WO2012097521A1 - 一种固体氧化物燃料电池堆 - Google Patents

一种固体氧化物燃料电池堆 Download PDF

Info

Publication number
WO2012097521A1
WO2012097521A1 PCT/CN2011/070472 CN2011070472W WO2012097521A1 WO 2012097521 A1 WO2012097521 A1 WO 2012097521A1 CN 2011070472 W CN2011070472 W CN 2011070472W WO 2012097521 A1 WO2012097521 A1 WO 2012097521A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
solid oxide
cell stack
oxidizing gas
fuel cell
Prior art date
Application number
PCT/CN2011/070472
Other languages
English (en)
French (fr)
Inventor
王蔚国
官万兵
翟慧娟
沈圣成
金乐
张庆生
柯锐
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to US13/980,513 priority Critical patent/US20130302717A1/en
Priority to CA2823261A priority patent/CA2823261A1/en
Priority to RU2013133143/07A priority patent/RU2013133143A/ru
Priority to KR1020137020423A priority patent/KR20130108660A/ko
Priority to EP11856270.1A priority patent/EP2667442A1/en
Priority to PCT/CN2011/070472 priority patent/WO2012097521A1/zh
Priority to JP2013549690A priority patent/JP2014503109A/ja
Publication of WO2012097521A1 publication Critical patent/WO2012097521A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell, and in particular to a solid oxide fuel cell stack. Background technique
  • Solid Oxide Fuel Cell is a third-generation fuel cell. It is an all-solid chemistry that converts chemical energy stored in fuels and oxidants into energy at high and medium temperatures. Power generation unit. Solid oxide fuel cells are roughly classified into two types: one is a cylindrical type in which an electrode and a solid electrolyte are covered around a cylindrical surface, and the other is a flat type in which a solid electrolyte and an electrode are formed into a planar shape.
  • planar solid oxide fuel cells Compared with cylindrical solid oxide fuel cells, planar solid oxide fuel cells have higher power density per unit volume and are more suitable for use in mobile devices such as automobiles, and thus have wider application prospects.
  • the core component of a planar solid oxide fuel cell system is a stack of cells, which is a stacked structure of a plurality of solid oxide fuel cell units.
  • the stability of the stack is the key to determining the proper operation of the entire solid oxide fuel cell system.
  • the key factors affecting the stability of the battery stack include the life of the battery, the tightness of the stack, and the collecting effect of the contact interface between the battery and the connector. Improving the tightness of the stack is one of the research hotspots of the current solid oxide fuel cell. .
  • the first sealing structure is a closed structure in which both the fuel and the oxidant gas are sealed to form a cross or convection; the second sealing structure is an oxidizing agent.
  • the gas is completely open and only seals the fuel gas.
  • the main problem of the first sealing structure is that in the manufacturing process of the battery stack, since the fuel gas and the oxidant gas are both in a sealed environment, the pressure difference is large, so that the fuel gas and the oxidant gas are liable to generate a gas string problem, thereby causing More battery stack waste increases the manufacturing cost of the battery stack.
  • the second sealing structure can overcome the possibility that the fuel gas and the oxidant gas are connected to each other at a high temperature, in order to ensure that the oxidant gas enters the cathode of the battery, an additional oxidant gas chamber is required, and the oxidant gas chamber is easily short-circuited with the battery stack, resulting in The stack does not operate stably.
  • the technical problem to be solved by the present invention is to provide a solid oxide fuel cell stack, which not only avoids cross-talk between the fuel gas and the oxidant gas, but also effectively prevents the short-circuit problem of the battery. Ensure the stability of the battery stack.
  • the present invention provides a solid oxide fuel cell stack comprising: an upper current collecting plate, a lower current collecting plate, and a stacked structure housed between the upper and lower current collecting plates;
  • the stack structure includes at least two connecting members, a battery piece disposed between two adjacent connecting members, the connecting member having an anode side and a cathode side, and an oxidizing gas disposed on an anode side of the connecting member a seal, a fuel gas seal is disposed on a cathode side of the connecting member;
  • a closed oxidizing gas inlet passage, a closed fuel gas inlet passage and a closed fuel gas outlet passage, and an open oxidizing gas outlet passage are provided on the stack structure.
  • both sides of the connecting member are provided with a bump arranged in a matrix and a sealing edge disposed around the bump.
  • the sealing side of the cathode side of the connecting member has an opening portion, and the opening portion forms the open oxidizing gas outlet passage with the fuel gas seal.
  • the closed oxidizing gas inlet passage is composed of an oxidizing gas inlet hole provided on the oxidizing gas seal, an oxidizing gas inlet hole provided on the battery sheet, and oxidation disposed on the connecting member. Gas inlet holes are formed in communication.
  • the closed fuel gas flow path is composed of a fuel gas inlet hole provided on the fuel gas seal, a fuel gas inlet hole provided on the battery piece, and a fuel gas disposed on the connecting member
  • the intake holes are connected to each other.
  • the fuel gas outlet passage is connected by a fuel gas outlet hole provided on the oxidizing gas seal, a fuel gas outlet hole provided on the battery sheet, and a fuel gas outlet hole provided on the connecting member. form.
  • the height of the bumps arranged in a lattice is 0.3 to 1.0 mm.
  • the ratio of the effective contact area of the bumps arranged on the spacers to the elements on the side of the spacers is 10% to 50% of the area of the side surfaces of the spacers.
  • the sealing edge has a width of 2 mm to 15 mm.
  • the present invention provides a solid oxide fuel cell stack including a closed oxidizing gas inlet passage, a closed fuel gas inlet passage, a closed fuel gas outlet passage, and an open oxidizing gas outlet passage.
  • the invention provides that the oxidizing gas inlet in the battery stack is closed, and the outlet is open.
  • the oxidizing gas inlet and outlet are completely closed, since the oxidizing gas outlet is opened, the internal gas pressure difference is smaller, the flow is smoother, and the possibility that the fuel and the oxidizing gas are mutually separated is effectively solved, thereby further improving. Stability and output performance of the stack operation.
  • the present invention does not require an additional design of the oxidizing gas inlet chamber, so that problems such as short circuiting of the stack can be avoided.
  • FIG. 1 is a schematic structural view of a first embodiment of a solid oxide fuel cell stack according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the solid oxide fuel cell stack after assembly according to the present invention.
  • FIG. 3 is a schematic view showing the disassembly of the solid oxide fuel cell stack shown in FIG. 1;
  • Figure 4 is a schematic view of the cathode side of the connector in the solid oxide fuel cell stack shown in Figure 3;
  • Figure 5 is a schematic view of the fuel gas seal on the cathode side of the connector of Figure 3;
  • Figure 6 is a schematic view of the anode side of the connector of Figure 3;
  • Figure 7 is a schematic view of the oxidizing gas seal on the anode side of the connecting member of Figure 3;
  • Figure 8 is a schematic view of nickel foam
  • Figure 9 is a schematic view of the anode side of the single cell
  • Figure 10 is a schematic view showing the cathode surface of the single cell shown in Figure 9;
  • Figure 11 is an I-V curve of a battery stack test in Embodiment 2 of the present invention.
  • Figure 12 is a graph showing the attenuation curve of the battery stack in Embodiment 3 of the present invention.
  • Figure 13 is a graph showing the decay of a single cell in a battery stack in Embodiment 3 of the present invention. detailed description
  • a schematic diagram of an embodiment of a solid oxide fuel cell stack provided by the present invention includes an upper header 1 and a lower header 2 and is received between the upper and lower headers.
  • the stacking structure 3, the upper collecting plate 1 and the lower collecting plate 2 are press-fixed by a screw assembly, and the screw assembly is preferably a metal screw assembly.
  • the screw assembly 4 includes a screw 41 and two bolts 42.
  • the screw support la of the positioning screw is pre-machined on the four sides of the upper collecting plate, and is also pre-processed on the four sides of the lower collecting plate.
  • a screw support corresponding to the position of the screw support la of the upper header.
  • the flow plate is pressurized and fixed.
  • the invention adopts a screw assembly to press and fix the upper collecting plate, the lower collecting plate and the stacking structure at a normal temperature, and the structure is convenient for disassembly, which is advantageous for batch assembly production.
  • FIG. 2 there is shown a second embodiment of a solid oxide fuel cell stack provided by the present invention.
  • the difference from the first embodiment is that the battery stack of the present embodiment further improves the fixed pressurization of the upper header, the lower header, and the stacked structure.
  • the screw assembly includes a screw 42, a first screw fixing member 41 and a second screw fixing member 42 connected to both ends of the screw, and the first screw fixing member 41 and the second screw fixing member 42 are disposed on The upper header, the stacked structure 3, and the lower header 3 are press-fixed to the inner sides of the current collecting plate and the lower collecting plate.
  • the two screw fixing members 41, 42 have the same structure, and the first screw fixing member 41 will be described below as an example.
  • the first screw fixing member has a screw end 41a and a threaded hole end 41b corresponding to the screw end, and both ends of the screw 42 are respectively engaged with the threaded hole ends of the two screw fixing members.
  • the screw ends of the two screw fixing members are respectively rotatably fixed from the inner sides of the upper collecting plate and the lower collecting plate; the screw with the two screw fixing members is respectively processed on the upper collecting plate and the lower flow plate
  • the threaded holes are matched at the ends, so that the pressurization of the upper header, the lower collecting plate and the stacked structure can be achieved by rotating the two screw fixing members and the screw.
  • the screw assembly may be made of metal or non-metal, such as engineering plastics or composite materials.
  • the screw assembly needs to be removed before the high temperature test of the stack; when the screw assembly is made of non-metallic materials such as composite materials, before the high temperature test, The screw assembly needs to be removed, so the operation is more convenient.
  • FIG. 3 a schematic diagram of the splitting of the solid oxide fuel cell stack of FIG. 1 includes a plurality of connecting members 11 and three connecting members are shown in FIG. 3.
  • the function of the connecting members is The fuel gas and the oxidizing gas are separated.
  • the fuel gas is hydrogen gas
  • the oxidizing gas is air.
  • the material of the connecting member can be made of stainless steel well known to those skilled in the art, and the specific example of the stainless steel can be a connecting member of Fe-16Cr, Fe-22Cr or the like, and the specific model is SUS430, but is not limited thereto.
  • the number of connectors should be at least two or two or more. The number of connectors can be determined according to the number of designed cells. Generally, the number of the connecting members is greater than 1 than the number of the single cells, and the single cells are disposed between the adjacent two connecting members; the top end and the bottom end of the stacked structure are the connecting members, and the top connecting member is in contact with the upper collecting plate. The bottom end connector is in contact with the lower collector layer.
  • the thickness of the connecting member is preferably from 0.8 mm to 4 mm, more preferably from 1.0 mm to 3 mm, still more preferably from 1.2 mm to 2.8 mm, still more preferably from 1.5 mm to 2.5 mm.
  • a single battery 12 is disposed between two adjacent connecting members; the connecting member 11 has two main surfaces, and for convenience of description, a main surface of the connecting member facing the cathode side of the single battery is called The cathode side of the connector, the other main surface corresponding to the cathode side is referred to as the anode side of the connector; the oxidizing gas seal 13 is disposed on the anode side of the connector, and the fuel gas seal is disposed on the cathode side of the connector Item 14.
  • the oxidizing gas seal and the fuel gas seal are of the same material and have different structures (described in detail below), and a sealing glass well known to those skilled in the art can be used, such as A 2 0 commonly used in the art.
  • a sealing glass of a 3- Si0 2 -BO system wherein A in the formula represents an element of Al, B, La or Te, and B in the formula represents an element of Mg, Zn, Sr, Ca or F.
  • Dot-arranged bumps are formed on both the anode side and the cathode side of the connector.
  • the cross-sectional shape of the bumps may be cylindrical, or may be triangular, oblong, rectangular, or any polygonal shape. There is no particular limitation on the invention.
  • the action of the above-mentioned connector bumps is in contact with elements such as the battery cathode, the foamed nickel, the upper header/lower collector, etc. under the pressure of the screw assembly, resulting in a current collecting effect.
  • the bumps arranged in a lattice pattern can be realized by etching or stamping methods well known to those skilled in the art, and the pores between the bumps serve as passages for fuel gas or oxidizing gas, and the height of the bumps is preferably 0.3 to 1.0 mm. It is preferably 0.4 to 0.9 mm.
  • the bumps are in contact with the effective area of the battery cathode, the foamed nickel, the upper header/lower collector, etc. during pressurization.
  • the joint area is 10% to 50%, preferably 15% to 45%.
  • the bump structure designed by the invention is easy to enter the inside of the cathode current collecting layer of the battery, thereby increasing the current collecting effect and improving the output performance of the stack.
  • a sealing edge is formed around the bumps arranged in the lattice of the two main surfaces of the connecting member, and the sealing edge serves to contact the sealing member for sealing purposes.
  • the sealing side on the anode side of the connecting member has a different structure from the sealing side on the cathode side, which will be described in detail below.
  • the bump side 11a of the lattice array is processed by etching on the cathode side of the connecting member, and the cathode side sealing edge is pre-machined around the bumps arranged in the dot matrix.
  • the cathode side sealing edge 101 includes a first portion 101a corresponding to one side of the connector, and the second portion 101b and the third portion 101c connected to both ends of the first portion are open at a portion corresponding to the first portion 101a There is an opening, that is, the cathode sealing edge is an open sealing edge.
  • the height of the bumps and the sealing edges are preferably flat, so that the bumps are effectively in sufficient contact with the other components to achieve a better sealing effect.
  • the ratio of the width of the venting groove to the diameter of the vent hole is preferably 1/5 ⁇ 1, and the depth of the venting groove corresponds to the height of the bulging hole.
