WO2012093834A2 - 펠리클 막 및 그 제조방법 - Google Patents

펠리클 막 및 그 제조방법 Download PDF

Info

Publication number
WO2012093834A2
WO2012093834A2 PCT/KR2012/000046 KR2012000046W WO2012093834A2 WO 2012093834 A2 WO2012093834 A2 WO 2012093834A2 KR 2012000046 W KR2012000046 W KR 2012000046W WO 2012093834 A2 WO2012093834 A2 WO 2012093834A2
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
pellicle film
equation
substrate
film
Prior art date
Application number
PCT/KR2012/000046
Other languages
English (en)
French (fr)
Other versions
WO2012093834A3 (ko
Inventor
박성호
유장동
Original Assignee
주식회사 에프에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에프에스티 filed Critical 주식회사 에프에스티
Publication of WO2012093834A2 publication Critical patent/WO2012093834A2/ko
Publication of WO2012093834A3 publication Critical patent/WO2012093834A3/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/104Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening using feather joints, e.g. tongues and grooves, with or without friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/02Wall, ceiling, or floor bases; Fixing pendants or arms to the bases
    • F21V21/04Recessed bases

Definitions

  • the present invention relates to a pellicle for lithography used as a dustproof film when manufacturing a semiconductor device or a liquid crystal display, and more particularly, to a pellicle used for an ArF excimer laser used as a light source for high resolution patterning.
  • a method called photolithography is used to form a pattern on a semiconductor wafer or a liquid crystal substrate.
  • photolithography a mask is used as an original plate of patterning, and the pattern on the mask is transferred to a wafer or a liquid crystal substrate.
  • dust adheres to the mask light is absorbed or reflected by the dust, and thus the transferred pattern is damaged, resulting in a decrease in performance or yield of a semiconductor device, a liquid crystal display panel, or the like. Therefore, their work is usually done in a clean room.
  • the method of attaching a pellicle is performed to prevent dust from adhering to the mask surface.
  • the required resolution of the exposure apparatus for semiconductor manufacturing is increasing, and the wavelength of a light source becomes shorter and shorter in order to implement the resolution.
  • the UV light source has gradually shortened from the ultraviolet ray g line (436 nm), the I line (365 nm), and the KrF excimer laser (248 nm) to the ArF excimer laser (193 nm). Since the light of such a short wavelength is large in energy, it is difficult to secure sufficient light resistance with a conventional cellulose-based film material, and a transparent fluorine resin is used as a film material after the KrF excimer laser.
  • the conventional pellicle for ArF excimer laser has a problem that the thickness of a part of the film becomes thin due to the light energy of the ArF excimer laser, causing variation in the film thickness. Differences in the film thickness cause variations in transmittance, leading to a problem in that high-resolution exposure patterns cannot be obtained.
  • An object of the present invention is to provide a pellicle for an ArF excimer laser having a small variation in film thickness. Further, an object of the present invention is to provide a pellicle for an ArF excimer laser in which the change in transmittance due to the variation in the film thickness is not so large, and the variation in the transmittance is small even if the variation in the film thickness occurs for a long time.
  • Method for producing a film of a pellicle according to the present invention for achieving the above object is to prepare a fluorine resin solution, to place the substrate on a cooling plate with a temperature deviation of ⁇ 0.01 °C or less to minimize the temperature variation of the substrate and to maintain a certain time Step, mounting the substrate in a coating apparatus and applying the fluororesin solution on the substrate, and drying and peeling it.
  • a fluorine resin solution to place the substrate on a cooling plate with a temperature deviation of ⁇ 0.01 °C or less to minimize the temperature variation of the substrate and to maintain a certain time Step
  • mounting the substrate in a coating apparatus and applying the fluororesin solution on the substrate and drying and peeling it.
  • the step of applying the fluorine resin solution is preferably a step of applying so that the thickness of the pellicle film after drying satisfies the following equations (1) to (5).
  • R reflectance considering interference
  • r reflectance not considering interference
  • n refractive index of pellicle film
  • d film thickness of pellicle (nm)
  • wavelength of light source for exposure (nm)
  • T transmittance (%)
  • incident angle
  • the step of applying the fluororesin solution is preferably a step of applying so that the thickness of the pellicle film after drying is 270nm to 286nm.
  • a pellicle film used for semiconductor lithography wherein the light source for exposure is an ArF excimer laser having a wavelength of 193 nm, and the light transmittance is 99.3% or more when the incidence angle is perpendicular to the pellicle film.
  • the cumulative exposure energy is 6kJ, a pellicle film is provided, wherein the change in light transmittance is 1% or less.
  • the thickness of the pellicle film preferably satisfies Equations 1 to 5.
  • the pellicle film has a refractive index of 1.38 to 1.39 and a thickness of 270 nm to 286 nm.
  • the pellicle according to the present invention has a small variation in film thickness.
  • the change in transmittance according to the variation in the film thickness is not large. Therefore, even if the pellicle is used for a long time and the variation in the film thickness is caused by the light energy of the ArF excimer laser, there is an effect that the variation in the transmittance is not large.
  • a material of a pellicle film the material which has a high exposure light transmittance and is hard to absorb exposure light is preferable.
  • cellulose resins such as nitrocellulose and cellulose acetate or fluorine resins are preferable.
  • the required resolution of exposure apparatus for semiconductor manufacturing is gradually increasing, and light with a short wavelength is used as a light source in order to realize the resolution. Since light having a short wavelength is large in energy as described above, it is difficult to ensure sufficient light resistance with a conventional cellulose membrane material. Therefore, recently, a pellicle film is mainly manufactured using a fluorine resin solution.
  • the solvent is not particularly limited as long as it dissolves the resin, and a soluble fluorine solvent having a high degree of polymerization is preferable.
  • solvents include aromatic halogen compounds, fluoroalkylated alcohols, fluorofluoroolefins (e.g., tetrafluoroethylene oligomers, hexafluoropropylene oligomers, etc.), fluorinated cyclic ether compounds, and the like.
  • the concentration of the solution is 0.1 to 20% by weight, preferably 0.3 to 10% by weight.
  • a solution in which the fluorine resin constituting the prepared pellicle film is dissolved is coated on a substrate at a constant temperature, and dried at a temperature near the boiling point of the solvent to form a pellicle film.
  • the substrate is placed on a cooling plate with a temperature deviation of ⁇ 0.01 °C or less and maintained for a certain time to make the temperature of the substrate constant.
  • the substrate has a smooth surface, silicon wafers, quartz glass, ordinary glass, and the like may be used, but quartz glass is preferably used.
  • various well-known methods can be used.
  • a pellicle film can be formed on the substrate by a coating method such as roll coating, casting, spin coating, water casting, dip coating or Langmuir Blodgett, with spin coating being preferred.
  • the thickness of the film can be adjusted by changing conditions such as the concentration of the solution to be applied to the substrate and the number of revolutions of the spin coater.
  • the thickness of the pellicle film should satisfy the following requirements.
  • the pellicle film preferably has a high light transmittance.
  • the light transmittance is preferably 99.3% or more.
  • the thickness of the pellicle film having a light transmittance of 99.3% or more can be calculated through the following equations (1) to (5).
  • R reflectance considering interference
  • r reflectance not considering interference
  • n refractive index of pellicle film
  • d film thickness of pellicle (nm)
  • wavelength of light source for exposure (nm)
  • T transmittance (%)
  • incident angle
  • the film thickness of the required pellicle film according to the refractive index of the pellicle film and the wavelength of the light source used.
  • an ArF excimer laser (wavelength 193 nm) is used as a light source of the exposure apparatus, and a fluorine resin having a refractive index n of 1.386 is used as a material for the pellicle film, and when the incident angle is vertical, the pellicle film thickness is 1 m.
  • the thickness of the pellicle film may be selected in consideration of the strength of the film and whether the exposure light is absorbed.
  • the transmittance of the exposure light does not change significantly. If the exposure light passes longer, the thickness of the pellicle film gradually decreases due to the cumulative exposure energy. If the transmittance changes significantly with the decrease in the thickness of such a film, a high-resolution exposure pattern cannot be obtained, and the pellicle film must be replaced frequently. As a result of the experiment, even if the thickness of the pellicle film is changed, the thickness of the pellicle film is advantageous in order not to significantly change the transmittance of the exposure light.
  • the thickness distribution of the pellicle film should be small.
  • the temperature of the substrate on which the solution in which the fluorine resin constituting the pellicle film is dissolved is coated should be uniform.
  • the substrate is placed on a cooling plate having a temperature deviation of ⁇ 0.01 ° C. or less, and maintained for a predetermined time to minimize temperature variation for each position of the substrate.
  • the temperature of the cooling plate is maintained at the same temperature as where the coating is made.
  • the inside of the cooling plate is tightly wound spirally in a pipe in which the cooling water flows to reduce the temperature variation.
  • the dried pellicle film is peeled off from the substrate.
  • the pellicle membrane can be detached by applying a cell jig with a cellophane tape or adhesive to the pellicle membrane, and lifting the cellophane tape or the jig from one end by hand or mechanical means.
  • the separated pellicle film is attached to an aluminum frame coated with an adhesive, an adhesive, and the like, and the pellicle is completed by cutting and removing the unnecessary film outside the frame.
  • a 40cP (23 ° C) solution was prepared using a fluorine resin (Cytop CTX-S) manufactured by Asahi Glass Co., Ltd.
  • the debris was removed by filtration using an ultrapolyethylene (hereinafter abbreviated as UPE) membrane filter.
  • a pellicle film was prepared in the same manner as in Example 1 except that a viscosity 38c (23 ° C.) solution was prepared, the rotational speed during pellicle film formation was adjusted to 550 rpm, and the thickness of the pellicle film was 284 nm.
  • the pellicle membrane was produced in the same manner as in Example 1 except that the viscosity of the pellicle membrane was adjusted to 80 cP (23 ° C.), and spin-coated by rotating for 60 seconds at a speed of 400 RPM. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

