WO2012093612A1 - 円筒部溶接形成方法および溶接装置 - Google Patents

円筒部溶接形成方法および溶接装置 Download PDF

Info

Publication number
WO2012093612A1
WO2012093612A1 PCT/JP2011/080070 JP2011080070W WO2012093612A1 WO 2012093612 A1 WO2012093612 A1 WO 2012093612A1 JP 2011080070 W JP2011080070 W JP 2011080070W WO 2012093612 A1 WO2012093612 A1 WO 2012093612A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
cylindrical
overlay
cylindrical portion
build
Prior art date
Application number
PCT/JP2011/080070
Other languages
English (en)
French (fr)
Inventor
正明 石井
修嗣 上田
宣隆 中島
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012093612A1 publication Critical patent/WO2012093612A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels

Definitions

  • the present invention relates to a cylindrical part welding forming method and welding apparatus for forming a cylindrical part protruding from a welding surface by overlay welding.
  • a build-up welding method in which build-up welding is performed on a nozzle by controlling a turning table that holds and rotates and tilts a nozzle to be welded and a welding head that welds the nozzle.
  • a turning table that holds and rotates and tilts a nozzle to be welded
  • a welding head that welds the nozzle.
  • the welding object must be rotated (turned). For this reason, when a welding target object is a big structure which is hard to move, for example, it is difficult to perform predetermined welding to a welding target object. In particular, when a cylindrical portion having a predetermined thickness is formed on the welding surface of the welding object by overlay welding, it is difficult to perform efficient welding when the welding object is rotated.
  • an object of the present invention is to provide a cylindrical part welding forming method and a welding apparatus capable of performing overlay welding efficiently when forming a cylindrical part on a welding surface.
  • the cylindrical part weld formation method of the present invention is a cylindrical part weld formation method in which a cylindrical part protruding from a welding surface is formed by overlay welding, and the axial direction of the formed cylindrical part is the protruding direction of the cylindrical part. It is a spiral overlay that performs overlay welding in a spiral shape on the welding surface by moving in the radial direction of the cylindrical portion while rotating in the circumferential direction of the cylindrical portion around the axis of the formed cylindrical portion A welding process is provided.
  • the welding surface when the welding surface is not flat, the welding surface can be flattened in the flat overlay welding process.
  • spiral overlay welding can be suitably performed on a flat weld surface.
  • the welding surface is the outer peripheral surface of a cylindrical container that is point-symmetrical about the axis of the cylindrical portion, and in the flat overlay welding process, welding is performed so that it is point-symmetrical about the axis of the cylindrical portion. It is preferable to perform overlay welding on the surface.
  • the outer peripheral surface is easily flattened by performing overlay welding so that the cylindrical outer peripheral surface is point-symmetrical about the axis of the cylindrical portion. be able to.
  • a cylindrical tube welding step for welding the cylindrical tube is further provided before the spiral overlay welding step, and in the cylindrical tube welding step, the axial center of the cylindrical tube to be welded is coaxial with the axial center of the formed cylindrical portion. It is preferable to weld the cylindrical tube to the welding surface so as to be on top.
  • the spiral build-up welding process can be performed in a state where the cylindrical tube is welded on the same axis of the formed cylindrical portion. That is, in the spiral build-up welding process, build-up welding is performed in a spiral shape with the cylindrical tube serving as the inner wall of the cylindrical portion. For this reason, in the spiral build-up welding process, it is not necessary to perform build-up welding at the axial center of the cylindrical portion, so that build-up welding can be performed efficiently. Moreover, the cylindrical tube can suppress welding sag toward the axial center of the cylindrical portion.
  • the welding apparatus of the present invention is a welding apparatus for forming a cylindrical portion protruding from a welding surface by overlay welding, and the axial direction of the formed cylindrical portion is a protruding direction of the cylindrical portion, and the welding surface
  • a welding head that performs welding toward the welding head, a filler material supply part that supplies a filler material toward the welding head, and a moving mechanism that can move the welding head in the circumferential direction and the radial direction of the formed cylindrical part
  • a control unit capable of controlling the moving mechanism, and the control unit moves in the radial direction of the cylindrical portion while rotating the welding head around the axis of the formed cylindrical portion in the circumferential direction of the cylindrical portion.
  • control unit is formed on the welding surface so as to be point-symmetric about the axis of the cylindrical portion while rotating the welding head in the circumferential direction of the cylindrical portion around the axis of the formed cylindrical portion. It is preferable that point symmetric overlay welding control for performing overlay welding can be executed.
  • overlay welding can be performed on a welding surface that is point-symmetric about the axis of the cylindrical portion by point-symmetric overlay welding control. For this reason, for example, when flattening a cylindrical outer peripheral surface that is point-symmetrical about the axis of the cylindrical portion, by performing point-symmetric overlay welding control, By performing overlay welding so as to be point-symmetric about the axis, the outer peripheral surface can be easily flattened.
  • FIG. 1 is a front view of a pressure vessel to be welded by the welding apparatus according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the pressure vessel cut along a plane orthogonal to the axial direction.
  • FIG. 3 is a partial cross-sectional view of a cylindrical portion serving as a basis of the cylindrical window, cut by a plane orthogonal to the axial direction of the pressure vessel.
  • FIG. 4 is a front view of the welding apparatus according to the present embodiment.
  • FIG. 5 is an explanatory diagram when the welding operation of the welding apparatus by flat overlay welding control is viewed in plan.
  • FIG. 6 is an explanatory diagram when the welding operation of the welding apparatus by the spiral overlay welding control is viewed in plan.
  • FIG. 5 is an explanatory diagram when the welding operation of the welding apparatus by flat overlay welding control is viewed in plan.
  • FIG. 7 is an explanatory diagram illustrating a first pipe welding process and a flat overlay welding process of the cylindrical part welding forming method according to the present embodiment.
  • FIG. 8 is an explanatory diagram when the welding operation of the welding apparatus in the flat overlay welding process is viewed from the cross-sectional side.
  • FIG. 9 is an explanatory diagram showing a spiral overlay welding process of the cylindrical part welding forming method according to the present embodiment.
  • FIG. 10 is an explanatory diagram when the welding operation of the welding apparatus in the spiral overlay welding process is viewed from the cross-sectional side.
  • FIG. 11 is an explanatory diagram illustrating a build-up process of the cylindrical part weld forming method according to the present embodiment.
  • FIG. 12 is an explanatory diagram illustrating a second pipe welding process of the cylindrical part welding forming method according to the present embodiment.
  • FIG. 13 is an explanatory diagram illustrating a cladding welding process of the cylindrical part welding forming method according to the present embodiment.
  • the cylindrical part welding forming method according to the present embodiment is a method of forming a cylindrical part by performing overlay welding on the welding surface of the container.
  • This cylindrical part welding forming method is performed using a welding apparatus, and a vessel to be welded is, for example, a pressure vessel of a steam generator used in a pressurized water nuclear reactor.
  • a vessel to be welded is, for example, a pressure vessel of a steam generator used in a pressurized water nuclear reactor.
  • the cylindrical part welding formation method and welding apparatus of a present Example are applied and demonstrated to a pressure vessel as a container, you may apply not only to a pressure vessel but to any container.
  • the pressure vessel to be welded will be described with reference to FIGS. 1 to 3.
  • FIG. 1 is a front view of a pressure vessel to be welded by the welding apparatus according to the present embodiment
  • FIG. 2 is a cross-sectional view of the pressure vessel taken along a plane orthogonal to the axial direction
  • FIG. It is sectional drawing which cut the cylindrical part used as the foundation of a window with the surface orthogonal to the axial direction of a pressure vessel.
  • the upper portion in the vertical direction is a thick upper shell
  • the lower portion in the vertical direction is a thin lower shell.
  • the middle part between the upper part and the lower part of the pressure vessel 1 is formed in a tapered shape that tapers from the upper side toward the lower side.
  • the upper shell of the pressure vessel 1 has a cylindrical window 5 used for monitoring the inside of the pressure vessel 1, inspecting the inside of the pressure vessel 1, and detecting the state of the inside of the pressure vessel 1.
  • a plurality of pressure vessels 1 are provided in the circumferential direction.
  • four cylindrical windows 5 are provided.
