WO2012093687A1 - 無線基地局装置、ユーザ端末及び無線通信方法 - Google Patents

無線基地局装置、ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2012093687A1
WO2012093687A1 PCT/JP2012/050086 JP2012050086W WO2012093687A1 WO 2012093687 A1 WO2012093687 A1 WO 2012093687A1 JP 2012050086 W JP2012050086 W JP 2012050086W WO 2012093687 A1 WO2012093687 A1 WO 2012093687A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
beam pattern
user terminal
pico
Prior art date
Application number
PCT/JP2012/050086
Other languages
English (en)
French (fr)
Inventor
聡 永田
哲士 阿部
信彦 三木
祐也 齋藤
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/977,933 priority Critical patent/US9265052B2/en
Priority to EP12732024.0A priority patent/EP2663116A4/en
Priority to CN201280004834.9A priority patent/CN103299668B/zh
Publication of WO2012093687A1 publication Critical patent/WO2012093687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a radio base station apparatus, a user terminal, and a radio communication method in a radio communication system in which micro cells are arranged in a macro cell.
  • LTE or Rel.8 LTE-advanced 8 specifications
  • LTE or Rel.8 LTE-advanced 8 specifications
  • a HetNet for example, a picocell, a femtocell, etc.
  • a macrocell having a wide coverage area with a radius of several kilometers.
  • Heterogeneous Network has been studied (for example, Non-Patent Document 1).
  • a radio base station that forms a macro cell is referred to as a macro base station
  • a radio base station that forms a micro cell is referred to as a micro base station (pico base station or femto base station).
  • a pico base station which is one of the micro base stations, has a smaller transmission power than a macro base station (several tens of mW to several watts) and a small cell radius, but the radio resources are the same bandwidth as the macro base station. Can be used. Therefore, in order to efficiently accommodate locally concentrated high-density traffic such as hot spots, offloading in which a part of the traffic of the macro base station is accommodated in the pico base station has been studied.
  • CRE cell range expansion
  • the present invention has been made in view of the above points, and can effectively improve the reception quality of the pico base station and can prevent the macro base station from greatly degrading the throughput, a radio base station apparatus, a user terminal, and An object is to provide a wireless communication method.
  • the radio base station apparatus of the present invention generates a directional beam for the user terminal using an antenna weight based on a beam pattern assigned to the user terminal in the first cell having the first coverage area. And a transmission section allocated to a micro base station that locally forms a second cell having a second coverage area smaller than the first coverage area in the first cell.
  • the beam pattern for the user terminal in the first cell is a beam pattern in which interference power for the user terminal in the second cell is suppressed.
  • a coordination unit for determining a beam pattern is a beam pattern in which interference power for the user terminal in the second cell is suppressed.
  • a coordination unit provided in the radio base station apparatus receives a second cell beam pattern suitable for a user terminal in the second cell accommodated by the micro base station from the micro base station, and receives the second cell.
  • the second cell beam pattern is referred to determine a beam pattern in which interference power for user terminals in the second cell is suppressed.
  • the coordination unit provided in the radio base station apparatus includes a plurality of indexes corresponding to each of a plurality of predetermined beam patterns, an index indicating that all beam patterns are allowed, and all beam patterns. And an index indicating that the beam pattern is determined according to the table, and the specified index is signaled to the micro base station. It is characterized by doing.
  • the present invention it is possible to effectively improve the reception quality of the pico base station and to prevent the macro base station from greatly degrading the throughput.
  • Interference from a macro base station to a pico cell in a wireless communication system in which a second cell having a second coverage area smaller than the first coverage area is locally formed in the first cell having the first coverage area It is effective to apply interference coordination technology (resource division) using different radio resources between the macro base station and the pico base station.
  • FIG. 1 is a diagram illustrating interference coordination by resource division in the time domain.
  • the transmission time interval (subframe) between the macro base station and the pico base station is synchronized, the macro base station stops radio transmission in the subframe to which no radio resource is allocated, and the pico base station mainly transmits to the macro base station.
  • Wireless communication is performed with user terminals (hereinafter referred to as pico UEs) under the control of a pico base station in subframes to which resources are not allocated.
  • a macro base station can be By stopping data transmission, it is possible to reduce interference that the pico UE receives from the macro base station.
  • the interference coordination can effectively improve the reception quality of the pico base station, the radio resource is reduced, so that the throughput of the macro base station is greatly deteriorated.
  • the essence of the present invention is that, in a radio resource in which a macro base station has not transmitted in order to reduce interference with a pico base station, the macro base station uses a beam pattern that reduces interference power to a pico UE (null
  • the beam pattern of the macro base station is determined so as to communicate with a user terminal (hereinafter referred to as a macro UE) under the control of the macro base station.
  • the macro base station since the macro base station communicates with the macro UE using a beam pattern in which interference power to the pico UE is reduced in the radio resource (time domain / frequency domain) that has not been macro-transmitted in the related art, In particular, the reception quality of the pico base station can be improved, and the throughput of the macro base station can be improved.
  • the macro base station M-BS controls the antenna weight of each antenna so that a directional beam is directed to the UE # 1 that is a subordinate macro UE, and the pico base station P -It is possible to generate a beam pattern in which a null (an area in which leakage power is reduced) is directed to UE # 2, which is a pico UE under BS.
  • null an area in which leakage power is reduced
  • UE # 2 which is a pico UE under BS.
  • null is directed toward the pico UE, so that there is an interference reduction effect for the pico UE.
  • FIG. 3 is a schematic configuration diagram of HetNet.
  • new nodes for example, pico base station P-BS, relay base station RN
  • an interference control configuration between the macro base station M-BS and the pico base station P-BS is mainly described.
  • the macro base station M-BS and the pico base station P-BS are connected via a backhaul link.
  • the backhaul link is a transmission path that connects base stations.
  • the form of the backhaul link is not limited.
  • it may be configured with a wired backhaul link “L” as between the macro base station M-BS (1) and the pico base station P-BS (1).
  • a part of the transmission path may include a core network.
  • interference coordination between the macro base station M-BS (1) and the pico base station P-BS (1) will be mainly described.
  • a similar interference coordination is applicable to the station M-BS (0) and the pico base station P-BS (0).
  • FIG. 4 is a functional block diagram of the macro base station M-BS (1), the pico base station P-BS (1), and the pico mobile station P-UE.
  • the pico mobile station P-UE is a pico UE connected to the pico base station P-BS (1), and exists in the coverage area of the macro base station M-BS (1).
  • the pico mobile station P-UE is UE # 2 connected to the pico base station P-BS in FIG.
  • the pico mobile station P-UE receives the downlink reference signal transmitted from the pico base station P-BS (1) and the downlink reference signal transmitted from the macro base station M-BS (1).
  • the pico mobile station P-UE performs channel estimation of a radio channel with the pico base station P-BS (1) and channel estimation of a radio channel with the macro base station M-BS (1). Based on the channel estimation result between the macro base station M-BS (1) and the pico base station P-BS (1), a feedback signal is generated and fed back to the pico base station P-BS (1).
  • the pico mobile station P-UE includes a reception amplifier unit 11 that receives a radio signal.
  • the pico mobile station P-UE exists in the coverage areas of both the macro base station M-BS (1) and the pico base station P-BS (1). For this reason, the reception amplifier unit 11 receives the signal transmitted from the pico base station P-BS (1) and the signal transmitted from the macro base station M-BS (1).
  • the receiving amplifier unit 11 converts the frequency of the received radio signal to obtain a baseband received signal.
  • the signals transmitted from the pico base station P-BS (1) and the macro base station M-BS (1) include a downlink reference signal, a downlink control channel signal, and a downlink common channel signal.
  • the pico mobile station P-UE captures all signals transmitted from the pico base station P-BS (1) and performs the processing described later. On the other hand, since the pico mobile station P-UE is not connected to the macro base station M-BS (1), the channel estimation is performed for interference coordination for the signal transmitted from the macro base station M-BS (1). For this purpose, only the downlink reference signal can be captured.
  • the downlink reference signal includes, for example, a cell-specific reference signal defined by LTE / LTE-A, a user-specific reference signal, and channel information (CSI: Channel State Information) measurement reference signal (CSI-RS).
  • the cell-specific reference signal is transmitted from each antenna provided in the pico base station P-BS (1), and is used for various purposes such as channel estimation, symbol synchronization, CQI measurement, and mobility measurement in the pico mobile station P-MS. used.
  • the user-specific reference signal defined in LTE is a reference signal for channel estimation defined to support applied beamforming.
  • Beam forming is a technique in which a directivity pattern (hereinafter referred to as a beam pattern) is formed on an antenna by controlling the amplitude and phase of a plurality of antennas to increase / decrease the antenna gain in a specific direction.
  • the user-specific reference signal defined in LTE-A uses time and frequency two-dimensional orthogonal CDM (Code Division Multiplexing) for multiplexing between transmission layers in addition to applied beamforming.
  • CSI-RS defined by LTE-A is a cell / antenna specific reference signal (supports up to 8 layer transmission per cell). The CSI-RS is transmitted with a longer period (a period of about once in a plurality of subframes) than the cell-specific reference signal.