본 발명은 반도체 디바이스 또는 액정 디스플레이 등을 제조할 때 방진막으로 사용되는 리소그래피용 펠리클에 관한 것이다. 본 발명에 따른 펠리클의 막 제조방법은 불소 수지 용액을 준비하는 단계, 기판의 온도 편차를 최소화하도록 온도 편차가 ±0.01℃이하인 냉각 플레이트 위에 상기 기판을 배치하고 일정 시간 유지하는 단계, 상기 기판을 코팅 장치에 장착하는 단계 및 상기 기판 위에 상기 불소 수지 용액을 도포하고, 이를 건조 및 박리하는 단계를 포함한다. 본 발명에 따른 펠리클은 막 두께의 편차가 작다. 또한, 막 두께의 편차에 따른 투과율의 변화가 크지 않다. 따라서 펠리클을 장시간 사용하여 ArF 엑시머 레이저의 빛 에너지에 의해서 막 두께에 편차가 발생하여도, 투과율의 편차가 크게 발생하지 않는다는 효과가 있다.

Description

펠리클 막 및 그 제조방법
본 발명은 반도체 디바이스 또는 액정 디스플레이 등을 제조할 때 방진막으로 사용되는 리소그래피용 펠리클에 관한 것으로서, 더욱 상세하게는, 고해상도의 패터닝을 위한 광원으로 사용되는 ArF 엑시머 레이저용으로 사용되는 펠리클에 관한 것이다.
반도체 디바이스 또는 액정 표시판 등의 제조에 있어서 반도체 웨이퍼 또는 액정용 기판에 패터을 형성하는 경우에 포토리소그래피라는 방법이 사용된다. 포토리소그래피에서는 패터닝의 원판으로서 마스크가 사용되고, 마스크상의 패턴이 웨이퍼 또는 액정용 기판에 전사된다. 이 마스크에 먼지가 부착되어 있으면 이 먼지로 인하여 빛이 흡수되거나, 반사되기 때문에 전사한 패턴이 손상되어 반도체 장치나 액정 표시판 등의 성능이나 수율의 저하를 초래한다는 문제가 발생한다. 따라서, 이들의 작업은 보통 클린룸에서 행해진다. 그러나 클린룸 내에도 먼지가 존재하므로, 마스크 표면에 먼지가 부착하는 것을 방지하기 위하여 펠리클을 부착하는 방법이 행해지고 있다. 이 경우, 먼지는 마스크의 표면에는 직접 부착되지 않고, 펠리클 막 위에 부착되고, 리소그래피시에는 초점이 마스크의 패턴 상에 일치되어 있으므로 펠리클 상의 먼지는 초점이 맞지 않아 패턴에 전사되지 않는 이점이 있다.
점차 반도체 제조용 노광 장치의 요구 해상도는 높아져 가고 있고, 그 해상도를 실현하기 위해서 광원의 파장이 점점 더 짧아지고 있다. 구체적으로, UV광원은 자외광 g선(436㎚), I선(365㎚), KrF 엑시머 레이저(248㎚)에서 ArF 엑시머 레이저(193㎚)로 점점 파장이 짧아지고 있다. 이러한 단파장의 빛은 에너지가 크기 때문에 종래의 셀룰로오스계의 막 재료로는 충분한 내광성을 확보하는 것이 곤란하게 되었고, KrF 엑시머 레이저 이후는 막 재료로 투명 불소 수지가 사용되게 되었다.
종래의 ArF 엑시머 레이저용 펠리클은 장시간 사용하면, ArF 엑시머 레이저의 빛 에너지에 의해서 막의 일부분의 두께가 얇아지면서, 막 두께에 편차가 발생하는 문제가 있었다. 막 두께의 차이는 투과율의 편차를 일으켜, 고해상도의 노광패턴을 얻을 수 없다는 문제를 일으킨다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 막 두께의 편차가 작은 ArF 엑시머 레이저용 펠리클을 제공하는 것을 목적으로 한다. 