WO2016051575A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2016051575A1
WO2016051575A1 PCT/JP2014/076451 JP2014076451W WO2016051575A1 WO 2016051575 A1 WO2016051575 A1 WO 2016051575A1 JP 2014076451 W JP2014076451 W JP 2014076451W WO 2016051575 A1 WO2016051575 A1 WO 2016051575A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
display device
liquid crystal
pixels
subpixel electrode
Prior art date
Application number
PCT/JP2014/076451
Other languages
French (fr)
Japanese (ja)
Inventor
亮 山川
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2014/076451 priority Critical patent/WO2016051575A1/en
Publication of WO2016051575A1 publication Critical patent/WO2016051575A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present invention relates to a liquid crystal display device including pixels of a plurality of colors, each pixel having a plurality of subpixels, and an auxiliary capacitance line partially facing a subpixel electrode related to each subpixel.
  • each pixel is divided into two or more sub-pixels, and a target luminance is displayed by applying a high voltage to one and a low voltage to the other.
  • Patent Document 1 discloses a liquid crystal display device that can easily switch between two types of modes of viewing angle priority and high-definition priority by providing a multi-drive on / off function. Yes.
  • a plurality of TV curves are set for one pixel.
  • this TV curve is different for each of the R, G, and B pixels, and in particular, B (blue) has a steeper rise of the TV curve than R and G (red, green).
  • the bending point shifts to the high gradation side.
  • the B luminance at the oblique viewing angle is lower than the R and G luminances in the halftone, and a problem of being colored yellow (hereinafter referred to as a perspective coloring problem) occurs.
  • the above-described liquid crystal display device of Patent Document 1 cannot solve such a problem.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide pixels of a plurality of colors, each pixel having a plurality of subpixels, and subpixels related to each subpixel.
  • a liquid crystal display device having a storage capacitor line partially facing an electrode, the difference in voltage applied to the sub-pixel is different between the sub-pixels so that each pixel has a perspective color as described above.
  • An object of the present invention is to provide a liquid crystal display device that can solve the problem.
  • a liquid crystal display device includes a plurality of color pixels, each pixel having a plurality of subpixels, and a liquid crystal display including an auxiliary capacitance line partially facing a subpixel electrode related to each subpixel.
  • the apparatus is characterized in that the difference between the sub-pixels in the voltage applied to the sub-pixel is different for each pixel.
  • the difference between the sub-pixels in the voltage applied to the sub-pixel is different for each of the plurality of color pixels, and the TV characteristics of the plurality of color pixels in the halftone are equal. Become.
  • the liquid crystal display device is characterized in that the sub-pixel electrode of each of the pixels of the plurality of colors has a shape in which an overlapping amount with the auxiliary capacitance line in the facing direction is different.
  • the sub-pixel electrodes of the pixels of the plurality of colors have shapes having different superposition amounts, and accordingly, the auxiliary capacitances of the pixels are different and are applied to the sub-pixels.
  • the difference between the voltage sub-pixels is different for each pixel of the plurality of colors.
  • the liquid crystal display device is characterized in that the storage capacitor line has a shape in which the amount of overlap with the sub-pixel electrode of each pixel of the plurality of colors is different in the facing direction.
  • the auxiliary capacitance wiring has a shape in which the overlapping amount is different, the auxiliary capacitance in each pixel is different accordingly, and the voltage applied to the subpixel is different between the subpixels. The difference is different for each pixel of the plurality of colors.
  • the plurality of colors are Red (R), Green (G), and Blue (B), the superposition amount (Rs) relating to the R pixel, and the superposition amount (Rs) relating to the G pixel ( Gs) and the superposition amount (Bs) relating to the B pixel have the following relationship.
  • the sub-pixel electrodes of the R pixel, the G pixel, and the B pixel are formed or the storage capacitor wiring is formed so as to satisfy the relationship of Rs> Gs> Bs.
  • the plurality of colors are Red (R), Green (G), and Blue (B), the superposition amount (Rs) relating to the R pixel, and the superposition amount (Rs) relating to the G pixel ( Gs) and the superposition amount (Bs) relating to the B pixel have the following relationship.
  • Rs Gs> Bs
  • the plurality of colors are Red (R), Yellow (Y), Green (G), Cyan (C), Blue (B), and Magenta (M).
  • the superposition amount (Rs), the superposition amount (Ys) relating to the Y pixel, the superposition amount (Gs) relating to the G pixel, the superposition amount (Cs) relating to the C pixel, and the superposition amount relating to the B pixel. (Bs) and the superposition amount (Ms) relating to M pixels have the following relationship. Rs>Ys>Gs>Cs>Bs> Ms
  • the sub-pixel electrodes of the R pixel, Y pixel, G pixel, C pixel, B pixel, and M pixel are formed so as to satisfy the relationship of Rs> Ys> Gs> Cs> Bs> Ms.
  • the auxiliary capacitance wiring is formed.
  • the difference between the sub-pixels in the voltage applied to the sub-pixel is different for each of the plurality of color pixels, so that the TV characteristics of the plurality of color pixels in the halftone can be obtained. Equalize and solve the above-mentioned perspective coloring problem.
  • FIG. 1 is a block diagram illustrating a configuration of a display device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram illustrating a configuration of a liquid crystal panel of the display device according to Embodiment 1 of the present invention
  • Reference numeral 100 in the figure denotes a display device according to the present invention.
  • the display device 100 according to the first embodiment includes a liquid crystal panel 1, a drive power supply unit 3, and a display drive device.
  • the display device 100 displays an image on the display surface of the liquid crystal panel 1 when the drive device drives the liquid crystal panel 1 with the electric power supplied from the drive power supply unit 3.
  • the display device 100 is driven by a so-called multi-drive method. That is, in the display device 100, each of the R, G, and B pixels has a plurality of subpixels, and among the plurality of subpixels, a high voltage is applied to a part and a low voltage is applied to the other part. By doing so, the target brightness is displayed.
  • each pixel of the display device 100 has two sub-pixels.
  • a sub-pixel to which a high voltage is applied is referred to as a bright pixel.
  • a sub-pixel to which a voltage is applied is called a dark pixel.
  • the liquid crystal panel 1 includes an array substrate 11 on which elements such as thin film transistors (TFTs) 111 and pixel electrodes 112 are formed.
  • the liquid crystal panel 1 is disposed so as to face the array substrate 11 and includes a CF substrate 12 on which a color filter (CF), a common electrode 121 and the like are formed.
  • the array substrate 11 and the CF substrate 12 are formed using, for example, glass as a base.
  • the pixel electrode 112 is formed on the array substrate 11 for each pixel, whereas the common electrode 121 is formed on the CF substrate 12 as one electrode common to the pixel electrodes 112.
  • a gap is formed between the array substrate 11 and the CF substrate 12, and a liquid crystal layer is formed by sealing a liquid crystal substance in the gap.
  • the driving device includes a control unit 21, a timing controller 22, a source driver 23, and a gate driver 24, and the control unit 21 controls each unit to control driving of the liquid crystal panel 1.
  • the control unit 21 generates display data to be displayed on the liquid crystal panel 1 based on an image signal input from the outside, and outputs the display data to the timing controller 22.
  • the image signal is input to the display device 100 through an input terminal (not shown) such as HDMI (High Definition Multimedia Interface: registered trademark), composite, and D terminal.
  • the timing controller 22 outputs a control signal for controlling the driving of the source driver 23 and the gate driver 24 to each of the source driver 23 and the gate driver 24 based on the display data input from the control unit 21.
  • the control unit 21 causes the timing controller 22 to output a control signal so that one frame image is displayed at a predetermined frame rate.
  • the source driver 23 is connected to a plurality of source lines 113, 113,. Based on the control signal input from the timing controller 22, the source driver 23 applies a voltage representing the gradation of the image to be displayed to the corresponding source line 113.
  • the number of gradations in the source driver 23 is, for example, 256.
  • the source driver 23 is configured to apply a voltage to all the connected source lines 113 at once according to a line sequential method.
  • the source driver 23 may be configured to sequentially apply a voltage to each source line 113 in accordance with a dot sequential method.
  • the gate driver 24 is connected to a plurality of gate lines 114, 114,.
  • the gate driver 24 applies a voltage for controlling on / off of the TFT 111 to the gate line 114 based on the control signal input from the timing controller 22.
  • the gate driver 24 may apply the voltage in line order according to the progressive method, or may apply the voltage according to the interlace method.
  • the drive power supply unit 3 includes a source power supply circuit 31 and a gate power supply circuit 32, and appropriately supplies power necessary for the operation of the display device 100 to each unit based on an instruction from the control unit 21.
  • the source power supply circuit 31 is connected to the source driver 23 via, for example, a power supply line, and is a circuit for supplying power for the source driver 23 to apply a voltage related to the gradation of the image to the source line 113. is there.
  • the gate power supply circuit 32 is connected to the gate driver 24 via, for example, a power supply line, and the gate driver 24 supplies a power for applying a voltage related to ON / OFF of the TFT 111 to the gate line 114. It is.
  • the driving device may be configured to apply a voltage to the common electrode 121 with the electric power supplied from the driving power supply unit 3. Further, the voltage applied to the common voltage may be periodically changed according to a so-called common inversion driving method.
  • a TFT 111 and a pixel electrode 112 are formed for each pixel. As shown in FIG. 2, the TFT 111 and the pixel electrode 112 are arranged in a matrix. Each pixel electrode 112 is connected to the drain terminal of the TFT 111.
  • the gate terminal of the TFT 111 is connected to the gate line 114, and the source terminal of the TFT 111 is connected to the source line 113.
  • Each of the gate lines 114 is connected to a voltage output unit in the gate driver 24, and each of the source lines 113 is connected to a voltage output unit in the source driver 23.
  • the TFT 111 is on / off controlled by sequentially applying a voltage from the gate driver 24 to the gate line 114. Therefore, a voltage input from the source driver 23 to each source line 113 is applied to the pixel electrode 112 during the on period of the TFT 111, and the voltage up to that time is maintained during the off period of the TFT 111.
  • the light transmittance determined by the optical characteristic (TV characteristic) of the liquid crystal substance is controlled by the voltage applied to the pixel electrode 112 via the TFT 111 and the voltage applied to the common electrode 121, and the image Is displayed.
  • the liquid crystal panel 1 in Embodiment 1 is configured so that the light transmittance is zero when the potential difference between the pixel electrode 112 and the common electrode 121 is zero. That is, the liquid crystal panel 1 is a so-called normally black liquid crystal panel configured to display black when no potential difference is generated between the array substrate 11 and the CF substrate 12.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of R, G, and B pixels of the display device 100 according to the first embodiment of the present invention. Each pixel has two sub-pixels, a bright pixel and a dark pixel, as described above.
  • FIG. 4 is an explanatory diagram illustrating the configuration of R, G, and B subpixels in the display device 100 according to the first embodiment of the present invention. As shown in FIG. 3, the bright pixels and dark pixels of each pixel are provided in a staggered pattern.
  • the gate terminals of the TFT 111R, TFT 111G, and TFT 111B are connected to the gate line 114, and the source terminals of the TFT 111R, TFT 111G, and TFT 111B are the source line 113S1, the source line 113S2, and the source line 113S3. Is connected to each.
  • a liquid crystal capacitor 115RH, a liquid crystal capacitor 115GH, and a liquid crystal capacitor 115BH, and an auxiliary capacitor 116RCH, an auxiliary capacitor 116GCH, and an auxiliary capacitor 116BCH are provided.
  • a voltage exceeding the voltages of the source line 113S1, the source line 113S2, and the source line 113S3 is applied to the gate line 114, the TFT 111R, the TFT 111G, and the TFT 111B are turned on.
  • the voltages of the source line 113S1, the source line 113S2, and the source line 113S3 are applied to the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB through the TFT 111R, the TFT 111G, and the TFT 111B, respectively, and the liquid crystal capacitance 115RH, the liquid crystal capacitance Charge is stored in 115GH and the liquid crystal capacitor 115BH.
  • an auxiliary capacitor 116RCH, an auxiliary capacitor 116GCH, and an auxiliary capacitor 116BCH that are connected in parallel to the liquid crystal capacitor 115RH, the liquid crystal capacitor 115GH, and the liquid crystal capacitor 115BH, respectively, are provided, and the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SG are provided.
  • a voltage is applied to the pixel electrode 112SB, charges are also stored in the auxiliary capacitor 116RCH, the auxiliary capacitor 116GCH, and the auxiliary capacitor 116BCH corresponding to each of them. While the voltage is not applied from the outside, the voltage value is maintained by the potential held by the auxiliary capacitor 116RCH, the auxiliary capacitor 116GCH, and the auxiliary capacitor 116BCH.
  • the gate terminals of the TFT 111R, TFT 111G, and TFT 111B are connected to the gate line 114, and the source terminals of the TFT 111R, TFT 111G, and TFT 111B are connected to the source line 113S1, the source line 113S2, and the source line 113S3, respectively. ing.
  • a liquid crystal capacitor 115RL In each dark pixel, a liquid crystal capacitor 115RL, a liquid crystal capacitor 115GL, and a liquid crystal capacitor 115BL, and an auxiliary capacitor 116RCL, an auxiliary capacitor 116GCL, and an auxiliary capacitor 116BCL are provided.
  • Other dark pixel configurations are the same as those of the bright pixels described above, and detailed description thereof is omitted.
  • each of the auxiliary capacitor 116RCH, the auxiliary capacitor 116GCH, and the auxiliary capacitor 116BCH includes an auxiliary capacitor electrode composed of the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB. And a storage capacitor counter electrode opposed to the storage capacitor electrode.
  • a storage capacitor counter electrode is a part of the storage capacitor line CS1.
  • each of the sub-pixel electrode 112SR, the sub-pixel electrode 112SG, and the sub-pixel electrode 112SB and the corresponding auxiliary capacitance line CS1 are arranged so as to partially overlap each other, so that the auxiliary capacitance 116RCH, the auxiliary capacitance 116GCH, and the auxiliary capacitance are respectively provided.
  • a capacitor 116BCH is formed.
  • Such a configuration is the same for the auxiliary capacitor 116RCL, auxiliary capacitor 116GCL, and auxiliary capacitor 116BCL in the dark pixel, and detailed description thereof is omitted.
  • the above-described problem of the perspective color is solved by changing the overlapping amount of the sub-pixel electrode and the auxiliary capacitance line for each of the R, G, and B pixels. .
  • the display device 100 since the rise of the TV curve of B (blue) is steeper than that of R and G (red, green), the above-mentioned perspective coloring problem occurs in a halftone.
  • the voltage difference between the sub-pixels applied to the sub-pixels is made different for each of the R, G, and B pixels, so that T ⁇ Suppress the above-mentioned difference in the V curve and improve the perspective coloring problem.
  • the storage capacitor line CS1 is indicated by a solid line
  • the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB are indicated by a broken line
  • the source line 113S1, the source line 113S2, and the source line 113S3 are displayed. Is indicated by a one-dot chain line
  • the gate line 114 is indicated by a two-dot chain line.
  • the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB have different shapes.
  • the area of the overlapping portion in the opposing direction (hereinafter referred to as the overlapping amount) of the subpixel electrode 112SR, the subpixel electrode 112SG, the subpixel electrode 112SB, and the auxiliary capacitance wiring CS1 is referred to as R, G, and B. It differs in pixels.
  • the overlapping portion is indicated by hatching.
  • the sub-pixel electrode 112SR, the sub-pixel electrode 112SG, and the sub-pixel electrode 112SB have different shapes, and the superposition amount decreases in the order of R, G, and B pixels. Has been.
  • a subpixel electrode 112SR, a subpixel electrode 112SG, and a subpixel electrode 112SB are formed.
  • the auxiliary capacity 116RCH, the auxiliary capacity 116GCH, and the auxiliary capacity 116BCH have a relationship of “auxiliary capacity 116RCH ⁇ auxiliary capacity 116GCH ⁇ auxiliary capacity 116BCH”.
  • the voltage difference ( ⁇ V) applied between the bright pixel and the dark pixel for each of the R, G, and B pixels has a relationship of R ⁇ G ⁇ B.
  • the display device 100 when the voltage difference applied between the bright pixel and the dark pixel is R ⁇ V, G ⁇ V, and B ⁇ V in the R, G, and B pixels, the relationship of “R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V” is established. Will be satisfied. Since the display device 100 thus satisfies the relationship of R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V, the TV characteristics of R, G, and B in the halftone are equal.
  • R, G, and B have different TV characteristics due to the difference in wavelength. For this reason, when the same multi-drive voltage is applied to the sub-pixel, the TV characteristics of the bright pixel and the dark pixel are also different due to the influence of this wavelength difference.
  • the difference due to the difference in R, G, and B wavelengths is provided by providing a difference so that the applied voltage by multi-drive satisfies the relationship of R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V. As a result, the TV characteristics of R, G, and B become equal.
  • the relationship of R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V is satisfied without applying different voltages to the sub-pixels from the outside for each of the R, G, and B pixels. It can comprise and can solve the problem of the perspective color. Therefore, it is possible to solve the problem of the perspective color without increasing the number of wirings and without increasing the manufacturing cost due to the complicated structure of the liquid crystal panel.
  • the difference in voltage between the subpixels applied to the subpixels is represented by R, G in the display device 100 according to the second embodiment of the present invention with respect to the perspective coloring problem.
  • R the difference in voltage between the subpixels applied to the subpixels
  • G the display device 100 according to the second embodiment of the present invention with respect to the perspective coloring problem.
  • the above-described difference in the TV curve is suppressed, and the problem of the perspective coloring is improved.
  • FIG. 5 is an explanatory diagram illustrating the configuration of R, G, and B subpixels in the display device 100 according to the second embodiment of the present invention.
  • the storage capacitor line CS1 is indicated by a solid line
  • the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB are indicated by a broken line
  • the source line 113S1, the source line 113S2, and the source line 113S3 are displayed.
  • the gate line 114 is indicated by a two-dot chain line.
  • the auxiliary capacitance line CS1 has different shapes in the portions corresponding to the R, G, and B pixels.
  • the storage capacitor line CS1 is formed so that portions corresponding to each of the R and G pixels excluding the B pixel protrude toward the gate line 114 side.
  • the storage capacitor line CS1 has a predetermined width, and is formed so that the width is wide at portions corresponding to the R and G pixels.
  • the auxiliary capacitance line CS1 has different protrusion amounts in the R and G pixels, and the overlapping amount of the subpixel electrode 112SR and the subpixel electrode 112SG and the auxiliary capacitance line CS1 is different in the R, G, and B pixels. It is configured to be different.
  • the display device 100 is also configured such that the amount of overlap between the subpixel electrode 112SR, the subpixel electrode 112SG, the subpixel electrode 112SB, and the auxiliary capacitance line CS1 decreases in the order of R, G, and B pixels. Yes.
  • a storage capacitor line CS1 is formed.
  • the relationship of “auxiliary capacity 116RCH ⁇ auxiliary capacity 116GCH ⁇ auxiliary capacity 116BCH” is established.
  • the voltage difference ( ⁇ V) applied between the bright pixel and the dark pixel for each of the R, G, and B pixels has a relationship of R ⁇ G ⁇ B. That is, in the R, G, and B pixels, the voltage difference applied between the bright pixel and the dark pixel satisfies the relationship “R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V”. Since the display device 100 satisfies the relationship of R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V as described above, the TV characteristics of R, G, and B in the halftone are equal.
  • the relationship of R ⁇ V ⁇ G ⁇ V ⁇ B ⁇ V is satisfied without applying different voltages to the subpixels from the outside for each of the R, G, and B pixels. It can comprise and can solve the problem of the perspective color. Therefore, it is possible to solve the problem of the perspective color without increasing the number of wirings and without increasing the manufacturing cost due to the complicated structure of the liquid crystal panel.
  • Embodiment 3 In Embodiment 1, the superposition amount (Rs) in the R pixel, the superposition amount (Gs) in the G pixel, and the superposition amount (Bs) in the B pixel are in a relationship of “Rs>Gs> Bs”.
  • the formation of the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB so as to satisfy the above has been described.
  • the formation of the auxiliary capacitance line CS1 so as to satisfy the relationship of “Rs>Gs> Bs” has been described.
  • the present invention is not limited to the above description.
  • the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB may be formed.
  • the display device 100 according to Embodiment 4 includes Red (R), Yellow (Y), Green (G), Cyan (C), Blue (B), and Magenta (M) pixels.
  • the above-described perspective coloration is obtained by changing the overlapping amount of the sub-pixel electrode and the auxiliary capacitance line for each of the R, Y, G, C, B, and M pixels. The problem is solved.
  • FIG. 6 is an explanatory diagram illustrating the configuration of R, Y, G, C, B, and M subpixels in the display device according to the fourth embodiment of the present invention.
  • the storage capacitor line CS1 is shown by a solid line, and the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM are displayed. It is displayed with a broken line.