  • the signal transmitted from the macro base station M-BS (1) also includes a downlink reference signal of the same type as the downlink reference signal transmitted by the pico base station P-BS (1).
  • the downlink control channel is a control signal for notifying information necessary for the shared channel (PDSCH reception, PUSCH transmission), PDCCH (Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid ARQ Indicator). Channel).
  • the downlink control channel is multiplexed with the first 1-3 OFDM symbol of the subframe to reduce delay.
  • PDCCH is a control signal that notifies allocation information of PDSCH and PUSCH.
  • PCFICH is a control signal that notifies the number of downlink control channel symbols CFI (Control channel Format Indicator) to realize high-efficiency transmission.
  • PHICH is a control signal for reporting ACK / NACK information for the uplink (PUSCH).
  • the PDCCH information includes PCFICH, Downlink Scheduling Information, ACK / NACK, UL Scheduling Grant, Overload Indicator, Transmission Power Control Command Bit.
  • the Downlink Scheduling Information includes, for example, downlink resource block allocation information, user terminal ID, number of streams, information on precoding vector, data size, modulation scheme, HARQ. Contains information about.
  • the Uplink Scheduling Grant includes, for example, uplink Resource Block allocation information, user terminal ID, data size, modulation scheme, uplink transmission power information, and uplink reference signal information.
  • the reception signal output from the reception amplifier unit 11 is supplied to the reception signal demodulation unit 12, the pico base station channel estimation unit 13, and the macro base station channel estimation unit 14.
  • the pico base station channel estimation unit 13 generates a pico base station P-BS (downlink reference signal (downlink reference signal transmitted by the pico base station P-BS (1)) included in the reception signal given from the reception amplifier unit 11. Estimate the channel state between 1).
  • the pico base station channel estimation unit 13 receives the attenuation amount and phase rotation of the cell-specific reference signal received by the radio channel (path from each antenna of the pico base station P-BS (1) to the antenna of the pico mobile station P-UE).
  • the channel estimation result is obtained by estimating the amount and the delay amount.
  • the channel estimation result using the cell-specific reference signal is used for demodulation processing in the pico mobile station P-MS (1).
  • the pico base station channel estimation unit 13 performs channel estimation for applied beamforming using the user-specific reference signal.
  • the macro base station channel estimation unit 14 estimates the channel state with the macro base station M-BS (1) using the downlink reference signal transmitted from the macro base station M-BS (1).
  • Macro base station channel estimator 14 receives the amount of attenuation and phase rotation of the cell-specific reference signal received by the radio channel (path from each antenna of macro base station M-BS (1) to the antenna of pico mobile station P-UE).
  • a channel estimation result is obtained by estimating the amount and the delay amount.
  • the macro base station channel estimation unit 14 performs channel estimation for applied beamforming using the user-specific reference signal. May be.
  • the obtained estimated value (channel information) is given to the received signal demodulator 12 and the feedback signal generator 15.
  • the received signal demodulator 12 demodulates the downlink control channel signal and PDSCH using the channel estimation result obtained by the pico base station channel estimator 13.
  • the received signal demodulator 12 demodulates the PDSCH based on the downlink control channel signal.
  • the precoding weight information used for PDSCH transmission is notified from the pico base station P-BS (1) to the pico mobile station P-MS (1) via the PDCCH, so that the pico mobile station P-MS ( 1) uses the notified precoding weight information to demodulate the PDSCH.
  • the demodulated user data is passed to the upper layer.
  • the feedback signal generator 15 generates a feedback signal to be fed back to the pico base station P-BS (1).
  • a transmission layer is provided for a downlink shared channel (PDSCH) in order to improve reception SINR (Signal to Interference plus Noise power Ratio).
  • SINR Signal to Interference plus Noise power Ratio
  • Precoding is used in which each transmission antenna weight is multiplied and transmitted.
  • predetermined precoding weight matrix candidates are determined in a codebook according to a rule that maximizes the total throughput of each layer after precoding, and an optimal weight is selected from the codebook. A matrix is selected and an index (PMI: Precoding Matrix Indicator) is fed back to the base station.
  • PMI Precoding Matrix Indicator
  • rank adaptation that adaptively controls the number of transmission layers (rank) is applied in accordance with channel conditions such as reception SINR at a user terminal and fading correlation between antennas.
  • the user terminal feeds back optimal rank information (RI: Rank Indicator) to the base station in addition to channel quality information (CQI: Channel Quality Indicator).
  • RI Rank Indicator
  • CQI Channel Quality Indicator
  • the optimum quality information is provided for the pico base station, and the quality is the worst for the macro base station (that is, the interference is the lowest when used in the macro base station).
  • quality information different from LTE may be defined. For example, it is also conceivable to return channel matrices from pico base stations and macro base stations.
  • the feedback signal generation unit 15 generates a CQI corresponding to the channel estimation result obtained by the pico base station channel estimation unit 13 as one of the feedback signals. Further, the feedback signal generation unit 15 selects an optimal weight matrix from the codebook according to the cell-specific reference signal received from the pico base station P-BS (1), and sets the index (PMI) of the selected weight matrix. Obtained as one of the feedback signals. Further, the feedback signal generation unit 15 determines the optimum rank information according to the channel state such as the reception SINR and the fading correlation between the antennas, and obtains the determined rank information (RI) as one of the feedback signals. As described above, the feedback signal generation unit 15 generates PMI, RI, and CQI determined according to the state of the radio channel with the pico base station P-BS (1) as the first feedback signal.
  • the channel estimation result obtained by the macro base station channel estimation unit 14 indicates what kind of interference the transmission power of the macro base station M-BS (1) gives to the pico mobile station P-UE. ing.
  • the feedback signal generation unit 15 generates a CQI corresponding to the channel estimation result obtained by the macro base station channel estimation unit 14 as a second feedback signal.
  • the transmission signal generator 16 multiplexes the first and second feedback signals, the uplink reference signal, the uplink control signal, and the uplink user data, and generates a transmission signal to be transmitted on the uplink.
  • the transmission amplifier unit 17 wirelessly transmits the generated transmission signal.
  • an uplink shared physical channel PUSCH: Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • downlink channel information first and second feedback signals
  • AMC adaptive modulation and coding
  • HARQ ACK information transmission confirmation information
  • user data is transmitted through the uplink shared physical channel.
  • the pico base station P-BS (1) communicates with the macro base station M-BS (1) via the backhaul link L.
  • the pico base station P-BS (1) determines an optimum beam pattern (pico optimum beam pattern) in the pico cell based on the first and second feedback signals, and the determined pico optimum beam pattern is used as the macro base station M-
  • the BS (1) is notified through the backhaul link L.
  • the pico base station P-BS (1) follows the beam pattern (coordination pattern) of the macro base station M-BS (1) notified from the macro base station M-BS (1) via the backhaul link L. An optimum beam pattern is determined for each pico mobile station.
  • the pico base station P-BS includes a reception amplifier unit 21 that receives an uplink signal transmitted from a subordinate pico mobile station P-UE.
  • the reception amplifier unit 21 converts the received uplink signal into a baseband reception signal.
  • the reception signal received by the reception amplifier unit 21 includes an uplink reference signal, an uplink control signal, and user data transmitted from the pico mobile station P-UE.
  • the first feedback determined by the pico mobile station P-UE is used for the received signal received by the reception amplifier unit 21 so that the reception quality of the radio channel with the pico base station P-BS is optimized.
  • a second feedback signal indicating a channel state between the macro base station M-BS (1).
  • the received signal demodulator 22 demodulates the uplink control signal and user data included in the received signal, and demodulates the first feedback signal and the second feedback signal.
  • the first and second feedback signals are given to the beam pattern calculation unit 23.
  • the beam pattern calculation unit 23 determines a pico optimal beam pattern based on the first and second feedback signals notified from all pico mobile stations connected to the pico base station P-BS (1). For example, the optimal beam transmitted by the pico base station P-BS (1) to the pico mobile station P-MS (1) from the first feedback information notified from the pico mobile station P-MS (1). The pattern can be determined. Further, from the second feedback information notified from the pico mobile station P-MS (1), the beam pattern of the macro base station M-BS (1) that minimizes interference with the pico mobile station P-MS (1). Candidates can be determined.
  • an optimal beam pattern candidate of the pico base station P-BS (1) is determined from the first feedback information, and the pico mobile station is determined from the second feedback information.
  • Optimal beam pattern candidates of the macro base station M-BS (1) that minimizes interference with the P-MS (1) are determined.
  • the beam pattern calculation unit 23 determines one or a plurality of beam patterns of the pico base station P-BS (1) that is the best for all pico mobile stations from among the beam pattern candidates.
  • the beam pattern calculation unit 23 may determine one or a plurality of beam patterns of the macro base station M-BS (1) that is the best for all pico mobile stations.
  • the pico optimal beam pattern determined in this way is notified to the macro base station M-BS (1) via the backhaul link.
  • a method of determining the coordination pattern by receiving the uplink reception signal from the pico UE at the macro base station can also be applied.
  • the scheduling-beam pattern-calculation unit 24 determines the beam pattern and transmission subframe for each pico mobile station.
  • the scheduling-beam pattern-calculation unit 24 is notified of the coordination pattern via the backhaul link L from the macro base station M-BS (1). Details of the backhaul signaling of the coordination pattern will be described together with the macro base station.