  • the venting groove functions as a gas total passage for supplying air to the air between the bumps; and the venting hole is a vent hole processed from the other side of the sealing side at the cathode The side is an oxidizing gas vent.
  • a position for processing the fuel gas intake hole and the fuel gas outlet hole is reserved on the second portion 101b and the third portion 101c, respectively, so that the fuel gas intake hole lOld can be processed on the second portion 101b.
  • a fuel gas outlet hole 101e is machined in the third portion 101b.
  • the gas hole 14a and the fuel gas outlet hole 14b are such that after the fuel gas seal is attached to the cathode side seal side 101, the fuel gas can be sealed outside the cathode side to prevent the fuel gas from entering the region. Further, since the cathode side sealing edge 101 is open, the open portion is not sealed after the fuel gas sealing member 101 is attached, so that it can serve as an outlet passage for the open oxidizing gas.
  • the structure of the anode side of the connecting member is the same as that of the cathode side, and the bumps l ib arranged by the lattice are processed by etching or punching, and the anode is pre-processed around the bumps arranged in the lattice.
  • the side sealing edge 102, the anode side sealing edge 102 includes a fourth portion 102a corresponding to the first portion 101a, a fifth portion 102b and a sixth portion 102c connected to both ends of the fourth portion, and the fifth portion 102b And the seventh portion 102d of the sixth portion 102c, unlike the cathode sealing edge, the anode sealing edge is a closed sealing edge, and the height of the bump is equal to the height of the sealing edge.
  • venting groove 112 Between the bump and the fifth portion 102b and the sixth portion of the sealing edge is a venting groove 112, which is the same as the venting groove structure on the cathode side, and will not be described herein.
  • the venting groove 112 functions as a fuel gas total passage for supplying the fuel gas entering the fuel gas inlet hole into the gap between the bumps, or for feeding the fuel gas of the gap between the bumps to the fuel gas outlet hole.
  • a position for processing the oxidizing gas inlet hole is reserved in the fourth portion 102a, and the oxidizing gas inlet port 102e can be processed at this position.
  • FIG. 7 a schematic view of the oxidizing gas sealing member 13.
  • the oxidizing gas sealing member is processed with an oxidizing gas inlet hole 13a.
  • the oxidizing property can be obtained.
  • the gas seal is outside the anode side to prevent oxidizing gas from entering the region.
  • the fuel gas may enter from the fuel gas intake hole 101d, pass through the pores between the bumps of the region, and then may be discharged from the fuel gas outlet hole 101e, that is, the fuel gas passages are sealed.
  • the width of the anode side sealing side or the cathode side sealing side is preferably 2 mm to 15 mm, more preferably 3 mm to 10 mm, still more preferably 4 mm to 9 mm.
  • the bump on the cathode side of the top end connecting member of the stack structure is in contact with the upper collecting plate, and the sealing side of the cathode side and the upper collecting plate are sealed by the fuel gas sealing member;
  • the bump on the anode side of the bottom end connector of the stacked structure is in contact with the lower header, and the sealing side of the anode side and the lower header are sealed by an oxidizing gas seal.
  • the cathode side of the connecting member is sealed with the cathode of the battery through the fuel gas seal
  • the anode side of the connecting member is sealed with the anode of the battery through the oxidizing gas seal, at the anode of the connecting member
  • foamed nickel between the side and the anode of the battery.
  • Fig. 8 it is a schematic diagram of the structure of the foamed nickel.
  • the oxidizing gas inlet opening is also processed on the foamed nickel.
  • an anode supporting flat solid oxide fuel cell may be used, or a dielectric supporting solid oxide fuel cell may be used, and the shape of the cell is not limited, preferably square.
  • the solid oxide fuel cell stack provided by the present invention can be prepared as follows: Three holes are preferably processed on the single cell by laser cutting, respectively, as an oxidizing gas inlet hole, a fuel gas inlet hole and a fuel gas outlet hole. As shown in FIG. 9 , it is a schematic diagram of an anode surface of a single cell, and FIG. 10 is a schematic diagram of a cathode surface of a single cell;
  • three holes are also formed at positions corresponding to the three holes of the unit cell, respectively, as the oxidizing gas inlet hole, the fuel gas inlet hole, and the fuel gas vent hole.
  • the foamed nickel is processed at a position corresponding to the oxidizing gas inlet hole of the connecting member to form a slit as an oxidizing gas inlet passage.
  • the fabricated connecting piece, the single cell, the oxidizing gas seal, the fuel gas seal, the foamed nickel, the upper collecting plate, the lower collecting plate and the bolt are assembled into the solid oxide fuel cell stack shown in FIG.
  • the number of battery cells can be selected according to design requirements, and the present invention is not particularly limited.
  • the stack performance can then be tested according to methods well known to those skilled in the art.
  • Single battery Prepare an anode supporting single cell sheet with a size of 10cm X 10cm, an anode for the cathode, and a laser cutting method to process an oxidizing gas inlet hole on one edge portion of the unit cell, and the oxidizing gas a fuel gas inlet hole and a fuel gas outlet hole are formed on two perpendicularly edge portions of the edge portion of the inlet hole;
  • the material is SUS430, the thickness is 2.5mm, and the dot-array arrangement (dot array arrangement) is etched on the anode side and the cathode side of the spacer.
  • the height of the round bumps on both sides is 0.5mm.
  • the anode side sealing side and the cathode side sealing side each having a width of 3.5 mm are respectively processed, wherein the cathode side sealing side has an open portion.
  • the fuel gas inlet hole, the fuel gas outlet hole, and the oxidizing gas inlet hole are respectively processed by the laser cutting method at the fuel gas inlet hole position, the fuel gas outlet hole position, and the oxidizing gas inlet hole position;
  • Oxidizing gas seal Take Al 2 0 3 -Si0 2 -MgO (sealing glass specific type or composition) sealing glass to process oxidizing gas intake at a position corresponding to the oxidizing gas inlet hole of the spacer hole;
  • Fuel gas seal Take Al 2 0 3 -Si0 2 -MgO (specific type or composition of sealing glass). The sealing glass is processed separately at the position corresponding to the fuel gas inlet air and the fuel gas outlet hole on the spacer. a fuel gas inlet hole and a fuel gas outlet hole;
  • Nickel foam processing oxidizing gas inlet holes and fuel gas flow passage holes
  • the upper collecting plate is made of SUS430, and the mechanical processing method pre-processes the screw assembly for pressurization on three sides of the upper collecting plate;
  • the lower collecting plate is made of SUS430, and the screw assembly for pressurization is pre-processed on the three sides of the lower collecting plate.
  • the assembled battery stack assembly was heated from room temperature to 850 ° C for 12 hours, and after heating for 4 hours, the pressure was tested under different conditions, and the obtained I-V curve is shown in Fig. 11.
  • Fig. 12 is the overall attenuation curve of the battery stack
  • Fig. 13 is the attenuation curve of the single cell in the battery stack. It can be seen from the results of FIG. 12 and FIG. 13 that the battery stack and its single cell stack unit are not attenuated after 75 hours of testing. After the constant current discharge is stopped, the open circuit voltage of the battery stack reaches 5.7V, and the single cell The open circuit voltages have exceeded 1.1V.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

