WO2014115474A1 - 無線通信システム、無線通信方法、無線基地局及びユーザ端末 - Google Patents

無線通信システム、無線通信方法、無線基地局及びユーザ端末 Download PDF

Info

Publication number
WO2014115474A1
WO2014115474A1 PCT/JP2013/084715 JP2013084715W WO2014115474A1 WO 2014115474 A1 WO2014115474 A1 WO 2014115474A1 JP 2013084715 W JP2013084715 W JP 2013084715W WO 2014115474 A1 WO2014115474 A1 WO 2014115474A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
signal
user terminal
related information
radio base
Prior art date
Application number
PCT/JP2013/084715
Other languages
English (en)
French (fr)
Inventor
佑一 柿島
聡 永田
祥久 岸山
真平 安川
和晃 武田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2014115474A1 publication Critical patent/WO2014115474A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present invention relates to a wireless communication system, a wireless communication method, a wireless base station, and a user terminal applicable to a cellular system or the like.
  • Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, WSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate.
  • the system features based on CDMA (Wideband-Code Division Multiple Access) are being extracted to the maximum.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE (Long Term Evolution) has been studied for the purpose of further high data rate and low delay.
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • the system band of the LTE-A system includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit. Collecting a plurality of component carriers (cells) in this way to increase the bandwidth is called carrier aggregation (CA).
  • CA carrier aggregation
  • inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system.
  • orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain.
  • UE User Equipment
  • W-CDMA Wideband Code Division Multiple Access
  • CoMP coordinated multi-point transmission / reception
  • a plurality of cells perform transmission / reception signal processing in cooperation with one or a plurality of user terminals UE.
  • simultaneous transmission of multiple cells to which precoding is applied, cooperative scheduling / beamforming, and the like are being studied.
  • Application of these CoMP transmission / reception techniques is expected to improve the throughput characteristics of the user terminal UE located particularly at the cell edge.
  • reception processing synchronization processing
  • LTE Rel. 11 a transmission form in which downlink signals are transmitted from a plurality of transmission points to the user terminal UE is assumed with the introduction of the above-described CoMP technology or the like.
  • the characteristics (reception timing, frequency offset, etc.) of each downlink signal depend on the positional relationship between the user terminal UE and each transmission point, etc. May be different.
  • the user terminal UE performs the synchronization process assuming that the downlink signal is transmitted from a single radio base station as in the conventional case, the time synchronization of the downlink signal, the frequency synchronization, etc. May not be acquired, and reception accuracy may be reduced.
  • the present invention has been made in view of such a point, and even when a downlink signal is transmitted from a plurality of transmission points to a user terminal, a radio communication system capable of reducing a load associated with synchronization processing in the user terminal
  • An object of the present invention is to provide a radio communication method, a radio base station, and a user terminal.
  • a radio communication system of the present invention is a radio communication system comprising a plurality of radio base stations and a user terminal capable of cooperative multipoint transmission by the plurality of radio base stations, wherein the radio base station A generator that generates synchronization-related information related to signal time synchronization and frequency synchronization, a multiplexing unit that multiplexes a preamble signal having a signal sequence included in the synchronization-related information into a downlink signal, and the preamble signal are multiplexed.
  • a transmission unit that transmits the downlink signal to the user terminal, and the user terminal includes a holding unit that holds the synchronization-related information generated by the generation unit, and a downlink in which the preamble signal is multiplexed.
  • a receiving unit that receives a link signal, the synchronization-related information held in the holding unit, and the signal sequence included in the preamble signal. And having a synchronization processing unit for performing synchronization processing of the link signal.
  • Downlink CoMP transmission includes Coordinated Scheduling / Coordinated Beamforming (CS / CB) and Joint processing.
  • CS / CB is a method of transmitting a shared data channel (PDSCH) only from one transmission / reception point (or radio base station, cell) to one user terminal UE, as shown in FIG.
  • Radio resources are allocated in the frequency / space region in consideration of interference from transmission / reception points and interference with other transmission / reception points.
  • Joint processing is a method in which precoding is applied to simultaneously transmit a shared data channel from a plurality of transmission / reception points.
  • shared data is transmitted from a plurality of transmission / reception points to one user terminal UE.
  • Joint Transmission for transmitting a channel
  • Dynamic Point Selection DPS
  • DPB Dynamic Point Blanking
  • CoMP transmission is applied in order to improve the throughput of the user terminal UE existing at the cell edge. For this reason, CoMP transmission is controlled to be applied when the user terminal UE exists at the cell edge.
  • quality information for each cell from the user terminal UE for example, RSRP (Reference Signal Received Power)), RSRQ (Reference Signal Received Quality), SINR (Signal Interference plus Noise Ratio), etc.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal Interference plus Noise Ratio
  • the environment to which CoMP transmission / reception is applied includes, for example, a configuration including a plurality of remote radio devices (RRE: Remote Radio Equipment) connected to a radio base station (radio base station eNB) via an optical fiber (RRE configuration) Based control) and a configuration of a radio base station (radio base station eNB) (autonomous distributed control based on an independent base station configuration).
  • RRE Remote Radio Equipment
  • downlink signals (downlink control signals, downlink data signals, synchronization signals, reference signals, etc.) are transmitted from a plurality of transmission points or specific transmission points to the user terminal UE.
  • the user terminal UE that has received the downlink signal for example, for a reference signal (cell-specific reference signal (CRS), user-specific demodulation reference signal (DM-RS: Demodulation Reference Signal), for channel state measurement)
  • Reception processing is performed using a reference signal (CSI-RS: Channel State Information Reference Signal) or the like.
  • reception processing performed by the user terminal UE include signal processing such as channel estimation, synchronization processing, demodulation processing, and feedback information (CSI) generation processing.
  • reception signal levels, reception timings, and the like of the downlink signals transmitted from the respective transmission points may be different (See FIGS. 2A and 2B).
  • the user terminal UE cannot grasp from which transmission point each received downlink signal (for example, a reference signal assigned to a different antenna port (AP)) is transmitted. For this reason, when performing channel estimation, a demodulation process, etc. using all the reference signals which the user terminal UE received, there exists a possibility that reception accuracy may fall.
  • the user terminal UE when the reception process is performed using the reference signal transmitted from each transmission point, the user terminal UE considers the geographical position of each transmission point (propagation characteristics of the downlink signal transmitted from each transmission point). It is desirable to perform reception processing. Therefore, the case where the long-term propagation path characteristics are the same between different antenna ports (APs) is assumed to be “Quasi co-location” (the pseudo geographical relationship is the same), and between each downlink signal, the Quasi co It is considered that each user terminal UE performs different reception processing depending on whether or not the location is “location”.
  • APs antenna ports
  • long-term propagation path characteristics refer to delay spread, Doppler spread, Doppler shift, average gain, average delay, etc. If some or all of them are the same, a quasi co-location is assumed. Note that “Quasi co-location” corresponds to a geographically identical case, but is not necessarily limited to a physical proximity.
  • reception processing for example, signal processing such as channel estimation, synchronization processing, demodulation processing, and feedback information (CSI) generation processing
  • CSI feedback information
  • a CRS is transmitted from an AP that is determined to be geographically identical (Quasi co-location), and CSI is transmitted from AP # 15 and AP # 16 that are determined to be geographically separated (not Quasi co-location).
  • -As sume a case where an RS is transmitted (see FIG. 2A).
  • the user terminal UE performs reception processing using CRS as in the conventional case.
  • the user terminal UE performs independent channel estimation for AP # 15 and AP # 16, and then generates and feeds back channel quality information.
  • the Quasi co-location between different APs is, for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), CRS, DM-RS (for PDSCH) ), DM-RS (for ePDCCH), CSI-RS, and the like.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS CRS
  • DM-RS for PDSCH
  • DM-RS for ePDCCH
  • CSI-RS CSI-RS
  • LTE Rel. 11 it is important to perform reception processing on the user terminal UE side in consideration of the correspondence relationship (Quasi co-location relationship) between downlink signals.
  • the user terminal UE when downlink signals are transmitted from a plurality of transmission points to the user terminal UE by CoMP or the like, the user terminal UE considers a control signal transmitted from each transmission point, a mapping pattern of reference signals, and the like. It is desirable to specify (rate matching) the resource (RE) to which the PDSCH is allocated. For example, when transmitting from a plurality of transmission points (TP1 and TP2) to the user terminal UE (for example, JT CoMP), the user terminal UE uses PDCCH (Physical Downlink Control Channel), CRS, and CSI-RS in TP1 and TP2. It is preferable to perform rate matching in consideration of a mapping pattern and the like.
  • PDCCH Physical Downlink Control Channel
  • CRS Physical Downlink Control Channel
  • CSI-RS Channel
  • the user terminal UE applies CoMP (for example, JT CoMP) using TP1 and TP2 in a wireless system configured to be connectable to a plurality of transmission points (TP1 to TP3).
  • CoMP for example, JT CoMP
  • the user terminal UE performs rate matching in consideration of mapping patterns such as control signals and reference signals respectively transmitted from TP1 and TP2 (see FIG. 3).
  • mapping patterns such as control signals and reference signals respectively transmitted from TP1 and TP2 (see FIG. 3).
  • 3A to 3C show examples of mapping patterns in normal subframes TP1 to TP3, and FIG. 3D corresponds to a mapping pattern that takes into account signals transmitted from TP1 and TP2.
  • PDSCH Physical Downlink Shared to the area other than the resource to which CRS is mapped among radio resources after a predetermined symbol to which a downlink control channel is allocated. Channel
  • the user terminal UE can improve reception processing accuracy by performing reception processing in consideration of the pattern of FIG. 3D.
  • CRS is shown as a reference signal in FIG. 3, when CSI-RS is mapped, rate matching is performed in consideration of CSI-RS.
  • FIG. 3 shows a normal subframe in which CRS is mapped across the entire frequency band.
  • an MBSFN (Multicast-Broadcast service Single Frequency Network) subframe or a new carrier type (NCT) is shown.
  • NCT New Carrier Type
  • the MBSFN is a scheme in which a plurality of radio base stations constituting the MBSFN can simultaneously synchronize and transmit the same signal so that the user terminal UE can synthesize a signal transmitted from each radio base station by RF (Radio Frequency).
  • the MBSFN subframe is a subframe in which a portion other than the control channel is a blank period (blank period) and no CRS is assigned to the PDSCH region.
  • a subframe of a new carrier type (also referred to as an “extension carrier type”) is a subframe that does not have an existing PDCCH from the top of the subframe to a predetermined OFDM symbol (maximum 3 OFDM symbols) and is not assigned a CRS. .
  • the rate matching pattern of TP1 + TP2 is equal to the mapping pattern of TP1. That is, the user terminal UE can perform rate matching considering only the mapping pattern of RE for PDSCH of TP1 using normal subframes.
  • the user terminal UE by performing rate matching in consideration of the mapping pattern and subframe configuration of PDCCH, CRS, and CSI-RS transmitted from a plurality of transmission points, PDSCH resources of the serving cell and the neighboring cell Can be specified and received. That is, LTE Rel. 11, it is important that the user terminal UE performs rate matching in consideration of a mapping pattern such as PDCCH, CRS, CSI-RS, and subframe configuration.
  • parameter information for each component carrier (CC), parameter information (PDSCH RE Mapping and Quasi) in which PDSCH resource mapping information (PDSCH RE Mapping Parameter) and Quasi co-location information (Quasi-co-location Configuration Parameter) are defined.
  • Preparation of a predetermined number (for example, 4 sets) of -co-location Configuration) and reporting it to the user terminal UE is under consideration.
  • the radio base station (network) side considers transmission points and communication environments around the user terminal UE, parameter information including PDSCH resource mapping information and Quasi co-location information (hereinafter, “ A predetermined number (for example, four types) is defined. And the said some parameter information is notified to the user terminal UE by upper layer signaling (for example, RRC signaling). Further, it is considered that an instruction for allowing the user terminal UE to select specific parameter information from the four types of parameter information # 1 to # 4 is included in the downlink control information (DCI) and dynamically notified to the user terminal UE. (See FIG. 4).
  • DCI downlink control information
  • parameter information # 1 to # 4 (PDSCH RE Mapping and Quasi-co-location Configuration # 1- # 4) shown in FIG. 4 is notified to the user terminal UE by higher layer signaling and corresponds to each parameter information.
  • Bit information (“00”, “01”, “10” or “11”) is included in downlink control information (DCI) and notified to the user terminal UE.
  • DCI downlink control information
  • FIG. 5A shows a case where one transmission / reception point is instantaneously selected from a plurality of transmission / reception points (here, three of TP1, TP2, and TP3) and DPS CoMP for transmitting a shared data channel is applied.
  • the network dynamically selects one transmission point (radio base station) and transmits a data signal to the user terminal UE.
  • a data signal is transmitted from transmission point TP1 to user terminal UE, and in subframe # 2, a data signal is transmitted from transmission point TP2 to user terminal UE. In subframe # 3, a data signal can be transmitted from transmission point TP3 to user terminal UE.
  • FIG. 5B shows an example of parameter information (Configuration).
  • Parameter information # 1, # 2, and # 3 (Configuration # 1, # 2, and # 3) are parameters of TP1, TP2, and TP3, respectively. It corresponds. Also, these parameter information # 1 to # 3 are notified to the user terminal UE via higher layer signaling (for example, RRC signaling).
  • the CRS pattern includes the number of CRS antenna ports and the shift amount. Thereby, the mapping pattern of CRS can be specified.
  • the MBSFN configuration (MBSFN config) corresponds to the MBSFN configuration, and the presence or absence of a CRS pattern in the PDSCH region can be determined from the MBSFN configuration.
  • the non-zero power CSI-RS (NZP CSI-RS) is a reference signal that can be used for estimating a desired signal, and the CSI-RS pattern (NZP CSI-RS pattern) is notified to the user terminal UE. -Can determine the Quasi co-location relationship between RS and DM-RS.
  • Zero power CSI-RS is a reference signal that can be used for interference signal estimation, and PDSCH is not multiplexed. By notifying the user terminal UE of the zero power CSI-RS pattern (ZP CSI-RS pattern), rate matching can be performed appropriately.
  • the PDSCH starting symbol (PDSCH starting symbol) is a parameter indicating a head symbol in which the PDSCH is arranged. Thereby, the user terminal UE can specify the leading symbol of the PDSCH of the adjacent cell. Note that the parameter information in FIG. 5 is an example, and the present invention is not limited to this.
  • the identifier indicating each parameter information (PDSCH RE Mapping and Quasi-co-location Configuration) shown in FIG. 5B may be called PQI (PDSCH RE Mapping and Quasi-co-location Indicator).
  • the PQI is included in downlink control information (DCI) and notified to the user terminal UE. For example, as described above, when data is transmitted from TP1 to the user terminal UE in the subframe # 1, the downlink control information is notified so that the parameter information # 1 is applied to the user terminal UE. For example, when the relationship between the parameter information and the PQI is shown in FIG. 4, the PQI set in the DCI is “00”.
  • DCI format 2D downlink control information
  • TM10 CoMP transmission mode
  • the frequency synchronization of the downlink signal (specification of the frequency offset) is ensured from the CRS pattern shown in FIG. 5B, and the CSI-RS pattern (non-zero power CSI-RS pattern, zero power CSI-RS pattern) is secured. )
  • CRS is linked
  • cell ID can be specified from a CRS pattern, and the transmission point used as a transmission source can be specified by this cell ID.
  • a heterogeneous network configuration in which a large number of small cells S are arranged on the area of the macro cell M as shown in FIG.
  • a small cell S using a frequency (for example, 3.5 GHz) different from the macro cell M is overlaid on the area of the macro cell M using an existing frequency (for example, 2 GHz or 800 MHz).
  • LTE Rel. 12 the density of such a small cell S is being further increased (SCE: Small Cell Enhancement). For example, it is considered to arrange several hundred small cells S for a single macro cell M.
  • the user terminal UE in a network in which the small cells S are densely arranged on the area of the macro cell M, it is assumed that CoMP transmission is performed between the small cells S for the user terminal UE.
  • the user terminal UE can stably realize high throughput by using a plurality of small cells S seamlessly.
  • the user terminal UE secures time synchronization and frequency synchronization with these small cells S, and specifies the small cell S as a transmission source. It is necessary to do.
  • the user terminal UE secures time synchronization and frequency synchronization of downlink signals transmitted from a plurality of transmission points by determining the PQI set in the DCI format 2D, and Can be identified.
  • transmission points for example, the small cells S
  • the load accompanying the PDCCH decoding process in the user terminal UE increases.
  • the present inventors can ensure time synchronization and frequency synchronization with the transmission point by a simpler method.
  • the present invention has been conceived by paying attention to reducing the load accompanying decoding processing in the UE and contributing to improvement of throughput characteristics. That is, in the present invention, information related to time synchronization and frequency synchronization with a radio base station serving as a transmission point (hereinafter referred to as “synchronization related information”), instead of synchronization processing using PDCCH including DCI format 2D. ) Is transmitted from the radio base station to the user terminal UE, and the synchronization process is executed in the user terminal UE based on the synchronization related information.
  • synchronization related information information related to time synchronization and frequency synchronization with a radio base station serving as a transmission point
  • the synchronization process is the "acquisition” process, which is the process until the synchronization state is established at the beginning of communication, and the synchronization state is not lost due to modulation or noise after the synchronization is established.
  • synchronization refers to one or both of “synchronization acquisition” and “synchronization tracking”, unless otherwise specified, and “synchronization processing” refers to “synchronization acquisition processing”. ”And“ synchronous tracking process ”.
  • a radio base station generates synchronization related information related to time synchronization and frequency synchronization of a downlink signal, and downlinks a preamble signal having a signal sequence included in the synchronization related information.
  • the signal is multiplexed and transmitted to the user terminal.
  • the synchronization related information generated in the radio base station is held, the downlink signal in which the preamble signal is multiplexed is received, and the held synchronization related information and the signal included in the preamble signal are received
  • the downlink signal is synchronized using the sequence.
  • the synchronization-related information generated in the radio base station may be configured by, for example, identification information (for example, a cell ID) of the radio base station serving as a transmission point and a signal sequence associated with the identification information. it can.
  • identification information for example, a cell ID
  • signal sequence associated with the identification information.
  • Signal sequences included in the synchronization related information include LTE Rel. Such as CRS, CSI-RS, and PSS / SSS. 11 and a signal sequence obtained by extending these reference signals and synchronization signals can be used.
  • LTE Rel. 11 or other reference signals for example, DM-RS
  • the signal sequence may be composed of a PN (Pseudo-random Noise) sequence, or may be composed of a Gold sequence or a Zadoff-Chu sequence.
  • DISCOVERY SIGNAL may be called PDCH (Physical Discovery Channel), BS (Beacon Signal), DPS (Discovery Pilot Signal), for example.
  • DISCOVERY SIGNAL may be configured by any of the signals (a) to (d) shown below, or may be configured by arbitrarily combining the signals (a) to (d).
  • A LTE Rel.
  • the synchronization signals (PSS, SSS) defined by 8 can be used.
  • B LTE Rel.
  • a signal multiplexed at different positions in the time / frequency direction using the same sequence as the synchronization signal defined in FIG. 8 can be used. For example, a signal obtained by multiplexing PSS and SSS in different slots can be used.
  • C The newly defined DISCOVERY SIGNAL is used to select a small cell. For example, LTE Rel.
  • the existing reference signals (CSI-RS, CRS, DM-RS, PRS, SRS) defined in 10 can be used.
  • CSI-RS, CRS, DM-RS, PRS, SRS CSI-RS, CRS, DM-RS, PRS, SRS
  • a part of an existing reference signal for example, a signal that transmits 1-port CRS at a cycle of 5 msec may be used.
  • the synchronization related information can be notified to the user terminal UE by, for example, higher layer signaling (for example, RRC signaling).
  • the user terminal UE can hold the notified synchronization related information.
  • the user terminal UE and the plurality of radio base stations can hold the information before the synchronization acquisition process.
  • the synchronization related information can be updated to Semi-Static, only the necessary synchronization related information according to the location of the user terminal UE can be notified to the user terminal UE.
  • the preamble signal transmitted from the radio base station has the signal sequence described above.
  • This preamble signal is multiplexed with a downlink signal (more specifically, user data for the user terminal UE) and transmitted to the user terminal UE.
  • a downlink signal more specifically, user data for the user terminal UE
  • synchronization processing is performed based on the signal sequence included in the preamble signal multiplexed on the downlink signal and the synchronization related information held.
  • FIG. 7 is a diagram for explaining the operation of the user terminal UE based on synchronization-related information defined by the radio communication method according to the present embodiment.
  • FIG. 7 shows a case where different signal sequences (sequence 1 to sequence 3) are assigned to the three radio base stations eNB1 to eNB3 serving as transmission points.
  • the user terminal UE holds synchronization-related information including identification information (cell ID) of these radio base stations eNB1 to eNB3 and a signal sequence associated with this identification information.
  • identification information cell ID
  • CRS is defined as the signal sequence of the radio base station eNB1
  • CSI-RS is defined as the signal sequence of the radio base station eNB2
  • DM-RS is defined as the signal sequence of the radio base station eNB3. It shall be stipulated.
  • the user terminal UE When the downlink signal is received, the user terminal UE performs a cross-correlation process on the signal sequence included in the preamble signal multiplexed on the downlink signal and the signal sequence defined in the synchronization related information. Specifically, the user terminal UE calculates a correlation between a signal sequence replica held in association with each signal sequence and a downlink signal (preamble signal). For example, when a downlink signal including a signal sequence (CRS) is transmitted from the radio base station eNB1, it is possible to detect a peak for the signal sequence by performing cross-correlation processing (see FIG. 7). Thereby, in the user terminal UE, it can grasp
  • CRS signal sequence
  • the synchronization-related information is composed of identification information of a radio base station serving as a transmission point and a signal sequence associated with this identification information.
  • the configuration of the synchronization related information is not limited to this, and can be changed as appropriate.
  • time synchronization is performed from the signal sequence included in the downlink signal and the multiplexed position by grasping the identification information of the radio base station, the signal sequence and the multiplexed position thereof before the synchronization process.
  • the multiplexing position included in the synchronization-related information is, for example, a time in which the position where the signal sequence is multiplexed among the radio resources (resource element (RE)) constituting each subframe is temporally different. Multiple positions can be used. In this case, the time-multiplexed position of the signal sequence is used as the configuration information of the synchronization related information.
  • RE resource element
  • FIG. 8 is an explanatory diagram of an example of a signal sequence in which the time multiplexing position included in the synchronization related information is changed.
  • FIG. 8 shows a signal sequence multiplexed at a time multiplexing position included in the synchronization related information.
  • the vertical axis and the horizontal axis indicate frequency and time, respectively, and three consecutive subframes 1 to 3 in the downlink are illustrated.
  • the signal sequence constituting the preamble signal is indicated as “P”
  • the transmission data for the user terminal UE is indicated as “DATA”.
  • the time-multiplexed positions of the signal sequences shown in FIGS. 8A to 8C are examples, and are not limited to this.
  • FIG. 8A shows a case where a signal sequence is multiplexed on a radio resource arranged at the head of each subframe.
  • a signal sequence is multiplexed at the head part of a subframe, the buffering load of the received signal in the user terminal UE can be reduced.
  • a PDCCH region in a general subframe may be used.
  • FIG. 8B shows a case where a signal sequence is multiplexed on radio resources arranged at the head and tail of each subframe.
  • the signal sequence is multiplexed before and after the transmission data of each subframe.
  • the accuracy of frequency synchronization can be improved. That is, frequency synchronization is generally obtained by comparing the phases of two estimation target signals (reference signals) that are temporally separated.
  • two estimation target signals reference signals
  • FIG. 8B by multiplexing the signal sequence in the head part and tail part of the subframe, it is possible to estimate based on two estimation target signals that are temporally separated, and the accuracy of frequency synchronization can be improved.
  • FIG. 8C shows a case where the signal sequence is spread and multiplexed in the transmission data. Note that a signal sequence spreading method for transmission data can be determined in advance. When the signal sequence is spread and multiplexed in the transmission data in this way, it is possible to obtain a time diversity gain because the signal sequence can be transmitted to the user terminal UE while shifting the time within the subframe. .
  • the synchronization-related information is divided into identification information (for example, a cell ID) of a radio base station serving as a transmission point, a signal sequence associated with the identification information, and a position where the signal sequence is multiplexed (time multiplexed position).
  • identification information for example, a cell ID
  • signal sequence associated with the identification information for example, a cell ID
  • time multiplexed position a position where the signal sequence is multiplexed
  • the CRS arranged at the head portion of each subframe is defined as the signal sequence of the radio base station eNB1, and the signal of the radio base station eNB2
  • a case is assumed in which CRSs arranged at the head and tail of each subframe are defined as sequences, and CRSs spread in transmission data are defined as signal sequences of the radio base station eNB3.
  • the user terminal UE When the downlink signal is received, the user terminal UE performs cross-correlation processing on three types of signal sequences (CRSs arranged at different time multiplexed positions) defined in the synchronization related information. Specifically, the user terminal UE calculates the correlation between the signal sequence replica held in association with each signal sequence and the downlink signal. For example, when a downlink signal including a signal sequence (CRS arranged at the head portion of each subframe) is transmitted from the radio base station eNB1, it is possible to detect a peak for the signal sequence by performing cross-correlation processing. (See FIG. 7). Thereby, in the user terminal UE, it can grasp
  • CRS signal sequence arranged at different time multiplexed positions
  • a preamble signal including such a signal sequence can be switched for each subframe.
  • a subframe 1 transmits a preamble signal in which a signal sequence is multiplexed at the beginning of the subframe
  • a subframe 2 multiplexes a preamble signal in which the signal sequence is multiplexed at the beginning and tail of the subframe
  • a subframe 3 has a signal sequence. Can be transmitted in the transmission data and transmitted.
  • the transmission points can be switched at high speed when CoMP DPS is applied.
  • switching a preamble signal including such a signal sequence periodically (for example, every 5 milliseconds) or transmitting a preamble signal in response to a transmission request (trigger) from the user terminal UE is an overhead. It is preferable from the viewpoint. In the former, unnecessary synchronization processing can be suppressed, for example, by associating or associating the cycle of switching the signal sequence included in the preamble signal with the switching cycle of the transmission point of CoMP, and the load associated with the synchronization processing in the user terminal UE Can be reduced.
  • a frequency multiplexing position included in the synchronization-related information a frequency multiplexing position in which the position where the signal sequence is multiplexed is different among the radio resources (resource elements (RE)) constituting each subframe is used. be able to.
  • the frequency multiplex position of the signal sequence is used as the configuration information of the synchronization related information.
  • FIG. 9 is an explanatory diagram of an example of a signal sequence in which the frequency multiplexing position included in the synchronization related information is changed.
  • the vertical axis and the horizontal axis indicate frequency and time, respectively. Specifically, 20 MHz is shown as a frequency band constituting the transmission band, and a single subframe in the downlink is shown. Further, in FIG. 9, the signal series constituting the preamble signal is indicated as “P”. Note that the frequency multiplexing positions of the signal sequences shown in FIGS. 9A to 9C are examples, and are not limited to these.
  • FIG. 9A shows a case where the signal sequence is multiplexed in the highest frequency band among the radio resources arranged at the head of the subframe.
  • FIG. 9B shows a case where a signal sequence is multiplexed in a frequency band arranged near the center of the transmission frequency among the radio resources arranged at the head of the subframe.
  • FIG. 9C shows a case where the signal sequence is multiplexed in the lowest frequency band among the radio resources arranged at the head of the subframe.
  • the synchronization-related information is divided into the identification information (for example, cell ID) of the radio base station serving as the transmission point, the signal sequence associated with this identification information, and the position where the signal sequence is multiplexed (frequency multiplexed position).
  • the identification information for example, cell ID
  • the signal sequence associated with this identification information the signal sequence associated with this identification information
  • the position where the signal sequence is multiplexed frequency multiplexed position
  • the synchronization-related information held in the user terminal UE defines a CRS arranged at the highest frequency position of the transmission frequency as the signal sequence of the radio base station eNB1, and the radio base station eNB2 Assume that a CRS arranged near the center of the transmission frequency is defined as the signal sequence, and a CRS arranged at the lowest frequency position of the transmission frequency is defined as the signal sequence of the radio base station eNB3.
  • the user terminal UE When a downlink signal is received, the user terminal UE performs cross-correlation processing on three types of signal sequences (CRSs arranged at different frequency multiplexing positions) defined in the synchronization related information. Specifically, the user terminal UE calculates the correlation between the signal sequence replica held in association with each signal sequence and the downlink signal. For example, when a downlink signal including a signal sequence (CRS arranged at the highest frequency position of the transmission frequency) is transmitted from the radio base station eNB1, it is possible to detect a peak for the signal sequence by performing cross-correlation processing (See FIG. 7). Thereby, in the user terminal UE, it can grasp
  • CRS signal sequence arranged at different frequency multiplexing positions
  • the frequency multiplexing position of the signal sequence is not limited to this.
  • the frequency multiplexing position of the signal sequence may be changed.
  • it may be distributed and arranged (Distribute arrangement), may be arranged locally (Localize arrangement), or may be arranged in the entire transmission band (Full band arrangement).
  • the above-described signal sequence time-multiplexed position and frequency-multiplexed position may be used in combination.
  • the configuration of the synchronization-related information can include a reference signal sequence for demodulation of a received signal associated with the signal sequence in addition to the above-described information (for example, identification information of radio base station, signal sequence, etc.).
  • a reference signal sequence for demodulation of a received signal associated with the signal sequence in addition to the above-described information (for example, identification information of radio base station, signal sequence, etc.).
  • the user terminal UE can grasp the reference signal sequence for demodulating the received signal based on the signal sequence constituting the preamble signal, it can easily demodulate the received signal without requiring any special processing. It becomes possible.
  • the synchronization-related information includes identification information (for example, a cell ID) of a radio base station serving as a transmission point and a signal sequence associated with this identification information.
  • identification information for example, a cell ID
  • assigning a series is described.
  • the configuration of the synchronization related information is not limited to this, and can be changed as appropriate. For example, it is good also as a structure which assigns a signal sequence uniquely to the user terminal UE.
  • the synchronization-related information can be composed of, for example, a signal sequence unique to the user terminal UE and a reference signal sequence for demodulation of a received signal associated with this signal sequence.
  • the reference signal sequence for demodulating the received signal is unique to the user terminal UE, similarly to the signal sequence.
  • the signal sequence unique to the user terminal UE and the demodulation reference signal sequence of the received signal are grasped before the synchronization process, and are included in the downlink signal. It is possible to ensure time synchronization and frequency synchronization from the signal sequence and to appropriately demodulate the received signal associated with this signal sequence.
  • the signal sequence included in the synchronization-related information can be configured in the same manner as in the above-described example (that is, an example in which a signal sequence is uniquely assigned to a transmission point).
  • the multiplexing position (time multiplexing position, frequency multiplexing position) of the signal sequence can be configured in the same manner as in the above-described example.
  • the notification of the synchronization related information can also be notified to the user terminal UE using, for example, higher layer signaling (for example, RRC signaling).
  • FIG. 10 is a diagram for explaining the operation of the user terminal UE based on synchronization-related information defined by the radio communication method according to the present embodiment.
  • FIG. 10 shows a case where a specific signal sequence (sequence 1) is assigned to the user terminal UE.
  • the user terminal UE holds synchronization-related information including a signal sequence unique to the user terminal UE and a demodulation reference signal sequence for a received signal associated with the signal sequence.
  • CRS is defined as a signal sequence unique to the user terminal UE
  • DM-RS is defined as a demodulation reference signal sequence for a received signal associated with this CRS.
  • the user terminal UE When receiving the downlink signal, the user terminal UE performs a cross-correlation process on a specific signal sequence (CRS) defined in the synchronization related information. Specifically, the user terminal UE calculates the correlation between the signal sequence replica held in association with the specific signal sequence and the downlink signal. In this case, in the user terminal UE, as shown in FIG. 10, peak detection can be performed at the timing when the unique signal sequence is received. As a result, the user terminal UE cannot grasp the transmission point that is the transmission source of the downlink signal, but appropriately knows the demodulation reference signal sequence (DM-RS) of the received signal in advance. The received signal can be demodulated, and time synchronization and frequency synchronization can be ensured.
  • CRS specific signal sequence
  • the second aspect of the present invention transmits synchronization related information indicating whether or not a plurality of radio base stations are synchronized to the user terminal UE, and based on this synchronization related information, the user terminal UE The necessity of synchronization processing with the radio base station is determined, and when the radio base station that is the transmission point is not synchronized, the synchronization processing of the downlink signal transmitted from the radio base station is performed .
  • the macro cell M and the small cell S connected by the backhaul link using the X2 interface or the like is generally connected to the user terminal UE.
  • the transmission timing of transmission data is synchronized.
  • cells other than between the cells synchronized in this way are generally not synchronized.
  • Such synchronization-related information regarding synchronization / asynchronization between cells can be grasped in advance on the network (wireless base station) side.
  • such synchronization-related information regarding synchronization / asynchronization between cells is transmitted to the user terminal UE, and is used as a material for determining the necessity of synchronization processing in the user terminal UE.
  • the user terminal UE determines the necessity of synchronization processing with the radio base station serving as a transmission point based on the content of the synchronization-related information, and synchronizes the downlink signal transmitted from the radio base station serving as the transmission point. Process.
  • the synchronization process can be performed only when necessary with the radio base station serving as a transmission point, so the synchronization process between the synchronized radio base stations can be omitted, and the synchronization process in the user terminal UE Can be reduced.
  • the synchronization-related information regarding synchronization / asynchronization is not limited to the case where synchronization is substantially ensured by the wired connection as described above.
  • delay spread based on factors such as delay spread, Doppler spread, Doppler shift, average gain, average delay, etc., quasi co-location (hereinafter referred to as “delay spread”) Whether it is simply “co-location” or not may be determined based on whether it is synchronous or asynchronous.
  • delay spread quasi co-location
  • synchronization-related information for example, a group of cells (for example, small cells) that are co-location (hereinafter referred to as “co-location group”) is grasped in advance, and this co-location group is used as the user terminal.
  • the UE can be notified.
  • the necessity of the synchronization processing for the downlink signal is determined based on the relationship notified in the co-location group and the relationship with the radio base station serving as the transmission point.
  • synchronization processing for a downlink signal from the radio base station can be omitted. , The load associated with the synchronization process can be reduced.
  • FIG. 11 is an explanatory diagram of radio base stations belonging to the co-location group.
  • FIG. 11 shows two co-location groups A and B and radio base stations belonging to these co-location groups.
  • the radio base stations eNB1 to eNB4 belong to the co-location group A, and the radio base stations eNB5 to eNB8 belong to the co-location group B.
  • the movement path of the user terminal UE is indicated by an arrow A.
  • the user terminal UE performs radio communication with the radio base stations eNB1, eNB2, and eNB3 that belong to the co-location group A, and then belongs to the co-location group B.
  • Wireless communication is performed between the eNB 5 and the eNB 6.
  • the radio base stations eNB1, eNB2, and eNB3 are synchronized with each other, and that fact (that is, belonging to the same co-location group) is notified as synchronization-related information. After ensuring synchronization with the station eNB1, there is no need to perform synchronization processing between the radio base stations eNB2 and eNB3.
  • the radio base station eNB5 belonging to the co-location group B is not synchronized with the radio base station eNB3, that fact (that is, belonging to a different co-location group) is notified as synchronization related information.
  • the user terminal UE it is necessary to perform a synchronization process with the radio base station eNB5.
  • the radio base stations eNB5 and eNB6 are synchronized with each other and the fact is notified as synchronization-related information, the user terminal UE secures synchronization with the radio base station eNB5, and then the radio base station eNB6 There is no need to synchronize with the.
  • the user terminal UE may perform synchronization processing with one radio base station belonging to the co-location group. Then, after ensuring synchronization, there is no need to perform synchronization processing unless moving across the co-location group. As a result, the number of synchronization processes can be reduced, and the load associated with the synchronization process can be reduced.
  • This co-location group can be signaled by adding an index (identifier) corresponding to the co-location group when configuring CSI-RS, for example.
  • FIG. 11 shows information signaled to the user terminal UE in association with the respective radio base stations eNB1 to eNB8. Here, for convenience of explanation, not the index corresponding to the co-location group but the type of the co-location group is shown.
  • the user terminal UE is signaled with the number “13” as the CSI-RS configuration and the co-location group A to which the radio base station eNB1 belongs.
  • the numbers “1”, “7”, and “8” are signaled as CSI-RS configuration, respectively, and the co-location group to which these radio base stations eNB belong A is signaled.
  • the user terminal UE is signaled with the number “16” as the CSI-RS configuration and the co-location group B to which the radio base station eNB1 belongs.
  • the radio base stations eNB6, eNB7, and eNB8 numbers “10”, “5”, and “4” are signaled as CSI-RS configuration, respectively, and co-location groups to which these radio base stations eNB belong B is signaled.
  • the user terminal UE can determine whether synchronization processing is necessary based on the content signaled in addition to such CSI-RS configuration. In this case, since the index of the co-location group is notified in addition to the existing CSI-RS configuration, the necessity of synchronization processing is transmitted to the user terminal UE without requiring a significant change. be able to.
  • the index of the co-location group is added to the CSI-RS configuration on the assumption that the synchronization processing in the user terminal UE is performed using the CSI-RS.
  • the signaling target to which the co-location group index is added is not limited to the CSI-RS configuration, and can be changed as appropriate.
  • FIG. 12 is a diagram showing an example of a table for managing the co-location group index.
  • contents belonging to three co-location groups A to C (indexes 1 to 3) and contents not belonging to any of the co-location groups A to C are defined ( Index 0).
  • the indexes 0 to 3 are represented by 2 bits. For example, index 0 is represented by “00”, and index 1 is represented by “01”. Similarly, the index 2 is represented by “10”, and the index 3 is represented by “11”.
  • bit information “01” is added in the CSI-RS configuration corresponding to the radio base stations eNB1 to eNB4 belonging to the co-location group A.
  • bit information “10” is added in the CSI-RS configuration corresponding to the radio base stations eNB5 to eNB8 belonging to the co-location group B.
  • bit information “00” is added in the CSI-RS configuration. Since it is signaled to this effect when it does not belong to any co-location group, the user terminal UE can clearly grasp that the corresponding radio base station needs to be synchronized. .
  • co-location information information related to co-location with the reference radio base station
  • co-location information information related to co-location with the reference radio base station
  • a reference radio base station for example, a radio base station with which the user terminal UE is currently communicating, a radio base station that manages a macro cell (macro base station), or the like can be designated.
  • the user terminal UE needs to perform synchronization processing with the radio base station serving as a transmission point based on the co-location information between the user base UE and the reference radio base station. It is possible to determine whether or not.
  • the co-location information for example, it is possible to notify the user terminal UE of information indicating whether or not it is a co-location with a reference radio base station. In this case, the necessity of synchronization processing with the radio base station serving as a transmission point is clearly determined according to the information indicating whether or not it is co-location with the reference radio base station. It becomes possible to do.
  • co-location information for example, information indicating how much time difference is present from the co-location state with the reference radio base station can be notified to the user terminal UE.
  • synchronization with the radio base station serving as a transmission point is determined according to information indicating how much time difference exists from the co-location state with the reference radio base station. It becomes possible to clearly determine whether processing is necessary.
  • the temporal difference can be represented by a plurality of bit information.
  • bit information For example, when four types of synchronization states are indicated, they can be represented by 2-bit bit information. For example, “00” indicates that it is not a co-location with a reference radio base station (that is, that it is asynchronous), and it indicates that it is not completely synchronized but is synchronized with high accuracy. 01 ".
  • “10” indicates that synchronization with a reference radio base station is performed with a lower accuracy than the synchronization state indicated by “01”, and the synchronization indicated by “10”.
  • “11” can be used to indicate that synchronization is performed in a state where the accuracy is further lowered than the state.
  • the synchronization state indicated by these bit information “01”, “10” and “11” can be designated as a numerical value.
  • These numerical values may be predetermined numerical values or may be designated from the radio base station. In particular, in the latter case, a numerical value (time) indicating the synchronization state can be appropriately designated, so that synchronization can be flexibly ensured while changing the synchronization accuracy.
  • the radio communication method according to the second aspect can be applied to a CC to be CA. That is, synchronization related information indicating whether or not the radio base stations corresponding to each CC are synchronized is transmitted to the user terminal UE, and between the radio base stations in the user terminal UE based on the synchronization related information The necessity of the synchronization process is determined, and when a specific radio base station is not synchronized, the downlink signal transmitted from the radio base station can be synchronized.
  • FIG. 13 shows cells 1 to 5 corresponding to CC # 1 to CC # 5 to be CA.
  • cell 1 is a primary cell (PCell)
  • cells 2 to 5 are secondary cells (SCell).
  • co-location signaling for example, the PDSCH allocated to CC # 3 is associated with CC # 3 number “7” as CSI-RS configuration. Is signaled. That is, existing co-location signaling is performed within a single CC.
  • the radio communication method in the second aspect when applying the radio communication method in the second aspect, by notifying the user terminal UE of synchronization related information indicating whether or not the radio base stations corresponding to each CC is synchronized, In the user terminal UE, it is possible to determine the necessity of synchronization processing with the radio base station corresponding to each CC, and the number of downlink signal synchronization processing can be reduced. As a result, even when CA is applied at the time of data transmission to the user terminal UE, it is possible to reduce the load associated with the synchronization process in the user terminal UE.
  • the above-described co-location group for each radio base station corresponding to the CC A corresponding index can be added and signaled.
  • co-location signaling can be performed across CCs to be CA.
  • the PDSCH assigned to CC # 2 is signaled as being associated with CC # 1 number “5” as CSI-RS configuration.
  • the user terminal UE can grasp that the radio base station corresponding to CC # 2 is synchronized with the radio base station corresponding to CC # 1, The synchronization process with the radio base station corresponding to 2 can be omitted.
  • co-location with the radio base station corresponding to the reference CC is performed.
  • Information can also be notified to the user terminal UE.
  • the co-location information includes information indicating whether or not it is a co-location with a radio base station corresponding to a reference CC, and information with a reference radio base station. In this case, information indicating how much time difference is present from the co-location state can be notified.
  • a radio base station corresponding to the reference CC for example, a radio base station corresponding to the primary cell can be selected.
  • the user terminal UE performs a synchronization process only once with the radio base station that manages the primary cell, and the radio base station corresponding to all CCs. It is possible to establish synchronization with the station.
  • the radio base station corresponding to the reference CC is not limited to the radio base station corresponding to the primary cell, and can be changed as appropriate.
  • FIG. 14 is a schematic configuration diagram of a radio communication system according to the present embodiment.
  • the radio communication system illustrated in FIG. 14 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of basic frequency blocks (component carriers) with the system bandwidth of the LTE system as one unit is integrated is applied.
  • this radio communication system may be called IMT-Advanced, or may be called 4G, FRA (Future Radio Access).
  • the radio communication system 1 shown in FIG. 14 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 is configured to be capable of wireless communication with both the wireless base station 11 and the wireless base station 12.
  • Communication between the user terminal 20 and the radio base station 11 is performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a wide bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz
  • a narrow bandwidth may be used between the user terminal 20 and the radio base station 12.
  • the wireless base station 11 and each wireless base station 12 are wired or wirelessly connected.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each radio base station 12 may be connected to a higher station apparatus via the radio base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called an eNodeB, a radio base station apparatus, a transmission point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and may be called a pico base station, a femto base station, a Home eNodeB, an RRH (Remote Radio Head), a micro base station, a transmission point, or the like. Good.
  • RRH Remote Radio Head
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the downlink communication channel has PDSCH shared by each user terminal 20 and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH, extended PDCCH).
  • PDSCH downlink L1 / L2 control channels
  • User data and higher control information are transmitted by the PDSCH.
  • PDSCH and PUSCH scheduling information and the like are transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • PDSCH and PUSCH scheduling information and the like may be transmitted by an extended PDCCH (also called Enhanced Physical Downlink Control Channel, ePDCCH, E-PDCCH, FDM type PDCCH, etc.).
  • extended PDCCH also called Enhanced Physical Downlink Control Channel, ePDCCH, E-PDCCH, FDM type PDCCH, etc.
  • This enhanced PDCCH enhanced downlink control channel
  • PDSCH downlink shared data channel
  • the uplink communication channel includes a PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal 20 and a PUCCH (Physical Uplink Control Channel) as an uplink control channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher control information are transmitted by this PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • ACK / NACK and the like are transmitted by PUCCH.
  • FIG. 15 is an overall configuration diagram of the radio base station 10 (including the radio base stations 11 and 12) according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Yes.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 203.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 203.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse
  • the baseband signal processing unit 104 notifies the control information for communication in the cell to the user terminal 20 through the broadcast channel.
  • the information for communication in the cell includes, for example, the system bandwidth in the uplink or the downlink.
  • Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • the transmission / reception unit 103 functions as a transmission unit that transmits a downlink signal multiplexed with a preamble signal to the user terminal 20.
  • radio frequency signals received by the respective transmission / reception antennas 101 are amplified by the amplifier units 102 and frequency-converted by the respective transmission / reception units 103. It is converted into a baseband signal and input to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input baseband signal.
  • the data is transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • FIG. 16 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (reception unit) 203, a baseband signal processing unit 204, and an application unit 205.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • transmission processing for retransmission control H-ARQ (Hybrid ARQ)
  • channel coding precoding
  • DFT processing IFFT processing
  • the like are performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 functions as a reception unit that receives a downlink signal multiplexed with a preamble signal.
  • FIG. 17 is a block diagram showing a configuration of the baseband signal processing unit 104 in the radio base station shown in FIG.
  • the baseband signal processing unit 104 mainly includes a layer 1 processing unit 1041, a MAC processing unit 1042, an RLC processing unit 1043, a synchronization related information generating unit 1044, and a multiplexing unit 1045.
  • the layer 1 processing unit 1041 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 1041 performs channel decoding, Fast Fourier Transform (FFT), frequency demapping, Inverse Discrete Fourier Transform (IFFT) on a signal received on the uplink. Processing such as data demodulation. Further, the layer 1 processing unit 1041 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the downlink.
  • FFT Fast Fourier Transform
  • IFFT Inverse Discrete Fourier Transform
  • the MAC processing unit 1042 performs processing such as retransmission control at the MAC layer for a signal received in the uplink, scheduling for the uplink / downlink, selection of a PUSCH / PDSCH transmission format, selection of a PUSCH / PDSCH resource block, and the like. .
  • the RLC processing unit 1043 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the uplink / packets transmitted on the downlink.
  • the synchronization related information generation unit 1044 constitutes a generation unit, and generates synchronization related information related to time synchronization and frequency synchronization of downlink signals.
  • the synchronization-related information generation unit 1044 generates synchronization-related information including identification information (for example, a cell ID) of a radio base station serving as a transmission point and a signal sequence associated with the identification information (first aspect) ).
  • identification information for example, a cell ID
  • the synchronization-related information generation unit 1044 includes a multiplexed position of the signal sequence and a reference signal sequence for demodulation of the received signal associated with the signal sequence. Synchronization-related information is generated (first aspect).
  • the synchronization related information generation unit 1044 generates synchronization related information related to synchronization / asynchronization between cells (second aspect).
  • the synchronization related information generated by the synchronization related information generation unit 1044 is notified to the user terminal 20 through, for example, higher layer signaling (for example, RRC signaling or notification).
  • the multiplexing unit 1045 multiplexes the preamble signal having the signal sequence included in the synchronization related information on the downlink signal based on the synchronization related information generated by the synchronization related information generation unit 1044. Multiplexer 1045 multiplexes the signal sequence included in the synchronization-related information with the radio resource to which the downlink signal is assigned according to the content defined in the synchronization-related information. For example, the multiplexing unit 1045 multiplexes the preamble signal at a time multiplexing position or a frequency multiplexing position defined in the synchronization related information (first aspect).
  • the downlink signal on which the preamble signal is multiplexed by the multiplexing unit 1045 is output to the transmission / reception unit 203 via the layer 1 processing unit 1041, and is transmitted to the user terminal 20 on the downlink.
  • FIG. 18 is a block diagram showing a configuration of the baseband signal processing unit 204 in the user terminal 20 shown in FIG.
  • the baseband signal processing unit 204 mainly includes a layer 1 processing unit 2041, a MAC processing unit 2042, an RLC processing unit 2043, a synchronization related information holding unit 2044, and a synchronization processing unit 2045.
  • the layer 1 processing unit 2041 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 2041 performs processing such as channel decoding, fast Fourier transform (FFT), frequency demapping, and data demodulation on a signal received on the downlink. Further, the layer 1 processing unit 2041 performs processing such as channel coding, discrete Fourier transform (DFT), data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the uplink.
  • processing such as channel decoding, discrete Fourier transform (DFT), data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the uplink.
  • DFT discrete Fourier transform
  • IFFT inverse fast Fourier transform
  • the MAC processing unit 2042 performs retransmission control (HARQ) at the MAC layer for a signal received on the downlink, analysis of downlink scheduling information (specification of PDSCH transmission format, identification of PDSCH resource block), and the like. In addition, the MAC processing unit 2042 performs processing such as MAC retransmission control for signals transmitted on the uplink, analysis of uplink scheduling information (specification of PUSCH transmission format, specification of PUSCH resource block), and the like.
  • HARQ retransmission control
  • the RLC processing unit 2043 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the downlink / packets transmitted on the uplink.
  • the synchronization related information holding unit 2044 constitutes a holding unit, and holds the synchronization related information generated by the synchronization related information generation unit 1044 of the radio base station 10.
  • the synchronization related information holding unit 2044 holds synchronization related information notified by higher layer signaling (for example, RRC signaling).
  • the synchronization related information holding unit 2044 holds synchronization related information including identification information (for example, a cell ID) of a radio base station serving as a transmission point and a signal sequence associated with the identification information (first aspect) ).
  • the synchronization-related information holding unit 2044 includes a multiplexed position of the signal sequence and a reference signal sequence for demodulation of the received signal associated with the signal sequence. Holds synchronization-related information (first aspect).
  • the synchronization related information holding unit 2044 holds the synchronization related information.
  • the synchronization related information holding unit 2044 can hold synchronization related information related to synchronization / asynchronization between cells generated in the synchronization related information holding unit 2044 (second aspect).
  • the synchronization related information holding unit 2044 holds information regarding the co-location group as the synchronization related information.
  • information regarding the co-location group managed by the table shown in FIG. 12 may be held.
  • the synchronization related information holding unit 2044 holds co-location information as synchronization related information.
  • the synchronization processing unit 2045 performs downlink signal synchronization processing using the synchronization related information held by the synchronization related information holding unit 2044 and the signal sequence included in the preamble signal received from the radio base station 10. For example, the synchronization processing unit 2045 performs downlink signal synchronization processing based on the correlation calculation result between the signal sequence of the synchronization related information held in the synchronization related information holding unit 2044 and the signal sequence of the preamble signal ( First aspect). In addition, the synchronization processing unit 2045 determines whether synchronization processing is necessary based on the synchronization related information held by the synchronization related information holding unit 2044. Then, when synchronization processing is necessary, synchronization processing is performed with a radio base station that is a downlink signal transmission source (second aspect).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ユーザ端末に対して複数の送信ポイントから下りリンク信号を送信する場合であっても、受信処理に必要となる情報をユーザ端末に適切に通知して受信精度の低下を抑制すること。複数の無線基地局と、複数の無線基地局が協調マルチポイント送信可能なユーザ端末と、を備えた無線通信システムであって、無線基地局は、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成する生成部と、同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重する多重部と、その下りリンク信号をユーザ端末に送信する送信部とを有し、ユーザ端末は、上記生成部で生成された同期関連情報を保持する保持部と、プリアンブル信号が多重された下りリンク信号を受信する受信部と、保持部に保持された同期関連情報とプリアンブル信号の信号系列とを用いて下りリンク信号の同期処理を行う同期処理部とを有する。

Description

無線通信システム、無線通信方法、無線基地局及びユーザ端末
 本発明は、セルラーシステム等に適用可能な無線通信システム、無線通信方法、無線基地局及びユーザ端末に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband-Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が検討されている(非特許文献1)。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEのシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。LTE-Aシステムのシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも一つのコンポーネントキャリア(CC:Component Carrier)を含む。このように複数のコンポーネントキャリア(セル)を集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。
 ところで、LTEシステムに対してさらにシステム性能を向上させるための有望な技術の1つとして、セル間直交化がある。例えば、LTE-Aシステムでは、上下リンクとも直交マルチアクセスによりセル内の直交化が実現されている。すなわち、下りリンクでは、周波数領域においてユーザ端末UE(User Equipment)間で直交化されている。一方、セル間はW-CDMAと同様、1セル周波数繰り返しによる干渉ランダム化が基本である。
 そこで、3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術が検討されている。このCoMP送受信では、1つあるいは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。例えば、下りリンクでは、プリコーディングを適用する複数セル同時送信、協調スケジューリング/ビームフォーミングなどが検討されている。これらのCoMP送受信技術の適用により、特にセル端に位置するユーザ端末UEのスループット特性の改善が期待される。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 LTE Rel.10までは、ユーザ端末UEは下りリンク信号が単一の無線基地局から送信されていると想定して受信処理(同期処理)を行えばよかった。しかしながら、LTE Rel.11からは、上述したCoMP技術等の導入に伴い、下りリンク信号が複数の送信ポイント(transmission point)からユーザ端末UEに送信される送信形態が想定されている。
 複数の送信ポイント(無線基地局)から下りリンク信号が送信される場合、ユーザ端末UEと各送信ポイントとの位置関係等に応じて、各下りリンク信号の特性(受信タイミング、周波数オフセット等)が異なる場合がある。このような場合に、ユーザ端末UEが、従来と同様に下りリンク信号が単一の無線基地局から送信されていると想定して同期処理を行うと、下りリンク信号の時間同期、周波数同期等を取得できず、受信精度が低下するおそれがある。
 このため、ユーザ端末UEに対して複数の送信ポイントから下りリンク信号が送信される場合、ユーザ端末UE側で各送信ポイントからそれぞれ送信される下りリンク信号の受信タイミングや周波数オフセット等を考慮して同期処理を行う必要がある。しかしながら、例えば、ユーザ端末UEが移動する状況下においては、各下りリンク信号の同期処理が繰り返される事態が想定される。この結果、ユーザ端末UEにおける同期処理に伴う負荷が増大するという問題がある。
 本発明はかかる点に鑑みてなされたものであり、ユーザ端末に対して複数の送信ポイントから下りリンク信号を送信する場合であっても、ユーザ端末における同期処理に伴う負荷を軽減できる無線通信システム、無線通信方法、無線基地局及びユーザ端末を提供することを目的とする。
 本発明の無線通信システムは、複数の無線基地局と、前記複数の無線基地局が協調マルチポイント送信可能なユーザ端末と、を備えた無線通信システムであって、前記無線基地局は、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成する生成部と、前記同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重する多重部と、前記プリアンブル信号が多重された下りリンク信号を前記ユーザ端末に送信する送信部と、を有し、前記ユーザ端末は、前記生成部で生成された前記同期関連情報を保持する保持部と、前記プリアンブル信号が多重された下りリンク信号を受信する受信部と、前記保持部に保持された前記同期関連情報と前記プリアンブル信号が有する前記信号系列とを用いて下りリンク信号の同期処理を行う同期処理部と、を有することを特徴とする。
 本発明によれば、ユーザ端末に対して複数の送信ポイントから下りリンク信号を送信する場合であっても、ユーザ端末における同期処理に伴う負荷を軽減することができる。
協調マルチポイント送信を説明するための図である。 協調マルチポイント送信において各送信ポイントから送信される下りリンク信号の受信電力及び受信タイミングを説明する図である。 ノーマルサブフレームを利用する各送信ポイントから送信されるCRSのマッピングパターンの一例を示す図である。 パラメータ情報の識別子と対応するパラメータ情報を示すテーブルの一例である。 複数の送信ポイントから下りリンク信号が送信される場合の模式図、及び各パラメータ情報の一例を説明する図である。 ヘテロジーニアスネットワーク構成を説明する図である。 本実施の形態に係る無線通信方法で規定される同期関連情報に基づくユーザ端末の動作を説明する図である。 同期関連情報に含まれる時間多重位置を変えた信号系列の一例の説明図である。 同期関連情報に含まれる周波数多重位置を変えた信号系列の一例の説明図である。 本実施の形態に係る無線通信方法で規定される同期関連情報に基づくユーザ端末UEの動作を説明する図である。 co-locationグループに属する無線基地局の説明図である。 co-locationグループのインデックスを管理するテーブルの一例を示す図である。 キャリアアグリゲーションされるコンポーネントキャリア#1~#5に対応するセル1~5を示している。 無線通信システムのシステム構成を説明するための図である。 無線基地局の全体構成を説明するための図である。 ユーザ端末の全体構成を説明するための図である。 図15に示す無線基地局におけるベースバンド信号処理部の構成を示すブロック図である。 図16に示すユーザ端末におけるベースバンド信号処理部の構成を示すブロック図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
 まず、図1を用いて下りリンクの協調マルチポイント(CoMP)送信について説明する。下りリンクのCoMP送信としては、Coordinated Scheduling/Coordinated Beamforming(CS/CB)と、Joint processingとがある。CS/CBは、1つのユーザ端末UEに対して1つの送受信ポイント(又は、無線基地局、セル)からのみ共有データチャネル(PDSCH)を送信する方法であり、図1Aに示すように、他の送受信ポイントからの干渉や他の送受信ポイントへの干渉を考慮して周波数/空間領域における無線リソースの割り当てを行う。
 一方、Joint processingは、プリコーディングを適用して複数の送受信ポイントから同時に共有データチャネルを送信する方法であり、図1Bに示すように、1つのユーザ端末UEに対して複数の送受信ポイントから共有データチャネルを送信するJoint Transmission(JT)と、図1Cに示すように、瞬時に1つの送受信ポイントを選択し共有データチャネルを送信するDynamic Point Selection(DPS)とがある。また、干渉となる送受信ポイントに対して一定領域のデータ送信を停止するDynamic Point Blanking(DPB)という送信形態もある。
 CoMP送信は、セル端に存在するユーザ端末UEのスループットを改善するために適用される。このため、CoMP送信は、ユーザ端末UEがセル端に存在する場合に適用するように制御される。この場合、無線基地局で、ユーザ端末UEからのセル毎の品質情報(例えば、RSRP(Reference Signal Received Power))、又はRSRQ(Reference Signal Received Quality)、又はSINR(Signal Interference plus Noise Ratio)等の差を求め、その差が閾値以下である場合、すなわちセル間の品質差が小さい場合には、ユーザ端末UEがセル端に存在すると判断して、CoMP送信を適用する。
 CoMP送受信を適用する環境としては、例えば、無線基地局(無線基地局eNB)に対して光ファイバ等で接続された複数の遠隔無線装置(RRE:Remote Radio Equipment)とを含む構成(RRE構成に基づく集中制御)と、無線基地局(無線基地局eNB)の構成(独立基地局構成に基づく自律分散制御)とがある。
 CoMPを適用する場合には、ユーザ端末UEに対して下りリンク信号(下り制御信号、下りデータ信号、同期信号、参照信号等)が複数の送信ポイント又は特定の送信ポイントから送信される。下りリンク信号を受信したユーザ端末UEは、例えば、参照信号(セル固有参照信号(CRS:Cell specific Reference Signal)、ユーザ固有の復調用参照信号(DM-RS:Demodulation Reference Signal)、チャネル状態測定用参照信号(CSI-RS:Channel State Information Reference Signal)等)を用いて受信処理を行う。ユーザ端末UEが行う受信処理としては、例えば、チャネル推定、同期処理、復調処理、フィードバック情報(CSI)生成処理等の信号処理等がある。
 しかし、ユーザ端末UEに対して地理的に異なる複数の送信ポイントから下りリンク信号が送信される場合、各送信ポイントから送信される下りリンク信号の受信信号レベルや受信タイミング等が異なる場合がある(図2A、B参照)。ユーザ端末UEは、受信した下りリンク信号(例えば、異なるアンテナポート(AP:Antenna Port)に割当てられる参照信号)がそれぞれどの送信ポイントから送信された信号であるか把握できない。このため、ユーザ端末UEが受信した全ての参照信号を用いてチャネル推定や復調処理等を行う場合には、受信精度が低下するおそれがある。
 そのため、各送信ポイントから送信される参照信号を用いて受信処理を行う場合、ユーザ端末UEが各送信ポイントの地理的位置(各送信ポイントから送信される下りリンク信号の伝搬路特性)を考慮して受信処理を行うことが望ましい。そこで、異なるアンテナポート(AP)間で長期的伝搬路特性が同一である場合を「Quasi co-location」(擬似的な地理関係が同一)であると想定し、各下りリンク信号間がQuasi co-locationであるか否かに応じてユーザ端末UEがそれぞれ異なる受信処理を行うことが検討されている。
 ここで、長期的伝搬路特性は、遅延スプレッド(Delay spread)、ドップラースプレッド(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(Average gain)、平均遅延(Average delay)等を指し、これらの内のいくつか、又は全てが同一である場合にQuasi co-locationであると想定する。なお、Quasi co-locationであるとは、地理的に同一の場合に相当するが必ずしも物理的に近接している場合に限られない。
 例えば、地理的に離れた(Quasi co-locationでない)APからそれぞれ送信が行われた場合、ユーザ端末UEは、地理的に離れたAPから送信が行われたことを認識した上で、Quasi co-locationを想定した場合とは異なる受信処理を行うことができる。具体的には、地理的に離れたAP毎に受信処理(例えば、チャネル推定、同期処理、復調処理、フィードバック情報(CSI)生成処理等の信号処理)をそれぞれ独立して行う。
 一例として、地理的に同一(Quasi co-locationである)と判断したAPからCRSが送信され、地理的に離れている(Quasi co-locationでない)と判断したAP#15とAP#16からCSI-RSが送信された場合を想定する(図2A参照)。この場合、ユーザ端末UEは、CRSを用いて従来と同様に受信処理(measurement)を行う。一方で、ユーザ端末UEは、CSI-RSについては、AP#15とAP#16に対してそれぞれ独立のチャネル推定を行った後、チャネル品質情報をそれぞれ生成してフィードバックする。
 なお、ユーザ端末UEにおいて、異なるAP間でQuasi co-locationであるかどうかを想定する対象としては、例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal)、CRS、DM-RS(PDSCH用)、DM-RS(ePDCCH用)、CSI-RS等が挙げられる。
 このように、LTE Rel.11からは、ユーザ端末UE側において、各下りリンク信号間の対応関係(Quasi co-location関係)を考慮して受信処理を行うことが重要となる。
 また、CoMP等によりユーザ端末UEに対して複数の送信ポイントから下りリンク信号が送信される場合、ユーザ端末UEは、各送信ポイントから送信される制御信号や参照信号のマッピングパターン等を考慮してPDSCHが割当てられるリソース(RE)を特定する(レートマッチングする)ことが望ましい。例えば、複数の送信ポイント(TP1とTP2)からユーザ端末UEに送信を行う場合(例えば、JT CoMP)、ユーザ端末UEは、TP1とTP2におけるPDCCH(Physical Downlink Control Channel)、CRS、CSI-RSのマッピングパターン等を考慮してレートマッチングを行うこと好ましい。
 例えば、ユーザ端末UEが複数の送信ポイント(TP1~TP3)と接続可能に構成される無線システムにおいて、TP1とTP2を用いてCoMP(例えば、JT CoMP)を適用する場合を想定する。この場合、ユーザ端末UEは、TP1とTP2からそれぞれ送信される制御信号や参照信号等のマッピングパターンを考慮してレートマッチングを行う(図3参照)。なお、図3A~図3Cは、TP1~TP3のノーマルサブフレームにおけるマッピングパターンの一例を示し、図3Dは、TP1とTP2から送信される信号を考慮したマッピングパターンに相当する。
 TP1とTP2でJT CoMPを適用する場合、図3Dに示すように、下り制御チャネルが割当てられる所定のシンボルより後の無線リソースのうち、CRSがマッピングされるリソース以外の領域にPDSCH(Physical Downlink Shared Channel)がマッピングされる。ユーザ端末UEは、図3Dのパターンを考慮して受信処理を行うことにより受信処理精度を向上できる。なお、図3では参照信号としてCRSのみ示しているが、CSI-RSがマッピングされる場合にはCSI-RSも考慮してレートマッチングが行われる。
 また、図3では、CRSが周波数帯域全体にまたがってマッピングされるノーマルサブフレームを示しているが、サブフレーム構成として、MBSFN(Multicast-Broadcast service Single Frequency Network)サブフレームや、ニューキャリアタイプ(NCT:New Carrier Type)への適用も検討されている。
 MBSFNとは、MBSFNを構成する複数の無線基地局が、同一信号を一斉同期送信することにより、ユーザ端末UEが各無線基地局から送信された信号をRF(Radio Frequency)合成できる方式である。MBSFNサブフレームでは、制御チャネル以外を空白区間(ブランク期間)とし、PDSCH領域にCRSが割当てられないサブフレームである。ニューキャリアタイプ(「Extension carrierタイプ」ともいう)のサブフレームとは、サブフレームの先頭から所定のOFDMシンボル(最大3OFDMシンボル)までの既存のPDCCHを持たず、CRSも割当てられないサブフレームである。
 例えば、TP1がノーマルサブフレーム、TP2がMBSFNサブフレーム(又は、NCT)である場合、TP2のPDSCH領域にCRSパターンは存在しない。このため、TP1+TP2のレートマッチングパターンはTP1のマッピングパターンと等しくなる。つまり、ユーザ端末UEは、ノーマルサブフレームを用いるTP1のPDSCH用のREのマッピングパターンのみを考慮してレートマッチングを行うことができる。
 このように、ユーザ端末UEにおいて、複数の送信ポイントから送信されるPDCCH、CRS、CSI-RSのマッピングパターンやサブフレーム構成を考慮してレートマッチングを行うことにより、サービングセルと隣接セルのPDSCHのリソースを特定して受信処理を行うことができる。つまり、LTE Rel.11からは、ユーザ端末UEが、PDCCH、CRS、CSI-RS等のマッピングパターンやサブフレーム構成を考慮してレートマッチングを行うことが重要となる。
 したがって、ユーザ端末UEが適切に受信処理を行うための情報(Quasi co-location関係や、PDSCHリソースのマッピング情報等)を、ユーザ端末UEに適切に通知する方法が必要となる。
 例えば、コンポーネントキャリア(CC)毎に、PDSCHリソースのマッピング情報(PDSCH RE Mapping Parameter)と、Quasi co-location情報(Quasi-co-location Configuration Parameter)とが規定されたパラメータ情報(PDSCH RE Mapping and Quasi-co-location Configuration)を所定数(例えば、4セット)準備して、ユーザ端末UEに通知することが検討されている。
 具体的には、無線基地局(ネットワーク)側で、ユーザ端末UE周辺の送信ポイントや通信環境等を考慮して、PDSCHリソースのマッピング情報と、Quasi co-location情報を含むパラメータ情報(以下、「パラメータ情報」とも記す)を所定数(例えば、4種類)規定する。そして、当該複数のパラメータ情報を上位レイヤシグナリング(例えば、RRCシグナリング)でユーザ端末UEに通知する。さらに、4種類のパラメータ情報#1~#4の中から特定のパラメータ情報をユーザ端末UEに選択させるための指示を下り制御情報(DCI)に含めてユーザ端末UEにダイナミックに通知することが検討されている(図4参照)。
 つまり、図4に示すパラメータ情報#1~#4(PDSCH RE Mapping and Quasi-co-location Configuration #1-#4)が上位レイヤシグナリングでユーザ端末UEに通知されると共に、各パラメータ情報に対応するビット情報(“00”、“01”、“10”又は“11”)が下り制御情報(DCI)に含められてユーザ端末UEに通知される。
 ここで、PDSCHリソースのマッピング情報と、Quasi co-location情報とを含むパラメータ情報の一例について、図5を参照して説明する。図5Aは、複数の送受信ポイント(ここでは、TP1、TP2、TP3の3つ)から瞬時に1つの送受信ポイントを選択し、共有データチャネルを送信するDPS CoMPを適用する場合を示している。ネットワークは、動的に1つの送信ポイント(無線基地局)を選択して、ユーザ端末UEにデータ信号を送信する。
 例えば、図5Aに示すDPS CoMPにおいては、サブフレーム#1において、送信ポイントTP1からユーザ端末UEにデータ信号を送信し、サブフレーム#2において、送信ポイントTP2からユーザ端末UEにデータ信号を送信し、サブフレーム#3において、送信ポイントTP3からユーザ端末UEにデータ信号を送信することができる。
 また、図5Bは、パラメータ情報(Configuration)の一例を示しており、パラメータ情報#1、#2、#3(Configuration#1,#2,#3)は、それぞれTP1、TP2、TP3のパラメータに対応している。また、これらのパラメータ情報#1~#3は、上位レイヤシグナリング(例えば、RRCシグナリング)を介してユーザ端末UEに通知される。
 図5において、CRSパターン(CRS pattern)には、CRSのアンテナポート数とシフト量が含まれる。これにより、CRSのマッピングパターンを特定することができる。MBSFN構成(MBSFN config)は、MBSFNの構成に相当し、MBSFN構成からPDSCH領域のCRSパターンの有無を判断できる。ノンゼロパワーCSI-RS(NZP CSI-RS)は、希望信号推定用に利用可能な参照信号であり、ユーザ端末UEにノンゼロパワーCSI-RSパターン(NZP CSI-RS pattern)を通知することにより、CSI-RSとDM-RSのQuasi co-location関係を判断できる。ゼロパワーCSI-RS(ZP CSI-RS)は、干渉信号推定用に利用可能な参照信号であり、PDSCHが多重されない。ユーザ端末UEにゼロパワーCSI-RSパターン(ZP CSI-RS pattern)を通知することにより、レートマッチングを適切に行うことができる。PDSCH開始シンボル(PDSCH starting symbol)は、PDSCHが配置される先頭シンボルを示すパラメータである。これにより、ユーザ端末UEは、隣接セルのPDSCHの先頭シンボルを特定することができる。なお、図5のパラメータ情報は一例であり、これに限られない。
 図5Bに示す各パラメータ情報(PDSCH RE Mapping and Quasi-co-location Configuration)を示す識別子は、PQI(PDSCH RE Mapping and Quasi-co-location Indicator)と呼ばれることがある。PQIは、下り制御情報(DCI)に含められ、ユーザ端末UEに通知される。例えば、上述したようにサブフレーム#1でTP1からユーザ端末UEにデータが送信される場合、ユーザ端末UEにパラメータ情報#1を適用するように下り制御情報で通知する。例えば、パラメータ情報とPQIの関係が図4に示す場合、DCIに設定されるPQIは“00”となる。
 また、PQIを設定する(configure)ための下り制御情報(DCI)として、新たに「DCIフォーマット2D」を設けることが検討されている。なお、DCIフォーマット2Dは、CoMP用の送信モード(TM10)に利用するDCIフォーマットとしても検討されている。さらに、DCIフォーマット2Dを用いることにより、1CC毎に4セットのパラメータ情報を設定することが検討されている。
 ユーザ端末UEにおいては、このようにDCIフォーマット2Dに設定されるPQIを判定することにより、複数の送信ポイントから送信される下りリンク信号の時間同期及び周波数同期を確保すると共に、どの送信ポイントから送信されているかを把握することが可能となる。例えば、ユーザ端末UEにおいては、図5Bに示すCRSパターンから下りリンク信号の周波数同期(周波数オフセットを特定)を確保すると共に、CSI-RSパターン(ノンゼロパワーCSI-RSパターン、ゼロパワーCSI-RSパターン)から下りリンク信号の時間同期を確保することができる。また、CRSは、セルIDに関連づけられることから、CRSパターンからセルIDを特定でき、このセルIDにより送信元となる送信ポイントを特定することができる。
 ところで、LTE-Aが適用される無線ネットワーク構成として、図6に示すように、マクロセルMのエリア上に多数のスモールセルSが配置されるヘテロジーニアスネットワーク構成が検討されている。例えば、ヘテロジーニアスネットワークにおいては、既存の周波数(例えば、2GHzや800MHz)を用いるマクロセルMのエリア上に、マクロセルMと異なる周波数(例えば、3.5GHz)を用いるスモールセルSがオーバーレイされる。LTE Rel.12においては、このようなスモールセルSの密度を更に増大することが検討されている(SCE:Small Cell Enhancement)。例えば、単一のマクロセルMに対して数百個程度のスモールセルSを配置することが検討されている。
 図6に示すように、マクロセルMのエリア上にスモールセルSが密に配置されるネットワークにおいては、ユーザ端末UEに対して、スモールセルS間でCoMP送信を行うことが想定される。この場合、ユーザ端末UEは、複数のスモールセルSをシームレスに利用することにより、高いスループットを安定して実現することが可能となる。このようなスモールセルS間でのCoMP送信を実現するには、ユーザ端末UEにおいて、これらのスモールセルSとの間で時間同期及び周波数同期を確保すると共に、送信元となるスモールセルSを特定することが必要となる。
 上述したように、ユーザ端末UEにおいては、DCIフォーマット2Dに設定されるPQIを判定することにより、複数の送信ポイントから送信される下りリンク信号の時間同期及び周波数同期を確保すると共に、送信元となる送信ポイントを特定できる。しかしながら、スモールセルSが密に配置される場合には、ユーザ端末UEの移動に伴って送信ポイント(例えば、スモールセルS)が頻繁に切り替わる事態が想定される。このような状況下において、DCIフォーマット2Dに基づいて送信ポイントとの間の同期を確保する場合には、ユーザ端末UEにおけるPDCCHの復号処理に伴う負荷が増大する。
 本発明者らは、マクロセルMのエリア上にスモールセルSが密に配置されるネットワーク構成においては、より簡単な方法により送信ポイントとの間の時間同期及び周波数同期を確保することが、ユーザ端末UEにおける復号処理に伴う負荷を軽減すると共に、スループット特性の改善に寄与することに着目し、本発明に想到した。すなわち、本発明は、DCIフォーマット2Dを含むPDCCHを用いた同期処理の代わりに、送信ポイントとなる無線基地局との間の時間同期及び周波数同期に関連する情報(以下、「同期関連情報」という)を無線基地局からユーザ端末UEに送信し、この同期関連情報に基づいてユーザ端末UEにて同期処理を実行するものである。
 一般に、同期処理とは、通信の最初に同期状態を確立するまでの処理である「同期捕捉(acquisition)」処理」と、同期確立後にその同期状態が変調や雑音の状態で失われないように監視し続ける処理である「同期追跡(tracking)処理」とが含まれる。本明細書において、「同期」という場合は、特に説明をする場合を除き、「同期捕捉」及び「同期追跡」の一方又は双方を指すものとし、「同期処理」という場合は、「同期捕捉処理」及び「同期追跡処理」の一方又は双方を指すものとする。
 本発明の第1の側面は、無線基地局にて、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成し、この同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重してユーザ端末に送信する。一方、ユーザ端末UEにて、無線基地局で生成された同期関連情報を保持しておき、上記プリアンブル信号が多重された下りリンク信号を受信し、保持された同期関連情報とプリアンブル信号が有する信号系列とを用いて下りリンク信号の同期処理を行うものである。
 この場合、無線基地局で生成される同期関連情報としては、例えば、送信ポイントとなる無線基地局の識別情報(例えば、セルID)と、この識別情報に関連づけた信号系列とで構成することができる。この場合には、例えば、ユーザ端末UEにおいては、同期処理の前に無線基地局の識別情報及び信号系列を把握しておくことで、下りリンク信号に含まれる該当信号系列から時間同期及び周波数同期を確保すると共に、この信号系列に関連づけられる無線基地局を特定できる。この結果、ユーザ端末UEの移動に応じて送信ポイントが頻繁に切り替わる場合であっても、PDCCHの復号処理を繰り返す事態を回避できるので、ユーザ端末UEにおける同期処理に伴う負荷を軽減することが可能となる。
 同期関連情報に含まれる信号系列としては、例えば、CRS、CSI-RS、PSS/SSSといったLTE Rel.11で規定される参照信号及び同期用信号や、これらの参照信号及び同期用信号を拡張した信号系列を用いることができる。また、LTE Rel.11で規定されるその他の参照信号(例えば、DM-RS)や、その参照信号を拡張した信号系列を用いることもできる。なお、信号系列としては、PN(Pseudo-random Noise)系列で構成してもよいし、Gold系列やZadoff-Chu系列で構成してもよい。
 また、同期関連情報に含まれる信号系列として、ユーザ端末UEにてユーザデータの送信に適したスモールセルを発見するために、スモールセルから送信されるCell-specificな基準信号を用いることができる。以下においては、この基準信号を「DISCOVERY SIGNAL」と呼ぶこととする。なお、DISCOVERY SIGNALは、例えば、PDCH(Physical Discovery Channel)、BS(Beacon Signal)、DPS(Discovery Pilot Signal)と呼ばれてもよい。
 なお、DISCOVERY SIGNALには、以下のような特徴を持つ信号を用いることができる。DISCOVERY SIGNALは、以下に示す(a)から(d)のいずれかの信号で構成してもよいし、(a)から(d)の信号を任意に組み合わせて構成してもよい。
(a)LTE Rel.8で規定される同期信号(PSS、SSS)を用いることができる。
(b)LTE Rel.8で規定される同期信号と同一の系列を用いて、時間/周波数方向に異なる位置で多重した信号を用いることができる。例えば、PSSとSSSを異なるスロットに多重した信号を用いることができる。
(c)スモールセルを選択するために新たに規定したDISCOVERY SIGNALを用いる。例えば、LTE Rel.8で規定される同期信号(PSS、SSS)に比較して、送信周期を長くする、送信単位当りの無線リソース量を大きくする、といった特徴を有する信号を用いる。
(d)LTE Rel.10で規定されている既存の参照信号(CSI-RS、CRS、DM-RS、PRS、SRS)を用いることができる。または、既存の参照信号の一部(例えば、1portのCRSを5msec周期で送信するような信号)を用いてもよい。
 同期関連情報は、例えば、上位レイヤシグナリング(例えば、RRCシグナリング)でユーザ端末UEに通知することができる。ユーザ端末UEは、通知された同期関連情報を保持できる。また、予めユーザ端末UE及び複数の無線基地局において、同期捕捉処理の前から保持しておくこともできる。なお、上位レイヤシグナリングで通知する場合には、ユーザ端末UE及び複数の無線基地局において、同期捕捉処理の前から保持しておく必要はない。この場合には、Semi-Staticに同期関連情報を更新できるので、ユーザ端末UEの所在地に応じた必要な同期関連情報のみをユーザ端末UEに通知することが可能となる。
 無線基地局から送信されるプリアンブル信号は、上述した信号系列を有する。このプリアンブル信号は、下りリンク信号(より具体的には、ユーザ端末UEに対するユーザデータ)に多重されてユーザ端末UEに送信される。ユーザ端末UEにおいては、下りリンク信号に多重されたプリアンブル信号が有する信号系列と、保持される同期関連情報とに基づいて同期処理を行う。
 このように同期関連情報を規定した場合の動作について図7を用いて説明する。図7は、本実施の形態に係る無線通信方法で規定される同期関連情報に基づくユーザ端末UEの動作を説明する図である。図7においては、送信ポイントとなる3つの無線基地局eNB1~eNB3に異なる信号系列(系列1~系列3)が割り当てられた場合について示している。
 ここで、ユーザ端末UEにおいては、これらの無線基地局eNB1~eNB3の識別情報(セルID)と、この識別情報に関連づけた信号系列とを含む同期関連情報を保持しているものとする。ここで、この同期関連情報には、無線基地局eNB1の信号系列としてCRSが定められ、無線基地局eNB2の信号系列としてCSI-RSが定められ、無線基地局eNB3の信号系列としてDM-RSが定められているものとする。
 下りリンク信号を受信すると、ユーザ端末UEにおいては、この下りリンク信号に多重されたプリアンブル信号が有する信号系列と、同期関連情報に定められる信号系列に対して相互相関処理を行う。具体的には、ユーザ端末UEは、それぞれの信号系列に対応づけて保持された信号系列レプリカと、下りリンク信号(プリアンブル信号)との相関を演算する。例えば、無線基地局eNB1から信号系列(CRS)を含む下りリンク信号が送信される場合、相互相関処理を行うことで当該信号系列に対するピーク検出が可能となる(図7参照)。これにより、ユーザ端末UEにおいては、下りリンク信号の送信元となる送信ポイントが無線基地局eNB1であることを把握できる。これと同時に、ユーザ端末UEにおいては、信号系列がCRSであることを予め把握しているので、CRSから時間同期及び周波数同期を確保することができる。
 なお、以上の説明では、同期関連情報が、送信ポイントとなる無線基地局の識別情報と、この識別情報に関連づけた信号系列とで構成される場合について説明している。しかしながら、同期関連情報の構成は、これに限定されるものではなく適宜変更が可能である。例えば、同期関連情報に含まれる信号系列の多重位置を含むこともできる。この場合、ユーザ端末UEにおいては、同期処理の前に無線基地局の識別情報、信号系列及びその多重位置を把握しておくことで、下りリンク信号に含まれる信号系列及びその多重位置から時間同期及び周波数同期を確保すると共に、この信号系列に関連づけられる無線基地局を特定することが可能となる。
 同期関連情報に含まれる多重位置としては、例えば、各サブフレームを構成する無線リソース(リソースエレメント(RE:Resource Element))のうち、上記信号系列が多重される位置を時間的に異ならせた時間多重位置を用いることができる。この場合、信号系列の時間多重位置が同期関連情報の構成情報として利用される。
 図8は、同期関連情報に含まれる時間多重位置を変えた信号系列の一例の説明図である。なお、図8においては、同期関連情報に含まれる時間多重位置に多重された信号系列を示している。図8においては、縦軸及び横軸にそれぞれ周波数及び時間を示し、下りリンクにおける連続した3つのサブフレーム1~3を示している。また、図8においては、プリアンブル信号を構成する信号系列を「P」と示し、ユーザ端末UEに対する送信データを「DATA」と示している。なお、図8A~図8Cに示す信号系列の時間多重位置は、一例を示したものであり、これに限定されるものではない。
 図8Aは、各サブフレームの先頭に配置される無線リソースに信号系列を多重する場合を示している。このようにサブフレームの先頭部分に信号系列を多重する場合には、ユーザ端末UEにおける受信信号のバッファリング負荷を低減できる。なお、ニューキャリアタイプ(NCT)のサブフレームにおいては、既存のPDCCH領域を有さないため、一般的なサブフレームにおけるPDCCH領域を利用してもよい。
 図8Bは、各サブフレームの先頭及び後尾に配置される無線リソースに信号系列を多重する場合を示している。言い換えると、信号系列は、各サブフレームの送信データの前後に多重されている。このようにサブフレームの先頭部分及び後尾部分に信号系列を多重する場合には、周波数同期の精度を向上させることが可能となる。すなわち、周波数同期は、一般に時間的に乖離した2つの推定対象信号(参照信号)の位相を比較することで求められる。この場合において、2つの推定対象信号が連続した無線リソースに多重される場合には、乖離が不十分となり、推定精度が劣化する事態が想定される。図8Bに示すように、サブフレームの先頭部分及び後尾部分に信号系列を多重することにより、時間的に乖離した2つの推定対象信号に基づいて推定でき、周波数同期の精度を向上できる。
 図8Cは、信号系列を送信データ内に拡散して多重する場合を示している。なお、送信データに対する信号系列の拡散方法については、予め定めておくことができる。このように信号系列を送信データ内に拡散して多重する場合には、サブフレーム内で時間をずらして信号系列をユーザ端末UEに対して送信できることから、時間ダイバーシチ利得を得ることが可能となる。
 このように同期関連情報を、送信ポイントとなる無線基地局の識別情報(例えば、セルID)と、この識別情報に関連づけた信号系列と、信号系列が多重される位置(時間多重位置)とで構成する場合には、信号系列の多重位置自体に意味を持たせることができる。これにより、信号系列が同一であっても、時間多重位置を変えることで異なる信号系列として扱うことができる。
 図7に示す例において、ユーザ端末UEに保持される同期関連情報には、無線基地局eNB1の信号系列として、各サブフレームの先頭部分に配置されたCRSが定められ、無線基地局eNB2の信号系列として、各サブフレームの先頭及び後尾に配置されたCRSが定められ、無線基地局eNB3の信号系列として、送信データ内に拡散されたCRSが定められた場合を想定する。
 下りリンク信号を受信すると、ユーザ端末UEにおいては、同期関連情報に定められる3種類の信号系列(異なる時間多重位置に配置されたCRS)に対して相互相関処理を行う。具体的には、ユーザ端末UEは、それぞれの信号系列に対応づけて保持された信号系列レプリカと下りリンク信号との相関を演算する。例えば、無線基地局eNB1から信号系列(各サブフレームの先頭部分に配置されるCRS)を含む下りリンク信号が送信される場合、相互相関処理を行うことで当該信号系列に対するピーク検出が可能となる(図7参照)。これにより、ユーザ端末UEにおいては、下りリンク信号の送信元となる送信ポイントが無線基地局eNB1であることを把握できる。これと同時に、ユーザ端末UEにおいては、信号系列がCRSであることを予め把握しているので、このCRSから時間同期及び周波数同期を確保することができる。
 なお、このような信号系列を含むプリアンブル信号は、サブフレーム毎に切り替えることが可能である。例えば、サブフレーム1ではサブフレームの先頭に信号系列を多重したプリアンブル信号を送信し、サブフレーム2ではサブフレームの先頭及び後尾に信号系列を多重したプリアンブル信号を多重し、サブフレーム3では信号系列を送信データに拡散して多重したプリアンブル信号を送信することができる。この場合には、1ミリ秒毎に異なる送信ポイントとの間で同期処理を行うことができるので、CoMP DPSが適用される場合に高速で送信ポイントを切り替えることが可能となる。
 また、このような信号系列を含むプリアンブル信号を周期的(例えば、5ミリ秒毎)に切り替えることや、ユーザ端末UEからの送信要求(トリガ)に応じてプリアンブル信号を送信することは、オーバーヘッドの観点から好ましい。前者においては、例えば、プリアンブル信号に含まれる信号系列を切り替える周期と、CoMPの送信ポイントの切替え周期とを同一又は関連づけることにより、不要な同期処理を抑制でき、ユーザ端末UEにおける同期処理に伴う負荷を軽減することが可能となる。
 さらに、同期関連情報に含まれる多重位置として、各サブフレームを構成する無線リソース(リソースエレメント(RE))のうち、上記信号系列が多重される位置を周波数的に異ならせた周波数多重位置を用いることができる。この場合、信号系列の周波数多重位置が同期関連情報の構成情報として利用される。
 図9は、同期関連情報に含まれる周波数多重位置を変えた信号系列の一例の説明図である。図9においては、縦軸及び横軸にそれぞれ周波数及び時間を示している。具体的には、送信帯域を構成する周波数帯域として20MHzを示すと共に、下りリンクにおける単一のサブフレームを示している。また、図9においては、プリアンブル信号を構成する信号系列を「P」と示している。なお、図9A~図9Cに示す信号系列の周波数多重位置は、一例を示したものであり、これに限定されるものではない。
 図9Aは、サブフレームの先頭に配置される無線リソースのうち、最も高い周波数帯域に信号系列を多重する場合を示している。同様に、図9Bにおいては、サブフレームの先頭に配置される無線リソースのうち、送信周波数の中央近傍に配置される周波数帯域に信号系列を多重する場合を示している。図9Cにおいては、サブフレームの先頭に配置される無線リソースのうち、最も低い周波数帯域に信号系列を多重する場合を示している。
 このように同期関連情報を、送信ポイントとなる無線基地局の識別情報(例えば、セルID)と、この識別情報に関連づけた信号系列と、信号系列が多重される位置(周波数多重位置)とで構成する場合には、信号系列の多重位置自体に意味を持たせることができる。これにより、信号系列が同一であっても、周波数多重位置を変えることで異なる信号系列として扱うことができる。
 図7に示す例において、ユーザ端末UEに保持される同期関連情報には、無線基地局eNB1の信号系列として、送信周波数の最も高い周波数位置に配置されたCRSが定められ、無線基地局eNB2の信号系列として、送信周波数の中央近傍に配置されたCRSが定められ、無線基地局eNB3の信号系列として、送信周波数の最も低い周波数位置に配置されたCRSが定められた場合を想定する。
 下りリンク信号を受信すると、ユーザ端末UEにおいては、同期関連情報に定められる3種類の信号系列(異なる周波数多重位置に配置されたCRS)に対して相互相関処理を行う。具体的には、ユーザ端末UEは、それぞれの信号系列に対応づけて保持された信号系列レプリカと下りリンク信号との相関を演算する。例えば、無線基地局eNB1から信号系列(送信周波数の最も高い周波数位置に配置されるCRS)を含む下りリンク信号が送信される場合、相互相関処理を行うことで当該信号系列に対するピーク検出が可能となる(図7参照)。これにより、ユーザ端末UEにおいては、下りリンク信号の送信元となる送信ポイントが無線基地局eNB1であることを把握できる。これと同時に、ユーザ端末UEにおいては、信号系列がCRSであることを予め把握しているので、このCRSから時間同期及び周波数同期を確保することができる。
 なお、ここでは、信号系列が多重される周波数位置(周波数多重位置)として、送信帯域における周波数の高低を変える場合について説明している。しかしながら、信号系列の周波数多重位置としては、これに限定されない。例えば、信号系列の周波数多重位置としては、多重される態様を変えてもよい。例えば、分配して配置(Distribute配置)されていてもよいし、局部的に配置(Localize配置)されていてもよく、送信帯域全体に配置(Full band配置)されていてもよい。さらに、上述した信号系列の時間多重位置と周波数多重位置とを組み合わせて用いてもよい。
 また、同期関連情報の構成としては、上述した情報(例えば、無線基地局の識別情報、信号系列等)に加え、信号系列に関連付けた受信信号の復調用参照信号系列を含むこともできる。この場合には、ユーザ端末UEにおいて、プリアンブル信号を構成する信号系列に基づいて、受信信号の復調用参照信号系列を把握できるので、特別な処理を必要とすることなく容易に受信信号を復調することが可能となる。
 なお、以上の説明では、同期関連情報として、送信ポイントとなる無線基地局の識別情報(例えば、セルID)と、この識別情報に関連づけた信号系列とを含み、所謂、送信ポイントに固有に信号系列を割り当てる場合について説明している。しかしながら、同期関連情報の構成は、これに限定されるものではなく適宜変更が可能である。例えば、ユーザ端末UEに固有に信号系列を割り当てる構成としてもよい。
 この場合、同期関連情報としては、例えば、ユーザ端末UEに固有の信号系列と、この信号系列に関連付けた受信信号の復調用参照信号系列とで構成することができる。受信信号の復調用参照信号系列は、信号系列と同様に、ユーザ端末UEに固有のものとなる。この場合には、例えば、ユーザ端末UEにおいては、同期処理の前に、ユーザ端末UEに固有の信号系列及び受信信号の復調用参照信号系列を把握しておくことで、下りリンク信号に含まれる信号系列から時間同期及び周波数同期を確保すると共に、この信号系列に関連づけられる受信信号を適切に復調することが可能となる。
 なお、同期関連情報に含まれる信号系列については、上述した例(すなわち、送信ポイントに固有に信号系列を割り当てる例)と同様に構成できる。また、信号系列の多重位置(時間多重位置、周波数多重位置)についても、上述した例と同様に構成できる。さらに、同期関連情報の通知についても、例えば、上位レイヤシグナリング(例えば、RRCシグナリング)を用いてユーザ端末UEに通知できる。
 このように同期関連情報を規定した場合の動作について図10を用いて説明する。図10は、本実施の形態に係る無線通信方法で規定される同期関連情報に基づくユーザ端末UEの動作を説明する図である。図10においては、ユーザ端末UEに固有の信号系列(系列1)が割り当てられている場合について示している。
 ここで、ユーザ端末UEにおいては、ユーザ端末UEに固有の信号系列と、この信号系列に関連付けた受信信号の復調用参照信号系列とを含む同期関連情報を保持しているものとする。この同期関連情報には、ユーザ端末UEに固有の信号系列としてCRSが定められ、このCRSに関連付けた受信信号の復調用参照信号系列としてDM-RSが定められているものとする。
 下りリンク信号を受信すると、ユーザ端末UEにおいては、同期関連情報に定められる固有の信号系列(CRS)に対して相互相関処理を行う。具体的には、ユーザ端末UEは、固有の信号系列に対応づけて保持された信号系列レプリカと下りリンク信号との相関を演算する。この場合、ユーザ端末UEにおいては、図10に示すように、固有の信号系列が受信されたタイミングでピーク検出が可能となる。これにより、ユーザ端末UEにおいては、下りリンク信号の送信元となる送信ポイントを把握することができないが、受信信号の復調用参照信号系列(DM-RS)を予め把握しているため、適切に受信信号を復調でき、時間同期及び周波数同期を確保することができる。
 本発明の第2の側面は、複数の無線基地局間が同期しているか否かを示す同期関連情報をユーザ端末UEに送信し、この同期関連情報に基づいてユーザ端末UEにて送信ポイントとなる無線基地局との間の同期処理の要否を判定し、送信ポイントとなる無線基地局が同期していない場合に当該無線基地局から送信される下りリンク信号の同期処理を行うものである。
 マクロセルMのエリア上にスモールセルSが密に配置されるネットワーク構成において、X2インターフェース等を用いたバックホールリンクにより接続されたマクロセルMとスモールセルSとの間は、一般的にユーザ端末UEに対する送信データの送信タイミングが同期されている。一方、このように同期されているセル間以外のセルは、一般的に同期されていない。このようなセル間の同期/非同期に関する同期関連情報は、ネットワーク(無線基地局)側で予め把握することが可能である。
 本発明の第2の側面においては、このようなセル間の同期/非同期に関する同期関連情報をユーザ端末UEに送信し、ユーザ端末UEにおける同期処理の要否の判定材料とする。ユーザ端末UEは、この同期関連情報の内容に基づいて送信ポイントとなる無線基地局との間の同期処理の要否を判定し、送信ポイントとなる無線基地局から送信された下りリンク信号の同期処理を行う。これにより、送信ポイントとなる無線基地局との間で必要な場合に限って同期処理を行うことができるので、同期されている無線基地局間の同期処理を省略でき、ユーザ端末UEにおける同期処理に伴う負荷を軽減することが可能となる。
 なお、第2の側面において、同期/非同期に関する同期関連情報としては、上述のような有線接続で実質的に同期が確保されている場合に限定されない。例えば、遅延スプレッド(Delay spread)、ドップラースプレッド(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(Average gain)、平均遅延(Average delay)等の要素に基づいて、Quasi co-location(以下、単に「co-location」という)であるか否かを基準に同期/非同期を判断してもよい。すなわち、co-locationである場合を同期されていると認定する一方、co-locationでない場合を同期されていないと認定することができる。
 この場合、同期関連情報として、例えば、co-locationであるセル(例えば、スモールセル)のグループ(以下、「co-locationグループ」という)を予め把握しておき、このco-locationグループをユーザ端末UEに通知することができる。ユーザ端末UEにおいては、このco-locationグループで通知された内容と、送信ポイントとなる無線基地局との関係に基づいて下りリンク信号に対する同期処理の要否を判定する。この場合には、現在、通信中の無線基地局と同一のco-locationグループに属する無線基地局が送信ポイントとなる場合には、当該無線基地局からの下りリンク信号に対する同期処理を省略できるので、同期処理に伴う負荷を軽減できる。
 図11は、co-locationグループに属する無線基地局の説明図である。図11においては、2つのco-locationグループA、Bと、これらのco-locationグループに属する無線基地局を示している。co-locationグループAには、無線基地局eNB1~eNB4が属しており、co-locationグループBには、無線基地局eNB5~eNB8が属している。また、図11においては、ユーザ端末UEの移動経路を矢印Aで示している。
 図11に示す例において、ユーザ端末UEは、例えば、co-locationグループAに属する無線基地局eNB1、eNB2及びeNB3との間で無線通信を行った後、co-locationグループBに属する無線基地局eNB5、eNB6との間で無線通信を行う。無線基地局eNB1、eNB2及びeNB3は、互いに同期されており、その旨(すなわち、同一のco-locationグループに属する旨)が同期関連情報として通知されることから、ユーザ端末UEにおいては、無線基地局eNB1と同期を確保した後、無線基地局eNB2、eNB3との間で同期処理を行う必要はない。
 一方、co-locationグループBに属する無線基地局eNB5は、無線基地局eNB3と同期されておらず、その旨(すなわち、異なるco-locationグループに属する旨)が同期関連情報として通知されることから、ユーザ端末UEにおいては、無線基地局eNB5との間で同期処理を行う必要がある。なお、無線基地局eNB5、eNB6は、互いに同期されており、その旨が同期関連情報として通知されることから、ユーザ端末UEにおいては、無線基地局eNB5と同期を確保した後、無線基地局eNB6との間で同期処理を行う必要はない。
 すなわち、図11に示す移動経路において、ユーザ端末UEは、co-locationグループに属する1つの無線基地局との間で同期処理を行えばよい。そして、同期を確保した後は、co-locationグループを跨いで移動しない限り、同期処理を行う必要がない。これにより、同期処理回数を低減できるので、同期処理に伴う負荷を軽減することが可能となる。
 なお、このco-locationグループは、例えば、CSI-RSを設定(configure)する際にco-locationグループに対応するインデックス(識別子)を追加してシグナリングすることができる。図11には、それぞれの無線基地局eNB1~eNB8に関連付けてユーザ端末UEにシグナリングされる情報を示している。なお、ここでは、説明の便宜上、co-locationグループに対応するインデックスでなく、co-locationグループの種別を示している。
 無線基地局eNB1に関し、ユーザ端末UEには、CSI-RS configurationとして、番号「13」がシグナリングされると共に、無線基地局eNB1が属するco-locationグループAがシグナリングされる。同様に、無線基地局eNB2、eNB3、eNB4に関し、CSI-RS configurationとして、それぞれ番号「1」、「7」、「8」がシグナリングされると共に、これらの無線基地局eNBが属するco-locationグループAがシグナリングされる。
 一方、無線基地局eNB5に関し、ユーザ端末UEには、CSI-RS configurationとして、番号「16」がシグナリングされると共に、無線基地局eNB1が属するco-locationグループBがシグナリングされる。同様に、無線基地局eNB6、eNB7、eNB8に関し、CSI-RS configurationとして、それぞれ番号「10」、「5」、「4」がシグナリングされると共に、これらの無線基地局eNBが属するco-locationグループBがシグナリングされる。
 ユーザ端末UEは、このようなCSI-RS configurationに追加してシグナリングされた内容に基づいて同期処理の要否を判定できる。この場合には、既存のCSI-RS configurationに追加してco-locationグループのインデックスが通知されることから、大幅な変更を必要とすることなく、ユーザ端末UEに同期処理の要否を伝達することができる。
 なお、ここでは、ユーザ端末UEにおける同期処理がCSI-RSを用いて行われることを前提として、co-locationグループのインデックスがCSI-RS configurationに追加される場合について説明している。しかしながら、co-locationグループのインデックスが追加されるシグナリング対象については、CSI-RS configurationに限定されるものではなく適宜変更が可能である。
 図12は、co-locationグループのインデックスを管理するテーブルの一例を示す図である。図12に示すテーブルにおいては、3つのco-locationグループA~Cに属する内容(インデックス1~3)と、いずれのco-locationグループA~Cにも属していない内容とが定められている(インデックス0)。この場合、インデックス0~3は、2ビットで表される。例えば、インデックス0は、“00”で表され、インデックス1は、“01”で表される。同様に、インデックス2は、“10”で表され、インデックス3は、“11”で表される。
 図11に示す例では、co-locationグループAに属する無線基地局eNB1~eNB4に対応するCSI-RS configurationにおいて、ビット情報“01”が追加される。一方、co-locationグループBに属する無線基地局eNB5~eNB8に対応するCSI-RS configurationにおいて、ビット情報“10”が追加される。
 また、無線基地局がいずれのco-locationグループにも属していない場合には、CSI-RS configurationにおいて、ビット情報“00”が追加される。いずれのco-locationグループにも属していない場合にその旨がシグナリングされるので、ユーザ端末UEにおいては、該当する無線基地局に対して同期処理が必要であることを明確に把握することができる。
 また、同期関連情報としては、基準となる無線基地局との間におけるco-locationに関連する情報(以下、「co-location情報」という)をユーザ端末UEに通知することができる。なお、基準となる無線基地局には、例えば、現在、ユーザ端末UEが通信を行っている無線基地局や、マクロセルを管理する無線基地局(マクロ基地局)などを指定できる。このようなco-location情報を通知することにより、ユーザ端末UEにおいては、基準となる無線基地局と間におけるco-location情報に基づいて送信ポイントとなる無線基地局との間の同期処理の要否を判定することが可能となる。
 co-location情報として、例えば、基準となる無線基地局との間でco-locationであるか否かを示す情報をユーザ端末UEに通知することができる。この場合には、基準となる無線基地局との間でco-locationであるか否かを示す情報に応じて、送信ポイントとなる無線基地局との間の同期処理の要否を明確に判定することが可能となる。
 また、co-location情報として、例えば、基準となる無線基地局との間において、co-locationである状態からどの程度の時間的差分があるかを示す情報をユーザ端末UEに通知することができる。この場合には、基準となる無線基地局との間でco-locationである状態からどの程度の時間的差分があるかを示す情報に応じて、送信ポイントとなる無線基地局との間の同期処理の要否を明確に判定することが可能となる。
 なお、時間的差分は、複数のビット情報で表すことができる。例えば、4種類の同期状態を示す場合には、2ビットのビット情報で表すことができる。例えば、基準となる無線基地局との間において、co-locationでない旨(すなわち、非同期である旨)を“00”で表し、完全に同期していないものの高精度に同期している旨を“01”で表すことができる。同様に、基準となる無線基地局との間において、“01”で示される同期状態よりも精度が低下した状態で同期している旨を“10”で表し、この“10”で示される同期状態よりも更に精度が低下した状態で同期している旨を“11”で表すことができる。
 これらのビット情報“01”、“10”及び“11”で示される同期状態を数値として指定することができる。なお、これらの数値は、予め定めた数値としてもよいし、無線基地局から指定してもよい。特に、後者の場合には、同期状態を示す数値(時間)を適宜指定できるので、同期精度を変えながら柔軟に同期を確保することが可能となる。
 ところで、データ送信時にキャリアアグリゲーション(CA)が適用される場合、ユーザ端末UEは、コンポーネントキャリア(CC)に対応するセル(無線基地局)毎に同期処理を行う必要があった。この場合において、第2の側面における無線通信方法は、CAされるCCに適用することが可能である。すなわち、各CCに対応する無線基地局間が同期しているか否かを示す同期関連情報をユーザ端末UEに送信し、この同期関連情報に基づいてユーザ端末UEにて無線基地局との間の同期処理の要否を判定し、特定の無線基地局が同期していない場合に当該無線基地局から送信される下りリンク信号の同期処理を行うことができる。
 図13は、CAされるCC#1~CC#5に対応するセル1~5を示している。ここでは、セル1がプライマリセル(PCell)であり、セル2~セル5がセカンダリセル(SCell)であるものとする。既存のco-locationに関するシグナリング(以下、「co-locationシグナリング」という)においては、例えば、CC#3に割り当てられるPDSCHは、CSI-RS configurationとして、CC#3の番号「7」に関連付けられる旨がシグナリングされる。すなわち、既存のco-locationシグナリングは、単一のCC内で行われる。
 これに対し、第2の側面における無線通信方法を適用する場合には、各CCに対応する無線基地局間が同期しているか否かを示す同期関連情報をユーザ端末UEに通知することにより、ユーザ端末UEにおいて、各CCに対応する無線基地局との間の同期処理の要否を判定でき、下りリンク信号の同期処理回数を低減できる。この結果、ユーザ端末UEに対するデータ送信時にCAが適用される場合であっても、ユーザ端末UEにおける同期処理に伴う負荷を軽減することが可能となる。
 各CCに対応する無線基地局間が同期しているか否かを示す同期関連情報をユーザ端末UEに通知する方法としては、例えば、CCに対応する無線基地局毎に上述したco-locationグループに対応するインデックスを追加してシグナリングすることができる。例えば、図13に示すように、CC#1~CC#3(セル1~セル3)に対応する無線基地局がco-locationグループAに属する旨、CC#4、CC#5(セル4、セル5)に対応する無線基地局がco-locationグループBに属する旨をユーザ端末UEに通知できる。この場合には、ユーザ端末UEにおいてCC毎に同期処理を行う事態を回避でき、ユーザ端末UEにおける同期処理に伴う負荷を軽減することが可能となる。
 また、各CCに対応する無線基地局間が同期しているか否かを示す同期関連情報をユーザ端末UEに通知する方法として、CAされるCCを跨いでco-locationシグナリングを行うこともできる。例えば、CC#2に割り当てられるPDSCHは、CSI-RS configurationとして、CC#1の番号「5」に関連付けられる旨がシグナリングされる。このようにco-locationシグナリングを行うことにより、ユーザ端末UEにおいては、CC#2に対応する無線基地局が、CC#1に対応する無線基地局と同期していることを把握でき、CC#2に対応する無線基地局との間の同期処理を省略できる。
 さらに、各CCに対応する無線基地局間が同期しているか否かを示す同期関連情報をユーザ端末UEに通知する方法として、基準となるCCに対応する無線基地局との間におけるco-location情報をユーザ端末UEに通知することもできる。なお、co-location情報としては、上述のように、基準となるCCに対応する無線基地局との間でco-locationであるか否かを示す情報や、基準となる無線基地局との間において、co-locationである状態からどの程度の時間的差分があるかを示す情報などを通知することができる。
 なお、基準となるCCに対応する無線基地局としては、例えば、プライマリセルに対応する無線基地局を選択することができる。全てのセカンダリセルがプライマリセルとco-locationである場合、ユーザ端末UEは、プライマリセルを管理する無線基地局との間で1回だけ同期処理を行うだけで、全てのCCに対応する無線基地局との間で同期を確立することが可能となる。なお、基準となるCCに対応する無線基地局については、プライマリセルに対応する無線基地局に限定されるものではなく、適宜変更が可能である。
(無線通信システムの構成)
 図14は、本実施の形態に係る無線通信システムの概略構成図である。なお、図14に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーションが適用される。また、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4G、FRA(Future Radio Access)と呼ばれても良い。
 図14に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、無線基地局11及び無線基地局12の双方と無線通信可能に構成されている。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が広いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信が行なわれる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHzなど)で帯域幅が狭いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。無線基地局11及び各無線基地局12は、有線接続又は無線接続されている。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、無線基地局装置、送信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、ピコ基地局、フェムト基地局、Home eNodeB、RRH(Remote Radio Head)、マイクロ基地局、送信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、図14に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCHと、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCHにより、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、拡張PDCCH(Enhanced Physical Downlink Control Channel、ePDCCH、E-PDCCH、FDM型PDCCH等とも呼ばれる)により、PDSCH及びPUSCHのスケジューリング情報等が伝送されてもよい。この拡張PDCCH(拡張下り制御チャネル)は、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHの容量不足を補うために使用される。
 上りリンクの通信チャネルは、各ユーザ端末20で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACK等が伝送される。
 図15は、本実施の形態に係る無線基地局10(無線基地局11及び12を含む)の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部203に転送される。また、下りリンクの制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 また、ベースバンド信号処理部104は、報知チャネルにより、ユーザ端末20に対して、当該セルにおける通信のための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅などが含まれる。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。なお、送受信部103は、ユーザ端末20に対して、プリアンブル信号が多重された下りリンク信号を送信する送信部として機能する。
 一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータについては、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力されたベースバンド信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 図16は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ (Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 なお、送受信部203は、プリアンブル信号が多重された下りリンク信号を受信する受信部として機能する。
 図17は、図15に示す無線基地局におけるベースバンド信号処理部104の構成を示すブロック図である。ベースバンド信号処理部104は、レイヤ1処理部1041と、MAC処理部1042と、RLC処理部1043と、同期関連情報生成部1044と、多重部1045と、から主に構成されている。
 レイヤ1処理部1041は、主に物理レイヤに関する処理を行う。レイヤ1処理部1041は、例えば、上りリンクで受信した信号に対して、チャネル復号化、高速フーリエ変換(FFT:Fast Fourier Transform)、周波数デマッピング、逆離散フーリエ変換(IFFT:Inverse Discrete Fourier Transform)、データ復調などの処理を行う。また、レイヤ1処理部1041は、下りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆高速フーリエ変換(IFFT)などの処理を行う。
 MAC処理部1042は、上りリンクで受信した信号に対するMACレイヤでの再送制御、上りリンク/下りリンクに対するスケジューリング、PUSCH/PDSCHの伝送フォーマットの選択、PUSCH/PDSCHのリソースブロックの選択などの処理を行う。
 RLC処理部1043は、上りリンクで受信したパケット/下りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 同期関連情報生成部1044は、生成部を構成するものであり、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成する。例えば、同期関連情報生成部1044は、送信ポイントとなる無線基地局の識別情報(例えば、セルID)と、この識別情報に関連づけた信号系列とを含む同期関連情報を生成する(第1の側面)。また、同期関連情報生成部1044は、無線基地局の識別情報及びこの識別情報に関連づけた信号系列に加え、信号系列の多重位置や、信号系列に関連付けた受信信号の復調用参照信号系列を含む同期関連情報を生成する(第1の側面)。さらに、同期関連情報生成部1044は、セル間の同期/非同期に関する同期関連情報を生成する(第2の側面)。同期関連情報生成部1044で生成された同期関連情報は、例えば、上位レイヤシグナリング(例えば、RRCシグナリングや報知)を介してユーザ端末20に通知される。
 多重部1045は、同期関連情報生成部1044で生成される同期関連情報に基づいて、同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重する。多重部1045は、同期関連情報に含まれる信号系列を、同じく同期関連情報に定められる内容に応じて下りリンク信号が割り当てられる無線リソースに多重する。例えば、多重部1045は、プリアンブル信号を、同期関連情報に定められる時間多重位置又は周波数多重位置に多重する(第1の側面)。多重部1045によりプリアンブル信号が多重された下りリンク信号は、レイヤ1処理部1041を介して送受信部203に出力され、下りリンクにてユーザ端末20に送信される。
 図18は、図16に示すユーザ端末20におけるベースバンド信号処理部204の構成を示すブロック図である。ベースバンド信号処理部204は、レイヤ1処理部2041と、MAC処理部2042と、RLC処理部2043と、同期関連情報保持部2044と、同期処理部2045と、から主に構成されている。
 レイヤ1処理部2041は、主に物理レイヤに関する処理を行う。レイヤ1処理部2041は、例えば、下りリンクで受信した信号に対して、チャネル復号化、高速フーリエ変換(FFT)、周波数デマッピング、データ復調などの処理を行う。また、レイヤ1処理部2041は、上りリンクで送信する信号に対して、チャネル符号化、離散フーリエ変換(DFT)、データ変調、周波数マッピング、逆高速フーリエ変換(IFFT)などの処理を行う。
 MAC処理部2042は、下りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、下りスケジューリング情報の解析(PDSCHの伝送フォーマットの特定、PDSCHのリソースブロックの特定)などを行う。また、MAC処理部2042は、上りリンクで送信する信号に対するMAC再送制御、上りスケジューリング情報の解析(PUSCHの伝送フォーマットの特定、PUSCHのリソースブロックの特定)などの処理を行う。
 RLC処理部2043は、下りリンクで受信したパケット/上りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 同期関連情報保持部2044は、保持部を構成するものであり、無線基地局10の同期関連情報生成部1044で生成された同期関連情報を保持する。例えば、同期関連情報保持部2044は、上位レイヤシグナリング(例えば、RRCシグナリング)で通知された同期関連情報を保持する。例えば、同期関連情報保持部2044は、送信ポイントとなる無線基地局の識別情報(例えば、セルID)と、この識別情報に関連づけた信号系列とを含む同期関連情報を保持する(第1の側面)。また、同期関連情報保持部2044は、無線基地局の識別情報及びこの識別情報に関連づけた信号系列に加え、信号系列の多重位置や、信号系列に関連付けた受信信号の復調用参照信号系列を含む同期関連情報を保持する(第1の側面)。予めユーザ端末20及び複数の無線基地局10において予め同期関連情報が定められる場合には、同期関連情報保持部2044は、その同期関連情報を保持する。
 また、同期関連情報保持部2044は、同期関連情報保持部2044に生成されたセル間の同期/非同期に関する同期関連情報を保持することができる(第2の側面)。例えば、同期関連情報保持部2044は、同期関連情報として、co-locationグループに関する情報を保持する。特に、図12に示すテーブルにて管理するco-locationグループに関する情報を保持するようにしてもよい。また、同期関連情報保持部2044は、同期関連情報として、co-location情報を保持する。
 同期処理部2045は、同期関連情報保持部2044で保持される同期関連情報と、無線基地局10から受信したプリアンブル信号が有する信号系列とを用いて下りリンク信号の同期処理を行う。例えば、同期処理部2045は、同期関連情報保持部2044に保持された同期関連情報の信号系列と、プリアンブル信号が有する信号系列との相関の演算結果に基づいて下りリンク信号の同期処理を行う(第1の側面)。また、同期処理部2045は、同期関連情報保持部2044で保持される同期関連情報に基づいて同期処理の要否を判定する。そして、同期処理が必要である場合に下りリンク信号の送信元となる無線基地局との間で同期処理を行う(第2の側面)。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。例えば、上述した複数の態様を適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2013年1月24日出願の特願2013-011435に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  複数の無線基地局と、前記複数の無線基地局が協調マルチポイント送信可能なユーザ端末と、を備えた無線通信システムであって、
     前記無線基地局は、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成する生成部と、前記同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重する多重部と、前記プリアンブル信号が多重された下りリンク信号を前記ユーザ端末に送信する送信部と、を有し、
     前記ユーザ端末は、前記生成部で生成された前記同期関連情報を保持する保持部と、前記プリアンブル信号が多重された下りリンク信号を受信する受信部と、前記保持部に保持された前記同期関連情報と前記プリアンブル信号が有する前記信号系列とを用いて下りリンク信号の同期処理を行う同期処理部と、を有することを特徴とする無線通信システム。
  2.  前記同期関連情報は、前記無線基地局を識別する識別情報を含み、前記信号系列は、当該無線基地局の識別情報と関連付けられていることを特徴とする請求項1記載の無線通信システム。
  3.  前記同期関連情報は、無線リソースに対する前記信号系列の時間多重位置及び/又は周波数多重位置を含むことを特徴とする請求項2記載の無線通信システム。
  4.  前記同期関連情報は、前記ユーザ端末に固有の前記信号系列と、当該信号系列に関連付けられた、前記ユーザ端末における受信信号の復調用参照信号系列とを含むことを特徴とする請求項1記載の無線通信システム。
  5.  前記同期処理部は、前記保持部に保持された前記同期関連情報の信号系列と、前記プリアンブル信号が有する前記信号系列との相関の演算結果に基づいて下りリンク信号の同期処理を行うことを特徴とする請求項1記載の無線通信システム。
  6.  前記無線基地局は、前記生成部で生成された前記同期関連情報を、上位レイヤシグナリングを用いて前記ユーザ端末に送信することを特徴とする請求項1記載の無線通信システム。
  7.  複数の無線基地局と、前記複数の無線基地局が協調マルチポイント送信可能なユーザ端末と、を備えた無線通信方法であって、
     前記無線基地局にて、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成する工程と、前記同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重する工程と、前記プリアンブル信号が多重された下りリンク信号を前記ユーザ端末に送信する工程と、前記ユーザ端末にて、前記無線基地局で生成された前記同期関連情報を保持する工程と、前記プリアンブル信号が多重された下りリンク信号を受信する工程と、保持された前記同期関連情報と前記プリアンブル信号が有する前記信号系列とを用いて下りリンク信号の同期処理を行う工程と、を有することを特徴とする無線通信方法。
  8.  複数の無線基地局と、前記複数の無線基地局が協調マルチポイント送信可能なユーザ端末と、を備えた無線通信システムにおける無線基地局であって、
     下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を生成する生成部と、前記同期関連情報に含まれる信号系列を有するプリアンブル信号を下りリンク信号に多重する多重部と、前記プリアンブル信号が多重された下りリンク信号を前記ユーザ端末に送信する送信部と、を有することを特徴とする無線基地局。
  9.  複数の無線基地局が協調マルチポイント送信可能なユーザ端末であって、
     前記無線基地局で生成され、下りリンク信号の時間同期及び周波数同期に関連する同期関連情報を保持する保持部と、前記同期関連情報に含まれる信号系列を有するプリアンブル信号が多重された下りリンク信号を受信する受信部と、前記保持部に保持された前記同期関連情報と前記プリアンブル信号が有する前記信号系列とを用いて下りリンク信号の同期処理を行う同期処理部と、を有することを特徴とするユーザ端末。
PCT/JP2013/084715 2013-01-24 2013-12-25 無線通信システム、無線通信方法、無線基地局及びユーザ端末 WO2014115474A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013011435A JP2014143606A (ja) 2013-01-24 2013-01-24 無線通信システム、無線通信方法、無線基地局及びユーザ端末
JP2013-011435 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014115474A1 true WO2014115474A1 (ja) 2014-07-31

Family

ID=51227274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084715 WO2014115474A1 (ja) 2013-01-24 2013-12-25 無線通信システム、無線通信方法、無線基地局及びユーザ端末

Country Status (2)

Country Link
JP (1) JP2014143606A (ja)
WO (1) WO2014115474A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134995A1 (ja) * 2017-01-23 2018-07-26 三菱電機株式会社 基地局、移動局および通信方法
CN112567785A (zh) * 2018-08-03 2021-03-26 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114175710A (zh) * 2019-07-19 2022-03-11 株式会社Ntt都科摩 终端以及无线通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021018A1 (ja) * 2016-07-29 2018-02-01 シャープ株式会社 端末装置、通信方法および集積回路
WO2024095363A1 (ja) * 2022-11-01 2024-05-10 株式会社Nttドコモ 端末、無線通信方法及び基地局

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150686A1 (ja) * 2011-05-02 2012-11-08 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150686A1 (ja) * 2011-05-02 2012-11-08 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Further details of DCI Format 2D", 3GPP TSG RAN WG1 MEETING #71, 16 November 2012 (2012-11-16) *
NTT DOCOMO: "Remaining details for quasi co-location behavior", 3GPP TSG RAN WG1 MEETING #71 R1-124837, 16 November 2012 (2012-11-16) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134995A1 (ja) * 2017-01-23 2018-07-26 三菱電機株式会社 基地局、移動局および通信方法
JPWO2018134995A1 (ja) * 2017-01-23 2019-06-27 三菱電機株式会社 基地局、移動局および通信方法
CN110192401A (zh) * 2017-01-23 2019-08-30 三菱电机株式会社 基站、移动站和通信方法
CN110192401B (zh) * 2017-01-23 2022-04-01 三菱电机株式会社 基站、移动站和通信方法
CN112567785A (zh) * 2018-08-03 2021-03-26 株式会社Ntt都科摩 用户终端以及无线通信方法
CN112567785B (zh) * 2018-08-03 2024-04-02 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114175710A (zh) * 2019-07-19 2022-03-11 株式会社Ntt都科摩 终端以及无线通信方法
CN114175710B (zh) * 2019-07-19 2024-02-06 株式会社Ntt都科摩 终端以及无线通信方法

Also Published As

Publication number Publication date
JP2014143606A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
JP6095991B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
EP2916585B1 (en) Transmission and reception of reference signals in a wireless communication system comprising a plurality of base stations
US9742534B2 (en) Radio communication method, radio communication system, radio base station and user terminal
US9794968B2 (en) Communication system, mobile terminal apparatus, local area base station and communication method
JP6084184B2 (ja) ユーザ端末、無線通信システム及び無線通信方法
WO2014020997A1 (ja) 通信システム、基地局装置、移動端末装置及び通信方法
JP6212188B2 (ja) 無線通信方法、無線基地局及びユーザ端末
JP6289818B2 (ja) ユーザ端末及び無線通信方法
WO2014069164A1 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP2013219508A (ja) 通信システム、ローカルエリア基地局装置、移動端末装置、及び通信方法
JP6010383B2 (ja) 通信システム、マクロ基地局装置、移動端末装置及び通信方法
WO2014115474A1 (ja) 無線通信システム、無線通信方法、無線基地局及びユーザ端末
US20150282131A1 (en) Communication system, base station apparatus and communication method
WO2013069759A1 (ja) 無線通信システム、無線通信方法、無線基地局装置及びユーザ端末
JP2018125893A (ja) ユーザ装置及び通信方法
JP2018191335A (ja) ユーザ端末
JP2017017747A (ja) ユーザ装置及び通信方法
JP2017143584A (ja) 通信システム、基地局装置、移動端末装置及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872692

Country of ref document: EP

Kind code of ref document: A1