社製、略称PMAB、下記一般式(22))、4,4’-オキシジフタル酸二無水物(マナック社製、略称ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(三井化学社製、略称BPDA)、無水ピロメリット酸(ダイセル化学工業社製、略称PMDA)、エチレングリコールビス(トリメリット酸モノエステル酸無水物)(新日本理化社製、リカシッドTMEG-100、略称TMEG)、トリス(ブトキシエチル)ホスフェート(大八化学社製、TBXP)、ホスファゼン化合物(伏見製薬所社製、Rabitle(登録商標)FP-300、略称FP-300)、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(チバ・ジャパン社製、商標名:IRGACURE OXE 02、略称OXE-02)、2,2-ビス(4-(メタクリロキシペンタエトキシ)フェニル)プロパン(新中村化学工業社製、商標名:BPE-500)、エチレンオキシド(EO)変性ビスフェノールAジメタクリレート(新中村化学工業社製、商標名:BPE-500)、ヘプタプロピレングリコ-ルジメタクリレ-ト(新中村化学工業社製、商標名:9PG)、ペンタエリスリトールトリ/テトラ(メタ)アクリレート(東亞合成社製、商標名:アロニックスM-306、略称M-306)、トリメチロールプロパンEO変性トリアクリレート(東亞合成社製、商標名:アロニックスM-350、略称M-350)、トリメチロールプロパンPO変性トリアクリレート(東亞合成社製、商標名:アロニックスM-310、略称M-310)、ペンタエリスリトールテトラアクリレート(新中村化学工業社製、商標名:A-TMMT)、EO変性グリセロールトリ(メタ)アクリレート(新中村化学工業社製、A-GLY-9E(EO変性9mol))ポリカーボネートジオール(旭化成ケミカルズ社製、デュラノールT5651)、ヘキサメチレンジイソシアネート系ブロックイソシアネート(旭化成ケミカルズ社製、デュラネートSBN-70D)トルエン(和光純薬工業社製、有機合成用)、γ―ブチロラクトン(和光純薬工業社製)、トリエチレングリコールジメチルエーテル(和光純薬工業社製)、炭酸ナトリウム(和光純薬工業社製)、は特別な精製を実施せずに反応に用いた。
<Reagent>
In Examples and Comparative Examples, silicone diamine (manufactured by Shin-Etsu Chemical Co., Ltd., KF-8010), 1,3-bis (3-aminophenoxy) benzene (manufactured by Mitsui Chemicals, APB-N), Tetramethylene oxide-di-p-aminobenzoate (Ihara Chemical Co., abbreviation PMAB, the following general formula (22)), 4,4′-oxydiphthalic dianhydride (Manac Co., abbreviation ODPA), 3,3 ′ , 4,4'-biphenyltetracarboxylic dianhydride (Mitsui Chemicals, abbreviation BPDA), pyromellitic anhydride (Daicel Chemical Industries, abbreviation PMDA), ethylene glycol bis (trimellitic acid monoester anhydride) ) (Manufactured by Shin Nippon Chemical Co., Ltd., Ricacid TMEG-100, abbreviated TMEG), tris (butoxyethyl) phosphate (manufactured by Daihachi Chemical Co., XP), phosphazene compound (Fushimi Pharmaceutical Co., Ltd., Rabitle (registered trademark) FP-300, abbreviated FP-300), ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3- Yl] -1- (O-acetyloxime) (manufactured by Ciba Japan, trade name: IRGACURE OXE 02, abbreviation OXE-02), 2,2-bis (4- (methacryloxypentaethoxy) phenyl) propane (new Nakamura Chemical Co., Ltd., trade name: BPE-500), ethylene oxide (EO) modified bisphenol A dimethacrylate (Shin Nakamura Chemical Co., trade name: BPE-500), heptapropylene glycol dimethacrylate (Shin Nakamura Chemical) Manufactured by Kogyo Co., Ltd., trade name: 9PG), pentaerythritol tri / tetra (meth) acrylate (Toagoi) Manufactured by Seisha Co., Ltd., trade name: Aronix M-306, abbreviated name M-306), trimethylolpropane EO modified triacrylate (manufactured by Toagosei Co., Ltd., trade name: Aronix M-350, abbreviated name M-350), trimethylolpropane PO modified Triacrylate (manufactured by Toagosei Co., Ltd., trade name: Aronix M-310, abbreviation M-310), pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-TMMT), EO-modified glycerol tri (meth) acrylate (Manufactured by Shin-Nakamura Chemical Co., Ltd., A-GLY-9E (EO-modified 9 mol)) polycarbonate diol (Asahi Kasei Chemicals, Duranol T5651), hexamethylene diisocyanate block isocyanate (Asahi Kasei Chemicals, Duranate SBN-70D) toluene ( Wako Jun Manufactured by Kogyo Co., Ltd., for organic synthesis), γ-butyrolactone (manufactured by Wako Pure Chemical Industries, Ltd.), triethylene glycol dimethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.), sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) Used in reaction without performing.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
<重量平均分子量測定>
 上記第2の実施の形態に係る実施例と同一の条件で測定した。
<Weight average molecular weight measurement>
The measurement was performed under the same conditions as in the example according to the second embodiment.
<感光性フィルム製造方法>
 上記第2の実施の形態に係る実施例と同様に作製した。
<Photosensitive film manufacturing method>
It was produced in the same manner as the example according to the second embodiment.
<ラミネート条件>
 上記第2の実施の形態に係る実施例と同様に実施した。
<Lamination conditions>
It implemented similarly to the Example which concerns on the said 2nd Embodiment.
<絶縁信頼性(HAST耐性)評価>
 絶縁信頼性評価は、以下のように実施した。ラインアンドスペースが20μm/20μmのくし型基板上に、感光性ドライフィルムを上記ラミネート条件にてラミネートした後、上記条件にて露光・現像を行い、180℃で1時間焼成を行った。感光性ドライフィルムにマイグレーションテスタのケーブルを半田付けし、下記条件にて絶縁信頼性試験を行った。
 絶縁劣化評価システム:SIR-12(楠本化成社製)
 HASTチャンバー:EHS-211M(エスペック社製)
 温度:110℃
 湿度:85%
 印加電圧:2V
 印加時間:528時間
<Evaluation of insulation reliability (HAST resistance)>
The insulation reliability evaluation was performed as follows. A photosensitive dry film was laminated on the comb substrate having a line-and-space of 20 μm / 20 μm under the above-mentioned laminating conditions, then exposed and developed under the above conditions, and baked at 180 ° C. for 1 hour. A migration tester cable was soldered to the photosensitive dry film, and an insulation reliability test was performed under the following conditions.
Insulation deterioration evaluation system: SIR-12 (Enomoto Kasei Co., Ltd.)
HAST chamber: EHS-211M (Espec Corp.)
Temperature: 110 ° C
Humidity: 85%
Applied voltage: 2V
Application time: 528 hours
 絶縁抵抗値:1.0×10Ω未満を×とし、1.0×10Ω~1.0×10Ω未満を△とし、1.0×10Ω~1.0×10Ω未満を○とし、1.0×10Ω以上を◎とした。 Insulation resistance: 1.0 × a × less than 10 6 Omega, less than 1.0 × 10 6 Ω ~ 1.0 × 10 7 Ω △ and then, 1.0 × 10 7 Ω ~ 1.0 × 10 8 A value less than Ω was rated as ◯, and a value of 1.0 × 10 8 Ω or more was rated as ◎.
 外観(デンドライト):HAST試験後のくし型基板を光学顕微鏡(ECLIPS LV100 ニコン社製)、透過光、200倍の条件で観察し、デンドライトの発生がみられるものを×とし、見られないものを○とした。 Appearance (Dendrite): The comb substrate after the HAST test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon Corp.) under the conditions of transmitted light and 200 times. ○.
 外観(膨れ及び変色):HAST試験後のくし型基板を光学顕微鏡(ECLIPS LV100 ニコン社製)、明視野、100倍の条件で観察し、直径50μmφ以上の大きさの絶縁被膜の膨れ及び/又は変色がみられるものを×とし、10μmφ以上、50μmφ未満の絶縁被膜の膨れ及び/又は変色がみられたものを△とし、膨れ及び変色が10μmφ以下のものを○とした。 Appearance (swelling and discoloration): Comb substrate after HAST test is observed with an optical microscope (ECLIPS LV100, manufactured by Nikon), bright field, 100 times condition, swelling and / or swelling of insulating film having a diameter of 50 μmφ or more Those in which discoloration was observed were evaluated as x, those in which swelling and / or discoloration of an insulating film of 10 μmφ or more and less than 50 μmφ were observed were evaluated as Δ, and those having swelling and discoloration of 10 μmφ or less were evaluated as ◯.