또한, 막 두께의 편차에 따른 투과율의 변화가 크지 않아, 장시간 사용하여 막 두께에 편차가 발생하여도, 투과율의 편차가 크지 않은 ArF 엑시머 레이저용 펠리클을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명에 따른 펠리클의 막 제조방법은 불소 수지 용액을 준비하는 단계, 기판의 온도 편차를 최소화하도록 온도 편차가 ±0.01℃이하인 냉각 플레이트 위에 상기 기판을 배치하고 일정 시간 유지하는 단계, 상기 기판을 코팅 장치에 장착하는 단계 및 상기 기판 위에 상기 불소 수지 용액을 도포하고, 이를 건조 및 박리하는 단계를 포함한다. 기판의 온도 편차를 최소화 함으로써 위치별 펠리클 막의 두께 편차를 최소화할 수 있다.
상기 불소 수지 용액을 도포하는 단계는, 건조 후 펠리클 막의 두께가 다음의 수학식 1 내지 5를 만족하도록 도포하는 단계인 것이 바람직하다.
[수학식 1]
Figure PCTKR2012000046-appb-I000001
[수학식 2]
Figure PCTKR2012000046-appb-I000002
[수학식 3]
Figure PCTKR2012000046-appb-I000003
[수학식 4]
Figure PCTKR2012000046-appb-I000004
[수학식 5]
Figure PCTKR2012000046-appb-I000005
Figure PCTKR2012000046-appb-I000006
(상기 수학식에서, R: 간섭을 고려한 반사율, r: 간섭을 고려하지 않은 반사율, n: 펠리클 막의 굴절률, d: 펠리클의 막두께(nm), λ: 노광용 광원의 파장(nm), T: 투과율(%), θ: 입사각도)
상기 불소 수지 용액을 도포하는 단계는, 건조 후 펠리클 막의 두께가 270nm 내지 286nm가 되도록 도포하는 단계인 것이 바람직하다.
또한, 본 발명의 다른 측면에 의하면, 반도체 리소그래피에 사용되는 펠리클 막으로서, 노광용 광원이 파장이 193nm인 ArF 엑시머 레이저이며, 페리클 막에서의 입사각이 수직인 경우에, 광 투과율이 99.3%이상이며, 누적 노광 에너지가 6kJ인 경우 광 투과율의 변화가 1%이하인 것을 특징으로 하는 펠리클 막이 제공된다.
상기 펠리클 막의 두께는 상기 수학식 1 내지 5를 만족시키는 것이 바람직하다.
또한, 상기 펠리클 막은 굴절률이 1.38 내지 1.39이며, 두께가 270nm 내지 286nm인 것이 바람직하다.
본 발명에 따른 펠리클은 막 두께의 편차가 작다. 또한, 막 두께의 편차에 따른 투과율의 변화가 크지 않다. 따라서 펠리클을 장시간 사용하여 ArF 엑시머 레이저의 빛 에너지에 의해서 막 두께에 편차가 발생하여도, 투과율의 편차가 크게 발생하지 않는다는 효과가 있다.
이하, 본 발명에 대해서 상세하게 설명한다.
펠리클 막의 재료로는 높은 노광광 투과율을 가지며, 노광광을 흡수하기 어려운 재료가 바람직하다. 구체적으로는, 니트로셀룰로오스, 초산셀룰로오스와 같은 셀룰로오스 수지 또는 불소 수지가 바람직하다. 최근에는 반도체 제조용 노광 장치의 요구 해상도는 점차 높아지고 있으며, 그 해상도를 실현하기 위해서 파장이 짧은 빛이 광원으로서 사용하고 있다. 이렇게 단파장의 빛은 에너지가 크기 때문에 종래의 셀룰로오스계의 막 재료로는 충분한 내광성을 확보하는 것은 어렵다. 따라서 최근에는 주로 불소계 수지 용액을 이용하여 펠리클 막을 제조한다.
용매는 수지를 용해하는 한 특별히 제한되지 않으며, 중합도가 높은 가용성인 불소계 용매가 바람직하다. 이러한 용매로는 방향족 할로겐 화합물류, 플루오로알킬화 알코올류, 플리루오로올레핀류(예를 들면, 테트라플루오로에틸렌 소중합체, 헥사플루오로프로필렌 소중합체 등), 불화 고리상 에테르 화합물류 등이 있다. 용액의 농도는 0.1 내지 20 중량%, 바람직하게는 0.3 내지 10 중량%이다.