一种固体氧化物燃料电池堆 技术领域
本发明涉及固体氧化物燃料电池, 具体涉及一种固体氧化物燃料电池堆。 背景技术
固体氧化物燃料电池 ( Solid Oxide Fuel Cell, 简称 SOFC )属于第三代燃 料电池,是一种在中高温下将储存在燃料和氧化剂中的化学能高效、环境友好 地转化成电能的全固态化学发电装置。 固体氧化物燃料电池大致分为两种: 一 种是圓柱型, 其中电极和固态电解质均绕着圓柱面覆盖, 另一种是平面型, 其 中固态电解质和电极都做成平面形状。
与圓柱型固体氧化物燃料电池相比,平面型固体氧化物燃料电池在单位体 积内具有更高的功率密度, 更加适用于在移动装置如汽车上使用, 因此具有更 加广泛的使用前景。平面型固体氧化物燃料电池系统的核心部件是电池堆, 电 池堆是由多个固体氧化物燃料电池单元形成的堆叠结构。
电池堆的稳定性是决定整个固体氧化物燃料电池系统能否正常运行的关 键。 影响电池堆稳定性的关键因素包括单电池寿命、 电池堆密封性、 电池与连 接件之间的接触界面的集流效果,其中改善电池堆密封性是当前固体氧化物燃 料电池的研究热点之一。
现有技术中, 平板型固体氧化物燃料电池的密封结构主要有两种, 第一种 密封结构是燃料和氧化剂气体都密封,从而形成交叉或对流的封闭式结构; 第 二种密封结构是氧化剂气体完全敞开, 只对燃料气体密封。
第一种密封结构的主要问题是在电池堆的制造过程中,由于燃料气体和氧 化剂气体都在密封的环境中,压差较大, 因此燃料气体和氧化剂气体容易产生 串气的问题, 从而造成较多的电池堆废品, 提高了电池堆的制造成本。 第二种 密封结构虽然可以克服燃料气体和氧化剂气体高温互相串气的可能性,但是为 了确保氧化剂气态进入电池的阴极, 需要额外提供一个氧化剂气腔, 氧化剂气 体腔容易与电池堆发生短路, 导致电池堆不能稳定运行。 发明内容
本发明解决的技术问题在于,提供一种固体氧化物燃料电池堆, 与现有技 术相比, 该电池堆不但避免燃料气体与氧化剂气体发生串气, 并且有效的防止 电池产生短路的问题, 从而保证电池堆的运行稳定性。
为了解决以上技术问题, 本发明提供一种固体氧化物燃料电池堆, 包括: 上集流板、 下集流板和容纳在所述上集流板和下集流板之间的堆叠结构; 所述堆叠结构包括至少两个连接件、设置在相邻的两个所述连接件之间的 电池片, 所述连接件具有阳极侧和阴极侧,在所述连接件的阳极侧设置有氧化 气体密封件, 在所述连接件的阴极侧设置有燃料气体密封件;
在所述堆叠结构上设置有密闭氧化气体进气通道、密闭燃料气体进气通道 和密闭燃料气体出气通道, 和敞开的氧化气体出气通道。
优选的,所述连接件的两侧均设置有点阵排列的凸点和设置在所述凸点周 围的密封边。
优选的, 所述连接件阴极侧的密封边具有开口部, 所述开口部与所述燃料 气体密封件形成所述敞开的氧化气体出气通道。
优选的,所述密闭氧化气体进气通道由设置在所述氧化气体密封件上的氧 化气体进气孔、设置在所述电池片上的氧化气体进气孔、设置在所述连接件上 的氧化气体进气孔连通形成。
优选的,所述密闭燃料气体流道由设置在所述燃料气体密封件上的燃料气 体进气孔、设置在所述电池片上的燃料气体进气孔、设置在所述连接件上的燃 料气体进气孔连通形成。
优选的,所述燃料气体出气通道由设置在所述氧化气体密封件上的燃料气 体出气孔、设置在所述电池片上的燃料气体出气孔、设置在所述连接件上的燃 料气体出气孔连通形成。
优选的, 所述呈点阵排列的凸点的高度为 0.3〜1.0mm。
优选的,所述间隔件上点阵排列的凸点与间隔件该侧的元件接触的有效接 触面积占所述间隔件侧面面积的比例为 10%〜50%。
优选的, 所述密封边的宽度为 2mm〜15mm。
优选的, 所述上集流板、 堆叠结构和下集流板通过螺栓组件连接。 本发明的提供了一种固体氧化物燃料电池堆,该电池堆包括密闭氧化气体 进气通道、 密闭燃料气体进气通道、 密闭燃料气体出气通道和敞开的氧化气体 出气通道。 本发明提供电池堆中的氧化气体进口封闭, 出口敞开。 与现有技术 中的氧化气体进出口完全封闭相比, 由于氧化气体出口敞开, 内部气体压差更 小、 流动更加顺畅, 有效地解决了燃料与氧化气体互相串气的可能, 从而进一 步提高了电堆运行的稳定性和输出性能。与现有技术中的氧化气体完全敞开式 的结构相比, 本发明无需额外设计氧化气体进口腔,从而可以避免引起电堆短 路等问题。 附图说明
图 1 为本发明提供的固体氧化物燃料电池堆组装后的第一种实施方式结 构示意图;
图 2 为本发明提供的固体氧化物燃料电池堆组装后的第二种实施方式结 构示意图;
图 3为图 1所示的固体氧化物燃料电池堆的拆分示意图;
图 4为图 3所示的固体氧化物燃料电池堆中的连接件阴极侧示意图; 图 5为图 3中的连接件阴极侧的燃料气体密封件示意图;
图 6为图 3中的连接件阳极侧示意图;
图 7为图 3中连接件阳极侧的氧化气体密封件示意图;
图 8为泡沫镍示意图;
图 9为单电池阳极面示意图;
图 10为图 9所示的单电池阴极面示意图;
图 11为本发明实施例 2中的电池堆测试的 I-V曲线;
图 12为本发明实施例 3中的电池堆的衰减曲线图;
图 13为本发明实施例 3中的电池堆中单电池衰减曲线图。 具体实施方式
为了进一步了解本发明, 下面结合实施例对本发明优选实施方案进行描 述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是 对本发明权利要求的限制。
请参见图 1 , 为本发明提供的固体氧化物燃料电池堆一种实施方式示意 图 ,包括上集流板 1与下集流板 2和容纳在所述上集流板与下集流板之间的堆 叠结构 3 , 上集流板 1和下集流板 2通过螺杆组件加压固定, 螺杆组件优选为 金属材质的螺杆组件。本实施方式中,螺杆组件 4包括螺杆 41和两个螺栓 42, 在上集流板的四个边上预加工有定位螺杆的螺杆支撑 la, 在下集流板的四个 边上也预加工有与所述上集流板的螺杆支撑 la位置对应的螺杆支撑。 将螺杆 定位在螺杆支撑 la上以后, 分别从上集流板外侧和下集流板外侧在螺杆的两 个外端旋入螺栓, 然后通过旋紧螺栓将上集流板、 堆叠结构、 下集流板进行加 压固定。本发明采用螺杆组件将上集流板、 下集流板和堆叠结构在常温下加压 固定, 该种结构便于拆卸, 有利于批量化组装生产。