<焼成後の反り測定>
 得られた感光性ドライフィルムを、カプトン(登録商標)に上記ラミネート条件にてラミネートした後に、180℃で1時間焼成を行った。感光性ドライフィルムを5cm角に切り出し、端部の浮き高さが5mm未満のものを◎とし、5~10mm未満のものを○とし、それ以上に浮き高さがあるものを×とした。
<Measurement of warpage after firing>
The obtained photosensitive dry film was laminated on Kapton (registered trademark) under the above-mentioned lamination conditions, and then baked at 180 ° C. for 1 hour. A photosensitive dry film was cut out into 5 cm squares, and those with a floating height of less than 5 mm were marked with ◎, those with a height of less than 5 to 10 mm were marked with ○, and those with a floating height higher than that were marked with ×.
<解像性評価>
 解像性評価は、以下のようにして実施した。銅張積層板上に感光性ドライフィルムを上記ラミネート条件でラミネートした後に、30-270mJ/cmにて露光した。続いて1質量%炭酸ナトリウム水溶液によるアルカリ現像処理及び水によるリンスを行い、乾燥後にパターンを光学顕微鏡にて評価した。マスクには50μm~100μmのラインアンドスペース(L/S)パターンを用いた。現像により露光部(硬化部)の残膜率が100%であり、未露光部(溶解部)の銅面が現れている部分を読み取った。70μmのL/Sが解像できたものを◎、100μmのL/Sパターンが解像出来たものを○とし、100μmが解像できなかったものを×とした。
<Resolution evaluation>
The resolution evaluation was performed as follows. A photosensitive dry film was laminated on the copper clad laminate under the above-mentioned lamination conditions, and then exposed at 30 to 270 mJ / cm 2 . Subsequently, alkaline development with a 1% by mass aqueous sodium carbonate solution and rinsing with water were performed, and the pattern was evaluated with an optical microscope after drying. A 50 μm to 100 μm line and space (L / S) pattern was used for the mask. The remaining film ratio of the exposed part (cured part) was 100% by development, and the part where the copper surface of the unexposed part (dissolved part) appeared was read. The case where 70 μm L / S could be resolved was marked with ◎, the case where 100 μm L / S pattern could be resolved was marked with ○, and the case where 100 μm could not be resolved was marked with ×.
<ポリイミド(7)>
 窒素雰囲気下、セパラブルフラスコに、トリエチレングリコールジメチルエーテル(15g)、γ―ブチロラクトン(35g)、トルエン(20.0g)、シリコーンジアミン(KF-8010(11.30g(13.78mmol))、ODPA(10.86g(35.00mmol))を入れ、120℃で1時間加熱撹拌した。続いてディーンシュタルク装置及び還流器をつけ、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に25℃まで冷却し、続いてAPB-N(6.00g(20.52mmol)を加えて25℃で8時間撹拌し、ポリイミド(7)の溶液を得た。得られたポリイミド(7)の重量平均分子量を下記表7に示す。
<Polyimide (7)>
Under a nitrogen atmosphere, in a separable flask, triethylene glycol dimethyl ether (15 g), γ-butyrolactone (35 g), toluene (20.0 g), silicone diamine (KF-8010 (11.30 g (13.78 mmol)), ODPA ( 10.86 g (35.00 mmol)) was added, and the mixture was heated and stirred for 1 hour at 120 ° C. Subsequently, the Dean-Stark apparatus and the reflux were attached, and the mixture was heated and stirred for 1 hour at 180 ° C. Toluene as an azeotropic solvent was removed. After cooling to 25 ° C., APB-N (6.00 g (20.52 mmol)) was added, and the mixture was stirred at 25 ° C. for 8 hours to obtain a solution of polyimide (7). The weight average molecular weight is shown in Table 7 below.
<ポリイミド(8)>
 窒素雰囲気下、セパラブルフラスコに、トリエチレングリコールジメチルエーテル(15g)、γ―ブチロラクトン(35g)、トルエン(20.0g)、シリコーンジアミン(KF-8010(11.00g(13.41mmol))、BPDA(10.30g(35.00mmol))を入れ、120℃で1時間加熱撹拌した。続いてディーンシュタルク装置及び還流器をつけ、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に25℃まで冷却し、続いてAPB-N(6.10g(20.87mmol)を加えて25℃で8時間撹拌し、ポリイミド(8)の溶液を得た。得られたポリイミド(8)の重量平均分子量を下記表7に示す。
<Polyimide (8)>
Under a nitrogen atmosphere, a separable flask was charged with triethylene glycol dimethyl ether (15 g), γ-butyrolactone (35 g), toluene (20.0 g), silicone diamine (KF-8010 (11.00 g (13.41 mmol)), BPDA ( 10.30 g (35.00 mmol)) was added and stirred for 1 hour at 120 ° C. Subsequently, a Dean-Stark apparatus and a reflux were attached, and the mixture was heated and stirred for 1 hour at 180 ° C. Toluene, an azeotropic solvent, was removed. After cooling to 25 ° C., APB-N (6.10 g (20.87 mmol) was added, and the mixture was stirred at 25 ° C. for 8 hours to obtain a solution of polyimide (8). The weight average molecular weight is shown in Table 7 below.
<ポリイミド(9)>
 窒素雰囲気下、セパラブルフラスコに、トリエチレングリコールジメチルエーテル(15g)、γ―ブチロラクトン(35g)、トルエン(20.0g)、シリコーンジアミン(KF-8010(9.50g(11.59mmol))、PMDA(7.63g(35.00mmol))を入れ、120℃で1時間加熱撹拌した。続いてディーンシュタルク装置及び還流器をつけ、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に25℃まで冷却し、続いてAPB-N(6.65g(22.75mmol)を加えて25℃で8時間撹拌し、ポリイミド(9)の溶液を得た。得られたポリイミド(9)の重量平均分子量を下記表7に示す。
<Polyimide (9)>
Under a nitrogen atmosphere, a separable flask was charged with triethylene glycol dimethyl ether (15 g), γ-butyrolactone (35 g), toluene (20.0 g), silicone diamine (KF-8010 (9.50 g (11.59 mmol)), PMDA ( 7.63 g (35.00 mmol)) was added and stirred for 1 hour at 120 ° C. Subsequently, a Dean-Stark apparatus and a reflux were attached, and the mixture was heated and stirred for 1 hour at 180 ° C. Toluene, an azeotropic solvent, was removed. After cooling to 25 ° C., APB-N (6.65 g (22.75 mmol) was subsequently added and stirred for 8 hours at 25 ° C. to obtain a solution of polyimide (9). The weight average molecular weight is shown in Table 7 below.
<ポリイミド(10)>
 窒素雰囲気下、セパラブルフラスコに、トリエチレングリコールジメチルエーテル(15g)、γ―ブチロラクトン(35g)、トルエン(20.0g)、シリコーンジアミン(KF-8010(13.15g(16.04mmol))、TMEG(14.36g(35.00mmol))を入れ、120℃で1時間加熱撹拌した。続いてディーンシュタルク装置及び還流器をつけ、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に25℃まで冷却し、続いてAPB-N(5.34g(18.27mmol)を加えて25℃で8時間撹拌し、ポリイミド(10)の溶液を得た。得られたポリイミド(10)の重量平均分子量を下記表7に示す。
<Polyimide (10)>
Under a nitrogen atmosphere, a separable flask was charged with triethylene glycol dimethyl ether (15 g), γ-butyrolactone (35 g), toluene (20.0 g), silicone diamine (KF-8010 (13.15 g (16.04 mmol)), TMEG ( 14.36 g (35.00 mmol)) was added, and the mixture was stirred with heating for 1 hour at 120 ° C. Subsequently, the Dean-Stark apparatus and the reflux were attached, and the mixture was stirred with heating for 1 hour at 180 ° C. Toluene as an azeotropic solvent was removed. After cooling to 25 ° C., APB-N (5.34 g (18.27 mmol)) was added, followed by stirring at 25 ° C. for 8 hours to obtain a solution of polyimide (10). The weight average molecular weight is shown in Table 7 below.
<ポリイミド(11)>
 窒素雰囲気下、セパラブルフラスコに、トリエチレングリコールジメチルエーテル(15g)、γ―ブチロラクトン(35g)、トルエン(20.0g)、PMAB((12.00g(9.69mmol))、ODPA(10.86g(35.00mmol))を入れ、120℃で1時間加熱撹拌した。続いてディーンシュタルク装置及び還流器をつけ、180℃で1時間加熱撹拌した。共沸溶媒であるトルエンを除去した後に25℃まで冷却し、続いてAPB-N(7.20g(24.63mmol)を加えて25℃で8時間撹拌し、ポリイミド(11)の溶液を得た。得られたポリイミド(11)の重量平均分子量を下記表7に示す。
<Polyimide (11)>
Under a nitrogen atmosphere, a separable flask was charged with triethylene glycol dimethyl ether (15 g), γ-butyrolactone (35 g), toluene (20.0 g), PMAB ((12.00 g (9.69 mmol)), ODPA (10.86 g ( 35.00 mmol)) was added and stirred for 1 hour at 120 ° C. Subsequently, a Dean-Stark apparatus and a reflux were attached, and the mixture was heated and stirred for 1 hour at 180 ° C. After removing toluene, which is an azeotropic solvent, up to 25 ° C. After cooling, APB-N (7.20 g (24.63 mmol) was added and stirred at 25 ° C. for 8 hours to obtain a solution of polyimide (11). The weight average molecular weight of the obtained polyimide (11) was It shows in Table 7 below.
[実施例13~実施例15]
 ポリイミド(7)、ポリイミド(8)、ポリイミド(9)、各100質量部に対して、BPE-500(20質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を上述のドライフィルム製造方法にてドライフィルム化して感光性フィルムを得た。この感光性フィルムを上述のラミネート条件にて、くし型基板にラミネートを行った。得られた積層フィルムの絶縁信頼性について評価した。結果を下記表8に示す。また実施例13、実施例14において、反りは◎、解像性は◎であり、実施例15において反りは○であり、解像性は◎であった。
[Examples 13 to 15]
BPE-500 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass) with respect to 100 parts by mass of polyimide (7), polyimide (8), polyimide (9), FP-300 (25 parts by mass) and TBXP (15 parts by mass) were mixed to prepare a photosensitive resin composition. The obtained photosensitive resin composition was made into a dry film by the dry film manufacturing method described above to obtain a photosensitive film. This photosensitive film was laminated on a comb-type substrate under the above-mentioned laminating conditions. The insulation reliability of the obtained laminated film was evaluated. The results are shown in Table 8 below. In Examples 13 and 14, the warpage was ◎ and the resolution was ◎, and in Example 15 the warp was ○ and the resolution was ◎.
[実施例16]
 ポリイミド(7)100質量部に対して、BPE-500(40質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は×であった。
[Example 16]
BPE-500 (40 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts by mass) are mixed with 100 parts by mass of polyimide (7). A resin composition was prepared. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ◎ and the resolution was x.
[実施例17]
 ポリイミド(7)100質量部に対して、M-310(40質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは○であり、解像性は○であった。
[Example 17]
M-310 (40 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts by mass) are mixed with 100 parts by mass of polyimide (7). A resin composition was prepared. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. Further, the warpage was ○, and the resolution was ○.
[実施例18]
 ポリイミド(7)100質量部に対して、BPE-900(20質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は○であった。
[Example 18]
BPE-900 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ◎ and the resolution was ○.
[実施例19]
 ポリイミド(7)100質量部に対して、9PG(20質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は○であった。
[Example 19]
9PG (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts by mass) with respect to 100 parts by mass of polyimide (7) ) Was mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was ◎ and the resolution was ○.
[実施例20]
 ポリイミド(7)100質量部に対して、BPE-500(20質量部)、M-350(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は◎であった。
[Example 20]
BPE-500 (20 parts by mass), M-350 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was で and the resolution was ◎.
[実施例21]
 ポリイミド(7)100質量部に対して、BPE-500(20質量部)、M-306(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は◎であった。
[Example 21]
BPE-500 (20 parts by mass), M-306 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was で and the resolution was ◎.
[実施例22]
 ポリイミド(7)100質量部に対して、BPE-500(20質量部)、A-TMMT(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は◎であった。
[Example 22]
BPE-500 (20 parts by weight), A-TMMT (20 parts by weight), OXE-02 (1 part by weight), FP-300 (25 parts by weight), TBXP (15 parts per 100 parts by weight of polyimide (7) Part by mass) was mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was で and the resolution was ◎.
[実施例23]
 ポリイミド(7)100質量部に対して、BPE-500(20質量部)、A-GLY-9E(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は◎であった。
[Example 23]
BPE-500 (20 parts by mass), A-GLY-9E (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP with respect to 100 parts by mass of polyimide (7) (15 parts by mass) was mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was で and the resolution was ◎.
[実施例24]
 ポリイミド(7)100質量部に対して、BPE-500(20質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)、T5651(3質量部)、SBN-70D(3質量部)を混合し、感光性樹脂組成物を調製した。得得られた感光性樹脂組成物から実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また、反りは◎であり、解像性は◎であった。
[Example 24]
BPE-500 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts by mass), TBXP (15 parts) with respect to 100 parts by mass of polyimide (7) Part by mass), T5651 (3 parts by mass), and SBN-70D (3 parts by mass) were mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition by the same method as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. The warpage was で and the resolution was ◎.
[比較例7、比較例8]
 ポリイミド(10)、ポリイミド(11)、各100質量部に対して、BPE-500(20質量部)、M-310(20質量部)、OXE-02(1質量部)、FP-300(25質量部)、TBXP(15質量部)を混合し、感光性樹脂組成物を調製した。得られた感光性樹脂組成物を実施例13~実施例15と同様の方法にて積層フィルムを作製し、絶縁信頼性について評価した。結果を下記表8に示す。また比較例7及び比較例8共に反りは◎であり、解像性は◎であった。
[Comparative Example 7, Comparative Example 8]
BPE-500 (20 parts by mass), M-310 (20 parts by mass), OXE-02 (1 part by mass), FP-300 (25 parts per 100 parts by mass of polyimide (10) and polyimide (11) Part by mass) and TBXP (15 parts by mass) were mixed to prepare a photosensitive resin composition. A laminated film was produced from the obtained photosensitive resin composition in the same manner as in Examples 13 to 15, and the insulation reliability was evaluated. The results are shown in Table 8 below. Further, in both Comparative Example 7 and Comparative Example 8, the warpage was ◎, and the resolution was ◎.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表7及び表8の結果から、上記一般式(7)で示されるポリイミド構造と、上記一般式(8)で示されるポリアミド酸構造とを含有する感光性樹脂組成物を用いた実施例13~実施例24においては、比較例7及び比較例8と比較して、絶縁信頼性(HAST耐性)に優れることが分かる。また、実施例13及び実施例20と実施例22及び実施例23とを比較すると、上記一般式(10)で示される構造の二重結合を3つ以上有する(メタ)アクリレート化合物を含有する樹脂組成物は、絶縁信頼性(HAST耐性)がさらに良好となることが分かる。 From the results of Tables 7 and 8, Examples 13 to 13 using photosensitive resin compositions containing the polyimide structure represented by the general formula (7) and the polyamic acid structure represented by the general formula (8) were used. In Example 24, it can be seen that the insulation reliability (HAST resistance) is excellent as compared with Comparative Example 7 and Comparative Example 8. Moreover, when Example 13 and Example 20 are compared with Example 22 and Example 23, resin containing the (meth) acrylate compound which has three or more double bonds of the structure shown by the said General formula (10). It can be seen that the composition has better insulation reliability (HAST resistance).
 本発明の第4の実施の形態に係る樹脂組成物について、以下の実施例25、実施例26及び比較例9~比較例11を参照して説明する。なお、以下の実施例25、実施例26は、第2の態様に係る樹脂組成物である。 The resin composition according to the fourth embodiment of the present invention will be described with reference to the following Example 25, Example 26, and Comparative Examples 9 to 11. In addition, the following Example 25 and Example 26 are the resin compositions which concern on a 2nd aspect.
[実施例25]
 本実施例では、樹脂組成物として、イミド化率100%のポリイミドZのワニスに、2官能水酸基含有化合物としての信越化学社製の両末端型のフェノール変性シリコーンX-22-1821(水酸基価38mgKOH/g)と、オキサゾリン化合物としての1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン(以下、BPO)と、難燃剤A(実施例1参照)を加えたものを用いた。ポリイミドZ100質量部に対し、信越化学社製の両末端型のフェノール変性シリコーンX-22-1821を5質量部と、BPO13質量部と、難燃剤A33質量部とを加えたものを用いた。この樹脂組成物を銅箔に塗工し95℃12分間乾燥して厚さ30μmの樹脂フィルムを得た。この樹脂フィルムはアリカリ可溶性の評価に使用した。更に樹脂フィルムを180℃60分加熱し硬化物を得た。この硬化物は耐アルカリ性の評価に使用した。以下、ポリイミドZの合成方法について説明する。
[Example 25]
In this example, as a resin composition, a varnish of polyimide Z having an imidization ratio of 100%, a bifunctional hydroxyl-containing compound, both-end type phenol-modified silicone X-22-1821 (hydroxyl value 38 mgKOH) manufactured by Shin-Etsu Chemical Co., Ltd. / G), 1,3-bis (4,5-dihydro-2-oxazolyl) benzene (hereinafter referred to as BPO) as an oxazoline compound, and flame retardant A (see Example 1) were used. A material obtained by adding 5 parts by mass of double-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd., 13 parts by mass of BPO, and 33 parts by mass of flame retardant A to 100 parts by mass of polyimide Z was used. This resin composition was applied to a copper foil and dried at 95 ° C. for 12 minutes to obtain a resin film having a thickness of 30 μm. This resin film was used for evaluation of antkari solubility. Furthermore, the resin film was heated at 180 ° C. for 60 minutes to obtain a cured product. This cured product was used for evaluation of alkali resistance. Hereinafter, a method for synthesizing polyimide Z will be described.
[ポリイミドZ]
 ポリイミドZの合成方法について説明する。まず、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。室温25℃で、トリエチレングリコールジメチルエーテル15g、γ-ブチロラクトン35g、トルエン20.0g、4,4’-オキシジフタル酸二無水物(マナック社製、略称ODPA)10.86g(35.00mmol)を入れ、均一になるまで攪拌した。その後、80℃に昇温しシリコーンジアミン(信越化学工業社製、略称KF-8010)12.05g(14.7mmol)を加え、更に0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。12時間室温25℃にて静置、冷却した後に2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン7.56g(20.65mmol)、γ-ブチロラクトン35g、トルエン20.0gを添加した。0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。次に生成物を5μmのフィルターで加圧ろ過することでイミド化率100%のポリイミドZワニスを得た。
[Polyimide Z]
A method for synthesizing polyimide Z will be described. First, a ball-mounted cooling tube equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to a three-necked separable flask. At room temperature 25 ° C., 15 g of triethylene glycol dimethyl ether, 35 g of γ-butyrolactone, 20.0 g of toluene, and 10.86 g (35.00 mmol) of 4,4′-oxydiphthalic dianhydride (manac, ODPA) Stir until uniform. Thereafter, the temperature was raised to 80 ° C., 12.05 g (14.7 mmol) of silicone diamine (manufactured by Shin-Etsu Chemical Co., Ltd., abbreviated as KF-8010) was added, and the mixture was further stirred for 0.5 hours, and then heated to 170 ° C. Heated for hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. After standing at room temperature for 25 hours and cooling, 7.56 g (20.65 mmol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 35 g of γ-butyrolactone, 20.0 g of toluene Was added. After stirring for 0.5 hour, the temperature was raised to 170 ° C. and heated for 4 hours. During the reaction, by-product water was azeotroped with toluene and dehydrated under reflux using a ball-mounted condenser equipped with a water separation trap. After draining by-product water, the reflux was stopped and toluene was completely removed. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide Z varnish having an imidization rate of 100%.
[反りの評価]
 反りの評価は、樹脂フィルム四隅の持ち上がりによって評価した。具体的には、23℃、湿度50%の環境下にて、上述した試料1を5cm×5cmに切断し、中央部に対する角の浮き上がった距離を反りとして測定した。反りが10mm以下であるものは良好として○とし、5mm以下であるものは更に良好として◎とし、15mm以下であるものは△とし、15mmを超えるものは不良として×とした。
[Evaluation of warpage]
The warpage was evaluated by lifting the four corners of the resin film. Specifically, the sample 1 described above was cut into 5 cm × 5 cm in an environment of 23 ° C. and a humidity of 50%, and the distance at which the corner was raised relative to the central portion was measured as a warp. Those having a warp of 10 mm or less were evaluated as “good”, those having a warp of 5 mm or less were evaluated as “good”, も の were determined as 15 mm or less, and those exceeding 15 mm were evaluated as “poor”.
[半田耐性の評価]
 半田耐性は、JPCA-BM02規格に準じ、3cm×3cmに切断した硬化物をハンダ浴に260℃で60秒間浸漬して評価した。外観を目視にて検査して、変形・溶解跡などの変化の有無を確認し、全体の面積の90%以上に変化が見られない場合を○とし、全体の面積の50%~90%に変化が見られない場合を△とし、変化が見られない領域が50%未満の場合を×とした。
[Evaluation of solder resistance]
The solder resistance was evaluated by immersing a cured product cut to 3 cm × 3 cm in a solder bath at 260 ° C. for 60 seconds in accordance with the JPCA-BM02 standard. Visually inspect the external appearance to confirm the presence or absence of changes such as deformation and dissolution traces. If no change is observed in 90% or more of the total area, the circle is marked as ○, and the area is 50% to 90%. The case where no change was observed was indicated by Δ, and the case where the region where no change was observed was less than 50% was indicated by ×.
[アルカリ可溶性の評価]
 樹脂フィルムを48℃、3%の水酸化ナトリウム水溶液に浸漬して、膜厚の溶解速度を測定し、アルカリ可溶性の評価を行った。膜厚の溶解速度が0.2μm/sec以上の場合はを○とし、0.2μm/sec未満を×とした。
[Evaluation of alkali solubility]
The resin film was immersed in a 3% aqueous sodium hydroxide solution at 48 ° C., and the dissolution rate of the film thickness was measured to evaluate alkali solubility. When the dissolution rate of the film thickness was 0.2 μm / sec or more, “◯” was given, and when it was less than 0.2 μm / sec, “x” was given.
[耐アルカリ性の評価]
 硬化物を48℃、3%の水酸化ナトリウム水溶液に1分間浸漬して、浸漬前後の膜厚の変化を測定し、耐アルカリ性の評価を行った。変化が2μm以下の場合はを○とし、2μmを越える場合を×とした。
[Evaluation of alkali resistance]
The cured product was immersed in a 3% aqueous sodium hydroxide solution at 48 ° C. for 1 minute, and the change in film thickness before and after immersion was measured to evaluate the alkali resistance. The case where the change was 2 μm or less was evaluated as ◯, and the case where the change exceeded 2 μm was evaluated as x.
[スルーホール埋め込み性]
 上記第1の実施の形態に係る実施例1と同一の条件で測定した。
[Through hole embedding]
The measurement was performed under the same conditions as in Example 1 according to the first embodiment.
[冷熱衝撃試験]
 上記第1の実施の形態に係る実施例1と同一の条件で測定した。
[Cool thermal shock test]
The measurement was performed under the same conditions as in Example 1 according to the first embodiment.
[樹脂流れ性]
 上記第1の実施の形態に係る実施例1と同一の条件で測定した。
[Resin flow]
The measurement was performed under the same conditions as in Example 1 according to the first embodiment.
[実施例26]
 本実施例では、樹脂組成物として、ポリイミドZ100質量部に対し、2官能水酸基含有化合物としての信越化学社製の両末端型のフェノール変性シリコーンX-22-1821を10質量部と、オキサゾリン化合物としてのBPO20質量部と、難燃剤A33質量部とを加えたものを用いた。その他は実施例25と同様に樹脂フィルム、硬化物を作製して評価した。
[Example 26]
In this example, as a resin composition, 10 parts by mass of a both-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd. as a bifunctional hydroxyl group-containing compound and 100 parts by mass of polyimide Z as an oxazoline compound A product obtained by adding 20 parts by mass of BPO and 33 parts by mass of flame retardant A was used. Others were produced and evaluated in the same manner as in Example 25 by preparing resin films and cured products.
[比較例9]
 本実施例では、樹脂組成物として、ポリイミドZ100質量部に対し、2官能水酸基含有化合物を加えずに難燃剤A33質量部を加えたものを用いた。その他は実施例25と同様に樹脂フィルム、硬化物を作製して評価した。
[Comparative Example 9]
In this example, as the resin composition, one obtained by adding 33 parts by mass of flame retardant A without adding a bifunctional hydroxyl group-containing compound to 100 parts by mass of polyimide Z was used. Others were produced and evaluated in the same manner as in Example 25 by preparing resin films and cured products.
[比較例10]
 本実施例では、樹脂組成物として、ポリイミドZを用いず、2官能水酸基含有化合物としての信越化学社製の両末端型のフェノール変性シリコーンX-22-1821を10質量部と、オキサゾリン化合物としてのBPO20質量部と、難燃剤A33質量部とを加えたものを用いた。その他は実施例25と同様に樹脂フィルム、硬化物を作製して評価した。
[Comparative Example 10]
In this example, polyimide Z was not used as the resin composition, and 10 parts by mass of a both-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd. as a bifunctional hydroxyl group-containing compound was used as an oxazoline compound. What added 20 mass parts of BPO and the flame retardant A33 mass part was used. Others were produced and evaluated in the same manner as in Example 25 by preparing resin films and cured products.
[比較例11]
 本実施例では、樹脂組成物として、ポリイミドZ100質量部に対し、2官能水酸基含有化合物としての信越化学社製の両末端型のフェノール変性シリコーンX-22-1821を10質量部と、難燃剤A33質量部とを加えたものを用いた。その他は実施例25と同様に樹脂フィルム、硬化物を作製して評価した。
[Comparative Example 11]
In this example, as a resin composition, 10 parts by mass of a both-end type phenol-modified silicone X-22-1821 manufactured by Shin-Etsu Chemical Co., Ltd. as a bifunctional hydroxyl group-containing compound with respect to 100 parts by mass of polyimide Z, and flame retardant A33 What added the mass part was used. Others were produced and evaluated in the same manner as in Example 25 by preparing resin films and cured products.
 実施例25、実施例26及び比較例9~比較例11の評価結果を下記表9に示す。下記表9から分かるように、実施例25、実施例26係る樹脂組成物を用いた樹脂フィルムは、アルカリ可溶性示しながら、硬化物は耐アルカリ性を示し、更に低反り、半田耐性に優れており、上述した他の実施例に係る樹脂組成物と同様の効果が得られた。一方で、比較例9~比較例11から分かるように、ポリイミド、2官能水酸基含有化合物及びオキサゾリン化合物のいずれかを含まない場合には、半田耐性や反りなどの評価が悪化することが分かる。 Table 9 below shows the evaluation results of Example 25, Example 26, and Comparative Examples 9 to 11. As can be seen from Table 9 below, the resin films using the resin compositions according to Example 25 and Example 26 show alkali-solubility while the cured product exhibits alkali resistance, and further has low warpage and excellent solder resistance. The effect similar to the resin composition which concerns on the other Example mentioned above was acquired. On the other hand, as can be seen from Comparative Examples 9 to 11, it can be seen that the evaluation of solder resistance, warpage, and the like deteriorates when any of the polyimide, bifunctional hydroxyl group-containing compound and oxazoline compound is not included.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 本発明は、硬化時における十分な反りの低減、及び優れた耐熱性が実現可能である樹脂組成物を実現できるという効果を有し、特に、半導体素子の表面保護膜、層間絶縁膜、ボンディングシート、半導体パッケージ基板、回路基板の保護層、プリント配線板用保護絶縁膜、フレキシブルプリント基板用保護絶縁膜として好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention has an effect that a sufficient warpage reduction during curing and a resin composition capable of realizing excellent heat resistance can be realized, and in particular, a surface protection film for semiconductor elements, an interlayer insulating film, a bonding sheet It can be suitably used as a semiconductor package substrate, a protective layer for circuit boards, a protective insulating film for printed wiring boards, and a protective insulating film for flexible printed boards.
 本出願は、2011年1月18日出願の特願2011-007862、2011年3月22日出願の特願2011-062186、2011年5月12日出願の特願2011-107290、及び2011年7月22日出願の特願2011-160730に基づく。これらの内容は全てここに含めておく。 This application includes Japanese Patent Application No. 2011-007862 filed on January 18, 2011, Japanese Patent Application No. 2011-062186 filed on March 22, 2011, Japanese Patent Application No. 2011-107290 filed on May 12, 2011, and July 2011. Based on Japanese Patent Application No. 2011-160730 filed on May 22nd. All these contents are included here.