준비된 펠리클 막을 구성하는 불소계 수지를 용해한 용액을 일정한 온도의 기판 위에 코팅하고, 용매의 비점 부근의 온도에서 건조하여 펠리클 막을 형성한다. 기판의 온도를 일정하게 하기 위해서 온도 편차가 ±0.01℃이하인 냉각 플레이트 위에 기판을 올려놓고 일정 시간 유지하여 기판의 온도를 일정하게 한 후 이를 코팅 장치에 옮긴 후 코팅을 한다. 기판은 매끈한 표면을 가진 것으로서, 실리콘 웨이퍼, 석영 유리, 일반 유리 등을 사용할 수 있으나 석영 유리를 사용하는 것이 바람직하다. 코팅하는 방법으로는 공지된 다양한 방법을 사용할 수 있다. 예를 들면, 롤 코팅, 캐스팅, 스핀 코팅, 물 캐스팅, 딥 코팅 또는 랑그무어 블로지트(Langmuir Blodgett)와 같은 코팅 방법에 의해 기판 위에 펠리클 막을 형성할 수 있으며, 스핀코팅이 바람직하다. 막의 두께는 기판에 도포하는 용액의 농도와 스핀 코터(spin coater)의 회전수 등의 조건 변경하여 조절할 수 있다.
펠리클 막의 두께는 다음의 요건을 만족하여야 한다.
첫째, 펠리클 막은 높은 광선 투과율을 갖는 것이 바람직하다. 구체적으로는 광선 투과율이 99.3% 이상인 것이 바람직하다. 광선 투과율 99.3% 이상인 펠리클 막의 두께는 다음의 수학식 1 내지 5를 통해서 계산할 수 있다.
[수학식 1]
Figure PCTKR2012000046-appb-I000007
[수학식 2]
Figure PCTKR2012000046-appb-I000008
[수학식 3]
Figure PCTKR2012000046-appb-I000009
[수학식 4]
Figure PCTKR2012000046-appb-I000010
[수학식 5]
Figure PCTKR2012000046-appb-I000011
Figure PCTKR2012000046-appb-I000012
(상기 수학식에서, R: 간섭을 고려한 반사율, r: 간섭을 고려하지 않은 반사율, n: 펠리클 막의 굴절률, d: 펠리클의 막두께(nm), λ: 노광용 광원의 파장(nm), T: 투과율(%), θ: 입사각도)
즉, 위의 수학식을 θ=0°, 99.3%≤T(%)인 조건하에서 계산하면, 펠리클 막의 굴절률 및 사용되는 광원의 파장에 따라 요구되는 펠리클 막의 막 두께를 구할 수 있다. 예를 들어, 노광장치의 광원으로는 ArF엑시머 레이저(파장 193nm)를 사용하며, 펠리클 막의 재료로 굴절률 n이 1.386인 불소 수지를 사용하며, 입사각이 수직인 경우, 펠리클 막 두께는 m값이 1, 2, 3, 4, 5로 증가함에 따라 약 69.6nm, 139nm, 208nm, 278nm, 348nm로 증가하는 것으로 계산된다. 이러한 값들 중에서 막의 강도와 노광광 흡수 여부를 고려하여 펠리클 막의 두께를 선택할 수 있다.
둘째, 펠리클 막의 두께가 변화하더라도 노광광의 투과율이 크게 변화하지 않는 것이 바람직하다. 노광광이 투과하는 시간이 길어지면, 누적 노광 에너지에 의해서 펠리클 막의 두께가 점점 얇아진다. 이러한 막의 두께의 감소에 따라서 투과율이 크게 변화한다면, 고해상도의 노광 패턴을 얻을 수 없으므로, 펠리클 막을 자주 교체해야 한다. 실험결과 펠리클 막의 두께가 변화하더라도 노광광의 투과율이 크게 변화하지 않도록 하기 위해서는 펠리클 막의 두께가 얇은 것이 유리하다.
셋째, 펠리클 막의 두께 산포가 작아야 한다. 막의 두께 산포를 줄이기 위해서는 펠리클 막을 구성하는 불소계 수지를 용해한 용액이 코팅되는 기판의 온도가 균일해야 한다. 본 발명은 기판의 온도를 균일하게 하기 위해서, 상술한 바와 같이, 온도 편차가 ±0.01℃이하인 냉각 플레이트 위에 기판을 올려놓고 일정 시간 유지하여 기판의 위치별 온도 편차를 최소화한다. 냉각 플레이트의 온도는 코팅이 이루어지는 장소의 온도와 동일하게 유지된다. 냉각 플레이트의 내부에는 냉각수가 흐르는 배관이 나선형으로 촘촘하게 감겨있어 온도 편차를 줄일 수 있다.
다음, 용매의 비점 부근의 온도에서 건조하여 펠리클 막을 형성한다.
다음, 건조된 펠리클 막을 기판으로부터 박리한다. 펠리클 막에 셀로판 테이프나 접착제를 도포한 틀 모양 치구(治具)를 대고 접착하여, 셀로판테이프나 틀모양 치구를 손이나 기계적 수단에 의해 한끝으로부터 들어올리는 방법으로 펠리클 막을 떼어낼 수가 있다.
분리된 펠리클 막을 접착제, 점착제 등을 도포한 알루미늄 프레임에 부착하고, 프레임 외측의 불필요한 막을 절단·제거함으로써 펠리클을 완성한다.
이하, 실시예를 들어 구체적으로 설명하지만, 본 발명은 실시예에 한정되는 것은 아니다.
(실시예 1)
펠리클 막의 제막 재료로서, 아사히 글래스 주식회사의 불소 수지(사이톱CTX-S)를 불소계 용매(CTX-180)를 이용하여 점도 40cP(23℃)용액을 조제하고, 조제된 용액을 구멍 크기 100㎚의 울트라폴리에틸렌(이후, UPE라고 약칭함) 멤브레인 필터를 이용해 여과하여 이물질을 제거했다.
이 용액의 18㎖를 냉각 플레이트에서 균일하게 냉각된 석영 유리 기판 위에 적하하고, 600rpm의 속도로 60초간 회전시켜 스핀 코팅한 후, 230℃로 가열된 플레이트에서 30분간 가열 건조하고, 다시 컨벡션 오븐 속에서 100℃에서 50분 건조하여 펠리클 막을 제막하였다. 이것에 접착제를 도포한 알루미늄 프레임을 부착하고, 펠리클 막을 박리하였다. 펠리클 막의 두께는 284nm이었다.
(실시예 2)
점도 38c(23℃)용액을 조제하고, 펠리클 막 제막 시의 회전속도를 550rpm으로 조절하여, 펠리클 막의 두께를 284nm로 한 것 이외에는 실시예 1과 동일하게 펠리클 막을 제작했다.
(비교예 1)
펠리클 막 제막 시의 용액의 점도를 80cP(23℃)로 조절하고, 400RPM의 속도로 60초가 회전시켜 스핀 코팅하여, 펠리클 막의 막 두께를 830nm로 한 것 이외에는 실시예 1과 동일하게 펠리클 막을 제작했다.
표 1
누적 노광 에너지에 따른 투과율 변화율(%)
2kJ 4kJ 6kJ
실시예 1 0.2 0.4 0.8
실시예 2 0.15 0.5 0.9
비교예 1 1.3 2.5 3.8
193nm 가속 노광기를 이용하여, 에너지를 증가시키면서 투과율 변화율(%)을 측정하였으며, 측정 결과를 표 1에 나타내었다. 표 1에서 알 수 있는 바와 같이, 누적 노광 에너지가 2kJ일 때를 기준으로, 비교예 1의 경우에는 투과율 변화율이 1.3%였으나, 실시예 1과 2에서는 투과율 변화율이 0.2, 0.15%로 투과율 변화가 많이 감소하였다. 누적 노광 에너지가 4kJ, 6kJ인 경우에도 유사한 결과를 얻을 수 있었다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함은 명백하다.

Claims (6)

  1. 기판 위에 펠리클 막 형성을 위한 유기물 용액을 도포, 건조 및 박리하여 반도체 리소그래피에 사용되는 펠리클 막을 제조하는 방법에 있어서,
    불소 수지 용액을 준비하는 단계;
    기판의 온도 편차를 최소화하도록, 온도 편차가 ±0.01℃이하인 냉각 플레이트 위에 상기 기판을 배치하고 일정 시간 유지하는 단계;
    상기 기판을 코팅 장치에 장착하는 단계; 및
    상기 기판 위에 상기 불소 수지 용액을 도포하고, 이를 건조 및 박리하는 단계를 포함하는 것을 특징으로 하는 펠리클의 막 제조방법.
  2. 제1항에 있어서,
    상기 불소 수지 용액을 도포하는 단계는,
    건조 후 펠리클 막의 두께가 다음의 수학식 1 내지 5를 만족하도록 도포하는 단계인 것을 특징으로 하는 펠리클 막의 제조방법.
    [수학식 1]
    Figure PCTKR2012000046-appb-I000013
    [수학식 2]
    Figure PCTKR2012000046-appb-I000014
    [수학식 3]
    Figure PCTKR2012000046-appb-I000015
    [수학식 4]
    Figure PCTKR2012000046-appb-I000016
    [수학식 5]
    Figure PCTKR2012000046-appb-I000017
    Figure PCTKR2012000046-appb-I000018
    (상기 수학식에서, R: 간섭을 고려한 반사율, r: 간섭을 고려하지 않은 반사율, n: 펠리클 막의 굴절률, d: 펠리클의 막두께(nm), λ: 노광용 광원의 파장(nm), T: 투과율(%), θ: 입사각도)
  3. 제1항에 있어서,
    상기 불소 수지 용액을 도포하는 단계는,
    건조 후 펠리클 막의 두께가 270nm 내지 286nm가 되도록 도포하는 단계인 것을 특징으로 하는 펠리클 막의 제조방법.
  4. 반도체 리소그래피에 사용되는 펠리클 막으로서,
    노광용 광원이 파장이 193nm인 ArF 엑시머 레이저이며, 페리클 막에서의 입사각이 수직인 경우에,
    광 투과율이 99.3%이상이며, 누적 노광 에너지가 6kJ인 경우 광 투과율의 변화가 1%이하인 것을 특징으로 하는 펠리클 막.
  5. 제4항에 있어서,
    상기 펠리클 막의 두께는 다음의 수학식 1 내지 5를 만족시키는 것을 특징으로 하는 펠리클 막.
    [수학식 1]
    Figure PCTKR2012000046-appb-I000019
    [수학식 2]
    Figure PCTKR2012000046-appb-I000020
    [수학식 3]
    Figure PCTKR2012000046-appb-I000021
    [수학식 4]
    Figure PCTKR2012000046-appb-I000022
    [수학식 5]
    Figure PCTKR2012000046-appb-I000023
    Figure PCTKR2012000046-appb-I000024
    (상기 수학식에서, R: 간섭을 고려한 반사율, r: 간섭을 고려하지 않은 반사율, n: 펠리클 막의 굴절률, d: 펠리클의 막두께(nm), λ: 노광용 광원의 파장(nm), T: 투과율(%), θ: 입사각도)
  6. 제4항에 있어서,
    굴절률이 1.38 내지 1.39이며,
    두께가 270nm 내지 286nm인 것을 특징으로 하는 펠리클 막.
PCT/KR2012/000046 2011-01-04 2012-01-03 펠리클 막 및 그 제조방법 WO2012093834A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0000327 2011-01-04
KR1020110000327A KR20120081667A (ko) 2011-01-04 2011-01-04 펠리클 막 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2012093834A2 true WO2012093834A2 (ko) 2012-07-12
WO2012093834A3 WO2012093834A3 (ko) 2012-12-06

Family

ID=46457831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000046 WO2012093834A2 (ko) 2011-01-04 2012-01-03 펠리클 막 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20120081667A (ko)
WO (1) WO2012093834A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031364A (zh) * 2021-02-01 2021-06-25 山东师范大学 Y6在光限幅中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940791B1 (ko) * 2017-05-19 2019-01-21 주식회사 에프에스티 유기물 희생층 기판을 이용한 초극자외선용 펠리클의 제조방법
KR102008057B1 (ko) * 2017-06-08 2019-08-06 주식회사 에프에스티 펠리클 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060067948A (ko) * 2006-05-30 2006-06-20 고지현 기능성박막과 반사방지막의 도막을 균일하게 만드는제조방법
KR20070100628A (ko) * 2006-04-07 2007-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 리소그래피용 펠리클
KR20080098403A (ko) * 2006-02-01 2008-11-07 미쓰이 가가쿠 가부시키가이샤 고개구수 노광 장치용 펠리클

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080098403A (ko) * 2006-02-01 2008-11-07 미쓰이 가가쿠 가부시키가이샤 고개구수 노광 장치용 펠리클
KR20070100628A (ko) * 2006-04-07 2007-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 리소그래피용 펠리클
KR20060067948A (ko) * 2006-05-30 2006-06-20 고지현 기능성박막과 반사방지막의 도막을 균일하게 만드는제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RON HERSHEL PELLICLE PROTECTION OF INTEGRATED CIRCUIT(IC) MASKS 1981, pages 38 - 43 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031364A (zh) * 2021-02-01 2021-06-25 山东师范大学 Y6在光限幅中的应用

Also Published As

Publication number Publication date
KR20120081667A (ko) 2012-07-20
WO2012093834A3 (ko) 2012-12-06

Similar Documents

Publication Publication Date Title
WO2018212604A1 (ko) 유기물 희생층 기판을 이용한 초극자외선용 펠리클의 제조방법
US4861402A (en) Method of making a cellulose acetate butyrate pellicle
TWI553410B (zh) 組成物、紅外線透過濾光片及其製造方法以及紅外線感測器
EP1892562B1 (en) Production method for color filter
KR20170045659A (ko) 수지 조성물 및 이를 이용하여 제조된 블랙뱅크를 포함하는 디스플레이 장치
KR20130088565A (ko) 그래핀을 이용한 초극자외선용 펠리클 및 그 제조방법
JP6569220B2 (ja) タッチパネル用黒色樹脂組成物
CN106892855B (zh) 新型化合物、着色分散液、着色固化性树脂组合物、滤色器和显示装置
WO2013085284A1 (ko) 편광 분리 소자
US20220171095A1 (en) Composition, film, structural body, color filter, solid-state imaging element, and image display device
KR101840057B1 (ko) 착색 감광성 수지 조성물
WO2012093834A2 (ko) 펠리클 막 및 그 제조방법
WO2013085283A1 (ko) 편광 분리 소자
WO2013168903A1 (ko) 신너 조성물
US6342292B1 (en) Organic thin film and process for producing the same
WO2013095062A1 (ko) 편광 분리 소자의 제조방법
WO2018226004A1 (ko) 펠리클 제조방법
JP2022010209A (ja) ペリクル
JP7212765B2 (ja) 組成物、膜および膜の製造方法
US4796973A (en) Pellicle structure for transmission of mid ultraviolet light
TW202041606A (zh) 化合物、著色組成物、著色硬化性樹脂組成物、彩色濾光片及顯示裝置
KR102172217B1 (ko) 펠리클 수납용기 및 이를 이용한 파티클 제거 방법
KR20100116105A (ko) 이형 막을 구비한 기판을 이용한 펠리클 막의 제조방법
US20220213328A1 (en) Composition, film, structural body, color filter, solid-state imaging element, and image display device
WO2023162789A1 (ja) 組成物、膜、膜の製造方法、光学フィルタ、固体撮像素子、画像表示装置および構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732036

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/12/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 12732036

Country of ref document: EP

Kind code of ref document: A2