请参见图 2, 为本发明提供的固体氧化物燃料电池堆第二种实施方式的示 意图。 与第一种实施方式的区别在于, 本实施方式的电池堆对上集流板、 下集 流板和堆叠结构的固定加压方式进行了进一步的改进。
本实施方式中, 螺杆组件包括螺杆 42、 连接在所述螺杆两端的第一螺杆 固定件 41和第二螺杆固定件 42, 所述第一螺杆固定件 41和第二螺杆固定件 42设置在上集流板和下集流板的内侧, 将所述上集流板 1、 堆叠结构 3、 下集 流板 3进行加压固定。 所述两个螺杆固定件 41、 42具有相同的结构, 以下以 第一螺杆固定件 41为例进行说明。 第一螺杆固定件具有一个螺杆端 41a和与 所述螺杆端对应的螺纹孔端 41b, 所述螺杆 42的两端分别与所述两个螺杆固 定件的螺纹孔端配合。所述两个螺杆固定件的螺杆端分别从上集流板和下集流 板的内侧旋转固定;在所述上集流板和下流版上分别加工有与所述两个螺杆固 定件的螺杆端相配合的螺纹孔,这样通过旋转两个螺杆固定件与螺杆可以实现 对上集流板、 下集流板以及堆叠结构的加压固定。 与第一种实施方式相比, 第 二种实施方式的优点是上集流板和下集流板的外侧没有螺栓凸出,因此更容易 实现电池堆的串联或并联。
第二种实施方式中, 螺杆组件可以为金属材质, 也可以为非金属材质, 如 工程塑料或复合材料。 当螺杆组件为金属材质时, 对电池堆进行高温测试前, 需要卸掉螺杆组件; 当螺杆组件为非金属材质如复合材料时, 高温测试前, 不 需要卸掉螺杆组件, 因此操作更加方便。 请参见图 3 , 为图 1所述的固体氧化 物燃料电池堆的拆分示意图, 所述的堆叠结构包括多个连接件 11 , 图 3 中示 出了三个连接件, 连接件的作用是用来隔开燃料气体和氧化气体,在本实施方 式中燃料气体为氢气, 氧化气体为空气。
连接件的材质可以由本领域技术人员熟知的不锈钢制成,不锈钢的具体例 子可以为 Fe-16Cr、 Fe-22Cr等材质的连接件, 具体型号如 SUS430, 但不限于 此。 对于连接件的数量, 至少应该为两个, 也可以为两个或两个以上, 可以根 据设计的单电池的数量来决定连接件的数量。通常, 连接件的数量比单电池的 数量大于 1 , 单电池设置在相邻的两个连接件之间; 堆叠结构的顶端和底端均 为连接件, 顶端连接件与上集流板接触, 底端连接件与下集流层接触。 所述连 接件的厚度优选为 0.8mm〜4mm , 更优选为 1.0mm〜3mm , 更优选为 1.2mm〜2.8mm, 更优选为 1.5mm〜2.5mm。
请继续参见图 3 , 在相邻的两个连接件之间设置有单电池 12; 连接件 11 具有两个主表面, 为描述方便,将连接件面对单电池阴极侧的一个主表面称为 连接件的阴极侧,将与阴极侧相对应的另一个主表面称为连接件的阳极侧; 在 连接件的阳极侧设置有氧化气体密封件 13 , 在连接件的阴极侧设置有燃料气 体密封件 14。
所述氧化气体密封件和燃料气体密封件为同样的材质, 具有不同的结构 (以下详述), 可以使用本领域技术人员熟知的封接玻璃, 如本领域中常用的 通式为 A203-Si02-BO体系的封接玻璃, 通式中的 A表示 Al、 B、 La或 Te元 素, 通式中的 B表示 Mg、 Zn、 Sr、 Ca或 F元素。
在连接件的阳极侧和阴极侧的两个主表面上均加工出了点阵排列的凸点, 凸点的截面形状可以为圓柱形, 也可以为三角形、 长圓形、 矩形以及任意的多 边形, 对此本发明并无特别的限制。
上述连接件凸点的作用在螺杆组件的加压下与电池阴极、 泡沫镍、上集流 板 /下集流板等元件接触, 产生集流效应。 点阵排列的凸点可以采用本领域技 术人员熟知的蚀刻或冲压的方法来实现,凸点之间的孔隙作为燃料气体或氧化 性气体的通道, 凸点的高度优选为 0.3〜1.0mm, 更优选为 0.4〜0.9mm。 凸点在 加压时与电池阴极、 泡沫镍、 上集流板 /下集流板等元件接触的有效面积占连 接件面积的 10%〜50%, 优选为 15%〜45%。 本发明设计的凸点结构易于进入电 池阴极集流层内部, 从而增加了集流效果, 提高电堆输出性能。
在连接件的两个主表面的点阵排列的凸点的周围加工有密封边,密封边的 作用是与密封件接触达到密封的目的。 本发明中, 连接件的阳极侧的密封边与 阴极侧的密封边具有不同的结构, 以下详细说明。
如图 4所示, 为连接件阴极侧的结构示意图, 连接件的阴极侧上采用蚀刻 的方法加工出点阵排列的凸点 11a, 在点阵排列的凸点周围预加工出阴极侧密 封边 101 , 阴极侧密封边 101包括与连接件的一个侧面对应的第一部分 101a, 与所述第一部分两端连接的第二部分 101b 和第三部分 101c, 在与第一部分 101a相对应的部分是敞开的, 具有一个开口部, 即阴极密封边是一个敞开的 密封边。 凸点与密封边的高度优选持平, 这样可以在达到更好的密封效果情况 下使凸点有效的与其它元件保持充分的接触。
在凸点与所述密封边的第一部分 101a之间为通气沟槽 111 , 通气沟槽的 宽度与通气孔直径之比优选为 1/5〜1 , 通气沟槽的深度与凸点高度相对应, 优 选为 0.3〜1.0mm, 通气沟槽的作用是作为气体总通道, 向凸点之间的空气供入 气体; 所述通气孔是指从另一侧密封边加工出来的通气孔,在阴极侧为氧化气 体通气孔。
在所述第二部分 101b和第三部分 101c上分别预留有用于加工燃料气体进 气孔和燃料气体出气孔的位置, 这样, 可以在第二部分 101b上加工出燃料气 体进气孔 lOld, 在第三部分 101b上加工出燃料气体出气孔 101e。请同时参见 图 5 , 为燃料气体密封件 14的示意图, 在燃料气体密封件上分别加工有与所 述间隔件上的燃料气体进气孔 lOld和燃料气体出气孔 101e的位置对应的燃料 气体进气孔 14a和燃料气体出气孔 14b, 这样将燃料气体密封件贴合在阴极侧 密封边 101上后, 可以将燃料气体密封在阴极侧以外, 防止燃料气体混入该区 域。 此外, 由于阴极侧密封边 101 是敞开的, 因此贴合燃料气体密封件 101 以后, 该敞开的部分也不会被密封, 这样可以作为敞开的氧化性气体的出口通 道。