Claims (33)

  1.  (A)高分子化合物と、(B)2以上の水酸基を有する多官能水酸基含有化合物と、(C)前記高分子化合物及び/又は前記多官能水酸基含有化合物との間で架橋結合を形成する2以上の架橋性官能基を有する多官能架橋性化合物と、を含有し、前記多官能架橋性化合物が、前記高分子化合物及び/又は前記多官能水酸基含有化合物との間で3次元架橋を形成し得ることを特徴とする樹脂組成物。 (A) a polymer compound, (B) a polyfunctional hydroxyl group-containing compound having two or more hydroxyl groups, and (C) the polymer compound and / or the polyfunctional hydroxyl group-containing compound 2 A polyfunctional crosslinkable compound having the above crosslinkable functional group, and the polyfunctional crosslinkable compound forms a three-dimensional crosslink between the polymer compound and / or the polyfunctional hydroxyl group-containing compound. A resin composition obtained.
  2.  前記高分子化合物が、イミド基及び/又はアミド基を有し、前記3次元架橋が、C=O基及び/又はNH基を含むことを特徴とする請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the polymer compound has an imide group and / or an amide group, and the three-dimensional crosslinking includes a C = O group and / or an NH group.
  3.  前記多官能水酸基含有化合物及び/又は前記多官能架橋性化合物が3官能以上であることを特徴とする請求項1又は請求項2記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the polyfunctional hydroxyl group-containing compound and / or the polyfunctional crosslinkable compound is trifunctional or more.
  4.  前記高分子化合物が、水酸基及び/又はカルボキシル基を有することを特徴とする請求項1から請求項3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the polymer compound has a hydroxyl group and / or a carboxyl group.
  5.  前記多官能水酸基含有化合物として、両末端フェノール変性シリコーン、ポリブタジエンポリオール、水添ポリブタジエンポリオール、及びポリカーボネートポリオールから選ばれる少なくとも1種を含むことを特徴とする請求項1から請求項4のいずれかに記載の樹脂組成物。 5. The compound according to claim 1, wherein the polyfunctional hydroxyl group-containing compound includes at least one selected from a phenol-modified silicone at both terminals, a polybutadiene polyol, a hydrogenated polybutadiene polyol, and a polycarbonate polyol. Resin composition.
  6.  前記多官能水酸基含有化合物が、脂肪族構造を含有することを特徴とする請求項1から請求項5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the polyfunctional hydroxyl group-containing compound contains an aliphatic structure.
  7.  前記多官能水酸基含有化合物が、ポリカーボネートポリオールであることを特徴とする請求項1から請求項6のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the polyfunctional hydroxyl group-containing compound is a polycarbonate polyol.
  8.  前記多官能架橋性化合物として、2以上のイソシアネート基を有する多官能イソシアネート化合物を含むことを特徴とする請求項1から請求項7のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, comprising a polyfunctional isocyanate compound having two or more isocyanate groups as the polyfunctional crosslinkable compound.
  9.  前記多官能架橋性化合物が、2以上のブロックイソシアネート基を含むことを特徴とする請求項1から請求項8のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the polyfunctional crosslinkable compound contains two or more blocked isocyanate groups.
  10.  前記多官能水酸基含有化合物に含まれる水酸基と、前記多官能架橋性化合物に含まれる架橋性官能基とのモル比が、水酸基/架橋性官能基=0.5~1であることを特徴とする請求項1から請求項9のいずれかに記載の樹脂組成物。 The molar ratio of the hydroxyl group contained in the polyfunctional hydroxyl group-containing compound to the crosslinkable functional group contained in the polyfunctional crosslinkable compound is hydroxyl group / crosslinkable functional group = 0.5 to 1. The resin composition according to any one of claims 1 to 9.
  11.  前記高分子化合物100質量部に対して、前記多官能水酸基含有化合物の含有量が5質量部~60質量部であることを特徴とする請求項1から請求項10のいずれかに記載の樹脂組成物。 11. The resin composition according to claim 1, wherein the content of the polyfunctional hydroxyl group-containing compound is 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound. object.
  12.  前記高分子化合物100質量部に対して、前記多官能架橋性化合物の含有量が5質量部~60質量部であることを特徴とする請求項1から請求項11のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the content of the polyfunctional crosslinkable compound is 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polymer compound. object.
  13.  前記多官能水酸基含有化合物の数平均分子量が、500~3000であることを特徴とする請求項1から請求項12のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the polyfunctional hydroxyl group-containing compound has a number average molecular weight of 500 to 3,000.
  14.  前記高分子化合物が、下記一般式(1)で表される繰り返し構造を有することを特徴とする請求項1から請求項13のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Yは、2価の有機基を表し、Zは、4価の有機基を表す。aは、1~50の整数を表す。)
    The resin composition according to any one of claims 1 to 13, wherein the polymer compound has a repeating structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), Y 1 represents a divalent organic group, Z 1 represents a tetravalent organic group, and a represents an integer of 1 to 50.)
  15.  前記高分子化合物が、ポリイミドであることを特徴とする請求項1から請求項14のいずれかに記載の樹脂組成物。 The resin composition according to claim 1, wherein the polymer compound is polyimide.
  16.  前記高分子化合物が、下記一般式(2)で表される繰り返し構造を有することを特徴とする請求項1から請求項15のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Z及びZは、4価の有機基を表し、Y、Y、Y、Y、及びYは、それぞれ独立して炭素数1~炭素数5のアルキレン基を表し、分岐していてもよい。b、c、及びdはそれぞれ独立して1~50の整数を表す。)
    The resin composition according to any one of claims 1 to 15, wherein the polymer compound has a repeating structure represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), Z 1 and Z 2 represent a tetravalent organic group, and Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 each independently represent 1 to 5 carbon atoms. And may be branched. B, c and d each independently represents an integer of 1 to 50.)
  17.  前記高分子化合物が、下記一般式(3)で表されるポリイミド構造及び下記一般式(4)で表されるポリアミド酸構造をそれぞれ繰り返し構成単位として有することを特徴とする請求項1から請求項16のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)及び式(4)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、それぞれ独立して炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上100以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。)
    The polymer compound has a polyimide structure represented by the following general formula (3) and a polyamic acid structure represented by the following general formula (4) as repeating structural units, respectively. The resin composition in any one of 16.
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (3) and Formula (4), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom. Alternatively, it represents a monovalent organic group having 1 to 20 carbon atoms, and R 3 , R 6 , R 9 , R 12 , and R 15 are each independently a tetravalent organic group having 1 to 20 carbon atoms. M, n, and p each independently represents an integer of 0 to 100. R 16 represents a tetravalent organic group, and R 17 represents a divalent group having 1 to 90 carbon atoms. Represents an organic group of
  18.  前記一般式(3)で表されるポリイミドを構成するジアミン成分として、下記一般式(5)で表されるジアミンを含むことを特徴とする請求項17記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、それぞれ独立して炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上30以下の整数であり、1≦(m+n+p)≦30を満たす。)
    The resin composition according to claim 17, comprising a diamine represented by the following general formula (5) as a diamine component constituting the polyimide represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000004
    (In formula (5), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, R 3 , R 6 , R 9 , R 12 , and R 15 each independently represents a tetravalent organic group having 1 to 20 carbon atoms; , N and p are each independently an integer of 0 or more and 30 or less and satisfy 1 ≦ (m + n + p) ≦ 30.)
  19.  前記高分子化合物が、下記一般式(6)で表される構造を繰り返し単位として有することを特徴とする請求項1から請求項18のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、R、R、R、R、R、R、R10、R11、R13、及びR14は、それぞれ独立して水素原子又は炭素数1~炭素数20の1価の有機基を表す。R、R、R、R12、及びR15は、炭素数1~炭素数20の4価の有機基を表し、m、n、pは、それぞれ独立して0以上30以下の整数を表す。R16は、4価の有機基を表し、R17は、炭素数1~炭素数90の2価の有機基を表す。A、B、Cは、各単位のmol%を表し、0.10≦(A+B)/(A+B+C)≦0.85を満たす。)
    The resin composition according to any one of claims 1 to 18, wherein the polymer compound has a structure represented by the following general formula (6) as a repeating unit.
    Figure JPOXMLDOC01-appb-C000005
    (In formula (6), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 13 , and R 14 are each independently a hydrogen atom or a carbon number of 1 to Represents a monovalent organic group having 20 carbon atoms, R 3 , R 6 , R 9 , R 12 , and R 15 represent a tetravalent organic group having 1 to 20 carbon atoms, m, n, p Each independently represents an integer of 0 or more and 30 or less, R 16 represents a tetravalent organic group, and R 17 represents a divalent organic group having 1 to 90 carbon atoms. , C represents mol% of each unit, and satisfies 0.10 ≦ (A + B) / (A + B + C) ≦ 0.85.)
  20.  前記高分子化合物が、下記一般式(7)で表されるポリイミド構造及び下記一般式(8)で表されるポリアミド酸構造を構成単位として有することを特徴とする請求項1から請求項19のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(7)及び式(8)中、Z及びZは、下記一般式(9)で表されるテトラカルボン酸二無水物に由来する4価の有機基であり、それぞれ同じであっても異なっていてもよい。R18は、炭素数1~炭素数30の2価の有機基、R19は、炭素数1~炭素数30の1価の有機基、eは1以上20以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000007
    The polymer compound has a polyimide structure represented by the following general formula (7) and a polyamic acid structure represented by the following general formula (8) as structural units. The resin composition in any one.
    Figure JPOXMLDOC01-appb-C000006
    (In formula (7) and formula (8), Z 3 and Z 4 are tetravalent organic groups derived from tetracarboxylic dianhydride represented by the following general formula (9), and are the same as each other. R 18 is a divalent organic group having 1 to 30 carbon atoms, R 19 is a monovalent organic group having 1 to 30 carbon atoms, and e is 1 or more and 20 or less. Represents an integer.)
    Figure JPOXMLDOC01-appb-C000007
  21.  (D)光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物と、(E)光重合開始剤と、を含有することを特徴とする請求項1から請求項20のいずれかに記載の樹脂組成物。 21. The method according to claim 1, further comprising (D) a (meth) acrylate compound having two or more unsaturated double bonds capable of photopolymerization, and (E) a photopolymerization initiator. A resin composition according to claim 1.
  22.  前記光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物として、二重結合を3つ以上有する(メタ)アクリレート化合物を含むことを特徴とする請求項21記載の樹脂組成物。 The resin composition according to claim 21, comprising a (meth) acrylate compound having three or more double bonds as the (meth) acrylate compound having two or more unsaturated double bonds capable of photopolymerization. .
  23.  前記二重結合を3つ以上有する(メタ)アクリレート化合物として、下記一般式(10)で表わされる化合物を含むことを特徴とする請求項22記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式(10)中、R20は水素原子又はメチル基を表わし、複数のEは各々独立に炭素数2~炭素数5のアルキレン基を表わし、それぞれ同じであっても異なっていてもよい。fは1~10の整数である。)
    The resin composition according to claim 22, comprising a compound represented by the following general formula (10) as the (meth) acrylate compound having three or more double bonds.
    Figure JPOXMLDOC01-appb-C000008
    (In the formula (10), R 20 represents a hydrogen atom or a methyl group, and a plurality of E's each independently represents an alkylene group having 2 to 5 carbon atoms, which may be the same or different. f is an integer of 1 to 10.)
  24.  前記光重合可能な不飽和二重結合を2つ以上有する(メタ)アクリレート化合物として、二重結合を2つ有する(メタ)アクリレート化合物と二重結合を3つ以上有する(メタ)アクリレート化合物とを含むことを特徴とする請求項21から請求項23のいずれかに記載の樹脂組成物。 As the (meth) acrylate compound having two or more photopolymerizable unsaturated double bonds, a (meth) acrylate compound having two double bonds and a (meth) acrylate compound having three or more double bonds The resin composition according to any one of claims 21 to 23, which is contained.
  25.  (F)リン化合物を含有することを特徴とする請求項1から請求項24のいずれかに記載の樹脂組成物。 (F) The resin composition according to any one of claims 1 to 24, which contains a phosphorus compound.
  26.  前記リン化合物として、リン酸エステル化合物及び/又はホスファゼン化合物を含むことを特徴とする請求項25記載の樹脂組成物。 26. The resin composition according to claim 25, wherein the phosphorus compound comprises a phosphate ester compound and / or a phosphazene compound.
  27.  温度85℃、湿度85%、1000時間の絶縁信頼性試験における層間絶縁抵抗が10Ω以上であり、120℃~220℃の粘度が5000Pa・S~100000Pa・Sであって、
     伸度20%未満の弾性域と伸度50%以上の塑性域とを有し、層間絶縁層の膜厚が40μm以下であることを特徴とする樹脂組成物。
    Interlaminar insulation resistance in an insulation reliability test at a temperature of 85 ° C., humidity of 85%, and 1000 hours is 10 9 Ω or more, and a viscosity at 120 ° C. to 220 ° C. is 5000 Pa · S to 100000 Pa · S,
    A resin composition comprising an elastic region having an elongation of less than 20% and a plastic region having an elongation of 50% or more, and a film thickness of an interlayer insulating layer of 40 μm or less.
  28.  請求項1から請求項27のいずれかに記載の樹脂組成物を、100℃~130℃において5分~60分加熱した後に、160℃~200℃において15分~60分加熱することで得られることを特徴とする硬化物。 The resin composition according to any one of claims 1 to 27 is obtained by heating at 100 ° C to 130 ° C for 5 minutes to 60 minutes and then heating at 160 ° C to 200 ° C for 15 minutes to 60 minutes. A cured product characterized by that.
  29.  基材と、前記基材上に設けられた請求項1から請求項27のいずれかに記載の樹脂組成物とを具備することを特徴とする樹脂フィルム。 A resin film comprising: a base material; and the resin composition according to claim 1 provided on the base material.
  30.  前記基材が、キャリアフィルムであることを特徴とする請求項29記載の樹脂フィルム。 30. The resin film according to claim 29, wherein the substrate is a carrier film.
  31.  前記樹脂組成物上に設けられたカバーフィルムを具備することを特徴とする請求項29又は請求項30記載の樹脂フィルム。 The resin film according to claim 29 or 30, further comprising a cover film provided on the resin composition.
  32.  前記基材が、銅箔であることを特徴とする請求項29から請求項31のいずれかに記載の樹脂フィルム。 32. The resin film according to claim 29, wherein the substrate is a copper foil.
  33.  配線を有する基材と、前記配線を覆うように設けられた請求項1から請求項27のいずれかに記載の樹脂組成物と、を具備することを特徴とする配線板。 A wiring board comprising: a base material having wiring; and the resin composition according to any one of claims 1 to 27 provided so as to cover the wiring.
PCT/JP2011/071494 2011-01-18 2011-09-21 Resin composition, cured object, resin film, and wiring board WO2012098734A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180061317.0A CN103270070B (en) 2011-01-18 2011-09-21 Resin composition, cured object, resin film, and wiring board
KR1020137016231A KR101516103B1 (en) 2011-01-18 2011-09-21 Resin composition, cured object, resin film, and wiring board
JP2012553556A JP5820825B2 (en) 2011-01-18 2011-09-21 Resin composition, cured product, resin film and wiring board

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-007862 2011-01-18
JP2011007862 2011-01-18
JP2011-062186 2011-03-22
JP2011062186 2011-03-22
JP2011107290 2011-05-12
JP2011-107290 2011-05-12
JP2011-160730 2011-07-22
JP2011160730 2011-07-22

Publications (1)

Publication Number Publication Date
WO2012098734A1 true WO2012098734A1 (en) 2012-07-26

Family

ID=46515376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071494 WO2012098734A1 (en) 2011-01-18 2011-09-21 Resin composition, cured object, resin film, and wiring board

Country Status (5)

Country Link
JP (1) JP5820825B2 (en)
KR (1) KR101516103B1 (en)
CN (1) CN103270070B (en)
TW (1) TWI498380B (en)
WO (1) WO2012098734A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108890A1 (en) * 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 Resin composition, layered product, multilayered printed wiring board, multilayered flexible wiring board, and process for producing same
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
JP2017520663A (en) * 2014-07-03 2017-07-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Ester-functional polysiloxanes and copolymers made therefrom
WO2017204165A1 (en) * 2016-05-25 2017-11-30 東レ株式会社 Resin composition
JP2020125404A (en) * 2019-02-05 2020-08-20 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and electronic component
JP2020125403A (en) * 2019-02-05 2020-08-20 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and electronic component
WO2022215743A1 (en) * 2021-04-09 2022-10-13 住友ファーマフード&ケミカル株式会社 Curable composition and cured product
TWI797112B (en) * 2017-03-29 2023-04-01 日商東麗股份有限公司 Negative photosensitive resin composition, cured film, element with cured film, organic EL display, and manufacturing method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436081B2 (en) 2013-07-16 2018-12-12 日立化成株式会社 Photosensitive resin composition, film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, and semiconductor device
KR20170026489A (en) * 2014-07-03 2017-03-08 모멘티브 퍼포먼스 머티리얼즈 인크. Uv-active chromophore functionalized polysiloxanes and copolymers made therefrom
KR20160111805A (en) * 2015-03-17 2016-09-27 동우 화인켐 주식회사 Photosensitive resin comopsition, photocurable pattern formed from the same and image display comprising the pattern
EP3286606B1 (en) 2015-04-21 2022-12-28 FujiFilm Electronic Materials USA, Inc. Photosensitive polyimide compositions
CN105301906B (en) * 2015-11-10 2019-12-24 杭州福斯特应用材料股份有限公司 Positive photosensitive polyimide resin composition
JP7135272B2 (en) * 2015-12-09 2022-09-13 東レ株式会社 Resin, slurry, laminate using them, and manufacturing method thereof
JP6477925B2 (en) * 2016-09-08 2019-03-06 住友ベークライト株式会社 Manufacturing method of semiconductor device
KR102134377B1 (en) * 2017-09-15 2020-07-15 주식회사 엘지화학 Photosensitive resin composition and cured film comprising the same
WO2019054625A1 (en) * 2017-09-15 2019-03-21 주식회사 엘지화학 Photosensitive resin composition and cured film comprising same
TWI706995B (en) 2017-12-05 2020-10-11 財團法人工業技術研究院 Resin composition
JP7115932B2 (en) * 2018-08-14 2022-08-09 株式会社ディスコ Workpiece processing method
CN112824438B (en) * 2019-11-20 2022-05-17 湘潭大学 Synthetic method of polyimide
CN114316263B (en) * 2022-01-17 2023-02-03 深圳职业技术学院 Cross-linked polyamic acid ester, method for producing same, polyimide composition containing same, and method for producing polyimide resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307183A (en) * 2005-03-28 2006-11-09 Ube Ind Ltd Modified polyimide resin containing polycarbonate, its composition and cured insulation film
JP2009069664A (en) * 2007-09-14 2009-04-02 Kaneka Corp Novel photosensitive resin composition, photosensitive resin composition solution obtained therefrom, photosensitive film, insulating film, and printed wiring board with insulating film
WO2009054487A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Kabushiki Kaisha Polyimide precursor and photosensitive resin composition containing polyimide precursor
JP2009258367A (en) * 2008-04-16 2009-11-05 Kaneka Corp New photosensitive resin composition, usage of the same, and method of manufacturing insulating film
WO2010143667A1 (en) * 2009-06-09 2010-12-16 旭化成イーマテリアルズ株式会社 Resin composition, cured product, and circuit board using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079109C (en) * 1999-09-08 2002-02-13 中国科学院广州化学研究所 Reticular solid-solid phase change material and its preparing process
CA2655971C (en) * 2006-06-30 2013-12-31 Toray Industries, Inc. Thermoplastic resin composition and molded article thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307183A (en) * 2005-03-28 2006-11-09 Ube Ind Ltd Modified polyimide resin containing polycarbonate, its composition and cured insulation film
JP2009069664A (en) * 2007-09-14 2009-04-02 Kaneka Corp Novel photosensitive resin composition, photosensitive resin composition solution obtained therefrom, photosensitive film, insulating film, and printed wiring board with insulating film
WO2009054487A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Kabushiki Kaisha Polyimide precursor and photosensitive resin composition containing polyimide precursor
JP2009258367A (en) * 2008-04-16 2009-11-05 Kaneka Corp New photosensitive resin composition, usage of the same, and method of manufacturing insulating film
WO2010143667A1 (en) * 2009-06-09 2010-12-16 旭化成イーマテリアルズ株式会社 Resin composition, cured product, and circuit board using same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101597478B1 (en) * 2012-01-20 2016-02-24 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin composition, layered product, multilayered printed wiring board, multilayered flexible wiring board, and process for producing same
KR20140104487A (en) * 2012-01-20 2014-08-28 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin composition, layered product, multilayered printed wiring board, multilayered flexible wiring board, and process for producing same
JPWO2013108890A1 (en) * 2012-01-20 2015-05-11 旭化成イーマテリアルズ株式会社 Resin composition, laminate, multilayer printed wiring board, multilayer flexible wiring board, and manufacturing method thereof
US9896546B2 (en) 2012-01-20 2018-02-20 Asahi Kasei E-Materials Corporation Resin composition, layered product, multilayer printed wiring board, multilayer flexible wiring board and manufacturing method of the same
WO2013108890A1 (en) * 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 Resin composition, layered product, multilayered printed wiring board, multilayered flexible wiring board, and process for producing same
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
JP2017520663A (en) * 2014-07-03 2017-07-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Ester-functional polysiloxanes and copolymers made therefrom
WO2017204165A1 (en) * 2016-05-25 2017-11-30 東レ株式会社 Resin composition
JPWO2017204165A1 (en) * 2016-05-25 2019-03-22 東レ株式会社 Resin composition
US10990008B2 (en) 2016-05-25 2021-04-27 Toray Industries, Inc. Resin composition
TWI797112B (en) * 2017-03-29 2023-04-01 日商東麗股份有限公司 Negative photosensitive resin composition, cured film, element with cured film, organic EL display, and manufacturing method thereof
JP2020125404A (en) * 2019-02-05 2020-08-20 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and electronic component
JP2020125403A (en) * 2019-02-05 2020-08-20 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and electronic component
JP7289666B2 (en) 2019-02-05 2023-06-12 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic parts
JP7298079B2 (en) 2019-02-05 2023-06-27 太陽ホールディングス株式会社 Curable resin composition, dry film, cured product and electronic parts
WO2022215743A1 (en) * 2021-04-09 2022-10-13 住友ファーマフード&ケミカル株式会社 Curable composition and cured product

Also Published As

Publication number Publication date
CN103270070B (en) 2015-02-18
JP5820825B2 (en) 2015-11-24
JPWO2012098734A1 (en) 2014-06-09
CN103270070A (en) 2013-08-28
KR101516103B1 (en) 2015-04-29
KR20130087589A (en) 2013-08-06
TWI498380B (en) 2015-09-01
TW201237101A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
JP5820825B2 (en) Resin composition, cured product, resin film and wiring board
JP5903164B2 (en) Photosensitive film laminate and method for producing flexible printed wiring
JP5758300B2 (en) Photosensitive resin composition containing polyimide precursor, photosensitive film, coverlay, flexible printed wiring board, and laminate thereof
US20100218984A1 (en) Photosensitive dry film resist, printed wiring board making use of the same, and process for producing printed wiring board
JP2009048170A (en) Photosensitive dry film resist, and printed wiring board and method for producing printed wiring board using the same
JP5748638B2 (en) Polyimide precursor or polyimide and photosensitive resin composition
JP5485802B2 (en) Polyimide precursor, photosensitive resin composition, and tetracarboxylic dianhydride
JP5368153B2 (en) Photosensitive resin composition and circuit board using the same
JP5497524B2 (en) Manufacturing method of flexible wiring board
JP5576181B2 (en) Photosensitive resin composition and photosensitive film using the same
JP2011208025A (en) Polyimide precursor and photosensitive resin composition produced by using polyimide precursor
JP6080620B2 (en) Polyimide precursor, polyimide and photosensitive resin composition
JP2009031344A (en) Photosensitive dry film resist, printed wiring board using the same, and manufacturing method of printed wiring board
JP2011195736A (en) Polyimide precursor and photosensitive resin composition
JP2009025699A (en) Photosensitive dry film resist, printed wiring board using same, and method for producing printed wiring board
JP7318206B2 (en) Photosensitive resin composition, photosensitive sheet, cured film thereof, production method thereof, hollow structure and electronic component using same
JP2016206312A (en) Photosensitive resin composition, photosensitive film laminate, flexible printed wiring board and method for manufacturing the same
JP2011227133A (en) Photosensitive resin composition
JP5378213B2 (en) Photosensitive dry film resist material, printed wiring board using the same, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553556

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016231

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301003975

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 11856110

Country of ref document: EP

Kind code of ref document: A1