  • the scheduling-beam pattern-calculation unit 24 determines a beam pattern interference-coordinated to each pico mobile station in accordance with the coordination pattern notified from the macro base station M-BS (1).
  • the beam pattern and transmission section (in subframe units) determined for the pico mobile station P-MS (1) by the scheduling-beam pattern-calculating unit 24 are instructed to the transmission signal generating unit 25.
  • the transmission signal generation unit 25 generates a downlink signal for the pico mobile station P-MS (1), and the beam generation unit 26 follows the antenna weight that forms the beam pattern instructed by the scheduling-beam pattern-calculation unit 24. Beam forming.
  • the transmission amplifier unit 27 wirelessly transmits the beam pattern formed by the beam generation unit 26 in synchronization with the transmission subframe. Similarly for other pico mobile stations, radio is performed with a beam pattern in which transmission power is directed to each pico mobile station according to the beam pattern determined by the scheduling-beam pattern-calculation unit 24 and the transmission section (subframe). Send.
  • the macro base station M-BS (1) receives signals (uplink reference signals, PUCCH, PUSCH) transmitted in the uplink from the user terminal (macro UE) connected to the macro base station M-BS (1).
  • the signal is received by the amplifier 31 and demodulated by the received signal demodulator 32.
  • the macro UE uses the feedback information (CQI, PMI, RI) to obtain channel information obtained by channel estimation in the macro UE, and the macro base station M-BS (1).
  • CQI, PMI, RI feedback information
  • the scheduling-beam pattern-calculating unit 33 It is also possible to notify another pattern here.
  • the scheduling-beam pattern-calculation unit 33 determines a beam pattern to be allocated to the macro UE based on a feedback signal (CQI, PMI, RI) fed back from the macro UE. However, the beam pattern determined by the scheduling-beam pattern-calculation unit 33 is applied to the transmission section allocated only to the macro base station M-BS, but the transmission section allocated to the pico base station P-BS. Does not apply. In the transmission section allocated to the pico base station P-BS, the beam pattern determined by the coordination unit 36 is applied.
  • the transmission signal generation unit 34 generates a downlink transmission signal for the macro UE in synchronization with the transmission subframe assigned to the macro UE.
  • the beam generation unit 35 forms a beam according to the beam pattern assigned to the macro UE, but in some transmission subframes, the antenna is sent from the coordination unit 36 so that the null is directed toward the pico mobile station P-MS (1).
  • the weight is controlled.
  • the directional beam generated by the beam generator 35 is wirelessly transmitted from the transmission amplifier 37.
  • the coordination unit 36 When the transmission of the macro base station M-BS (macro transmission) and the non-transmission of the macro base station M-BS (macro non-transmission) are switched in units of subframes, as shown in FIG. 5A, the macro base station M-BS Transmission / no macro transmission can be signaled to the pico base station P-BS with 2 bits (for example, 0 for macro no transmission and 1 for macro transmission).
  • macro transmission can be interpreted as “all beam patterns are allowed for the macro base station M-BS”
  • macro non-transmission is “macro base station M-BS. Can be interpreted as "all beam patterns are forbidden”.
  • LTE is a case of 4 antennas and 16 types of beam patterns are defined. A total of 18 patterns including 16 types of beam patterns, patterns allowing all beam patterns, and patterns prohibiting all beam patterns may be notified to the pico base station P-BS via the backhaul link. If possible, the throughput of the macro base station M-BS can be greatly improved.
  • a part of macro base station M-BS in subframe #n that is the same as subframe #n in which radio resources (corresponding to a transmission interval allowing transmission with pico UE) are allocated to pico base station P-BS are allocated to the macro base station M-BS.
  • a beam pattern (radio resource) is assigned to the macro base station M-BS so as to reduce interference with the pico UEs under the control of the pico base station P-BS.
  • the beam pattern assigned to the macro base station M-BS in the subframe #n is represented by multi-value bits (for example, 5 bits if there are 18 patterns in total) and signaled to the pico base station P-BS.
  • the pico base station P-BS has a beam pattern in which interference with the beam pattern of the macro base station M-BS signaled from the macro base station M-BS is small in subframe #n permitted to be transmitted to the pico UE. Can be selected and used for transmission with the pico UE.
  • the transmission section (radio resource) is allocated to the pico base station P-BS
  • the macro base station in the subframe #n Even if the number of beam patterns that can be allocated to the station M-BS is increased, there is a possibility that interference with the pico cell can be reduced. If the number of beam patterns assigned to the macro base station M-BS is increased, the throughput of the macro base station M-BS can be increased.
  • the macro base station M-BS Throughput can be maximized.
  • FIG. 6 shows a code book table corresponding to 18 types of beam patterns (in the case of 4 antennas).
  • there are 18 types of beam patterns and in addition to 16 types of beam patterns defined in LTE, 2 patterns are added.
  • One is a pattern that prohibits (no transmission) all beam patterns from the macro base station M-BS, and the other is a pattern that allows all beam patterns from the macro base station M-BS.
  • the code book table in FIG. 6 has a table configuration when the maximum number of streams is four. Eighteen beam patterns are defined for each stream.
  • indexes 0 to 16 already defined in LTE can be reused. A new beam pattern may be defined.
  • FIG. 7AB shows an example of a subframe pattern for signaling the beam pattern and the number of streams using the codebook table shown in FIG.
  • the subframe pattern shown in FIG. 7A corresponds to the subframe pattern shown in FIG. 5A.
  • bit sets (0, 1) are set in subframes # 1, 3, and 5 in which transmission sections are allocated to the pico base station P-BS.
  • bit sets (0, 1) are set in subframes # 1, 3, and 5 in which transmission sections are allocated to the pico base station P-BS.
  • This means that in the subframes # 1, 3, and 5, only the number of streams 1 is allowed for the macro base station M-BS with a specific beam pattern (index 0).
  • Such a beam pattern (with nulls directed to the pico mobile station P-MS (1)) is selected.
  • the macro base station M-BS also has a partial beam pattern (radio resource) for communication with the macro UE in a state in which interference with the pico cell is suppressed.
  • the macro throughput can be improved.
  • FIG. 8 shows another example of a subframe pattern for signaling a beam pattern using the code book shown in FIG.
  • Two bit sets, bit set (0, 1) and bit set (1, 1), are set in subframe # 1 in which a transmission interval is assigned to the pico base station P-BS. In this manner, a plurality of beam patterns allowed to the macro base station M-BS can be notified in one subframe.
  • the macro base station M in the subframes # 1, 3, and 5 -Even if a plurality of beam patterns are allowed in the BS, there is a high probability that interference with the pico UE can be suppressed, and the macro throughput can be increased.
  • FIG. 9 is an example of notifying the macro base station M-BS of allowed beam patterns as a subset.
  • Subframes # 1 and 5 in which transmission sections are allocated to the pico base station P-BS notify subset # 1 and subframe # 3 notifies subset # 2.
  • the indexes from 0 to 15 are divided into a plurality of subsets, and the subset numbers assigned to the individual subsets are used for backhaul signaling. Thereby, the number of bits representing the beam pattern can be reduced, and the overhead of backhaul signaling can be suppressed.
  • different beam patterns and bit sets having the number of streams may be allocated in a plurality of frequency regions.
  • a certain bit resource f1 allows a first bit set (beam pattern + number of streams) to the macro base station M-BS, and another frequency resource f2 uses a second bit set (beam pattern). + Number of streams) is allowed to the macro base station M-BS.
  • the frequency resources f1 and f2 may be different resource blocks in the subframe # 1.
  • the beam pattern and the number of streams that are not allowed may be notified to the macro base station M-BS in subframes # 1, 3, and 5 that allow transmission in the pico cell.
  • the number of beam patterns allowed to the macro base station M-BS is large in the subframe # 1, it is better to notify the index of the beam pattern that is not allowed than to report the indexes of all allowed beam patterns.
  • the amount of information may be small.
  • the macro base station M-BS may be notified of an unacceptable beam pattern index.
  • the coordination unit 36 performs the above-described macro-picocell interference coordination and backhaul signaling.
  • the coordination unit 36 refers to the pico optimal beam pattern notified from the pico base station P-BS (1)..., And performs the macro base station every subframe # 1, 3, 5 that allows transmission in the pico cell.
  • the beam pattern and the number of streams allowed (or not allowed) for the M-BS are determined.
  • the coordination unit 36 determines a beam pattern and the number of streams that can increase the macro throughput as much as possible while reducing interference with the pico cell.
  • the coordination unit 36 includes a code book table shown in FIG.
  • the index (or subset number) corresponding to the determined beam pattern is obtained by referring to the code book table.
  • the subframe pattern set in the subframe corresponding to the index (or subset number) corresponding to the determined beam pattern is notified to the pico base station P-BS via the backhaul link L as a coordination pattern.
  • the scheduling-beam pattern-calculation unit 24 of the pico base station P-BS (1) detects a beam pattern used in the macro base station M-BS (1) in subframes # 1, 3, and 5 from the coordination pattern. .
  • the scheduling-beam pattern-calculating unit 24 selects a beam pattern having a small interference with the beam pattern used in the macro base station M-BS (1), and instructs the transmission signal generating unit 25 about the beam pattern and the transmission subframe. To do.
  • the macro base station M-BS can communicate with the macro UE while suppressing interference with the pico cell, and the macro throughput can be increased. .
  • the present invention has been described in detail using the above-described embodiments. However, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described in the present specification.
  • the number of users and the number of processing units in the apparatus are not limited to this, and can be appropriately changed according to the apparatus configuration.
  • the present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.

Abstract

 効果的にピコ基地局の受信品質を向上すると共に、マクロ基地局のスループットが大幅に劣化するのを防止すること。マクロ基地局(M-BS)において、第1のカバレッジエリアを有するマクロセル内にいるマクロUEに割り当てられたビームパターンに基づいたアンテナウェイトを用いてマクロUEに対する指向性ビームを生成するビーム生成部(35)と、マクロセル内にピコセルを局所的に形成するピコ基地局(P-BS)に対して割り当てられた送信区間に、前記マクロセル内にいるマクロUEに対してビームパターンを割り当てる場合、マクロセル内にいるマクロUEに対するビームパターンが、ピコセル内にいるピコUEに対する干渉電力が抑制されたビームパターンとなるように、ビームパターンを決定するコーディネーション部(36)と、を具備したことを特徴とする。

Description

無線基地局装置、ユーザ端末及び無線通信方法
 本発明は、マクロセル内にマイクロセルが重ねて配置された無線通信システムにおける無線基地局装置、ユーザ端末及び無線通信方法に関する。
 現在3GPP(Third Generation Partnership Project)では、LTE(Long Term Evolution)Release 8仕様(以下、LTE又はRel.8という)の発展形無線インターフェースであるLTE-advanced(以下、LTE Release 10仕様以降の仕様を総称して「LTE-A」という)の標準化がすすめられている。LTE-Aは、LTEとのバックワードコンパチビリティを保ちつつ、LTEよりもさらに高いシステム性能の実現を目指している。
 LTE-Aでは、半径数キロメートル程度の広範囲のカバレッジエリアを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジエリアを有するマイクロセル(例えば、ピコセル、フェムトセルなど)が形成されるHetNet(Heterogeneous Network)が検討されている(例えば、非特許文献1)。以下の説明では、マクロセルを形成する無線基地局のことをマクロ基地局と呼び、マイクロセルを形成する無線基地局のことをマイクロ基地局(ピコ基地局またはフェムト基地局)と呼ぶ。
 マイクロ基地局の1つであるピコ基地局は、マクロ基地局に比べて送信電力が小さくて(数十mW~数W程度)セル半径も小さいが、無線リソースはマクロ基地局と同等の帯域幅を用いることが可能である。そこで、ホットスポット等の局所的に集中する高密度トラヒックを効率的に収容するため、マクロ基地局のトラヒックの一部をピコ基地局へ収容するオフロードが検討されている。
 また、セル選択における受信品質(受信電力)にバイアスを付与することにより、ピコ基地局のセル半径を大きくする技術であるセルレンジエクスパンジョン(CRE)が検討されている。CREによって拡張されたピコセル内にいるユーザ端末は、マクロ基地局の配下からピコ基地局の配下へハンドオーバ(オフロード)することができ、それによって、オフロード効果を増大できる。
3GPP,TS36.300
 ところが、ユーザ端末をマクロ基地局の配下からピコ基地局の配下へオフロードした場合、ピコ基地局の配下へオフロードしたユーザ端末は、マクロ基地局に接近しているので、マクロ基地局から大きな干渉を受ける問題がある。
 本発明はかかる点に鑑みてなされたものであり、効果的にピコ基地局の受信品質を向上できると共に、マクロ基地局のスループットが大幅に劣化するのを防止できる無線基地局装置、ユーザ端末及び無線通信方法を提供することを目的とする。
 本発明の無線基地局装置は、第1のカバレッジエリアを有する第1セル内にいるユーザ端末に割り当てられたビームパターンに基づいたアンテナウェイトを用いて前記ユーザ端末に対する指向性ビームを生成するビーム生成部と、前記第1セル内に前記第1のカバレッジエリアよりも小さい第2のカバレッジエリアを有する第2セルを局所的に形成するマイクロ基地局に対して割り当てられた送信区間に、前記第1セル内にいるユーザ端末に対してビームパターンを割り当てる場合、前記第1セル内にいるユーザ端末に対するビームパターンが、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンとなるように、ビームパターンを決定するコーディネーション部と、を具備したことを特徴とする。
 上記無線基地局装置に備えられたコーディネーション部は、前記マイクロ基地局が収容する前記第2セル内にいるユーザ端末に適した第2セルビームパターンを前記マイクロ基地局から受け取り、前記第2セルを形成するマイクロ基地局に割り当てられた送信区間では、前記第2セルビームパターンを参照して前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンを決定することを特徴とする。
 また、上記無線基地局装置に備えられたコーディネーション部は、予め決められた複数種類のビームパターンのそれぞれに対応した複数インデックスと、全てのビームパターンを許容することを示すインデックスと、全てのビームパターンを禁止することを示すインデックスと、を有するテーブルを有し、送信時間間隔に相当するサブフレーム単位で決定したビームパターンのインデックスを前記テーブルに従って特定し、前記特定したインデックスを前記マイクロ基地局へシグナリングすることを特徴とする。
 本発明によれば、効果的にピコ基地局の受信品質を向上できると共に、マクロ基地局のスループットが大幅に劣化するのを防止できる。
時間ドメインでのリソース分割による干渉コーディネーションを示す図である。 マクロ基地局がピコUEにヌルを向けたビームパターンでマクロUEと通信している状態を示す図である。 HetNetの概略的な構成図である。 マクロ基地局、ピコ基地局及びピコ移動局の機能ブロック図である。 アンテナウェイト制御及びバックホールシグナリングの概念図である。 バックホールシグナリングに用いられるコードブック構成図である。 ビームパターンを通知するサブフレームパターンを示す図である。 複数ビームパターンを通知するサブフレームパターンを示す図である。 サブセットでビームパターンを通知するサブフレームパターンを示す図である。
 第1のカバレッジエリアを有する第1セル内に、第1のカバレッジエリアよりも小さい第2のカバレッジエリアを有する第2セルを局所的に形成する無線通信システムにおいて、マクロ基地局からピコセルへの干渉を低減する観点から、マクロ基地局とピコ基地局で異なる無線リソースを用いる干渉コーディネーション技術(リソース分割)を適用することが有効である。
 図1は時間ドメインでのリソース分割による干渉コーディネーションを示す図である。
 マクロ基地局とピコ基地局の送信時間間隔(サブフレーム)を同期させ、マクロ基地局は無線リソースが割り当てられていないサブフレームでは無線送信を停止し、ピコ基地局は主にマクロ基地局に無線リソースが割り当てられていないサブフレームで、ピコ基地局配下のユーザ端末(以下、ピコUEと呼ぶ)との間で無線通信する。これにより、大きな送信電力で広範囲のカバレッジエリアを有するマクロセル内に、小さな送信電力で局所的なカバレッジエリアを有するマイクロセルが重ねて配置された通信システムにおいて、一部のサブフレームにおいてマクロ基地局がデータ送信を停止することにより、ピコUEがマクロ基地局から受ける干渉を低減できる。ところが、上記干渉コーディネーションは、効果的にピコ基地局の受信品質を向上できるものの、無線リソースが減少するため、マクロ基地局のスループットが大幅に劣化する。
 本発明の骨子は、ピコ基地局への干渉低減のためマクロ基地局が無送信であった無線リソースにおいて、マクロ基地局が、ピコUEへの干渉電力が小さくなるビームパターンを用いて(ヌルがピコUEに向いたビームパターン)、マクロ基地局配下のユーザ端末(以下、マクロUEと呼ぶ)と通信するように、マクロ基地局のビームパターンを決定することである。
 本発明によれば、従来マクロ無送信であった無線リソース(時間領域/周波数領域)において、マクロ基地局がピコUEへの干渉電力が小さくなるビームパターンを用いてマクロUEと通信するので、効果的にピコ基地局の受信品質を向上できると共に、マクロ基地局のスループットを改善できる。
 図2に示すように、マクロ基地局M-BSは、各アンテナのアンテナウェイトを制御することによって、配下のマクロUEであるUE#1に対して指向性ビームが向けられ、かつピコ基地局P-BS配下のピコUEであるUE#2に対してヌル(漏れ電力が小さくなる領域)が向けられるビームパターンを生成できる。このビームパターンは、ピコUEに対してヌルが向けられるので、ピコUEに対する干渉低減効果がある。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図3はHetNetの概略的な構成図である。図3に示すように、HetNetは、マクロ基地局M-BSに加え、新たなノード(フェムト基地局FN,ピコ基地局P-BS,リレー基地局RN)が混在する可能性がある。本実施の形態では、主にマクロ基地局M-BSとピコ基地局P-BSとの間の干渉制御構成について記述する。
 マクロ基地局M-BSとピコ基地局P-BSとの間はバックホールリンクを介して接続される。バックホールリンクは、基地局間を接続する伝送路である。本発明では、バックホールリンクの形態は限定されない。例えば、マクロ基地局M-BS(1)とピコ基地局P-BS(1)との間のように、有線バックホールリンク“L”で構成されることも可能であり、マクロ基地局M-BS(0)とピコ基地局P-BS(0)との間のように、伝送路の一部にコアネットワークを含んで構成されてもよい。ここでは、主にマクロ基地局M-BS(1)とピコ基地局P-BS(1)との間の干渉コーディネーションについて説明するが、他のマクロ基地局-ピコ基地局間(例えば、マクロ基地局M-BS(0)とピコ基地局P-BS(0)との間)にも同様の干渉コーディネーションが適用可能である。
 図4は、マクロ基地局M-BS(1)、ピコ基地局P-BS(1)及びピコ移動局P-UEの機能ブロック図である。ピコ移動局P-UEは、ピコ基地局P-BS(1)に接続しているピコUEであり、マクロ基地局M-BS(1)のカバレッジエリア内に存在する。例えば、ピコ移動局P-UEは、図2においてピコ基地局P-BSに接続しているUE#2である。
 ピコ移動局P-UEは、ピコ基地局P-BS(1)から送信される下り参照信号と、マクロ基地局M-BS(1)から送信される下り参照信号をそれぞれ受信する。ピコ移動局P-UEが、ピコ基地局P-BS(1)との間の無線チャネルのチャネル推定と、マクロ基地局M-BS(1)との間の無線チャネルのチャネル推定とを行う。マクロ基地局M-BS(1)及びピコ基地局P-BS(1)との間のチャネル推定結果に基づいて、フィードバック信号を生成してピコ基地局P-BS(1)へフィードバックする。
 ピコ移動局P-UEは、無線信号を受信する受信アンプ部11を備える。ピコ移動局P-UEは、マクロ基地局M-BS(1)及びピコ基地局P-BS(1)の双方のカバレッジエリア内に存在する。このため、受信アンプ部11は、ピコ基地局P-BS(1)から送信された信号及びマクロ基地局M-BS(1)から送信された信号をそれぞれ受信する。受信アンプ部11は、受信した無線信号を周波数変換してベースバンドの受信信号を得る。ピコ基地局P-BS(1)及びマクロ基地局M-BS(1)から送信された信号は、下り参照信号、下りリンク制御チャネル信号、下りリンク共通チャネル信号を含む。ピコ移動局P-UEは、ピコ基地局P-BS(1)から送信される信号は全て取り込んで後述する処理を行う。一方、ピコ移動局P-UEはマクロ基地局M-BS(1)と接続されていないので、マクロ基地局M-BS(1)から送信された信号については、干渉コーディネーションのためにはチャネル推定用に下り参照信号だけを取り込むことができる。
 下り参照信号は、例えば、LTE/LTE-Aで規定されているセル固有参照信号、ユーザ固有参照信号、チャネル情報(CSI: Channel State Information)測定用参照信号(CSI-RS)を含む。セル固有参照信号は、ピコ基地局P-BS(1)に設けられた各アンテナから送信され、ピコ移動局P-MSにおいて、チャネル推定,シンボル同期,CQI測定,Mobility measurement等,様々な目的に使用される。LTEで規定されているユーザ固有参照信号は、適用ビームフォーミングをサポートするために定義されたチャネル推定用の参照信号である。ビームフォーミングとは、複数アンテナの振幅及び位相の制御によってアンテナに指向性パターン(以下、ビームパターンという)を形成し、特定方向に対するアンテナ利得を増加/減少させる技術である。また、LTE-Aで規定されているユーザ固有参照信号は、適用ビームフォーミングに加えて、送信レイヤ間の多重に、時間及び周波数の2次元の直交CDM(Code Division Multiplexing)が適用されている。LTE-Aで規定されているCSI-RSは、セル/アンテナ固有(セル当り最大8レイヤ送信をサポート)の参照信号である。CSI-RSは、セル固有参照信号に比較して長い周期(複数サブフレームに一回程度の周期)で送信される。データ復調に用いるチャネル推定に必要な参照信号密度に比較して、CQI推定に必要な参照信号密度は低く設定できるからである。マクロ基地局M-BS(1)から送信される信号にも、ピコ基地局P-BS(1)が送信する下り参照信号と同じタイプの下り参照信号が含まれる。
 下りリンク制御チャネルは、共有チャネル(PDSCH受信,PUSCH送信)に必要な情報を通知する制御信号であり、PDCCH(Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid ARQ Indicator Channel)を含む。下りリンク制御チャネルは遅延低減のため、サブフレームの先頭の1-3OFDMシンボルに多重される。PDCCHは、PDSCH,PUSCHの割り当て情報を通知する制御信号である。PCFICHは、高効率伝送を実現するため下りリンクの制御チャネルシンボル数CFI(Control channel Format Indicator)値を通知する制御信号である。PHICHは上りリンク(PUSCH)に対するACK/NACK情報を通知する制御信号である。共有チャネルを用いた通信システムにおいては、サブフレーム毎に、どの移動局に対して上記共有チャネルを割り当てるかをシグナリングする必要があり、上記シグナリングのために用いられる制御チャネルは、LTE/LTE-Aでは、PDCCHと呼ばれる。サブフレームは、送信時間間隔(TTI)と呼ばれてもよい。上記PDCCHの情報には、PCFICH、Downlink Scheduling Information、ACK/NACK、UL Scheduling Grant、Overload Indicator、Transmission Power Control Command Bitが含まれる。また、上記Downlink Scheduling Informationには、例えば、下りリンクのリソースブロック(Resource Block)の割り当て情報、ユーザ端末のID、ストリームの数、プリコーディングベクトル(Precoding Vector)に関する情報、データサイズ、変調方式、HARQに関する情報が含まれる。また、上記Uplink Scheduling Grantには、例えば、上りリンクのResource Blockの割り当て情報、ユーザ端末のID、データサイズ、変調方式、上りリンクの送信電力情報、上りリンク参照信号の情報が含まれる。
 受信アンプ部11から出力される受信信号が、受信信号復調部12、ピコ基地局チャネル推定部13及びマクロ基地局チャネル推定部14へ供給される。
 ピコ基地局チャネル推定部13は、受信アンプ部11から与えられた受信信号に含まれる下り参照信号(ピコ基地局P-BS(1)が送信した下り参照信号)からピコ基地局P-BS(1)との間のチャネル状態を推定する。ピコ基地局チャネル推定部13は、セル固有参照信号が無線チャネル(ピコ基地局P-BS(1)の各アンテナからピコ移動局P-UEのアンテナに至る経路)で受けた減衰量、位相回転量及び遅延量を推定することによってチャネル推定結果を得る。セル固有参照信号を用いたチャネル推定結果は、ピコ移動局P-MS(1)における復調処理に用いられる。また、ピコ基地局チャネル推定部13は、ユーザ固有参照信号を用いて、適用ビームフォーミングのためのチャネル推定を行う。
 マクロ基地局チャネル推定部14は、マクロ基地局M-BS(1)から送信された下り参照信号を用いて、マクロ基地局M-BS(1)との間のチャネル状態を推定する。マクロ基地局チャネル推定部14は、セル固有参照信号が無線チャネル(マクロ基地局M-BS(1)の各アンテナからピコ移動局P-UEのアンテナに至る経路)で受けた減衰量、位相回転量及び遅延量を推定することによって、チャネル推定結果を得る。また、マクロ基地局チャネル推定部14は、マクロ基地局M-BS(1)がユーザ固有参照信号を送信する場合には、ユーザ固有参照信号を用いて、適用ビームフォーミングのためのチャネル推定を行ってもよい。得られた推定値(チャネル情報)は、受信信号復調部12及びフィードバック信号生成部15へ与えられる。
 受信信号復調部12は、ピコ基地局チャネル推定部13で得られたチャネル推定結果を用いて、下りリンク制御チャネル信号及びPDSCHを復調する。受信信号復調部12は、下りリンク制御チャネル信号に基づいて、PDSCHを復調する。なお、PDSCHの送信に用いたプリコーディングウェイト情報が、PDCCHを介してピコ基地局P-BS(1)からピコ移動局P-MS(1)へ通知されるので、ピコ移動局P-MS(1)は通知されたプリコーディングウェイト情報を用いて、PDSCHを復調する。復調されたユーザデータは上位レイヤへ渡される。
 フィードバック信号生成部15は、ピコ基地局P-BS(1)へフィードバックすべきフィードバク信号を生成する。LTEでは、ユーザ端末からのチャネル情報のフィードバックを用いる下りリンクの閉ループSU-MIMO伝送においては、受信SINR(Signal to Interference plus Noise power Ratio)を向上するために、下り共有チャネル(PDSCH)に送信レイヤ毎に異なる送信アンテナウェイトを乗算して送信するプリコーディングが用いられる。LTEでは、ユーザ端末において、プリコーディング後の各レイヤの合計スループットが最大となる規範により、予め決められたプリコーディングウェイト行列の候補がコードブックに定められていて、コードブックの中から最適なウェイト行列を選択して、基地局へインデックス(PMI:Precoding Matrix Indicator)をフィードバックする。また、LTEでは、ユーザ端末における受信SINR及びアンテナ間のフェージング相関等のチャネル状態に応じて、送信レイヤ数(ランク)を適応的に制御するランクアダプテーションが適用される。ユーザ端末は、基地局に対してチャネル品質情報(CQI:Channel Quality Indicator)に加えて、最適なランク情報(RI:Rank Indicator)を基地局へフィードバックする。この受信品質情報として、ピコ基地局に対しては、最適な品質情報を,マクロ基地局に対しては最も品質が悪い(すなわち,マクロ基地局で用いられる場合には最も干渉が小さくなる)品質情報を生成する。また,LTEとは異なる品質情報を定義してもよい。例えば、ピコ基地局およびマクロ基地局からのチャネルマトリックスを返すことも考えられる。
 フィードバック信号生成部15は、ピコ基地局チャネル推定部13で得られたチャネル推定結果に応じたCQIをフィードバック信号の1つとして生成する。また、フィードバック信号生成部15は、ピコ基地局P-BS(1)から受信したセル固有参照信号にしたがってコードブックの中から最適なウェイト行列を選択し、選択したウェイト行列のインデックス(PMI)をフィードバック信号の1つとして得る。また、フィードバック信号生成部15は、受信SINR及びアンテナ間のフェージング相関に等のチャネル状態に応じて、最適なランク情報を決定し、決定したランク情報(RI)をフィードバック信号の1つとして得る。このように、フィードバック信号生成部15は、ピコ基地局P-BS(1)との間の無線チャネルの状態に応じて決定したPMI,RI、CQIを第1のフィードバック信号として生成する。
 ここで、マクロ基地局チャネル推定部14で得られたチャネル推定結果は、マクロ基地局M-BS(1)の送信電力がピコ移動局P-UEに対してどのような干渉を与えているか示している。フィードバック信号生成部15は、マクロ基地局チャネル推定部14で得られたチャネル推定結果に応じたCQIを第2のフィードバック信号として生成する。
 送信信号生成部16は、第1及び第2のフィードバック信号、上り参照信号、上りリンク制御信号、上りユーザデータを多重して上りリンクで送信する送信信号を生成する。送信アンプ部17は生成した送信信号を無線送信する。上りリンクについては、ピコセル内の各ユーザ端末で共有して使用される上り共有物理チャネル(PUSCH:Physical Uplink Shared Channel)と、上り制御チャネル(PUCCH:Physical Uplink Control Channel)とが用いられる。上りリンクでは、上り制御チャネルにより、下りリンクにおける共有物理チャネルのスケジューリング、適応変復調・符号化(AMC:Adaptive Modulation and Coding)に用いるための下りリンクのチャネル情報(第1及び第2のフィードバック信号)及び下りリンクの共有物理チャネルの送達確認情報(HARQ ACK information)が伝送される。また、上り共有物理チャネルによりユーザデータが伝送される。
 ピコ基地局P-BS(1)は、マクロ基地局M-BS(1)との間でバックホールリンクLを介して通信する。ピコ基地局P-BS(1)が第1及び第2のフィードバック信号に基づいて、ピコセルにおいて最適なビームパターン(ピコ最適ビームパターン)を決定し、決定したピコ最適ビームパターンをマクロ基地局M-BS(1)へバックホールリンクLで通知する。ピコ基地局P-BS(1)は、マクロ基地局M-BS(1)からバックホールリンクLを介して通知されるマクロ基地局M-BS(1)のビームパターン(コーディネーションパターン)にしたがって、各ピコ移動局に対して最適なビームパターンを決定する。
 ピコ基地局P-BSは、配下のピコ移動局P-UEから送信される上りリンクの信号を受信する受信アンプ部21を備える。受信アンプ部21は受信した上りリンクの信号をベースバンドの受信信号に変換する。受信アンプ部21で受信される受信信号には、ピコ移動局P-UEから送信された、上り参照信号、上り制御信号及びユーザデータが含まれる。特に、受信アンプ部21で受信される受信信号には、ピコ基地局P-BSとの間の無線チャネルの受信品質が最適になるように、ピコ移動局P-UEで決定した第1のフィードバック信号と、マクロ基地局M-BS(1)との間のチャネル状態を示す第2のフィードバック信号とが含まれる。
 受信信号復調部22は、受信信号に含まれる上り制御信号及びユーザデータを復調すると共に、第1のフィードバック信号及び第2のフィードバック信号を復調する。第1及び第2のフィードバック信号はビームパターン計算部23へ与えられる。
 ビームパターン計算部23は、ピコ基地局P-BS(1)と接続している全ピコ移動局から通知された第1及び第2のフィードバック信号に基づいて、ピコ最適ビームパターンを決定する。例えば、ピコ移動局P-MS(1)から通知された第1のフィードバク情報から、ピコ基地局P-BS(1)がピコ移動局P-MS(1)に対して送信する最適なビームパターンを決定できる。また、ピコ移動局P-MS(1)から通知された第2のフィードバク情報から、ピコ移動局P-MS(1)に対する干渉が最小化するマクロ基地局M-BS(1)のビームパターン候補を決定できる。同様に、他のそれぞれのピコ移動局に関しても、第1のフィードバク情報から最適なピコ基地局P-BS(1)のビームパターン候補をそれぞれ決定し、第2のフィードバク情報からピコ移動局P-MS(1)に対する干渉が最小化するマクロ基地局M-BS(1)の最適なビームパターン候補をそれぞれ決定する。ビームパターン計算部23は、ビームパターン候補の中から全ピコ移動局にとって最もベターなピコ基地局P-BS(1)のビームパターンを1つまたは複数パターン決定する。ビームパターン計算部23は、全ピコ移動局にとって最もベターなマクロ基地局M-BS(1)のビームパターンを1つまたは複数パターン決定してもよい。このように決定したピコ最適ビームパターンは、バックホールリンクを介して、マクロ基地局M-BS(1)へ通知される。ここで、ピコUEからのフィードバックに基づく方法を記載したが、ピコUEからの上り受信信号をマクロ基地局で受信することによりコーディネーションパターンを決定する方法も適用できる。
 また、ピコ基地局P-BS(1)は、スケジューリング-ビームパターン-計算部24によって、各ピコ移動局に対するビームパターン及び送信サブフレームが決定される。スケジューリング-ビームパターン-計算部24は、マクロ基地局M-BS(1)から、バックホールリンクLを介して、コーディネーションパターンが通知される。コーディネーションパターンのバックホールシグナリングの詳細については、マクロ基地局と合わせて説明する。スケジューリング-ビームパターン-計算部24は、マクロ基地局M-BS(1)から通知されたコーディネーションパターンに対応して、各ピコ移動局に対して干渉コーディネーションされたビームパターンを決定する。スケジューリング-ビームパターン-計算部24によってピコ移動局P-MS(1)に対して決定されたビームパターン及び送信区間(サブフレーム単位)が送信信号生成部25に指示される。
 送信信号生成部25は、ピコ移動局P-MS(1)に対する下りリンク信号を生成し、ビーム生成部26はスケジューリング-ビームパターン-計算部24から指示されたビームパターンを形成するアンテナウェイトにしたがってビーム形成する。送信アンプ部27はビーム生成部26によって形成されたビームパターンを送信サブフレームに同期して無線送信する。他のピコ移動局に対しても同様にスケジューリング-ビームパターン-計算部24が決定したビームパターン及び送信区間(サブフレーム)にしたがって各ピコ移動局に対して送信電力が向けられたビームパターンで無線送信する。
 マクロ基地局M-BS(1)は、マクロ基地局M-BS(1)と接続しているユーザ端末(マクロUE)から上りリンクで送信される信号(上り参照信号、PUCCH,PUSCH)を受信アンプ31で受信し、受信信号復調部32で復調する。マクロUEは、ピコ移動局P-MS(1)と同様に、マクロUEでのチャネル推定で得られたチャネル情報等をフィードバック信号(CQI、PMI,RI)でマクロ基地局M-BS(1)へ通知している。受信信号復調部32で復調された上り信号のうちフィードバック信号(CQI、PMI,RI)はスケジューリング-ビームパターン-計算部33へ与えられる。ここで別のパターンを通知することも可能である。
 スケジューリング-ビームパターン-計算部33は、マクロUEからフィードバックされたフィードバック信号(CQI、PMI,RI)に基づいて、マクロUEに割り当てるビームパターンを決定する。ただし、スケジューリング-ビームパターン-計算部33が決定したビームパターンは、マクロ基地局M-BSだけに割り当てられた送信区間には、適用されるが、ピコ基地局P-BSに割り当てられた送信区間では適用されない。ピコ基地局P-BSに割り当てられた送信区間ではコーディネーション部36が決定したビームパターンが適用される。送信信号生成部34は、マクロUEに割り当てられた送信サブフレームに同期して、マクロUEに対する下りリンク送信信号を生成する。
 ビーム生成部35は、マクロUEに割り当てられたビームパターンにしたがってビーム形成するが、一部の送信サブフレームではピコ移動局P-MS(1)に対してヌルが向くようにコーディネーション部36からアンテナウェイトが制御される。ビーム生成部35によってビーム生成された指向性ビームが送信アンプ37から無線送信される。
 ここで、コーディネーション部36によるアンテナウェイト制御及びバックホールシグナリングについて具体的に説明する。
 マクロ基地局M-BSの送信(マクロ送信)とマクロ基地局M-BSの無送信(マクロ無送信)とをサブフレーム単位で切り替える場合、図5Aに示すようにマクロ基地局M-BSはマクロ送信/マクロ無送信をピコ基地局P-BSへ2ビット(例えば、マクロ無送信は0,マクロ送信は1)でシグナリングできる。一方、図5Bに示すように、マクロ送信とは“マクロ基地局M-BSに全てのビームパターンが許容されている”と解釈することができ、マクロ無送信とは“マクロ基地局M-BSに全てのビームパターンが禁止されている”と解釈することができる。
 LTEは、4アンテナの場合で、16種類のビームパターンが定義されている。16種類のビームパターンと、全てのビームパターンを許容するパターンと、全てのビームパターンを禁止するパターンとの合計18パターンを、バックホールリンクを介して、ピコ基地局P-BSへ通知することができれば、マクロ基地局M-BSのスループットを大幅に改善できる。
 例えば、ピコ基地局P-BSに無線リソース(ピコUEとの送信を許容する送信区間に相当する)が割り当てられたサブフレーム#nと同一サブフレーム#nにおいてマクロ基地局M-BSに一部の無線リソース(マクロ基地局M-BSに一部の無線リソースでの送信を許容する送信区間)を割り当てる。このとき、マクロ基地局M-BSにはピコ基地局P-BS配下のピコUEへの干渉が小さくなるようなビームパターン(無線リソース)を割り当てる。当該サブフレーム#nでマクロ基地局M-BSに割り当てたビームパターンを多値ビット(例えば、全部で18パターンある場合は、5ビット)で表してピコ基地局P-BSへシグナリングする。ピコ基地局P-BSは、ピコUEとの送信が許容されているサブフレーム#nにおいて、マクロ基地局M-BSからシグナリングされたマクロ基地局M-BSのビームパターンとの干渉が小さいビームパターンを選択して、ピコUEとの送信に用いることができる。
 ピコ基地局P-BSに送信区間(無線リソース)が割り当てられたサブフレーム#nであっても、マクロ基地局M-BSから干渉を受ける端末数が少なければ、当該サブフレーム#nにおいてマクロ基地局M-BSに割り当て可能なビームパターン数を増加したとしもてピコセルへの干渉を小さくできる可能性がある。マクロ基地局M-BSに割り当てるビームパターン数を増加すれば、マクロ基地局M-BSのスループットを増大できる。マクロ基地局M-BSから干渉を受けるピコUE数(又はピコUEの位置)に応じて、マクロ基地局M-BSに割り当て可能なビームパターン数をダイナミックに制御すれば、マクロ基地局M-BSのスループットを最大化できる。
 図6は18種類のビームパターン(4アンテナの場合)に対応したコードブックテーブルを示している。4アンテナの場合のビームパターンは18種類で、LTEで定義されている16種類のビームパターンに加えて、2パターンが追加されている。1つはマクロ基地局M-BSに全てのビームパターンを禁止(無送信)するパターンであり、もう1つはマクロ基地局M-BSに全てのビームパターンを許容するパターンである。図6のコードブックテーブルは、最大ストリーム数が4である場合のテーブル構成である。各ストリームに対して18個のビームパターンが定義されている。LTEで定義されている16種類のビームパターンに関しては、既にLTEで定義されたインデックス0~16を再利用することができる。また新たにビームパターンを定義してもよい。
 図7ABは図6に示すコードブックテーブルを用いてビームパターン及びストリーム数をシグナリングするサブフレームパターンの一例を示す。図7Aに示すサブフレームパターンは、図5Aに示すサブフレームパターンに対応している。図5Aにおいてマクロ送信が割り当てられていたサブフレーム#0,2,4,6には(17,4)のビットセットが設定されている。これは、サブフレーム#0,2,4,6において、マクロ基地局M-BSに全てのビームパターンを許容し(インデックス=17)、最大ストリーム数を許容している(ストリーム数=4)ことを意味している。また、図5Aにおいてピコ基地局P-BSに送信区間(マクロ無送信)が割り当てられるサブフレーム#1,3,5にはビットセット(16,1)が設定されている。これは、サブフレーム#1,3,5において、マクロ基地局M-BSに全てのビームパターンを禁止している(インデックス=16)ことを意味する。
 図7Bに示すサブフレームパターンは、図5Aにおけるマクロ送信に相当するサブフレーム#0,2,4,6には(17,4)のビットセットが設定されている。また、ピコ基地局P-BSに送信区間が割り当てられるサブフレーム#1,3,5にはビットセット(0,1)が設定されている。これは、サブフレーム#1,3,5において、特定のビームパターン(インデックス=0)で、ストリーム数1のみがマクロ基地局M-BSに許容されていることを意味する。例えば、特定のビームパターン(インデックス=0)は、マクロ基地局M-BSと同一サブフレーム#1,3,5において通信しているピコ移動局P-MS(1)に対して干渉電力が小さくなるようなビーム(ピコ移動局P-MS(1)にヌルが向けられる)ビームパターンが選択される。これにより、従来マクロ無送信であったサブフレームにおいて、ピコセルへの干渉を抑えた状態で、マクロ基地局M-BSにもマクロUEとの通信のための一部のビームパターン(無線リソース)を割り当てることができ、マクロスループットを向上できる。
 図8は、図6に示すコードブックを用いてビームパターンをシグナリングするサブフレームパターンの他の一例を示す。ピコ基地局P-BSに送信区間が割り当てられるサブフレーム#1にビットセット(0,1)とビットセット(1,1)の2つのビットセットが設定されている。このように、1つのサブフレームにおいてマクロ基地局M-BSに許容した複数のビームパターンを通知することができる。例えば、ピコ基地局P-BSに送信区間が割り当てられるサブフレーム#1,3,5において通信対象となるピコUE数が少ない場合には、そのサブフレーム#1,3,5においてマクロ基地局M-BSに複数のビームパターンを許容したとしても、ピコUEへの干渉を抑制できる確率が高く、マクロスループットの増大を図ることができる。
 図9は、マクロ基地局M-BSに許容するビームパターンをサブセットとして通知する一例である。ピコ基地局P-BSに送信区間が割り当てられるサブフレーム#1,5ではサブセット#1、サブフレーム#3ではサブセット#2をそれぞれ通知している。図9に示す例では、ストリーム数=1の場合、インデクス1とインデクス2をサブセット#1、インデクス3とインデクス4をサブセット#2、・・・としてグループ化している。図6に示すコードブック構成において、0番から15番までのインデックスを、複数のサブセットに分割し、個々のサブセットに付与したサブセット番号がバックホールシグナリングに用いられる。これにより、ビームパターンを表すビット数を削減でき、バックホールシグナリングのオーバーヘッドを抑えることができる。
 また、上記のようにサブフレーム単位でビームパターンを通知する仕組みを維持しつつ、複数の周波数領域で異なるビームパターン及びストリーム数のビットセットを割り当ててもよい。例えば、サブフレーム#1において、ある周波数リソースf1では第1のビットセット(ビームパターン+ストリーム数)をマクロ基地局M-BSに許容し、他の周波数リソースf2では第2のビットセット(ビームパターン+ストリーム数)をマクロ基地局M-BSに許容する。周波数リソースf1、f2はサブフレーム#1内の異なるリソースブロックでもよい。
 また、ピコセルでの送信を許容するサブフレーム#1,3,5においてマクロ基地局M-BSに許容しないビームパターン及びストリーム数を通知するようにしてもよい。例えば、サブフレーム#1においてマクロ基地局M-BSに許容するビームパターン数が多いために、許容しないビームパターンのインデックスを通知する方が、許容する全てのビームパターンのインデックスを通知するよりも、情報量が小さくなる場合がある。このような場合は、マクロ基地局M-BSに許容しないビームパターンのインデックスを通知しても良い。ただし、シグナリング方式をダイナミックに切り替える場合は、ピコ基地局P-BSに対してシグナリング方式の切り替えを通知する必要がある。
 コーディネーション部36は、上述したマクロ-ピコセル間の干渉コーディネーション及びバックホールシグナリングを行う。コーディネーション部36は、ピコ基地局P-BS(1)・・・から通知されるピコ最適ビームパターンを参照して、ピコセルでの送信を許容するサブフレーム#1,3,5毎にマクロ基地局M-BSに許容する(又は許容しない)ビームパターン及びストリーム数を決定する。コーディネーション部36は、ピコセルへの干渉が小さく、かつマクロスループットを可能な限り増加できるビームパターン及びストリーム数を決定する。コーディネーション部36は、図6に示すコードブックテーブルを備える。決定したビームパターンに対応したインデックス(又はサブセット番号)は、コードブックテーブルを参照して取得する。決定したビームパターンに対応したインデックス(又はサブセット番号)が該当するサブフレームに設定されたサブフレームパターンを、コーディネーションパターンとして、バックホールリンクLを介して、ピコ基地局P-BSへ通知する。
 ピコ基地局P-BS(1)のスケジューリング-ビームパターン-計算部24は、コーディネーションパターンからサブフレーム#1,3,5においてマクロ基地局M-BS(1)で使用されるビームパターンを検出する。スケジューリング-ビームパターン-計算部24は、マクロ基地局M-BS(1)で使用されるビームパターンとの干渉が小さいビームパターンを選択し、送信信号生成部25へビームパターン及び送信サブフレームを指示する。
 この結果、ピコ基地局P-BS(1)に割り当てられた送信区間においても、マクロ基地局M-BSが、ピコセルへの干渉を抑えた状態で、マクロUEと通信でき、マクロスループットを増大できる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の実施形態において、ユーザ数や装置における処理部数については、これに限定されず、装置構成に応じて適宜変更することが可能である。また、本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2011年1月7日出願の特願2011-002443に基づく。この内容は、全てここに含めておく。

Claims (15)

  1.  第1のカバレッジエリアを有する第1セル内にいるユーザ端末に割り当てられたビームパターンに基づいたアンテナウェイトを用いて前記ユーザ端末に対する指向性ビームを生成するビーム生成部と、
     前記第1セル内に前記第1のカバレッジエリアよりも小さい第2のカバレッジエリアを有する第2セルを局所的に形成するマイクロ基地局に対して割り当てられた送信区間に、前記第1セル内にいるユーザ端末に対してビームパターンを割り当てる場合、前記第1セル内にいるユーザ端末に対するビームパターンが、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンとなるように、ビームパターンを決定するコーディネーション部と、
    を具備したことを特徴とする無線基地局装置。
  2.  前記コーディネーション部は、前記マイクロ基地局が収容する前記第2セル内にいるユーザ端末に適した第2セルビームパターンを前記マイクロ基地局から受け取り、前記第2セルを形成するマイクロ基地局に割り当てられた送信区間では、前記第2セルビームパターンを参照して前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンを決定することを特徴とする請求項1記載の無線基地局装置。
  3.  前記コーディネーション部は、予め決められた複数種類のビームパターンのそれぞれに対応した複数インデックスと、全てのビームパターンを許容することを示すインデックスと、全てのビームパターンを禁止することを示すインデックスと、を有するテーブルを有し、送信時間間隔に相当するサブフレーム単位で決定したビームパターンのインデックスを前記テーブルに従って特定し、前記特定したインデックスを前記マイクロ基地局へシグナリングすることを特徴とする請求項2記載の無線基地局装置。
  4.  前記コーディネーション部は、前記ビームパターンに関するインデックスとストリーム数とをセットにして、前記マイクロ基地局へシグナリングすることを特徴とする請求項3記載の無線基地局装置。
  5.  前記コーディネーション部は、1サブフレームで許容するビームパターンとして複数パターンを決定した場合、前記決定した複数パターンのインデックスを前記マイクロ基地局へシグナリングすることを特徴とする請求項3記載の無線基地局装置。
  6.  前記コーディネーション部は、前記テーブルに登録された各ビームパターンのインデックスを、複数インデックスを1つにまとめたサブセット単位で、前記マイクロ基地局へシグナリングすることを特徴とする請求項3記載の無線基地局装置。
  7.  前記コーディネーション部は、異なる周波数領域で、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンをそれぞれ決定することを特徴とする請求項2記載の無線基地局装置。
  8.  前記コーディネーション部は、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンを決定し、前記無線基地局装置に割り当てられなかったビームパターンを、前記マイクロ基地局へシグナリングすることを特徴とする請求項1記載の無線基地局装置。
  9.  第1のカバレッジエリアを有する第1セル内に、第1のカバレッジエリアよりも小さい第2のカバレッジセリを有する第2セルを局所的に形成する無線基地局装置であり、
     前記第1セルを形成するマクロ基地局から、送信時間間隔に相当するサブフレーム単位で決定したビームパターンが通知され、前記マクロ基地局と送信区間が重なるサブフレームには、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンが通知され、前記マクロ基地局から通知されたビームパターンを参照して、前記第2セル内にいるユーザ端末との通信に適用するビームパターンを決定するビームパターン決定部と、
     前記第2セル内にいるユーザ端末に割り当てられたビームパターンに基づいたアンテナウェイトを用いて、前記ユーザ端末に対する指向性ビームを生成するビーム生成部と、を具備したことを特徴とする無線基地局装置。
  10.  前記第2セル内にいるユーザ端末から通知された受信品質に関するフィードバック信号に基づいて、前記第2セル内にいるユーザ端末に適したビームパターンを決定し、決定したビームパターンを前記マクロ基地局へ通知するビームパターン計算部を備えたことを特徴とする請求項9記載の無線基地局装置。
  11.  前記ビームパターン計算部は、前記フィードバク情報に含まれた、前記無線基地局装置と前記第2セル内にいるユーザ端末との間のチャネル品質情報と、前記マクロ基地局と前記第2セル内にいるユーザ端末との間のチャネル品質情報と、を用いてビームパターンを決定することを特徴とする請求項10記載の無線基地局装置。
  12.  第1のカバレッジエリアを有する第1セルを形成しているマクロ基地局から送信された信号を受信してチャネル推定する第1のチャネル推定部と、
     前記第1セル内に局所的に配置され第1のカバレッジセリアよりも小さい第2のカバレッジエリアを有する第2セルを形成しているマイクロ基地局から送信された信号を受信してチャネル推定する第2のチャネル推定部と、
     前記第1及び第2のチャネル推定部によって得られたチャネル推定値に対応したチャネル品質情報を含んだフィードバック信号を生成するフィードバック信号生成部と、
     前記生成されたフィードバック信号を上りリンクを介して前記マイクロ基地局へ無線送信する送信部と、
    を具備したことを特徴とするユーザ端末。
  13.  第1のカバレッジエリアを有する第1セル内にいるユーザ端末に割り当てられたビームパターンに基づいたアンテナウェイトを用いて前記ユーザ端末に対する指向性ビームを生成する工程と、
     前記第1セル内に前記第1のカバレッジエリアよりも小さい第2のカバレッジエリアを有する第2セルを局所的に形成するマイクロ基地局に対して割り当てられた送信区間に、前記第1セル内にいるユーザ端末に対してビームパターンを割り当てる場合、前記第1セル内にいるユーザ端末に対するビームパターンが、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンとなるように、ビームパターンを決定する工程と、
    を具備したことを特徴とする無線通信方法。
  14.  第1のカバレッジエリアを有する第1セル内に、第1のカバレッジエリアよりも小さい第2のカバレッジセリを有する第2セルを局所的に形成する無線基地局装置が、前記第1セルを形成するマクロ基地局から、送信時間間隔に相当するサブフレーム単位で決定したビームパターンし、前記マクロ基地局と前記無線基地局装置の送信区間が重なるサブフレームには、前記第2セル内にいるユーザ端末に対する干渉電力が抑制されたビームパターンが通知される工程と、
     前記マクロ基地局から前記無線基地局装置に通知されたビームパターンを参照して、前記第2セル内にいるユーザ端末との通信に適用するビームパターンを決定する工程と、
     前記第2セル内にいるユーザ端末に割り当てられたビームパターンに基づいたアンテナウェイトを用いて、前記ユーザ端末に対する指向性ビームを生成する工程と、を具備したことを特徴とする無線通信方法。
  15.  第1のカバレッジエリアを有する第1セルを形成しているマクロ基地局から送信された信号を受信してチャネル推定する工程と、
     前記第1セル内に局所的に配置され第1のカバレッジセリアよりも小さい第2のカバレッジエリアを有する第2セルを形成しているマイクロ基地局から送信された信号を受信してチャネル推定する工程と、
     得られたチャネル推定値に対応したチャネル品質情報を含んだフィードバック信号を生成する工程と、
     前記生成されたフィードバック信号を上りリンクを介して前記マイクロ基地局へ無線送信する工程と、
    を具備したことを特徴とする無線通信方法。
PCT/JP2012/050086 2011-01-07 2012-01-05 無線基地局装置、ユーザ端末及び無線通信方法 WO2012093687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/977,933 US9265052B2 (en) 2011-01-07 2012-01-05 Radio base station apparatus, user terminal and radio communication method
EP12732024.0A EP2663116A4 (en) 2011-01-07 2012-01-05 DEVICES FORMING WIRELESS BASE STATIONS, USER TERMINAL AND WIRELESS COMMUNICATION METHOD
CN201280004834.9A CN103299668B (zh) 2011-01-07 2012-01-05 无线基站装置、以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-002443 2011-01-07
JP2011002443A JP5581230B2 (ja) 2011-01-07 2011-01-07 無線基地局装置及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2012093687A1 true WO2012093687A1 (ja) 2012-07-12

Family

ID=46457538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050086 WO2012093687A1 (ja) 2011-01-07 2012-01-05 無線基地局装置、ユーザ端末及び無線通信方法

Country Status (5)

Country Link
US (1) US9265052B2 (ja)
EP (1) EP2663116A4 (ja)
JP (1) JP5581230B2 (ja)
CN (1) CN103299668B (ja)
WO (1) WO2012093687A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172306A3 (en) * 2013-04-15 2015-01-22 Interdigital Patent Holdings, Inc. Discontinuous reception (drx) schemes for millimeter wavelength (mmw) dual connectivity
EP2849524A1 (en) * 2013-09-12 2015-03-18 Alcatel Lucent Scheduling virtualization for mobile RAN cloud and separation of of cell and user plane schedulers
US20150263797A1 (en) * 2012-11-28 2015-09-17 Sony Corporation Communication control device, communication control method, and terminal device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685643A4 (en) * 2011-03-10 2014-08-27 Fujitsu Ltd METHOD FOR COORDINATED INTERFERENCE MANAGEMENT, BASE STATION AND USER EQUIPMENT
JP5642627B2 (ja) * 2011-05-27 2014-12-17 京セラ株式会社 無線通信装置および参照信号の決定方法
WO2014061534A1 (ja) * 2012-10-18 2014-04-24 京セラ株式会社 移動通信システム及び通信制御方法
USRE49452E1 (en) * 2012-10-24 2023-03-07 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
US9948439B2 (en) * 2012-10-24 2018-04-17 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
US9660712B2 (en) 2013-02-07 2017-05-23 Lg Electronics Inc. Method and apparatus for transmitting downlink data on basis of beam restricted sub-frame
US9629025B2 (en) * 2013-05-03 2017-04-18 Blackberry Limited Controlling data offload in response to feedback information
EP2849485B1 (en) * 2013-09-12 2017-04-05 Alcatel Lucent Scheduler virtualization for mobile cloud for high latency backhaul
CN105531959B (zh) 2013-09-13 2019-07-26 瑞典爱立信有限公司 针对灵活数据长度的参考信号分配
US9961697B2 (en) * 2013-09-13 2018-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Flexible transmission scheme for wireless communication
US9479240B1 (en) * 2014-01-31 2016-10-25 Quantenna Communications, Inc. Composite beamforming to coordinate concurrent WLAN links
EP3114773B1 (en) * 2014-03-07 2018-02-14 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for inter-cell interference coordination
JP6331007B2 (ja) * 2014-03-31 2018-05-30 日本電気株式会社 無線通信システム、基地局、送信方法、及びプログラム
US9469317B2 (en) 2014-06-03 2016-10-18 Westinghouse Air Brake Technologies Corporation Locomotive-to-wayside device communication system and method and wayside device therefor
US10547418B2 (en) * 2014-06-10 2020-01-28 Qualcomm Incorporated Coordinated operations of millimeter wavelength wireless access networks
CN112152688A (zh) * 2014-07-15 2020-12-29 鲁库斯无线公司 调度聚合和天线辐射图案优化
WO2016074195A1 (zh) * 2014-11-13 2016-05-19 华为技术有限公司 高频通信的信号同步方法及装置
US9374721B1 (en) 2014-11-19 2016-06-21 Sprint Spectrum L.P. Dynamic management of base station radiation pattern based on feedback from adjacent base station
KR20170102904A (ko) 2014-12-29 2017-09-12 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 송신 제어 방법 및 장치
CN105848220B (zh) * 2015-01-13 2019-07-02 中国移动通信集团北京有限公司 一种网络自适应调整的方法及设备
CN107211303B (zh) * 2015-01-22 2020-05-08 华为技术有限公司 测量的装置和方法
US9980270B2 (en) 2015-03-13 2018-05-22 Futurewei Technologies, Inc. System and method for interference coordination in wireless communications systems
DK3308577T3 (da) * 2015-06-12 2020-01-20 Ericsson Telefon Ab L M Stråleskiftning i et cellulært netværk
KR102109606B1 (ko) * 2015-07-16 2020-05-12 에스케이텔레콤 주식회사 빔포밍 기반 무선 백홀 형성 방법, 이를 위한 장치
CN106982109B (zh) * 2016-01-16 2021-02-09 华为技术有限公司 一种无线通信的回程传输方法、控制器、基站、网关
GB2552953A (en) 2016-08-12 2018-02-21 Nec Corp Communication system
CN109997318B (zh) * 2016-09-30 2023-02-17 瑞典爱立信有限公司 用于通信系统中的上行链路预编码的系统和方法
CN108337065A (zh) * 2017-01-18 2018-07-27 索尼公司 电子设备和通信方法
JP7100016B2 (ja) * 2017-03-16 2022-07-12 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11350422B2 (en) * 2017-08-04 2022-05-31 Sony Corporation Control device, wireless device, method, and recording medium
CN109547278B (zh) * 2017-09-22 2023-01-31 中兴通讯股份有限公司 一种提升超级小区网络吞吐量的方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000171A (ja) * 2008-06-19 2010-01-07 Taiyo Elec Co Ltd 回胴式遊技機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106902B2 (ja) * 2007-03-29 2012-12-26 京セラ株式会社 通信制御方法
EP2161956B1 (en) * 2008-09-04 2011-06-15 Alcatel Lucent Femto cell base station and method of establishing a femto cell broadcast channel beam
WO2010084937A1 (ja) * 2009-01-22 2010-07-29 京セラ株式会社 無線基地局、無線端末および無線通信方法
JP5244631B2 (ja) * 2009-01-22 2013-07-24 京セラ株式会社 無線装置および無線通信方法
GB2484278A (en) * 2010-10-04 2012-04-11 Airspan Networks Inc Suppressing co-channel interference in dependence upon probabilities of establishing a link between a base station and a terminal via resource blocks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000171A (ja) * 2008-06-19 2010-01-07 Taiyo Elec Co Ltd 回胴式遊技機

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: "TS36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2", 3GPP
NTT DOCOMO: "Performance Evaluations of Heterogeneous Networks", 3GPP TSG RAN WG1 MEETING #60 RL-101226, 22 February 2010 (2010-02-22), XP055126628, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_60/Docs/R1-101226.zip> [retrieved on 20120327] *
See also references of EP2663116A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263797A1 (en) * 2012-11-28 2015-09-17 Sony Corporation Communication control device, communication control method, and terminal device
US9614596B2 (en) * 2012-11-28 2017-04-04 Sony Corporation Communication control device, communication control method, and terminal device
WO2014172306A3 (en) * 2013-04-15 2015-01-22 Interdigital Patent Holdings, Inc. Discontinuous reception (drx) schemes for millimeter wavelength (mmw) dual connectivity
CN105210444A (zh) * 2013-04-15 2015-12-30 交互数字专利控股公司 针对毫米波长(mmw)双连接性的不连续接收(drx)方案
US9801232B2 (en) 2013-04-15 2017-10-24 Idac Holdings, Inc. Discontinuous reception (DRX) schemes for millimeter wavelength (MMW) dual connectivity
CN105210444B (zh) * 2013-04-15 2019-08-09 Idac控股公司 针对毫米波长(mmw)双连接性的不连续接收(drx)方案
US10462774B2 (en) 2013-04-15 2019-10-29 Idac Holdings, Inc. Discontinuous reception (DRX) schemes for millimeter wavelength (MMW) dual connectivity
EP2849524A1 (en) * 2013-09-12 2015-03-18 Alcatel Lucent Scheduling virtualization for mobile RAN cloud and separation of of cell and user plane schedulers
WO2015036133A1 (en) * 2013-09-12 2015-03-19 Alcatel Lucent Scheduling virtualization for mobile cloud for low latency backhaul
US10039122B2 (en) 2013-09-12 2018-07-31 Alcatel Lucent Scheduling virtualization for mobile cloud for low latency backhaul

Also Published As

Publication number Publication date
EP2663116A4 (en) 2016-09-14
EP2663116A1 (en) 2013-11-13
CN103299668A (zh) 2013-09-11
JP5581230B2 (ja) 2014-08-27
US9265052B2 (en) 2016-02-16
CN103299668B (zh) 2016-08-24
JP2012147125A (ja) 2012-08-02
US20130336270A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5581230B2 (ja) 無線基地局装置及び無線通信方法
TWI744439B (zh) 波束改變指令接收失敗期間的回退波束選擇程序
US10470173B2 (en) Radio base station, user terminal and radio communication method
KR101605326B1 (ko) 신호 송수신 방법 및, 그를 위한 기지국 및 사용자기기
KR101674958B1 (ko) 셀 간 간섭을 제어하기 위한 장치 및 방법
JP6374166B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
CN110233644B (zh) 多小区接入的系统、方法和装置
US9444597B2 (en) Wireless communication system and communication method
JP6364159B2 (ja) 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
WO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2018101983A (ja) 直交周波数分割多元接続移動通信システムにおいてダウンリンク干渉測定方法及び装置
TW201743583A (zh) 向基地站通知關於使用者設備對波束改變指令的接收
US9742534B2 (en) Radio communication method, radio communication system, radio base station and user terminal
US20140094169A1 (en) Communication device and communication method
JP5134635B2 (ja) 無線基地局装置、移動端末装置及び無線通信方法
WO2013054683A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
EP3059891B1 (en) Method and apparatus for communication using a plurality of cells in a wireless communication system
JP6725696B2 (ja) 無線通信方法、ユーザ装置、及び基地局
JP2015089028A (ja) 中央制御局、無線基地局及び無線通信制御方法
EP3029901A1 (en) A method for allocation of physical layer parameters of a signal, and a base station transceiver and a user terminal therefor
JP5706848B2 (ja) 無線通信システム、無線基地局および通信制御方法
WO2014115474A1 (ja) 無線通信システム、無線通信方法、無線基地局及びユーザ端末
WO2014021009A1 (ja) 無線通信システム、無線基地局装置及び再送制御方法
US10154478B2 (en) Mobile communication system and mobile communication method
WO2013141147A1 (ja) 移動通信システム及び移動通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012732024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13977933

Country of ref document: US