  • the source line 113S1, the source line 113S2, the source line 113S3, the source line 113S4, the source line 113S5, the source line 113S6, and the source line 113S7 are indicated by a one-dot chain line, and the gate line 114 is indicated by a two-dot chain line.
  • the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM have different shapes. Accordingly, the amount of superimposition in the facing direction between the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, the subpixel electrode 112SM, and the auxiliary capacitance line CS1 is It differs in R, Y, G, C, B and M pixels. In FIG. 6, the overlapping portion is indicated by hatching.
  • the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM have different shapes, and The superimposition amount is configured to decrease in the order of R, Y, G, C, B, and M pixels.
  • a subpixel electrode 112SR, a subpixel electrode 112SY, a subpixel electrode 112SG, a subpixel electrode 112SC, a subpixel electrode 112SB, and a subpixel electrode 112SM are formed so as to satisfy the relationship.
  • the voltage difference ( ⁇ V) applied between the bright pixel and the dark pixel for each of R, Y, G, C, B, and M pixels is R ⁇ Y ⁇ G ⁇ C ⁇ B ⁇ M. That is, in the R, Y, G, C, B, and M pixels, the voltage difference applied between the bright pixel and the dark pixel satisfies the relationship of “R ⁇ V ⁇ Y ⁇ V ⁇ G ⁇ V ⁇ C ⁇ V ⁇ B ⁇ V ⁇ M ⁇ V”. Become.
  • R ⁇ V ⁇ Y ⁇ V ⁇ G ⁇ V without applying different voltages to the sub-pixels for each of the R, Y, G, C, B, and M pixels from the outside.
  • ⁇ C ⁇ V ⁇ B ⁇ V ⁇ M ⁇ V the problem of the perspective color can be solved. Therefore, it is possible to solve the problem of the perspective color without increasing the number of wirings and without increasing the manufacturing cost due to the complicated structure of the liquid crystal panel.
  • the present invention is not limited to this.
  • the auxiliary capacitor wiring CS1 may be formed appropriately so that the relationship of “Rs> Ys> Gs> Cs> Bs> Ms” is satisfied. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The purpose of the present invention is to provide a liquid crystal display device wherein the R pixels, G pixels, and B pixels each have a plurality of subpixels, and an auxiliary capacitance wire partially faces a subpixel electrode for each subpixel. The difference between voltages applied to the subpixels is adjusted to be different per R pixel, G pixel, and B pixel to thereby equalize the T - V characteristics of R, G, and B in the halftone representation.

Description

液晶表示装置Liquid crystal display
 本発明は、複数色の画素を備え、各画素が複数の副画素を有しており、各副画素に係る副画素電極と部分的に対向する補助容量配線を備える液晶表示装置に関する。 The present invention relates to a liquid crystal display device including pixels of a plurality of colors, each pixel having a plurality of subpixels, and an auxiliary capacitance line partially facing a subpixel electrode related to each subpixel.
 近年、液晶ディスプレイにおいては、視野角特性の改善のため、マルチ駆動方式が採用されている。該マルチ駆動方式は、各画素を2つ以上の副画素に分け、一方に高電圧、他方に低電圧を印加することで目的の輝度を表示するものである。 In recent years, multi-drive systems have been adopted in liquid crystal displays in order to improve viewing angle characteristics. In the multi-driving method, each pixel is divided into two or more sub-pixels, and a target luminance is displayed by applying a high voltage to one and a low voltage to the other.
 例えば、特許文献1においては、マルチ駆動のオン・オフ機能を備えることで、視野角優先と、高精細度優先との2種類のモード切替を容易に行うことができる液晶表示装置が開示されている。 For example, Patent Document 1 discloses a liquid crystal display device that can easily switch between two types of modes of viewing angle priority and high-definition priority by providing a multi-drive on / off function. Yes.
特開2004-258139号公報JP 2004-258139 A
 一方、前記マルチ駆動方式を用いた場合、中間調において色度x、yが共に増加するピークを持つことにより、黄色に見える問題が生じる。 On the other hand, when the multi-driving method is used, there is a problem that a yellow color appears due to a peak in which both chromaticity x and y increase in a halftone.
 詳しくは、マルチ駆動方式においては、1つの画素に複数のT-Vカーブを設定することとなる。しかし、このT-VカーブはR、G及びB画素毎に異なるものであり、特にB(青)はT-Vカーブの立ち上がりがR及びG(赤、緑)より急峻なため、トーンカーブの屈曲点が高階調側へシフトする。このため、中間調において斜め視角のB輝度がR及びG輝度よりも低下し、黄色に着色される問題(以下、斜視色付き問題と言う。)が生じる。しかしながら、上述した特許文献1の液晶表示装置では、このような問題を解決出来ない。 Specifically, in the multi-drive method, a plurality of TV curves are set for one pixel. However, this TV curve is different for each of the R, G, and B pixels, and in particular, B (blue) has a steeper rise of the TV curve than R and G (red, green). The bending point shifts to the high gradation side. For this reason, the B luminance at the oblique viewing angle is lower than the R and G luminances in the halftone, and a problem of being colored yellow (hereinafter referred to as a perspective coloring problem) occurs. However, the above-described liquid crystal display device of Patent Document 1 cannot solve such a problem.
 本発明は、斯かる事情に鑑みてなされたものであり、その目的とするところは、複数色の画素を備え、各画素が複数の副画素を有しており、各副画素に係る副画素電極と部分的に対向する補助容量配線を備える液晶表示装置において、副画素に印加する電圧の副画素間の差が、各画素毎に相違するように構成することにより、上述したような斜視色付き問題を解決できる液晶表示装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide pixels of a plurality of colors, each pixel having a plurality of subpixels, and subpixels related to each subpixel. In a liquid crystal display device having a storage capacitor line partially facing an electrode, the difference in voltage applied to the sub-pixel is different between the sub-pixels so that each pixel has a perspective color as described above. An object of the present invention is to provide a liquid crystal display device that can solve the problem.
 本発明に係る液晶表示装置は、複数色の画素を備え、各画素が複数の副画素を有しており、各副画素に係る副画素電極と部分的に対向する補助容量配線を備える液晶表示装置において、副画素に印加する電圧の副画素間の差が、各画素毎に相違するように構成されていることを特徴とする。 A liquid crystal display device according to the present invention includes a plurality of color pixels, each pixel having a plurality of subpixels, and a liquid crystal display including an auxiliary capacitance line partially facing a subpixel electrode related to each subpixel. The apparatus is characterized in that the difference between the sub-pixels in the voltage applied to the sub-pixel is different for each pixel.
 本発明にあっては、副画素に印加する電圧の副画素間の差が、前記複数色の画素毎に相違するように構成され、中間調における前記複数色の画素のT‐V特性を等しくなる。 In the present invention, the difference between the sub-pixels in the voltage applied to the sub-pixel is different for each of the plurality of color pixels, and the TV characteristics of the plurality of color pixels in the halftone are equal. Become.
 本発明に係る液晶表示装置は、前記複数色の画素各々の副画素電極は、前記対向方向での前記補助容量配線との重畳量が相違する形状を有することを特徴とする。 The liquid crystal display device according to the present invention is characterized in that the sub-pixel electrode of each of the pixels of the plurality of colors has a shape in which an overlapping amount with the auxiliary capacitance line in the facing direction is different.
 本発明にあっては、前記複数色の画素各々の副画素電極は前記重畳量が相違する形状を有するので、これに伴って各々の画素における補助容量が相違することとなり、副画素に印加する電圧の副画素間の差が、前記複数色の画素毎に相違するようになる。 In the present invention, the sub-pixel electrodes of the pixels of the plurality of colors have shapes having different superposition amounts, and accordingly, the auxiliary capacitances of the pixels are different and are applied to the sub-pixels. The difference between the voltage sub-pixels is different for each pixel of the plurality of colors.
 本発明に係る液晶表示装置は、前記補助容量配線は、前記対向方向にて、前記複数色の画素各々の副画素電極との重畳量が相違する形状を有することを特徴とする。 The liquid crystal display device according to the present invention is characterized in that the storage capacitor line has a shape in which the amount of overlap with the sub-pixel electrode of each pixel of the plurality of colors is different in the facing direction.
 本発明にあっては、前記補助容量配線は前記重畳量が相違する形状を有するので、これに伴って各々の画素における補助容量が相違することとなり、副画素に印加する電圧の副画素間の差が、前記複数色の画素毎に相違するようになる。 In the present invention, since the auxiliary capacitance wiring has a shape in which the overlapping amount is different, the auxiliary capacitance in each pixel is different accordingly, and the voltage applied to the subpixel is different between the subpixels. The difference is different for each pixel of the plurality of colors.
 本発明に係る液晶表示装置は、前記複数色はRed(R)、Green(G)及びBlue(B)であり、R画素に係る前記重畳量(Rs)と、G画素に係る前記重畳量(Gs)と、B画素に係る前記重畳量(Bs)とは、以下の関係を有することを特徴とする。
 Rs>Gs>Bs
In the liquid crystal display device according to the present invention, the plurality of colors are Red (R), Green (G), and Blue (B), the superposition amount (Rs) relating to the R pixel, and the superposition amount (Rs) relating to the G pixel ( Gs) and the superposition amount (Bs) relating to the B pixel have the following relationship.
Rs>Gs> Bs
 本発明にあっては、Rs>Gs>Bsの関係を満たすように、R画素、G画素及びB画素各々の前記副画素電極が形成され、又は、前記補助容量配線が形成されている。 In the present invention, the sub-pixel electrodes of the R pixel, the G pixel, and the B pixel are formed or the storage capacitor wiring is formed so as to satisfy the relationship of Rs> Gs> Bs.
 本発明に係る液晶表示装置は、前記複数色はRed(R)、Green(G)及びBlue(B)であり、R画素に係る前記重畳量(Rs)と、G画素に係る前記重畳量(Gs)と、B画素に係る前記重畳量(Bs)とは、以下の関係を有することを特徴とする。
 Rs=Gs>Bs
In the liquid crystal display device according to the present invention, the plurality of colors are Red (R), Green (G), and Blue (B), the superposition amount (Rs) relating to the R pixel, and the superposition amount (Rs) relating to the G pixel ( Gs) and the superposition amount (Bs) relating to the B pixel have the following relationship.
Rs = Gs> Bs
 本発明にあっては、Rs=Gs>Bsの関係を満たすように、R画素、G画素及びB画素各々の前記副画素電極が形成され、又は、前記補助容量配線が形成されている。 In the present invention, the sub-pixel electrodes of the R pixel, the G pixel, and the B pixel are formed or the storage capacitor wiring is formed so as to satisfy the relationship of Rs = Gs> Bs.