如图 6所示, 为连接件阳极侧的结构示意图, 与阴极侧一样, 采用蚀刻或 冲压的方法加工出点阵排列的凸点 l ib, 在点阵排列的凸点周围预加工出阳极 侧密封边 102, 阳极侧密封边 102 包括与第一部分 101a相对应的第四部分 102a, 与所述第四部分两端连接的第五部分 102b和第六部分 102c、 连接所述 第五部分 102b和第六部分 102c的第七部分 102d, 与阴极密封边不同, 阳极 密封边是一个封闭的密封边, 凸点与密封边的高度持平。
在凸点与所述密封边的第五部分 102b和第六部分之间为通气沟槽 112, 该通气沟槽与阴极侧的通气沟槽结构相同, 在此不再贅述。通气沟槽 112的作 用是作为燃料气体总通道,将燃料气体进气孔进入的燃料气体供入凸点之间的 缝隙内, 或者将凸点之间的缝隙的燃料气体送出燃料气体出气孔。
在所述第四部分 102a上预留有用于加工氧化性气体进气孔的位置, 在该 位置可以加工出氧化性气体进气孔 102e。请同时参见图 7, 为氧化气体密封件 13的示意图, 氧化气体密封件上加工有氧化性气体进入孔 13a, 当将该氧化气 体密封件贴合在阳极侧密封边上后, 可以将氧化性气体密封在阳极侧以外, 防 止氧化性气体混入该区域。 此外, 燃料气体可以从燃料气体进气孔 101d进入 后, 经过该区域的凸点之间的孔隙, 然后可以从燃料气体出气孔 101e排出, 即燃料气体通道都是密封的。
对于上述阳极侧密封边或阴极侧密封边的宽度, 优选为 2mm〜15mm, 更 优选为 3 mm- 10mm, 更优选为 4mm〜9mm。
本实施方式的堆叠结构中,堆叠结构的顶端连接件的阴极侧上的凸点与上 集流板接触, 该阴极侧的密封边与上集流板之间通过燃料气体密封件进行封 接; 堆叠结构的底端连接件的阳极侧上的凸点与下集流板接触, 该阳极侧的密 封边与下集流板之间通过氧化气体密封件进行封接。
按照本发明,在堆叠结构内, 连接件的阴极侧通过燃料气体密封件与电池 的阴极进行封接, 连接件的阳极侧通过氧化气体密封件与电池的阳极进行封 接, 在连接件的阳极侧与电池的阳极之间还设置有泡沫镍, 如图 8所示, 为泡 沫镍的结构示意图, 在泡沫镍上还需加工出氧化性气体进气豁口。
另外, 为了组装上述结构的堆叠结构, 需要在单电池上也加工出与连接件 上的氧化性气体进气孔、 燃料气体进气孔、 燃料气体出气孔相对应的孔, 以便 形成气体通道。 对于单电池, 可以使用阳极支撑平板固体氧化物燃料单电池, 也可以使用电介质支撑固体氧化物燃料单电池,单电池的形状不限,优选为方 本发明提供的固体氧化物燃料电池堆可以按照如下方法制备: 在单电池上优选使用激光切割的方式加工出 3个孔,分别作为氧化气体进 气孔、 燃料气体进气孔和燃料气体出气孔, 如图 9所示, 为单电池阳极面示意 图, 图 10为单电池阴极面示意图;
取蚀刻或冲压好凸点的连接件,在与所述单电池的 3个孔对应的位置上也 加工出三个孔,分别作为氧化气体进气孔、燃料气体进气孔和燃料气体出气孔; 取封接玻璃在与所述间隔件的氧化气体进气孔相对应的位置上加工出一 个孔, 然后作为氧化气体密封件; 另取封接玻璃在与所述间隔件的燃料气体进 气孔和燃料气体出气孔相对应的位置上加工出两个孔,然后作为燃料气体密封 件;
取泡沫镍在与所述连接件的氧化气体进气孔相对应的位置上加工出豁口, 作为氧化气体进气通道。
取上述加工好的连接件、 单电池、 氧化气体密封件、 燃料气体密封件、 泡 沫镍、 上集流板、 下集流板和螺栓组装成图 1所示的固体氧化物燃料电池堆, 单电池单元数可以根据设计需要进行选择, 对此本发明并无特别限制。 然后, 可以按照本领域技术人员熟知的方法对电池堆性能进行测试。
以下以具体实施例说明本发明的效果,但本发明的保护范围不受以下实施 例的限制。
实施例 1 :
准备如下元件备用:
单电池: 准备规格为 10cm X 10cm的阳极支撑性单电池片, 阳极为, 阴极 为, 采用激光切割的方法在单电池的一个边缘部上加工出氧化气体进气孔、在 与所述氧化气体进气孔所在边缘部的相垂直的两个边缘部上加工出燃料气体 进气孔和燃料气体出气孔;
连接件: 材质为 SUS430, 厚度为 2.5mm, 在该间隔件的阳极侧和阴极侧 蚀刻出点阵排列(点阵排列)的圓凸点,两个侧面的圓凸点的高度均为 0.5mm; 按照图 4和图 6所示, 分别加工出宽度均为 3.5mm的阳极侧密封边和阴极侧 密封边, 其中阴极侧密封边具有一个敞开部。 采用激光切割的方式在所述燃料气体进气孔位置、 燃料气体出气孔位置、 氧化气体进气孔位置分别加工出燃料气体进气孔、燃料气体出气孔、氧化气体 进气孔;
氧化气体密封件: 取 Al203-Si02-MgO (封接玻璃具体型号或组成)封接 玻璃在与所述间隔件上氧化气体进气孔相对应的位置上加工出氧化气体进气 孔;
燃料气体密封件: 取 Al203-Si02-MgO (封接玻璃具体型号或组成)封接 玻璃在与间隔件上燃料气体进气空、燃料气体出气孔相对应的位置上分别加工 出燃料气体进气孔和燃料气体出气孔;
泡沫镍: 加工出氧化气体进气孔和燃料气体流道孔;
上集流板, 采用 SUS430为材质, 机械加工的方法在上集流板的三个边上 分别预加工出用于加压的螺杆组件;
下集流板, 采用 SUS430为材质, 在下集流板的三个边上分别预加工出用 于加压的螺杆组件。
实施例 2
取上集流板、 下集流板和 5片连接件、 5片氧化气体密封件、 5片燃料气 体密封件、 4片单电池、 4片泡沫镍按照上集流板 /燃料气体密封件 /(间隔件 /氧 化气体密封件 (泡沫镍 ) /单电池) 4/间隔件 /氧化气体密封件 /下集流板的顺序 组装成 4单元的电池堆组件, 然后取螺栓组件将固定上集流板和下集流板。
将组装后的电池堆组件从室温经 12小时升温至 850°C , 保温 4小时后加 压 0〜200kg在不同条件下测试性能, 得到的 I-V曲线如图 11所示。
图 11 中: 当将本实施例制备的电池堆在 850 °C 、 200kg 压力和 H2:Air=8:19sccm . cn 2条件下, 还原 2小时后, 测得电流为 32A时的最大功 率为 79.6W,相应的最大功率密度为 0.306W -cm"2 0 当 H2: Air=8:19sccm -cm"2 时, 测得电流为 39A 时的最大功率为 100.5W , 相应的最大功率密度为 0.385W · η·2;根据图 11中的曲线拟合得到本实施例制备的电池堆的最大功率 密度为 0.427W · αη·2, 电池堆的开路电压 > 4.1V, 本实施例制备的电池堆具 有较高的功率密度。
保持 H2:Air=12:31sccm · cm"2气体流量不变, 将电堆温度由 850oC经过 50min降至 800 °C , 保温 1.5小时后, 测得当电流为 38A时最大功率 89W, 对 应的最大功率密度为 0.342 W cm-2
实施例 2
取上集流板、 下集流板和 6片连接件、 6片氧化气体密封件、 6片燃料气 体密封件、 5片单电池、 5片泡沫镍按照上集流板 /燃料气体密封件 /(间隔件 /氧 化气体密封件 (泡沫镍 ) /单电池) 5/间隔件 /氧化气体密封件 /下集流板的顺序 组装成 5单元的电池堆组件, 然后取螺栓组件将固定上集流板和下集流板。
将组装后的电池堆组件从室温经 12小时升温至 850°C , 保温 4小时后加 压 0〜400kg测试 I-V曲线。 I-V曲线测试完毕后在 800 °C对其在 8A条件下进行 衰减测试, 结果如图 12和图 13所示, 图 12为电池堆整体衰减曲线, 图 13 为电池堆中的单电池的衰减曲线,从图 12和图 13的结果可以看出, 该电池堆 及其单体电池堆单元经过 75h的测试后没有衰减,停止恒流放电后, 电池堆的 开路电压达到了 5.7V, 单体电池的开路电压达均超过了 1.1V。
以上对本发明所提供的固体氧化物燃料电池进行了详细介绍。本文中应用 了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用 于帮助理解本发明的方法及其核心思想。应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下,还可以对本发明进行若干改进和 修饰, 这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种固体氧化物燃料电池堆, 其特征在于, 包括:
上集流板、 下集流板和容纳在所述上集流板和下集流板之间的堆叠结构; 所述堆叠结构包括至少两个连接件、设置在相邻的两个所述连接件之间的 电池片, 所述连接件具有阳极侧和阴极侧,在所述连接件的阳极侧设置有氧化 气体密封件, 在所述连接件的阴极侧设置有燃料气体密封件;
在所述堆叠结构上设置有密闭氧化气体进气通道、密闭燃料气体进气通道 和密闭燃料气体出气通道, 和敞开的氧化气体出气通道。
2、 根据权利要求 1所述的固体氧化物燃料电池堆, 其特征在于, 所述连 接件的两侧均设置有点阵排列的凸点和设置在所述凸点周围的密封边。
3、 根据权利要求 1所述的固体氧化物燃料电池堆, 其特征在于, 所述连 接件阴极侧的密封边具有开口部,所述开口部与所述燃料气体密封件形成所述 敞开的氧化气体出气通道。
4、 根据权利要求 1所述的固体氧化物燃料电池堆, 其特征在于, 所述密 闭氧化气体进气通道由设置在所述氧化气体密封件上的氧化气体进气孔、设置 在所述电池片上的氧化气体进气孔、设置在所述连接件上的氧化气体进气孔连 通形成。
5、 根据权利要求 1所述的固体氧化物燃料电池堆, 其特征在于, 所述密 闭燃料气体流道由设置在所述燃料气体密封件上的燃料气体进气孔、设置在所 述电池片上的燃料气体进气孔、设置在所述连接件上的燃料气体进气孔连通形 成。
6、 根据权利要求 1所述的固体氧化物燃料电池堆, 其特征在于, 所述燃 料气体出气通道由设置在所述氧化气体密封件上的燃料气体出气孔、设置在所 述电池片上的燃料气体出气孔、设置在所述连接件上的燃料气体出气孔连通形 成。
7、 根据权利要求 1至 6任一项所述的固体氧化物燃料电池堆, 其特征在 于, 所述呈点阵排列的凸点的高度为 0.3〜1.0mm。
8、 根据权利要求 7所述的固体氧化物燃料电池堆, 其特征在于, 所述连 接件上点阵排列的凸点与连接件该侧的元件接触的有效接触面积占所述间隔 件侧面面积的比例为 10%〜50%。
9、 根据权利要求 7所述的固体氧化物燃料电池堆, 其特征在于, 所述密 封边的宽度为 2mm〜15mm。
10、 根据权利要求 9所述的固体氧化物燃料电池堆, 其特征在于, 所述上 集流板、 堆叠结构和下集流板通过螺栓组件连接。
PCT/CN2011/070472 2011-01-21 2011-01-21 一种固体氧化物燃料电池堆 WO2012097521A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/980,513 US20130302717A1 (en) 2011-01-21 2011-01-21 Solid oxide fuel cell stack
CA2823261A CA2823261A1 (en) 2011-01-21 2011-01-21 Solid oxide fuel cell stack
RU2013133143/07A RU2013133143A (ru) 2011-01-21 2011-01-21 Батарея твердооксидных топливных элементов
KR1020137020423A KR20130108660A (ko) 2011-01-21 2011-01-21 고체 산화물 연료 전지 스택
EP11856270.1A EP2667442A1 (en) 2011-01-21 2011-01-21 Solid oxide feul cell stack
PCT/CN2011/070472 WO2012097521A1 (zh) 2011-01-21 2011-01-21 一种固体氧化物燃料电池堆
JP2013549690A JP2014503109A (ja) 2011-01-21 2011-01-21 固体酸化物燃料電池積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070472 WO2012097521A1 (zh) 2011-01-21 2011-01-21 一种固体氧化物燃料电池堆

Publications (1)

Publication Number Publication Date
WO2012097521A1 true WO2012097521A1 (zh) 2012-07-26

Family

ID=46515099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070472 WO2012097521A1 (zh) 2011-01-21 2011-01-21 一种固体氧化物燃料电池堆

Country Status (7)

Country Link
US (1) US20130302717A1 (zh)
EP (1) EP2667442A1 (zh)
JP (1) JP2014503109A (zh)
KR (1) KR20130108660A (zh)
CA (1) CA2823261A1 (zh)
RU (1) RU2013133143A (zh)
WO (1) WO2012097521A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123714B1 (ko) * 2016-08-16 2020-06-16 주식회사 엘지화학 평판형 고체 산화물 연료전지
CN109065934B (zh) * 2018-09-07 2024-04-23 骆驼集团武汉光谷研发中心有限公司 一种大功率燃料电池电堆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355420A1 (en) * 1988-07-23 1990-02-28 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
US20040131915A1 (en) * 2002-11-28 2004-07-08 Scott Sherman Solid oxide fuel cell stack
US20040209140A1 (en) * 2003-04-21 2004-10-21 Honda Motor Co., Ltd. Fuel cell stack
CN1770531A (zh) * 2004-11-02 2006-05-10 通用电气公司 高燃料利用率燃料电池的流场设计
JP2007329063A (ja) * 2006-06-09 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> セパレータおよび平板型固体酸化物形燃料電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064746B2 (ja) * 1993-06-29 2000-07-12 三洋電機株式会社 平板型固体電解質燃料電池
JPH0950817A (ja) * 1995-08-03 1997-02-18 Sanyo Electric Co Ltd 燃料電池
JP3494560B2 (ja) * 1997-09-30 2004-02-09 三洋電機株式会社 固体電解質型燃料電池
JP2000021424A (ja) * 1998-07-03 2000-01-21 Taiho Kogyo Co Ltd 燃料電池用集電体
JP2002075408A (ja) * 2000-08-30 2002-03-15 Suncall Corp 燃料電池用セパレーター
JP4555050B2 (ja) * 2004-11-02 2010-09-29 本田技研工業株式会社 燃料電池
WO2007080958A1 (ja) * 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. 燃料電池システム及び燃料電池システムの運転方法
JP5296361B2 (ja) * 2007-10-09 2013-09-25 日本特殊陶業株式会社 固体酸化物形燃料電池モジュール
JP5242985B2 (ja) * 2007-10-15 2013-07-24 日本特殊陶業株式会社 固体酸化物形燃料電池
JP2009283146A (ja) * 2008-05-19 2009-12-03 Honda Motor Co Ltd 燃料電池
JP5519491B2 (ja) * 2008-10-02 2014-06-11 日本特殊陶業株式会社 固体酸化物形燃料電池
JP5582193B2 (ja) * 2010-09-16 2014-09-03 トヨタ自動車株式会社 燃料電池用セパレータ、燃料電池、燃料電池の製造方法
US9105883B2 (en) * 2011-10-10 2015-08-11 Daimler Ag Assembling bipolar plates for fuel cells using microencapsulated adhesives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355420A1 (en) * 1988-07-23 1990-02-28 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
US20040131915A1 (en) * 2002-11-28 2004-07-08 Scott Sherman Solid oxide fuel cell stack
US20040209140A1 (en) * 2003-04-21 2004-10-21 Honda Motor Co., Ltd. Fuel cell stack
CN1770531A (zh) * 2004-11-02 2006-05-10 通用电气公司 高燃料利用率燃料电池的流场设计
JP2007329063A (ja) * 2006-06-09 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> セパレータおよび平板型固体酸化物形燃料電池

Also Published As

Publication number Publication date
CA2823261A1 (en) 2012-07-26
US20130302717A1 (en) 2013-11-14
JP2014503109A (ja) 2014-02-06
RU2013133143A (ru) 2015-02-27
EP2667442A1 (en) 2013-11-27
KR20130108660A (ko) 2013-10-04

Similar Documents

Publication Publication Date Title
CA2472138C (en) End structure of a fuel cell stack
CN102122722B (zh) 一种固体氧化物燃料电池堆
CN109728322B (zh) 用于燃料电池的电池单元框架及燃料电池堆
KR101407937B1 (ko) 균일한 유동분배 구조를 갖는 금속재 실링 고체산화물 연료전지 스택
KR20150001402A (ko) 고체산화물 연료전지 스택
CN111564644A (zh) 一种小功率的高温质子交换膜燃料电池电堆
CN113451601B (zh) 一种阴极开放式空冷燃料电池双极板及其电池电堆
JP2001283893A (ja) 固体高分子型燃料電池スタック
EP2244325A2 (en) Fuel cell comprising a crimped flow-field plate
CN102456905A (zh) 液流电池单元、电堆及其制作方法
WO2005041340A2 (en) Multi-cell fuel layer and system
WO2012097521A1 (zh) 一种固体氧化物燃料电池堆
CN218975482U (zh) 一种固体氧化物燃料电池堆
KR101162669B1 (ko) 고체산화물 연료전지
KR102288307B1 (ko) 평판 형 sofc/soec 단전지 모듈 및 스택
US9742022B2 (en) Solid electrolytic fuel battery having an inner gas supply path
WO2009119107A1 (ja) 平板型の固体酸化物形燃料電池
CN215184078U (zh) 一种燃料电池双极板及其电池电堆
JP5136051B2 (ja) 燃料電池
JP2008146897A (ja) 燃料電池用セパレータおよび燃料電池
CN211929633U (zh) 用于燃料电池的张力板
EP4184626A1 (en) Integrated electrode frame structure, and preparation method therefor and application thereof
CN117558958B (zh) 电池堆结构
CN218827288U (zh) 一种固体氧化物燃料电池系统
EP3893300B1 (en) Flat tubular solid oxide fuel cell or water electrolysis cell with integrated current collector and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2823261

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011856270

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013549690

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137020423

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011356481

Country of ref document: AU

Date of ref document: 20110121

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013133143

Country of ref document: RU

Kind code of ref document: A