  • the four cylindrical windows 5 are provided at equal intervals by shifting the phase by 90 ° in the circumferential direction.
  • the cylindrical window 5 is provided so as to protrude from the outer peripheral surface 1 a of the pressure vessel 1, and the protruding direction of the cylindrical window 5 is the axial direction of the cylindrical window 5.
  • the cylindrical window 5 is formed by a welding device 20 and a cylindrical part welding forming method, which will be described later, with a cylindrical part 5a serving as a foundation. And the cylindrical window 5 is comprised by attaching a window material etc. to the formed cylindrical part 5a.
  • the cylindrical portion 5 a includes a first build-up portion 10 that is build-up welded to the outer peripheral surface 1 a of the pressure vessel 1, and a second build-up weld that is build-up welded to the first build-up portion 10. And a through-hole 12 that penetrates the pressure vessel 1, the first build-up part 10, and the second build-up part 11.
  • the first build-up portion 10 is formed in a cylindrical shape, and the outer peripheral surface 10a on the axial pressure vessel side (the lower side in the drawing) is formed into a curved surface that protrudes toward the through-hole 12 side.
  • the second build-up part 11 is formed in a cylindrical shape, and is provided coaxially with the first build-up part 10. The diameter of the second build-up part 11 is smaller than the diameter of the first build-up part 10.
  • the first build-up part 10 is made of the same material as the pressure vessel 1, and the second build-up part 11 is made of a material different from the first build-up part 10.
  • the through-hole 12 has a circular cross section, and penetrates the pressure vessel 1 while passing through the axial center of the cylindrical portion 5a, that is, the axial centers of the first and second built-up portions 10 and 11. It is formed.
  • the through-hole 12 has a chamfered inner edge of the pressure vessel 1.
  • FIG. 4 is a front view of the welding apparatus according to the present embodiment.
  • the welding apparatus 20 is configured to be able to perform submerged arc welding.
  • the welding device 20 is attached to a frame (not shown), and includes a welding head 21 that performs welding, a wire reel (a filler material supply unit) 22 that supplies a welding wire (a filler material) toward the welding head 21, and A hopper 23 that supplies flux toward the welding head 21, a moving mechanism 24 that moves the welding head 21, and a control unit 25 that controls them are provided.
  • a present Example demonstrates and applies to submerged arc welding, it is not limited to this, It can apply also to automatic welding, such as automatic TIG welding, automatic MIG welding, and automatic MAG welding.
  • the welding head 21 sends out the supplied welding wire from the tip, and generates an arc between the welding wire fed from the tip and the welding surface.
  • the welding head 21 is provided with a head angle adjustment mechanism 28 that adjusts the welding angle with respect to the welding surface of the welding head 21, and the welding angle of the welding head 21 with respect to the welding surface is appropriately set by the head angle adjustment mechanism 28. Adjusted.
  • the wire reel 22 appropriately supplies a welding wire according to welding by the welding head 21.
  • the hopper 23 stores the flux therein and supplies the flux in advance of the welded portion of the welding head 21.
  • the moving mechanism 24 moves the welding head 21 in the ⁇ direction, the Y direction, and the Z direction, and includes a ⁇ axis moving mechanism 31, a Y axis moving mechanism 32, and a Z axis moving mechanism 33.
  • the ⁇ -axis moving mechanism 31 is attached to the frame and can rotate the welding head 21 in the ⁇ direction.
  • the Y-axis moving mechanism 32 is attached to the ⁇ -axis moving mechanism 31 and can move the welding head 21 in the Y direction.
  • the welding head 21 is moved in the radial direction of the cylindrical portion 5a. Can be moved to.
  • the Z-axis moving mechanism 33 is attached to the Y-axis moving mechanism 32 and can move the welding head 21 in the Z direction.
  • the welding head 21 is moved in the axial direction of the cylindrical portion 5a. Can be moved to.
  • the control unit 25 adjusts the supply amount of the welding wire supplied toward the welding head 21 or controls the movement of the welding head 21 by the moving mechanism 24.
  • the control unit 25 includes a ⁇ -axis sensor 35 that detects a rotation angle in the ⁇ direction, a Y-axis sensor 36 that detects a movement amount in the Y direction, and a Z-axis sensor 37 that detects a movement amount in the Z direction. Is connected. Then, the control unit 25 controls the ⁇ -axis moving mechanism 31, the Y-axis moving mechanism 32, and the Z-axis moving mechanism 33 based on detection by the ⁇ -axis sensor 35, the Y-axis sensor 36, and the Z-axis sensor 37, respectively. .
  • the welding apparatus 20 appropriately controls the movement of the welding head 21 by the moving mechanism 24 while adjusting the supply amount of the welding wire supplied to the welding head 21 by controlling each part by the control unit 25.
  • the control part 25 is comprised so that execution of point symmetrical overlay welding control and spiral overlay welding control is possible.
  • point-symmetric overlay welding control and the spiral overlay welding control will be described.
  • FIG. 5 is an explanatory diagram when the welding operation of the welding apparatus by flat overlay welding control is viewed from the plane side
  • FIG. 6 is when the welding operation of the welding apparatus by spiral overlay welding control is viewed from the plane side. It is explanatory drawing of.
  • the point-symmetric overlay welding control is performed by rotating (moving) the welding head 21 in the circumferential direction ( ⁇ direction) of the cylindrical portion 5a with respect to the formed cylindrical portion 5a. In this control, overlay welding is performed so as to be point-symmetric about the axis.
  • the outer peripheral surface 1a of the pressure vessel 1 to be welded is 180 ° symmetrical with respect to the axis of the formed cylindrical portion 5a. That is, on the circumferential center line L1 of the pressure vessel 1 that passes through the axial center P of the cylindrical portion 5a, the outer peripheral surface 1a of the pressure vessel 1 becomes farther away from the axial center P of the cylindrical portion 5a. Side). Further, on the axial center line L2 of the pressure vessel 1 passing through the axial center P of the cylindrical portion 5a, the outer peripheral surface 1a of the pressure vessel 1 has the same height as the surface at the axial center P of the cylindrical portion 5a.
  • the flat overlay region E1 is an arc-shaped region centered on the center line L1.
  • the outer peripheral surface 1a of the pressure vessel 1 to be welded is not flat, and the point-symmetric build-up welding control is executed to make the outer peripheral surface 1a of the pressure vessel 1 flat.
  • the welding apparatus 20 moves the welding head 21 by a predetermined angle ⁇ with respect to the outer peripheral surface 1a sandwiching the center line L2 to overlay the flat overlay region E1. Welding is performed, and thereafter, the welding head 21 is circulated, and the welding head 21 is moved by a predetermined angle ⁇ to the other outer peripheral surface 1a sandwiching the center line L2, and overlay welding is performed in the flat overlay region E1. .
  • the welding start position S1 of the welding head 21 on the outer peripheral surface 1a on one side and the welding start position S2 of the welding head 21 on the outer peripheral surface 1a on the other side are symmetric with respect to 180 °.
  • the welding end position T1 of the welding head 21 on the outer peripheral surface 1a on one side and the welding end position T2 of the welding head 21 on the outer peripheral surface 1a on the other side are symmetrical by 180 °.
  • the spiral build-up welding control is performed by rotating (moving) the welding head 21 in the circumferential direction ( ⁇ direction) of the cylindrical portion 5a with respect to the formed cylindrical portion 5a. It is control which moves in the direction (Y direction) and performs overlay welding in a spiral shape.
  • the spiral build-up welding control is executed to form the first build-up portion 10 of the cylindrical portion 5 a with respect to the pressure vessel 1.
  • build-up welding is performed on the spiral build-up region E ⁇ b> 2 that is substantially flat and necessary for forming the first build-up portion 10.
  • the spiral build-up area E2 is a circular area centered on the axis of the cylindrical portion 5a.
  • the welding apparatus 20 causes the welding head 21 to make one round in the circumferential direction on the radially inner side of the cylindrical portion 5a to be formed. After welding, the welding head 21 is moved to the outer peripheral side in the radial direction of the cylindrical portion 5a, so that the welding head 21 makes one round in the circumferential direction and is welded all around.
  • the welding head 21 forms an overlap portion 40 where the start end side and the rear end side of overlay welding overlap, and after the formation of the overlap portion 40, the welding head 21 is formed on the radially outer side of the cylindrical portion 5 a. Moving. And the welding apparatus 20 performs build-up welding in a spiral shape until the entire region of the spiral build-up region E2 is build-up welded.
  • a first pipe welding process (cylindrical pipe welding process), a flat overlay welding process, a spiral overlay welding process, an overlaying process, a second pipe welding process, and a cladding welding process. And the cylindrical portion processing step are sequentially performed.
  • FIG. 7 is an explanatory view showing a first pipe welding process and a flat overlay welding process of the cylindrical part welding forming method according to the present embodiment.
  • the first pipe welding step is a step of welding a first pipe (cylindrical tube) 50 to the outer peripheral surface 1 a of the pressure vessel 1.
  • the first pipe 50 is welded to the outer peripheral surface 1a so that the axial direction of the first pipe 50 is the protruding direction of the cylindrical portion 5a that protrudes with respect to the outer peripheral surface 1a.
  • welding is performed such that the axial center of the first pipe 50 is coaxial with the axial center of the formed cylindrical portion 5a.
  • the flat build-up welding process is a process of executing point-symmetric build-up welding control and flattening the outer peripheral surface 1a of the pressure vessel 1 by the welding device 20.
  • the outer peripheral surface 1a of the pressure vessel 1 is a curved surface that curves in the circumferential direction of the pressure vessel 1 with the center line L2 interposed therebetween. For this reason, in the flat overlay welding process, the outer peripheral surface 1a curved in the circumferential direction of the pressure vessel 1 is flattened across the center line L2. At this time, in the flat overlay welding process, overlay welding is performed while the welding head 21 of the welding apparatus 20 is rotated in the circumferential direction of the cylindrical portion 5a.
  • welding is performed by moving the welding head 21 of the welding device 20 to the outer peripheral surface 1a on one side across the center line L2 by a predetermined angle ⁇ , and thereafter the welding head 21 is turned around. Then, welding is performed by moving the other side outer peripheral surface 1a across the center line L2 by a predetermined angle ⁇ . That is, in the flat build-up welding process, the welding head 21 is moved from the welding start position S1 to the welding end position T1 on the outer peripheral surface 1a on one side, and then the welding head 21 is circulated and the other side is turned.
  • Overlay welding is performed by moving the welding head 21 from the welding start position S2 to the welding end position T2 of the outer peripheral surface 1a.
  • point-symmetric build-up welding control is executed a plurality of times on the flat build-up region E1 until the outer peripheral surface 1a of the pressure vessel 1 becomes flat.
  • FIG. 8 is an explanatory diagram when the welding operation of the welding apparatus in the flat overlay welding process is viewed from the cross-sectional side.
  • the build-up welding is performed on the flat build-up region E ⁇ b> 1 by performing point-symmetric build-up welding control five times.
  • overlay welding is performed at the first position I1, which is the outermost peripheral side of the flat overlay region E1
  • the second point-symmetric overlay welding control the inner circumference of the first position I1 is achieved.
  • Overlay welding is performed at the second position I2 on the side.
  • FIG. 9 is an explanatory view showing a spiral overlay welding process of the cylindrical part welding forming method according to the present embodiment.
  • the spiral build-up welding control is executed, and the welding device 20 forms the first build-up portion 10 of the cylindrical portion 5 a on the outer peripheral surface 1 a of the pressure vessel 1. It is a process.
  • the outer circumference of the pressure vessel 1 is moved by moving the welding head 21 of the welding device 20 from the inner side to the outer side in the radial direction of the cylindrical portion 5a while rotating in the circumferential direction of the cylindrical portion 5a. Overlay welding is performed on the surface 1a in a spiral shape.
  • the welding head 21 is made to make one turn in the circumferential direction, and then the entire circumference is welded. By moving to the outside in the radial direction and repeating this, build-up welding is performed on the spiral build-up region E2.
  • the spiral build-up welding control is executed a plurality of times until the height of the cylindrical portion 5a in the axial direction (Z direction) reaches a predetermined height.
  • FIG. 10 is an explanatory diagram when the welding operation of the welding apparatus in the spiral overlay welding process is viewed from the cross-sectional side.
  • the first layer build-up welding is performed by spirally welding the spiral build-up region E2 from the inside to the outside of the cylindrical portion 5a.
  • the spiral build-up welding process build-up welding is formed over a plurality of layers until the height of the cylindrical portion 5a reaches a predetermined height.
  • FIG. 11 is an explanatory view showing a build-up process of the cylindrical part welding forming method according to the present embodiment.
  • the build-up process is a process of forming a circular groove 52 by machining on the end surface on the outer side in the axial direction of the first build-up portion 10 formed by the spiral build-up welding process.
  • the formed circular groove 52 has a diameter that is approximately half the diameter of the first build-up portion 10, and the first pipe 50 and the first build-up are centered on the axis of the cylindrical portion 5a.
  • a part of the part 10 is formed in a circular shape.
  • FIG. 12 is an explanatory view showing a second pipe welding process of the cylindrical part welding forming method according to the present embodiment.
  • the second pipe welding step is a step of welding the second pipe 54 surrounding the circular groove 52 formed by the build-up processing step to the end surface on the outer side in the axial direction of the first build-up portion 10. is there.
  • the second pipe 54 is connected to the axially outer end surface of the first build-up portion 10 so that the axial center of the second pipe 54 is coaxial with the axial center of the formed cylindrical portion 5a.
  • a circular lid 56 is attached to the opening on the outer side in the axial direction of the first pipe 50.
  • FIG. 13 is an explanatory view showing a cladding welding process of the cylindrical part welding forming method according to the present embodiment.
  • the clad welding process is a process of forming the second built-up portion 11 on the end surface on the axially outer side of the first built-up portion 10. That is, in the clad welding process, the second built-up portion 11 is formed by performing build-up welding on the circular groove 52 inside the second pipe 54. In the cladding welding process, build-up welding is performed until the height of the second build-up portion 11 in the axial direction reaches a predetermined height.
  • the clad welding process may be performed using the welding apparatus 20 or may be performed manually without using the welding apparatus 20.
  • the first built-up part 10 and the second built-up part 11 formed by the above process are processed into a predetermined shape to form a cylindrical part 5a shown in FIG.
  • the through-hole 12 that communicates the outside and the inside of the pressure vessel 1 is formed at the axial center of the cylindrical part 5a, and the first and second build-up parts 10 and 2 are built up.
  • the part 11 is formed into a predetermined shape by gouging.
  • the diameter of the formed through-hole 12 is larger than the diameter of the first pipe 50 and smaller than the diameter of the second built-up portion 11.
  • the second built-up portion 11, the first built-up portion 10, the first pipe 50, and the pressure vessel 1 are machined so that the axial center of the through-hole 12 is coaxial with the axial center of the cylindrical portion 5a. To form through. Further, the edge of the through-hole 12 on the pressure vessel side is chamfered.
  • the outer peripheral surface 10a of the first build-up portion 10 is formed in a curved surface in which the axial pressure vessel side is convex toward the through-hole side, and the second second build-up portion side (upper side in the drawing) is formed in a cylindrical shape. Is done.
  • the outer peripheral surface 11 a of the second build-up portion 11 is formed in a cylindrical shape so as to remove the second pipe 54.
  • the cylindrical portion 5a serving as the basis of the cylindrical window 5 can be formed on the outer peripheral surface 1a of the pressure vessel 1.
  • the cylindrical window 5 is comprised by attaching window material etc. to the formed cylindrical part 5a.
  • the spiral build-up welding control is executed, and the overlay welding is performed in a spiral shape.
  • the first build-up portion 10 of the cylindrical portion 5a can be formed.
  • build-up welding can be performed without moving the outer peripheral surface 1a of the pressure vessel 1, and build-up welding can be performed without interruption.
  • the first build-up portion 10 of the cylindrical portion 5a can be efficiently formed on the outer peripheral surface 1a of the pressure vessel 1.
  • the point-symmetric welding control is executed in the flat build-up welding process so that the outer peripheral surface 1a of the pressure vessel 1 is point-symmetric about the axis of the cylindrical portion 5a.
  • the outer peripheral surface 1a of the pressure vessel 1 can be easily flattened.
  • spiral build-up welding can be suitably performed on the outer peripheral surface 1a that has become flat.
  • the first pipe 50 is welded to the outer peripheral surface 1a of the pressure vessel 1 in the first pipe welding process before the spiral build-up welding process, so that the shaft of the cylindrical portion 5a is formed in the spiral build-up welding process. Since it is not necessary to perform overlay welding at the center, overlay welding can be performed efficiently. Moreover, the 1st pipe 50 can suppress the welding sag which goes to the axial center of the cylindrical part 5a by the build-up welding of a spiral build-up welding process.
  • cylindrical part welding forming method and welding apparatus are useful in the case of forming a cylindrical part by overlay welding, and are particularly suitable for welding a pressure vessel of a steam generator. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

 圧力容器の外周面から突出する円筒部を、肉盛溶接により形成する円筒部溶接形成方法であって、形成される円筒部の軸方向は、円筒部の突出方向となっており、形成される円筒部の軸を中心として、円筒部の周方向に周回させながら、円筒部の径方向に移動させることで、圧力容器の外周面に渦巻状に肉盛溶接を行う渦巻肉盛溶接工程を備えた。また、渦巻肉盛溶接工程前に、形成される円筒部の軸を中心として、円筒部の周方向に周回させながら、溶接面が平坦となるように、溶接面に肉盛溶接を行う平坦肉盛溶接工程をさらに備えた。

Description

円筒部溶接形成方法および溶接装置
 本発明は、溶接面から突出する円筒部を、肉盛溶接により形成する円筒部溶接形成方法および溶接装置に関するものである。
 従来、溶接対象物となる管台を保持して回転および傾動させる旋回テーブルと、管台に溶接を行う溶接ヘッドとを制御して、管台に肉盛溶接を行う肉盛溶接方法が知られている(例えば、特許文献1参照)。
特開平1-178371号公報
 しかしながら、従来の肉盛溶接方法では、溶接対象物を回転(旋回)させなければならない。このため、溶接対象物が、例えば、移動させ難い大きな構造体である場合、溶接対象物に所定の溶接を行うことは難しい。特に、溶接対象物の溶接面に、所定の厚みを有する円筒部を、肉盛溶接により形成する場合には、溶接対象物を回転させると、効率良い溶接を行うことが難しくなる。
 そこで、本発明は、溶接面に円筒部を形成する際に、効率良く肉盛溶接を行うことができる円筒部溶接形成方法および溶接装置を提供することを課題とする。
 本発明の円筒部溶接形成方法は、溶接面から突出する円筒部を、肉盛溶接により形成する円筒部溶接形成方法であって、形成される円筒部の軸方向は、円筒部の突出方向となっており、形成される円筒部の軸を中心として、円筒部の周方向に周回させながら、円筒部の径方向に移動させることで、溶接面に渦巻状に肉盛溶接を行う渦巻肉盛溶接工程を備えたことを特徴とする。
 この構成によれば、渦巻肉盛溶接工程において、所定の厚みの円筒部を肉盛溶接により形成する際、渦巻状に肉盛溶接を行うことができる。このため、渦巻肉盛溶接工程では、溶接面を移動させることなく肉盛溶接を行うことができ、また、肉盛溶接を途切れることなく行うことができる。これにより、溶接面に対し、効率良く円筒部を形成することができる。
 この場合、渦巻肉盛溶接工程前に、形成される円筒部の軸を中心として、円筒部の周方向に周回させながら、溶接面が平坦となるように、溶接面に肉盛溶接を行う平坦肉盛溶接工程をさらに備えたことが好ましい。
 この構成によれば、溶接面が平坦でない場合、平坦肉盛溶接工程において、溶接面を平坦にすることができる。これにより、渦巻肉盛溶接工程において、平坦な溶接面に対し、渦巻状の肉盛溶接を好適に行うことが可能となる。
 この場合、溶接面は、円筒部の軸を中心に点対称となる円筒形状の容器の外周面であり、平坦肉盛溶接工程では、円筒部の軸を中心に点対称となるように、溶接面に肉盛溶接を行うことが好ましい。
 この構成によれば、平坦肉盛溶接工程において、円筒形状の外周面に対し、円筒部の軸を中心に点対称となるように肉盛溶接を行うことで、外周面を簡単に平坦にすることができる。
 この場合、渦巻肉盛溶接工程前に、円筒管を溶接する円筒管溶接工程をさらに備え、円筒管溶接工程では、溶接される円筒管の軸中心が、形成される円筒部の軸中心と同軸上となるように、円筒管を溶接面に溶接することが好ましい。
 この構成によれば、形成される円筒部の同軸上に円筒管が溶接された状態で、渦巻肉盛溶接工程を行うことができる。つまり、渦巻肉盛溶接工程では、円筒管が円筒部の内壁となった状態で、渦巻状に肉盛溶接が行われる。このため、渦巻肉盛溶接工程では、円筒部の軸中心に肉盛溶接を行う必要がないため、効率良く肉盛溶接を行うことができる。また、円筒管は、円筒部の軸中心へ向かう溶接ダレを抑制することができる。
 本発明の溶接装置は、溶接面から突出する円筒部を、肉盛溶接により形成する溶接装置であって、形成される円筒部の軸方向は、円筒部の突出方向となっており、溶接面へ向けて溶接を行う溶接ヘッドと、溶接ヘッドへ向けて溶加材を供給する溶加材供給部と、溶接ヘッドを、形成される円筒部の周方向および径方向に移動可能な移動機構と、移動機構を制御可能な制御部と、を備え、制御部は、形成される円筒部の軸を中心として、溶接ヘッドを、円筒部の周方向に周回させながら、円筒部の径方向に移動させることで、溶接面に渦巻状に肉盛溶接を行う渦巻肉盛溶接制御を実行可能であることを特徴とする。
 この構成によれば、所定の厚みの円筒部を肉盛溶接により形成する際、渦巻肉盛溶接制御により、渦巻状に肉盛溶接を行うことができる。このため、渦巻肉盛溶接制御を実行することで、溶接面を移動させることなく肉盛溶接を行うことができ、また、肉盛溶接を途切れることなく行うことができる。これにより、溶接面に対し、効率良く円筒部を形成することができる。
 この場合、制御部は、形成される円筒部の軸を中心として、溶接ヘッドを、円筒部の周方向に周回させながら、円筒部の軸を中心に点対称となるように、溶接面に肉盛溶接を行う点対称肉盛溶接制御を実行可能であることが好ましい。
 この構成によれば、点対称肉盛溶接制御により、円筒部の軸を中心に点対称となる溶接面に肉盛溶接を行うことができる。このため、例えば、円筒部の軸を中心に点対称となる円筒形状の外周面を平坦にする場合、点対称肉盛溶接制御を実行することにより、円筒形状の外周面に対し、円筒部の軸を中心に点対称となるように肉盛溶接を行うことで、外周面を簡単に平坦にすることができる。
 本発明の円筒部溶接形成方法および溶接装置によれば、溶接面に円筒部を形成する場合、渦巻状に肉盛溶接を行うことができるため、効率良く肉盛溶接を行うことができる。
図1は、本実施例に係る溶接装置の溶接対象となる圧力容器の正面図である。 図2は、圧力容器を軸方向に直交する面で切った断面図である。 図3は、円筒窓の基礎となる円筒部を、圧力容器の軸方向に直交する面で切った部分断面図である。 図4は、本実施例に係る溶接装置の正面図である。 図5は、平坦肉盛溶接制御による溶接装置の溶接動作を平面視したときの説明図である。 図6は、渦巻肉盛溶接制御による溶接装置の溶接動作を平面視したときの説明図である。 図7は、本実施例に係る円筒部溶接形成方法の第1パイプ溶接工程および平坦肉盛溶接工程を示す説明図である。 図8は、平坦肉盛溶接工程における溶接装置の溶接動作を断面側から見たときの説明図である。 図9は、本実施例に係る円筒部溶接形成方法の渦巻肉盛溶接工程を示す説明図である。 図10は、渦巻肉盛溶接工程における溶接装置の溶接動作を断面側から見たときの説明図である。 図11は、本実施例に係る円筒部溶接形成方法の肉盛加工工程を示す説明図である。 図12は、本実施例に係る円筒部溶接形成方法の第2パイプ溶接工程を示す説明図である。 図13は、本実施例に係る円筒部溶接形成方法のクラッド溶接工程を示す説明図である。
 以下、添付した図面を参照して、本発明に係る円筒部溶接形成方法および溶接装置について説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
 本実施例に係る円筒部溶接形成方法は、容器の溶接面に肉盛溶接を行うことで円筒部を形成する方法である。この円筒部溶接形成方法は、溶接装置を用いて行われており、溶接対象となる容器は、例えば、加圧水型原子炉に用いられる蒸気発生器の圧力容器である。なお、本実施例の円筒部溶接形成方法および溶接装置は、容器として圧力容器に適用して説明するが、圧力容器に限らず、いずれの容器に適用してもよい。以下、図1ないし図3を参照して、溶接対象となる圧力容器について説明する。
 図1は、本実施例に係る溶接装置の溶接対象となる圧力容器の正面図であり、図2は、圧力容器を軸方向に直交する面で切った断面図であり、図3は、円筒窓の基礎となる円筒部を、圧力容器の軸方向に直交する面で切った断面図である。圧力容器1は、鉛直方向の上部側が太径の上部胴となっており、鉛直方向の下部側が細径の下部胴となっている。圧力容器1の上部と下部との間の中部は、上部側から下部側へ向けて先細りとなるテーパー形状に形成されている。
 圧力容器1の上部胴には、圧力容器1の内部を監視したり、圧力容器1の内部を点検したり、圧力容器1の内部の状態を検出したりするために用いられる円筒窓5が、圧力容器1の周方向に複数設けられている。本実施例において、円筒窓5は、4つ設けられている。4つの円筒窓5は、周方向に90°ずつ位相をずらして、等間隔に設けられている。円筒窓5は、圧力容器1の外周面1aから突出して設けられており、円筒窓5の突出方向が、円筒窓5の軸方向となっている。
 円筒窓5は、基礎となる円筒部5aが後述する溶接装置20および円筒部溶接形成方法によって形成される。そして、円筒窓5は、形成された円筒部5aに窓材等を取り付けることで構成される。図3に示すように、この円筒部5aは、圧力容器1の外周面1aに肉盛溶接された第1肉盛部10と、第1肉盛部10に肉盛溶接された第2肉盛部11と、圧力容器1、第1肉盛部10および第2肉盛部11を貫通する貫通口12と、を有している。
 第1肉盛部10は、円筒形状に形成されており、軸方向の圧力容器側(図示下側)の外周面10aは、貫通口12側に凸となる曲面に成形されている。第2肉盛部11は、円筒形状に形成されており、第1肉盛部10と同軸上に設けられている。第2肉盛部11の直径は、第1肉盛部10の直径よりも小さい径となっている。なお、第1肉盛部10は、圧力容器1と同じ材料で構成され、第2肉盛部11は、第1肉盛部10と異なる材料で構成されている。貫通口12は、断面円形となっており、円筒部5aの軸中心、つまり、第1肉盛部10および第2肉盛部11の軸中心を貫通すると共に、圧力容器1を貫通するように形成される。貫通口12は、圧力容器1の内部側の縁部が面取りされている。
 次に、図4を参照して、円筒部5aを形成するために使用される溶接装置20について説明する。図4は、本実施例に係る溶接装置の正面図である。この溶接装置20は、サブマージアーク溶接を実行可能に構成されている。溶接装置20は、図示しないフレームに取り付けられており、溶接を行う溶接ヘッド21と、溶接ヘッド21へ向けて溶接ワイヤ(溶加材)を供給するワイヤリール(溶加材供給部)22と、溶接ヘッド21へ向けてフラックスを供給するホッパ23と、溶接ヘッド21を移動させる移動機構24と、これらを制御する制御部25とを備えている。なお、本実施例では、サブマージアーク溶接に適用して説明するが、これに限定されるものではなく、自動ティグ溶接、自動ミグ溶接や、自動マグ溶接等の自動溶接にも適用可能である。
 溶接ヘッド21は、供給される溶接ワイヤを先端から送り出し、先端から繰り出された溶接ワイヤと溶接面との間にアークを生じさせる。また、溶接ヘッド21には、溶接ヘッド21の溶接面に対する溶接角度を調整するヘッド角度調整機構28が設けられており、このヘッド角度調整機構28により、溶接面に対する溶接ヘッド21の溶接角度が適宜調整される。
 ワイヤリール22は、溶接ヘッド21による溶接に応じて、溶接ワイヤを適宜供給している。ホッパ23は、その内部にフラックスを溜めており、溶接ヘッド21の溶接部分に先行してフラックスを供給している。
 移動機構24は、溶接ヘッド21をθ方向、Y方向およびZ方向に移動させており、θ軸移動機構31と、Y軸移動機構32と、Z軸移動機構33とを有している。θ軸移動機構31は、フレームに取り付けられて、溶接ヘッド21をθ方向に回転させることができ、円筒部5aを形成する際には、溶接ヘッド21を円筒部5aの周方向に回転させることができる。Y軸移動機構32は、θ軸移動機構31に取り付けられて、溶接ヘッド21をY方向に移動させることができ、円筒部5aを形成する際には、溶接ヘッド21を円筒部5aの径方向に移動させることができる。Z軸移動機構33は、Y軸移動機構32に取り付けられて、溶接ヘッド21をZ方向に移動させることができ、円筒部5aを形成する際には、溶接ヘッド21を円筒部5aの軸方向に移動させることができる。
 制御部25は、溶接ヘッド21へ向けて供給する溶接ワイヤの供給量を調整したり、移動機構24による溶接ヘッド21の移動を制御したりしている。制御部25には、θ方向への回転角度を検出するθ軸センサ35と、Y方向への移動量を検出するY軸センサ36と、Z方向への移動量を検出するZ軸センサ37とが接続されている。そして、制御部25は、θ軸センサ35、Y軸センサ36およびZ軸センサ37の検出に基づいて、θ軸移動機構31、Y軸移動機構32およびZ軸移動機構33をそれぞれ制御している。
 従って、溶接装置20は、制御部25によって各部が制御されることにより、溶接ヘッド21に供給される溶接ワイヤの供給量を調整しながら、移動機構24により溶接ヘッド21の移動を適宜制御することで、溶接面に対し、所定の溶接を行うことが可能となる。ここで、制御部25は、点対称肉盛溶接制御と、渦巻肉盛溶接制御とを実行可能に構成されている。以下、図5および図6を参照して、点対称肉盛溶接制御と、渦巻肉盛溶接制御とについてそれぞれ説明する。
 図5は、平坦肉盛溶接制御による溶接装置の溶接動作を平面側から見たときの説明図であり、図6は、渦巻肉盛溶接制御による溶接装置の溶接動作を平面側から見たときの説明図である。図5に示すように、点対称肉盛溶接制御は、形成される円筒部5aに対し、溶接ヘッド21を円筒部5aの周方向(θ方向)に周回(移動)させながら、円筒部5aの軸を中心として点対称となるように肉盛溶接を行う制御である。
 ここで、溶接対象となる圧力容器1の外周面1aは、形成される円筒部5aの軸を中心に180°点対称となっている。つまり、円筒部5aの軸中心Pを通る圧力容器1の周方向の中心線L1上において、圧力容器1の外周面1aは、円筒部5aの軸中心Pから遠ざかるにつれて、圧力容器側(図示下方側)へ湾曲する曲面となる。また、円筒部5aの軸中心Pを通る圧力容器1の軸方向の中心線L2上において、圧力容器1の外周面1aは、円筒部5aの軸中心Pにおける面と同じ高さとなる。このとき、圧力容器1の外周面1aを平坦にするには、円筒部5aの軸を中心に180°点対称となる一対の平坦肉盛領域E1に肉盛溶接を行う。平坦肉盛領域E1は、中心線L1を中心とする円弧状の領域となっている。
 このように、溶接対象となる圧力容器1の外周面1aは平坦となっておらず、点対称肉盛溶接制御は、圧力容器1の外周面1aを平坦にするために実行される。点対称肉盛溶接制御を実行すると、溶接装置20は、中心線L2を挟む一方側の外周面1aに対し、所定の角度θ分だけ溶接ヘッド21を移動させて平坦肉盛領域E1に肉盛溶接を行い、この後、溶接ヘッド21を周回させ、中心線L2を挟む他方側の外周面1aに所定の角度θ分だけ溶接ヘッド21を移動させて平坦肉盛領域E1に肉盛溶接を行う。換言すれば、一方側の外周面1aにおける溶接ヘッド21の溶接開始位置S1と、他方側の外周面1aにおける溶接ヘッド21の溶接開始位置S2とは、180°点対称となっており、同様に、一方側の外周面1aにおける溶接ヘッド21の溶接終了位置T1と、他方側の外周面1aにおける溶接ヘッド21の溶接終了位置T2とは、180°点対称となっている。
 図6に示すように、渦巻肉盛溶接制御は、形成される円筒部5aに対し、溶接ヘッド21を円筒部5aの周方向(θ方向)に周回(移動)させながら、円筒部5aの径方向(Y方向)に移動させて渦巻状に肉盛溶接を行う制御である。渦巻肉盛溶接制御は、圧力容器1に対し、円筒部5aの第1肉盛部10を形成するために実行される。渦巻肉盛溶接制御では、第1肉盛部10を形成するために必要な略平坦となる渦巻肉盛領域E2に肉盛溶接される。渦巻肉盛領域E2は、円筒部5aの軸を中心とした円形の領域となっている。
 渦巻肉盛溶接制御を実行すると、溶接装置20は、溶接ヘッド21を、形成される円筒部5aの径方向内側を周方向に一周させることで、円筒部5aの径方向内周側を全周溶接し、この後、溶接ヘッド21を円筒部5aの径方向の外周側に移動させて、溶接ヘッド21を周方向に一周させて全周溶接する。全周溶接を行う場合、溶接ヘッド21は、肉盛溶接の始端側と後端側とが重複するオーバーラップ部40を形成し、オーバーラップ部40の形成後、円筒部5aの径方向外側に移動する。そして、溶接装置20は、渦巻肉盛領域E2の全域を肉盛溶接するまで、渦巻状に肉盛溶接を実行する。
 次に、図7ないし図13を参照して、溶接装置20を用いた円筒部溶接形成方法について説明する。円筒部溶接形成方法では、第1パイプ溶接工程(円筒管溶接工程)と、平坦肉盛溶接工程と、渦巻肉盛溶接工程と、肉盛加工工程と、第2パイプ溶接工程と、クラッド溶接工程と、円筒部加工工程とが順に行われる。
 図7は、本実施例に係る円筒部溶接形成方法の第1パイプ溶接工程および平坦肉盛溶接工程を示す説明図である。図7に示すように、第1パイプ溶接工程は、圧力容器1の外周面1aに第1パイプ(円筒管)50を溶接する工程である。第1パイプ溶接工程では、第1パイプ50の軸方向が、外周面1aに対して突出する円筒部5aの突出方向となるように、外周面1aに第1パイプ50を溶接する。このとき、第1パイプ50の軸中心が、形成される円筒部5aの軸中心と同軸上となるように溶接する。
 平坦肉盛溶接工程は、点対称肉盛溶接制御を実行して、溶接装置20により圧力容器1の外周面1aを平坦にする工程である。圧力容器1の外周面1aは、中心線L2を挟んで、圧力容器1の周方向へ湾曲する曲面となっている。このため、平坦肉盛溶接工程では、中心線L2を挟んで、圧力容器1の周方向へ湾曲する外周面1aを平坦にする。このとき、平坦肉盛溶接工程では、溶接装置20の溶接ヘッド21を、円筒部5aの周方向に周回させながら肉盛溶接を行っている。
 平坦肉盛溶接工程では、溶接装置20の溶接ヘッド21を、中心線L2を挟む一方側の外周面1aに、所定の角度θ分だけ移動させて溶接を行い、この後、溶接ヘッド21を周回させ、中心線L2を挟む他方側の外周面1aに所定の角度θ分だけ移動させて溶接を行う。つまり、平坦肉盛溶接工程では、一方側の外周面1aの溶接開始位置S1から溶接終了位置T1まで溶接ヘッド21を移動させて肉盛溶接を行った後、溶接ヘッド21を周回させ、他方側の外周面1aの溶接開始位置S2から溶接終了位置T2まで溶接ヘッド21を移動させて肉盛溶接を行う。そして、平坦肉盛溶接工程では、圧力容器1の外周面1aが平坦となるまで、平坦肉盛領域E1に対し、点対称肉盛溶接制御が複数回実行される。
 図8は、平坦肉盛溶接工程における溶接装置の溶接動作を断面側から見たときの説明図である。図8に示すように、平坦肉盛溶接工程では、例えば、点対称肉盛溶接制御が5回、実行されることで、平坦肉盛領域E1に肉盛溶接を行っている。1回目の点対称肉盛溶接制御では、平坦肉盛領域E1の最外周側となる第1位置I1に肉盛溶接され、2回目の点対称肉盛溶接制御では、第1位置I1の内周側となる第2位置I2に肉盛溶接される。3回目の点対称肉盛溶接制御では、第1位置I1の軸方向外側となる第3位置I3に肉盛溶接され、4回目の点対称肉盛溶接制御では、第3位置I3の内周側となる第4位置I4に肉盛溶接される。そして、5回目の点対称肉盛溶接制御では、第4位置I4の内周側となる第5位置I5に肉盛溶接される。
 図9は、本実施例に係る円筒部溶接形成方法の渦巻肉盛溶接工程を示す説明図である。図9に示すように、渦巻肉盛溶接工程は、渦巻肉盛溶接制御を実行して、溶接装置20により圧力容器1の外周面1aに、円筒部5aの第1肉盛部10を形成する工程である。渦巻肉盛溶接工程では、溶接装置20の溶接ヘッド21を、円筒部5aの周方向に周回させながら、円筒部5aの径方向の内側から外側へ向けて移動させることで、圧力容器1の外周面1aに渦巻状に肉盛溶接を行う。つまり、渦巻肉盛溶接工程では、溶接した第1パイプ50の外周側において、溶接ヘッド21を周方向に一周させて全周溶接し、この後、オーバーラップ部40の形成後、円筒部5aの径方向の外側に移動させ、これを繰り返すことで、渦巻肉盛領域E2に対し肉盛溶接を行う。なお、渦巻肉盛溶接工程では、軸方向(Z方向)における円筒部5aの高さが所定の高さとなるまで、渦巻肉盛溶接制御が複数回実行される。
 図10は、渦巻肉盛溶接工程における溶接装置の溶接動作を断面側から見たときの説明図である。図10に示すように、渦巻肉盛溶接工程では、円筒部5aの内側から外側へ向けて、渦巻肉盛領域E2に対し、渦巻状に肉盛溶接を行うことで1層目の肉盛溶接を形成する。そして、渦巻肉盛溶接工程では、円筒部5aの高さが所定の高さとなるまで、肉盛溶接を複数の層に亘って形成する。
 図11は、本実施例に係る円筒部溶接形成方法の肉盛加工工程を示す説明図である。図11に示すように、肉盛加工工程は、渦巻肉盛溶接工程により形成された第1肉盛部10の軸方向外側の端面に対し、機械加工により円形溝52を形成する工程である。ここで、形成される円形溝52は、その直径が第1肉盛部10の直径の略半分の長さとなっており、円筒部5aの軸を中心として、第1パイプ50および第1肉盛部10の一部を円形状に切り欠いて形成される。
 図12は、本実施例に係る円筒部溶接形成方法の第2パイプ溶接工程を示す説明図である。図12に示すように、第2パイプ溶接工程は、肉盛加工工程により形成された円形溝52を囲む第2パイプ54を、第1肉盛部10の軸方向外側の端面に溶接する工程である。第2パイプ溶接工程では、第2パイプ54の軸中心が、形成される円筒部5aの軸中心と同軸上となるように、第2パイプ54を第1肉盛部10の軸方向外側の端面に溶接する。また、第2パイプ溶接工程では、第1パイプ50の軸方向外側の開口部に、円形の蓋体56を取り付けている。
 図13は、本実施例に係る円筒部溶接形成方法のクラッド溶接工程を示す説明図である。図13に示すように、クラッド溶接工程は、第1肉盛部10の軸方向外側の端面に、第2肉盛部11を形成する工程である。つまり、クラッド溶接工程では、第2パイプ54の内側にある円形溝52に肉盛溶接を行うことで、第2肉盛部11を形成する。そして、クラッド溶接工程では、第2肉盛部11の軸方向における高さが、所定の高さとなるまで肉盛溶接を行う。なお、クラッド溶接工程は、溶接装置20を用いて行ってもよいし、溶接装置20を用いずに手作業により行ってもよい。
 円筒部加工工程は、上記工程により形成した第1肉盛部10および第2肉盛部11を所定の形状に加工して、図3に示す円筒部5aを形成する。具体的に説明すると、円筒部加工工程では、円筒部5aの軸中心に、圧力容器1の外部と内部とを連通する貫通口12を形成すると共に、第1肉盛部10および第2肉盛部11をガウジングにより所定の形状に形成する。形成される貫通口12は、その径が、第1パイプ50の直径よりも大きく、第2肉盛部11の直径よりも小さくなっている。また、貫通口12の軸中心は、円筒部5aの軸中心と同軸上となるように、第2肉盛部11、第1肉盛部10、第1パイプ50および圧力容器1を、機械加工して貫通形成する。さらに、貫通口12の圧力容器側の縁部は面取り加工される。第1肉盛部10の外周面10aは、軸方向の圧力容器側が、貫通口側に凸となる曲面に形成され、軸方向の第2肉盛部側(図示上側)が、円筒形状に形成される。第2肉盛部11の外周面11aは、第2パイプ54を取り除くように円筒形状に形成される。
 上記のように各工程を順に行うことで、圧力容器1の外周面1aに、円筒窓5の基礎となる円筒部5aを形成することができる。そして、形成した円筒部5aに窓材等を取り付けることで、円筒窓5を構成する。
 以上のように、本実施例の円筒部溶接形成方法および溶接装置20によれば、渦巻肉盛溶接工程において、渦巻肉盛溶接制御を実行して、渦巻状に肉盛溶接を行うことで、円筒部5aの第1肉盛部10を形成することができる。このため、渦巻肉盛溶接工程では、圧力容器1の外周面1aを移動させることなく肉盛溶接を行うことができ、また、肉盛溶接を途切れることなく行うことができる。これにより、渦巻肉盛溶接工程では、圧力容器1の外周面1aに対し、効率良く円筒部5aの第1肉盛部10を形成することができる。
 また、渦巻肉盛溶接工程の前に、平坦肉盛溶接工程において、点対称溶接制御を実行して、圧力容器1の外周面1aに対し、円筒部5aの軸を中心に点対称となるように肉盛溶接を行うことで、圧力容器1の外周面1aを簡単に平坦にすることができる。また、渦巻肉盛溶接工程において、平坦となった外周面1aに対し、渦巻状の肉盛溶接を好適に行うことが可能となる。
 また、渦巻肉盛溶接工程の前に、第1パイプ溶接工程において、圧力容器1の外周面1aに対し、第1パイプ50を溶接することで、渦巻肉盛溶接工程において、円筒部5aの軸中心に肉盛溶接を行う必要がないため、効率良く肉盛溶接を行うことができる。また、第1パイプ50は、渦巻肉盛溶接工程の肉盛溶接によって円筒部5aの軸中心へ向かう溶接ダレを抑制することができる。
 以上のように、本発明に係る円筒部溶接形成方法および溶接装置は、肉盛溶接により円筒部を形成する場合において有用であり、特に、蒸気発生器の圧力容器を溶接する場合に適している。
 1  圧力容器
 5  円筒窓
 5a 円筒部
 10 第1肉盛部
 11 第2肉盛部
 12 貫通口
 20 溶接装置
 21 溶接ヘッド
 22 ワイヤリール
 23 ホッパ
 24 移動機構
 25 制御部
 40 オーバーラップ部
 50 第1パイプ
 52 円形溝
 54 第2パイプ
 56 蓋体
 E1 平坦肉盛領域
 E2 渦巻肉盛領域

Claims (6)

  1.  溶接面から突出する円筒部を、肉盛溶接により形成する円筒部溶接形成方法であって、
     形成される前記円筒部の軸方向は、前記円筒部の突出方向となっており、
     形成される前記円筒部の軸を中心として、前記円筒部の周方向に周回させながら、前記円筒部の径方向に移動させることで、前記溶接面に渦巻状に肉盛溶接を行う渦巻肉盛溶接工程を備えたことを特徴とする円筒部溶接形成方法。
  2.  前記渦巻肉盛溶接工程前に、形成される前記円筒部の軸を中心として、前記円筒部の周方向に周回させながら、前記溶接面が平坦となるように、前記溶接面に肉盛溶接を行う平坦肉盛溶接工程をさらに備えたことを特徴とする請求項1に記載の円筒部溶接形成方法。
  3.  前記溶接面は、前記円筒部の軸を中心に点対称となる円筒形状の容器の外周面であり、
     前記平坦肉盛溶接工程では、前記円筒部の軸を中心に点対称となるように、前記溶接面に肉盛溶接を行うことを特徴とする請求項2に記載の円筒部溶接形成方法。
  4.  前記渦巻肉盛溶接工程前に、円筒管を溶接する円筒管溶接工程をさらに備え、
     前記円筒管溶接工程では、溶接される前記円筒管の軸中心が、形成される前記円筒部の軸中心と同軸上となるように、前記円筒管を前記溶接面に溶接することを特徴とする請求項1ないし3のいずれか1項に記載の円筒部溶接形成方法。
  5.  溶接面から突出する円筒部を、肉盛溶接により形成する溶接装置であって、
     形成される前記円筒部の軸方向は、前記円筒部の突出方向となっており、
     前記溶接面へ向けて溶接を行う溶接ヘッドと、
     前記溶接ヘッドへ向けて溶加材を供給する溶加材供給部と、
     前記溶接ヘッドを、形成される前記円筒部の周方向および径方向に移動可能な移動機構と、
     前記移動機構を制御可能な制御部と、を備え、
     前記制御部は、形成される前記円筒部の軸を中心として、前記溶接ヘッドを、前記円筒部の周方向に周回させながら、前記円筒部の径方向に移動させることで、前記溶接面に渦巻状に肉盛溶接を行う渦巻肉盛溶接制御を実行可能であることを特徴とする溶接装置。
  6.  前記制御部は、形成される前記円筒部の軸を中心として、前記溶接ヘッドを、前記円筒部の周方向に周回させながら、前記円筒部の軸を中心に点対称となるように、前記溶接面に肉盛溶接を行う点対称肉盛溶接制御を実行可能であることを特徴とする請求項5に記載の溶接装置。
PCT/JP2011/080070 2011-01-07 2011-12-26 円筒部溶接形成方法および溶接装置 WO2012093612A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011002482A JP5851694B2 (ja) 2011-01-07 2011-01-07 円筒部溶接形成方法および溶接装置
JP2011-002482 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093612A1 true WO2012093612A1 (ja) 2012-07-12

Family

ID=46457471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080070 WO2012093612A1 (ja) 2011-01-07 2011-12-26 円筒部溶接形成方法および溶接装置

Country Status (2)

Country Link
JP (1) JP5851694B2 (ja)
WO (1) WO2012093612A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481005A (zh) * 2013-08-21 2014-01-01 杭州电子科技大学 一种管道径向螺栓焊接对中辅助机构
US20180264584A1 (en) * 2014-01-14 2018-09-20 Nippon Light Metal Company, Ltd. Method of manufacturing liquid-cooled jacket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229284A (ja) * 1983-06-13 1984-12-22 Ishikawajima Harima Heavy Ind Co Ltd 三次元形状接続部の溶接方法
JPS63140775A (ja) * 1986-12-01 1988-06-13 Mitsubishi Heavy Ind Ltd 多管式熱交換器の補修法
JPH02102492A (ja) * 1988-10-11 1990-04-16 Toshiba Corp 長尺ハウジングの補修方法
JPH03291167A (ja) * 1990-04-05 1991-12-20 Ishikawajima Harima Heavy Ind Co Ltd 肉盛溶接用ジグおよび該ジグを用いた肉盛溶接工法
JP2008130022A (ja) * 2006-11-24 2008-06-05 Daihen Corp 産業用ロボット制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229284A (ja) * 1983-06-13 1984-12-22 Ishikawajima Harima Heavy Ind Co Ltd 三次元形状接続部の溶接方法
JPS63140775A (ja) * 1986-12-01 1988-06-13 Mitsubishi Heavy Ind Ltd 多管式熱交換器の補修法
JPH02102492A (ja) * 1988-10-11 1990-04-16 Toshiba Corp 長尺ハウジングの補修方法
JPH03291167A (ja) * 1990-04-05 1991-12-20 Ishikawajima Harima Heavy Ind Co Ltd 肉盛溶接用ジグおよび該ジグを用いた肉盛溶接工法
JP2008130022A (ja) * 2006-11-24 2008-06-05 Daihen Corp 産業用ロボット制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481005A (zh) * 2013-08-21 2014-01-01 杭州电子科技大学 一种管道径向螺栓焊接对中辅助机构
US20180264584A1 (en) * 2014-01-14 2018-09-20 Nippon Light Metal Company, Ltd. Method of manufacturing liquid-cooled jacket
US10807188B2 (en) * 2014-01-14 2020-10-20 Nippon Light Metal Company, Ltd. Method of manufacturing liquid-cooled jacket

Also Published As

Publication number Publication date
JP2012143769A (ja) 2012-08-02
JP5851694B2 (ja) 2016-02-03

Similar Documents

Publication Publication Date Title
US10835981B2 (en) Method for circumferential welding and a robotic welding system for circumferential welding
US11766732B2 (en) Systems and methods for automated root pass welding
CN104084678B (zh) 接管与安全端环缝全位置钨极惰性气体保护焊焊接方法
JP5679923B2 (ja) 自動溶接システムおよび自動溶接方法
JP6335602B2 (ja) レーザ溶接方法
CN101229612A (zh) 一种薄壁圆筒环缝激光焊接夹具
JP5851694B2 (ja) 円筒部溶接形成方法および溶接装置
CN201147876Y (zh) 一种薄壁圆筒环缝激光焊接夹具
CN104308399A (zh) 核电站crdm耐压壳ω密封焊焊接缺陷返修工具及方法
CN105414751A (zh) 对接管件激光焊接装置及焊接方法
JP5622868B2 (ja) セーフエンド用配管の溶接方法、固定治具および溶接装置
JP2006205171A (ja) 溶接装置及びそれを用いた溶接方法
JP2005219125A (ja) 球形壁に機械加工された環状仕上げ面に溶接材料を被着させる方法及び装置
JP6955453B2 (ja) 肉盛溶接方法
KR102358226B1 (ko) 자동 클래딩 용접장치
US20230056357A1 (en) Method for coaxially welding two tubes together
JP2006000869A (ja) 自動周溶接方法
JP2017094338A (ja) 肉盛溶接方法
CA2976841C (en) Method for producing a welded ring
JP5879087B2 (ja) 固定管の円周溶接方法及び消耗電極式ガスシールドアーク自動溶接装置
JP6918895B2 (ja) メッキ除去方法、溶接方法、溶接物、構造物
JP6161988B2 (ja) 燃料給油管の接続装置及び接続方法
JP6522316B2 (ja) 円筒構造物の溶接システム及び溶接方法
KR101572498B1 (ko) 아르곤용접봉 자동공급장치가 구비된 자동 8자위빙 아르곤용접 토치
JP5956394B2 (ja) スリーブ管隅肉溶接方法及び配管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855225

Country of ref document: EP

Kind code of ref document: A1