 本発明に係る液晶表示装置は、前記複数色はRed(R)、Yellow(Y)、Green(G)、Cyan(C)、Blue(B)及びMagenta(M)であり、R画素に係る前記重畳量(Rs)と、Y画素に係る前記重畳量(Ys)と、G画素に係る前記重畳量(Gs)と、C画素に係る前記重畳量(Cs)と、B画素に係る前記重畳量(Bs)と、M画素に係る前記重畳量(Ms)とは、以下の関係を有することを特徴とする。
 Rs>Ys>Gs>Cs>Bs>Ms
In the liquid crystal display device according to the present invention, the plurality of colors are Red (R), Yellow (Y), Green (G), Cyan (C), Blue (B), and Magenta (M). The superposition amount (Rs), the superposition amount (Ys) relating to the Y pixel, the superposition amount (Gs) relating to the G pixel, the superposition amount (Cs) relating to the C pixel, and the superposition amount relating to the B pixel. (Bs) and the superposition amount (Ms) relating to M pixels have the following relationship.
Rs>Ys>Gs>Cs>Bs> Ms
 本発明にあっては、Rs>Ys>Gs>Cs>Bs>Msの関係を満たすように、R画素、Y画素、G画素、C画素、B画素及びM画素各々の前記副画素電極が形成され、又は、前記補助容量配線が形成されている。 In the present invention, the sub-pixel electrodes of the R pixel, Y pixel, G pixel, C pixel, B pixel, and M pixel are formed so as to satisfy the relationship of Rs> Ys> Gs> Cs> Bs> Ms. Alternatively, the auxiliary capacitance wiring is formed.
 本発明によれば、副画素に印加する電圧の副画素間の差が、前記複数色の画素毎に相違するように構成することにより、中間調における前記複数色の画素のT-V特性を等しくし、上述した斜視色付き問題を解決する。 According to the present invention, the difference between the sub-pixels in the voltage applied to the sub-pixel is different for each of the plurality of color pixels, so that the TV characteristics of the plurality of color pixels in the halftone can be obtained. Equalize and solve the above-mentioned perspective coloring problem.
本発明の実施の形態1における表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the display apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における表示装置の液晶パネルの構成を示す模式図である。It is a schematic diagram which shows the structure of the liquid crystal panel of the display apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における、表示装置のR、G及びB画素の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of R, G, and B pixel of the display apparatus in Embodiment 1 of this invention. 本発明の実施の形態1の表示装置における、R、G及びB画素の副画素の構成を説明する説明図である。It is explanatory drawing explaining the structure of the subpixel of R, G, and B pixel in the display apparatus of Embodiment 1 of this invention. 本発明の実施の形態2の表示装置における、R、G及びB画素の副画素の構成を説明する説明図である。It is explanatory drawing explaining the structure of the sub pixel of R, G, and B pixel in the display apparatus of Embodiment 2 of this invention. 本発明の実施の形態4の表示装置における、R、Y、G、C、B及びM画素の副画素の構成を説明する説明図である。It is explanatory drawing explaining the structure of the sub pixel of R, Y, G, C, B, and M pixel in the display apparatus of Embodiment 4 of this invention.
 以下に、本発明の実施の形態に係る液晶表示装置を、いわゆる液晶パネルを有する表示装置に適用した場合を例として、図面に基づいて詳述する。 Hereinafter, a case where the liquid crystal display device according to the embodiment of the present invention is applied to a display device having a so-called liquid crystal panel will be described in detail with reference to the drawings.
 (実施の形態1)
 図1は本発明の実施の形態1における表示装置の構成を示すブロック図であり、図2は本発明の実施の形態1における表示装置の液晶パネルの構成を示す模式図である。図中符号100は、本発明に係る表示装置を示す。実施の形態1における表示装置100は、液晶パネル1と、駆動電源部3と、表示駆動装置とを備えている。表示装置100は、駆動電源部3から供給される電力によって、駆動装置が液晶パネル1を駆動させることにより、液晶パネル1の表示面に画像を表示させる。
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration of a display device according to Embodiment 1 of the present invention, and FIG. 2 is a schematic diagram illustrating a configuration of a liquid crystal panel of the display device according to Embodiment 1 of the present invention. Reference numeral 100 in the figure denotes a display device according to the present invention. The display device 100 according to the first embodiment includes a liquid crystal panel 1, a drive power supply unit 3, and a display drive device. The display device 100 displays an image on the display surface of the liquid crystal panel 1 when the drive device drives the liquid crystal panel 1 with the electric power supplied from the drive power supply unit 3.
 本発明に係る表示装置100は、いわゆるマルチ駆動方式によって駆動される。すなわち、表示装置100においては、R、G及びBの各画素が各々複数の副画素を有しており、該複数の副画素のうち、一部に高電圧を、他部に低電圧を印加することにより、目的とする輝度を表示するように構成されている。 The display device 100 according to the present invention is driven by a so-called multi-drive method. That is, in the display device 100, each of the R, G, and B pixels has a plurality of subpixels, and among the plurality of subpixels, a high voltage is applied to a part and a low voltage is applied to the other part. By doing so, the target brightness is displayed.
 以下においては、説明の便宜上、表示装置100の各画素が2つの副画素を有する場合例として説明し、前記2つの副画素のうち、高電圧が印加される副画素を明画素と言い、低電圧が印加される副画素を暗画素と言う。 In the following, for convenience of explanation, an example in which each pixel of the display device 100 has two sub-pixels will be described. Of the two sub-pixels, a sub-pixel to which a high voltage is applied is referred to as a bright pixel. A sub-pixel to which a voltage is applied is called a dark pixel.
 液晶パネル1は、TFT(Thin Film Transistor)111、画素電極112等の素子が形成されるアレー基板11を備えている。また、液晶パネル1は、アレー基板11に対向するように配置されており、カラーフィルタ(CF)、共通電極121等が形成されたCF基板12を備えている。アレー基板11及びCF基板12は、例えば、ガラス等を土台として形成される。 The liquid crystal panel 1 includes an array substrate 11 on which elements such as thin film transistors (TFTs) 111 and pixel electrodes 112 are formed. The liquid crystal panel 1 is disposed so as to face the array substrate 11 and includes a CF substrate 12 on which a color filter (CF), a common electrode 121 and the like are formed. The array substrate 11 and the CF substrate 12 are formed using, for example, glass as a base.
 一方、画素電極112は、アレー基板11上に画素毎に形成されるのに対し、共通電極121は、各画素電極112に共通する一の電極としてCF基板12上に形成される。アレー基板11及びCF基板12間には空隙が形成され、この空隙内に液晶物質が封入されることによって液晶層が形成される。 On the other hand, the pixel electrode 112 is formed on the array substrate 11 for each pixel, whereas the common electrode 121 is formed on the CF substrate 12 as one electrode common to the pixel electrodes 112. A gap is formed between the array substrate 11 and the CF substrate 12, and a liquid crystal layer is formed by sealing a liquid crystal substance in the gap.
 前記駆動装置は、制御部21、タイミングコントローラ22、ソースドライバ23、及びゲートドライバ24を備えており、制御部21が各部を制御することにより、液晶パネル1の駆動制御を行う。 The driving device includes a control unit 21, a timing controller 22, a source driver 23, and a gate driver 24, and the control unit 21 controls each unit to control driving of the liquid crystal panel 1.
 制御部21は、外部から入力される画像信号に基づき、液晶パネル1に表示させるための表示データを生成し、タイミングコントローラ22に出力する。画像信号は例えば、HDMI(High Definition Multimedia Interface:登録商標)、コンポジット、D端子などの入力端子(図示せず)を通じて表示装置100に入力される。 The control unit 21 generates display data to be displayed on the liquid crystal panel 1 based on an image signal input from the outside, and outputs the display data to the timing controller 22. The image signal is input to the display device 100 through an input terminal (not shown) such as HDMI (High Definition Multimedia Interface: registered trademark), composite, and D terminal.
 タイミングコントローラ22は、制御部21から入力された表示データに基づき、ソースドライバ23及びゲートドライバ24の駆動を制御するための制御信号を、ソースドライバ23及びゲートドライバ24の夫々に出力する。制御部21は、所定のフレームレートで、一のフレーム画像を表示させるように、タイミングコントローラ22に制御信号を出力させる。 The timing controller 22 outputs a control signal for controlling the driving of the source driver 23 and the gate driver 24 to each of the source driver 23 and the gate driver 24 based on the display data input from the control unit 21. The control unit 21 causes the timing controller 22 to output a control signal so that one frame image is displayed at a predetermined frame rate.
 ソースドライバ23は、複数のソースライン113,113,・・・113に接続されている。ソースドライバ23は、タイミングコントローラ22から入力された制御信号に基づいて、表示する画像の階調を表す電圧を、対応するソースライン113に印加する。ソースドライバ23における階調の数は例えば256である。 The source driver 23 is connected to a plurality of source lines 113, 113,. Based on the control signal input from the timing controller 22, the source driver 23 applies a voltage representing the gradation of the image to be displayed to the corresponding source line 113. The number of gradations in the source driver 23 is, for example, 256.
 また、実施の形態1においてソースドライバ23は、線順次方式に従い、接続された全てのソースライン113に一度に電圧を印加するように構成されている。なお、ソースドライバ23は、点順次方式に従い、各ソースライン113に順次電圧を印加するように構成されていてもよい。 In the first embodiment, the source driver 23 is configured to apply a voltage to all the connected source lines 113 at once according to a line sequential method. The source driver 23 may be configured to sequentially apply a voltage to each source line 113 in accordance with a dot sequential method.
 ゲートドライバ24は、複数のゲートライン114,114,・・・114に接続されている。ゲートドライバ24は、タイミングコントローラ22から入力された制御信号に基づいて、TFT111のオン/オフを制御するための電圧をゲートライン114に印加する。この際、ゲートドライバ24は、プログレッシブ方式に従って、ライン順次に電圧を印加してもよいし、インターレース方式に従って、電圧を印加してもよい。 The gate driver 24 is connected to a plurality of gate lines 114, 114,. The gate driver 24 applies a voltage for controlling on / off of the TFT 111 to the gate line 114 based on the control signal input from the timing controller 22. At this time, the gate driver 24 may apply the voltage in line order according to the progressive method, or may apply the voltage according to the interlace method.
 駆動電源部3は、ソース電源回路31及びゲート電源回路32を備えており、制御部21の指示に基づいて、表示装置100の動作に必要な電力を各部に適宜供給する。 The drive power supply unit 3 includes a source power supply circuit 31 and a gate power supply circuit 32, and appropriately supplies power necessary for the operation of the display device 100 to each unit based on an instruction from the control unit 21.
 ソース電源回路31は、例えば、給電線を介してソースドライバ23に接続されており、ソースドライバ23が画像の階調に係る電圧をソースライン113に印加するための電力を供給するための回路である。ゲート電源回路32は、例えば、給電線を介してゲートドライバ24に接続されており、ゲートドライバ24がTFT111のオン/オフに係る電圧をゲートライン114に印加するための電力を供給するための回路である。 The source power supply circuit 31 is connected to the source driver 23 via, for example, a power supply line, and is a circuit for supplying power for the source driver 23 to apply a voltage related to the gradation of the image to the source line 113. is there. The gate power supply circuit 32 is connected to the gate driver 24 via, for example, a power supply line, and the gate driver 24 supplies a power for applying a voltage related to ON / OFF of the TFT 111 to the gate line 114. It is.
 なお、前記駆動装置は、駆動電源部3から供給された電力によって、共通電極121に電圧を印加する構成であってもよい。また、いわゆるコモン反転駆動方式に従って、共通電圧に印加する電圧を周期的に変えてもよい。 Note that the driving device may be configured to apply a voltage to the common electrode 121 with the electric power supplied from the driving power supply unit 3. Further, the voltage applied to the common voltage may be periodically changed according to a so-called common inversion driving method.
 アレー基板11上には、画素毎にTFT111及び画素電極112が形成されており、図2に示すように、TFT111及び画素電極112はマトリクス状に配置されている。各画素電極112は、TFT111のドレイン端子と夫々接続されている。 On the array substrate 11, a TFT 111 and a pixel electrode 112 are formed for each pixel. As shown in FIG. 2, the TFT 111 and the pixel electrode 112 are arranged in a matrix. Each pixel electrode 112 is connected to the drain terminal of the TFT 111.
 TFT111のゲート端子は、ゲートライン114に接続されており、TFT111のソース端子はソースライン113に接続されている。ゲートライン114は夫々、ゲートドライバ24における電圧の出力部に接続されており、ソースライン113は夫々、ソースドライバ23における電圧の出力部に接続されている。 The gate terminal of the TFT 111 is connected to the gate line 114, and the source terminal of the TFT 111 is connected to the source line 113. Each of the gate lines 114 is connected to a voltage output unit in the gate driver 24, and each of the source lines 113 is connected to a voltage output unit in the source driver 23.
 TFT111は、ゲートドライバ24から順次ゲートライン114に電圧が印加されることによってオン/オフ制御される。従って、TFT111のオン期間の間にはソースドライバ23から各ソースライン113に入力される電圧が画素電極112に印加され、また、TFT111がオフ期間の間にはそれまでの電圧が保持される。 The TFT 111 is on / off controlled by sequentially applying a voltage from the gate driver 24 to the gate line 114. Therefore, a voltage input from the source driver 23 to each source line 113 is applied to the pixel electrode 112 during the on period of the TFT 111, and the voltage up to that time is maintained during the off period of the TFT 111.
 そして、TFT111を介して画素電極112に印加された電圧と、共通電極121に印加された電圧とにより、液晶物質の光学特性(T-V特性)によって決定される光透過率を制御し、画像を表示する。 Then, the light transmittance determined by the optical characteristic (TV characteristic) of the liquid crystal substance is controlled by the voltage applied to the pixel electrode 112 via the TFT 111 and the voltage applied to the common electrode 121, and the image Is displayed.
 実施の形態1における液晶パネル1は、画素電極112及び共通電極121間の電位差がゼロのとき、光透過率がゼロとなるように構成されているものとする。すなわち、液晶パネル1は、アレー基板11及びCF基板12間に電位差が生じていないときに黒表示を行う構成のいわゆるノーマリブラック型の液晶パネルである。 The liquid crystal panel 1 in Embodiment 1 is configured so that the light transmittance is zero when the potential difference between the pixel electrode 112 and the common electrode 121 is zero. That is, the liquid crystal panel 1 is a so-called normally black liquid crystal panel configured to display black when no potential difference is generated between the array substrate 11 and the CF substrate 12.
 図3は本発明の実施の形態1における、表示装置100のR、G及びB画素の等価回路を示す回路図である。各画素は、上述したように、明画素及び暗画素の2つの副画素を有している。図4は本発明の実施の形態1の表示装置100における、R、G及びB画素の副画素の構成を説明する説明図である。図3に示しているように、各画素の明画素及び暗画素は千鳥状に設けられている。 FIG. 3 is a circuit diagram showing an equivalent circuit of R, G, and B pixels of the display device 100 according to the first embodiment of the present invention. Each pixel has two sub-pixels, a bright pixel and a dark pixel, as described above. FIG. 4 is an explanatory diagram illustrating the configuration of R, G, and B subpixels in the display device 100 according to the first embodiment of the present invention. As shown in FIG. 3, the bright pixels and dark pixels of each pixel are provided in a staggered pattern.
 各明画素においては、上述したように、TFT111R、TFT111G及びTFT111Bのゲート端子がゲートライン114に各々接続されており、TFT111R、TFT111G及びTFT111Bのソース端子はソースライン113S1、ソースライン113S2及びソースライン113S3に各々接続されている。 In each bright pixel, as described above, the gate terminals of the TFT 111R, TFT 111G, and TFT 111B are connected to the gate line 114, and the source terminals of the TFT 111R, TFT 111G, and TFT 111B are the source line 113S1, the source line 113S2, and the source line 113S3. Is connected to each.
 また、各明画素においては、液晶容量115RH、液晶容量115GH及び液晶容量115BH、並びに、補助容量116RCH、補助容量116GCH及び補助容量116BCHが設けられている。ゲートライン114にソースライン113S1、ソースライン113S2及びソースライン113S3の電圧を超える電圧が印加された場合、TFT111R、TFT111G及びTFT111B各々がオンとなる。続いて、ソースライン113S1、ソースライン113S2及びソースライン113S3の電圧が各々TFT111R、TFT111G及びTFT111Bを介して副画素電極112SR、副画素電極112SG及び副画素電極112SBに印加され、液晶容量115RH、液晶容量115GH及び液晶容量115BHに電荷が蓄電される。 In each bright pixel, a liquid crystal capacitor 115RH, a liquid crystal capacitor 115GH, and a liquid crystal capacitor 115BH, and an auxiliary capacitor 116RCH, an auxiliary capacitor 116GCH, and an auxiliary capacitor 116BCH are provided. When a voltage exceeding the voltages of the source line 113S1, the source line 113S2, and the source line 113S3 is applied to the gate line 114, the TFT 111R, the TFT 111G, and the TFT 111B are turned on. Subsequently, the voltages of the source line 113S1, the source line 113S2, and the source line 113S3 are applied to the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB through the TFT 111R, the TFT 111G, and the TFT 111B, respectively, and the liquid crystal capacitance 115RH, the liquid crystal capacitance Charge is stored in 115GH and the liquid crystal capacitor 115BH.
 また、液晶容量115RH、液晶容量115GH及び液晶容量115BHに対して各々並列に接続された補助容量116RCH、補助容量116GCH及び補助容量116BCHが設けられており、副画素電極112SR、副画素電極112SG及び副画素電極112SBに電圧が印加される際に、これら各々に対応する補助容量116RCH、補助容量116GCH及び補助容量116BCHにも電荷が蓄電される。そして、外部から電圧が印加されていない間は、補助容量116RCH、補助容量116GCH及び補助容量116BCHが保持している電位によって電圧値が維持される。 Further, an auxiliary capacitor 116RCH, an auxiliary capacitor 116GCH, and an auxiliary capacitor 116BCH that are connected in parallel to the liquid crystal capacitor 115RH, the liquid crystal capacitor 115GH, and the liquid crystal capacitor 115BH, respectively, are provided, and the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SG are provided. When a voltage is applied to the pixel electrode 112SB, charges are also stored in the auxiliary capacitor 116RCH, the auxiliary capacitor 116GCH, and the auxiliary capacitor 116BCH corresponding to each of them. While the voltage is not applied from the outside, the voltage value is maintained by the potential held by the auxiliary capacitor 116RCH, the auxiliary capacitor 116GCH, and the auxiliary capacitor 116BCH.
 また、暗画素においても、TFT111R、TFT111G及びTFT111Bのゲート端子がゲートライン114に各々接続されており、TFT111R、TFT111G及びTFT111Bのソース端子はソースライン113S1、ソースライン113S2及びソースライン113S3に各々接続されている。 In the dark pixel, the gate terminals of the TFT 111R, TFT 111G, and TFT 111B are connected to the gate line 114, and the source terminals of the TFT 111R, TFT 111G, and TFT 111B are connected to the source line 113S1, the source line 113S2, and the source line 113S3, respectively. ing.
 また、各暗画素においては、液晶容量115RL、液晶容量115GL及び液晶容量115BL、並びに、補助容量116RCL、補助容量116GCL及び補助容量116BCLが設けられている。その他の暗画素の構成については、上述した明画素と同様であり、詳しい説明は省略する。 In each dark pixel, a liquid crystal capacitor 115RL, a liquid crystal capacitor 115GL, and a liquid crystal capacitor 115BL, and an auxiliary capacitor 116RCL, an auxiliary capacitor 116GCL, and an auxiliary capacitor 116BCL are provided. Other dark pixel configurations are the same as those of the bright pixels described above, and detailed description thereof is omitted.
 一方、図4に示しているように、前記明画素において、補助容量116RCH、補助容量116GCH及び補助容量116BCH各々は、副画素電極112SR、副画素電極112SG及び副画素電極112SB各々からなる補助容量電極と、該補助容量電極に対向する補助容量対向電極とによって形成されている。斯かる補助容量対向電極は補助容量配線CS1の一部である。すなわち、副画素電極112SR、副画素電極112SG及び副画素電極112SBの各々と、対応する補助容量配線CS1とが部分的に重畳するように配置されることによりそれぞれ補助容量116RCH、補助容量116GCH及び補助容量116BCHを形成している。 On the other hand, as shown in FIG. 4, in the bright pixel, each of the auxiliary capacitor 116RCH, the auxiliary capacitor 116GCH, and the auxiliary capacitor 116BCH includes an auxiliary capacitor electrode composed of the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB. And a storage capacitor counter electrode opposed to the storage capacitor electrode. Such a storage capacitor counter electrode is a part of the storage capacitor line CS1. That is, each of the sub-pixel electrode 112SR, the sub-pixel electrode 112SG, and the sub-pixel electrode 112SB and the corresponding auxiliary capacitance line CS1 are arranged so as to partially overlap each other, so that the auxiliary capacitance 116RCH, the auxiliary capacitance 116GCH, and the auxiliary capacitance are respectively provided. A capacitor 116BCH is formed.
 斯かる構成は、前記暗画素における、補助容量116RCL、補助容量116GCL及び補助容量116BCLに対しても同様であり、詳しい説明を省略する。 Such a configuration is the same for the auxiliary capacitor 116RCL, auxiliary capacitor 116GCL, and auxiliary capacitor 116BCL in the dark pixel, and detailed description thereof is omitted.
 本発明の実施の形態1に係る表示装置100では、副画素電極及び補助容量配線との重畳量をR、G及びB画素毎に変えることにより、上述した、斜視色付きの問題を解決している。 In the display device 100 according to the first embodiment of the present invention, the above-described problem of the perspective color is solved by changing the overlapping amount of the sub-pixel electrode and the auxiliary capacitance line for each of the R, G, and B pixels. .
 すなわち、上述したように、B(青)はT-Vカーブの立ち上がりがR及びG(赤、緑)より急峻なため、中間調において前記斜視色付き問題が生じる。これに対して、本発明の実施の形態1に係る表示装置100では、副画素に印加される副画素同士間の電圧の差を、R、G及びB画素毎に異ならせることにより、T-Vカーブでの上述の差異を抑制し、前記斜視色付き問題を改善する。以下、図4に基づいて詳しく説明する。 That is, as described above, since the rise of the TV curve of B (blue) is steeper than that of R and G (red, green), the above-mentioned perspective coloring problem occurs in a halftone. On the other hand, in the display device 100 according to the first embodiment of the present invention, the voltage difference between the sub-pixels applied to the sub-pixels is made different for each of the R, G, and B pixels, so that T− Suppress the above-mentioned difference in the V curve and improve the perspective coloring problem. Hereinafter, this will be described in detail with reference to FIG.
 図4においては、説明の便宜上、補助容量配線CS1を実線で表示し、副画素電極112SR、副画素電極112SG及び副画素電極112SBを破線で表示し、ソースライン113S1、ソースライン113S2及びソースライン113S3を一点鎖線で表示し、ゲートライン114を二点鎖線で表示している。 In FIG. 4, for the sake of convenience of explanation, the storage capacitor line CS1 is indicated by a solid line, the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB are indicated by a broken line, and the source line 113S1, the source line 113S2, and the source line 113S3 are displayed. Is indicated by a one-dot chain line, and the gate line 114 is indicated by a two-dot chain line.
 図4に示しているように、副画素電極112SR、副画素電極112SG及び副画素電極112SBは各々異なる形状を有している。これによって、副画素電極112SR、副画素電極112SG及び副画素電極112SBと、補助容量配線CS1とで、対向方向における重畳する部分の面積(以下、重畳量と言う。)が、R、G及びB画素において相違する。図4においては、重畳する部分をハッチングにて示している。 As shown in FIG. 4, the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB have different shapes. As a result, the area of the overlapping portion in the opposing direction (hereinafter referred to as the overlapping amount) of the subpixel electrode 112SR, the subpixel electrode 112SG, the subpixel electrode 112SB, and the auxiliary capacitance wiring CS1 is referred to as R, G, and B. It differs in pixels. In FIG. 4, the overlapping portion is indicated by hatching.
 実施の形態1に係る表示装置100においては、副画素電極112SR、副画素電極112SG及び副画素電極112SBが各々異なる形状を有し、前記重畳量がR、G及びB画素順に小さくなるように構成されている。 In the display device 100 according to Embodiment 1, the sub-pixel electrode 112SR, the sub-pixel electrode 112SG, and the sub-pixel electrode 112SB have different shapes, and the superposition amount decreases in the order of R, G, and B pixels. Has been.
 すなわち、R画素における前記重畳量をRsと言い、G画素における前記重畳量をGsと言い、B画素における前記重畳量をBsとした場合、「Rs>Gs>Bs」の関係を満たすように、副画素電極112SR、副画素電極112SG及び副画素電極112SBが形成されている。 That is, when the superposition amount in the R pixel is referred to as Rs, the superposition amount in the G pixel is referred to as Gs, and the superposition amount in the B pixel is Bs, so that the relationship of “Rs> Gs> Bs” is satisfied. A subpixel electrode 112SR, a subpixel electrode 112SG, and a subpixel electrode 112SB are formed.
 この際、重畳量は補助容量と比例することから、補助容量116RCH、補助容量116GCH及び補助容量116BCHは、「補助容量116RCH≧補助容量116GCH≧補助容量116BCH」の関係を有することになる。 At this time, since the superposition amount is proportional to the auxiliary capacity, the auxiliary capacity 116RCH, the auxiliary capacity 116GCH, and the auxiliary capacity 116BCH have a relationship of “auxiliary capacity 116RCH ≧ auxiliary capacity 116GCH ≧ auxiliary capacity 116BCH”.
 これによって、R、G及びB画素毎にて、明画素及び暗画素間において印加される電圧差(ΔV)は、R≧G≧Bの関係になる。 Thus, the voltage difference (ΔV) applied between the bright pixel and the dark pixel for each of the R, G, and B pixels has a relationship of R ≧ G ≧ B.
 すなわち、R、G及びB画素にて、明画素及び暗画素間において印加される電圧差を、各々RΔV、GΔV及びBΔVとした場合、表示装置100においては、「RΔV≧GΔV≧BΔV」の関係を満たすこととなる。表示装置100は、このように、RΔV≧GΔV≧BΔVの関係を満たしているので、中間調におけるR、G及びBのT-V特性が等しくなる。 That is, in the display device 100, when the voltage difference applied between the bright pixel and the dark pixel is RΔV, GΔV, and BΔV in the R, G, and B pixels, the relationship of “RΔV ≧ GΔV ≧ BΔV” is established. Will be satisfied. Since the display device 100 thus satisfies the relationship of RΔV ≧ GΔV ≧ BΔV, the TV characteristics of R, G, and B in the halftone are equal.
 詳しくは、本来、R、G及びBは各々の波長の違いにより、T-V特性が異なる。そのため、同じマルチ駆動電圧を副画素に印加した場合、この波長の違いの影響により明画素・暗画素各々のT-V特性も異なるようになる。しかし、本発明の実施の形態1に係る表示装置100では、マルチ駆動による印加電圧がRΔV≧GΔV≧BΔVの関係を満たすように差異を設けることにより、R、G及びBの波長の違いによる影響を相殺することができ、結果としてR、G及びBのT-V特性が等しくなる。 Specifically, originally, R, G, and B have different TV characteristics due to the difference in wavelength. For this reason, when the same multi-drive voltage is applied to the sub-pixel, the TV characteristics of the bright pixel and the dark pixel are also different due to the influence of this wavelength difference. However, in the display device 100 according to the first embodiment of the present invention, the difference due to the difference in R, G, and B wavelengths is provided by providing a difference so that the applied voltage by multi-drive satisfies the relationship of RΔV ≧ GΔV ≧ BΔV. As a result, the TV characteristics of R, G, and B become equal.
 これによって、本発明の実施の形態1に係る表示装置100においては、外部からR、G及びB画素毎に異なる電圧を副画素に印加することなく、RΔV≧GΔV≧BΔVの関係を満たすように構成し、前記斜視色付きの問題を解決できる。従って、配線の数が増加することなく、かつ、液晶パネルの構造の複雑化により製造コストが向上することもなく、斜視色付きの問題を解決できる。 Thereby, in the display device 100 according to the first embodiment of the present invention, the relationship of RΔV ≧ GΔV ≧ BΔV is satisfied without applying different voltages to the sub-pixels from the outside for each of the R, G, and B pixels. It can comprise and can solve the problem of the perspective color. Therefore, it is possible to solve the problem of the perspective color without increasing the number of wirings and without increasing the manufacturing cost due to the complicated structure of the liquid crystal panel.
 また、以上においては、明画素及び暗画素の何れか一方の場合を例として説明したが、暗画素においても同様であることは言うまでもない。 In the above description, the case of either one of the bright pixel and the dark pixel has been described as an example, but it goes without saying that the same applies to the dark pixel.
 (実施の形態2)
 本発明の実施の形態2に係る表示装置100においても、副画素電極及び補助容量配線との重畳量をR、G及びB画素毎に変えることにより、上述した、斜視色付きの問題を解決している。すなわち、実施の形態1においては、副画素電極112SR、副画素電極112SG及び副画素電極112SBが各々異なる形状を有することにより、前記斜視色付きの問題を解決することについて説明したが、実施の形態2では具体的解決方法が異なる。
(Embodiment 2)
Also in the display device 100 according to the second embodiment of the present invention, the above-described problem of the perspective color is solved by changing the overlapping amount of the sub-pixel electrode and the auxiliary capacitance line for each of the R, G, and B pixels. Yes. That is, in the first embodiment, it has been described that the sub-pixel electrode 112SR, the sub-pixel electrode 112SG, and the sub-pixel electrode 112SB have different shapes, thereby solving the problem of the perspective coloration. Then the specific solution is different.
 前記斜視色付き問題に対して、本発明の実施の形態2に係る表示装置100においては、補助容量配線の形状を工夫して、副画素に印加される副画素間の電圧の差をR、G及びB画素毎に異ならせることにより、T-Vカーブでの上述の差異を抑制し、前記斜視色付き問題を改善する。以下、図5に基づいて詳しく説明する。 In the display device 100 according to the second embodiment of the present invention, the difference in voltage between the subpixels applied to the subpixels is represented by R, G in the display device 100 according to the second embodiment of the present invention with respect to the perspective coloring problem. In addition, by making it different for each B pixel, the above-described difference in the TV curve is suppressed, and the problem of the perspective coloring is improved. Hereinafter, this will be described in detail with reference to FIG.
 図5は本発明の実施の形態2の表示装置100における、R、G及びB画素の副画素の構成を説明する説明図である。図5においては、説明の便宜上、補助容量配線CS1を実線で表示し、副画素電極112SR、副画素電極112SG及び副画素電極112SBを破線で表示し、ソースライン113S1、ソースライン113S2及びソースライン113S3を一点鎖線で表示し、ゲートライン114を二点鎖線で表示している。 FIG. 5 is an explanatory diagram illustrating the configuration of R, G, and B subpixels in the display device 100 according to the second embodiment of the present invention. In FIG. 5, for convenience of explanation, the storage capacitor line CS1 is indicated by a solid line, the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB are indicated by a broken line, and the source line 113S1, the source line 113S2, and the source line 113S3 are displayed. Is indicated by a one-dot chain line, and the gate line 114 is indicated by a two-dot chain line.
 図5に示しているように、補助容量配線CS1は、R、G及びB画素の各々に対応する部分において、異なる形状を有している。 As shown in FIG. 5, the auxiliary capacitance line CS1 has different shapes in the portions corresponding to the R, G, and B pixels.
 より詳しくは、補助容量配線CS1は、B画素を除く、R及びG画素の各々に対応する部分がゲートライン114側に突出するように形成されている。すなわち、補助容量配線CS1は所定の幅を有しており、R及びG画素に対応する部分にて幅が広くなるように形成されている。このように、補助容量配線CS1はR及びG画素での突出量を異にし、副画素電極112SR及び副画素電極112SGと、補助容量配線CS1との前記重畳量が、R、G及びB画素において相違するように構成されている。 More specifically, the storage capacitor line CS1 is formed so that portions corresponding to each of the R and G pixels excluding the B pixel protrude toward the gate line 114 side. In other words, the storage capacitor line CS1 has a predetermined width, and is formed so that the width is wide at portions corresponding to the R and G pixels. As described above, the auxiliary capacitance line CS1 has different protrusion amounts in the R and G pixels, and the overlapping amount of the subpixel electrode 112SR and the subpixel electrode 112SG and the auxiliary capacitance line CS1 is different in the R, G, and B pixels. It is configured to be different.
 このようにして、表示装置100においても、副画素電極112SR、副画素電極112SG及び副画素電極112SBと補助容量配線CS1との前記重畳量がR、G及びB画素順に小さくなるように構成されている。 In this way, the display device 100 is also configured such that the amount of overlap between the subpixel electrode 112SR, the subpixel electrode 112SG, the subpixel electrode 112SB, and the auxiliary capacitance line CS1 decreases in the order of R, G, and B pixels. Yes.
 すなわち、R画素における前記重畳量(Rs)と、G画素における前記重畳量(Gs)と、B画素における前記重畳量(Bs)とが、「Rs>Gs>Bs」の関係を満たすように、補助容量配線CS1が形成されている。 That is, the superposition amount (Rs) in the R pixel, the superposition amount (Gs) in the G pixel, and the superposition amount (Bs) in the B pixel satisfy the relationship of “Rs> Gs> Bs”. A storage capacitor line CS1 is formed.
 この際、実施の形態1と同様、「補助容量116RCH≧補助容量116GCH≧補助容量116BCH」の関係が成立することになる。これによって、R、G及びB画素毎にて、明画素及び暗画素間において印加される電圧差(ΔV)は、R≧G≧Bの関係になる。すなわち、R、G及びB画素にて、明画素及び暗画素間において印加される電圧差は、「RΔV≧GΔV≧BΔV」の関係を満たすこととなる。表示装置100においては、このように、RΔV≧GΔV≧BΔVの関係を満たしているので、中間調におけるR、G及びBのT-V特性が等しくなる。 At this time, as in the first embodiment, the relationship of “auxiliary capacity 116RCH ≧ auxiliary capacity 116GCH ≧ auxiliary capacity 116BCH” is established. As a result, the voltage difference (ΔV) applied between the bright pixel and the dark pixel for each of the R, G, and B pixels has a relationship of R ≧ G ≧ B. That is, in the R, G, and B pixels, the voltage difference applied between the bright pixel and the dark pixel satisfies the relationship “RΔV ≧ GΔV ≧ BΔV”. Since the display device 100 satisfies the relationship of RΔV ≧ GΔV ≧ BΔV as described above, the TV characteristics of R, G, and B in the halftone are equal.
 これによって、本発明の実施の形態2に係る表示装置100においては、外部からR、G及びB画素毎に異なる電圧を副画素に印加することなく、RΔV≧GΔV≧BΔVの関係を満たすように構成し、前記斜視色付きの問題を解決できる。従って、配線の数が増加することなく、かつ、液晶パネルの構造の複雑化により製造コストが向上することもなく、斜視色付きの問題を解決できる。 Thus, in the display device 100 according to the second embodiment of the present invention, the relationship of RΔV ≧ GΔV ≧ BΔV is satisfied without applying different voltages to the subpixels from the outside for each of the R, G, and B pixels. It can comprise and can solve the problem of the perspective color. Therefore, it is possible to solve the problem of the perspective color without increasing the number of wirings and without increasing the manufacturing cost due to the complicated structure of the liquid crystal panel.
 また、以上においては、明画素及び暗画素の何れか一方の場合を例として説明したが、暗画素においても同様であることは言うまでもない。 In the above description, the case of either one of the bright pixel and the dark pixel has been described as an example, but it goes without saying that the same applies to the dark pixel.
 (実施の形態3)
 実施の形態1においては、R画素における前記重畳量(Rs)と、G画素における前記重畳量(Gs)と、B画素における前記重畳量(Bs)とが、「Rs>Gs>Bs」の関係を満たすように、副画素電極112SR、副画素電極112SG及び副画素電極112SBを形成することについて説明した。また、実施の形態2においては、「Rs>Gs>Bs」の関係を満たすように、補助容量配線CS1を形成することについて説明した。
(Embodiment 3)
In Embodiment 1, the superposition amount (Rs) in the R pixel, the superposition amount (Gs) in the G pixel, and the superposition amount (Bs) in the B pixel are in a relationship of “Rs>Gs> Bs”. The formation of the subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB so as to satisfy the above has been described. In the second embodiment, the formation of the auxiliary capacitance line CS1 so as to satisfy the relationship of “Rs>Gs> Bs” has been described.
 しかし、本発明は以上に記載に限るものでない。例えば、R画素における前記重畳量(Rs)と、G画素における前記重畳量(Gs)と、B画素における前記重畳量(Bs)とが、「Rs=Gs>Bs」の関係を満たすように、副画素電極112SR、副画素電極112SG及び副画素電極112SBを形成しても良い。又は、「Rs=Gs>Bs」の関係を満たすように、補助容量配線CS1を形成しても良い。 However, the present invention is not limited to the above description. For example, the superposition amount (Rs) in the R pixel, the superposition amount (Gs) in the G pixel, and the superposition amount (Bs) in the B pixel satisfy the relationship of “Rs = Gs> Bs”. The subpixel electrode 112SR, the subpixel electrode 112SG, and the subpixel electrode 112SB may be formed. Alternatively, the storage capacitor line CS1 may be formed so as to satisfy the relationship of “Rs = Gs> Bs”.
 これによっても、上述したような効果により、前記斜視色付きの問題を解決することができる。 This also solves the problem of the perspective color due to the above-described effects.
 (実施の形態4)
 以上においては、表示装置100がR(Red)画素、G(Green)画素及びB(Blue)画素を有する場合を例として説明したが本発明はこれに限るものでない。
(Embodiment 4)
In the above description, the case where the display device 100 has R (Red) pixels, G (Green) pixels, and B (Blue) pixels has been described as an example, but the present invention is not limited thereto.
 実施の形態4に係る表示装置100においては、Red(R)、Yellow(Y)、Green(G)、Cyan(C)、Blue(B)及びMagenta(M)の画素を備えている。 The display device 100 according to Embodiment 4 includes Red (R), Yellow (Y), Green (G), Cyan (C), Blue (B), and Magenta (M) pixels.
 本発明の実施の形態4に係る表示装置100においても、副画素電極及び補助容量配線との重畳量をR、Y、G、C、B及びM画素毎に変えることにより、上述した、斜視色付きの問題を解決している。 Also in the display device 100 according to the fourth embodiment of the present invention, the above-described perspective coloration is obtained by changing the overlapping amount of the sub-pixel electrode and the auxiliary capacitance line for each of the R, Y, G, C, B, and M pixels. The problem is solved.
 図6は本発明の実施の形態4の表示装置における、R、Y、G、C、B及びM画素の副画素の構成を説明する説明図である。図6においては、説明の便宜上、補助容量配線CS1を実線で表示し、副画素電極112SR、副画素電極112SY、副画素電極112SG、副画素電極112SC、副画素電極112SB、及び副画素電極112SMを破線で表示している。また、ソースライン113S1、ソースライン113S2、ソースライン113S3、ソースライン113S4、ソースライン113S5、ソースライン113S6及びソースライン113S7を一点鎖線で表示し、ゲートライン114を二点鎖線で表示している。 FIG. 6 is an explanatory diagram illustrating the configuration of R, Y, G, C, B, and M subpixels in the display device according to the fourth embodiment of the present invention. In FIG. 6, for the sake of convenience of explanation, the storage capacitor line CS1 is shown by a solid line, and the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM are displayed. It is displayed with a broken line. In addition, the source line 113S1, the source line 113S2, the source line 113S3, the source line 113S4, the source line 113S5, the source line 113S6, and the source line 113S7 are indicated by a one-dot chain line, and the gate line 114 is indicated by a two-dot chain line.
 図6に示しているように、副画素電極112SR、副画素電極112SY、副画素電極112SG、副画素電極112SC、副画素電極112SB、及び副画素電極112SMは各々異なる形状を有している。これによって、副画素電極112SR、副画素電極112SY、副画素電極112SG、副画素電極112SC、副画素電極112SB、及び副画素電極112SMと、補助容量配線CS1とで、対向方向における前記重畳量が、R、Y、G、C、B及びM画素において相違する。図6においては、重畳する部分をハッチングにて示している。 As shown in FIG. 6, the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM have different shapes. Accordingly, the amount of superimposition in the facing direction between the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, the subpixel electrode 112SM, and the auxiliary capacitance line CS1 is It differs in R, Y, G, C, B and M pixels. In FIG. 6, the overlapping portion is indicated by hatching.
 実施の形態4に係る表示装置100においては、副画素電極112SR、副画素電極112SY、副画素電極112SG、副画素電極112SC、副画素電極112SB、及び副画素電極112SM各々異なる形状を有し、前記重畳量がR、Y、G、C、B及びM画素順に小さくなるように構成されている。 In the display device 100 according to Embodiment 4, the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM have different shapes, and The superimposition amount is configured to decrease in the order of R, Y, G, C, B, and M pixels.
 すなわち、Y画素における前記重畳量をYsと言い、C画素における前記重畳量をCsと言い、M画素における前記重畳量をMsとした場合、「Rs>Ys>Gs>Cs>Bs>Ms」の関係を満たすように、副画素電極112SR、副画素電極112SY、副画素電極112SG、副画素電極112SC、副画素電極112SB、及び副画素電極112SMが形成されている。 That is, when the superposition amount in the Y pixel is referred to as Ys, the superposition amount in the C pixel is referred to as Cs, and the superposition amount in the M pixel is Ms, “Rs> Ys> Gs> Cs> Bs> Ms” A subpixel electrode 112SR, a subpixel electrode 112SY, a subpixel electrode 112SG, a subpixel electrode 112SC, a subpixel electrode 112SB, and a subpixel electrode 112SM are formed so as to satisfy the relationship.
 この際、実施の形態1と同様な理由により、R、Y、G、C、B及びM画素毎にて、明画素及び暗画素間において印加される電圧差(ΔV)は、R≧Y≧G≧C≧B≧Mの関係になる。すなわち、R、Y、G、C、B及びM画素にて、明画素及び暗画素間において印加される電圧差は、「RΔV≧YΔV≧GΔV≧CΔV≧BΔV≧MΔV」の関係を満たすこととなる。実施の形態4に係る表示装置100においては、このように、RΔV≧YΔV≧GΔV≧CΔV≧BΔV≧MΔVの関係を満たしているので、中間調におけるR、Y、G、C、B及びMのT-V特性が等しくなる。 At this time, for the same reason as in the first embodiment, the voltage difference (ΔV) applied between the bright pixel and the dark pixel for each of R, Y, G, C, B, and M pixels is R ≧ Y ≧ G ≧ C ≧ B ≧ M. That is, in the R, Y, G, C, B, and M pixels, the voltage difference applied between the bright pixel and the dark pixel satisfies the relationship of “RΔV ≧ YΔV ≧ GΔV ≧ CΔV ≧ BΔV ≧ MΔV”. Become. In the display device 100 according to the fourth embodiment, since the relationship of RΔV ≧ YΔV ≧ GΔV ≧ CΔV ≧ BΔV ≧ MΔV is satisfied, R, Y, G, C, B, and M in the halftone are thus satisfied. The TV characteristics are equal.
 これによって、本発明の実施の形態4に係る表示装置100においては、外部からR、Y、G、C、B及びM画素毎に異なる電圧を副画素に印加することなく、RΔV≧YΔV≧GΔV≧CΔV≧BΔV≧MΔVの関係を満たすように構成し、前記斜視色付きの問題を解決できる。従って、配線の数が増加することなく、かつ、液晶パネルの構造の複雑化により製造コストが向上することもなく、斜視色付きの問題を解決できる。 Thus, in the display device 100 according to the fourth embodiment of the present invention, RΔV ≧ YΔV ≧ GΔV without applying different voltages to the sub-pixels for each of the R, Y, G, C, B, and M pixels from the outside. By configuring so as to satisfy the relationship of ≧ CΔV ≧ BΔV ≧ MΔV, the problem of the perspective color can be solved. Therefore, it is possible to solve the problem of the perspective color without increasing the number of wirings and without increasing the manufacturing cost due to the complicated structure of the liquid crystal panel.
 また、以上においては、副画素電極112SR、副画素電極112SY、副画素電極112SG、副画素電極112SC、副画素電極112SB、及び副画素電極112SMの形状変更する場合を例として説明した。しかし、本発明はこれに限るものでない。 In the above description, the case where the shape of the subpixel electrode 112SR, the subpixel electrode 112SY, the subpixel electrode 112SG, the subpixel electrode 112SC, the subpixel electrode 112SB, and the subpixel electrode 112SM is changed is described as an example. However, the present invention is not limited to this.
 例えば、実施の形態2の場合と同様に、補助容量配線CS1の形状を適宜形成することにより、「Rs>Ys>Gs>Cs>Bs>Ms」の関係を満たすように、構成してもよい。 For example, as in the case of the second embodiment, the auxiliary capacitor wiring CS1 may be formed appropriately so that the relationship of “Rs> Ys> Gs> Cs> Bs> Ms” is satisfied. .
 100 表示装置
 112SR、112SG、112SB 副画素電極
 113S1、113S2、113S3、113S4、113S5、113S6、113S7 ソースライン
 114 ゲートライン
 CS1、CS2 補助容量配線
100 Display device 112SR, 112SG, 112SB Subpixel electrode 113S1, 113S2, 113S3, 113S4, 113S5, 113S6, 113S7 Source line 114 Gate line CS1, CS2 Auxiliary capacitance wiring

Claims (6)

  1.  複数色の画素を備え、各画素が複数の副画素を有しており、各副画素に係る副画素電極と部分的に対向する補助容量配線を備える液晶表示装置において、
     副画素に印加する電圧の副画素間の差が、各画素毎に相違するように構成されていることを特徴とする液晶表示装置。
    In a liquid crystal display device including a plurality of color pixels, each pixel having a plurality of subpixels, and a storage capacitor line partially facing a subpixel electrode related to each subpixel.
    A liquid crystal display device, characterized in that a difference between voltages applied to sub-pixels is different for each pixel.
  2.  前記複数色の画素各々の副画素電極は、前記対向方向での前記補助容量配線との重畳量が相違する形状を有することを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the sub-pixel electrode of each of the pixels of the plurality of colors has a shape in which an overlapping amount with the auxiliary capacitance wiring in the facing direction is different.
  3.  前記補助容量配線は、前記対向方向にて、前記複数色の画素各々の副画素電極との重畳量が相違する形状を有することを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the auxiliary capacitance wiring has a shape in which an overlapping amount with a sub-pixel electrode of each of the pixels of the plurality of colors is different in the facing direction.
  4.  前記複数色はRed(R)、Green(G)及びBlue(B)であり、
     R画素に係る前記重畳量(Rs)と、G画素に係る前記重畳量(Gs)と、B画素に係る前記重畳量(Bs)とは、以下の関係を有することを特徴とする請求項2又は3に記載の液晶表示装置。
     Rs>Gs>Bs
    The plurality of colors are Red (R), Green (G), and Blue (B),
    The superposition amount (Rs) related to the R pixel, the superposition amount (Gs) related to the G pixel, and the superposition amount (Bs) related to the B pixel have the following relationship. Or 3. The liquid crystal display device according to 3.
    Rs>Gs> Bs
  5.  前記複数色はRed(R)、Green(G)及びBlue(B)であり、
     R画素に係る前記重畳量(Rs)と、G画素に係る前記重畳量(Gs)と、B画素に係る前記重畳量(Bs)とは、以下の関係を有することを特徴とする請求項2又は3に記載の液晶表示装置。
     Rs=Gs>Bs
    The plurality of colors are Red (R), Green (G), and Blue (B),
    The superposition amount (Rs) related to the R pixel, the superposition amount (Gs) related to the G pixel, and the superposition amount (Bs) related to the B pixel have the following relationship. Or 3. The liquid crystal display device according to 3.
    Rs = Gs> Bs
  6.  前記複数色はRed(R)、Yellow(Y)、Green(G)、Cyan(C)、Blue(B)及びMagenta(M)であり、
     R画素に係る前記重畳量(Rs)と、Y画素に係る前記重畳量(Ys)と、G画素に係る前記重畳量(Gs)と、C画素に係る前記重畳量(Cs)と、B画素に係る前記重畳量(Bs)と、M画素に係る前記重畳量(Ms)とは、以下の関係を有することを特徴とする請求項2又は3に記載の液晶表示装置。
     Rs>Ys>Gs>Cs>Bs>Ms
    The plurality of colors are Red (R), Yellow (Y), Green (G), Cyan (C), Blue (B), and Magenta (M).
    The superimposition amount (Rs) for the R pixel, the superposition amount (Ys) for the Y pixel, the superposition amount (Gs) for the G pixel, the superposition amount (Cs) for the C pixel, and the B pixel 4. The liquid crystal display device according to claim 2, wherein the superimposition amount (Bs) according to claim 4 and the superposition amount (Ms) according to M pixel have the following relationship.
    Rs>Ys>Gs>Cs>Bs> Ms
PCT/JP2014/076451 2014-10-02 2014-10-02 Liquid crystal display device WO2016051575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076451 WO2016051575A1 (en) 2014-10-02 2014-10-02 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076451 WO2016051575A1 (en) 2014-10-02 2014-10-02 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2016051575A1 true WO2016051575A1 (en) 2016-04-07

Family

ID=55629661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076451 WO2016051575A1 (en) 2014-10-02 2014-10-02 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2016051575A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048055A (en) * 2004-08-04 2006-02-16 Samsung Electronics Co Ltd Thin film transistor display panel and liquid crystal display equipped with the same
WO2011086749A1 (en) * 2010-01-15 2011-07-21 シャープ株式会社 Liquid crystal display device
WO2012093630A1 (en) * 2011-01-07 2012-07-12 シャープ株式会社 Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048055A (en) * 2004-08-04 2006-02-16 Samsung Electronics Co Ltd Thin film transistor display panel and liquid crystal display equipped with the same
WO2011086749A1 (en) * 2010-01-15 2011-07-21 シャープ株式会社 Liquid crystal display device
WO2012093630A1 (en) * 2011-01-07 2012-07-12 シャープ株式会社 Liquid crystal display device

Similar Documents

Publication Publication Date Title
US8207924B2 (en) Display device
US9934736B2 (en) Liquid crystal display and method for driving the same
US8654050B2 (en) Multiple-primary-color liquid crystal display device
US9019184B2 (en) Liquid crystal display device including specific subpixel arrangement
US20170154561A1 (en) Array substrate and the driving method thereof
KR102509164B1 (en) Display Device and Method of Sub-pixel Transition
US10510306B2 (en) Display panel and display apparatus having the same
WO2006070559A1 (en) Display panel driving device, display panel, display device provided with such display panel, and display panel driving method
US20120200615A1 (en) Liquid crystal display device
US20140125644A1 (en) Display panel and driving method thereof, and display apparatus
KR101992103B1 (en) Liquid crystal display and driving method of the same
JP2016057619A (en) Display device and drive method of the same
JP2006259135A (en) Display apparatus and color filter substrate
US11915665B2 (en) Display panel and a display apparatus having the same
JP5173038B2 (en) Liquid crystal display
JP2015099331A (en) Liquid crystal display device
KR20150144897A (en) Method of driving display panel and display apparatus for performing the same
KR20160004855A (en) Display device
US20040239605A1 (en) Device and method for driving polarity inversion of electrodes of LCD panel
KR20070102125A (en) Liquid crystal display apparatus
JP5358918B2 (en) Driving method of liquid crystal display element
KR101982795B1 (en) Display panel and display apparatus having the same
WO2016051575A1 (en) Liquid crystal display device
JP6324672B2 (en) Display device
KR102406708B1 (en) Plat Display Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP