WO2012093630A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012093630A1
WO2012093630A1 PCT/JP2011/080368 JP2011080368W WO2012093630A1 WO 2012093630 A1 WO2012093630 A1 WO 2012093630A1 JP 2011080368 W JP2011080368 W JP 2011080368W WO 2012093630 A1 WO2012093630 A1 WO 2012093630A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
subpixel
color display
liquid crystal
pixels
Prior art date
Application number
PCT/JP2011/080368
Other languages
French (fr)
Japanese (ja)
Inventor
壮寿 吉田
下敷領 文一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012093630A1 publication Critical patent/WO2012093630A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a multi-pixel structure.
  • the liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight and low power consumption.
  • the display performance has been improved, the production capacity has been improved, and the price competitiveness with respect to other display devices has been improved.
  • the market scale is expanding rapidly.
  • a conventional twisted nematic mode (TN mode) liquid crystal display device the major axis of liquid crystal molecules having positive dielectric anisotropy is substantially parallel to the substrate surface, and the liquid crystal layer The alignment treatment is performed so that the substrate is twisted approximately 90 degrees between the upper and lower substrates along the thickness direction.
  • a voltage is applied to the liquid crystal layer, the liquid crystal molecules rise in parallel with the electric field, and the twist alignment (twist alignment) is eliminated.
  • the amount of transmitted light is controlled by utilizing a change in optical rotation accompanying a change in the orientation of liquid crystal molecules due to a voltage.
  • Such a TN mode liquid crystal display device has a wide production margin and excellent productivity, but has a problem in display performance, particularly viewing angle characteristics. Specifically, when the display surface of a TN mode liquid crystal display device is observed from an oblique direction, the contrast ratio of the display is significantly reduced, and a plurality of gradations from black to white are clearly observed when observed from the front. When the image is observed from an oblique direction, the problem is that the luminance difference between gradations becomes extremely unclear. Furthermore, the phenomenon that the gradation characteristics of the display are reversed and a darker portion when observed from the front is observed brighter when observed from an oblique direction (so-called gradation inversion phenomenon) is also a problem.
  • liquid crystal display devices with improved viewing angle characteristics in TN mode liquid crystal display devices include in-plane switching mode (IPS mode), multi-domain vertical aligned mode (MVA mode), and axially symmetric alignment mode (ASM). Mode) and the like have been developed.
  • IPS mode in-plane switching mode
  • MVA mode multi-domain vertical aligned mode
  • ASM axially symmetric alignment mode
  • the above-mentioned specific problems related to viewing angle characteristics that is, a significant reduction in display contrast ratio when the display surface is observed obliquely, and Problems such as display gradation inversion have been solved.
  • the problem of viewing angle characteristics is that the ⁇ characteristics during frontal observation and the ⁇ characteristics during oblique observation differ, that is, the dependence of ⁇ characteristics on the viewing angle.
  • sexual problems are newly emerging.
  • the ⁇ characteristic is the gradation dependence of display luminance.
  • the gradation display state differs depending on the observation direction. This is particularly problematic when displaying images such as photographs or when displaying TV broadcasts.
  • two or more subpixels are provided in one pixel, and the luminance of one subpixel is different from the other in the intermediate luminance display.
  • Methods for improving the viewing angle dependency are known (see, for example, Patent Documents 1 and 2). Note that a structure in which each pixel has two or more sub-pixels is also called a multi-pixel structure.
  • FIG. 23 shows a schematic diagram of a liquid crystal display device 900 disclosed in Patent Document 1.
  • the subpixel electrodes 914a and 914b are connected to the common source line S via the corresponding TFTs 916a and 916b, and form capacitive coupling with the corresponding auxiliary capacitance lines CCSa and CCSb.
  • the potentials of the subpixel electrodes 914a and 914b change to change each subpixel. As a result, the viewing angle characteristic is improved.
  • the source signal is supplied from the common source line S to the sub-pixel electrodes 914a and 914b in the same pixel, a decrease in the aperture ratio is suppressed.
  • Patent Document 2 mentions a color balance shift in a multi-pixel structure.
  • the voltage difference between the effective voltages of the two subpixels of the blue pixel and / or the cyan pixel is made smaller than the voltage difference of the effective voltages of the two subpixels of the other pixels. Suppresses yellow shift in viewing angle.
  • the suppression effect of whitening can be adjusted by changing the amplitude of the CS signal.
  • the whitening suppression effect can be increased.
  • the display quality from an oblique direction may deteriorate.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a liquid crystal display device having improved display quality in an oblique direction.
  • a liquid crystal display device is a liquid crystal display device including a plurality of color display pixels including a first color display pixel and a second color display pixel, and each of the plurality of color display pixels is a first color display pixel.
  • a plurality of pixels including a pixel, a second pixel, and a third pixel; each of the plurality of pixels includes a first subpixel and a second subpixel; and each of the plurality of color display pixels
  • each of the first subpixel and the second subpixel is formed by a counter electrode, a liquid crystal layer, and a subpixel electrode facing the counter electrode via the liquid crystal layer.
  • the first color of the first color display pixel and the first pixel of the second color display pixel each perform display with at least some intermediate gradation.
  • the voltage difference between the effective voltage of the first sub-pixel and the effective voltage of the second sub-pixel in the first pixel of the display pixel is the effective voltage of the first sub-pixel in the first pixel of the second color display pixel. It is different from the voltage difference between the voltage and the effective voltage of the second subpixel.
  • the capacitance value of the auxiliary capacitance of the first subpixel is approximately equal to the capacitance value of the auxiliary capacitance of the second subpixel. equal.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel is the second subpixel. Is substantially equal to the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode.
  • the first color display pixel of the first color display pixel when each of the first pixel of the first color display pixel and the first pixel of the second color display pixel performs display with at least some intermediate gradation, the first color display pixel of the first color display pixel Write voltages to the subpixel electrodes corresponding to the first subpixel and the second subpixel in the first pixel are the first subpixel and the second subpixel in the first pixel of the second color display pixel. This is different from the write voltage to the subpixel electrode corresponding to.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the display pixel is different.
  • the capacitance value of the auxiliary capacitance of the first subpixel and the second subpixel in the first pixel of the first color display pixel is equal to the capacity value of the first pixel of the second color display pixel.
  • the capacitance values of the auxiliary capacitors of one subpixel and the second subpixel are substantially equal.
  • the capacitance value of the auxiliary capacitance of the first subpixel and the second subpixel in the first pixel of the first color display pixel is equal to the capacity value of the first pixel of the second color display pixel. It differs from the capacitance value of the auxiliary capacitance of one subpixel and the second subpixel.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the display pixel is substantially equal.
  • the capacitance value of the auxiliary capacitance of the first subpixel and the second subpixel in the first pixel of the first color display pixel is equal to the capacity value of the first pixel of the second color display pixel.
  • the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is supplied.
  • the amplitude of the auxiliary capacitance signal is different from the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the second color display pixel.
  • the first subpixel in each of the plurality of pixels of the first color display pixel when each of the plurality of pixels of the first color display pixel performs display at the at least certain intermediate gradation, the first subpixel in each of the plurality of pixels of the first color display pixel. And the voltage difference between the effective voltage of the second subpixel and the effective voltage of the second subpixel are substantially equal to each other.
  • the first subpixel in each of the plurality of pixels of the first color display pixel when each of the plurality of pixels of the first color display pixel performs display at the at least certain intermediate gradation, the first subpixel in each of the plurality of pixels of the first color display pixel.
  • the average effective voltages of the second subpixels are substantially equal to each other.
  • the amplitudes of the auxiliary capacitance signals supplied to the auxiliary capacitance counter electrodes corresponding to the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel are substantially equal to each other. .
  • the capacitance values of the auxiliary capacitors of the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel are substantially equal to each other.
  • the first pixel in the first pixel of the first color display pixel when each of the first pixel and the third pixel of the first color display pixel performs display at the intermediate gray level, the first pixel in the first pixel of the first color display pixel.
  • the voltage difference between the effective voltage of one subpixel and the effective voltage of the second subpixel is the effective voltage of the first subpixel and the effective voltage of the second subpixel in the third pixel of the first color display pixel. And the voltage difference is different.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the first color.
  • the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the third pixel of the display pixel is different.
  • the capacitance value of the auxiliary capacitance of the first sub-pixel and the second sub-pixel in the first pixel of the first color display pixel is equal to the capacity value of the third pixel of the first color display pixel. This is different from the capacitance value of the auxiliary capacitance of one subpixel and the second subpixel.
  • the first pixel, the second pixel, and the third pixel are a red pixel, a green pixel, and a blue pixel, respectively.
  • the plurality of color display pixels are arranged in a matrix of a plurality of rows and a plurality of columns, and the second color display pixels are arranged in a row direction or a column direction with respect to the first color display pixels. Adjacent.
  • the liquid crystal display device can improve the display quality in the oblique direction.
  • FIG. 4 is an equivalent circuit diagram of one pixel in the liquid crystal display device of the present embodiment. It is a signal waveform diagram in the liquid crystal display device of this embodiment. It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment.
  • (A) is a schematic diagram of the liquid crystal display device of a comparative example
  • (b) is a schematic diagram of four color display pixels in the liquid crystal display device of the comparative example.
  • FIG. 1 It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. It is a schematic diagram which shows the effective voltage difference of four color display pixels and each pixel in 2nd Embodiment of the liquid crystal display device by this invention. It is a schematic diagram which shows the full width of four color display pixels in the liquid crystal display device of a comparative example, and the CS signal corresponding to the auxiliary capacity of each pixel.
  • FIG. 1 shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. It is a schematic diagram which shows the effective voltage difference of
  • 16A is a graph showing changes in chromaticity u ′ with respect to gradation changes in the liquid crystal display device shown in FIG. 16, and FIG. 16B is a graph showing changes in chromaticity v ′ with changes in gradation. It is a schematic diagram which shows the full width of four color display pixels in the liquid crystal display device of a comparative example, and the CS signal corresponding to the auxiliary capacity of each pixel.
  • 18A is a graph showing changes in chromaticity u ′ with respect to gradation changes in the liquid crystal display device shown in FIG. 18, and FIG. 18B is a graph showing changes in chromaticity v ′ with changes in gradation.
  • FIG. 20A is a graph showing changes in chromaticity u ′ with respect to gradation changes in the liquid crystal display device shown in FIG. 20, and FIG. 20B is a graph showing changes in chromaticity v ′ with changes in gradation.
  • FIG. 20B is a graph showing changes in chromaticity v ′ with changes in gradation.
  • It is a schematic diagram which shows ratio of the capacitance value of four color display pixels and the auxiliary capacitance of each pixel in the liquid crystal display device of this embodiment.
  • FIG. 1A shows a schematic diagram of a liquid crystal display device 100 of the present embodiment.
  • the liquid crystal display device 100 includes a rear substrate 10, a front substrate 20, and a liquid crystal layer 30 provided between the rear substrate 10 and the front substrate 20.
  • the back substrate 10 has an insulating substrate 12 and pixel electrodes 14.
  • the front substrate 20 has an insulating substrate 22 and a counter electrode 24.
  • the back substrate 10 includes a source line, an insulating layer, a gate line, a switching element (typically, a thin film transistor (TFT)) and an alignment film.
  • the front substrate 20 is provided with a color filter layer, an alignment film, and the like.
  • a polarizing plate is provided outside the rear substrate 10 and the front substrate 20.
  • the liquid crystal display device 100 is in a VA (Vertical Alignment) mode.
  • the liquid crystal display device 100 may be in an MVA (Multi-domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, or a CPA (Continuous Pinweal Alignment) mode, or an RTN (Welte Current). It may be a mode.
  • the RTN mode may specifically be a UV 2 A (Ultraviolet-induced multi-domain Vertical Alignment) mode.
  • the liquid crystal layer 30 is a vertical alignment type liquid crystal layer
  • the alignment film is a vertical alignment film.
  • the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which a liquid crystal molecular axis (also referred to as “axis orientation”) is aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film.
  • display is performed in a normally black mode by combining the liquid crystal layer 30 and a polarizing plate arranged in crossed Nicols.
  • the liquid crystal display device 100 may be in a TN (Twisted Nematic) mode.
  • the liquid crystal display device 100 may be a transmissive type or a reflective type.
  • the liquid crystal display device 100 may be a transmission / reflection type.
  • the liquid crystal display device 100 further includes a backlight.
  • the liquid crystal display device 100 is provided with a plurality of color display pixels.
  • the color display pixel functions as a display unit of an arbitrary color.
  • the color display pixel has three or more pixels. For example, when red, green, and blue are used as primary colors, the color display pixel has a red pixel, a green pixel, and a blue pixel.
  • Each pixel is defined by a pixel electrode 14.
  • the counter electrode 24 is typically provided so as to oppose all the pixel electrodes 14, but may be provided by being divided into a plurality of blocks.
  • FIG. 1B shows a schematic diagram of four color display pixels D in the liquid crystal display device 100.
  • a plurality of color display pixels are arranged in a matrix of a plurality of rows and a plurality of columns.
  • FIG. 1B shows four color display pixels D 1 to D 4 . .
  • the color display pixels D 1 and D 2 are adjacent in the row direction (x direction), and the color display pixels D 3 and D 4 are adjacent in the row direction.
  • the color display pixels D 1 and D 3 are adjacent to each other in the column direction (y direction), and the color display pixels D 2 and D 4 are adjacent to each other in the column direction.
  • Each color display pixel D has a plurality of pixels.
  • the plurality of pixels include a red pixel R, a green pixel G, and a blue pixel B.
  • the red pixel, the green pixel, and the blue pixel of the color display pixel D 1 may be referred to as a red pixel R 1 , a green pixel G 1, and a blue pixel B 1 .
  • red pixels are red pixels R 2 , R 3 , R 4
  • green pixels are green pixels G 2 , G 3 , G 4
  • blue pixels are blue pixels.
  • B 2 , B 3 , and B 4 may be indicated respectively.
  • Each pixel R, G, B has a sub-pixel a and a sub-pixel b.
  • the sub-pixel a and the sub-pixel b have substantially the same area, and the sub-pixel a and the sub-pixel b exhibit different luminances at least in a certain intermediate gradation.
  • the subpixels a and b may be referred to as a first subpixel and a second subpixel, respectively.
  • the sub-pixel b of the blue pixel B 1 may be denoted as sub-pixels R 1b , G 1b and B 1b , respectively.
  • FIG. 2 shows an equivalent circuit of one pixel of the liquid crystal display device 100.
  • the liquid crystal layers 30 corresponding to the sub-pixels a and b are represented as liquid crystal layers 30a and 30b.
  • the pixel electrode 14 is separated into subpixel electrodes 14a and 14b, while the counter electrode 24 is typically common to both subpixels a and b.
  • the liquid crystal capacitor CLa of the subpixel a is formed by the subpixel electrode 14a, the counter electrode 24, and the liquid crystal layer 30a
  • the liquid crystal capacitor CLb of the subpixel b is formed of the subpixel electrode 14b, the counter electrode 24, and the liquid crystal layer. 30b.
  • CL (V) depends on the effective voltage V applied to the liquid crystal layers 30a and 30b.
  • the auxiliary capacitor CSa of the subpixel a is formed by an auxiliary capacitor electrode, an auxiliary capacitor counter electrode, and an insulating layer
  • the auxiliary capacitor CSb of the subpixel b is formed of an auxiliary capacitor electrode, an auxiliary capacitor counter electrode, and an insulating layer. Formed by.
  • the capacitance values of the auxiliary capacitors CSa and CSb are the same value, and this value is represented as CCS.
  • each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the subpixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the auxiliary capacitor line (CS line) CCSa.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the sub-pixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSb is connected to an auxiliary capacitor line (CS line) CCSb.
  • the gates of the TFTs 16 a and 16 b are both connected to the gate line G, and the sources are both connected to the source line S.
  • the thicknesses of the liquid crystal layers 30a and 30b of the sub-pixels a and b of the red pixel R, the green pixel G, and the blue pixel B are substantially constant unless otherwise specified.
  • the present invention is not limited to this.
  • FIG. 3 schematically shows changes in each voltage for driving the liquid crystal display device 100 of the present embodiment within a certain vertical scanning period.
  • Vs indicates the voltage of the source line S
  • Vcsa indicates the voltage of the CS line CCSa
  • Vcsb indicates the voltage of the CS line CCSb
  • Vg indicates the voltage of the gate line G
  • VLa indicates the subpixel electrode 14a
  • VLb indicates the voltage of the sub-pixel electrode 14b.
  • the broken line in the figure indicates the voltage COMMON (Vc) of the counter electrode 24.
  • the voltage Vcsa of the CS wiring CCSa periodically changes in the range from Vc ⁇ Vad to Vc + Vad
  • the voltage Vcsb of the CS wiring CCSb also periodically changes in the range of Vc ⁇ Vad to Vc + Vad.
  • the amplitude of the voltage Vcsb of the CS wiring CCSb is equal to the voltage Vcsa of the CS wiring CCSa
  • the phase of the voltage Vcsb of the CS wiring CCSb is 180 degrees different from the voltage Vcsa of the CS wiring CCSa.
  • the voltage Vg of the gate line G changes from VgL to VgH, so that the TFTs 16a and 16b are simultaneously turned on (on state), and the source line S is connected to the subpixel electrodes 14a and 14b of the subpixels a and b.
  • the voltage Vs is transmitted, and the liquid crystal capacitors CLa and CLb of the sub-pixels a and b are charged.
  • the auxiliary capacitors CSa and CSb of the respective sub-pixels are charged from the source line S.
  • the voltage Vs of the source line S at this time is also referred to as a write voltage.
  • the TFTs 16a and 16b are simultaneously turned off (off state), and the liquid crystal capacitors CLa and CLb of the sub-pixels a and b, the auxiliary The capacitors CSa and CSb are both electrically insulated from the source line S.
  • the voltage Vcsa of the CS wiring CCSa connected to the auxiliary capacitor CSa increases by 2 ⁇ Vad from Vc ⁇ Vad to Vc + Vad
  • the voltage Vcsb of the CS wiring CCSb connected to the auxiliary capacitor CSb increases from Vc + Vad to Vc ⁇ . Decrease to Vad by 2 ⁇ Vad.
  • VLb Vs ⁇ Vd ⁇ 2 ⁇ K ⁇ Vad
  • K CCS / (CL (V) + CCS).
  • Vcsa of the CS line CCSa changes from Vc + Vad to Vc ⁇ Vad
  • the voltage Vcsb of the CS line CCSb changes from Vc ⁇ Vad to Vc + Vad by 2 ⁇ Vad, thereby causing the subpixel electrodes 14a and 14b to change.
  • VLb Vs ⁇ Vd To change.
  • VLb Vs ⁇ Vd ⁇ 2 ⁇ K ⁇ Vad To change.
  • the effective voltages V1 and V2 applied to the liquid crystal layers 30a and 30b of the subpixels a and b are opposite to the difference between the voltage of the subpixel electrode 14a and the voltage of the counter electrode 24, and the voltage of the subpixel electrode 14b, respectively.
  • Difference from the voltage of the electrode 24, ie V1 VLa-Vcom
  • V2 Vs ⁇ Vd ⁇ K ⁇ Vad ⁇ Vcom It becomes.
  • K CCS / (CL (V ) + CCS)
  • ⁇ Vad K ⁇ ⁇ Vad
  • This ⁇ Vad is also called the peak-to-peak or full width of the CS signal.
  • the smaller the value of the voltage V1 the larger the value of ⁇ V.
  • ⁇ V changes depending on V1 or V2 because the capacitance value CL (V) of the liquid crystal capacitance changes depending on the voltage.
  • CL (V) the capacitance value of the liquid crystal capacitance changes depending on the voltage.
  • the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b is varied according to the color display pixel D, thereby further improving the viewing angle characteristics. ing.
  • FIG. 4 shows the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b in the color display pixels D 1 to D 4 and each pixel in the liquid crystal display device 100 of the present embodiment.
  • the colors displayed by the four color display pixels D 1 to D 4 in the input signal are equal to each other.
  • the red pixel R, the green pixel G, and the blue pixel B exhibit the same intermediate gradation, and for example, the color display pixels D 1 to D 4 exhibit an achromatic color.
  • the voltage difference between the effective voltage of the sub-pixel R 1a and the effective voltage of the sub-pixel R 1b is ⁇ V 1 .
  • the voltage difference between the effective voltage of the sub-pixel G 1a and the effective voltage of the sub-pixel G 1b in the green pixel G 1 is also ⁇ V 1
  • the effective voltage of the sub-pixel B 1a and the effective voltage of the sub-pixel B 1b in the blue pixel B 1 The voltage difference from the effective voltage is also ⁇ V 1 .
  • the voltage difference between the effective voltage of the sub-pixel R 2a and the effective voltage of the sub-pixel R 2b is ⁇ V 2 , and ⁇ V 2 is different from ⁇ V 1 .
  • the voltage difference between the effective voltage of the sub-pixel G 2a and the effective voltage of the sub-pixel G 2b in the green pixel G 2 is also ⁇ V 2
  • the effective voltage of the sub-pixel B 2a and the effective voltage of the sub-pixel B 2b in the blue pixel B 2 is also ⁇ V 2 .
  • the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b is ⁇ V 2.
  • the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b is ⁇ V 1 .
  • the color display pixel D in which the voltage difference between the effective voltages of the sub-pixels a and b is ⁇ V 1 is diagonally adjacent, and the voltage difference between the effective voltages of the sub-pixels a and b is ⁇ V 2.
  • the color display pixels D are adjacent obliquely.
  • the difference in effective voltage difference ⁇ V between the sub-pixels a and b in the adjacent color display pixels D improves the viewing angle characteristics effectively.
  • DerutaVad 1 is a potential change of color display pixels each pixel R 1 in D 1, G 1, sub-pixel B 1 a, b of the auxiliary capacitor CSa, CS signals corresponding to CSb (full width),
  • CCS 1 is subpixel a in the color display pixel D 1, b of the auxiliary capacitor CSa, a capacitance value of CSb.
  • ⁇ V 2 K 2 ⁇ ⁇ Vad 2 .
  • the CS signal potential change amount corresponding to the auxiliary capacitors CSa and CSb, and CCS 2 is the capacitance value of the auxiliary capacitors CSa and CSb of the sub-pixels a and b in the color display pixel D 2 .
  • each pixel of the color display pixel D 1, D 2 R, subpixel a G and B, b of the auxiliary capacitance CSa by varying the capacitance values CCS 1, CCS 2 of CSb, color display
  • the voltage difference ⁇ V between the effective voltages of the sub-pixels a and b can be made different.
  • the overlapping area of the auxiliary capacitance electrodes and auxiliary capacitance counter electrodes forming the auxiliary capacitances CSa and CSb of the sub-pixels a and b of the red pixel R, the green pixel G, and the blue pixel B is defined in the color display pixel D. It may be different depending on the situation.
  • the values of K 1 and K 2 may be made different by making the liquid crystal capacitance CL different by changing the gap (thickness) of the liquid crystal layer according to the color display pixel D.
  • Amplitudes Vad 1 and Vad 2 (or potential change amounts ⁇ Vad 1 and ⁇ Vad 2 ) may be made different according to the color display pixels D 1 and D 2 .
  • the amplitudes Vad 1 and Vad 2 (or potential change amounts ⁇ Vad 1 and ⁇ Vad 2 ) of the auxiliary capacitance signal (CS signal) may be made different.
  • the diagonal ⁇ characteristics of the pixels displaying this color can be changed not only in the sub-pixel unit but also in the pixel unit.
  • the viewing angle characteristics can be improved.
  • the magnitude relationship between the potentials of the pixel electrode 14 and the counter electrode 24 among the voltages applied to the liquid crystal layer 30 is inverted at regular intervals, and the liquid crystal display device 100 is liquid crystal.
  • the direction of the electric field applied to the layer 30 (the direction of the electric lines of force) is set so as to be reversed at regular intervals.
  • the direction of the electric field is also called polarity. For example, when focusing on a certain pixel, after writing is performed so that the potential of the pixel electrode 14 is higher than that of the counter electrode 24 in a certain vertical scanning period, the potential of the counter electrode 24 is changed in another vertical scanning period. Writing is performed so as to be higher than the pixel electrode 14. Typically, the pixel writing polarity is inverted every vertical scanning period.
  • pixels having one polarity are arranged in a checkered pattern, and pixels having the other polarity are also arranged in a checkered pattern.
  • pixels having the other polarity are also arranged in a checkered pattern.
  • the bright subpixels are arranged in a checkered pattern. Note that the brightness of the sub-pixels may be inverted within the same pixel.
  • FIG. 5A shows a schematic diagram of the liquid crystal display device 800.
  • the liquid crystal display device 800 includes a rear substrate 810, a front substrate 820, and a liquid crystal layer 830 provided between the rear substrate 810 and the front substrate 820.
  • the back substrate 810 includes an insulating substrate 812 and pixel electrodes 814.
  • the front substrate 820 includes an insulating substrate 822 and a counter electrode 824.
  • FIG. 5B shows a schematic diagram of four color display pixels D 1 to D 4 in the liquid crystal display device 800. Again, the colors displayed by the four color display pixels D 1 to D 4 in the input signal are equal to each other. In each of the color display pixels D 1 to D 4 , the red pixel R, the green pixel G, and the blue pixel B exhibit the same intermediate gradation, and the color display pixels D 1 to D 4 exhibit an achromatic color.
  • the voltage difference between the effective voltage of the sub-pixel R 1a and the effective voltage of the sub-pixel R 1b in the red pixel R 1 of the color display pixel D 1 is ⁇ Vc.
  • the voltage difference between the effective voltage of the sub-pixel G 1a and the effective voltage of the sub-pixel G 1b in the green pixel G 1 is also ⁇ Vc, and the effective voltage of the sub-pixel B 1a and the effective voltage of the sub-pixel B 1b in the blue pixel B 1 .
  • the voltage difference from the voltage is also ⁇ Vc.
  • the voltage difference between the effective voltage of the subpixel a and the effective voltage of the subpixel b is also ⁇ Vc.
  • the voltage difference ⁇ Vc between the effective voltages of the sub-pixels a and b is constant in the color display pixels D 1 to D 4 , the viewing angle characteristics are not sufficiently improved.
  • FIG. 6 shows a graph showing the viewing angle characteristics of the liquid crystal display device 800.
  • the amplitude (full width) of the CS signal is changed, and the full width of the CS signal is one of 0V, 2.0V, 3.0V, and 4.0V.
  • the number of gradations of each pixel is 255.
  • gradations 0 to 255 are proportional to the front normalized luminance. is doing.
  • the liquid crystal display device 800 is in the 4DRTN mode.
  • the full width of the CS signal is 2.0 V
  • the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance becomes small.
  • the 45 ° viewing angle normalized luminance is close to the front normalized luminance over the gradations 20 to 160, thereby suppressing whitening.
  • the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is smaller than that when the total width is 2.0 V, and in particular, 45 degrees over gradations 100 to 160.
  • the viewing angle normalized luminance is closer to the front normalized luminance.
  • the total width of the CS signal is 4.0 V
  • the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is further reduced as compared with the case where the total width is 3.0 V, and the 45 tones in the gradations 130 to 160 are 45.
  • the degree viewing angle normalized luminance is closer to the front normalized luminance.
  • the 45 ° viewing angle normalized luminance tends to approach the front normalized luminance, thereby suppressing whitening.
  • the 45 ° viewing angle normalized luminance change with respect to the gradation change (that is, the gradation change from the 45 ° viewing angle direction). ) Focus on itself.
  • the variation of the change rate of 45 degree viewing angle normalized luminance with respect to the gradation change when the CS signal full width is 2.0V is relatively small, the 45 degree viewing angle with respect to the gradation change when the CS signal full width is 3.0V.
  • the variation of the change rate of the normalized luminance is larger than that when the full width of the CS signal is 2.0V.
  • the variation in the change rate of the 45-degree viewing angle normalized luminance with respect to the gradation change when the full width of the CS signal is 4.0V is larger than that when the full width of the CS signal is 3.0V.
  • the change rate of the normalized luminance in the oblique direction with respect to the gradation change may fluctuate greatly, and the display quality may be deteriorated.
  • luminance of the diagonal direction is suppressed, and the fall of display quality is suppressed.
  • FIG. 7 shows a graph showing the viewing angle characteristics of the liquid crystal display device 100.
  • gradations 0 to 255 are proportional to the front normalized luminance.
  • the liquid crystal display device 100 is in the 4DRTN mode.
  • the auxiliary capacitors CSa and CSb of the sub-pixels a and b of the pixels R, G, and B in each color display pixel D are substantially constant, but depending on the color display pixel D, the pixels R, G
  • the widths of the CS signals corresponding to the auxiliary capacitors CSa and CSb of the B subpixels a and b are different.
  • there are two types of CS signal full width one full width is 2.0V, and the other full width is 4.0V.
  • FIG. 7 shows a case where the full width of the CS signal in the liquid crystal display device 800 of the comparative example described above with reference to FIG. 6 is set to any one of 0V, 2.0V, 3.0V, and 4.0V.
  • the 45-degree viewing angle normalized luminance change is also shown.
  • the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is small compared to the case where the entire width of the CS signal in the liquid crystal display device 800 is 0V.
  • the 45-degree viewing angle normalized luminance is close to the front normalized luminance in the keys 100 to 160.
  • the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is small compared to the case where the entire width of the CS signal in the liquid crystal display device 800 is 2.0V, and the gradations 100 to 160 are small. Over 45 degrees, the viewing angle normalized luminance approaches the front normalized luminance.
  • the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is slightly larger than that in the liquid crystal display device 800 when the full width of the CS signal is 3.0V or 4.0V.
  • the variation in the change rate of the 45-degree viewing angle normalized luminance with respect to the gradation change over the gradations 100 to 160 is smaller than when the full width of the CS signal is 3.0V or 4.0V. This makes it possible to smoothly change the 45-degree viewing angle normalized luminance with respect to the gradation change.
  • the display quality in the oblique direction can be further improved by providing the color display pixels D having different voltage differences ⁇ V of the effective voltages of the sub-pixels a and b.
  • FIG. 8 is a graph showing the viewing angle characteristics of the liquid crystal display device 100.
  • the gradations 0 to 255 are proportional to the front normalized luminance.
  • the auxiliary capacitors CSa and CSb of the sub-pixels a and b of the pixels R, G and B in each color display pixel D are constant, but the pixels R, G, and B according to the color display pixel D are constant.
  • the full widths of the CS signals corresponding to the auxiliary capacitors CSa and CSb of the B subpixels a and b are different.
  • the liquid crystal display device 100 is in the 4DRTN mode.
  • the full width of the CS signal in the liquid crystal display device 800 of the comparative example described above with reference to FIG. 6 is changed to 2.0 V, 3.0 V, and 4.0 V (that is, CS It also shows the change in 60 ° viewing angle normalized luminance when the signal amplitude is changed at 1.0V, 1.5V, and 2.0V.
  • the full width of the CS signal when the full width of the CS signal is 3.0V, it is 60 degrees over the gradations 100 to 170, compared with the case where the full width of the CS signal is 2.0V.
  • the viewing angle normalized luminance is closer to the front normalized luminance.
  • the full width of the CS signal is 4.0 V
  • the 60-degree viewing angle normalized luminance is closer to the front normalized luminance over the gradations 130 to 170, compared to the case where the full width of the CS signal is 3.0 V.
  • the 60 ° viewing angle normalized luminance tends to approach the front normalized luminance, and whitening can be suppressed.
  • the change rate of the 60-degree viewing angle normalized brightness with respect to the gradation change greatly varies.
  • the variation in the rate of change of the 60 ° viewing angle normalized luminance with respect to the gradation change when the full width of the CS signal is 3.0V is larger than that when the full width of the CS signal is 2.0V.
  • the variation in the change rate of the 60 ° viewing angle normalized luminance with respect to the gradation change when the full width of the CS signal is 4.0V is larger than that when the full width of the CS signal is 3.0V.
  • the voltage difference ⁇ V of the effective voltages of the sub-pixels a and b is varied according to the color display pixel D.
  • the variation in the change rate of the 60-degree viewing angle normalized luminance with respect to the gradation change over the gradations 100 to 170 is smaller than that of the liquid crystal display device 800 in which the full width of the CS signal is 3.0V, 4.0V.
  • the change in the change rate of the 60-degree viewing angle normalized luminance is suppressed, and the change in the normalized luminance in the oblique direction with respect to the gradation change can be smoothed.
  • the full width of the CS signal when the full width of the CS signal is 1.0 V, the viewing angle characteristics from the oblique direction are slightly improved as compared with the case where the full width is zero. When the total width is less than 1.0 V, there is almost no improvement effect. In addition, when the entire width of the CS signal exceeds 5.0 V, the variation in the change rate of the normalized luminance in the oblique direction is further increased, and the display quality is greatly deteriorated. For this reason, it is preferable that the amplitudes Vad 1 and Vad 2 are different from each other and that 1/5 ⁇ Vad 2 / Vad 1 ⁇ 5.
  • the amplitude Vad 2 is larger than the amplitude Vad 1 , it is preferable that 1 ⁇ Vad 2 / Vad 1 ⁇ 5. Since the amplitude is proportional to the potential variation (full width) DerutaVad, potential variation DerutaVad 1, Similarly for DerutaVad 2, the potential variation ⁇ Vad 1, ⁇ Vad 2 are different from each other, and, 1/5 ⁇ Vad 2 / ⁇ Vad 1 ⁇ 5 is preferred. If the potential change amount ⁇ Vad 2 is larger than the potential change amount ⁇ Vad 1 , it is preferable that 1 ⁇ Vad 2 / ⁇ Vad 1 ⁇ 5.
  • ⁇ V 1 and ⁇ V 2 are different from each other and 1/5 ⁇ V 2 / ⁇ V 1 ⁇ 5 is preferable. Also, if [Delta] V 2 is greater than [Delta] V 1, 1 ⁇ is preferably ⁇ V 2 / ⁇ V 1 ⁇ 5.
  • each of the sub-pixel a color display pixel D 1, D 2, b of the auxiliary capacitance CSa, the capacitance value of CSb CCS 1, CCS 2 is equal Accordingly, equal K 1, K 2,
  • K 1 and K 2 may be different.
  • K 1 and K 2 are preferably different from each other and 1/5 ⁇ K 2 / K 1 ⁇ 5.
  • K 2 is greater than K 1, 1 ⁇ it is preferably K 2 / K 1 ⁇ 5.
  • the source signal voltages corresponding to the different colors are substantially equal.
  • the invention is not limited to this.
  • the source signal voltages corresponding to different colors may be different even if the gradations of red, green, and blue in the input signal are equal.
  • the voltage difference between the auxiliary capacitors of the sub-pixels of the pixels corresponding to the same color (for example, red) of the different color display pixels D is different. Even in the case of color, the front luminance may change, and the ⁇ characteristic in the front direction may change. In this case, even if the gradation of the same color (for example, red) in the input signal is the same, the writing voltage (source signal voltage) to the pixel of this color corresponding to the different color display pixel D is made different, so that the front direction By adjusting the luminance, the gamma characteristic in the front direction can be adjusted.
  • the red pixels R 1 and R 2 of the color display pixels D 1 and D 2 shown in FIG. 4 Focusing on the red pixels R 1 and R 2 of the color display pixels D 1 and D 2 shown in FIG. 4, for example, even when the gradations of the same color (for example, red) in the input signal are equal, the red pixels R 1 and R 2 In order to adjust the front luminance of the red pixel R 2 to be substantially equal to each other, the source signal voltages when writing to the red pixels R 1 and R 2 may be made different from each other. In this case, the average effective voltage of the sub-pixel R 1a and the sub-pixel R 1b of the red pixel R 1 is different from the average effective voltage of the sub-pixel R 2a and the sub-pixel R 2b of the red pixel R 2 .
  • the auxiliary capacitors CSa and CSb of the sub-pixels a and b may be different depending on the color display pixel D.
  • the luminance in the front direction may change due to the difference between the auxiliary capacitors CSa and CSb.
  • the voltages of the subpixel electrodes 14a and 14b decrease by Vd.
  • the value of the pull-in voltage Vd is the parasitic capacitance Cgd between the gate electrodes and the drain electrodes of the TFTs 16a and 16b, and all the capacitances connected to the drains of the TFTs 16a and 16b (liquid crystal capacitances CLa and CLb, auxiliary capacitances CSa and CSb, and others).
  • the parasitic capacitance is the parasitic capacitance Cgd between the gate electrodes and the drain electrodes of the TFTs 16a and 16b, and all the capacitances connected to the drains of the TFTs 16a and 16b (liquid crystal capacitances CLa and CLb, auxiliary capacitances CSa and CSb, and others). The parasitic capacitance).
  • the value of the pull-in voltage Vd also differs depending on the color display pixel D.
  • the average value (DC level) of the voltage applied to the liquid crystal layer 30 varies, and the counter electrode 24 is common to all the color display pixels D.
  • the DC voltage component applied to the liquid crystal layer 30 for all the color display pixels D cannot be sufficiently reduced even when the counter voltage is adjusted, and the display quality and reliability are improved. There may be a problem of lowering.
  • the luminance in the front direction can be matched by changing the source signal voltage with respect to the gradation level of the input signal by signal processing.
  • reliability can be improved by changing the Cgd of the TFTs 16a and 16b according to the color display pixel D and optimizing the counter voltage.
  • the ⁇ characteristics from the diagonal direction of the pixels can be varied and the ⁇ characteristics from the front can be adjusted. For this reason, even if the vertical scanning period is relatively long, that is, even if the writing frequency is low, it is possible to suppress the deterioration of display quality.
  • liquid crystal display device 100 of this embodiment will be described in detail with reference to FIGS. 9 to 11.
  • FIG. 9 shows an equivalent circuit of the liquid crystal display device 100 of the present embodiment.
  • the gate wirings G in the n-th row, the (n + 1) th row,... May be referred to as gate wirings G n , G n + 1 ,.
  • the auxiliary capacitor CSa of the sub-pixel a of the n-th row pixel corresponds to the CS line CCSa1 or CCSa2
  • the auxiliary capacitor CSb of the sub-pixel b of the n-th row pixel corresponds to the CS line CCSb1 or CCSb2.
  • the auxiliary capacitance CSa of the sub-pixel a of the pixel in the (n + 1) th row corresponds to the CS wiring CCSb1 or CCSb2
  • the auxiliary capacitance CSb of the sub-pixel b of the pixel in the (n + 1) th row corresponds to the CS wiring CCSc1 or CCSc2.
  • the capacitance values CCS of the auxiliary capacitors CSa and CSb are substantially equal to each other. For example, approximately equal auxiliary capacitance CSa the color display pixel D 1, the capacitance value CCS 1 of CSb auxiliary capacitance CSa the color display pixel D 2, the capacitance value CCS 2 of CSb.
  • the amplitude of the CS signal supplied to the CS wiring CCSa1 is substantially equal to the amplitude of the CS signal supplied to the CS wiring CCSb1, and the amplitude of the CS signal supplied to the CS wiring CCSa2 is supplied to the CS wiring CCSb2. It is almost equal to the amplitude of the CS signal. Note that the amplitude of the CS signal supplied to the CS wiring CCSa1 is different from the CS signal supplied to the CS wiring CCSa2. However, the phase of the CS signal supplied to the CS wiring CCSa1 may be equal to the phase of the CS signal supplied to the CS wiring CCSa2.
  • the amplitude of the CS signal supplied to the CS wiring CCSb1 is different from the CS signal supplied to the CS wiring CCSb2, and the amplitude of the CS signal supplied to the CS wiring CCSc1 is different from the CS signal supplied to the CS wiring CCSc2.
  • the red pixel R 1 of the color display pixel D 1 attention is paid to the red pixel R 1 of the color display pixel D 1 .
  • one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16 a that functions as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa1.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b that functions as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode.
  • the gate of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S.
  • the green pixel G 1 and the blue pixel B 1 of the color display pixel D 1 have the same configuration as the red pixel R 1 .
  • the red pixel R 2 of the color display pixel D 2 attention is paid to the red pixel R 2 of the color display pixel D 2 .
  • one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa2.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode.
  • the gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S.
  • the green pixel G 2 and the blue pixel B 2 of the color display pixel D 2 have the same configuration as the red pixel R 2 .
  • the auxiliary capacitance of the sub-pixel a of the pixels R 3 , G 3 , and B 3 of the color display pixel D 3 corresponds to the CS wiring CCSb 2
  • the sub-pixel b The auxiliary capacitance corresponds to the CS wiring CCSc2.
  • the auxiliary capacitance of the sub-pixel a of the pixels R 4 , G 4 , and B 4 of the color display pixel D 4 corresponds to the CS wiring CCSb1
  • the auxiliary capacitance of the sub-pixel b corresponds to the CS wiring CCSc1.
  • FIG. 10 shows another equivalent circuit of the liquid crystal display device 100.
  • the auxiliary capacitors CSa and CSb of the sub-pixels a and b have different capacitance values depending on the color display pixel D.
  • the overlapping area between the auxiliary capacitance electrode and the auxiliary capacitance counter electrode in the sub-pixels a and b of the color display pixel D 1 is the difference between the auxiliary capacitance electrode and the auxiliary capacitance counter-electrode in the sub-pixels a and b of the color display pixel D 2 . It is different from the overlapping area.
  • the auxiliary capacitance of the sub-pixel a of the color display pixel D adjacent in the row direction corresponds to the same CS signal, and the auxiliary capacitance of the sub-pixel b of the color display pixel D adjacent in the row direction is different.
  • the auxiliary capacitance of the sub-pixel a of the color display pixels D 1 and D 2 corresponds to the CS signal corresponding to the CS wiring CCSa
  • the auxiliary capacitance of the sub-pixel b of the color display pixels D 1 and D 2 is the CS wiring. It corresponds to the CS signal corresponding to CCSb.
  • the red pixel R 1 of the color display pixel D 1 attention is paid to the red pixel R 1 of the color display pixel D 1 .
  • one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16 a that functions as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b that functions as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode.
  • the gate of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S.
  • the green pixel G 1 and the blue pixel B 1 of the color display pixel D 1 have the same configuration as the red pixel R 1 .
  • the red pixel R 2 of the color display pixel D 2 attention is paid to the red pixel R 2 of the color display pixel D 2 .
  • one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode.
  • the gate of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S.
  • the green pixel G 2 and the blue pixel B 2 of the color display pixel D 2 have the same configuration as the red pixel R 2 .
  • the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 1 is different from the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 2.
  • the effective of the sub-pixel a in the pixels R 1 , G 1 and B 1 of the color display pixel D 1 The voltage can be made different from the effective voltage of the sub-pixel a in the pixels R 2 , G 2 , and B 2 of the color display pixel D 2 .
  • the capacitance value of the auxiliary capacitance CSb subpixels b of the color display pixels D 1 is different from the capacitance of the auxiliary capacitor CSb subpixels b of color display pixel D 2, the color display pixel D 1, D 2
  • the effective voltage of the sub-pixel b in the pixels R 1 , G 1 , B 1 of the color display pixel D 1 is set to the color display pixel D 2 .
  • the effective voltage of the sub-pixel b in the pixels R 2 , G 2 , and B 2 can be made different. For this reason, the viewing angle characteristics of the liquid crystal display device 100 are further improved.
  • the average of the effective voltage and the effective voltage of the sub-pixel b of the sub-pixel a in each of the color pixels R 1 display pixel D 1, G 1, B 1 is a color display pixel D 2 of the pixel R 2 , G 2 and B 2 are approximately equal to the average of the effective voltage of the subpixel a and the effective voltage of the subpixel b.
  • the auxiliary capacitance of the sub-pixel a of the pixels R 3 , G 3 , and B 3 of the color display pixel D 3 corresponds to the CS wiring CCSb
  • the auxiliary capacitance of the sub-pixel b The capacitance corresponds to the CS wiring CCSc.
  • the auxiliary capacitance of the sub-pixel a of the pixels R 4 , G 4 , and B 4 of the color display pixel D 4 corresponds to the CS wiring CCSb
  • the auxiliary capacitance of the sub-pixel b corresponds to the CS wiring CCSc.
  • the auxiliary capacitances of the adjacent sub-pixels among the color display pixels D adjacent in the column direction correspond to the same CS wiring, thereby reducing the number of CS wirings and increasing the aperture ratio. be able to.
  • one CS wiring corresponds to the sub-pixel b of one pixel and the sub-pixel a of the other pixel of two pixels adjacent in the column direction. Is not limited to this.
  • FIG. 11 shows still another equivalent circuit of the liquid crystal display device 100.
  • the liquid crystal display device 100 shown in FIG. 11 has the same configuration as that of the liquid crystal display device shown in FIG.
  • the capacitance values of the sub-pixels a and b differ depending on the color display pixel D.
  • the pixels R 1 of the color display pixel D 1, G 1, B 1 sub-pixels in a, b of the auxiliary capacitance CSa, the electrostatic capacitance value CCS 1 of CSb, the pixels R 2 of the color display pixels D 2, G 2 , B 2 is different from the capacitance values CCS 2 of the auxiliary capacitors CSa and CSb of the sub-pixels a and b.
  • the overlapping area of the auxiliary capacitance electrode and the auxiliary capacitance counter electrode in the sub-pixels a and b of the color display pixel D 1 is the overlapping area of the auxiliary capacitance electrode and the auxiliary capacitance counter-electrode in the sub pixels a and b of the color display pixel D 2. Is different.
  • the auxiliary capacitance of the sub-pixel a of the color display pixel D adjacent in the row direction corresponds to the same CS signal, and the auxiliary capacitance of the sub-pixel b of the color display pixel D adjacent in the row direction is different.
  • the auxiliary capacitance of the sub-pixel a of the color display pixels D 1 and D 2 corresponds to the CS signal corresponding to the CS wiring CCSa
  • the auxiliary capacitance of the sub-pixel b of the color display pixels D 1 and D 2 is the CS wiring. It corresponds to the CS signal corresponding to CCSb.
  • the red pixel R 1 of the color display pixel D 1 attention is paid to the red pixel R 1 of the color display pixel D 1 .
  • one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16 a that functions as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa1.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b that functions as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode.
  • the gate of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S.
  • the green pixel G 1 and the blue pixel B 1 of the color display pixel D 1 have the same configuration as the red pixel R 1 .
  • the red pixel R 2 of the color display pixel D 2 attention is paid to the red pixel R 2 of the color display pixel D 2 .
  • one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24.
  • the other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa1.
  • one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode.
  • the gate of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S.
  • the green pixel G 2 and the blue pixel B 2 of the color display pixel D 2 have the same configuration as the red pixel R 2 .
  • the auxiliary capacitance of the sub-pixel a of the pixels R 3 , G 3 , and B 3 of the color display pixel D 3 corresponds to the CS wiring CCSb 2
  • the auxiliary capacitance of the sub-pixel b The capacitance corresponds to the CS wiring CCSc2.
  • the auxiliary capacitance of the sub-pixel a of the pixels R 4 , G 4 , and B 4 of the color display pixel D 4 corresponds to the CS wiring CCSb2
  • the auxiliary capacitance of the sub-pixel b corresponds to the CS wiring CCSc2.
  • the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 1 is different from the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 2.
  • the effective of the sub-pixel a in the pixels R 1 , G 1 and B 1 of the color display pixel D 1 The voltage can be made different from the effective voltage of the sub-pixel a in the pixels R 2 , G 2 , and B 2 of the color display pixel D 2 .
  • the capacitance value of the auxiliary capacitance CSb subpixels b of the color display pixels D 1 is different from the capacitance of the auxiliary capacitor CSb subpixels b of color display pixel D 2, the color display pixel D 1, D 2
  • the effective voltage of the sub-pixel b in the pixels R 1 , G 1 , B 1 of the color display pixel D 1 is set to the color display pixel D 2 .
  • the effective voltage of the sub-pixel b in the pixels R 2 , G 2 , and B 2 can be made different. For this reason, the viewing angle characteristics of the liquid crystal display device 100 are further improved.
  • the color display pixels D 1 and D 4 having the voltage difference ⁇ V 1 are arranged obliquely, and the color display pixels D 2 and D 3 having the voltage difference ⁇ V 2 are arranged obliquely. Is not limited to this.
  • the color display pixels D having different voltage differences between the effective voltages of the sub-pixels a and b may be arbitrarily arranged.
  • the parasitic capacitance corresponding to each source line is preferably substantially constant.
  • the color display pixels D having the voltage difference ⁇ V 1 are arranged in the row direction in a certain row, and the color display pixels D having the voltage difference ⁇ V 2 are arranged in the row direction in adjacent rows. Good.
  • the color display pixels D having the voltage difference ⁇ V 1 and the color display pixels D having the voltage difference ⁇ V 2 are alternately arranged.
  • the parasitic capacitance corresponding to the source line is substantially constant, but the present invention is not limited to this.
  • the capacitance corresponding to each CS wiring may be substantially constant.
  • color display pixels D having a voltage difference ⁇ V 1 are arranged in a column in a certain column, and color display pixels D having a voltage difference ⁇ V 2 are arranged in a column direction in an adjacent column. Also good.
  • the color display pixel D having the voltage difference ⁇ V 1 and the color display pixel D having the voltage difference ⁇ V 2 are alternately arranged.
  • the capacitance corresponding to the source line or the CS wiring is set to be substantially constant, but the present invention is not limited to this.
  • the capacitance corresponding to each of the source line and the CS wiring may be substantially constant.
  • the color display pixels D having the voltage difference ⁇ V 1 may be arranged in a checkered pattern
  • the color display pixels D having the voltage difference ⁇ V 2 may be arranged in a checkered pattern.
  • the color display pixel D having the voltage difference ⁇ V 1 and the color display pixel D having the voltage difference ⁇ V 2 are alternately arranged, and the color display having the voltage difference ⁇ V 1 is also viewed in the column direction. Pixels D and color display pixels D having a voltage difference ⁇ V 2 are alternately arranged.
  • color display pixels D having different voltage differences ⁇ V between the effective voltages of the sub-pixels a and b, but the present invention is not limited to this.
  • three or more color display pixels D having different capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b may be provided.
  • full width of the CS signal there are two types of full width of the CS signal (for example, two types of full width of 2.0 V and 4.0 V in the description with reference to FIGS. 7 and 8). There may be three or more types of full widths. Note that the full width of the CS signal is larger than a value that can suppress whitening to some extent even when one type of full width CS signal is used (the full width is 2.0 V in the description with reference to FIGS. 7 and 8 above). It is preferably a value. Of course, two or more types of color display pixels D having different capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b may be provided, and two or more types of the full width of the CS signal may be provided.
  • the color display pixels D having different voltage differences ⁇ V are arranged adjacent to any of the row direction, the column direction, and the diagonal direction for each of the color display pixels D.
  • the invention is not limited to this.
  • the voltage difference ⁇ V between the color display pixels D adjacent in any of the row direction, the column direction, and the diagonal direction may be substantially equal. That is, the color display pixels D having different voltage differences ⁇ V may be arranged apart from each other.
  • FIG. 15 shows a schematic diagram of a liquid crystal display device 100A of the present embodiment.
  • the liquid crystal display device 100A of the present embodiment is the same as that described above except that the voltage difference ⁇ V between the effective voltages of the sub-pixels a and b in the pixels R, G, and B in the same color display pixel D is not constant.
  • the configuration is the same as that of 100, and redundant description is omitted to avoid redundancy.
  • FIG. 15 shows the voltage difference ⁇ V between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b in the four color display pixels D 1 to D 4 and each pixel in the liquid crystal display device 100A of the present embodiment.
  • the colors displayed by the four color display pixels D 1 to D 4 are equal to each other, and in each of the color display pixels D 1 to D 4 , the red pixel R, the green pixel G, and the blue pixel B are Equal halftones are shown, and the color display pixels D 1 to D 4 show achromatic colors.
  • the voltage difference between the effective voltage of the sub-pixel R 1a and the effective voltage of the sub-pixel R 1b is ⁇ V R1 .
  • the voltage difference between the effective voltage of the sub-pixel G 1a and the effective voltage of the sub-pixel G 1b is ⁇ V G1
  • the effective voltage of the sub-pixel B 1a and the sub-pixel B 1b The voltage difference from the effective voltage is ⁇ V B1 .
  • the voltage differences ⁇ V R1 , ⁇ V G1 , ⁇ V B1 in the color display pixel D 1 are not constant.
  • CCS B capacitance values CCS R, CCS G
  • the overlapping area of the auxiliary capacitance electrodes forming the auxiliary capacitances CSa and CSb of the sub-pixels a and b and the auxiliary capacitance counter electrode may be made different according to the pixels R 1 , G 1 and B 1 .
  • the amplitude Vad of the auxiliary capacitance signal (CS signal) supplied to the auxiliary capacitance counter electrodes of the auxiliary capacitances CSa and CSb of the sub-pixels a and b of the pixels R 1 , G 1 and B 1 is set. If they are referred to as Vad R , Vad G , and Vad B , respectively, the amplitudes Vad R , Vad G , and Vad B may be made different depending on the pixels R 1 , G 1, and B 1 . Thus, the viewing angle in the oblique direction can be further improved by making the voltage difference between the effective voltages of the sub-pixels a and b of the pixels R 1 , G 1 and B 1 in the color display pixel D 1 different. it can.
  • the voltage difference ⁇ V R2 between the effective voltage of the sub-pixel R 2a and the effective voltage of the sub-pixel R 2b in the red pixel R 2 of the color display pixel D 2 is different from ⁇ V R1 .
  • the voltage difference ⁇ V G2 between the effective voltage of the sub-pixel G 2a and the effective voltage of the sub-pixel G 2b in the green pixel G 2 is different from ⁇ V G1 .
  • the voltage difference ⁇ V B2 between the effective voltage of the sub-pixel B 2a and the effective voltage of the sub-pixel B 2b in the blue pixel B 2 is different from ⁇ V B1 .
  • the voltage differences ⁇ V R2 , ⁇ V G2 , and ⁇ V B2 are not constant.
  • the voltage difference ⁇ V B1 is preferably smaller than the voltage differences ⁇ V R1 and ⁇ V G1 .
  • the voltage difference ⁇ V B1 of the blue pixel B is smaller than the voltage differences ⁇ V R1 and ⁇ V G1 of the red pixel R and the green pixel G, thereby causing a color balance shift due to an oblique viewing angle. Can be suppressed.
  • the voltage difference [Delta] V R1 may be larger or smaller than the voltage difference [Delta] V G1.
  • the voltage difference [Delta] V R1 may be substantially equal to the voltage difference [Delta] V G1.
  • the voltage difference ⁇ V B2 is preferably smaller than the voltage differences ⁇ V R2 and ⁇ V G2 .
  • the voltage difference [Delta] V R2 may be larger or smaller than the voltage difference [Delta] V G2.
  • the voltage difference [Delta] V R2 may be substantially equal to the voltage difference [Delta] V G2.
  • the ratio of the voltage differences ⁇ V R1 , ⁇ V G1 and ⁇ V B1 is preferably substantially equal to the ratio of the voltage differences ⁇ V R2 , ⁇ V G2 and ⁇ V B2 . In this case, it is possible to easily suppress the chromaticity change from the oblique direction in each color display pixel D.
  • FIG. 16 is a schematic diagram of four color display pixels in the liquid crystal display device 800A of the comparative example.
  • the liquid crystal display device 800A subpixel a in the color display pixel D 1 of the, b of the auxiliary capacitance CSa, capacitance CCS of CSb is substantially constant.
  • the amplitudes Vad R , Vad G , and Vad B of the CS voltage in the color display pixel D 1 are not constant.
  • the full widths ⁇ Vad R and ⁇ Vad G are 2.0V
  • ⁇ Vad B is 1.6V.
  • the color display pixels D 2 to D 4 have the same configuration as the color display pixel D 1 .
  • the capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are almost constant.
  • the amplitude Vad of the CS voltage in each of the color display pixels D 2 to D 4 is not constant.
  • the full widths ⁇ Vad R and ⁇ Vad G are 2.0V
  • the full width ⁇ Vad B is 1.6V.
  • the colors displayed by the four color display pixels D 1 to D 4 in the input signal are equal to each other.
  • the red pixel R, the green pixel G, and the blue pixel B exhibit the same intermediate gradation, and the color display pixels D 1 to D 4 exhibit an achromatic color.
  • FIG. 17A shows a change in chromaticity u ′ with respect to a gradation change in the liquid crystal display device 800A
  • FIG. 17B shows a change in chromaticity v ′ with respect to a gradation change.
  • FIGS. 17A and 17B show the chromaticities u ′ and v ′ when viewed from the right at 45 ° with respect to the normal direction of the main surface of the liquid crystal display device 800A.
  • the liquid crystal display device 800A is in the 4DRTN mode.
  • FIGS. 17A and 17B show the results of changing the full width ⁇ Vad B of the CS signal to 1.4V, 1.6V, and 2.0V, respectively.
  • ⁇ Vad R and ⁇ Vad G are 2.0V
  • the ratio (X) of the total width ⁇ Vad B (1.4V, 1.6V and 2.0V) to ⁇ Vad R and ⁇ Vad G (2.0V) is , 0.7, 0.8, and 1.0, respectively.
  • FIG. 18 is a schematic diagram of four color display pixels in the liquid crystal display device 800B of the comparative example.
  • the liquid crystal display device 800B subpixel a in the color display pixel D 1 of the, b of the auxiliary capacitance CSa, capacitance CCS of CSb is substantially constant.
  • the amplitudes Vad R , Vad G , and Vad B in the color display pixel D 1 are not constant.
  • the full widths ⁇ Vad R and ⁇ Vad G are 4.0V
  • the full width ⁇ Vad B is 3.2V.
  • the color display pixels D 2 to D 4 have the same configuration as the color display pixel D 1 .
  • the capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are substantially constant.
  • the amplitude Vad of the CS voltage in each of the color display pixels D 2 to D 4 is not constant.
  • ⁇ Vad R and ⁇ Vad G are 4.0V
  • ⁇ Vad B is 3.2V.
  • FIG. 19A shows a change in chromaticity u ′ with respect to a gradation change in the liquid crystal display device 800B
  • FIG. 19B shows a change in chromaticity v ′ with respect to a gradation change.
  • FIGS. 19A and 19B show chromaticities u ′ and v ′ when viewed from the right at 45 ° with respect to the normal direction of the main surface of the liquid crystal display device 800B.
  • the liquid crystal display device 800B is in the 4DRTN mode.
  • ⁇ Vad B 2.8V, 3.2V and 4.0V
  • ⁇ Vad R and ⁇ Vad G are 4.0V
  • the ratio (X) of ⁇ Vad B (2.8V, 3.2V and 4.0V) to ⁇ Vad R and ⁇ Vad G (4.0V). are 0.7, 0.8, and 1.0, respectively.
  • FIG. 20 shows the amplitude of the CS signal corresponding to the four color display pixels and the auxiliary capacitance of each pixel in the liquid crystal display device 100A of the present embodiment.
  • Subpixel a in the color display pixel D 1 of the liquid crystal display device 100A, b of the auxiliary capacitance CSa, capacitance CCS of CSb is substantially constant.
  • the amplitudes Vad R1 , Vad G1 , and Vad B1 of the CS voltage in the color display pixel D 1 are not constant.
  • ⁇ Vad R1 and ⁇ Vad G1 are 2.0V and ⁇ Vad B1 is 1.6V, as in the liquid crystal display device 800A of the comparative example described above with reference to FIGS.
  • the amplitudes Vad R2 , Vad G2 , and Vad B2 are not constant.
  • ⁇ Vad R2 and ⁇ Vad G2 are 4.0 V and ⁇ Vad B2 is 3.2 V, as in the liquid crystal display device 800B of the comparative example described above with reference to FIGS.
  • each pixel R in the color display pixel D 3 and D 4 is also a color display pixel D 1 and D 2.
  • the capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are almost constant.
  • the amplitude Vad of the CS voltage in each of the color display pixels D 3 and D 4 is not constant.
  • ⁇ Vad R3 and ⁇ Vad G3 are 2.0V
  • ⁇ Vad B3 is 1.6V
  • ⁇ Vad R4 and ⁇ Vad G4 are 4.0V
  • FIG. 21A shows a change in chromaticity u ′ with respect to a gradation change in the liquid crystal display device 100A
  • FIG. 21B shows a change in chromaticity v ′ with respect to a gradation change.
  • FIGS. 21A and 21B show chromaticities u ′ and v ′ when viewed from the right at 45 ° with respect to the normal direction of the main surface of the liquid crystal display device 100A.
  • the amplitudes Vad R , Vad G , and Vad B of the CS signal are different depending on the color display pixel D, the amplitudes Vad R , Vad G , and Vad B of the CS signal in the same color display pixel D are constant.
  • the amplitude Vad B is smaller than the amplitudes Vad R and Vad G in each color display pixel D, whereby the voltage difference ⁇ V B is changed from the voltage differences ⁇ V R and ⁇ V G in each color display pixel D. Therefore, yellow shift can be improved.
  • the preferable ratio X varies depending on the liquid crystal capacitors CLa and CLb and the auxiliary capacitors CSa and CSb of the sub-pixels a and b, and may be set as appropriate.
  • the capacitance values of the auxiliary capacitors CSa and CSb are substantially equal in each color display pixel D, and the amplitudes Vad R , Vad G , and Vad of the CS signals of the pixels R, G, and B in the color display pixel D are used.
  • the present invention is not limited to this.
  • the amplitude Vad R , Vad G , Vad B of the CS signal is made substantially equal in each color display pixel D, and the capacitance values CCS R of the auxiliary capacitors CSa, CSb of the pixels R, G, B of the color display pixel D are set.
  • CCS G and CCS B may be different.
  • FIG. 22 shows the ratio of the capacitance values of the four color display pixels and the auxiliary capacitance of each pixel in the liquid crystal display device 100A of the present embodiment.
  • the amplitude of the CS voltage in each of the color display pixels D is substantially constant.
  • the capacitance values CCS R1 , CCS G1 , and CCS B1 of the auxiliary capacitors CSa and CSb of the color display pixel D in the color display pixel D 1 are not constant, Accordingly, K R1 , K G1 , and K B1 are not constant.
  • K R1 , K G1 , and K B1 are 1.0, 1.0, and 0.8, respectively.
  • the capacitance values CCS R2 , CCS G2 , and CCS B2 of the auxiliary capacitors CSa and CSb of the pixels R, G, and B of the color display pixel D 2 in the color display pixel D 2 are the capacitance values CCS R1 , CCS G1 , and CCS B1 , respectively. Accordingly, K R2 , K G2 and K B2 are different from K R1 , K G1 and K B1 . Note that the capacitance values CCS R2 , CCS G2 , and CCS B2 are not constant, and accordingly, K R2 , K G2 , and K B2 are not constant. For example, K R2 , K G2 , and K B2 are 2.0, 2.0, and 1.6, respectively.
  • the pixels R, G, and B in the color display pixels D 3 and D 4 are substantially the same as the color display pixels D 1 and D 2 , respectively.
  • the ratio of K R3 and K G3 is 1.0
  • K B3 is 0.8
  • K R4 and K G4 are 2.0
  • K B4 is 1.6
  • the viewing angle characteristics can be further improved by making the capacitance values CCS R , CCS G , and CCS B of the auxiliary capacitors CSa and CSb in the color display pixel D different.
  • both the amplitudes Vad R , Vad G , Vad B and the capacitance values of the auxiliary capacitors CSa, CSb may be changed in accordance with the color display pixel D.
  • the present invention is limited to Not.
  • the voltage difference ⁇ V of another pixel may be different from the voltage difference ⁇ V of another pixel.
  • Red pixel R in each color display pixel D, the voltage difference [Delta] V R of the green pixel G, and [Delta] V G was equal to one another, the present invention is not limited thereto. Red pixel R, the voltage difference [Delta] V R of the green pixel G, [Delta] V G may be different.
  • the areas of the sub-pixels a and b in the same pixel are almost equal, but the present invention is not limited to this.
  • the areas of the sub-pixels a and b in the same pixel may be different.
  • one pixel has two sub-pixels that can have different luminances, but the present invention is not limited to this.
  • One pixel may have three or more subpixels that can have different luminances.
  • the color display pixel has three pixels of a red pixel, a green pixel, and a blue pixel, but the present invention is not limited to this.
  • the color display pixel may have four or more pixels.
  • the color display pixel may have a yellow pixel in addition to a red pixel, a green pixel, and a blue pixel.
  • the color display pixel may include a yellow pixel and a cyan pixel in addition to a red pixel, a green pixel, and a blue pixel.
  • the display quality in the oblique direction of the liquid crystal display device can be improved.

Abstract

A liquid crystal display device (100) according to the present invention is provided with a plurality of color display pixels including color display pixels (D1, D2). Each of the plurality of color display pixels has a plurality of pixels including pixels (R, G, B) and each of the plurality of pixels has sub pixels (a, b). When each of a pixel (R1) of the color display pixel (D1) and a pixel (R2) of the color display pixel (D2) displays at least in a certain middle gradation, the voltage difference ΔV1 between the effective voltage of the sub pixel (R1a) and the effective voltage of the sub pixel (R1b) in the pixel (R1) of the color display pixel (D1) is different from the voltage difference ΔV2 between the effective voltage of the sub pixel (R2a) and the effective voltage of the sub pixel (R2b) in the pixel (R2) of the color display pixel (D2).

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、より詳細には、マルチ画素構造を有する液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a multi-pixel structure.
 液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有する平面表示装置であり、近年、表示性能の向上、生産能力の向上および他の表示装置に対する価格競争力の向上に伴い、市場規模が急速に拡大している。従来一般的であったツイステッド・ネマティク・モード(TNモード)の液晶表示装置では、正の誘電率異方性を持つ液晶分子の長軸が、基板表面に対して略平行で、且つ、液晶層の厚さ方向に沿って上下の基板間で略90度捻れるように配向処理が施されている。この液晶層に電圧を印加すると、液晶分子が電界に平行に立ち上がり、捻れ配向(ツイスト配向)が解消される。TNモードの液晶表示装置では、電圧による液晶分子の配向変化に伴う旋光性の変化を利用することにより、透過光量が制御される。 The liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight and low power consumption. In recent years, the display performance has been improved, the production capacity has been improved, and the price competitiveness with respect to other display devices has been improved. As a result, the market scale is expanding rapidly. In a conventional twisted nematic mode (TN mode) liquid crystal display device, the major axis of liquid crystal molecules having positive dielectric anisotropy is substantially parallel to the substrate surface, and the liquid crystal layer The alignment treatment is performed so that the substrate is twisted approximately 90 degrees between the upper and lower substrates along the thickness direction. When a voltage is applied to the liquid crystal layer, the liquid crystal molecules rise in parallel with the electric field, and the twist alignment (twist alignment) is eliminated. In a TN mode liquid crystal display device, the amount of transmitted light is controlled by utilizing a change in optical rotation accompanying a change in the orientation of liquid crystal molecules due to a voltage.
 このようなTNモードの液晶表示装置は、生産マージンが広く生産性に優れている一方、表示性能とりわけ視野角特性の点で問題があった。具体的には、TNモードの液晶表示装置の表示面を斜め方向から観測すると、表示のコントラスト比が著しく低下し、正面からの観測で黒から白までの複数の階調が明瞭に観測される画像を斜め方向から観測すると階調間の輝度差が著しく不明瞭となる点が問題であった。さらに、表示の階調特性が反転し、正面からの観測でより暗い部分が斜め方向からの観測ではより明るく観測される現象(いわゆる階調反転現象)も問題であった。 Such a TN mode liquid crystal display device has a wide production margin and excellent productivity, but has a problem in display performance, particularly viewing angle characteristics. Specifically, when the display surface of a TN mode liquid crystal display device is observed from an oblique direction, the contrast ratio of the display is significantly reduced, and a plurality of gradations from black to white are clearly observed when observed from the front. When the image is observed from an oblique direction, the problem is that the luminance difference between gradations becomes extremely unclear. Furthermore, the phenomenon that the gradation characteristics of the display are reversed and a darker portion when observed from the front is observed brighter when observed from an oblique direction (so-called gradation inversion phenomenon) is also a problem.
 近年、TNモードの液晶表示装置における視野角特性を改善した液晶表示装置として、インプレイン・スイッチング・モード(IPSモード)、マルチドメイン・バーティカル・アラインド・モード(MVAモード)、軸対称配向モード(ASMモード)等の液晶表示装置が開発されている。これらの新規なモード(広視野角モード)の液晶表示装置では、視野角特性に関する上記の具体的な問題点、すなわち、表示面を斜め方向から観測した場合における表示コントラスト比の著しい低下、および、表示階調の反転といった問題点が解決されている。 In recent years, liquid crystal display devices with improved viewing angle characteristics in TN mode liquid crystal display devices include in-plane switching mode (IPS mode), multi-domain vertical aligned mode (MVA mode), and axially symmetric alignment mode (ASM). Mode) and the like have been developed. In these novel mode (wide viewing angle mode) liquid crystal display devices, the above-mentioned specific problems related to viewing angle characteristics, that is, a significant reduction in display contrast ratio when the display surface is observed obliquely, and Problems such as display gradation inversion have been solved.
 しかしながら、液晶表示装置の表示品位の改善が進む状況下において、今日では視野角特性の問題点として、正面観測時のγ特性と斜め観測時のγ特性が異なる点、すなわちγ特性の視野角依存性の問題が新たに顕在化してきた。ここで、γ特性とは表示輝度の階調依存性である。γ特性が正面方向と斜め方向で異なる場合、階調表示状態が観測方向によって異なることとなる。このため、写真等の画像を表示する場合や、またTV放送等を表示する場合に特に問題となる。 However, under the circumstances where the display quality of liquid crystal display devices is improving, the problem of viewing angle characteristics is that the γ characteristics during frontal observation and the γ characteristics during oblique observation differ, that is, the dependence of γ characteristics on the viewing angle. Sexual problems are newly emerging. Here, the γ characteristic is the gradation dependence of display luminance. When the γ characteristic is different between the front direction and the oblique direction, the gradation display state differs depending on the observation direction. This is particularly problematic when displaying images such as photographs or when displaying TV broadcasts.
 γ特性の視野角依存性を改善するための方法として、1つの画素に2つ以上の副画素を設け、中間輝度表示において一方の副画素の輝度を他方とは異ならせることにより、γ特性の視野角依存性を改善する方法が知られている(例えば、特許文献1および2参照)。なお、このように、各画素が2つ以上の副画素を有する構造はマルチ画素構造とも呼ばれる。 As a method for improving the viewing angle dependency of the γ characteristic, two or more subpixels are provided in one pixel, and the luminance of one subpixel is different from the other in the intermediate luminance display. Methods for improving the viewing angle dependency are known (see, for example, Patent Documents 1 and 2). Note that a structure in which each pixel has two or more sub-pixels is also called a multi-pixel structure.
 図23に、特許文献1に開示されている液晶表示装置900の模式図を示す。液晶表示装置900では、副画素電極914a、914bは、対応するTFT916a、916bを介して共通のソース線Sに接続されており、対応する補助容量配線CCSa、CCSbと容量結合を形成している。液晶表示装置900では、副画素電極914a、914bと容量結合を形成する補助容量配線CCSa、CCSbの電圧が異なる態様で変化することにより、副画素電極914a、914bの電位が変化して各副画素a、bの輝度が異なることになり、その結果として、視野角特性の改善が図られている。また、液晶表示装置900では、共通のソース線Sから、同一画素内の副画素電極914a、914bにソース信号が供給されるため、開口率の低下が抑制される。 FIG. 23 shows a schematic diagram of a liquid crystal display device 900 disclosed in Patent Document 1. In the liquid crystal display device 900, the subpixel electrodes 914a and 914b are connected to the common source line S via the corresponding TFTs 916a and 916b, and form capacitive coupling with the corresponding auxiliary capacitance lines CCSa and CCSb. In the liquid crystal display device 900, when the voltages of the auxiliary capacitance lines CCSa and CCSb that form capacitive coupling with the subpixel electrodes 914a and 914b change in different modes, the potentials of the subpixel electrodes 914a and 914b change to change each subpixel. As a result, the viewing angle characteristic is improved. In the liquid crystal display device 900, since the source signal is supplied from the common source line S to the sub-pixel electrodes 914a and 914b in the same pixel, a decrease in the aperture ratio is suppressed.
 特許文献2では、マルチ画素構造における色バランスのずれに言及されている。特許文献2の液晶表示装置では、青画素および/またはシアン画素の2つの副画素の実効電圧の電圧差を他の画素の2つの副画素の実効電圧の電圧差よりも小さくすることより、斜め視角における黄色シフトを抑制している。 Patent Document 2 mentions a color balance shift in a multi-pixel structure. In the liquid crystal display device of Patent Document 2, the voltage difference between the effective voltages of the two subpixels of the blue pixel and / or the cyan pixel is made smaller than the voltage difference of the effective voltages of the two subpixels of the other pixels. Suppresses yellow shift in viewing angle.
特開2004-62146号公報JP 2004-62146 A 国際公開第2008/018552号International Publication No. 2008/018552
 白浮きの抑制効果は、CS信号の振幅を変化させることにより、調整することができる。一般に、CS信号の振幅が大きいほど、白浮きの抑制効果を増大できる。しかしながら、CS信号の振幅を大きくしすぎると、斜め方向からの表示品位が低下することがある。 The suppression effect of whitening can be adjusted by changing the amplitude of the CS signal. In general, as the amplitude of the CS signal is larger, the whitening suppression effect can be increased. However, if the amplitude of the CS signal is increased too much, the display quality from an oblique direction may deteriorate.
 本発明は、上記課題を鑑みてなされたものであり、その目的は、斜め方向の表示品位を改善した液晶表示装置を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a liquid crystal display device having improved display quality in an oblique direction.
 本発明の実施形態による液晶表示装置は、第1カラー表示画素および第2カラー表示画素を含む複数のカラー表示画素を備える液晶表示装置であって、前記複数のカラー表示画素のそれぞれは、第1画素、第2画素および第3画素を含む複数の画素を有しており、前記複数の画素のそれぞれは第1副画素および第2副画素を有しており、前記複数のカラー表示画素のそれぞれの前記複数の画素のそれぞれにおいて、前記第1副画素および前記第2副画素のそれぞれは、対向電極と、液晶層と、前記液晶層を介して前記対向電極に対向する副画素電極とによって形成された液晶容量と、前記副画素電極に電気的に接続された補助容量電極と、絶縁層と、前記絶縁層を介して前記補助容量電極と対向する補助容量対向電極とによって形成された補助容量とを有しており、前記第1カラー表示画素の前記第1画素および前記第2カラー表示画素の前記第1画素のそれぞれが少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記第1画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差は、前記第2カラー表示画素の前記第1画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差と異なる。 A liquid crystal display device according to an embodiment of the present invention is a liquid crystal display device including a plurality of color display pixels including a first color display pixel and a second color display pixel, and each of the plurality of color display pixels is a first color display pixel. A plurality of pixels including a pixel, a second pixel, and a third pixel; each of the plurality of pixels includes a first subpixel and a second subpixel; and each of the plurality of color display pixels In each of the plurality of pixels, each of the first subpixel and the second subpixel is formed by a counter electrode, a liquid crystal layer, and a subpixel electrode facing the counter electrode via the liquid crystal layer. Liquid crystal capacitance, an auxiliary capacitance electrode electrically connected to the sub-pixel electrode, an insulating layer, and an auxiliary capacitance counter electrode facing the auxiliary capacitance electrode through the insulating layer And the first color of the first color display pixel and the first pixel of the second color display pixel each perform display with at least some intermediate gradation. The voltage difference between the effective voltage of the first sub-pixel and the effective voltage of the second sub-pixel in the first pixel of the display pixel is the effective voltage of the first sub-pixel in the first pixel of the second color display pixel. It is different from the voltage difference between the voltage and the effective voltage of the second subpixel.
 ある実施形態において、前記複数のカラー表示画素のそれぞれの前記複数の画素のそれぞれにおいて、前記第1副画素の前記補助容量の容量値は、前記第2副画素の前記補助容量の容量値とほぼ等しい。 In one embodiment, in each of the plurality of pixels of the plurality of color display pixels, the capacitance value of the auxiliary capacitance of the first subpixel is approximately equal to the capacitance value of the auxiliary capacitance of the second subpixel. equal.
 ある実施形態において、前記複数のカラー表示画素のそれぞれの前記複数の画素のそれぞれにおいて、前記第1副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅とほぼ等しい。 In one embodiment, in each of the plurality of pixels of the plurality of color display pixels, the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel is the second subpixel. Is substantially equal to the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode.
 ある実施形態において、前記第1カラー表示画素の前記第1画素および前記第2カラー表示画素の前記第1画素のそれぞれが少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する副画素電極への書き込み電圧は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する副画素電極への書き込み電圧とは異なる。 In one embodiment, when each of the first pixel of the first color display pixel and the first pixel of the second color display pixel performs display with at least some intermediate gradation, the first color display pixel of the first color display pixel Write voltages to the subpixel electrodes corresponding to the first subpixel and the second subpixel in the first pixel are the first subpixel and the second subpixel in the first pixel of the second color display pixel. This is different from the write voltage to the subpixel electrode corresponding to.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅と異なる。 In one embodiment, the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color. The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the display pixel is different.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値とほぼ等しい。 In one embodiment, the capacitance value of the auxiliary capacitance of the first subpixel and the second subpixel in the first pixel of the first color display pixel is equal to the capacity value of the first pixel of the second color display pixel. The capacitance values of the auxiliary capacitors of one subpixel and the second subpixel are substantially equal.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値と異なる。 In one embodiment, the capacitance value of the auxiliary capacitance of the first subpixel and the second subpixel in the first pixel of the first color display pixel is equal to the capacity value of the first pixel of the second color display pixel. It differs from the capacitance value of the auxiliary capacitance of one subpixel and the second subpixel.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅とほぼ等しい。 In one embodiment, the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color. The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the display pixel is substantially equal.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値と異なり、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅と異なる。 In one embodiment, the capacitance value of the auxiliary capacitance of the first subpixel and the second subpixel in the first pixel of the first color display pixel is equal to the capacity value of the first pixel of the second color display pixel. Unlike the capacitance values of the auxiliary capacitances of one subpixel and the second subpixel, the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is supplied. The amplitude of the auxiliary capacitance signal is different from the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the second color display pixel. .
 ある実施形態において、前記第1カラー表示画素の前記複数の画素のそれぞれが前記少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差は互いにほぼ等しい。 In one embodiment, when each of the plurality of pixels of the first color display pixel performs display at the at least certain intermediate gradation, the first subpixel in each of the plurality of pixels of the first color display pixel. And the voltage difference between the effective voltage of the second subpixel and the effective voltage of the second subpixel are substantially equal to each other.
 ある実施形態において、前記第1カラー表示画素の前記複数の画素のそれぞれが前記少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素および前記第2副画素の実効電圧の平均は互いにほぼ等しい。 In one embodiment, when each of the plurality of pixels of the first color display pixel performs display at the at least certain intermediate gradation, the first subpixel in each of the plurality of pixels of the first color display pixel. The average effective voltages of the second subpixels are substantially equal to each other.
 ある実施形態において、前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は互いにほぼ等しい。 In one embodiment, the amplitudes of the auxiliary capacitance signals supplied to the auxiliary capacitance counter electrodes corresponding to the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel are substantially equal to each other. .
 ある実施形態において、前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素および前記第2副画素の補助容量の容量値は互いにほぼ等しい。 In one embodiment, the capacitance values of the auxiliary capacitors of the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel are substantially equal to each other.
 ある実施形態において、前記第1カラー表示画素の前記第1画素および前記第3画素のそれぞれが前記少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記第1画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差は、前記第1カラー表示画素の前記第3画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差とは異なる。 In one embodiment, when each of the first pixel and the third pixel of the first color display pixel performs display at the intermediate gray level, the first pixel in the first pixel of the first color display pixel. The voltage difference between the effective voltage of one subpixel and the effective voltage of the second subpixel is the effective voltage of the first subpixel and the effective voltage of the second subpixel in the third pixel of the first color display pixel. And the voltage difference is different.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第1カラー表示画素の前記第3画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅とは異なる。 In one embodiment, the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the first color. The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the third pixel of the display pixel is different.
 ある実施形態において、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第1カラー表示画素の前記第3画素における前記第1副画素および前記第2副画素の補助容量の容量値とは異なる。 In one embodiment, the capacitance value of the auxiliary capacitance of the first sub-pixel and the second sub-pixel in the first pixel of the first color display pixel is equal to the capacity value of the third pixel of the first color display pixel. This is different from the capacitance value of the auxiliary capacitance of one subpixel and the second subpixel.
 ある実施形態において、前記第1画素、前記第2画素および前記第3画素は、それぞれ、赤画素、緑画素および青画素である。 In one embodiment, the first pixel, the second pixel, and the third pixel are a red pixel, a green pixel, and a blue pixel, respectively.
 ある実施形態において、前記複数のカラー表示画素は、複数の行および複数の列のマトリクス状に配列され、前記第2カラー表示画素は、前記第1カラー表示画素に対して行方向または列方向に隣接している。 In one embodiment, the plurality of color display pixels are arranged in a matrix of a plurality of rows and a plurality of columns, and the second color display pixels are arranged in a row direction or a column direction with respect to the first color display pixels. Adjacent.
 本発明の実施形態による液晶表示装置は、斜め方向の表示品位を改善することができる。 The liquid crystal display device according to the embodiment of the present invention can improve the display quality in the oblique direction.
(a)は本発明による液晶表示装置の第1実施形態の模式図であり、(b)は本実施形態の液晶表示装置における4つのカラー表示画素の模式図である。(A) is a schematic diagram of 1st Embodiment of the liquid crystal display device by this invention, (b) is a schematic diagram of four color display pixels in the liquid crystal display device of this embodiment. 本実施形態の液晶表示装置における1画素の等価回路図である。FIG. 4 is an equivalent circuit diagram of one pixel in the liquid crystal display device of the present embodiment. 本実施形態の液晶表示装置における信号波形図である。It is a signal waveform diagram in the liquid crystal display device of this embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素および各画素における副画素の実効電圧の電圧差を示す模式図である。It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. (a)は比較例の液晶表示装置の模式図であり、(b)は比較例の液晶表示装置における4つのカラー表示画素の模式図である。(A) is a schematic diagram of the liquid crystal display device of a comparative example, (b) is a schematic diagram of four color display pixels in the liquid crystal display device of the comparative example. 比較例の液晶表示装置における斜め方向からの視野角特性を示すグラフである。It is a graph which shows the viewing angle characteristic from the diagonal direction in the liquid crystal display device of a comparative example. 本実施形態の液晶表示装置における斜め方向からの視野角特性を示すグラフである。It is a graph which shows the viewing angle characteristic from the diagonal direction in the liquid crystal display device of this embodiment. 本実施形態の液晶表示装置における斜め方向からの視野角特性を示すグラフである。It is a graph which shows the viewing angle characteristic from the diagonal direction in the liquid crystal display device of this embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素の等価回路図である。It is an equivalent circuit diagram of four color display pixels in the liquid crystal display device of the present embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素の等価回路図である。It is an equivalent circuit diagram of four color display pixels in the liquid crystal display device of the present embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素の等価回路図である。It is an equivalent circuit diagram of four color display pixels in the liquid crystal display device of the present embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素および各画素における副画素の実効電圧の電圧差を示す模式図である。It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素および各画素における副画素の実効電圧の電圧差を示す模式図である。It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. 本実施形態の液晶表示装置における4つのカラー表示画素および各画素における副画素の実効電圧の電圧差を示す模式図である。It is a schematic diagram which shows the voltage difference of the effective voltage of four color display pixels and the sub pixel in each pixel in the liquid crystal display device of this embodiment. 本発明による液晶表示装置の第2実施形態における4つのカラー表示画素および各画素の実効電圧差を示す模式図である。It is a schematic diagram which shows the effective voltage difference of four color display pixels and each pixel in 2nd Embodiment of the liquid crystal display device by this invention. 比較例の液晶表示装置における4つのカラー表示画素、および、各画素の補助容量に対応するCS信号の全幅を示す模式図である。It is a schematic diagram which shows the full width of four color display pixels in the liquid crystal display device of a comparative example, and the CS signal corresponding to the auxiliary capacity of each pixel. (a)は図16に示した液晶表示装置における階調変化に対する色度u’の変化を示すグラフであり、(b)は階調変化に対する色度v’の変化を示すグラフである。FIG. 16A is a graph showing changes in chromaticity u ′ with respect to gradation changes in the liquid crystal display device shown in FIG. 16, and FIG. 16B is a graph showing changes in chromaticity v ′ with changes in gradation. 比較例の液晶表示装置における4つのカラー表示画素、および、各画素の補助容量に対応するCS信号の全幅を示す模式図である。It is a schematic diagram which shows the full width of four color display pixels in the liquid crystal display device of a comparative example, and the CS signal corresponding to the auxiliary capacity of each pixel. (a)は図18に示した液晶表示装置における階調変化に対する色度u’の変化を示すグラフであり、(b)は階調変化に対する色度v’の変化を示すグラフである。18A is a graph showing changes in chromaticity u ′ with respect to gradation changes in the liquid crystal display device shown in FIG. 18, and FIG. 18B is a graph showing changes in chromaticity v ′ with changes in gradation. 本実施形態の液晶表示装置における4つのカラー表示画素、および、各画素の補助容量に対応するCS信号の全幅を示す模式図である。It is a schematic diagram which shows the full width of four color display pixels in the liquid crystal display device of this embodiment, and the CS signal corresponding to the auxiliary capacity of each pixel. (a)は図20に示した液晶表示装置における階調変化に対する色度u’の変化を示すグラフであり、(b)は階調変化に対する色度v’の変化を示すグラフである。20A is a graph showing changes in chromaticity u ′ with respect to gradation changes in the liquid crystal display device shown in FIG. 20, and FIG. 20B is a graph showing changes in chromaticity v ′ with changes in gradation. 本実施形態の液晶表示装置における4つのカラー表示画素および各画素の補助容量の容量値の比を示す模式図である。It is a schematic diagram which shows ratio of the capacitance value of four color display pixels and the auxiliary capacitance of each pixel in the liquid crystal display device of this embodiment. 従来の液晶表示装置における画素の模式図である。It is a schematic diagram of the pixel in the conventional liquid crystal display device.
 以下、図面を参照して、本発明による液晶表示装置の実施形態を説明する。ただし、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of a liquid crystal display device according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
 (実施形態1)
 以下、図面を参照して、本発明による液晶表示装置100の第1実施形態を説明する。図1(a)に、本実施形態の液晶表示装置100の模式図を示す。液晶表示装置100は、背面基板10と、前面基板20と、背面基板10と前面基板20との間に設けられた液晶層30とを備えている。背面基板10は、絶縁基板12と、画素電極14とを有している。前面基板20は、絶縁基板22と、対向電極24とを有している。なお、ここでは図示していないが、典型的には、背面基板10には、ソース線、絶縁層、ゲート線、スイッチング素子(典型的には、薄膜トランジスタ(Thin Film Transistor:TFT))および配向膜等が設けられており、前面基板20にはカラーフィルタ層および配向膜等が設けられている。また、背面基板10および前面基板20の外側には偏光板が設けられている。
(Embodiment 1)
Hereinafter, a liquid crystal display device 100 according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1A shows a schematic diagram of a liquid crystal display device 100 of the present embodiment. The liquid crystal display device 100 includes a rear substrate 10, a front substrate 20, and a liquid crystal layer 30 provided between the rear substrate 10 and the front substrate 20. The back substrate 10 has an insulating substrate 12 and pixel electrodes 14. The front substrate 20 has an insulating substrate 22 and a counter electrode 24. Although not shown here, typically, the back substrate 10 includes a source line, an insulating layer, a gate line, a switching element (typically, a thin film transistor (TFT)) and an alignment film. The front substrate 20 is provided with a color filter layer, an alignment film, and the like. A polarizing plate is provided outside the rear substrate 10 and the front substrate 20.
 例えば、液晶表示装置100は、VA(Vertical Alignment)モードである。具体的には、液晶表示装置100は、MVA(Multi-domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、CPA(Continuous Pinwheel Alignment)モードであってもよく、また、RTN(Reverse Twisted Nematic)モードであってもよい。例えば、RTNモードは、具体的には、UV2A(Ultraviolet-induced multi-domain Vertical Alignment)モードであってもよい。この場合、液晶層30は垂直配向型の液晶層であり、配向膜は垂直配向膜である。ここで、「垂直配向型液晶層」とは、垂直配向膜の表面に対して、液晶分子軸(「軸方位」ともいう。)が約85°以上の角度で配向した液晶層をいう。典型的には、液晶層30とクロスニコル配置された偏光板とを組み合わせて、ノーマリーブラックモードで表示が行われる。あるいは、液晶表示装置100は、TN(Twisted Nematic)モードであってもよい。 For example, the liquid crystal display device 100 is in a VA (Vertical Alignment) mode. Specifically, the liquid crystal display device 100 may be in an MVA (Multi-domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, or a CPA (Continuous Pinweal Alignment) mode, or an RTN (Welte Current). It may be a mode. For example, the RTN mode may specifically be a UV 2 A (Ultraviolet-induced multi-domain Vertical Alignment) mode. In this case, the liquid crystal layer 30 is a vertical alignment type liquid crystal layer, and the alignment film is a vertical alignment film. Here, the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which a liquid crystal molecular axis (also referred to as “axis orientation”) is aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film. Typically, display is performed in a normally black mode by combining the liquid crystal layer 30 and a polarizing plate arranged in crossed Nicols. Alternatively, the liquid crystal display device 100 may be in a TN (Twisted Nematic) mode.
 また、液晶表示装置100は透過型であってもよく、反射型であってもよい。あるいは、液晶表示装置100は透過反射両用型であってもよい。透過型または透過反射両用型の場合、液晶表示装置100はバックライトをさらに備えている。 Further, the liquid crystal display device 100 may be a transmissive type or a reflective type. Alternatively, the liquid crystal display device 100 may be a transmission / reflection type. In the case of the transmissive type or the transmissive / reflective type, the liquid crystal display device 100 further includes a backlight.
 液晶表示装置100には複数のカラー表示画素が設けられている。カラー表示画素は任意の色の表示単位として機能する。カラー表示画素は3つ以上の画素を有している。例えば、原色として、赤、緑および青を用いる場合、カラー表示画素は、赤画素、緑画素および青画素を有している。各画素は画素電極14によって規定される。対向電極24は、典型的には、全ての画素電極14に対向するように設けられているが、複数のブロックに分割して設けられていてもよい。 The liquid crystal display device 100 is provided with a plurality of color display pixels. The color display pixel functions as a display unit of an arbitrary color. The color display pixel has three or more pixels. For example, when red, green, and blue are used as primary colors, the color display pixel has a red pixel, a green pixel, and a blue pixel. Each pixel is defined by a pixel electrode 14. The counter electrode 24 is typically provided so as to oppose all the pixel electrodes 14, but may be provided by being divided into a plurality of blocks.
 図1(b)に、液晶表示装置100における4つのカラー表示画素Dの模式図を示す。液晶表示装置100には、複数のカラー表示画素が複数の行および複数の列のマトリクス状に配列されており、図1(b)では、4つのカラー表示画素D1~D4を示している。カラー表示画素D1およびD2は行方向(x方向)に隣接しており、カラー表示画素D3およびD4は行方向に隣接している。また、カラー表示画素D1およびD3は列方向(y方向)に隣接しており、カラー表示画素D2およびD4は列方向に隣接している。 FIG. 1B shows a schematic diagram of four color display pixels D in the liquid crystal display device 100. In the liquid crystal display device 100, a plurality of color display pixels are arranged in a matrix of a plurality of rows and a plurality of columns. FIG. 1B shows four color display pixels D 1 to D 4 . . The color display pixels D 1 and D 2 are adjacent in the row direction (x direction), and the color display pixels D 3 and D 4 are adjacent in the row direction. The color display pixels D 1 and D 3 are adjacent to each other in the column direction (y direction), and the color display pixels D 2 and D 4 are adjacent to each other in the column direction.
 各カラー表示画素Dは複数の画素を有している。ここでは、複数の画素は、赤画素R、緑画素Gおよび青画素Bを含む。本明細書において、カラー表示画素D1の赤画素、緑画素および青画素を赤画素R1、緑画素G1および青画素B1と示すことがある。同様に、カラー表示画素D2、D3、D4のそれぞれにおいて赤画素を赤画素R2、R3、R4、緑画素を緑画素G2、G3、G4、青画素を青画素B2、B3、B4とそれぞれ示すことがある。 Each color display pixel D has a plurality of pixels. Here, the plurality of pixels include a red pixel R, a green pixel G, and a blue pixel B. In this specification, the red pixel, the green pixel, and the blue pixel of the color display pixel D 1 may be referred to as a red pixel R 1 , a green pixel G 1, and a blue pixel B 1 . Similarly, in each of the color display pixels D 2 , D 3 , and D 4 , red pixels are red pixels R 2 , R 3 , R 4 , green pixels are green pixels G 2 , G 3 , G 4 , and blue pixels are blue pixels. B 2 , B 3 , and B 4 may be indicated respectively.
 各画素R、G、Bは副画素aおよび副画素bを有している。ここでは、副画素aおよび副画素bはほぼ等しい面積を有しており、副画素aおよび副画素bは少なくともある中間階調において異なる輝度を呈する。本明細書において、副画素a、bをそれぞれ第1副画素、第2副画素と呼ぶことがある。本明細書において、赤画素R1、緑画素G1および青画素B1の副画素aをそれぞれ副画素R1a、G1aおよびB1aと示すことがあり、赤画素R1、緑画素G1および青画素B1の副画素bをそれぞれ副画素R1b、G1bおよびB1bと示すことがある。同様に、赤画素R2、R3、R4、緑画素G2、G3、G4および青画素B2、B3、B4の副画素aをそれぞれ副画素R2a、R3a、R4a、G2a、G3a、G4a、B2a、B3a、B4aと示し、これらの副画素bをそれぞれ副画素R2b、R3b、R4b、G2b、G3b、G4b、B2b、B3b、B4bと示すことがある。 Each pixel R, G, B has a sub-pixel a and a sub-pixel b. Here, the sub-pixel a and the sub-pixel b have substantially the same area, and the sub-pixel a and the sub-pixel b exhibit different luminances at least in a certain intermediate gradation. In this specification, the subpixels a and b may be referred to as a first subpixel and a second subpixel, respectively. In this specification, may indicate red pixel R 1, green pixel G 1 and blue pixel sub-pixel a respective subpixels R 1a of B 1, and G 1a and B 1a, the red pixels R 1, green pixel G 1 And the sub-pixel b of the blue pixel B 1 may be denoted as sub-pixels R 1b , G 1b and B 1b , respectively. Similarly, the red pixel R 2, R 3, R 4 , a green pixel G 2, G 3, G 4 and the blue pixel B 2, B 3, sub-pixel a respective subpixels R 2a of B 4, R 3a, R 4a , G2a , G3a , G4a , B2a , B3a , B4a, and these subpixels b are subpixels R2b , R3b , R4b , G2b , G3b , G4b , B, respectively. 2b , B 3b , B 4b may be indicated.
 図2に、液晶表示装置100の1つの画素の等価回路を示す。ここでは、副画素a、bに対応する液晶層30を液晶層30aおよび30bと表している。画素電極14は、副画素電極14aおよび14bに分離されているのに対して、対向電極24は、典型的には副画素aおよびbの両方に共通している。 FIG. 2 shows an equivalent circuit of one pixel of the liquid crystal display device 100. Here, the liquid crystal layers 30 corresponding to the sub-pixels a and b are represented as liquid crystal layers 30a and 30b. The pixel electrode 14 is separated into subpixel electrodes 14a and 14b, while the counter electrode 24 is typically common to both subpixels a and b.
 副画素aの液晶容量CLaは、副画素電極14aと、対向電極24と、液晶層30aとによって形成され、副画素bの液晶容量CLbは、副画素電極14bと、対向電極24と、液晶層30bとによって形成される。ここでは、液晶容量CLaおよびCLbの静電容量値をCL(V)と表す。CL(V)は液晶層30a、30bに印加される実効電圧Vに依存する。 The liquid crystal capacitor CLa of the subpixel a is formed by the subpixel electrode 14a, the counter electrode 24, and the liquid crystal layer 30a, and the liquid crystal capacitor CLb of the subpixel b is formed of the subpixel electrode 14b, the counter electrode 24, and the liquid crystal layer. 30b. Here, the capacitance values of the liquid crystal capacitors CLa and CLb are expressed as CL (V). CL (V) depends on the effective voltage V applied to the liquid crystal layers 30a and 30b.
 副画素aの補助容量CSaは、補助容量電極と、補助容量対向電極と、絶縁層とによって形成され、副画素bの補助容量CSbは、補助容量電極と、補助容量対向電極と、絶縁層とによって形成される。ここでは、補助容量CSaおよびCSbの静電容量値は同一の値であり、この値をCCSと表す。 The auxiliary capacitor CSa of the subpixel a is formed by an auxiliary capacitor electrode, an auxiliary capacitor counter electrode, and an insulating layer, and the auxiliary capacitor CSb of the subpixel b is formed of an auxiliary capacitor electrode, an auxiliary capacitor counter electrode, and an insulating layer. Formed by. Here, the capacitance values of the auxiliary capacitors CSa and CSb are the same value, and this value is represented as CCS.
 副画素aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極は補助容量配線(CS配線)CCSaに接続されている。また、副画素bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極は補助容量配線(CS配線)CCSbに接続されている。TFT16a、16bのゲートはいずれもゲート線Gに接続されており、ソースはいずれもソース線Sに接続されている。 In the subpixel a, one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the subpixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the auxiliary capacitor line (CS line) CCSa. In the sub-pixel b, one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the sub-pixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode 24. The other electrode of the auxiliary capacitor CSb is connected to an auxiliary capacitor line (CS line) CCSb. The gates of the TFTs 16 a and 16 b are both connected to the gate line G, and the sources are both connected to the source line S.
 なお、特に言及しない場合、赤画素R、緑画素Gおよび青画素Bのそれぞれの副画素a、bの液晶層30aおよび30bの厚さはほぼ一定である。ただし、本発明はこれに限定されるものではない。 Note that the thicknesses of the liquid crystal layers 30a and 30b of the sub-pixels a and b of the red pixel R, the green pixel G, and the blue pixel B are substantially constant unless otherwise specified. However, the present invention is not limited to this.
 図3に、本実施形態の液晶表示装置100を駆動するための各電圧のある垂直走査期間内における変化を模式的に示す。図3において、Vsはソース線Sの電圧を示し、VcsaはCS配線CCSaの電圧を示し、VcsbはCS配線CCSbの電圧を示し、Vgはゲート線Gの電圧を示し、VLaは副画素電極14aの電圧を示し、VLbは副画素電極14bの電圧を示している。また、図中の破線は、対向電極24の電圧COMMON(Vc)を示している。CS配線CCSaの電圧Vcsaは、Vc-VadからVc+Vadの範囲で周期的に変化し、また、CS配線CCSbの電圧VcsbもVc-VadからVc+Vadの範囲で周期的に変化する。CS配線CCSbの電圧Vcsbの振幅はCS配線CCSaの電圧Vcsaと等しく、CS配線CCSbの電圧Vcsbの位相はCS配線CCSaの電圧Vcsaと180度異なっている。 FIG. 3 schematically shows changes in each voltage for driving the liquid crystal display device 100 of the present embodiment within a certain vertical scanning period. In FIG. 3, Vs indicates the voltage of the source line S, Vcsa indicates the voltage of the CS line CCSa, Vcsb indicates the voltage of the CS line CCSb, Vg indicates the voltage of the gate line G, and VLa indicates the subpixel electrode 14a. VLb indicates the voltage of the sub-pixel electrode 14b. Further, the broken line in the figure indicates the voltage COMMON (Vc) of the counter electrode 24. The voltage Vcsa of the CS wiring CCSa periodically changes in the range from Vc−Vad to Vc + Vad, and the voltage Vcsb of the CS wiring CCSb also periodically changes in the range of Vc−Vad to Vc + Vad. The amplitude of the voltage Vcsb of the CS wiring CCSb is equal to the voltage Vcsa of the CS wiring CCSa, and the phase of the voltage Vcsb of the CS wiring CCSb is 180 degrees different from the voltage Vcsa of the CS wiring CCSa.
 以下、図3を参照しながら図2に示した等価回路の動作を説明する。 Hereinafter, the operation of the equivalent circuit shown in FIG. 2 will be described with reference to FIG.
 時刻T1のときゲート線Gの電圧VgがVgLからVgHに変化することにより、TFT16a、16bが同時に導通状態(オン状態)となり、副画素a、bの副画素電極14a、14bにソース線Sの電圧Vsが伝達され、副画素a、bの液晶容量CLa、CLbに充電が行われる。同様にそれぞれの副画素の補助容量CSa、CSbにもソース線Sから充電が行われる。なお、このときのソース線Sの電圧Vsは書き込み電圧とも呼ばれる。 At time T1, the voltage Vg of the gate line G changes from VgL to VgH, so that the TFTs 16a and 16b are simultaneously turned on (on state), and the source line S is connected to the subpixel electrodes 14a and 14b of the subpixels a and b. The voltage Vs is transmitted, and the liquid crystal capacitors CLa and CLb of the sub-pixels a and b are charged. Similarly, the auxiliary capacitors CSa and CSb of the respective sub-pixels are charged from the source line S. Note that the voltage Vs of the source line S at this time is also referred to as a write voltage.
 次に、時刻T2のときゲート線Gの電圧VgがVgHからVgLに変化することにより、TFT16a、16bが同時に非導通状態(オフ状態)となり、副画素a、bの液晶容量CLa、CLb、補助容量CSa、CSbはいずれも、ソース線Sと電気的に絶縁される。なお、この直後TFT16a、16bの有する寄生容量等の影響による引き込み現象のために、副画素電極14a、14bの電圧VLa、VLbは概ね同一の電圧Vdだけ低下し、
 VLa=Vs-Vd
 VLb=Vs-Vd
となる。このとき、それぞれのCS配線CCSa、CCSbの電圧Vcsa、Vcsbは
 Vcsa=Vc-Vad
 Vcsb=Vc+Vad
である。
Next, when the voltage Vg of the gate line G changes from VgH to VgL at time T2, the TFTs 16a and 16b are simultaneously turned off (off state), and the liquid crystal capacitors CLa and CLb of the sub-pixels a and b, the auxiliary The capacitors CSa and CSb are both electrically insulated from the source line S. Immediately after this, due to the pull-in phenomenon due to the influence of the parasitic capacitance etc. of the TFTs 16a and 16b, the voltages VLa and VLb of the sub-pixel electrodes 14a and 14b are lowered by substantially the same voltage Vd,
VLa = Vs−Vd
VLb = Vs−Vd
It becomes. At this time, the voltages Vcsa and Vcsb of the respective CS lines CCSa and CCSb are Vcsa = Vc−Vad
Vcsb = Vc + Vad
It is.
 時刻T3において、補助容量CSaに接続されたCS配線CCSaの電圧VcsaはVc-VadからVc+Vadに2×Vad分だけ増加し、補助容量CSbに接続されたCS配線CCSbの電圧VcsbはVc+VadからVc-Vadに2×Vad分だけ減少する。CS配線CCSaおよびCCSbの電圧変化に伴い、副画素電極14a、14bの電圧VLa、VLbは、それぞれ、
 VLa=Vs-Vd+2×K×Vad
 VLb=Vs-Vd-2×K×Vad
へ変化する。但し、K=CCS/(CL(V)+CCS)である。
At time T3, the voltage Vcsa of the CS wiring CCSa connected to the auxiliary capacitor CSa increases by 2 × Vad from Vc−Vad to Vc + Vad, and the voltage Vcsb of the CS wiring CCSb connected to the auxiliary capacitor CSb increases from Vc + Vad to Vc−. Decrease to Vad by 2 × Vad. With the voltage change of the CS wirings CCSa and CCSb, the voltages VLa and VLb of the subpixel electrodes 14a and 14b are respectively
VLa = Vs−Vd + 2 × K × Vad
VLb = Vs−Vd−2 × K × Vad
To change. However, K = CCS / (CL (V) + CCS).
 時刻T4では、CS配線CCSaの電圧VcsaがVc+VadからVc-Vadへ、CS配線CCSbの電圧VcsbがVc-VadからVc+Vadへ、2×Vad分だけ変化し、これにより、副画素電極14a、14bの電圧VLa、VLbは、
 VLa=Vs-Vd+2×K×Vad
 VLb=Vs-Vd-2×K×Vad
から、
 VLa=Vs-Vd
 VLb=Vs-Vd
へ変化する。
At time T4, the voltage Vcsa of the CS line CCSa changes from Vc + Vad to Vc−Vad, and the voltage Vcsb of the CS line CCSb changes from Vc−Vad to Vc + Vad by 2 × Vad, thereby causing the subpixel electrodes 14a and 14b to change. The voltages VLa and VLb are
VLa = Vs−Vd + 2 × K × Vad
VLb = Vs−Vd−2 × K × Vad
From
VLa = Vs−Vd
VLb = Vs−Vd
To change.
 時刻T5では、CS配線CCSaの電圧VcsaがVc-VadからVc+Vadへ、CS配線CCSbの電圧VcsbがVc+VadからVc-Vadへ、2×Vad分だけ変化し、副画素電極14a、14bの電圧VLa、VLbもまた、
 VLa=Vs-Vd
 VLb=Vs-Vd
から、
 VLa=Vs-Vd+2×K×Vad
 VLb=Vs-Vd-2×K×Vad
へ変化する。
At time T5, the voltage Vcsa of the CS wiring CCSa changes from Vc−Vad to Vc + Vad, the voltage Vcsb of the CS wiring CCSb changes from Vc + Vad to Vc−Vad by 2 × Vad, and the voltages VLa of the subpixel electrodes 14a and 14b are changed. VLb is also
VLa = Vs−Vd
VLb = Vs−Vd
From
VLa = Vs−Vd + 2 × K × Vad
VLb = Vs−Vd−2 × K × Vad
To change.
 Vcsa、Vcsb、VLa、VLbは、水平走査時間1Hの整数倍の間隔毎に上記T4、T5における変化を交互に繰り返す。上記T4、T5の繰り返し間隔を1Hの1倍とするか、2倍とするか、3倍とするかあるいはそれ以上とするかは液晶表示装置の駆動方法(極性反転方法等)や表示状態(ちらつき、表示のざらつき感等)を鑑みて適宜設定すればよい。この繰り返しは次に画素が書き換えられるとき、すなわちT1に等価な時間になるまで継続される。従って、副画素電極14a、14bの電圧VLa、VLbの平均電圧は、それぞれ、
 VLa=Vs-Vd+K×Vad
 VLb=Vs-Vd-K×Vad
となる。
Vcsa, Vcsb, VLa, and VLb alternately repeat the changes in T4 and T5 at intervals of an integral multiple of the horizontal scanning time 1H. Whether the repetition interval of T4 and T5 is set to 1 time, 1 time, 2 times, 3 times, or more than 1H depends on the driving method (polarity inversion method, etc.) of the liquid crystal display device and the display state ( It may be set as appropriate in consideration of flickering, display roughness, and the like. This repetition is continued until the pixel is next rewritten, that is, until a time equivalent to T1 is reached. Therefore, the average voltages VLa and VLb of the subpixel electrodes 14a and 14b are respectively
VLa = Vs−Vd + K × Vad
VLb = Vs−Vd−K × Vad
It becomes.
 よって、副画素a、bの液晶層30a、30bに印加される実効電圧V1、V2は、それぞれ、副画素電極14aの電圧と対向電極24の電圧との差、副画素電極14bの電圧と対向電極24の電圧との差であり、すなわち、
 V1=VLa-Vcom
 V2=VLb-Vcom
すなわち、
 V1=Vs-Vd+K×Vad-Vcom
 V2=Vs-Vd-K×Vad-Vcom
となる。従って、副画素a、bのそれぞれの液晶層30a、30bに印加される実効電圧の差ΔV(=V1-V2)は、ΔV=2×K×Vad(但し、K=CCS/(CL(V)+CCS))となり、液晶層30a、30bに互いに異なる電圧を印加することができる。なお、CS信号の電位の最大値から最小値までの電位変化量をΔVad(=2×Vad)と示すと、ΔV=K×ΔVadと表される。このΔVadはCS信号のピークトゥピークまたは全幅とも呼ばれる。典型的には、電圧V1の値が小さいほどΔVの値が大きくなる。ΔVの値がV1またはV2に依存して変化するのは、液晶容量の静電容量値CL(V)が電圧に依存して変化するためである。以上のようにして、1つの画素内の副画素a、bの電圧を異ならせることができる。
Therefore, the effective voltages V1 and V2 applied to the liquid crystal layers 30a and 30b of the subpixels a and b are opposite to the difference between the voltage of the subpixel electrode 14a and the voltage of the counter electrode 24, and the voltage of the subpixel electrode 14b, respectively. Difference from the voltage of the electrode 24, ie
V1 = VLa-Vcom
V2 = VLb-Vcom
That is,
V1 = Vs−Vd + K × Vad−Vcom
V2 = Vs−Vd−K × Vad−Vcom
It becomes. Accordingly, the effective voltage difference ΔV (= V1−V2) applied to the liquid crystal layers 30a and 30b of the sub-pixels a and b is ΔV = 2 × K × Vad (where K = CCS / (CL (V ) + CCS)), and different voltages can be applied to the liquid crystal layers 30a and 30b. In addition, when the amount of potential change from the maximum value to the minimum value of the potential of the CS signal is expressed as ΔVad (= 2 × Vad), it is expressed as ΔV = K × ΔVad. This ΔVad is also called the peak-to-peak or full width of the CS signal. Typically, the smaller the value of the voltage V1, the larger the value of ΔV. The value of ΔV changes depending on V1 or V2 because the capacitance value CL (V) of the liquid crystal capacitance changes depending on the voltage. As described above, the voltages of the sub-pixels a and b in one pixel can be made different.
 本実施形態の液晶表示装置100では、カラー表示画素Dに応じて副画素aの実効電圧と副画素bの実効電圧との電圧差を異ならせており、これにより、視野角特性をさらに改善している。 In the liquid crystal display device 100 of this embodiment, the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b is varied according to the color display pixel D, thereby further improving the viewing angle characteristics. ing.
 図4に、本実施形態の液晶表示装置100におけるカラー表示画素D1~D4および各画素における副画素aの実効電圧と副画素bの実効電圧との電圧差を示す。ここでは、入力信号において4つのカラー表示画素D1~D4の表示する色は互いに等しい。また、カラー表示画素D1~D4のそれぞれにおいて赤画素R、緑画素G、青画素Bは互いに等しい中間階調を示し、例えば、カラー表示画素D1~D4は無彩色を示す。また、説明が過度に複雑になることを避けるために、ここでは、極性に応じて各ソース線に等しいソース信号電圧が印加されるとする。 FIG. 4 shows the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b in the color display pixels D 1 to D 4 and each pixel in the liquid crystal display device 100 of the present embodiment. Here, the colors displayed by the four color display pixels D 1 to D 4 in the input signal are equal to each other. Further, in each of the color display pixels D 1 to D 4 , the red pixel R, the green pixel G, and the blue pixel B exhibit the same intermediate gradation, and for example, the color display pixels D 1 to D 4 exhibit an achromatic color. In order to avoid an excessively complicated description, it is assumed here that the same source signal voltage is applied to each source line according to the polarity.
 ここでは、カラー表示画素D1の赤画素R1において副画素R1aの実効電圧と副画素R1bの実効電圧との電圧差はΔV1である。また、緑画素G1において副画素G1aの実効電圧と副画素G1bの実効電圧との電圧差もΔV1であり、青画素B1において副画素B1aの実効電圧と副画素B1bの実効電圧との電圧差もΔV1である。 Here, in the red pixel R 1 of the color display pixel D 1 , the voltage difference between the effective voltage of the sub-pixel R 1a and the effective voltage of the sub-pixel R 1b is ΔV 1 . Further, the voltage difference between the effective voltage of the sub-pixel G 1a and the effective voltage of the sub-pixel G 1b in the green pixel G 1 is also ΔV 1 , and the effective voltage of the sub-pixel B 1a and the effective voltage of the sub-pixel B 1b in the blue pixel B 1 The voltage difference from the effective voltage is also ΔV 1 .
 これに対して、カラー表示画素D2の赤画素R2において副画素R2aの実効電圧と副画素R2bの実効電圧との電圧差はΔV2であり、ΔV2はΔV1とは異なる。また、緑画素G2において副画素G2aの実効電圧と副画素G2bの実効電圧との電圧差もΔV2であり、青画素B2において副画素B2aの実効電圧と副画素B2bの実効電圧との電圧差もΔV2である。 In contrast, in the red pixel R 2 of the color display pixel D 2 , the voltage difference between the effective voltage of the sub-pixel R 2a and the effective voltage of the sub-pixel R 2b is ΔV 2 , and ΔV 2 is different from ΔV 1 . Further, the voltage difference between the effective voltage of the sub-pixel G 2a and the effective voltage of the sub-pixel G 2b in the green pixel G 2 is also ΔV 2 , and the effective voltage of the sub-pixel B 2a and the effective voltage of the sub-pixel B 2b in the blue pixel B 2 . The voltage difference from the effective voltage is also ΔV 2 .
 なお、カラー表示画素D3の赤画素R3、緑画素G3、青画素B3のそれぞれについて、副画素aの実効電圧と副画素bの実効電圧との電圧差はΔV2であり、カラー表示画素D4の赤画素R4、緑画素G4、青画素B4のそれぞれについて、副画素aの実効電圧と副画素bの実効電圧との電圧差はΔV1である。図4では、副画素a、bの実効電圧の電圧差がΔV1となるカラー表示画素Dが斜めに隣接しており、また、副画素a、bの実効電圧の電圧差がΔV2となるカラー表示画素Dが斜めに隣接している。このように、隣接するカラー表示画素Dにおいて副画素a、bの実効電圧の電圧差ΔVが異なることにより、視野角特性の改善が効果的に行われる。 For each of the red pixel R 3 , the green pixel G 3 , and the blue pixel B 3 of the color display pixel D 3 , the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b is ΔV 2. For each of the red pixel R 4 , the green pixel G 4 , and the blue pixel B 4 of the display pixel D 4 , the voltage difference between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b is ΔV 1 . In FIG. 4, the color display pixel D in which the voltage difference between the effective voltages of the sub-pixels a and b is ΔV 1 is diagonally adjacent, and the voltage difference between the effective voltages of the sub-pixels a and b is ΔV 2. The color display pixels D are adjacent obliquely. Thus, the difference in effective voltage difference ΔV between the sub-pixels a and b in the adjacent color display pixels D improves the viewing angle characteristics effectively.
 例えば、カラー表示画素D1において副画素a、bの電圧差ΔV1は、ΔV1=K1×ΔVad1と表される。ここで、K1はK1=CCS1/(CL(V)+CCS1)と表される。ΔVad1はカラー表示画素D1における各画素R1、G1、B1の副画素a、bの補助容量CSa、CSbに対応するCS信号の電位変化量(全幅)であり、CCS1は、カラー表示画素D1における副画素a、bの補助容量CSa、CSbの容量値である。 For example, the sub-pixels a, the voltage difference [Delta] V 1 of b in the color display pixel D 1 is represented as ΔV 1 = K 1 × ΔVad 1 . Here, K 1 is expressed as K 1 = CCS 1 / (CL (V) + CCS 1 ). DerutaVad 1 is a potential change of color display pixels each pixel R 1 in D 1, G 1, sub-pixel B 1 a, b of the auxiliary capacitor CSa, CS signals corresponding to CSb (full width), CCS 1 is subpixel a in the color display pixel D 1, b of the auxiliary capacitor CSa, a capacitance value of CSb.
 同様に、カラー表示画素D2において副画素a、bの電圧差ΔV2は、ΔV2=K2×ΔVad2と表される。ここで、K2はK2=CCS2/(CL(V)+CCS2)と表され、ΔVad2はカラー表示画素D2における各画素R2、G2、B2の副画素a、bの補助容量CSa、CSbに対応するCS信号の電位変化量であり、CCS2は、カラー表示画素D2における副画素a、bの補助容量CSa、CSbの容量値である。 Similarly, sub-pixel a, the voltage difference [Delta] V 2 of b in the color display pixel D 2 is represented as ΔV 2 = K 2 × ΔVad 2 . Here, K 2 is expressed as K 2 = CCS 2 / (CL (V) + CCS 2 ), and ΔVad 2 is the sub-pixel a, b of each pixel R 2 , G 2 , B 2 in the color display pixel D 2 . The CS signal potential change amount corresponding to the auxiliary capacitors CSa and CSb, and CCS 2 is the capacitance value of the auxiliary capacitors CSa and CSb of the sub-pixels a and b in the color display pixel D 2 .
 以上から、
    ΔV1=K1×ΔVad1
    ΔV2=K2×ΔVad2
と表される。
From the above
ΔV 1 = K 1 × ΔVad 1
ΔV 2 = K 2 × ΔVad 2
It is expressed.
 詳細は後述するが、カラー表示画素D1、D2における各画素R、GおよびBの副画素a、bの補助容量CSa、CSbの容量値CCS1、CCS2を異ならせることにより、カラー表示画素Dに応じて副画素a、bの実効電圧の電圧差ΔVを異ならせることができる。具体的には、各赤画素R、緑画素Gおよび青画素Bの副画素a、bの補助容量CSa、CSbを形成する補助容量電極と補助容量対向電極との重なり面積をカラー表示画素Dに応じて異ならせてもよい。あるいは、カラー表示画素Dに応じて液晶層のギャップ(厚さ)を異ならせて液晶容量CLを異ならせることにより、K1とK2との値を異ならせてもよい。または、カラー表示画素D1、D2において各赤画素R、緑画素Gおよび青画素Bの副画素a、bの補助容量CSa、CSbの補助容量対向電極に供給される補助容量信号(CS信号)の振幅Vad1、Vad2(または電位変化量ΔVad1、ΔVad2)をカラー表示画素D1、D2に応じて異ならせてもよい。あるいは、カラー表示画素D1、D2における各画素R、GおよびBの副画素a、bの補助容量CSa、CSbの容量値CCS1、CCS2および液晶容量CLで表されるK1とK2の値を異ならせるとともに、補助容量信号(CS信号)の振幅Vad1、Vad2(または電位変化量ΔVad1、ΔVad2)を異ならせてもよい。 Details will be described later, each pixel of the color display pixel D 1, D 2 R, subpixel a G and B, b of the auxiliary capacitance CSa, by varying the capacitance values CCS 1, CCS 2 of CSb, color display Depending on the pixel D, the voltage difference ΔV between the effective voltages of the sub-pixels a and b can be made different. Specifically, the overlapping area of the auxiliary capacitance electrodes and auxiliary capacitance counter electrodes forming the auxiliary capacitances CSa and CSb of the sub-pixels a and b of the red pixel R, the green pixel G, and the blue pixel B is defined in the color display pixel D. It may be different depending on the situation. Alternatively, the values of K 1 and K 2 may be made different by making the liquid crystal capacitance CL different by changing the gap (thickness) of the liquid crystal layer according to the color display pixel D. Alternatively, in the color display pixels D 1 and D 2 , the auxiliary capacitance signals (CS signals) supplied to the auxiliary capacitance counter electrodes of the auxiliary capacitances CSa and CSb of the subpixels a and b of the red pixel R, green pixel G, and blue pixel B, respectively. ) Amplitudes Vad 1 and Vad 2 (or potential change amounts ΔVad 1 and ΔVad 2 ) may be made different according to the color display pixels D 1 and D 2 . Alternatively, each pixel in the color display pixel D 1, D 2 R, subpixel a G and B, b of the auxiliary capacitance CSa, K 1 and K represented by the capacitance value CCS 1, CCS 2 and the liquid crystal capacitance CL of CSb In addition to making the value of 2 different, the amplitudes Vad 1 and Vad 2 (or potential change amounts ΔVad 1 and ΔVad 2 ) of the auxiliary capacitance signal (CS signal) may be made different.
 このように、同一色を表示する画素における副画素の実効電圧の電圧差を少なくとも2種類とすることにより、この色を表示する画素の斜め方向のγ特性を副画素単位だけでなく画素単位でも異ならせることができ、視野角特性を改善できる。 Thus, by making the voltage difference between the effective voltages of the sub-pixels in the pixels displaying the same color at least two types, the diagonal γ characteristics of the pixels displaying this color can be changed not only in the sub-pixel unit but also in the pixel unit. The viewing angle characteristics can be improved.
 なお、典型的な液晶表示装置と同様に、液晶表示装置100でも、液晶層30に印加される電圧のうち画素電極14と対向電極24との電位の大小関係は一定時間毎に反転し、液晶層30に印加される電界の向き(電気力線の向き)が一定時間毎に反転するように設定される。電界の向きは極性とも呼ばれる。なお、例えば、ある画素に着目した場合、ある垂直走査期間において画素電極14の電位が対向電極24よりも高くなるように書き込みが行われた後、別の垂直走査期間において対向電極24の電位が画素電極14よりも高くなるように書き込みが行われる。典型的には、画素の書き込み極性は、垂直走査期間ごとに反転する。 As in a typical liquid crystal display device, in the liquid crystal display device 100, the magnitude relationship between the potentials of the pixel electrode 14 and the counter electrode 24 among the voltages applied to the liquid crystal layer 30 is inverted at regular intervals, and the liquid crystal display device 100 is liquid crystal. The direction of the electric field applied to the layer 30 (the direction of the electric lines of force) is set so as to be reversed at regular intervals. The direction of the electric field is also called polarity. For example, when focusing on a certain pixel, after writing is performed so that the potential of the pixel electrode 14 is higher than that of the counter electrode 24 in a certain vertical scanning period, the potential of the counter electrode 24 is changed in another vertical scanning period. Writing is performed so as to be higher than the pixel electrode 14. Typically, the pixel writing polarity is inverted every vertical scanning period.
 また、特定の垂直走査期間における複数の画素の極性に着目する場合、一方の極性の画素が市松状に配列されており、他方の極性の画素もまた市松状に配列されている。また、特定の垂直走査期間における副画素の明暗に着目する場合、同一画素内で他方の画素よりも明るい副画素を明副画素と呼ぶとすると、明副画素は市松状に配列されている。なお、同一画素内において副画素の明暗が反転されてもよい。 Further, when paying attention to the polarities of a plurality of pixels in a specific vertical scanning period, pixels having one polarity are arranged in a checkered pattern, and pixels having the other polarity are also arranged in a checkered pattern. Further, when paying attention to the brightness of subpixels in a specific vertical scanning period, if a subpixel brighter than the other pixel in the same pixel is called a bright subpixel, the bright subpixels are arranged in a checkered pattern. Note that the brightness of the sub-pixels may be inverted within the same pixel.
 以下、比較例の液晶表示装置800と比較して本実施形態の液晶表示装置100の利点を説明する。まず、比較例の液晶表示装置800を説明する。 Hereinafter, advantages of the liquid crystal display device 100 of the present embodiment compared to the liquid crystal display device 800 of the comparative example will be described. First, a liquid crystal display device 800 of a comparative example will be described.
 図5(a)に、液晶表示装置800の模式図を示す。液晶表示装置800は、背面基板810と、前面基板820と、背面基板810と前面基板820との間に設けられた液晶層830とを備えている。背面基板810は、絶縁基板812と、画素電極814とを有している。前面基板820は、絶縁基板822と、対向電極824とを有している。 FIG. 5A shows a schematic diagram of the liquid crystal display device 800. The liquid crystal display device 800 includes a rear substrate 810, a front substrate 820, and a liquid crystal layer 830 provided between the rear substrate 810 and the front substrate 820. The back substrate 810 includes an insulating substrate 812 and pixel electrodes 814. The front substrate 820 includes an insulating substrate 822 and a counter electrode 824.
 図5(b)に、液晶表示装置800における4つのカラー表示画素D1~D4の模式図を示す。ここでも、入力信号において4つのカラー表示画素D1~D4の表示する色は互いに等しい。また、カラー表示画素D1~D4のそれぞれにおいて赤画素R、緑画素G、青画素Bは互いに等しい中間階調を示し、カラー表示画素D1~D4は無彩色を示す。 FIG. 5B shows a schematic diagram of four color display pixels D 1 to D 4 in the liquid crystal display device 800. Again, the colors displayed by the four color display pixels D 1 to D 4 in the input signal are equal to each other. In each of the color display pixels D 1 to D 4 , the red pixel R, the green pixel G, and the blue pixel B exhibit the same intermediate gradation, and the color display pixels D 1 to D 4 exhibit an achromatic color.
 液晶表示装置800では、カラー表示画素D1の赤画素R1において副画素R1aの実効電圧と副画素R1bの実効電圧との電圧差はΔVcである。また、緑画素G1において副画素G1aの実効電圧と副画素G1bの実効電圧との電圧差もΔVcであり、青画素B1において副画素B1aの実効電圧と副画素B1bの実効電圧との電圧差もΔVcである。同様に、カラー表示画素D2、D3、D4の各赤画素R、緑画素Gおよび青画素Bにおいて副画素aの実効電圧と副画素bの実効電圧との電圧差もΔVcである。このように、各カラー表示画素D1~D4において副画素a、bの実効電圧の電圧差ΔVcが一定であると、視野角特性が十分には改善されない。 In the liquid crystal display device 800, the voltage difference between the effective voltage of the sub-pixel R 1a and the effective voltage of the sub-pixel R 1b in the red pixel R 1 of the color display pixel D 1 is ΔVc. Further, the voltage difference between the effective voltage of the sub-pixel G 1a and the effective voltage of the sub-pixel G 1b in the green pixel G 1 is also ΔVc, and the effective voltage of the sub-pixel B 1a and the effective voltage of the sub-pixel B 1b in the blue pixel B 1 . The voltage difference from the voltage is also ΔVc. Similarly, in each of the red pixels R, green pixels G, and blue pixels B of the color display pixels D 2 , D 3 , and D 4 , the voltage difference between the effective voltage of the subpixel a and the effective voltage of the subpixel b is also ΔVc. As described above, when the voltage difference ΔVc between the effective voltages of the sub-pixels a and b is constant in the color display pixels D 1 to D 4 , the viewing angle characteristics are not sufficiently improved.
 図6に、液晶表示装置800の視野角特性を示したグラフを示す。ここでは、CS信号の振幅(全幅)を変化させており、CS信号の全幅は0V、2.0V、3.0Vおよび4.0Vのいずれかである。 FIG. 6 shows a graph showing the viewing angle characteristics of the liquid crystal display device 800. Here, the amplitude (full width) of the CS signal is changed, and the full width of the CS signal is one of 0V, 2.0V, 3.0V, and 4.0V.
 ここでは各画素の階調数は255である。図6において横軸(x軸)は階調0~255に対応するγ=2.2の正面規格化輝度を示す。なお、一般に、液晶表示装置は、正面から観察したときに、γ=2.2の曲線を示すように設定されており、液晶表示装置800では、階調0~255は正面規格化輝度と比例している。 Here, the number of gradations of each pixel is 255. In FIG. 6, the horizontal axis (x-axis) indicates the front normalized luminance of γ = 2.2 corresponding to the gradations 0 to 255. In general, the liquid crystal display device is set to show a curve of γ = 2.2 when observed from the front. In the liquid crystal display device 800, gradations 0 to 255 are proportional to the front normalized luminance. is doing.
 図6において、縦軸(y軸)は階調0~255に対応するγ=2.2の45度視角規格化輝度を示す。図6では、45度視角規格化輝度が正面規格化輝度と等しく、γ=2.2で変化する理想的な場合をγ=2.2と示している。なお、ここでは、液晶表示装置800は4DRTNモードである。 In FIG. 6, the vertical axis (y-axis) indicates 45 ° viewing angle normalized luminance of γ = 2.2 corresponding to gradations 0 to 255. In FIG. 6, an ideal case where 45 ° viewing angle normalized luminance is equal to front normalized luminance and changes when γ = 2.2 is indicated as γ = 2.2. Here, the liquid crystal display device 800 is in the 4DRTN mode.
 CS信号の全幅が0Vである場合、すなわち、各画素における副画素a、bの実効電圧が等しい場合、図6に示されているように、低階調から中間階調にわたって45度視角規格化輝度と正面規格化輝度との差はかなり大きく、45度視角規格化輝度は正面規格化輝度よりもかなり大きい。このように、斜め方向の規格化輝度が正面規格化輝度と比べて比較的高いため、斜め方向から見た表示は白っぽく見える。このような現象は白浮きとも呼ばれる。 When the total width of the CS signal is 0V, that is, when the effective voltages of the sub-pixels a and b in each pixel are equal, as shown in FIG. The difference between the luminance and the front normalized luminance is considerably large, and the 45 ° viewing angle normalized luminance is considerably larger than the front normalized luminance. Thus, since the normalized luminance in the oblique direction is relatively higher than the normalized luminance in the front direction, the display viewed from the oblique direction looks whitish. Such a phenomenon is also called whitening.
 CS信号の全幅が2.0Vとなると、45度視角規格化輝度と正面規格化輝度との差が小さくなる。特に、階調20~160にわたって45度視角規格化輝度は正面規格化輝度に近づき、これにより、白浮きが抑制される。 When the full width of the CS signal is 2.0 V, the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance becomes small. In particular, the 45 ° viewing angle normalized luminance is close to the front normalized luminance over the gradations 20 to 160, thereby suppressing whitening.
 CS信号の全幅が3.0Vとなると、全幅が2.0Vの場合と比べて、45度視角規格化輝度と正面規格化輝度との差がさらに小さくなり、特に階調100~160にわたって45度視角規格化輝度は正面規格化輝度にさらに近づく。また、CS信号の全幅が4.0Vとなると、全幅が3.0Vの場合と比べて、45度視角規格化輝度と正面規格化輝度との差がさらに小さくなり、階調130~160にわたって45度視角規格化輝度は正面規格化輝度にさらに近づく。このように、CS信号の全幅が増大するほど、45度視角規格化輝度は正面規格化輝度に近づく傾向があり、これにより、白浮きを抑制できる。 When the total width of the CS signal is 3.0 V, the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is smaller than that when the total width is 2.0 V, and in particular, 45 degrees over gradations 100 to 160. The viewing angle normalized luminance is closer to the front normalized luminance. In addition, when the total width of the CS signal is 4.0 V, the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is further reduced as compared with the case where the total width is 3.0 V, and the 45 tones in the gradations 130 to 160 are 45. The degree viewing angle normalized luminance is closer to the front normalized luminance. Thus, as the full width of the CS signal increases, the 45 ° viewing angle normalized luminance tends to approach the front normalized luminance, thereby suppressing whitening.
 ここまで、正面規格化輝度と45度視角規格化輝度との差分に着目してきたが、ここで、階調変化に対する45度視角規格化輝度の変化(すなわち、45度視角方向からの階調変化)そのものに着目する。CS信号の全幅が2.0Vの場合の階調変化に対する45度視角規格化輝度の変化率の変動は比較的小さいものの、CS信号の全幅が3.0Vの場合の階調変化に対する45度視角規格化輝度の変化率の変動はCS信号の全幅が2.0Vの場合と比べて大きい。また、CS信号の全幅が4.0Vの場合の階調変化に対する45度視角規格化輝度の変化率の変動は、CS信号の全幅が3.0Vの場合と比べてさらに大きい。このように、液晶表示装置800では、CS信号の全幅がある値よりも大きくなると、階調変化に対する斜め方向の規格化輝度の変化率が大きく変動し、表示品位が低下することがある。これに対して、本実施形態の液晶表示装置100では、斜め方向の規格化輝度の変化率の変動が抑制され、表示品位の低下が抑制される。 Up to this point, attention has been paid to the difference between the front normalized luminance and the 45 ° viewing angle normalized luminance. Here, the 45 ° viewing angle normalized luminance change with respect to the gradation change (that is, the gradation change from the 45 ° viewing angle direction). ) Focus on itself. Although the variation of the change rate of 45 degree viewing angle normalized luminance with respect to the gradation change when the CS signal full width is 2.0V is relatively small, the 45 degree viewing angle with respect to the gradation change when the CS signal full width is 3.0V. The variation of the change rate of the normalized luminance is larger than that when the full width of the CS signal is 2.0V. In addition, the variation in the change rate of the 45-degree viewing angle normalized luminance with respect to the gradation change when the full width of the CS signal is 4.0V is larger than that when the full width of the CS signal is 3.0V. As described above, in the liquid crystal display device 800, when the full width of the CS signal is larger than a certain value, the change rate of the normalized luminance in the oblique direction with respect to the gradation change may fluctuate greatly, and the display quality may be deteriorated. On the other hand, in the liquid crystal display device 100 of this embodiment, the fluctuation | variation of the change rate of the normalization brightness | luminance of the diagonal direction is suppressed, and the fall of display quality is suppressed.
 図7に、液晶表示装置100の視野角特性を示したグラフを示す。図7において、横軸(x軸)は階調0~255に対応するγ=2.2の正面規格化輝度を示す。なお、液晶表示装置100でも、階調0~255は正面規格化輝度と比例している。図7において、縦軸(y軸)は階調0~255に対応するγ=2.2の45度視角規格化輝度を示す。また、液晶表示装置100は4DRTNモードである。 FIG. 7 shows a graph showing the viewing angle characteristics of the liquid crystal display device 100. In FIG. 7, the horizontal axis (x-axis) indicates the front normalized luminance of γ = 2.2 corresponding to the gradations 0 to 255. In the liquid crystal display device 100 as well, gradations 0 to 255 are proportional to the front normalized luminance. In FIG. 7, the vertical axis (y-axis) indicates 45 ° viewing angle normalized luminance of γ = 2.2 corresponding to gradations 0 to 255. Further, the liquid crystal display device 100 is in the 4DRTN mode.
 ここでは、液晶表示装置100において各カラー表示画素Dにおける画素R、G、Bの副画素a、bの補助容量CSa、CSbはほぼ一定であるが、カラー表示画素Dに応じて画素R、G、Bの副画素a、bの補助容量CSa、CSbに対応するCS信号の全幅が異なる。ここでは、CS信号の全幅の種類は2種類であり、一方の全幅は2.0Vであり、他方の全幅は4.0Vである。参考のために、図7には、図6を参照して上述した比較例の液晶表示装置800におけるCS信号の全幅を0V、2.0V、3.0Vおよび4.0Vのいずれかにした際の45度視角規格化輝度の変化を併せて示している。 Here, in the liquid crystal display device 100, the auxiliary capacitors CSa and CSb of the sub-pixels a and b of the pixels R, G, and B in each color display pixel D are substantially constant, but depending on the color display pixel D, the pixels R, G The widths of the CS signals corresponding to the auxiliary capacitors CSa and CSb of the B subpixels a and b are different. Here, there are two types of CS signal full width, one full width is 2.0V, and the other full width is 4.0V. For reference, FIG. 7 shows a case where the full width of the CS signal in the liquid crystal display device 800 of the comparative example described above with reference to FIG. 6 is set to any one of 0V, 2.0V, 3.0V, and 4.0V. The 45-degree viewing angle normalized luminance change is also shown.
 図7から理解されるように、液晶表示装置100では、液晶表示装置800においてCS信号の全幅が0Vの場合と比べて、45度視角規格化輝度と正面規格化輝度との差が小さく、階調100~160にわたって45度視角規格化輝度は正面規格化輝度に近づいている。同様に、液晶表示装置100では、液晶表示装置800においてCS信号の全幅が2.0Vの場合と比べて、45度視角規格化輝度と正面規格化輝度との差が小さく、階調100~160にわたって45度視角規格化輝度は正面規格化輝度に近づいている。 As can be understood from FIG. 7, in the liquid crystal display device 100, the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is small compared to the case where the entire width of the CS signal in the liquid crystal display device 800 is 0V. The 45-degree viewing angle normalized luminance is close to the front normalized luminance in the keys 100 to 160. Similarly, in the liquid crystal display device 100, the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is small compared to the case where the entire width of the CS signal in the liquid crystal display device 800 is 2.0V, and the gradations 100 to 160 are small. Over 45 degrees, the viewing angle normalized luminance approaches the front normalized luminance.
 なお、液晶表示装置100では、45度視角規格化輝度と正面規格化輝度との差は、液晶表示装置800においてCS信号の全幅が3.0Vまたは4.0Vの場合と比べると若干大きいが、本実施形態の液晶表示装置100において階調100~160にわたる階調変化に対する45度視角規格化輝度の変化率の変動は、CS信号の全幅が3.0Vまたは4.0Vの場合と比べて小さく、これにより、階調変化に対する45度視角規格化輝度の変化を滑らかにすることができる。このように、副画素a、bの実効電圧の電圧差ΔVの異なるカラー表示画素Dを設けることにより、斜め方向の表示品位をさらに改善できる。 In the liquid crystal display device 100, the difference between the 45 ° viewing angle normalized luminance and the front normalized luminance is slightly larger than that in the liquid crystal display device 800 when the full width of the CS signal is 3.0V or 4.0V. In the liquid crystal display device 100 of the present embodiment, the variation in the change rate of the 45-degree viewing angle normalized luminance with respect to the gradation change over the gradations 100 to 160 is smaller than when the full width of the CS signal is 3.0V or 4.0V. This makes it possible to smoothly change the 45-degree viewing angle normalized luminance with respect to the gradation change. As described above, the display quality in the oblique direction can be further improved by providing the color display pixels D having different voltage differences ΔV of the effective voltages of the sub-pixels a and b.
 なお、図7を参照して、斜め45度の方向からの視野角特性を説明したが、別の角度でも同様の傾向を示す。 In addition, with reference to FIG. 7, although the viewing angle characteristic from the direction of 45 degrees diagonally was demonstrated, the same tendency is shown also in another angle.
 図8に、液晶表示装置100の視野角特性を示したグラフを示す。図8において、横軸(x軸)は階調0~255に対応するγ=2.2の正面規格化輝度を示す。上述したように、液晶表示装置100でも、階調0~255は正面規格化輝度と比例している。図8において、縦軸(y軸)は階調0~255に対応するγ=2.2の60度視角規格化輝度を示す。 FIG. 8 is a graph showing the viewing angle characteristics of the liquid crystal display device 100. In FIG. 8, the horizontal axis (x-axis) indicates the front normalized luminance of γ = 2.2 corresponding to the gradations 0 to 255. As described above, also in the liquid crystal display device 100, the gradations 0 to 255 are proportional to the front normalized luminance. In FIG. 8, the vertical axis (y-axis) indicates 60 ° viewing angle normalized luminance of γ = 2.2 corresponding to gradations 0 to 255.
 ここでも、液晶表示装置100において各カラー表示画素Dにおける画素R、G、Bの副画素a、bの補助容量CSa、CSbは一定であるが、カラー表示画素Dに応じて画素R、G、Bの副画素a、bの補助容量CSa、CSbに対応するCS信号の全幅が異なる。CS信号の全幅の種類は2種類である。一方の全幅は2.0Vであり、他方の全幅は4.0Vである。また、ここでも、液晶表示装置100は4DRTNモードである。参考のために、図8には、図6を参照して上述した比較例の液晶表示装置800におけるCS信号の全幅を2.0V、3.0V、4.0Vで変化させた(すなわち、CS信号の振幅を1.0V、1.5V、2.0Vで変化させた)際の60度視角規格化輝度の変化を併せて示している。 Also here, in the liquid crystal display device 100, the auxiliary capacitors CSa and CSb of the sub-pixels a and b of the pixels R, G and B in each color display pixel D are constant, but the pixels R, G, and B according to the color display pixel D are constant. The full widths of the CS signals corresponding to the auxiliary capacitors CSa and CSb of the B subpixels a and b are different. There are two types of CS signal full width. One full width is 2.0V and the other full width is 4.0V. Also here, the liquid crystal display device 100 is in the 4DRTN mode. For reference, in FIG. 8, the full width of the CS signal in the liquid crystal display device 800 of the comparative example described above with reference to FIG. 6 is changed to 2.0 V, 3.0 V, and 4.0 V (that is, CS It also shows the change in 60 ° viewing angle normalized luminance when the signal amplitude is changed at 1.0V, 1.5V, and 2.0V.
 図7と同様に、図8においても、液晶表示装置800においてCS信号の全幅が3.0Vである場合、CS信号の全幅が2.0Vの場合と比べて、階調100~170にわたって60度視角規格化輝度は正面規格化輝度にさらに近づく。また、CS信号の全幅が4.0Vである場合、CS信号の全幅が3.0Vの場合と比べて、階調130~170にわたって60度視角規格化輝度は正面規格化輝度にさらに近づく。このように、CS信号の全幅が増加するほど、60度視角規格化輝度は正面規格化輝度に近づく傾向があり、白浮きを抑制できる。 As in FIG. 7, in FIG. 8, in the liquid crystal display device 800, when the full width of the CS signal is 3.0V, it is 60 degrees over the gradations 100 to 170, compared with the case where the full width of the CS signal is 2.0V. The viewing angle normalized luminance is closer to the front normalized luminance. Further, when the full width of the CS signal is 4.0 V, the 60-degree viewing angle normalized luminance is closer to the front normalized luminance over the gradations 130 to 170, compared to the case where the full width of the CS signal is 3.0 V. Thus, as the full width of the CS signal increases, the 60 ° viewing angle normalized luminance tends to approach the front normalized luminance, and whitening can be suppressed.
 しかしながら、60度視角規格化輝度の変化自体に着目すると、CS信号の全幅がある値よりも大きくなると、階調変化に対する60度視角規格化輝度の変化率が大きく変動する。CS信号の全幅が3.0Vの場合の階調変化に対する60度視角規格化輝度の変化率の変動は、CS信号の全幅が2.0Vの場合と比べて大きい。また、CS信号の全幅が4.0Vの場合の階調変化に対する60度視角規格化輝度の変化率の変動は、CS信号の全幅が3.0Vの場合と比べてさらに大きい。 However, paying attention to the change in 60-degree viewing angle normalized luminance itself, when the entire width of the CS signal becomes larger than a certain value, the change rate of the 60-degree viewing angle normalized brightness with respect to the gradation change greatly varies. The variation in the rate of change of the 60 ° viewing angle normalized luminance with respect to the gradation change when the full width of the CS signal is 3.0V is larger than that when the full width of the CS signal is 2.0V. Further, the variation in the change rate of the 60 ° viewing angle normalized luminance with respect to the gradation change when the full width of the CS signal is 4.0V is larger than that when the full width of the CS signal is 3.0V.
 これに対して、本実施形態の液晶表示装置100では、カラー表示画素Dに応じて副画素a、bの実効電圧の電圧差ΔVを異ならせている。このため、階調100~170にわたる階調変化に対する60度視角規格化輝度の変化率の変動は、CS信号の全幅が3.0V、4.0Vの液晶表示装置800と比べて小さい。このように、液晶表示装置100では、60度視角規格化輝度の変化率の変動が抑制されて、階調変化に対する斜め方向の規格化輝度の変化を滑らかにすることができる。 On the other hand, in the liquid crystal display device 100 of the present embodiment, the voltage difference ΔV of the effective voltages of the sub-pixels a and b is varied according to the color display pixel D. For this reason, the variation in the change rate of the 60-degree viewing angle normalized luminance with respect to the gradation change over the gradations 100 to 170 is smaller than that of the liquid crystal display device 800 in which the full width of the CS signal is 3.0V, 4.0V. As described above, in the liquid crystal display device 100, the change in the change rate of the 60-degree viewing angle normalized luminance is suppressed, and the change in the normalized luminance in the oblique direction with respect to the gradation change can be smoothed.
 なお、図7および図8には、本実施形態の液晶表示装置100において2種類の全幅のうち一方の全幅が2.0Vであり、他方の全幅が4.0Vである場合の結果を示している。また、図7および図8には、比較例の液晶表示装置800においてCS信号の全幅が2.0Vと4.0Vの平均である3.0Vである場合の結果を示している。これらの結果の比較から理解されるように、たとえ、CS信号の全幅を2つの値の平均値にしても比較例の液晶表示装置800のようにすべてのカラー表示画素Dの副画素a、bの実効電圧の電圧差ΔVが一定であると、斜め方向の表示品位は充分には改善されない。これに対して、液晶表示装置100ではカラー表示画素Dに応じて副画素a、bの実効電圧の電圧差ΔVが異なっており、これにより、斜め方向の表示品位が改善される。 7 and 8 show the results when the full width of one of the two full widths is 2.0 V and the full width of the other is 4.0 V in the liquid crystal display device 100 of the present embodiment. Yes. 7 and 8 show results when the full width of the CS signal is 3.0 V, which is the average of 2.0 V and 4.0 V, in the liquid crystal display device 800 of the comparative example. As understood from the comparison of these results, even if the entire width of the CS signal is an average value of the two values, the sub-pixels a and b of all the color display pixels D as in the liquid crystal display device 800 of the comparative example are used. If the effective voltage difference ΔV is constant, the display quality in the oblique direction is not sufficiently improved. On the other hand, in the liquid crystal display device 100, the voltage difference ΔV between the effective voltages of the sub-pixels a and b differs depending on the color display pixel D, thereby improving the display quality in the oblique direction.
 なお、図7および図8には図示していないが、CS信号の全幅が1.0Vの場合、全幅がゼロの場合と比べて斜め方向からの視野角特性が若干改善されるが、CS信号の全幅が1.0V未満の場合、改善の効果はほとんどない。また、CS信号の全幅が5.0Vを超えると、斜め方向の規格化輝度の変化率の変動がさらに大きくなり、表示品位が大きく低下してしまう。このため、振幅Vad1、Vad2は互いに異なり、かつ、1/5<Vad2/Vad1<5であることが好ましい。また、振幅Vad2が振幅Vad1よりも大きいとすると、1<Vad2/Vad1<5であることが好ましい。振幅は電位変化量(全幅)ΔVadと比例するため、電位変化量ΔVad1、ΔVad2についても同様に、電位変化量ΔVad1、ΔVad2は互いに異なり、かつ、1/5<ΔVad2/ΔVad1<5であることが好ましい。また、電位変化量ΔVad2が電位変化量ΔVad1よりも大きいとすると、1<ΔVad2/ΔVad1<5であることが好ましい。 Although not shown in FIGS. 7 and 8, when the full width of the CS signal is 1.0 V, the viewing angle characteristics from the oblique direction are slightly improved as compared with the case where the full width is zero. When the total width is less than 1.0 V, there is almost no improvement effect. In addition, when the entire width of the CS signal exceeds 5.0 V, the variation in the change rate of the normalized luminance in the oblique direction is further increased, and the display quality is greatly deteriorated. For this reason, it is preferable that the amplitudes Vad 1 and Vad 2 are different from each other and that 1/5 <Vad 2 / Vad 1 <5. If the amplitude Vad 2 is larger than the amplitude Vad 1 , it is preferable that 1 <Vad 2 / Vad 1 <5. Since the amplitude is proportional to the potential variation (full width) DerutaVad, potential variation DerutaVad 1, Similarly for DerutaVad 2, the potential variation ΔVad 1, ΔVad 2 are different from each other, and, 1/5 <ΔVad 2 / ΔVad 1 <5 is preferred. If the potential change amount ΔVad 2 is larger than the potential change amount ΔVad 1 , it is preferable that 1 <ΔVad 2 / ΔVad 1 <5.
 カラー表示画素D1、D2における副画素a、bの実効電圧の電圧差ΔV1、ΔV2に着目すると、ΔV1、ΔV2は互いに異なり、かつ、1/5<ΔV2/ΔV1<5であることが好ましい。また、ΔV2がΔV1よりも大きいとすると、1<ΔV2/ΔV1<5であることが好ましい。 When attention is paid to the voltage differences ΔV 1 and ΔV 2 of the effective voltages of the sub-pixels a and b in the color display pixels D 1 and D 2 , ΔV 1 and ΔV 2 are different from each other and 1/5 <ΔV 2 / ΔV 1 < 5 is preferable. Also, if [Delta] V 2 is greater than [Delta] V 1, 1 <is preferably ΔV 2 / ΔV 1 <5.
 なお、ここでは、カラー表示画素D1、D2のそれぞれの副画素a、bの補助容量CSa、CSbの容量値CCS1、CCS2が等しく、これに伴い、K1、K2が等しく、かつ、電位変化量ΔVad1、ΔVad2が異なったが、本発明はこれに限定されない。電位変化量ΔVad1、ΔVad2が等しく、かつ、K1、K2が異なってもよい。この場合も、K1、K2は互いに異なり、かつ、1/5<K2/K1<5であることが好ましい。また、K2がK1よりも大きいとすると、1<K2/K1<5であることが好ましい。 Here, each of the sub-pixel a color display pixel D 1, D 2, b of the auxiliary capacitance CSa, the capacitance value of CSb CCS 1, CCS 2 is equal Accordingly, equal K 1, K 2, In addition, although the potential change amounts ΔVad 1 and ΔVad 2 are different, the present invention is not limited to this. The potential changes ΔVad 1 and ΔVad 2 may be equal, and K 1 and K 2 may be different. Also in this case, K 1 and K 2 are preferably different from each other and 1/5 <K 2 / K 1 <5. Also, when K 2 is greater than K 1, 1 <it is preferably K 2 / K 1 <5.
 なお、上述した説明では、入力信号における赤、緑および青の階調が等しい場合(例えば、入力信号において無彩色が示される場合)、異なる色に対応するソース信号電圧はほぼ等しかったが、本発明はこれに限定されない。例えば、ホワイトバランスの調整により、入力信号における赤、緑および青の階調が等しくても、異なる色に対応するソース信号電圧は異なっていてもよい。 In the above description, when the red, green, and blue gradations in the input signal are the same (for example, when an achromatic color is indicated in the input signal), the source signal voltages corresponding to the different colors are substantially equal. The invention is not limited to this. For example, by adjusting white balance, the source signal voltages corresponding to different colors may be different even if the gradations of red, green, and blue in the input signal are equal.
 上述したように、本実施形態の液晶表示装置100では、異なるカラー表示画素Dの同一色(例えば、赤)に対応する画素の副画素の補助容量の電圧差が異なっており、この場合、同一色であっても正面の輝度が変化し、正面方向のγ特性が変化してしまうことがある。この場合、入力信号における同一色(例えば、赤)の階調が等しくても、異なるカラー表示画素Dに対応するこの色の画素への書き込み電圧(ソース信号電圧)を異ならせることにより、正面方向の輝度を調整して、正面方向のγ特性を調整することができる。 As described above, in the liquid crystal display device 100 of the present embodiment, the voltage difference between the auxiliary capacitors of the sub-pixels of the pixels corresponding to the same color (for example, red) of the different color display pixels D is different. Even in the case of color, the front luminance may change, and the γ characteristic in the front direction may change. In this case, even if the gradation of the same color (for example, red) in the input signal is the same, the writing voltage (source signal voltage) to the pixel of this color corresponding to the different color display pixel D is made different, so that the front direction By adjusting the luminance, the gamma characteristic in the front direction can be adjusted.
 図4に示したカラー表示画素D1、D2の赤画素R1、R2に着目すると、例えば、入力信号における同一色(例えば、赤)の階調が等しい場合でも、赤画素R1および赤画素R2の正面輝度が互いにほぼ等しいように調整するために、赤画素R1、R2に書き込みを行う際のソース信号電圧を互いに異ならせてもよい。この場合、赤画素R1の副画素R1aおよび副画素R1bの実効電圧の平均は、赤画素R2の副画素R2aおよび副画素R2bの実効電圧の平均と異なる。 Focusing on the red pixels R 1 and R 2 of the color display pixels D 1 and D 2 shown in FIG. 4, for example, even when the gradations of the same color (for example, red) in the input signal are equal, the red pixels R 1 and R 2 In order to adjust the front luminance of the red pixel R 2 to be substantially equal to each other, the source signal voltages when writing to the red pixels R 1 and R 2 may be made different from each other. In this case, the average effective voltage of the sub-pixel R 1a and the sub-pixel R 1b of the red pixel R 1 is different from the average effective voltage of the sub-pixel R 2a and the sub-pixel R 2b of the red pixel R 2 .
 また、上述したように、副画素a、bの補助容量CSa、CSbはカラー表示画素Dに応じて異なってもよい。ただし、補助容量CSa、CSbの違いに起因して正面方向の輝度が変化することがある。 Further, as described above, the auxiliary capacitors CSa and CSb of the sub-pixels a and b may be different depending on the color display pixel D. However, the luminance in the front direction may change due to the difference between the auxiliary capacitors CSa and CSb.
 上述したように、ゲート信号の電圧VgがVgHからVgLに変化する際に副画素電極14a、14bの電圧はVdだけ低下する。引き込み電圧Vdの値は、TFT16a、16bのゲート電極とドレイン電極間の寄生容量Cgdと、TFT16a、16bのドレインに接続されている全ての容量(液晶容量CLa、CLb、補助容量CSa、CSbおよび他の寄生容量)との比に依存する。一般に、Cgd、CLa、CLbおよびCSa、CSbが主な容量であることから、引き込み電圧Vdは、Vd=Cgd×Vg/(CLa+CSa)、または、Vd=Cgd×Vg/(CLb+CSb)と表される。 As described above, when the voltage Vg of the gate signal changes from VgH to VgL, the voltages of the subpixel electrodes 14a and 14b decrease by Vd. The value of the pull-in voltage Vd is the parasitic capacitance Cgd between the gate electrodes and the drain electrodes of the TFTs 16a and 16b, and all the capacitances connected to the drains of the TFTs 16a and 16b (liquid crystal capacitances CLa and CLb, auxiliary capacitances CSa and CSb, and others). The parasitic capacitance). Generally, since Cgd, CLa, CLb and CSa, CSb are the main capacities, the pull-in voltage Vd is expressed as Vd = Cgd × Vg / (CLa + CSa) or Vd = Cgd × Vg / (CLb + CSb). .
 なお、カラー表示画素Dに応じて所望の電圧差ΔVを実現するために、上述したように補助容量CSa、CSbを異ならせると、引き込み電圧Vdの値もカラー表示画素Dに応じて異なることになる。カラー表示画素Dに応じて引き込み電圧Vdの値が異なると、液晶層30に印加される電圧の平均値(DCレベル)がばらつくことなり、対向電極24が全てのカラー表示画素Dに対して共通に設けられている典型的な構成においては、対向電圧の調整を行っても全てのカラー表示画素Dについて液晶層30に印加される直流電圧成分を充分に小さくできずに、表示品位や信頼性が低下するという問題が発生することがある。この場合、信号処理によって入力信号の階調レベルに対するソース信号電圧を変えることにより、正面方向の輝度を一致させることができる。あるいは、カラー表示画素Dに応じてTFT16a、16bのCgdを変化させるとともに対向電圧を最適化することで信頼性を改善することができる。 In order to realize a desired voltage difference ΔV according to the color display pixel D, if the auxiliary capacitors CSa and CSb are made different as described above, the value of the pull-in voltage Vd also differs depending on the color display pixel D. Become. When the value of the pull-in voltage Vd varies depending on the color display pixel D, the average value (DC level) of the voltage applied to the liquid crystal layer 30 varies, and the counter electrode 24 is common to all the color display pixels D. In the typical configuration provided in FIG. 3, the DC voltage component applied to the liquid crystal layer 30 for all the color display pixels D cannot be sufficiently reduced even when the counter voltage is adjusted, and the display quality and reliability are improved. There may be a problem of lowering. In this case, the luminance in the front direction can be matched by changing the source signal voltage with respect to the gradation level of the input signal by signal processing. Alternatively, reliability can be improved by changing the Cgd of the TFTs 16a and 16b according to the color display pixel D and optimizing the counter voltage.
 なお、上述したように、本実施形態の液晶表示装置100では、画素の斜め方向からのγ特性を異ならせるとともに、正面からのγ特性を調整することができる。このため、垂直走査期間が比較的長くても、すなわち、書き込み周波数が小さくても、表示品位の低下を抑制することができる。 As described above, in the liquid crystal display device 100 of the present embodiment, the γ characteristics from the diagonal direction of the pixels can be varied and the γ characteristics from the front can be adjusted. For this reason, even if the vertical scanning period is relatively long, that is, even if the writing frequency is low, it is possible to suppress the deterioration of display quality.
 以下に、図9~図11を参照して本実施形態の液晶表示装置100の一例を具体的に説明する。 Hereinafter, an example of the liquid crystal display device 100 of this embodiment will be described in detail with reference to FIGS. 9 to 11.
 図9に、本実施形態の液晶表示装置100の等価回路を示す。本明細書において、第n行、第n+1行・・・のゲート配線Gをそれぞれゲート配線Gn、Gn+1・・・と示すことがある。第n行の画素の副画素aの補助容量CSaはCS配線CCSa1またはCCSa2に対応しており、第n行の画素の副画素bの補助容量CSbはCS配線CCSb1またはCCSb2に対応している。また、第n+1行の画素の副画素aの補助容量CSaはCS配線CCSb1またはCCSb2に対応しており、第n+1行の画素の副画素bの補助容量CSbはCS配線CCSc1またはCCSc2に対応している。 FIG. 9 shows an equivalent circuit of the liquid crystal display device 100 of the present embodiment. In this specification, the gate wirings G in the n-th row, the (n + 1) th row,... May be referred to as gate wirings G n , G n + 1 ,. The auxiliary capacitor CSa of the sub-pixel a of the n-th row pixel corresponds to the CS line CCSa1 or CCSa2, and the auxiliary capacitor CSb of the sub-pixel b of the n-th row pixel corresponds to the CS line CCSb1 or CCSb2. The auxiliary capacitance CSa of the sub-pixel a of the pixel in the (n + 1) th row corresponds to the CS wiring CCSb1 or CCSb2, and the auxiliary capacitance CSb of the sub-pixel b of the pixel in the (n + 1) th row corresponds to the CS wiring CCSc1 or CCSc2. Yes.
 ここでは、カラー表示画素Dのそれぞれにおいて補助容量CSa、CSbの容量値CCSは互いにほぼ等しい。例えば、カラー表示画素D1における補助容量CSa、CSbの容量値CCS1はカラー表示画素D2における補助容量CSa、CSbの容量値CCS2とほぼ等しい。 Here, in each of the color display pixels D, the capacitance values CCS of the auxiliary capacitors CSa and CSb are substantially equal to each other. For example, approximately equal auxiliary capacitance CSa the color display pixel D 1, the capacitance value CCS 1 of CSb auxiliary capacitance CSa the color display pixel D 2, the capacitance value CCS 2 of CSb.
 また、CS配線CCSa1に供給されるCS信号の振幅は、CS配線CCSb1に供給されるCS信号の振幅とほぼ等しく、CS配線CCSa2に供給されるCS信号の振幅は、CS配線CCSb2に供給されるCS信号の振幅とほぼ等しい。なお、CS配線CCSa1に供給されるCS信号の振幅は、CS配線CCSa2に供給されるCS信号と異なる。ただし、CS配線CCSa1に供給されるCS信号の位相は、CS配線CCSa2に供給されるCS信号の位相と等しくてもよい。同様に、CS配線CCSb1に供給されるCS信号の振幅はCS配線CCSb2に供給されるCS信号と異なり、CS配線CCSc1に供給されるCS信号の振幅はCS配線CCSc2に供給されるCS信号と異なる。 The amplitude of the CS signal supplied to the CS wiring CCSa1 is substantially equal to the amplitude of the CS signal supplied to the CS wiring CCSb1, and the amplitude of the CS signal supplied to the CS wiring CCSa2 is supplied to the CS wiring CCSb2. It is almost equal to the amplitude of the CS signal. Note that the amplitude of the CS signal supplied to the CS wiring CCSa1 is different from the CS signal supplied to the CS wiring CCSa2. However, the phase of the CS signal supplied to the CS wiring CCSa1 may be equal to the phase of the CS signal supplied to the CS wiring CCSa2. Similarly, the amplitude of the CS signal supplied to the CS wiring CCSb1 is different from the CS signal supplied to the CS wiring CCSb2, and the amplitude of the CS signal supplied to the CS wiring CCSc1 is different from the CS signal supplied to the CS wiring CCSc2. .
 ここで、カラー表示画素D1の赤画素R1に着目する。副画素R1aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極はCS配線CCSa1に接続されている。また、副画素R1bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極はCS配線CCSb1に接続されている。TFT16a、16bのゲートはいずれもゲート線Gnに接続されており、TFT16a、16bのソースはいずれもソース線Sに接続されている。なお、カラー表示画素D1の緑画素G1、青画素B1も赤画素R1と同様の構成を有している。 Here, attention is paid to the red pixel R 1 of the color display pixel D 1 . In the sub-pixel R 1a , one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16 a that functions as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa1. In the subpixel R 1b , one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b that functions as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode. 24, and the other electrode of the auxiliary capacitor CSb is connected to the CS wiring CCSb1. The gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S. The green pixel G 1 and the blue pixel B 1 of the color display pixel D 1 have the same configuration as the red pixel R 1 .
 次に、カラー表示画素D2の赤画素R2に着目する。副画素R2aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極はCS配線CCSa2に接続されている。また、副画素R2bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極はCS配線CCSb2に接続されている。TFT16a、16bのゲートはいずれもゲート線Gnに接続されており、TFT16a、16bのソースはいずれもソース線Sに接続されている。なお、カラー表示画素D2の緑画素G2、青画素B2も赤画素R2と同様の構成を有している。 Next, attention is paid to the red pixel R 2 of the color display pixel D 2 . In the sub-pixel R 2a , one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa2. In the subpixel R 2b , one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode. 24, and the other electrode of the auxiliary capacitor CSb is connected to the CS wiring CCSb2. The gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S. The green pixel G 2 and the blue pixel B 2 of the color display pixel D 2 have the same configuration as the red pixel R 2 .
 なお、冗長を避けるために重複する説明を省略するが、カラー表示画素D3の画素R3、G3、B3の副画素aの補助容量はCS配線CCSb2に対応しており、副画素bの補助容量はCS配線CCSc2に対応している。同様に、カラー表示画素D4の画素R4、G4、B4の副画素aの補助容量はCS配線CCSb1に対応しており、副画素bの補助容量はCS配線CCSc1に対応している。 Although redundant description is omitted to avoid redundancy, the auxiliary capacitance of the sub-pixel a of the pixels R 3 , G 3 , and B 3 of the color display pixel D 3 corresponds to the CS wiring CCSb 2, and the sub-pixel b The auxiliary capacitance corresponds to the CS wiring CCSc2. Similarly, the auxiliary capacitance of the sub-pixel a of the pixels R 4 , G 4 , and B 4 of the color display pixel D 4 corresponds to the CS wiring CCSb1, and the auxiliary capacitance of the sub-pixel b corresponds to the CS wiring CCSc1. .
 なお、図9では、同一のゲート線Gnに対応する異なるカラー表示画素Dに、異なるCS信号が対応していたが、本発明はこれに限定されない。 In FIG. 9, different CS signals correspond to different color display pixels D corresponding to the same gate line Gn, but the present invention is not limited to this.
 図10に、液晶表示装置100の別の等価回路を示す。この液晶表示装置100では、カラー表示画素Dに応じて副画素a、bの補助容量CSa、CSbの容量値が異なる。例えば、カラー表示画素D1における副画素a、bの補助容量CSa、CSbの静電容量値CCS1は、カラー表示画素D2における副画素a、bの補助容量CSa、CSbの静電容量値CCS2とは異なる。例えば、カラー表示画素D1の副画素a、bにおける補助容量電極と補助容量対向電極との重なり面積は、カラー表示画素D2の副画素a、bにおける補助容量電極と補助容量対向電極との重なり面積とは異なる。 FIG. 10 shows another equivalent circuit of the liquid crystal display device 100. In the liquid crystal display device 100, the auxiliary capacitors CSa and CSb of the sub-pixels a and b have different capacitance values depending on the color display pixel D. For example, the sub-pixel a in the color display pixel D 1, b of the auxiliary capacitance CSa, the electrostatic capacitance value CCS 1 of CSb, vice pixels a in the color display pixel D 2, b of the auxiliary capacitance CSa, the capacitance value of CSb Different from CCS 2 . For example, the overlapping area between the auxiliary capacitance electrode and the auxiliary capacitance counter electrode in the sub-pixels a and b of the color display pixel D 1 is the difference between the auxiliary capacitance electrode and the auxiliary capacitance counter-electrode in the sub-pixels a and b of the color display pixel D 2 . It is different from the overlapping area.
 なお、ここでは、行方向に隣接するカラー表示画素Dの副画素aの補助容量は同一のCS信号に対応しており、行方向に隣接するカラー表示画素Dの副画素bの補助容量は別の同一CS信号に対応している。例えば、カラー表示画素D1、D2の副画素aの補助容量はCS配線CCSaに対応するCS信号に対応しており、カラー表示画素D1、D2の副画素bの補助容量はCS配線CCSbに対応するCS信号に対応している。 Here, the auxiliary capacitance of the sub-pixel a of the color display pixel D adjacent in the row direction corresponds to the same CS signal, and the auxiliary capacitance of the sub-pixel b of the color display pixel D adjacent in the row direction is different. To the same CS signal. For example, the auxiliary capacitance of the sub-pixel a of the color display pixels D 1 and D 2 corresponds to the CS signal corresponding to the CS wiring CCSa, and the auxiliary capacitance of the sub-pixel b of the color display pixels D 1 and D 2 is the CS wiring. It corresponds to the CS signal corresponding to CCSb.
 ここで、カラー表示画素D1の赤画素R1に着目する。副画素R1aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極はCS配線CCSaに接続されている。また、副画素R1bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極はCS配線CCSbに接続されている。TFT16a、16bのゲートはいずれもゲート線Gnに接続されており、TFT16a、16bのソースはいずれもソース線Sに接続されている。なお、カラー表示画素D1の緑画素G1、青画素B1も赤画素R1と同様の構成を有している。 Here, attention is paid to the red pixel R 1 of the color display pixel D 1 . In the sub-pixel R 1a , one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16 a that functions as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa. In the subpixel R 1b , one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b that functions as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode. 24, and the other electrode of the auxiliary capacitor CSb is connected to the CS wiring CCSb. The gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S. The green pixel G 1 and the blue pixel B 1 of the color display pixel D 1 have the same configuration as the red pixel R 1 .
 次に、カラー表示画素D2の赤画素R2に着目する。副画素R2aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極はCS配線CCSaに接続されている。また、副画素R2bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極はCS配線CCSbに接続されている。TFT16a、16bのゲートはいずれもゲート線Gnに接続されており、TFT16a、16bのソースはいずれもソース線Sに接続されている。なお、カラー表示画素D2の緑画素G2、青画素B2も赤画素R2と同様の構成を有している。 Next, attention is paid to the red pixel R 2 of the color display pixel D 2 . In the sub-pixel R 2a , one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa. In the subpixel R 2b , one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode. 24, and the other electrode of the auxiliary capacitor CSb is connected to the CS wiring CCSb. The gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S. The green pixel G 2 and the blue pixel B 2 of the color display pixel D 2 have the same configuration as the red pixel R 2 .
 図10に示した液晶表示装置100では、カラー表示画素D1の副画素aの補助容量CSaの容量値がカラー表示画素D2の副画素aの補助容量CSaの容量値とは異なるため、カラー表示画素D1、D2の副画素aの補助容量CSaに対応するCS信号が同一の信号であっても、カラー表示画素D1の画素R1、G1、B1における副画素aの実効電圧をカラー表示画素D2の画素R2、G2、B2における副画素aの実効電圧と異ならせることができる。同様に、カラー表示画素D1の副画素bの補助容量CSbの容量値がカラー表示画素D2の副画素bの補助容量CSbの容量値とは異なるため、カラー表示画素D1、D2の副画素bの補助容量CSbに対応するCS信号が同一の信号であっても、カラー表示画素D1の画素R1、G1、B1における副画素bの実効電圧をカラー表示画素D2の画素R2、G2、B2における副画素bの実効電圧と異ならせることができる。このため、液晶表示装置100の視野角特性がさらに改善される。なお、この場合、カラー表示画素D1の画素R1、G1、B1のそれぞれにおける副画素aの実効電圧と副画素bの実効電圧との平均は、カラー表示画素D2の画素R2、G2、B2のそれぞれにおける副画素aの実効電圧と副画素bの実効電圧との平均とほぼ等しい。 In the liquid crystal display device 100 shown in FIG. 10, the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 1 is different from the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 2. Even if the CS signal corresponding to the auxiliary capacitor CSa of the sub-pixel a of the display pixels D 1 and D 2 is the same signal, the effective of the sub-pixel a in the pixels R 1 , G 1 and B 1 of the color display pixel D 1 The voltage can be made different from the effective voltage of the sub-pixel a in the pixels R 2 , G 2 , and B 2 of the color display pixel D 2 . Similarly, the capacitance value of the auxiliary capacitance CSb subpixels b of the color display pixels D 1 is different from the capacitance of the auxiliary capacitor CSb subpixels b of color display pixel D 2, the color display pixel D 1, D 2 Even if the CS signal corresponding to the auxiliary capacitor CSb of the sub-pixel b is the same signal, the effective voltage of the sub-pixel b in the pixels R 1 , G 1 , B 1 of the color display pixel D 1 is set to the color display pixel D 2 . The effective voltage of the sub-pixel b in the pixels R 2 , G 2 , and B 2 can be made different. For this reason, the viewing angle characteristics of the liquid crystal display device 100 are further improved. In this case, the average of the effective voltage and the effective voltage of the sub-pixel b of the sub-pixel a in each of the color pixels R 1 display pixel D 1, G 1, B 1 is a color display pixel D 2 of the pixel R 2 , G 2 and B 2 are approximately equal to the average of the effective voltage of the subpixel a and the effective voltage of the subpixel b.
 冗長を避けるために重複する説明を省略するが、カラー表示画素D3の画素R3、G3、B3の副画素aの補助容量はCS配線CCSbに対応しており、副画素bの補助容量はCS配線CCScに対応している。同様に、カラー表示画素D4の画素R4、G4、B4の副画素aの補助容量はCS配線CCSbに対応しており、副画素bの補助容量はCS配線CCScに対応している。このように、列方向に隣接するカラー表示画素Dのうちの隣接する副画素の補助容量は同一のCS配線に対応しており、これにより、CS配線の数を低減させて開口率を増大させることができる。 Although redundant description is omitted to avoid redundancy, the auxiliary capacitance of the sub-pixel a of the pixels R 3 , G 3 , and B 3 of the color display pixel D 3 corresponds to the CS wiring CCSb, and the auxiliary capacitance of the sub-pixel b The capacitance corresponds to the CS wiring CCSc. Similarly, the auxiliary capacitance of the sub-pixel a of the pixels R 4 , G 4 , and B 4 of the color display pixel D 4 corresponds to the CS wiring CCSb, and the auxiliary capacitance of the sub-pixel b corresponds to the CS wiring CCSc. . As described above, the auxiliary capacitances of the adjacent sub-pixels among the color display pixels D adjacent in the column direction correspond to the same CS wiring, thereby reducing the number of CS wirings and increasing the aperture ratio. be able to.
 なお、図10に示した液晶表示装置では、1つのCS配線が列方向に隣接する2つの画素のうちの一方の画素の副画素bおよび他方の画素の副画素aに対応したが、本発明はこれに限定されない。 In the liquid crystal display device shown in FIG. 10, one CS wiring corresponds to the sub-pixel b of one pixel and the sub-pixel a of the other pixel of two pixels adjacent in the column direction. Is not limited to this.
 図11に、さらに別の液晶表示装置100の等価回路を示す。図11に示した液晶表示装置100では、CS配線の構成のみに着目すると、図9に示した液晶表示装置と同様の構成を有している。 FIG. 11 shows still another equivalent circuit of the liquid crystal display device 100. The liquid crystal display device 100 shown in FIG. 11 has the same configuration as that of the liquid crystal display device shown in FIG.
 この液晶表示装置100でも、カラー表示画素Dに応じて副画素a、bの容量値が異なる。例えば、カラー表示画素D1の画素R1、G1、B1における副画素a、bの補助容量CSa、CSbの静電容量値CCS1は、カラー表示画素D2の画素R2、G2、B2における副画素a、bの補助容量CSa、CSbの静電容量値CCS2とは異なる。カラー表示画素D1の副画素a、bにおける補助容量電極と補助容量対向電極との重なり面積は、カラー表示画素D2の副画素a、bにおける補助容量電極と補助容量対向電極との重なり面積とは異なる。 Also in the liquid crystal display device 100, the capacitance values of the sub-pixels a and b differ depending on the color display pixel D. For example, the pixels R 1 of the color display pixel D 1, G 1, B 1 sub-pixels in a, b of the auxiliary capacitance CSa, the electrostatic capacitance value CCS 1 of CSb, the pixels R 2 of the color display pixels D 2, G 2 , B 2 is different from the capacitance values CCS 2 of the auxiliary capacitors CSa and CSb of the sub-pixels a and b. The overlapping area of the auxiliary capacitance electrode and the auxiliary capacitance counter electrode in the sub-pixels a and b of the color display pixel D 1 is the overlapping area of the auxiliary capacitance electrode and the auxiliary capacitance counter-electrode in the sub pixels a and b of the color display pixel D 2. Is different.
 ここでは、行方向に隣接するカラー表示画素Dの副画素aの補助容量は同一のCS信号に対応しており、行方向に隣接するカラー表示画素Dの副画素bの補助容量は別の同一CS信号に対応している。例えば、カラー表示画素D1、D2の副画素aの補助容量はCS配線CCSaに対応するCS信号に対応しており、カラー表示画素D1、D2の副画素bの補助容量はCS配線CCSbに対応するCS信号に対応している。 Here, the auxiliary capacitance of the sub-pixel a of the color display pixel D adjacent in the row direction corresponds to the same CS signal, and the auxiliary capacitance of the sub-pixel b of the color display pixel D adjacent in the row direction is different. Supports CS signals. For example, the auxiliary capacitance of the sub-pixel a of the color display pixels D 1 and D 2 corresponds to the CS signal corresponding to the CS wiring CCSa, and the auxiliary capacitance of the sub-pixel b of the color display pixels D 1 and D 2 is the CS wiring. It corresponds to the CS signal corresponding to CCSb.
 ここで、カラー表示画素D1の赤画素R1に着目する。副画素R1aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極はCS配線CCSa1に接続されている。また、副画素R1bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極はCS配線CCSb1に接続されている。TFT16a、16bのゲートはいずれもゲート線Gnに接続されており、TFT16a、16bのソースはいずれもソース線Sに接続されている。なお、カラー表示画素D1の緑画素G1、青画素B1も赤画素R1と同様の構成を有している。 Here, attention is paid to the red pixel R 1 of the color display pixel D 1 . In the sub-pixel R 1a , one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16 a that functions as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa1. In the subpixel R 1b , one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b that functions as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode. 24, and the other electrode of the auxiliary capacitor CSb is connected to the CS wiring CCSb1. The gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S. The green pixel G 1 and the blue pixel B 1 of the color display pixel D 1 have the same configuration as the red pixel R 1 .
 次に、カラー表示画素D2の赤画素R2に着目する。副画素R2aにおいて、液晶容量CLaおよび補助容量CSaのそれぞれの一方の電極は副画素aのスイッチング素子として機能するTFT16aのドレインに接続されており、液晶容量CLaの他方の電極は対向電極24に接続され、補助容量CSaの他方の電極はCS配線CCSa1に接続されている。また、副画素R2bにおいて、液晶容量CLbおよび補助容量CSbのそれぞれの一方の電極は副画素bのスイッチング素子として機能するTFT16bのドレインに接続されており、液晶容量CLbの他方の電極は対向電極24に接続され、補助容量CSbの他方の電極はCS配線CCSb1に接続されている。TFT16a、16bのゲートはいずれもゲート線Gnに接続されており、TFT16a、16bのソースはいずれもソース線Sに接続されている。なお、カラー表示画素D2の緑画素G2、青画素B2も赤画素R2と同様の構成を有している。 Next, attention is paid to the red pixel R 2 of the color display pixel D 2 . In the sub-pixel R 2a , one electrode of each of the liquid crystal capacitor CLa and the auxiliary capacitor CSa is connected to the drain of the TFT 16a functioning as a switching element of the sub-pixel a, and the other electrode of the liquid crystal capacitor CLa is connected to the counter electrode 24. The other electrode of the auxiliary capacitor CSa is connected to the CS wiring CCSa1. In the subpixel R 2b , one electrode of each of the liquid crystal capacitor CLb and the auxiliary capacitor CSb is connected to the drain of the TFT 16b functioning as a switching element of the subpixel b, and the other electrode of the liquid crystal capacitor CLb is the counter electrode. 24, and the other electrode of the auxiliary capacitor CSb is connected to the CS wiring CCSb1. The gates of the TFTs 16a and 16b are both connected to the gate line Gn, and the sources of the TFTs 16a and 16b are both connected to the source line S. The green pixel G 2 and the blue pixel B 2 of the color display pixel D 2 have the same configuration as the red pixel R 2 .
 冗長を避けるために重複する説明を省略するが、カラー表示画素D3の画素R3、G3、B3の副画素aの補助容量はCS配線CCSb2に対応しており、副画素bの補助容量はCS配線CCSc2に対応している。同様に、カラー表示画素D4の画素R4、G4、B4の副画素aの補助容量はCS配線CCSb2に対応しており、副画素bの補助容量はCS配線CCSc2に対応している。 Although the redundant description is omitted to avoid redundancy, the auxiliary capacitance of the sub-pixel a of the pixels R 3 , G 3 , and B 3 of the color display pixel D 3 corresponds to the CS wiring CCSb 2, and the auxiliary capacitance of the sub-pixel b The capacitance corresponds to the CS wiring CCSc2. Similarly, the auxiliary capacitance of the sub-pixel a of the pixels R 4 , G 4 , and B 4 of the color display pixel D 4 corresponds to the CS wiring CCSb2, and the auxiliary capacitance of the sub-pixel b corresponds to the CS wiring CCSc2. .
 図11に示した液晶表示装置100では、カラー表示画素D1の副画素aの補助容量CSaの容量値がカラー表示画素D2の副画素aの補助容量CSaの容量値とは異なるため、カラー表示画素D1、D2の副画素aの補助容量CSaに対応するCS信号が同一の信号であっても、カラー表示画素D1の画素R1、G1、B1における副画素aの実効電圧をカラー表示画素D2の画素R2、G2、B2における副画素aの実効電圧と異ならせることができる。同様に、カラー表示画素D1の副画素bの補助容量CSbの容量値がカラー表示画素D2の副画素bの補助容量CSbの容量値とは異なるため、カラー表示画素D1、D2の副画素bの補助容量CSbに対応するCS信号が同一の信号であっても、カラー表示画素D1の画素R1、G1、B1における副画素bの実効電圧をカラー表示画素D2の画素R2、G2、B2における副画素bの実効電圧と異ならせることができる。このため、液晶表示装置100の視野角特性がさらに改善される。 In the liquid crystal display device 100 shown in FIG. 11, the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 1 is different from the capacitance value of the auxiliary capacitor CSa of the sub-pixel a of the color display pixel D 2. Even if the CS signal corresponding to the auxiliary capacitor CSa of the sub-pixel a of the display pixels D 1 and D 2 is the same signal, the effective of the sub-pixel a in the pixels R 1 , G 1 and B 1 of the color display pixel D 1 The voltage can be made different from the effective voltage of the sub-pixel a in the pixels R 2 , G 2 , and B 2 of the color display pixel D 2 . Similarly, the capacitance value of the auxiliary capacitance CSb subpixels b of the color display pixels D 1 is different from the capacitance of the auxiliary capacitor CSb subpixels b of color display pixel D 2, the color display pixel D 1, D 2 Even if the CS signal corresponding to the auxiliary capacitor CSb of the sub-pixel b is the same signal, the effective voltage of the sub-pixel b in the pixels R 1 , G 1 , B 1 of the color display pixel D 1 is set to the color display pixel D 2 . The effective voltage of the sub-pixel b in the pixels R 2 , G 2 , and B 2 can be made different. For this reason, the viewing angle characteristics of the liquid crystal display device 100 are further improved.
 なお、上述した説明では、電圧差ΔV1のカラー表示画素D1、D4が斜めに配置され、電圧差ΔV2のカラー表示画素D2、D3が斜めに配置されていたが、本発明はこれに限定されない。副画素a、bの実効電圧の電圧差が異なるカラー表示画素Dは任意に配置されてもよい。 In the above description, the color display pixels D 1 and D 4 having the voltage difference ΔV 1 are arranged obliquely, and the color display pixels D 2 and D 3 having the voltage difference ΔV 2 are arranged obliquely. Is not limited to this. The color display pixels D having different voltage differences between the effective voltages of the sub-pixels a and b may be arbitrarily arranged.
 ただし、各ソース線に対応する寄生容量はほぼ一定であることが好ましい。例えば、図12に示すように、ある行に電圧差ΔV1のカラー表示画素Dが行方向に配列され、隣接する行に、電圧差ΔV2のカラー表示画素Dが行方向に配列されてもよい。この場合、列方向に見ると、電圧差ΔV1のカラー表示画素D、および、電圧差ΔV2のカラー表示画素Dが交互に配列される。このようにカラー表示画素Dを配列することにより、各ソース線に対応する寄生容量をほぼ一定にすることができ、特定のソース線による信号遅延を抑制できる。 However, the parasitic capacitance corresponding to each source line is preferably substantially constant. For example, as shown in FIG. 12, even if the color display pixels D having the voltage difference ΔV 1 are arranged in the row direction in a certain row, and the color display pixels D having the voltage difference ΔV 2 are arranged in the row direction in adjacent rows. Good. In this case, when viewed in the column direction, the color display pixels D having the voltage difference ΔV 1 and the color display pixels D having the voltage difference ΔV 2 are alternately arranged. By arranging the color display pixels D in this way, the parasitic capacitance corresponding to each source line can be made substantially constant, and signal delay due to a specific source line can be suppressed.
 なお、図12に示した液晶表示装置100では、ソース線に対応する寄生容量をほぼ一定としたが、本発明はこれに限定されない。各CS配線に対応する容量をほぼ一定としてもよい。例えば、図13に示すように、ある列に電圧差ΔV1のカラー表示画素Dが列方向に配列され、その隣接する列に、電圧差ΔV2のカラー表示画素Dが列方向に配列されてもよい。この場合、行方向に見ると、電圧差ΔV1のカラー表示画素D、および、電圧差ΔV2のカラー表示画素Dが交互に配列される。このようにカラー表示画素Dを配列することにより、各CS配線に対応する寄生容量をほぼ一定にすることができ、特定のCS配線による信号遅延を抑制できる。 In the liquid crystal display device 100 shown in FIG. 12, the parasitic capacitance corresponding to the source line is substantially constant, but the present invention is not limited to this. The capacitance corresponding to each CS wiring may be substantially constant. For example, as shown in FIG. 13, color display pixels D having a voltage difference ΔV 1 are arranged in a column in a certain column, and color display pixels D having a voltage difference ΔV 2 are arranged in a column direction in an adjacent column. Also good. In this case, when viewed in the row direction, the color display pixel D having the voltage difference ΔV 1 and the color display pixel D having the voltage difference ΔV 2 are alternately arranged. By arranging the color display pixels D in this way, the parasitic capacitance corresponding to each CS wiring can be made substantially constant, and a signal delay due to a specific CS wiring can be suppressed.
 なお、図12および図13に示した液晶表示装置100では、ソース線またはCS配線に対応する容量をほぼ一定としたが、本発明はこれに限定されない。ソース線およびCS配線のそれぞれに対応する容量をほぼ一定としてもよい。例えば、図14に示すように、電圧差ΔV1のカラー表示画素Dが市松状に配列され、電圧差ΔV2のカラー表示画素Dが市松状に配列されてもよい。この場合、行方向に見ると、電圧差ΔV1のカラー表示画素D、および、電圧差ΔV2のカラー表示画素Dが交互に配列され、列方向に見ても、電圧差ΔV1のカラー表示画素D、および、電圧差ΔV2のカラー表示画素Dが交互に配列される。このようにカラー表示画素Dを配列することにより、ソース線およびCS配線に対応する寄生容量をそれぞれほぼ一定にすることができる。 In the liquid crystal display device 100 shown in FIGS. 12 and 13, the capacitance corresponding to the source line or the CS wiring is set to be substantially constant, but the present invention is not limited to this. The capacitance corresponding to each of the source line and the CS wiring may be substantially constant. For example, as shown in FIG. 14, the color display pixels D having the voltage difference ΔV 1 may be arranged in a checkered pattern, and the color display pixels D having the voltage difference ΔV 2 may be arranged in a checkered pattern. In this case, when viewed in the row direction, the color display pixel D having the voltage difference ΔV 1 and the color display pixel D having the voltage difference ΔV 2 are alternately arranged, and the color display having the voltage difference ΔV 1 is also viewed in the column direction. Pixels D and color display pixels D having a voltage difference ΔV 2 are alternately arranged. By arranging the color display pixels D in this manner, the parasitic capacitances corresponding to the source line and the CS wiring can be made substantially constant.
 なお、上述した説明では、副画素a、bの実効電圧の電圧差ΔVの異なるカラー表示画素Dは2種類であったが、本発明はこれに限定されない。電圧差ΔVの異なるカラー表示画素Dは3種類以上であってもよい。例えば、副画素a、bの補助容量CSa、CSbの容量値CCSの異なるカラー表示画素Dを3種類以上設けてもよい。 In the above description, there are two types of color display pixels D having different voltage differences ΔV between the effective voltages of the sub-pixels a and b, but the present invention is not limited to this. There may be three or more types of color display pixels D having different voltage differences ΔV. For example, three or more color display pixels D having different capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b may be provided.
 また、上述した説明では、CS信号の全幅の種類は2種類(例えば、図7および図8を参照した説明では、全幅2.0Vおよび4.0Vの2種類)であったが、CS信号の全幅の種類は3種類以上であってもよい。なお、CS信号の全幅はいずれも、1種類の全幅のCS信号を用いた時でも白浮きをある程度抑制できる値(先の図7および図8を参照した説明では全幅2.0V)よりも大きい値であることが好ましい。もちろん、副画素a、bの補助容量CSa、CSbの容量値CCSの異なるカラー表示画素Dを2種類以上設けるとともに、CS信号の全幅の種類を2種類以上としてもよい。 In the above description, there are two types of full width of the CS signal (for example, two types of full width of 2.0 V and 4.0 V in the description with reference to FIGS. 7 and 8). There may be three or more types of full widths. Note that the full width of the CS signal is larger than a value that can suppress whitening to some extent even when one type of full width CS signal is used (the full width is 2.0 V in the description with reference to FIGS. 7 and 8 above). It is preferably a value. Of course, two or more types of color display pixels D having different capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b may be provided, and two or more types of the full width of the CS signal may be provided.
 また、上述した説明では、カラー表示画素Dのそれぞれに対して、行方向、列方向および斜め方向のいずれかに隣接して、電圧差ΔVの異なるカラー表示画素Dが配置されていたが、本発明はこれに限定されない。特定のカラー表示画素Dに対して、行方向、列方向および斜め方向のいずれに隣接するカラー表示画素Dの電圧差ΔVがほぼ等しくてもよい。すなわち、電圧差ΔVの異なるカラー表示画素Dは離れて配置されていてもよい。 In the above description, the color display pixels D having different voltage differences ΔV are arranged adjacent to any of the row direction, the column direction, and the diagonal direction for each of the color display pixels D. The invention is not limited to this. For a specific color display pixel D, the voltage difference ΔV between the color display pixels D adjacent in any of the row direction, the column direction, and the diagonal direction may be substantially equal. That is, the color display pixels D having different voltage differences ΔV may be arranged apart from each other.
 (実施形態2)
 以下、本発明による液晶表示装置の第2実施形態を説明する。図15に、本実施形態の液晶表示装置100Aの模式図を示す。本実施形態の液晶表示装置100Aは、同一カラー表示画素D内の各画素R、G、Bにおける副画素a、bの実効電圧の電圧差ΔVが一定ではない点を除いて上述した液晶表示装置100と同様の構成を有しており、冗長を避けるために重複する説明を省略する。
(Embodiment 2)
Hereinafter, a liquid crystal display device according to a second embodiment of the present invention will be described. FIG. 15 shows a schematic diagram of a liquid crystal display device 100A of the present embodiment. The liquid crystal display device 100A of the present embodiment is the same as that described above except that the voltage difference ΔV between the effective voltages of the sub-pixels a and b in the pixels R, G, and B in the same color display pixel D is not constant. The configuration is the same as that of 100, and redundant description is omitted to avoid redundancy.
 図15に、本実施形態の液晶表示装置100Aにおける4つのカラー表示画素D1~D4および各画素における副画素aの実効電圧と副画素bの実効電圧との電圧差ΔVを示す。ここでは、入力信号において4つのカラー表示画素D1~D4の表示する色は互いに等しく、また、カラー表示画素D1~D4のそれぞれにおいて赤画素R、緑画素G、青画素Bは互いに等しい中間階調を示し、カラー表示画素D1~D4は無彩色を示す。 FIG. 15 shows the voltage difference ΔV between the effective voltage of the sub-pixel a and the effective voltage of the sub-pixel b in the four color display pixels D 1 to D 4 and each pixel in the liquid crystal display device 100A of the present embodiment. Here, in the input signal, the colors displayed by the four color display pixels D 1 to D 4 are equal to each other, and in each of the color display pixels D 1 to D 4 , the red pixel R, the green pixel G, and the blue pixel B are Equal halftones are shown, and the color display pixels D 1 to D 4 show achromatic colors.
 カラー表示画素D1の赤画素R1において副画素R1aの実効電圧と副画素R1bの実効電圧との電圧差はΔVR1である。また、緑画素G1において副画素G1aの実効電圧と副画素G1bの実効電圧との電圧差はΔVG1であり、青画素B1において副画素B1aの実効電圧と副画素B1bの実効電圧との電圧差はΔVB1である。この液晶表示装置100Aでは、カラー表示画素D1における電圧差ΔVR1、ΔVG1、ΔVB1は一定ではない。 In the red pixel R 1 of the color display pixel D 1 , the voltage difference between the effective voltage of the sub-pixel R 1a and the effective voltage of the sub-pixel R 1b is ΔV R1 . In the green pixel G 1 , the voltage difference between the effective voltage of the sub-pixel G 1a and the effective voltage of the sub-pixel G 1b is ΔV G1 , and in the blue pixel B 1 , the effective voltage of the sub-pixel B 1a and the sub-pixel B 1b The voltage difference from the effective voltage is ΔV B1 . In the liquid crystal display device 100A, the voltage differences ΔV R1 , ΔV G1 , ΔV B1 in the color display pixel D 1 are not constant.
 例えば、カラー表示画素D1における各画素R1、G1およびB1の補助容量CSa、CSbの容量値CCSをそれぞれCCSR、CCSG、CCSBと呼ぶとすると、容量値CCSR、CCSG、CCSBを異ならせることにより、画素R1、G1およびB1に応じて副画素a、bの実効電圧の電圧差ΔVR1、ΔVG1、ΔVB1を異ならせることができる。具体的には、副画素a、bの補助容量CSa、CSbを形成する補助容量電極と補助容量対向電極との重なり面積を画素R1、G1、B1に応じて異ならせてもよい。 For example, each pixel of R 1 in the color display pixel D 1, G 1 and B 1 of the auxiliary capacitance CSa, respectively CCS R a capacitance value of CCS CSb, CCS G, When referred to as CCS B, capacitance values CCS R, CCS G By making CCS B different, the voltage differences ΔV R1 , ΔV G1 and ΔV B1 of the effective voltages of the sub-pixels a and b can be made different according to the pixels R 1 , G 1 and B 1 . Specifically, the overlapping area of the auxiliary capacitance electrodes forming the auxiliary capacitances CSa and CSb of the sub-pixels a and b and the auxiliary capacitance counter electrode may be made different according to the pixels R 1 , G 1 and B 1 .
 あるいは、カラー表示画素D1において各画素R1、G1およびB1の副画素a、bの補助容量CSa、CSbの補助容量対向電極に供給される補助容量信号(CS信号)の振幅VadをそれぞれVadR、VadG、VadBと呼ぶとすると、振幅VadR、VadG、VadBを画素R1、G1およびB1に応じて異ならせてもよい。このように、カラー表示画素D1内における各画素R1、G1およびB1の副画素a、bの実効電圧の電圧差を異ならせることにより、斜め方向の視野角をさらに改善することができる。 Alternatively, in the color display pixel D 1 , the amplitude Vad of the auxiliary capacitance signal (CS signal) supplied to the auxiliary capacitance counter electrodes of the auxiliary capacitances CSa and CSb of the sub-pixels a and b of the pixels R 1 , G 1 and B 1 is set. If they are referred to as Vad R , Vad G , and Vad B , respectively, the amplitudes Vad R , Vad G , and Vad B may be made different depending on the pixels R 1 , G 1, and B 1 . Thus, the viewing angle in the oblique direction can be further improved by making the voltage difference between the effective voltages of the sub-pixels a and b of the pixels R 1 , G 1 and B 1 in the color display pixel D 1 different. it can.
 なお、液晶表示装置100Aにおいても、カラー表示画素D2の赤画素R2における副画素R2aの実効電圧と副画素R2bの実効電圧との電圧差ΔVR2はΔVR1とは異なる。また、緑画素G2における副画素G2aの実効電圧と副画素G2bの実効電圧との電圧差ΔVG2はΔVG1とは異なる。同様に、青画素B2における副画素B2aの実効電圧と副画素B2bの実効電圧との電圧差ΔVB2はΔVB1とは異なる。液晶表示装置100Aでは、電圧差ΔVR2、ΔVG2、ΔVB2は一定ではない。 Also in the liquid crystal display device 100A, the voltage difference ΔV R2 between the effective voltage of the sub-pixel R 2a and the effective voltage of the sub-pixel R 2b in the red pixel R 2 of the color display pixel D 2 is different from ΔV R1 . Further, the voltage difference ΔV G2 between the effective voltage of the sub-pixel G 2a and the effective voltage of the sub-pixel G 2b in the green pixel G 2 is different from ΔV G1 . Similarly, the voltage difference ΔV B2 between the effective voltage of the sub-pixel B 2a and the effective voltage of the sub-pixel B 2b in the blue pixel B 2 is different from ΔV B1 . In the liquid crystal display device 100A, the voltage differences ΔV R2 , ΔV G2 , and ΔV B2 are not constant.
 例えば、電圧差ΔVB1は、電圧差ΔVR1、ΔVG1よりも小さいことが好ましい。特許文献2に記載されているように、青画素Bの電圧差ΔVB1が、赤画素R、緑画素Gの電圧差ΔVR1、ΔVG1よりも小さいことにより、斜め視角による色バランスのずれを抑制することができる。なお、電圧差ΔVR1は電圧差ΔVG1よりも大きくても小さくてもよい。あるいは、電圧差ΔVR1は電圧差ΔVG1とほぼ等しくてもよい。 For example, the voltage difference ΔV B1 is preferably smaller than the voltage differences ΔV R1 and ΔV G1 . As described in Patent Document 2, the voltage difference ΔV B1 of the blue pixel B is smaller than the voltage differences ΔV R1 and ΔV G1 of the red pixel R and the green pixel G, thereby causing a color balance shift due to an oblique viewing angle. Can be suppressed. The voltage difference [Delta] V R1 may be larger or smaller than the voltage difference [Delta] V G1. Alternatively, the voltage difference [Delta] V R1 may be substantially equal to the voltage difference [Delta] V G1.
 同様に、電圧差ΔVB2は、電圧差ΔVR2、ΔVG2よりも小さいことが好ましい。なお、電圧差ΔVR2は電圧差ΔVG2よりも大きくても小さくてもよい。あるいは、電圧差ΔVR2は電圧差ΔVG2とほぼ等しくてもよい。 Similarly, the voltage difference ΔV B2 is preferably smaller than the voltage differences ΔV R2 and ΔV G2 . The voltage difference [Delta] V R2 may be larger or smaller than the voltage difference [Delta] V G2. Alternatively, the voltage difference [Delta] V R2 may be substantially equal to the voltage difference [Delta] V G2.
 なお、電圧差ΔVR1、ΔVG1およびΔVB1の比は電圧差ΔVR2、ΔVG2、ΔVB2の比とほぼ等しいことが好ましい。この場合、各カラー表示画素Dにおける斜め方向からの色度変化の抑制を簡便に行うことができる。 The ratio of the voltage differences ΔV R1 , ΔV G1 and ΔV B1 is preferably substantially equal to the ratio of the voltage differences ΔV R2 , ΔV G2 and ΔV B2 . In this case, it is possible to easily suppress the chromaticity change from the oblique direction in each color display pixel D.
 以下、比較例の液晶表示装置800A、800Bと比較して液晶表示装置100Aの利点を説明する。 Hereinafter, advantages of the liquid crystal display device 100A compared to the liquid crystal display devices 800A and 800B of the comparative example will be described.
 図16に、比較例の液晶表示装置800Aにおける4つのカラー表示画素の模式図を示す。液晶表示装置800Aのカラー表示画素D1において副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。液晶表示装置800Aでは、カラー表示画素D1におけるCS電圧の振幅VadR、VadG、VadBは一定ではない。例えば、全幅ΔVadRおよびΔVadGは2.0Vであり、ΔVadBは1.6Vである。 FIG. 16 is a schematic diagram of four color display pixels in the liquid crystal display device 800A of the comparative example. The liquid crystal display device 800A subpixel a in the color display pixel D 1 of the, b of the auxiliary capacitance CSa, capacitance CCS of CSb is substantially constant. In the liquid crystal display device 800A, the amplitudes Vad R , Vad G , and Vad B of the CS voltage in the color display pixel D 1 are not constant. For example, the full widths ΔVad R and ΔVad G are 2.0V, and ΔVad B is 1.6V.
 なお、液晶表示装置800Aでは、カラー表示画素D2~D4はカラー表示画素D1と同様の構成を有している。副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。また、カラー表示画素D2~D4のそれぞれにおけるCS電圧の振幅Vadは一定ではない。例えば、カラー表示画素D2~D4のそれぞれにおいて全幅ΔVadR、ΔVadGは2.0Vであり、全幅ΔVadBは1.6Vである。 In the liquid crystal display device 800A, the color display pixels D 2 to D 4 have the same configuration as the color display pixel D 1 . The capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are almost constant. Further, the amplitude Vad of the CS voltage in each of the color display pixels D 2 to D 4 is not constant. For example, in each of the color display pixels D 2 to D 4 , the full widths ΔVad R and ΔVad G are 2.0V, and the full width ΔVad B is 1.6V.
 また、ここでは、入力信号において4つのカラー表示画素D1~D4の表示する色は互いに等しい。また、カラー表示画素D1~D4のそれぞれにおいて赤画素R、緑画素G、青画素Bは互いに等しい中間階調を示し、カラー表示画素D1~D4は無彩色を示す。 Here, the colors displayed by the four color display pixels D 1 to D 4 in the input signal are equal to each other. In each of the color display pixels D 1 to D 4 , the red pixel R, the green pixel G, and the blue pixel B exhibit the same intermediate gradation, and the color display pixels D 1 to D 4 exhibit an achromatic color.
 図17(a)に、液晶表示装置800Aにおける階調変化に対する色度u’の変化を示し、図17(b)に、階調変化に対する色度v’の変化を示す。図17(a)、図17(b)は液晶表示装置800Aの主面の法線方向に対して右45°からみたときの色度u’、v’を示している。ここで、液晶表示装置800Aは4DRTNモードである。 FIG. 17A shows a change in chromaticity u ′ with respect to a gradation change in the liquid crystal display device 800A, and FIG. 17B shows a change in chromaticity v ′ with respect to a gradation change. FIGS. 17A and 17B show the chromaticities u ′ and v ′ when viewed from the right at 45 ° with respect to the normal direction of the main surface of the liquid crystal display device 800A. Here, the liquid crystal display device 800A is in the 4DRTN mode.
 図17(a)および図17(b)には、CS信号の全幅ΔVadBを1.4V、1.6Vおよび2.0Vにそれぞれ変化させた結果を示している。上述したように、ΔVadR、ΔVadGは2.0Vであり、ΔVadR、ΔVadG(2.0V)に対する全幅ΔVadB(1.4V、1.6Vおよび2.0V)の割合(X)は、それぞれ、0.7、0.8、1.0である。 FIGS. 17A and 17B show the results of changing the full width ΔVad B of the CS signal to 1.4V, 1.6V, and 2.0V, respectively. As described above, ΔVad R and ΔVad G are 2.0V, and the ratio (X) of the total width ΔVad B (1.4V, 1.6V and 2.0V) to ΔVad R and ΔVad G (2.0V) is , 0.7, 0.8, and 1.0, respectively.
 全幅ΔVadBが全幅ΔVadR、ΔVadGとほぼ等しい場合(すなわち、X=1.0の場合)、特に、階調120付近における色度v’が他の階調と比べて大きくなり、無彩色を表示しているにもかかわらず黄色にシフトして見える。振幅VadBを小さくすると、階調120付近において色度u’、v’がそれぞれ減少し、これにより、黄色へのシフトが抑制される。図17(a)、図17(b)から、全幅ΔVadR、ΔVadGが2.0Vである場合、全幅ΔVadBを1.6Vとすると、色度u’、v’のそれぞれの変動を抑制できることが理解される。 When the total width ΔVad B is substantially equal to the total widths ΔVad R and ΔVad G (that is, when X = 1.0), in particular, the chromaticity v ′ near the gradation 120 becomes larger than the other gradations, and the achromatic color. Despite being displayed, it appears to shift to yellow. When the amplitude Vad B is decreased, the chromaticities u ′ and v ′ are decreased near the gradation 120, thereby suppressing the shift to yellow. From FIG. 17A and FIG. 17B, when the full widths ΔVad R and ΔVad G are 2.0V, and the full width ΔVad B is set to 1.6V, each variation of chromaticity u ′ and v ′ is suppressed. It is understood that it can be done.
 図18に、比較例の液晶表示装置800Bにおける4つのカラー表示画素の模式図を示す。液晶表示装置800Bのカラー表示画素D1において副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。液晶表示装置800Bでは、カラー表示画素D1における振幅VadR、VadG、VadBは一定ではない。例えば、全幅ΔVadRおよびΔVadGは4.0Vであり、全幅ΔVadBは3.2Vである。 FIG. 18 is a schematic diagram of four color display pixels in the liquid crystal display device 800B of the comparative example. The liquid crystal display device 800B subpixel a in the color display pixel D 1 of the, b of the auxiliary capacitance CSa, capacitance CCS of CSb is substantially constant. In the liquid crystal display device 800B, the amplitudes Vad R , Vad G , and Vad B in the color display pixel D 1 are not constant. For example, the full widths ΔVad R and ΔVad G are 4.0V, and the full width ΔVad B is 3.2V.
 液晶表示装置800Bでは、カラー表示画素D2~D4はカラー表示画素D1と同様の構成を有している。カラー表示画素D2~D4のそれぞれにおいて副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。また、カラー表示画素D2~D4のそれぞれにおけるCS電圧の振幅Vadは一定ではない。例えば、カラー表示画素D2~D4のそれぞれにおいてΔVadR、ΔVadGは4.0Vであり、ΔVadBは3.2Vである。 In the liquid crystal display device 800B, the color display pixels D 2 to D 4 have the same configuration as the color display pixel D 1 . In each of the color display pixels D 2 to D 4 , the capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are substantially constant. Further, the amplitude Vad of the CS voltage in each of the color display pixels D 2 to D 4 is not constant. For example, in each of the color display pixels D 2 to D 4 , ΔVad R and ΔVad G are 4.0V, and ΔVad B is 3.2V.
 図19(a)に、液晶表示装置800Bにおける階調変化に対する色度u’の変化を示し、図19(b)に、階調変化に対する色度v’の変化を示す。図19(a)、図19(b)は液晶表示装置800Bの主面の法線方向に対して右45°からみたときの色度u’、v’を示している。ここで、液晶表示装置800Bは4DRTNモードである。 FIG. 19A shows a change in chromaticity u ′ with respect to a gradation change in the liquid crystal display device 800B, and FIG. 19B shows a change in chromaticity v ′ with respect to a gradation change. FIGS. 19A and 19B show chromaticities u ′ and v ′ when viewed from the right at 45 ° with respect to the normal direction of the main surface of the liquid crystal display device 800B. Here, the liquid crystal display device 800B is in the 4DRTN mode.
 ここでは、全幅ΔVadBを2.8V、3.2Vおよび4.0Vに変化させた結果を示している。なお、上述したように、ΔVadR、ΔVadGは4.0Vであり、ΔVadR、ΔVadG(4.0V)に対するΔVadB(2.8V、3.2Vおよび4.0V)の割合(X)は、それぞれ、0.7、0.8、1.0である。 Here, the result of changing the full width ΔVad B to 2.8V, 3.2V and 4.0V is shown. As described above, ΔVad R and ΔVad G are 4.0V, and the ratio (X) of ΔVad B (2.8V, 3.2V and 4.0V) to ΔVad R and ΔVad G (4.0V). Are 0.7, 0.8, and 1.0, respectively.
 全幅ΔVadBが全幅ΔVadR、ΔVadGと等しい場合(すなわち、X=1.0の場合)、特に、階調160付近における色度u’、v’のそれぞれが他の階調と比べて大きくなり、無彩色を表示しているにもかかわらず色がシフトして見える。全幅ΔVadBを小さくすると、階調160付近において色度u’、v’がそれぞれ減少し、これにより、黄色へのシフトが抑制される。図19(a)、図19(b)から、全幅ΔVadR、ΔVadGが4.0Vである場合、ΔVadBを3.2Vとすると、色度u’、v’の変化を抑制できることが理解される。 When the full width ΔVad B is equal to the full widths ΔVad R and ΔVad G (that is, when X = 1.0), in particular, the chromaticities u ′ and v ′ near the gradation 160 are larger than those of the other gradations. The color appears to shift despite the display of an achromatic color. When the total width ΔVad B is reduced, the chromaticities u ′ and v ′ decrease in the vicinity of the gradation 160, thereby suppressing the shift to yellow. From FIGS. 19A and 19B, it is understood that when the full widths ΔVad R and ΔVad G are 4.0 V, changes in chromaticity u ′ and v ′ can be suppressed when ΔVad B is 3.2 V. Is done.
 図20に、本実施形態の液晶表示装置100Aにおける4つのカラー表示画素および各画素の補助容量に対応するCS信号の振幅を示す。液晶表示装置100Aのカラー表示画素D1において副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。 FIG. 20 shows the amplitude of the CS signal corresponding to the four color display pixels and the auxiliary capacitance of each pixel in the liquid crystal display device 100A of the present embodiment. Subpixel a in the color display pixel D 1 of the liquid crystal display device 100A, b of the auxiliary capacitance CSa, capacitance CCS of CSb is substantially constant.
 また、液晶表示装置100Aでは、カラー表示画素D1におけるCS電圧の振幅VadR1、VadG1、VadB1は一定ではない。例えば、図16および図17を参照して上述した比較例の液晶表示装置800Aと同様に、ΔVadR1およびΔVadG1は2.0Vであり、ΔVadB1は1.6Vである。 In the liquid crystal display device 100A, the amplitudes Vad R1 , Vad G1 , and Vad B1 of the CS voltage in the color display pixel D 1 are not constant. For example, ΔVad R1 and ΔVad G1 are 2.0V and ΔVad B1 is 1.6V, as in the liquid crystal display device 800A of the comparative example described above with reference to FIGS.
 また、液晶表示装置100Aにおいて、振幅VadR2、VadG2、VadB2は一定ではない。例えば、図18および図19を参照して上述した比較例の液晶表示装置800Bと同様に、ΔVadR2およびΔVadG2は4.0Vであり、ΔVadB2は3.2Vである。 In the liquid crystal display device 100A, the amplitudes Vad R2 , Vad G2 , and Vad B2 are not constant. For example, ΔVad R2 and ΔVad G2 are 4.0 V and ΔVad B2 is 3.2 V, as in the liquid crystal display device 800B of the comparative example described above with reference to FIGS.
 なお、液晶表示装置100Aにおいてカラー表示画素D3およびD4における各画素R、G、Bもカラー表示画素D1およびD2とそれぞれほぼ同様である。副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。また、カラー表示画素D3、D4のそれぞれにおけるCS電圧の振幅Vadは一定ではない。例えば、ΔVadR3、ΔVadG3は2.0Vであり、ΔVadB3は1.6Vであり、また、ΔVadR4、ΔVadG4は4.0Vであり、ΔVadB4は3.2Vである。なお、同一のカラー表示画素D内のCS信号の振幅VadR、VadGに対するVadBの割合をXとすると、X=0.80である。 Note that it is substantially the same, respectively, in the liquid crystal display device 100A each pixel R in the color display pixel D 3 and D 4, G, B is also a color display pixel D 1 and D 2. The capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are almost constant. Further, the amplitude Vad of the CS voltage in each of the color display pixels D 3 and D 4 is not constant. For example, ΔVad R3 and ΔVad G3 are 2.0V, ΔVad B3 is 1.6V, ΔVad R4 and ΔVad G4 are 4.0V, and ΔVad B4 is 3.2V. If the ratio of Vad B to the amplitudes Vad R and Vad G of the CS signal in the same color display pixel D is X, X = 0.80.
 図21(a)に、液晶表示装置100Aにおける階調変化に対する色度u’の変化を示し、図21(b)に、階調変化に対する色度v’の変化を示す。図21(a)、図21(b)は液晶表示装置100Aの主面の法線方向に対して右45°からみたときの色度u’、v’をそれぞれ示している。 FIG. 21A shows a change in chromaticity u ′ with respect to a gradation change in the liquid crystal display device 100A, and FIG. 21B shows a change in chromaticity v ′ with respect to a gradation change. FIGS. 21A and 21B show chromaticities u ′ and v ′ when viewed from the right at 45 ° with respect to the normal direction of the main surface of the liquid crystal display device 100A.
 なお、ここでは、参考のために、図5を参照して説明した比較例の液晶表示装置800における色度u’、v’の変化を併せて示している。比較例の液晶表示装置800では、カラー表示画素Dのそれぞれにおいて、副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定であり、また、CS信号の振幅VadR、VadG、VadBはそれぞれ一定である。 Here, for reference, changes in chromaticity u ′ and v ′ in the liquid crystal display device 800 of the comparative example described with reference to FIG. 5 are also shown. In the liquid crystal display device 800 of the comparative example, in each color display pixel D, the capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are substantially constant, and the amplitudes Vad R , Vad G , Vad B is constant.
 また、参考のために、カラー表示画素Dのそれぞれにおいて振幅VadBが振幅VadR、VadGと等しい実施形態1の液晶表示装置100の色度u’、v’の変化も併せて示している。実施形態1の液晶表示装置100では、カラー表示画素Dのそれぞれにおいて、副画素a、bの補助容量CSa、CSbの容量値CCSはほぼ一定である。なお、カラー表示画素Dに応じてCS信号の振幅VadR、VadG、VadBは異なるが、同一カラー表示画素D内のCS信号の振幅VadR、VadG、VadBはそれぞれ一定である。 For reference, changes in chromaticity u ′ and v ′ of the liquid crystal display device 100 of Embodiment 1 in which the amplitude Vad B is equal to the amplitudes Vad R and Vad G in each of the color display pixels D are also shown. . In the liquid crystal display device 100 of the first embodiment, in each of the color display pixels D, the capacitance values CCS of the auxiliary capacitors CSa and CSb of the sub-pixels a and b are substantially constant. Although the amplitudes Vad R , Vad G , and Vad B of the CS signal are different depending on the color display pixel D, the amplitudes Vad R , Vad G , and Vad B of the CS signal in the same color display pixel D are constant.
 液晶表示装置100Aでは、各カラー表示画素D内において振幅VadBが振幅VadR、VadGよりも小さく、これにより、各カラー表示画素D内において電圧差ΔVBを電圧差ΔVR、ΔVGよりも小さくできるため、黄色シフトを改善することができる。なお、好ましい割合Xは、副画素a、bの液晶容量CLa、CLb、補助容量CSa、CSbに応じて異なるため、適宜、設定すればよい。 In the liquid crystal display device 100A, the amplitude Vad B is smaller than the amplitudes Vad R and Vad G in each color display pixel D, whereby the voltage difference ΔV B is changed from the voltage differences ΔV R and ΔV G in each color display pixel D. Therefore, yellow shift can be improved. Note that the preferable ratio X varies depending on the liquid crystal capacitors CLa and CLb and the auxiliary capacitors CSa and CSb of the sub-pixels a and b, and may be set as appropriate.
 なお、ここでは、カラー表示画素Dのそれぞれにおいて補助容量CSa、CSbの容量値をほぼ等しくし、カラー表示画素Dのうちの画素R、G、BのCS信号の振幅VadR、VadG、VadBを変化させたが、本発明はこれに限定されない。例えば、カラー表示画素DのそれぞれにおいてCS信号の振幅VadR、VadG、VadBをほぼ等しくし、カラー表示画素Dのうちの画素R、G、Bの補助容量CSa、CSbの容量値CCSR、CCSG、CCSBを異ならせてもよい。 Here, the capacitance values of the auxiliary capacitors CSa and CSb are substantially equal in each color display pixel D, and the amplitudes Vad R , Vad G , and Vad of the CS signals of the pixels R, G, and B in the color display pixel D are used. Although B was changed, the present invention is not limited to this. For example, the amplitude Vad R , Vad G , Vad B of the CS signal is made substantially equal in each color display pixel D, and the capacitance values CCS R of the auxiliary capacitors CSa, CSb of the pixels R, G, B of the color display pixel D are set. , CCS G and CCS B may be different.
 図22に、本実施形態の液晶表示装置100Aにおける4つのカラー表示画素および各画素の補助容量の容量値の比を示す。ここでは、カラー表示画素DのそれぞれにおけるCS電圧の振幅はほぼ一定である。 FIG. 22 shows the ratio of the capacitance values of the four color display pixels and the auxiliary capacitance of each pixel in the liquid crystal display device 100A of the present embodiment. Here, the amplitude of the CS voltage in each of the color display pixels D is substantially constant.
 また、この液晶表示装置100Aでは、カラー表示画素D1におけるカラー表示画素Dのうちの画素R、G、Bの補助容量CSa、CSbの容量値CCSR1、CCSG1、CCSB1は一定ではなく、これに伴い、KR1、KG1、KB1も一定ではない。例えば、KR1、KG1、KB1はそれぞれ1.0、1.0、0.8である。 In the liquid crystal display device 100A, the capacitance values CCS R1 , CCS G1 , and CCS B1 of the auxiliary capacitors CSa and CSb of the color display pixel D in the color display pixel D 1 are not constant, Accordingly, K R1 , K G1 , and K B1 are not constant. For example, K R1 , K G1 , and K B1 are 1.0, 1.0, and 0.8, respectively.
 また、カラー表示画素D2におけるカラー表示画素Dのうちの画素R、G、Bの補助容量CSa、CSbの容量値CCSR2、CCSG2、CCSB2はそれぞれ容量値CCSR1、CCSG1、CCSB1とは異なり、これに伴い、KR2、KG2、KB2はKR1、KG1、KB1とは異なる。なお、容量値CCSR2、CCSG2、CCSB2は一定ではなく、これに伴い、KR2、KG2、KB2も一定ではない。例えば、KR2、KG2、KB2はそれぞれ2.0、2.0、1.6である。 The capacitance values CCS R2 , CCS G2 , and CCS B2 of the auxiliary capacitors CSa and CSb of the pixels R, G, and B of the color display pixel D 2 in the color display pixel D 2 are the capacitance values CCS R1 , CCS G1 , and CCS B1 , respectively. Accordingly, K R2 , K G2 and K B2 are different from K R1 , K G1 and K B1 . Note that the capacitance values CCS R2 , CCS G2 , and CCS B2 are not constant, and accordingly, K R2 , K G2 , and K B2 are not constant. For example, K R2 , K G2 , and K B2 are 2.0, 2.0, and 1.6, respectively.
 なお、カラー表示画素D3およびD4における各画素R、G、Bもカラー表示画素D1およびD2とそれぞれほぼ同様である。例えば、KR3、KG3の比は1.0であり、KB3は0.8であり、また、KR4、KG4は2.0であり、KB4は1.6である。ここでも、同一カラー表示画素D内のKR、KGに対するKBの割合をXとすると、X=0.80である。このように、カラー表示画素D内の補助容量CSa、CSbの容量値CCSR、CCSG、CCSBを異ならせることにより、視野角特性のさらなる改善を行うことができる。もちろん、カラー表示画素Dに応じて振幅VadR、VadG、VadBおよび補助容量CSa、CSbの容量値の両方をそれぞれ変化させてもよい。 The pixels R, G, and B in the color display pixels D 3 and D 4 are substantially the same as the color display pixels D 1 and D 2 , respectively. For example, the ratio of K R3 and K G3 is 1.0, K B3 is 0.8, K R4 and K G4 are 2.0, and K B4 is 1.6. Again, K R of the same color display pixel D, when the ratio of K B and X for K G, which is X = 0.80. Thus, the viewing angle characteristics can be further improved by making the capacitance values CCS R , CCS G , and CCS B of the auxiliary capacitors CSa and CSb in the color display pixel D different. Of course, both the amplitudes Vad R , Vad G , Vad B and the capacitance values of the auxiliary capacitors CSa, CSb may be changed in accordance with the color display pixel D.
 なお、上述した説明では、カラー表示画素Dのそれぞれにおいて、青画素Bの電圧差ΔVBが赤画素R、緑画素Gの電圧差ΔVR、ΔVGと異なったが、本発明はこれに限定されない。別の画素の電圧差ΔVが他の画素の電圧差ΔVと異なってもよい。 Incidentally, in the above description, in each color display pixel D, the voltage difference [Delta] V B red pixel R of the blue pixel B, the voltage difference [Delta] V R of the green pixel G, has been different from the [Delta] V G, the present invention is limited to Not. The voltage difference ΔV of another pixel may be different from the voltage difference ΔV of another pixel.
 また、上述した説明では、カラー表示画素Dのそれぞれにおいて赤画素R、緑画素Gの電圧差ΔVR、ΔVGは互いに等しかったが、本発明はこれに限定されない。赤画素R、緑画素Gの電圧差ΔVR、ΔVGは異なってもよい。 Further, in the above description, the red pixel R in each color display pixel D, the voltage difference [Delta] V R of the green pixel G, and [Delta] V G was equal to one another, the present invention is not limited thereto. Red pixel R, the voltage difference [Delta] V R of the green pixel G, [Delta] V G may be different.
 また、上述した説明では、同一画素内の副画素a、bの面積はほぼ等しかったが、本発明はこれに限定されない。同一画素内の副画素a、bの面積は異なっていてもよい。 In the above description, the areas of the sub-pixels a and b in the same pixel are almost equal, but the present invention is not limited to this. The areas of the sub-pixels a and b in the same pixel may be different.
 また、上述した説明では、1つの画素は輝度の異なり得る2つの副画素を有していたが、本発明はこれに限定されない。1つの画素が輝度の異なり得る3以上の副画素を有していてもよい。 In the above description, one pixel has two sub-pixels that can have different luminances, but the present invention is not limited to this. One pixel may have three or more subpixels that can have different luminances.
 また、上述した説明では、カラー表示画素は赤画素、緑画素および青画素の3つの画素を有したが、本発明はこれに限定されない。カラー表示画素は4以上の画素を有してもよい。例えば、カラー表示画素は赤画素、緑画素および青画素に加えて黄画素を有してもよい。あるいは、カラー表示画素は赤画素、緑画素および青画素に加えて黄画素およびシアン画素を有してもよい。 In the above description, the color display pixel has three pixels of a red pixel, a green pixel, and a blue pixel, but the present invention is not limited to this. The color display pixel may have four or more pixels. For example, the color display pixel may have a yellow pixel in addition to a red pixel, a green pixel, and a blue pixel. Alternatively, the color display pixel may include a yellow pixel and a cyan pixel in addition to a red pixel, a green pixel, and a blue pixel.
 本発明の実施形態によれば、液晶表示装置の斜め方向の表示品位を改善することができる。 According to the embodiment of the present invention, the display quality in the oblique direction of the liquid crystal display device can be improved.
 10  背面基板
 14  画素電極
 20  前面基板
 24  対向電極
 30  液晶層
 100 液晶表示装置
DESCRIPTION OF SYMBOLS 10 Back substrate 14 Pixel electrode 20 Front substrate 24 Counter electrode 30 Liquid crystal layer 100 Liquid crystal display device

Claims (18)

  1.  第1カラー表示画素および第2カラー表示画素を含む複数のカラー表示画素を備える液晶表示装置であって、
     前記複数のカラー表示画素のそれぞれは、第1画素、第2画素および第3画素を含む複数の画素を有しており、
     前記複数の画素のそれぞれは第1副画素および第2副画素を有しており、
     前記複数のカラー表示画素のそれぞれの前記複数の画素のそれぞれにおいて、前記第1副画素および前記第2副画素のそれぞれは、
     対向電極と、液晶層と、前記液晶層を介して前記対向電極に対向する副画素電極とによって形成された液晶容量と、
     前記副画素電極に電気的に接続された補助容量電極と、絶縁層と、前記絶縁層を介して前記補助容量電極と対向する補助容量対向電極とによって形成された補助容量と
    を有しており、
     前記第1カラー表示画素の前記第1画素および前記第2カラー表示画素の前記第1画素のそれぞれが少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記第1画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差は、前記第2カラー表示画素の前記第1画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差と異なる、液晶表示装置。
    A liquid crystal display device comprising a plurality of color display pixels including a first color display pixel and a second color display pixel,
    Each of the plurality of color display pixels has a plurality of pixels including a first pixel, a second pixel, and a third pixel;
    Each of the plurality of pixels has a first subpixel and a second subpixel,
    In each of the plurality of pixels of each of the plurality of color display pixels, each of the first subpixel and the second subpixel is:
    A liquid crystal capacitor formed by a counter electrode, a liquid crystal layer, and a sub-pixel electrode facing the counter electrode through the liquid crystal layer;
    And an auxiliary capacitance formed by an auxiliary capacitance electrode electrically connected to the subpixel electrode, an insulating layer, and an auxiliary capacitance counter electrode facing the auxiliary capacitance electrode via the insulating layer. ,
    In the case where each of the first pixel of the first color display pixel and the first pixel of the second color display pixel performs display with at least some intermediate gradation, the first pixel of the first color display pixel in the first pixel The voltage difference between the effective voltage of the first subpixel and the effective voltage of the second subpixel is the effective voltage of the first subpixel and the effective voltage of the second subpixel in the first pixel of the second color display pixel. A liquid crystal display device that differs from the voltage difference from the voltage.
  2.  前記複数のカラー表示画素のそれぞれの前記複数の画素のそれぞれにおいて、前記第1副画素の前記補助容量の容量値は、前記第2副画素の前記補助容量の容量値とほぼ等しい、請求項1に記載の液晶表示装置。 2. In each of the plurality of pixels of the plurality of color display pixels, a capacitance value of the auxiliary capacitance of the first subpixel is substantially equal to a capacitance value of the auxiliary capacitance of the second subpixel. A liquid crystal display device according to 1.
  3.  前記複数のカラー表示画素のそれぞれの前記複数の画素のそれぞれにおいて、前記第1副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅とほぼ等しい、請求項1または2に記載の液晶表示装置。 In each of the plurality of pixels of the plurality of color display pixels, the amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel is an auxiliary capacitance corresponding to the second subpixel. The liquid crystal display device according to claim 1, wherein the liquid crystal display device has substantially the same amplitude as the auxiliary capacitance signal supplied to the counter electrode.
  4.  前記第1カラー表示画素の前記第1画素および前記第2カラー表示画素の前記第1画素のそれぞれが少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する副画素電極への書き込み電圧は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する副画素電極への書き込み電圧とは異なる、請求項1から3のいずれかに記載の液晶表示装置。 In the case where each of the first pixel of the first color display pixel and the first pixel of the second color display pixel performs display with at least some intermediate gradation, the first pixel of the first color display pixel in the first pixel Write voltages to the subpixel electrodes corresponding to the first subpixel and the second subpixel are subpixels corresponding to the first subpixel and the second subpixel in the first pixel of the second color display pixel. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is different from a writing voltage to the electrode.
  5.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅と異なる、請求項1から4のいずれかに記載の液晶表示装置。 The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color display pixel. 5. The liquid crystal display device according to claim 1, wherein an amplitude of an auxiliary capacitance signal supplied to an auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in one pixel is different.
  6.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値とほぼ等しい、請求項5に記載の液晶表示装置。 The capacitance values of the auxiliary capacitances of the first subpixel and the second subpixel in the first pixel of the first color display pixel are the first subpixel and the subpixel in the first pixel of the second color display pixel. The liquid crystal display device according to claim 5, wherein the liquid crystal display device is substantially equal to the capacitance value of the auxiliary capacitance of the second subpixel.
  7.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値と異なる、請求項1から4のいずれかに記載の液晶表示装置。 The capacitance values of the auxiliary capacitances of the first subpixel and the second subpixel in the first pixel of the first color display pixel are the first subpixel and the subpixel in the first pixel of the second color display pixel. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is different from a capacitance value of an auxiliary capacitor of the second subpixel.
  8.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅とほぼ等しい、請求項7に記載の液晶表示装置。 The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color display pixel. The liquid crystal display device according to claim 7, wherein an amplitude of an auxiliary capacitance signal supplied to an auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in one pixel is substantially equal.
  9.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値と異なり、
     前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第2カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅と異なる、請求項1から4のいずれかに記載の液晶表示装置。
    The capacitance values of the auxiliary capacitances of the first subpixel and the second subpixel in the first pixel of the first color display pixel are the first subpixel and the subpixel in the first pixel of the second color display pixel. Unlike the capacitance value of the auxiliary capacitance of the second subpixel,
    The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the second color display pixel. 5. The liquid crystal display device according to claim 1, wherein an amplitude of an auxiliary capacitance signal supplied to an auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in one pixel is different.
  10.  前記第1カラー表示画素の前記複数の画素のそれぞれが前記少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差は互いにほぼ等しい、請求項1から9のいずれかに記載の液晶表示装置。 When each of the plurality of pixels of the first color display pixel performs display at the at least some intermediate gradation, the effective voltage of the first sub-pixel in each of the plurality of pixels of the first color display pixel and the The liquid crystal display device according to claim 1, wherein a voltage difference with an effective voltage of the second subpixel is substantially equal to each other.
  11.  前記第1カラー表示画素の前記複数の画素のそれぞれが前記少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素および前記第2副画素の実効電圧の平均は互いにほぼ等しい、請求項10に記載の液晶表示装置。 When each of the plurality of pixels of the first color display pixel performs display at the at least certain intermediate gradation, the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel. The liquid crystal display device according to claim 10, wherein averages of effective voltages of the pixels are substantially equal to each other.
  12.  前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は互いにほぼ等しい、請求項1から11のいずれかに記載の液晶表示装置。 The auxiliary capacitance signals supplied to the auxiliary capacitance counter electrodes corresponding to the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel have substantially the same amplitude. The liquid crystal display device according to any one of 11.
  13.  前記第1カラー表示画素の前記複数の画素のそれぞれにおける前記第1副画素および前記第2副画素の補助容量の容量値は互いにほぼ等しい、請求項1から12のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein capacitance values of auxiliary capacitances of the first subpixel and the second subpixel in each of the plurality of pixels of the first color display pixel are substantially equal to each other. .
  14.  前記第1カラー表示画素の前記第1画素および前記第3画素のそれぞれが前記少なくともある中間階調で表示を行う場合、前記第1カラー表示画素の前記第1画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差は、前記第1カラー表示画素の前記第3画素における前記第1副画素の実効電圧と前記第2副画素の実効電圧との電圧差とは異なる、請求項1から9のいずれかに記載の液晶表示装置。 When each of the first pixel and the third pixel of the first color display pixel performs display at the intermediate gray level, the effective of the first sub-pixel in the first pixel of the first color display pixel. The voltage difference between the voltage and the effective voltage of the second subpixel is the voltage difference between the effective voltage of the first subpixel and the effective voltage of the second subpixel in the third pixel of the first color display pixel. The liquid crystal display device according to claim 1, which are different from each other.
  15.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅は、前記第1カラー表示画素の前記第3画素における前記第1副画素および前記第2副画素に対応する補助容量対向電極に供給される補助容量信号の振幅とは異なる、請求項1から9および14のいずれかに記載の液晶表示装置。 The amplitude of the auxiliary capacitance signal supplied to the auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in the first pixel of the first color display pixel is the first color display pixel of the first color display pixel. The liquid crystal display device according to claim 1, wherein an amplitude of an auxiliary capacitance signal supplied to an auxiliary capacitance counter electrode corresponding to the first subpixel and the second subpixel in three pixels is different. .
  16.  前記第1カラー表示画素の前記第1画素における前記第1副画素および前記第2副画素の補助容量の容量値は、前記第1カラー表示画素の前記第3画素における前記第1副画素および前記第2副画素の補助容量の容量値とは異なる、請求項1から9、14および15のいずれかに記載の液晶表示装置。 The capacitance values of the auxiliary capacitances of the first subpixel and the second subpixel in the first pixel of the first color display pixel are the first subpixel and the subpixel of the third pixel of the first color display pixel. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is different from a capacitance value of an auxiliary capacitor of the second subpixel.
  17.  前記第1画素、前記第2画素および前記第3画素は、それぞれ、赤画素、緑画素および青画素である、請求項1から16のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the first pixel, the second pixel, and the third pixel are a red pixel, a green pixel, and a blue pixel, respectively.
  18.  前記複数のカラー表示画素は、複数の行および複数の列のマトリクス状に配列され、
     前記第2カラー表示画素は、前記第1カラー表示画素に対して行方向または列方向に隣接している、請求項1から17のいずれかに記載の液晶表示装置。
    The plurality of color display pixels are arranged in a matrix of a plurality of rows and a plurality of columns,
    The liquid crystal display device according to claim 1, wherein the second color display pixel is adjacent to the first color display pixel in a row direction or a column direction.
PCT/JP2011/080368 2011-01-07 2011-12-28 Liquid crystal display device WO2012093630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011002452 2011-01-07
JP2011-002452 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093630A1 true WO2012093630A1 (en) 2012-07-12

Family

ID=46457487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080368 WO2012093630A1 (en) 2011-01-07 2011-12-28 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012093630A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051575A1 (en) * 2014-10-02 2016-04-07 堺ディスプレイプロダクト株式会社 Liquid crystal display device
WO2016098232A1 (en) * 2014-12-18 2016-06-23 堺ディスプレイプロダクト株式会社 Liquid crystal display device and method for driving liquid crystal display device
WO2016207982A1 (en) * 2015-06-23 2016-12-29 堺ディスプレイプロダクト株式会社 Liquid crystal display device and method for driving liquid crystal display device
US20180335671A1 (en) * 2016-11-02 2018-11-22 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152013A (en) * 1993-11-29 1995-06-16 Nippondenso Co Ltd Liquid crystal display element
JPH09113933A (en) * 1995-10-19 1997-05-02 Matsushita Electric Ind Co Ltd Thin-film transistor liquid crystal display element
JP2007140515A (en) * 2005-11-14 2007-06-07 Samsung Electronics Co Ltd Liquid crystal display device
JP2009145366A (en) * 2007-12-11 2009-07-02 Seiko Epson Corp Field driven type device and electronic apparatus
JP4467334B2 (en) * 2004-03-04 2010-05-26 シャープ株式会社 Liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152013A (en) * 1993-11-29 1995-06-16 Nippondenso Co Ltd Liquid crystal display element
JPH09113933A (en) * 1995-10-19 1997-05-02 Matsushita Electric Ind Co Ltd Thin-film transistor liquid crystal display element
JP4467334B2 (en) * 2004-03-04 2010-05-26 シャープ株式会社 Liquid crystal display
JP2007140515A (en) * 2005-11-14 2007-06-07 Samsung Electronics Co Ltd Liquid crystal display device
JP2009145366A (en) * 2007-12-11 2009-07-02 Seiko Epson Corp Field driven type device and electronic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051575A1 (en) * 2014-10-02 2016-04-07 堺ディスプレイプロダクト株式会社 Liquid crystal display device
WO2016098232A1 (en) * 2014-12-18 2016-06-23 堺ディスプレイプロダクト株式会社 Liquid crystal display device and method for driving liquid crystal display device
JPWO2016098232A1 (en) * 2014-12-18 2017-05-25 堺ディスプレイプロダクト株式会社 Liquid crystal display device and driving method of liquid crystal display device
US10345641B2 (en) 2014-12-18 2019-07-09 Sakai Display Products Corporation Liquid crystal display apparatus and method of driving liquid crystal display apparatus
WO2016207982A1 (en) * 2015-06-23 2016-12-29 堺ディスプレイプロダクト株式会社 Liquid crystal display device and method for driving liquid crystal display device
CN107710320A (en) * 2015-06-23 2018-02-16 堺显示器制品株式会社 The driving method of liquid crystal display device and liquid crystal display device
JPWO2016207982A1 (en) * 2015-06-23 2018-05-24 堺ディスプレイプロダクト株式会社 Liquid crystal display device and driving method of liquid crystal display device
US10466553B2 (en) 2015-06-23 2019-11-05 Sakai Display Products Corporation Liquid crystal display apparatus and method for driving liquid crystal display apparatus
US20180335671A1 (en) * 2016-11-02 2018-11-22 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal panel and display device

Similar Documents

Publication Publication Date Title
US9251746B2 (en) Liquid crystal display apparatus
EP1538599B1 (en) Liquid crystal display
JP5148494B2 (en) Liquid crystal display
JP5259572B2 (en) Liquid crystal display
JP5342064B2 (en) Liquid crystal display
US7898607B2 (en) Liquid crystal display and driving method thereof
TWI397734B (en) Liquid crystal display and driving method thereof
JP5342004B2 (en) Liquid crystal display
JP2004062146A (en) Liquid crystal display
JPWO2008139695A1 (en) Liquid crystal display
WO2008056574A1 (en) Liquid crystal display device
KR20070024187A (en) Va mode lcd and driving method thereof
WO2011048850A1 (en) Liquid crystal display device and method for driving liquid crystal display device
JP2008158286A (en) Liquid crystal display device
JP4592384B2 (en) Liquid crystal display
WO2012093630A1 (en) Liquid crystal display device
WO2011083619A1 (en) Liquid crystal display device
WO2011024966A1 (en) Liquid crystal display
JP4275588B2 (en) Liquid crystal display
JP2010128004A (en) Liquid crystal display
JP2008145886A (en) Liquid crystal display device, its driving method and drive circuit
WO2011155300A1 (en) Display panel and liquid crystal display device
WO2013100086A1 (en) Liquid crystal display device
KR101327870B1 (en) A liquid crystal display device
WO2008053609A1 (en) Liquid crystal display and method for driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP