WO2012093589A1 - Curable epoxy resin composition - Google Patents

Curable epoxy resin composition Download PDF

Info

Publication number
WO2012093589A1
WO2012093589A1 PCT/JP2011/079686 JP2011079686W WO2012093589A1 WO 2012093589 A1 WO2012093589 A1 WO 2012093589A1 JP 2011079686 W JP2011079686 W JP 2011079686W WO 2012093589 A1 WO2012093589 A1 WO 2012093589A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
compound
optical semiconductor
curable epoxy
Prior art date
Application number
PCT/JP2011/079686
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木弘世
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201180048619.4A priority Critical patent/CN103154073B/en
Priority to KR1020137013075A priority patent/KR101864462B1/en
Publication of WO2012093589A1 publication Critical patent/WO2012093589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Definitions

  • the present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, an optical semiconductor sealing resin composition comprising the curable epoxy resin composition, and the curable epoxy resin.
  • the present invention relates to an optical semiconductor device in which an optical semiconductor element is sealed using a composition.
  • a cured product of a composition containing monoallyl diglycidyl isocyanurate and bisphenol A type epoxy resin is known as a sealing resin having high heat resistance (see Patent Document 1).
  • a sealing resin having high heat resistance see Patent Document 1.
  • coloring proceeds due to light and heat emitted from the optical semiconductor element, and light that should be output is absorbed, As a result, there has been a problem that the luminous intensity of the light output from the optical semiconductor device decreases with time.
  • a liquid alicyclic epoxy resin having an alicyclic skeleton such as an adduct of cyclohexanecarboxylate and ⁇ -caprolactone and 1,2,8,9-diepoxylimonene is known.
  • an object of the present invention is to provide a curable epoxy resin composition that provides a cured product having high transparency, heat resistance, light resistance, and crack resistance. Another object of the present invention is to provide a cured product having high transparency, heat resistance, light resistance, and crack resistance obtained by curing the curable epoxy resin composition. Another object of the present invention is to provide a resin composition for encapsulating an optical semiconductor comprising the above curable epoxy resin composition, from which an optical semiconductor device in which a decrease in light intensity over time is suppressed can be obtained. Another object of the present invention is to provide high heat resistance, light resistance, transparency, and crack resistance obtained by sealing an optical semiconductor element using the above resin composition for optical semiconductor sealing. Another object of the present invention is to provide an optical semiconductor device in which an optical semiconductor element is sealed with a cured product and a decrease in luminous intensity with time is suppressed.
  • the present inventor includes an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a siloxane derivative having two or more epoxy groups in the molecule, and further includes a curing agent and A curable epoxy resin composition containing a curing accelerator or a curing catalyst gives a cured product having excellent heat resistance, light resistance, transparency and crack resistance, and encapsulates an optical semiconductor element with the cured product.
  • the present inventors have found that the optical semiconductor device is less likely to decrease in light intensity over time.
  • the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • a curable epoxy resin composition is provided.
  • the present invention provides an alicyclic epoxy compound (A) and the following formula (1): [Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
  • a curable epoxy resin comprising a monoallyl diglycidyl isocyanurate compound (B) represented by the formula: a siloxane derivative (C) having two or more epoxy groups in the molecule; and a curing catalyst (F).
  • a composition is provided.
  • the content of the siloxane derivative (C) having two or more epoxy groups in the molecule is based on the total amount (100% by weight) of the component (A), the component (B), and the component (C).
  • the curable epoxy resin composition is provided in an amount of 5 to 60% by weight.
  • the curable epoxy resin composition is provided wherein the alicyclic epoxy group of the alicyclic epoxy compound (A) is a cyclohexene oxide group.
  • the alicyclic epoxy compound (A) is represented by the following formula (I-1)
  • the said curable epoxy resin composition which is a compound represented by these is provided.
  • the present invention also provides a cured product obtained by curing the curable epoxy resin composition.
  • the present invention also provides a resin composition for sealing an optical semiconductor comprising the curable epoxy resin composition.
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the above-described resin composition for sealing an optical semiconductor.
  • the curable epoxy resin composition of the present invention has the above-described configuration, a cured product having high transparency, heat resistance, light resistance, and crack resistance can be obtained by curing the resin composition. .
  • an optical semiconductor device in which an optical semiconductor element is encapsulated with the curable epoxy resin composition (an optical semiconductor encapsulating resin composition) of the present invention is less likely to have a decrease in light intensity over time, and has excellent quality and durability. Can be demonstrated.
  • the curable epoxy resin composition of the present invention is used as a sealing resin for an optical semiconductor device provided with a high-output, high-brightness optical semiconductor element, A decrease in luminous intensity can be suppressed.
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device which sealed the element (optical semiconductor element) with the curable epoxy resin composition of this invention.
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view.
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and the following formula (1).
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1), and two or more in the molecule. It contains at least a siloxane derivative (C) having an epoxy group and a curing catalyst (F).
  • the alicyclic epoxy compound (A) constituting the curable epoxy resin composition of the present invention is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule). More specifically, the alicyclic epoxy compound (A) includes (i) a compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and (ii) a fatty acid. A compound in which an epoxy group is directly bonded to the ring by a single bond is included. However, the alicyclic epoxy compound (A) does not include a siloxane derivative (C) having two or more epoxy groups in the molecule described later.
  • a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting an alicyclic ring is arbitrarily selected from known or commonly used compounds. be able to.
  • the alicyclic epoxy group is preferably a cyclohexene oxide group.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and a group in which a plurality of these are linked.
  • Examples of the alicyclic epoxy compound in which X in the formula (I) is a single bond include compounds represented by the following formula.
  • an alicyclic epoxy compound for example, a commercially available product such as Celoxide 8000 (manufactured by Daicel Corporation) can be used.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1, And divalent cycloalkylene groups (including cycloalkylidene groups) such as 4-cyclohexylene and cyclohexylidene groups.
  • the linking group X is preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—; A group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like.
  • divalent hydrocarbon group include those exemplified above.
  • Representative examples of the alicyclic epoxy compound represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-8).
  • commercially available products such as Celoxide 2021P and Celoxide 2081 (manufactured by Daicel Corporation) can also be used.
  • l and m each represents an integer of 1 to 30.
  • R is an alkylene group having 1 to 8 carbon atoms, and is a linear or branched alkylene group such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, s-butylene, pentylene, hexylene, heptylene, octylene group or the like. Can be mentioned. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as methylene, ethylene, propylene, and isopropylene groups are preferable.
  • Examples of the compound in which the epoxy group is directly bonded to the alicyclic ring with a single bond include a compound represented by the following formula (II).
  • R ′ is a group obtained by removing p —OH from a p-valent alcohol, and p and n represent natural numbers.
  • the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.).
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each () (in parentheses) may be the same or different.
  • the compound examples include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, EHPE 3150 (manufactured by Daicel Corporation). Etc.
  • alicyclic epoxy compounds (A) can be used alone or in combination of two or more.
  • alicyclic epoxy compound (A) 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1) and ceroxide 2021P are particularly preferable.
  • the amount of use (content) of the alicyclic epoxy compound (A) is not particularly limited, but the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B). On the other hand, it is preferably 50 to 90% by weight, more preferably 60 to 90% by weight, still more preferably 70 to 90% by weight. When the amount of the alicyclic epoxy compound (A) used is less than 50% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) is not sufficient, and it may be easily precipitated when placed at room temperature.
  • sum of contents of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) in the total amount (100% by weight) of component (A), component (B), and component (C) (total amount) ) Is not particularly limited, but is preferably 40 to 95% by weight.
  • the content of the alicyclic epoxy compound (A) with respect to the total amount (100% by weight) of the curable epoxy resin composition is particularly limited. However, it is preferably 10 to 90% by weight, more preferably 15 to 80% by weight, and still more preferably 17 to 70% by weight.
  • the content of the alicyclic epoxy compound (A) with respect to the total amount of the curable epoxy resin composition (100% by weight) is: Although not particularly limited, it is preferably 25 to 90% by weight, more preferably 30 to 85% by weight, and still more preferably 35 to 80% by weight.
  • the monoallyl diglycidyl isocyanurate compound (B) used in the present invention can be represented by the following general formula (1).
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms examples include linear or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, pentyl, hexyl, heptyl, and octyl groups. It is done. Of these, a linear or branched alkyl group having 1 to 3 carbon atoms such as methyl, ethyl, propyl and isopropyl groups is preferred.
  • R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
  • monoallyl diglycidyl isocyanurate compound (B) examples include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl And propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like.
  • a monoallyl diglycidyl isocyanurate compound (B) can be used individually or in combination of 2 or more types.
  • the monoallyl diglycidyl isocyanurate compound (B) can be arbitrarily mixed as long as it dissolves in the alicyclic epoxy compound (A), and the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B).
  • the ratio of the alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is preferably 50:50 to 90:10 (weight ratio). Outside this range, it becomes difficult to obtain the solubility of the monoallyl diglycidyl isocyanurate compound (B).
  • the monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group such as alcohol or acid anhydride.
  • the total amount of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) with respect to the total amount (100% by weight) of the epoxy resin (compound having an epoxy group) is not particularly limited, From the viewpoint of improving light resistance and crack resistance, it is preferably 40% by weight or more, more preferably 50% by weight or more, and still more preferably 70% by weight or more.
  • siloxane derivative (C) having two or more epoxy groups in the molecule improves the heat resistance and light resistance of the cured product, and is an optical semiconductor. It plays a role of suppressing a decrease in luminous intensity of the device.
  • the siloxane skeleton in the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited.
  • a cyclic siloxane skeleton; a linear silicone, a cage-type or ladder-type polysilsesquioxane And a polysiloxane skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product and suppressing the decrease in luminous intensity.
  • the siloxane derivative (C) having two or more epoxy groups in the molecule is preferably a cyclic siloxane having two or more epoxy groups in the molecule or a linear silicone having two or more epoxy groups in the molecule.
  • numerator can be used individually or in combination of 2 or more types.
  • the siloxane derivative (C) having two or more epoxy groups in the molecule is a cyclic siloxane having two or more epoxy groups
  • the number of Si—O units forming the siloxane ring (the number of silicon atoms forming the siloxane ring)
  • it is not particularly limited, it is preferably 2 to 12 and more preferably 4 to 8 from the viewpoint of improving the heat resistance and light resistance of the cured product.
  • the weight average molecular weight of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, but is preferably 100 to 3000, more preferably 180 from the viewpoint of improving the heat resistance and light resistance of the cured product. ⁇ 2000.
  • the number of epoxy groups in one molecule of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited as long as it is two or more, but the viewpoint of improving the heat resistance and light resistance of the cured product 2 to 4 (2, 3, or 4) is preferable.
  • the epoxy equivalent (based on JIS K7236) of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, but from the viewpoint of improving the heat resistance and light resistance of the cured product, 180 to 400 It is preferably 240 to 400, more preferably 240 to 350.
  • the epoxy group in the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, but from the viewpoint of improving the heat resistance and light resistance of the cured product, adjacent two carbons constituting the aliphatic ring.
  • An epoxy group composed of an atom and an oxygen atom (alicyclic epoxy group) is preferable, and among them, a cyclohexene oxide group is particularly preferable.
  • siloxane derivative (C) having two or more epoxy groups in the molecule examples include 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl. ] -2,4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,2 , 4,6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -6,8-dipropyl-2, 4,6,8-tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,6-dipropyl-2,4 6,8-tty
  • siloxane derivative (C) having two or more epoxy groups in the molecule examples include alicyclic epoxy group-containing silicone resins described in JP-A-2008-248169 and JP-A-2008-19422.
  • An organopolysilsesquioxane resin having at least two epoxy functional groups in one molecule can also be used.
  • siloxane derivative (C) having two or more epoxy groups in the molecule examples include a trade name “X-40-2678” (Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane having two or more epoxy groups in the molecule. )), Trade name “X-40-2670” (manufactured by Shin-Etsu Chemical Co., Ltd.), and trade name “X-40-2720” can also be used.
  • the amount (content) of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, the total amount (100 weight) of the component (A), the component (B), and the component (C). %) To 5 to 60% by weight, more preferably 8 to 55% by weight, still more preferably 10 to 50% by weight, and particularly preferably 15 to 40% by weight.
  • the amount of the siloxane derivative (C) having two or more epoxy groups in the molecule is less than 5% by weight, the heat resistance and light resistance of the cured product may be lowered.
  • numerator exceeds 60 weight%, the crack resistance of hardened
  • the curing agent (D) has a function of curing the compound having an epoxy group.
  • curing agent (D) in this invention a well-known thru
  • curing agent can be used as a hardening
  • an acid anhydride which is liquid at 25 ° C. is preferable, for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride. An acid etc. can be mentioned.
  • solid acid anhydrides at room temperature such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride are liquid at room temperature (about 25 ° C.). It can be used as the curing agent (D) in the present invention by dissolving in an acid anhydride to form a liquid mixture.
  • curing agent (D) can be used individually or in combination of 2 or more types.
  • an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (a substituent such as an alkyl group is bonded to the ring) are also preferable).
  • the curing agent (D) commercially available products such as Jamaicacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) and HN-5500 (manufactured by Hitachi Chemical Co., Ltd.) can be used. .
  • curing agent (D) It is 50 with respect to the whole quantity (100 weight part) of the compound which has an epoxy group contained in the curable epoxy resin composition of this invention.
  • the amount is preferably -200 parts by weight, more preferably 100-145 parts by weight. More specifically, it is preferably used in a ratio of 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups in all compounds having an epoxy group contained in the curable epoxy resin composition of the present invention. .
  • curing agent (D) is less than 50 weight part, hardening will become inadequate and there exists a tendency for the toughness of hardened
  • curing agent (D) exceeds 200 weight part, hardened
  • the curable epoxy resin composition of the present invention further contains a curing accelerator (E).
  • a hardening accelerator (E) is a compound which has a function which accelerates
  • the curing accelerator (E) known or conventional curing accelerators can be used.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • salts thereof for example, Phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts
  • 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and salts thereof (eg, phosphonium salts) , Sulfonium salts, quaternary ammonium salts, iodonium salts)
  • tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine
  • 2-ethyl-4- Imidazoles such as methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole
  • phosphate ester triphenyl Phosphines such as phosphin
  • U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 18X, 12XD developed products
  • TPP-K, TPP-MK both manufactured by Hokuko Chemical Co., Ltd.
  • PX-4ET manufactured by Nippon Chemical Industry Co., Ltd.
  • the amount of use (content) of the curing accelerator (E) is not particularly limited, but is 0.05 to 0.004 based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, and particularly preferably 0.25 to 2.5 parts by weight.
  • the usage-amount of a hardening accelerator (E) is less than 0.05 weight part, the hardening promotion effect may become inadequate.
  • a curing catalyst (F) may be used instead of the above-described curing agent (D) and curing accelerator (E).
  • the curing reaction of the compound having an epoxy group can be advanced by using the curing catalyst (F) to obtain a cured product.
  • the cationic catalyst cationic polymerization initiator which generate
  • Examples of the cation catalyst that generates cation species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, and hexafluoroarsenate salt. These cationic catalysts can be used alone or in combination of two or more.
  • cationic catalyst examples include trade names “UVACURE1590” (manufactured by Daicel Cytec Co., Ltd.), trade names “CD-1010”, “CD-1011”, “CD-1012” (above, manufactured by Sartomer, USA), Commercial products such as trade name “Irgacure 264” (manufactured by Ciba Japan Co., Ltd.) and trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can also be preferably used.
  • Examples of the cation catalyst that generates cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, and the like.
  • PP-33, CP-66, CP -77 manufactured by ADEKA), FC-509 (manufactured by 3M), UVE1014 (manufactured by GE), Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L, Sun-Aid SI-110L (Sanshin Chemical) Kogyo Co., Ltd.), CG-24-61 (Ciba Japan) and other commercial products can be preferably used.
  • a chelate compound of a metal such as aluminum or titanium and a acetoacetate or diketone compound and a silanol such as triphenylsilanol or a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • the compound with phenols, such as these may be sufficient.
  • These cationic catalysts can be used alone or in combination of two or more.
  • the use amount (content) of the curing catalyst (F) is not particularly limited, but is 0.01 to 15 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. Part by weight is preferable, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0.1 to 10 parts by weight.
  • the curable epoxy resin composition of the present invention may contain rubber particles.
  • rubber particles include particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, particulate SBR (styrene-butadiene rubber), and the like.
  • the rubber particle has a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion, and a functional group capable of reacting with an alicyclic epoxy compound on the surface.
  • the blending amount of the rubber particles can be appropriately adjusted as necessary and is not particularly limited, but with respect to the total amount of the compound having an epoxy group contained in the curable epoxy resin composition (100 parts by weight), The amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight.
  • the amount of rubber particles used is less than 0.5 parts by weight, the crack resistance of the cured product tends to be reduced. On the other hand, if the amount of rubber particles used exceeds 30 parts by weight, the heat resistance and transparency of the cured product are reduced. Tend to decrease.
  • additives can be used in the curable epoxy resin composition of the present invention as long as the effects of the present invention are not impaired.
  • a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin
  • the reaction can be allowed to proceed slowly.
  • silicone and fluorine antifoaming agents, leveling agents, silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, surfactants, silica, alumina, as long as viscosity and transparency are not impaired.
  • Conventional additives such as inorganic fillers, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors, mold release agents and the like can be used.
  • a cured product having excellent physical properties such as transparency, heat resistance, light resistance, and crack resistance
  • the heating temperature (curing temperature) during curing is not particularly limited, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, and still more preferably 100 to 180 ° C.
  • the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient.
  • the resin component may be decomposed.
  • the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased.
  • the resin composition for optical semiconductor encapsulation of the present invention comprises the curable epoxy resin composition of the present invention.
  • the resin composition for encapsulating an optical semiconductor of the present invention the optical semiconductor element was sealed over time with a cured product excellent in various properties such as transparency, heat resistance, light resistance, and crack resistance.
  • An optical semiconductor device in which the luminous intensity is unlikely to decrease can be obtained. Even if the optical semiconductor device includes an optical semiconductor element with high output and high brightness, the light intensity is unlikely to decrease with time.
  • the optical semiconductor device of the present invention is obtained by sealing an optical semiconductor element with the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention.
  • the optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heating and curing under predetermined conditions. Thereby, an optical semiconductor device in which the optical semiconductor element is sealed with the curable epoxy resin composition is obtained.
  • the curing temperature and the curing time can be set in the same range as described above.
  • the curable epoxy resin composition of the present invention is not limited to the optical semiconductor (optical semiconductor element) sealing application described above, and includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, and a resist.
  • Examples 1 to 12 and Comparative Examples 1 to 4 In Examples 1 to 12, the epoxy resin obtained in Production Example 2 and the K agent obtained in Production Example 1 were subjected to self-revolving stirring according to the formulation (unit: parts by weight) shown in Table 1. Using a device (manufactured by Shinky Co., Ltd., Awatori Nertaro AR-250), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition. Further, as shown in Table 1, in Comparative Example 1, only an alicyclic epoxy compound (Dacel Chemical Industries, Ltd., Celoxide 2021P) was used as an epoxy resin, and in Comparative Examples 2 to 4, an epoxy resin containing 2 in the molecule.
  • Table 1 in Comparative Example 1, only an alicyclic epoxy compound (Dacel Chemical Industries, Ltd., Celoxide 2021P) was used as an epoxy resin, and in Comparative Examples 2 to 4, an epoxy resin containing 2 in the molecule.
  • Siloxane derivatives having the above epoxy groups (Shin-Etsu Chemical Co., Ltd., X-40-2678; Shin-Etsu Chemical Co., Ltd., X-40-2720; Shin-Etsu Chemical Co., Ltd., X-40-2670) ) was used in the same manner as above to obtain a curable epoxy resin composition.
  • the curable epoxy resin composition is cast on an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG. 1 and then heated in an oven (resin curing oven) at 120 ° C. for 5 hours.
  • an optical semiconductor device in which the LED element was sealed with the cured resin was obtained.
  • 100 is a reflector (a resin composition for reflecting light)
  • 101 is a metal wiring
  • 102 is an LED element
  • 103 is a bonding wire
  • 104 is a transparent sealing resin (cured product).
  • the epoxy resin obtained in Production Example 2 and a curing catalyst (manufactured by Sanshin Chemical Industry Co., Ltd., Sun-Aid SI-100L) were added according to the formulation (unit: parts by weight) shown in Table 2.
  • Each component was uniformly mixed using a self-revolving stirrer (manufactured by Shinky Co., Ltd., Awatori Nertaro AR-250) and defoamed to obtain a curable epoxy resin composition.
  • Thermal shock test The optical semiconductor devices obtained in Examples and Comparative Examples (two used for each curable epoxy resin composition) were exposed in an atmosphere of ⁇ 40 ° C. for 30 minutes, and then in an atmosphere of 100 ° C. A thermal shock with one cycle of exposure for 30 minutes was applied for 200 cycles using a thermal shock tester. Thereafter, the length of cracks generated in the sealing resin of the optical semiconductor device (cured product of the curable epoxy resin composition) was observed using a digital microscope (VHX-900, manufactured by Keyence Corporation), Of the two optical semiconductor devices, the number of optical semiconductor devices having cracks having a length of 90 ⁇ m or more was measured. The results are shown in Tables 1 and 2.
  • Example and the comparative example is as follows.
  • MA-DGIC monoallyl diglycidyl isocyanurate, manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • X-40 -2678 Siloxane derivative having two epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd.
  • X-40-2720 Siloxane derivative having three epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd.
  • X -40-2670 Siloxane derivative having 4 epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd.
  • U-CAT 18X curing accelerator, manufactured by San Apro Co., Ltd.
  • Ethylene glycol Wako Pure Chemicals Industrial Co., Ltd.
  • Test equipment Resin curing oven Espec Co., Ltd. GPHH-201 -Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1 ⁇ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771 ⁇ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A ⁇ Reflow furnace manufactured by Nippon Antom Co., Ltd., UNI-5016F
  • the curable epoxy resin composition of the present invention can be preferably used for sealing an optical semiconductor element.
  • the curable epoxy resin composition of the present invention includes an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, a transparent substrate, a transparent sheet, a transparent film, an optical element, and an optical element. It can also be used for lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

The purpose of the present invention is to provide a curable epoxy resin composition capable of yielding a cured product which has high transparency, heat resistance, light resistance and crack resistance. This curable epoxy resin composition is characterized by comprising (A) an alicyclic epoxy compound, (B) a monoallyl diglycidyl isocyanurate compound represented by formula (1), (C) a siloxane derivative which has two or more epoxy groups in the molecule, (D) a curing agent, and (E) a cure accelerator. In formula (1), R1 and R2 are each a hydrogen atom or C1-8 alkyl.

Description

硬化性エポキシ樹脂組成物Curable epoxy resin composition
 本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化してなる硬化物、該硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物、及び該硬化性エポキシ樹脂組成物を使用して光半導体素子を封止した光半導体装置に関する。 The present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, an optical semiconductor sealing resin composition comprising the curable epoxy resin composition, and the curable epoxy resin. The present invention relates to an optical semiconductor device in which an optical semiconductor element is sealed using a composition.
 近年、光半導体装置の高出力化が進んでおり、光半導体装置に用いられる樹脂には高い耐熱性及び耐光性が求められている。例えば、青色・白色光半導体用の封止材(封止樹脂)においては、光半導体素子から発せられる光及び熱による封止樹脂の黄変が問題となっている。黄変した封止樹脂は、光半導体素子から発せられた光を吸収するため、光半導体装置から出力される光の光度が経時で低下してしまう。 In recent years, output of optical semiconductor devices has been increased, and high heat resistance and light resistance are required for resins used in optical semiconductor devices. For example, in a sealing material (sealing resin) for a blue / white optical semiconductor, yellowing of the sealing resin due to light and heat emitted from the optical semiconductor element is a problem. Since the yellowing sealing resin absorbs light emitted from the optical semiconductor element, the luminous intensity of the light output from the optical semiconductor device decreases with time.
 これまで、耐熱性が高い封止樹脂として、モノアリルジグリシジルイソシアヌレートとビスフェノールA型エポキシ樹脂を含む組成物の硬化物が知られている(特許文献1参照)。しかしながら、上記硬化物を高出力の青色・白色光半導体用の封止樹脂として用いると、光半導体素子から発せられる光及び熱によって着色が進行し、本来出力されるべき光が吸収されてしまい、その結果、光半導体装置から出力される光の光度が経時で低下するという問題があった。 So far, a cured product of a composition containing monoallyl diglycidyl isocyanurate and bisphenol A type epoxy resin is known as a sealing resin having high heat resistance (see Patent Document 1). However, when the cured product is used as a sealing resin for a high-output blue / white light semiconductor, coloring proceeds due to light and heat emitted from the optical semiconductor element, and light that should be output is absorbed, As a result, there has been a problem that the luminous intensity of the light output from the optical semiconductor device decreases with time.
特開2000-344867号公報JP 2000-344867 A
 高い耐熱性及び耐光性を有し、黄変しにくい封止樹脂として、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートとε-カプロラクトンの付加物、1,2,8,9-ジエポキシリモネンなどの脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を繰り返すこと)のような熱衝撃が加えられた場合や、リフロー工程のような高温工程を経た場合に、クラック(ひび割れ)が生じる等の問題を有していた。このようなクラックが生じることによっても、光半導体装置から出力される光の光度が経時で低下する等の問題が生じていた。 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl (3,4-epoxy) as sealing resins that have high heat resistance and light resistance and are resistant to yellowing A liquid alicyclic epoxy resin having an alicyclic skeleton such as an adduct of cyclohexanecarboxylate and ε-caprolactone and 1,2,8,9-diepoxylimonene is known. However, these alicyclic epoxy resin cured products are vulnerable to various stresses, and when subjected to a thermal shock such as a cold cycle (repeating heating and cooling) or a high temperature process such as a reflow process In addition, there are problems such as the occurrence of cracks. The occurrence of such cracks also causes problems such as a decrease in light intensity of light output from the optical semiconductor device over time.
 このため、光半導体装置(特に、高出力、高輝度の光半導体素子を備えた光半導体装置)から出力される光の経時での光度低下を抑制する、高い耐熱性、耐光性、及び耐クラック性を兼ね備えた透明な封止樹脂が求められているのが現状である。 For this reason, high heat resistance, light resistance, and crack resistance that suppress a decrease in light intensity over time of light output from an optical semiconductor device (particularly, an optical semiconductor device including a high-output, high-brightness optical semiconductor element) Under the present circumstances, there is a demand for a transparent sealing resin having both properties.
 従って、本発明の目的は、高い透明性、耐熱性、耐光性、及び耐クラック性を兼ね備えた硬化物を与える硬化性エポキシ樹脂組成物を提供することにある。
 また、本発明の他の目的は、上記硬化性エポキシ樹脂組成物を硬化してなる、高い透明性、耐熱性、耐光性、及び耐クラック性を兼ね備えた硬化物を提供することにある。
 また、本発明の他の目的は、経時での光度低下が抑制された光半導体装置が得られる、上記硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物を提供することにある。
 また、本発明の他の目的は、上記光半導体封止用樹脂組成物を用いて光半導体素子を封止することにより得られる、高い耐熱性、耐光性、透明性、及び耐クラック性を兼ね備えた硬化物により光半導体素子が封止され、経時での光度低下が抑制された光半導体装置を提供することにある。
Accordingly, an object of the present invention is to provide a curable epoxy resin composition that provides a cured product having high transparency, heat resistance, light resistance, and crack resistance.
Another object of the present invention is to provide a cured product having high transparency, heat resistance, light resistance, and crack resistance obtained by curing the curable epoxy resin composition.
Another object of the present invention is to provide a resin composition for encapsulating an optical semiconductor comprising the above curable epoxy resin composition, from which an optical semiconductor device in which a decrease in light intensity over time is suppressed can be obtained.
Another object of the present invention is to provide high heat resistance, light resistance, transparency, and crack resistance obtained by sealing an optical semiconductor element using the above resin composition for optical semiconductor sealing. Another object of the present invention is to provide an optical semiconductor device in which an optical semiconductor element is sealed with a cured product and a decrease in luminous intensity with time is suppressed.
 本発明者は、上記課題を解決するため鋭意検討した結果、脂環式エポキシ化合物、モノアリルジグリシジルイソシアヌレート化合物、及び分子内に2以上のエポキシ基を有するシロキサン誘導体を含み、さらに硬化剤及び硬化促進剤、又は硬化触媒を含む硬化性エポキシ樹脂組成物が、優れた耐熱性、耐光性、透明性、耐クラック性を兼ね備えた硬化物を与え、該硬化物にて光半導体素子を封止した光半導体装置は、経時で光度が低下しにくいことを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor includes an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a siloxane derivative having two or more epoxy groups in the molecule, and further includes a curing agent and A curable epoxy resin composition containing a curing accelerator or a curing catalyst gives a cured product having excellent heat resistance, light resistance, transparency and crack resistance, and encapsulates an optical semiconductor element with the cured product. As a result, the present inventors have found that the optical semiconductor device is less likely to decrease in light intensity over time.
 すなわち、本発明は、脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000004
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)と、硬化剤(D)と、硬化促進剤(E)とを含むことを特徴とする硬化性エポキシ樹脂組成物を提供する。
That is, the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
Figure JPOXMLDOC01-appb-C000004
[Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
A monoallyl diglycidyl isocyanurate compound (B) represented by the formula, a siloxane derivative (C) having two or more epoxy groups in the molecule, a curing agent (D), and a curing accelerator (E). A curable epoxy resin composition is provided.
 また、本発明は、脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)と、硬化触媒(F)とを含むことを特徴とする硬化性エポキシ樹脂組成物を提供する。
Further, the present invention provides an alicyclic epoxy compound (A) and the following formula (1):
Figure JPOXMLDOC01-appb-C000005
[Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
A curable epoxy resin comprising a monoallyl diglycidyl isocyanurate compound (B) represented by the formula: a siloxane derivative (C) having two or more epoxy groups in the molecule; and a curing catalyst (F). A composition is provided.
 さらに、前記分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の含有量が、成分(A)、成分(B)、及び成分(C)の合計量(100重量%)に対して、5~60重量%である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the content of the siloxane derivative (C) having two or more epoxy groups in the molecule is based on the total amount (100% by weight) of the component (A), the component (B), and the component (C). The curable epoxy resin composition is provided in an amount of 5 to 60% by weight.
 さらに、前記脂環式エポキシ化合物(A)の脂環エポキシ基がシクロヘキセンオキシド基である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition is provided wherein the alicyclic epoxy group of the alicyclic epoxy compound (A) is a cyclohexene oxide group.
 さらに、前記脂環式エポキシ化合物(A)が下記式(I-1)
Figure JPOXMLDOC01-appb-C000006
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
Further, the alicyclic epoxy compound (A) is represented by the following formula (I-1)
Figure JPOXMLDOC01-appb-C000006
The said curable epoxy resin composition which is a compound represented by these is provided.
 また、本発明は、前記の硬化性エポキシ樹脂組成物を硬化してなる硬化物を提供する。 The present invention also provides a cured product obtained by curing the curable epoxy resin composition.
 また、本発明は、前記の硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物を提供する。 The present invention also provides a resin composition for sealing an optical semiconductor comprising the curable epoxy resin composition.
 また、本発明は、前記の光半導体封止用樹脂組成物で光半導体素子を封止した光半導体装置を提供する。 The present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the above-described resin composition for sealing an optical semiconductor.
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、該樹脂組成物を硬化させることにより、高い透明性、耐熱性、耐光性、及び耐クラック性を兼ね備えた硬化物を得ることができる。また、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)を用いて光半導体素子を封止した光半導体装置は、経時で光度が低下しにくく、優れた品質及び耐久性を発揮できる。特に、本発明の硬化性エポキシ樹脂組成物は、高出力、高輝度の光半導体素子を備えた光半導体装置の封止用樹脂として用いた場合であっても、該光半導体装置の経時での光度低下を抑制できる。 Since the curable epoxy resin composition of the present invention has the above-described configuration, a cured product having high transparency, heat resistance, light resistance, and crack resistance can be obtained by curing the resin composition. . In addition, an optical semiconductor device in which an optical semiconductor element is encapsulated with the curable epoxy resin composition (an optical semiconductor encapsulating resin composition) of the present invention is less likely to have a decrease in light intensity over time, and has excellent quality and durability. Can be demonstrated. In particular, even when the curable epoxy resin composition of the present invention is used as a sealing resin for an optical semiconductor device provided with a high-output, high-brightness optical semiconductor element, A decrease in luminous intensity can be suppressed.
本発明の硬化性エポキシ樹脂組成物で素子(光半導体素子)を封止した光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows one Embodiment of the optical semiconductor device which sealed the element (optical semiconductor element) with the curable epoxy resin composition of this invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view.
 <硬化性エポキシ樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)と、硬化剤(D)と、硬化促進剤(E)とを少なくとも含む。また、本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)と、上記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)と、硬化触媒(F)とを少なくとも含む。
<Curable epoxy resin composition>
The curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and the following formula (1).
Figure JPOXMLDOC01-appb-C000007
[In formula (1), R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
At least a monoallyl diglycidyl isocyanurate compound (B) represented by the formula, a siloxane derivative (C) having two or more epoxy groups in the molecule, a curing agent (D), and a curing accelerator (E). . The curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1), and two or more in the molecule. It contains at least a siloxane derivative (C) having an epoxy group and a curing catalyst (F).
 <脂環式エポキシ化合物(A)>
 本発明の硬化性エポキシ樹脂組成物を構成する脂環式エポキシ化合物(A)は、分子内(1分子内)に脂環(脂肪族環)構造とエポキシ基とを少なくとも有する化合物である。より具体的には、脂環式エポキシ化合物(A)には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物、及び(ii)脂環にエポキシ基が直接単結合で結合している化合物が含まれる。但し、脂環式エポキシ化合物(A)には、後述の分子内に2以上のエポキシ基を有するシロキサン誘導体(C)は含まれないものとする。
<Alicyclic epoxy compound (A)>
The alicyclic epoxy compound (A) constituting the curable epoxy resin composition of the present invention is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule). More specifically, the alicyclic epoxy compound (A) includes (i) a compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and (ii) a fatty acid. A compound in which an epoxy group is directly bonded to the ring by a single bond is included. However, the alicyclic epoxy compound (A) does not include a siloxane derivative (C) having two or more epoxy groups in the molecule described later.
 (i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。 (I) A compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting an alicyclic ring is arbitrarily selected from known or commonly used compounds. be able to. The alicyclic epoxy group is preferably a cyclohexene oxide group.
 (i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物としては、特に、透明性、耐熱性の点で下記式(I)で表される脂環式エポキシ化合物(脂環式エポキシ樹脂)が望ましい。
Figure JPOXMLDOC01-appb-C000008
 式(I)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、及びこれらが複数個連結した基等が挙げられる。
(I) Especially as a compound which has an epoxy group comprised by two adjacent carbon atoms and oxygen atoms which comprise an alicyclic ring, the fat represented by the following formula (I) in terms of transparency and heat resistance Cyclic epoxy compounds (alicyclic epoxy resins) are desirable.
Figure JPOXMLDOC01-appb-C000008
In formula (I), X represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and a group in which a plurality of these are linked.
 式(I)中のXが単結合である脂環式エポキシ化合物としては、下記式で表される化合物が挙げられる。このような脂環式エポキシ化合物としては、例えば、セロキサイド8000((株)ダイセル製)などの市販品を用いることもできる。
Figure JPOXMLDOC01-appb-C000009
Examples of the alicyclic epoxy compound in which X in the formula (I) is a single bond include compounds represented by the following formula. As such an alicyclic epoxy compound, for example, a commercially available product such as Celoxide 8000 (manufactured by Daicel Corporation) can be used.
Figure JPOXMLDOC01-appb-C000009
 上記2価の炭化水素基としては、炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基等が挙げられる。2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン、1,3-シクロペンチレン、シクロペンチリデン、1,2-シクロヘキシレン、1,3-シクロヘキシレン、1,4-シクロヘキシレン、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1, And divalent cycloalkylene groups (including cycloalkylidene groups) such as 4-cyclohexylene and cyclohexylidene groups.
 上記連結基Xとしては、酸素原子を含有する連結基が好ましく、具体的には、-CO-,-O-CO-O-,-COO-,-O-,-CONH-;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基などが挙げられる。2価の炭化水素基としては上記で例示したものが挙げられる。 The linking group X is preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—; A group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like. Examples of the divalent hydrocarbon group include those exemplified above.
 上記式(I)で表される脂環式エポキシ化合物の代表的な例としては、下記式(I-1)~(I-8)で表される化合物などが挙げられる。例えば、セロキサイド2021P、セロキサイド2081((株)ダイセル製)等の市販品を使用することもできる。なお、下記式(I-1)~(I-8)中、l、mは、1~30の整数を表す。Rは炭素数1~8のアルキレン基であり、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、s-ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン基等の直鎖状又は分岐鎖状アルキレン基が挙げられる。これらの中でも、メチレン、エチレン、プロピレン、イソプロピレン基等の炭素数1~3の直鎖状又は分岐鎖状アルキレン基が好ましい。 Representative examples of the alicyclic epoxy compound represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-8). For example, commercially available products such as Celoxide 2021P and Celoxide 2081 (manufactured by Daicel Corporation) can also be used. In the following formulas (I-1) to (I-8), l and m each represents an integer of 1 to 30. R is an alkylene group having 1 to 8 carbon atoms, and is a linear or branched alkylene group such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, s-butylene, pentylene, hexylene, heptylene, octylene group or the like. Can be mentioned. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as methylene, ethylene, propylene, and isopropylene groups are preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(II)で表される化合物が挙げられる。 (Ii) Examples of the compound in which the epoxy group is directly bonded to the alicyclic ring with a single bond include a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000011
 式(II)中、R'はp価のアルコールからp個の-OHを除した基であり、p、nは自然数を表す。p価のアルコール[R'-(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコールなど(炭素数1~15のアルコール等)が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(丸括弧内)の基におけるnは同一でもよく異なっていてもよい。上記化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、EHPE 3150((株)ダイセル製)などが挙げられる。
Figure JPOXMLDOC01-appb-C000011
In the formula (II), R ′ is a group obtained by removing p —OH from a p-valent alcohol, and p and n represent natural numbers. Examples of the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.). p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each () (in parentheses) may be the same or different. Specific examples of the compound include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, EHPE 3150 (manufactured by Daicel Corporation). Etc.
 これらの脂環式エポキシ化合物(A)は単独で、又は2種以上を組み合わせて使用することができる。脂環式エポキシ化合物(A)としては、上記式(I-1)で表される3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、セロキサイド2021Pが特に好ましい。 These alicyclic epoxy compounds (A) can be used alone or in combination of two or more. As the alicyclic epoxy compound (A), 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1) and ceroxide 2021P are particularly preferable.
 脂環式エポキシ化合物(A)の使用量(含有量)は、特に限定されないが、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)との総量(100重量%)に対して、50~90重量%が好ましく、より好ましくは60~90重量%、さらに好ましくは70~90重量%である。脂環式エポキシ化合物(A)の使用量が50重量%未満では、モノアリルジグリシジルイソシアヌレート化合物(B)の溶解性が十分でなく、室温に置くと析出しやすくなる場合がある。一方、脂環式エポキシ化合物(A)の使用量が90重量%を超えると、光半導体装置を作成したときにクラックが入りやすくなる場合がある。成分(A)、成分(B)、及び成分(C)の総量(100重量%)における、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)の含有量の総和(総量)は、特に限定されないが、40~95重量%が好ましい。 The amount of use (content) of the alicyclic epoxy compound (A) is not particularly limited, but the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B). On the other hand, it is preferably 50 to 90% by weight, more preferably 60 to 90% by weight, still more preferably 70 to 90% by weight. When the amount of the alicyclic epoxy compound (A) used is less than 50% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) is not sufficient, and it may be easily precipitated when placed at room temperature. On the other hand, if the amount of the alicyclic epoxy compound (A) used exceeds 90% by weight, cracks may easily occur when an optical semiconductor device is produced. Sum of contents of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) in the total amount (100% by weight) of component (A), component (B), and component (C) (total amount) ) Is not particularly limited, but is preferably 40 to 95% by weight.
 本発明の硬化性エポキシ樹脂組成物が硬化剤(D)を必須成分として含む場合、硬化性エポキシ樹脂組成物全量(100重量%)に対する脂環式エポキシ化合物(A)の含有量は、特に限定されないが、10~90重量%が好ましく、より好ましくは15~80重量%、さらに好ましくは17~70重量%である。一方、本発明の硬化性エポキシ樹脂組成物が硬化触媒(F)を必須成分として含む場合、硬化性エポキシ樹脂組成物全量(100重量%)に対する脂環式エポキシ化合物(A)の含有量は、特に限定されないが、25~90重量%が好ましく、より好ましくは30~85重量%、さらに好ましくは35~80重量%である。 When the curable epoxy resin composition of the present invention contains the curing agent (D) as an essential component, the content of the alicyclic epoxy compound (A) with respect to the total amount (100% by weight) of the curable epoxy resin composition is particularly limited. However, it is preferably 10 to 90% by weight, more preferably 15 to 80% by weight, and still more preferably 17 to 70% by weight. On the other hand, when the curable epoxy resin composition of the present invention contains a curing catalyst (F) as an essential component, the content of the alicyclic epoxy compound (A) with respect to the total amount of the curable epoxy resin composition (100% by weight) is: Although not particularly limited, it is preferably 25 to 90% by weight, more preferably 30 to 85% by weight, and still more preferably 35 to 80% by weight.
 <モノアリルジグリシジルイソシアヌレート化合物(B)>
 本発明で用いられるモノアリルジグリシジルイソシアヌレート化合物(B)は、下記の一般式(1)で表すことができる。
<Monoallyl diglycidyl isocyanurate compound (B)>
The monoallyl diglycidyl isocyanurate compound (B) used in the present invention can be represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000012
 上記式(1)中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000012
In the above formula (1), R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 炭素数1~8のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基等の直鎖状又は分岐鎖状アルキル基が挙げられる。中でも、メチル、エチル、プロピル、イソプロピル基等の炭素数1~3の直鎖状又は分岐鎖状アルキル基が好ましい。上記式(1)中のR1及びR2は、水素原子であることが特に好ましい。 Examples of the alkyl group having 1 to 8 carbon atoms include linear or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, pentyl, hexyl, heptyl, and octyl groups. It is done. Of these, a linear or branched alkyl group having 1 to 3 carbon atoms such as methyl, ethyl, propyl and isopropyl groups is preferred. R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
 モノアリルジグリシジルイソシアヌレート化合物(B)の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート等が挙げられる。なお、モノアリルジグリシジルイソシアヌレート化合物(B)は単独で、又は2種以上を組み合わせて使用することができる。 Representative examples of the monoallyl diglycidyl isocyanurate compound (B) include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl And propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like. In addition, a monoallyl diglycidyl isocyanurate compound (B) can be used individually or in combination of 2 or more types.
 モノアリルジグリシジルイソシアヌレート化合物(B)は、上記脂環式エポキシ化合物(A)に溶解する範囲で任意に混合でき、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)の割合は特に限定されないが、脂環式エポキシ化合物(A):モノアリルジグリシジルイソシアヌレート化合物(B)が50:50~90:10(重量比)であることが好ましい。この範囲外では、モノアリルジグリシジルイソシアヌレート化合物(B)の溶解性が得られにくくなる。 The monoallyl diglycidyl isocyanurate compound (B) can be arbitrarily mixed as long as it dissolves in the alicyclic epoxy compound (A), and the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B). The ratio of the alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is preferably 50:50 to 90:10 (weight ratio). Outside this range, it becomes difficult to obtain the solubility of the monoallyl diglycidyl isocyanurate compound (B).
 モノアリルジグリシジルイソシアヌレート化合物(B)は、アルコールや酸無水物など、エポキシ基と反応する化合物を加えてあらかじめ変性して用いても良い。 The monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group such as alcohol or acid anhydride.
 エポキシ樹脂(エポキシ基を有する化合物)の総量(100重量%)に対する、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)との総量は、特に限定されないが、耐熱性、耐光性、及び耐クラック性の向上の観点で、40重量%以上が好ましく、より好ましくは50重量%以上、さらに好ましくは70重量%以上である。 The total amount of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) with respect to the total amount (100% by weight) of the epoxy resin (compound having an epoxy group) is not particularly limited, From the viewpoint of improving light resistance and crack resistance, it is preferably 40% by weight or more, more preferably 50% by weight or more, and still more preferably 70% by weight or more.
 <分子内に2以上のエポキシ基を有するシロキサン誘導体(C)>
 本発明の硬化性エポキシ樹脂組成物の成分(C)である、分子内(一分子中)に2以上のエポキシ基を有するシロキサン誘導体は、硬化物の耐熱性、耐光性を向上させ、光半導体装置の光度低下を抑制する役割を担う。
<Siloxane derivative (C) having two or more epoxy groups in the molecule>
The siloxane derivative having two or more epoxy groups in the molecule (in one molecule), which is the component (C) of the curable epoxy resin composition of the present invention, improves the heat resistance and light resistance of the cured product, and is an optical semiconductor. It plays a role of suppressing a decrease in luminous intensity of the device.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)におけるシロキサン骨格としては、特に限定されないが、例えば、環状シロキサン骨格;直鎖状のシリコーンや、かご型やラダー型のポリシルセスキオキサンなどのポリシロキサン骨格などが挙げられる。中でも、上記シロキサン骨格としては、硬化物の耐熱性、耐光性を向上させて光度低下を抑制する観点で、環状シロキサン骨格、直鎖状シリコーン骨格が好ましい。即ち、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)としては、分子内に2以上のエポキシ基を有する環状シロキサン、分子内に2以上のエポキシ基を有する直鎖状シリコーンが好ましい。なお、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)は単独で、又は2種以上を組み合わせて使用することができる。 The siloxane skeleton in the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited. For example, a cyclic siloxane skeleton; a linear silicone, a cage-type or ladder-type polysilsesquioxane And a polysiloxane skeleton. Among these, as the siloxane skeleton, a cyclic siloxane skeleton and a linear silicone skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product and suppressing the decrease in luminous intensity. That is, the siloxane derivative (C) having two or more epoxy groups in the molecule is preferably a cyclic siloxane having two or more epoxy groups in the molecule or a linear silicone having two or more epoxy groups in the molecule. In addition, the siloxane derivative (C) which has 2 or more epoxy groups in a molecule | numerator can be used individually or in combination of 2 or more types.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)が、2以上のエポキシ基を有する環状シロキサンである場合、シロキサン環を形成するSi-O単位の数(シロキサン環を形成するケイ素原子の数に等しい)は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、2~12が好ましく、より好ましくは4~8である。 When the siloxane derivative (C) having two or more epoxy groups in the molecule is a cyclic siloxane having two or more epoxy groups, the number of Si—O units forming the siloxane ring (the number of silicon atoms forming the siloxane ring) Although it is not particularly limited, it is preferably 2 to 12 and more preferably 4 to 8 from the viewpoint of improving the heat resistance and light resistance of the cured product.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の重量平均分子量は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、100~3000が好ましく、より好ましくは180~2000である。 The weight average molecular weight of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, but is preferably 100 to 3000, more preferably 180 from the viewpoint of improving the heat resistance and light resistance of the cured product. ~ 2000.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の、一分子中のエポキシ基の数は、2個以上であれば特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、2~4個(2個、3個、又は4個)が好ましい。 The number of epoxy groups in one molecule of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited as long as it is two or more, but the viewpoint of improving the heat resistance and light resistance of the cured product 2 to 4 (2, 3, or 4) is preferable.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の、エポキシ当量(JIS K7236に準拠)は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、180~400が好ましく、より好ましくは240~400、さらに好ましくは240~350である。 The epoxy equivalent (based on JIS K7236) of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, but from the viewpoint of improving the heat resistance and light resistance of the cured product, 180 to 400 It is preferably 240 to 400, more preferably 240 to 350.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)におけるエポキシ基は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、脂肪族環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)であることが好ましく、中でも、シクロヘキセンオキシド基が特に好ましい。 The epoxy group in the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, but from the viewpoint of improving the heat resistance and light resistance of the cured product, adjacent two carbons constituting the aliphatic ring. An epoxy group composed of an atom and an oxygen atom (alicyclic epoxy group) is preferable, and among them, a cyclohexene oxide group is particularly preferable.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)としては、具体的には、例えば、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8,8-ヘキサメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,2,4,6,6,8-ヘキサメチル-シクロテトラシロキサン、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6,8-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,6-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8-ペンタメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6-プロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,6,8-テトラ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,8-テトラメチル-シクロテトラシロキサン、エポキシ基を有するシルセスキオキサン等が挙げられる。より具体的には、例えば、下記式で表される一分子中に2以上のエポキシ基を有する環状シロキサン等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Specific examples of the siloxane derivative (C) having two or more epoxy groups in the molecule include 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl. ] -2,4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,2 , 4,6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6,8-dipropyl-2, 4,6,8-tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,6-dipropyl-2,4 6,8-tetramethyl-cyclotetrasiloxane, 2,4,8- Li [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6,8-pentamethyl-cyclotetrasiloxane, 2,4,8-tri [2- ( 3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6-propyl-2,4,6,8-tetramethyl-cyclotetrasiloxane, 2,4,6,8-tetra [2- ( 3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,8-tetramethyl-cyclotetrasiloxane, silsesquioxane having an epoxy group, and the like. More specifically, for example, cyclic siloxane having two or more epoxy groups in one molecule represented by the following formula.
Figure JPOXMLDOC01-appb-C000013
 また、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)としては、例えば、特開2008-248169号公報に記載の脂環エポキシ基含有シリコーン樹脂や、特開2008-19422号公報に記載の一分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂などを用いることもできる。 Examples of the siloxane derivative (C) having two or more epoxy groups in the molecule include alicyclic epoxy group-containing silicone resins described in JP-A-2008-248169 and JP-A-2008-19422. An organopolysilsesquioxane resin having at least two epoxy functional groups in one molecule can also be used.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)としては、例えば、分子内に2以上のエポキシ基を有する環状シロキサンである、商品名「X-40-2678」(信越化学工業(株)製)、商品名「X-40-2670」(信越化学工業(株)製)、商品名「X-40-2720」などの市販品を用いることもできる。 Examples of the siloxane derivative (C) having two or more epoxy groups in the molecule include a trade name “X-40-2678” (Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane having two or more epoxy groups in the molecule. )), Trade name “X-40-2670” (manufactured by Shin-Etsu Chemical Co., Ltd.), and trade name “X-40-2720” can also be used.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の使用量(含有量)は、特に限定されないが、成分(A)、成分(B)、及び成分(C)の合計量(100重量%)に対して、5~60重量%が好ましく、より好ましくは8~55重量%、さらに好ましくは10~50重量%、特に好ましくは15~40重量%である。分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の使用量が5重量%未満であると、硬化物の耐熱性、耐光性が低下する場合がある。一方、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の使用量が60重量%を超えると、硬化物の耐クラック性が低下する場合がある。 Although the amount (content) of the siloxane derivative (C) having two or more epoxy groups in the molecule is not particularly limited, the total amount (100 weight) of the component (A), the component (B), and the component (C). %) To 5 to 60% by weight, more preferably 8 to 55% by weight, still more preferably 10 to 50% by weight, and particularly preferably 15 to 40% by weight. When the amount of the siloxane derivative (C) having two or more epoxy groups in the molecule is less than 5% by weight, the heat resistance and light resistance of the cured product may be lowered. On the other hand, when the usage-amount of the siloxane derivative (C) which has 2 or more epoxy groups in a molecule | numerator exceeds 60 weight%, the crack resistance of hardened | cured material may fall.
 <硬化剤(D)>
 硬化剤(D)は、エポキシ基を有する化合物を硬化させる働きを有する。本発明における硬化剤(D)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができる。本発明における硬化剤(D)としては、中でも、25℃で液状の酸無水物が好ましく、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸などを挙げることができる。また、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの常温(約25℃)で固体状の酸無水物は、常温(約25℃)で液状の酸無水物に溶解させて液状の混合物とすることで、本発明における硬化剤(D)として使用することができる。なお、硬化剤(D)は単独で、又は2種以上を組み合わせて使用することができる。上述のように、硬化剤(D)としては、硬化物の耐熱性、耐光性、耐クラック性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。
<Curing agent (D)>
The curing agent (D) has a function of curing the compound having an epoxy group. As a hardening | curing agent (D) in this invention, a well-known thru | or usual hardening | curing agent can be used as a hardening | curing agent for epoxy resins. As the curing agent (D) in the present invention, an acid anhydride which is liquid at 25 ° C. is preferable, for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride. An acid etc. can be mentioned. In addition, solid acid anhydrides at room temperature (about 25 ° C.) such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride are liquid at room temperature (about 25 ° C.). It can be used as the curing agent (D) in the present invention by dissolving in an acid anhydride to form a liquid mixture. In addition, a hardening | curing agent (D) can be used individually or in combination of 2 or more types. As described above, as the curing agent (D), from the viewpoint of heat resistance, light resistance and crack resistance of the cured product, an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (a substituent such as an alkyl group is bonded to the ring) Are also preferable).
 また、本発明においては、硬化剤(D)として、リカシッド MH-700(新日本理化(株)製)、HN-5500(日立化成工業(株)製)等の市販品を使用することもできる。 In the present invention, as the curing agent (D), commercially available products such as Ricacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) and HN-5500 (manufactured by Hitachi Chemical Co., Ltd.) can be used. .
 硬化剤(D)の使用量(含有量)としては、特に限定されないが、本発明の硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、50~200重量部が好ましく、より好ましくは100~145重量部である。より具体的には、本発明の硬化性エポキシ樹脂組成物中に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。硬化剤(D)の使用量が50重量部を下回ると、硬化が不十分となり、硬化物の強靱性が低下する傾向がある。一方、硬化剤(D)の使用量が200重量部を上回ると、硬化物が着色して色相が悪化する場合がある。 Although it does not specifically limit as usage-amount (content) of a hardening | curing agent (D), It is 50 with respect to the whole quantity (100 weight part) of the compound which has an epoxy group contained in the curable epoxy resin composition of this invention. The amount is preferably -200 parts by weight, more preferably 100-145 parts by weight. More specifically, it is preferably used in a ratio of 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups in all compounds having an epoxy group contained in the curable epoxy resin composition of the present invention. . When the usage-amount of a hardening | curing agent (D) is less than 50 weight part, hardening will become inadequate and there exists a tendency for the toughness of hardened | cured material to fall. On the other hand, when the usage-amount of a hardening | curing agent (D) exceeds 200 weight part, hardened | cured material may color and a hue may deteriorate.
 <硬化促進剤(E)>
 本発明の硬化性エポキシ樹脂組成物は、さらに、硬化促進剤(E)を含む。硬化促進剤(E)は、エポキシ基を有する化合物が硬化剤により硬化する際に、硬化速度を促進する機能を有する化合物である。硬化促進剤(E)としては、公知乃至慣用の硬化促進剤を使用することができ、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛などの有機金属塩;金属キレートなどが挙げられる。硬化促進剤(E)は単独で、又は2種以上を混合して使用することができる。
<Curing accelerator (E)>
The curable epoxy resin composition of the present invention further contains a curing accelerator (E). A hardening accelerator (E) is a compound which has a function which accelerates | stimulates a cure rate, when the compound which has an epoxy group hardens | cures with a hardening | curing agent. As the curing accelerator (E), known or conventional curing accelerators can be used. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and salts thereof (for example, Phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), and salts thereof (eg, phosphonium salts) , Sulfonium salts, quaternary ammonium salts, iodonium salts); tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4- Imidazoles such as methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; phosphate ester, triphenyl Phosphines such as phosphine; tetraphenylphosphonium tetra (p- tolyl) phosphonium compounds such as borate, tin octylate, organic metal salts such as zinc octylate; metal chelate and the like. A hardening accelerator (E) can be used individually or in mixture of 2 or more types.
 また、本発明においては、硬化促進剤(E)として、U-CAT SA 506、U-CAT SA 102、U-CAT 5003、U-CAT 18X、12XD(開発品)(いずれもサンアプロ(株)製)、TPP-K、TPP-MK(いずれも北興化学工業(株)製)、PX-4ET(日本化学工業(株)製)等の市販品を使用することもできる。 In the present invention, as the curing accelerator (E), U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 18X, 12XD (developed products) (all manufactured by San Apro Co., Ltd.) ), TPP-K, TPP-MK (both manufactured by Hokuko Chemical Co., Ltd.), PX-4ET (manufactured by Nippon Chemical Industry Co., Ltd.) and the like can also be used.
 硬化促進剤(E)の使用量(含有量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.05~5重量部が好ましく、より好ましくは0.1~3重量部、さらに好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部である。硬化促進剤(E)の使用量が0.05重量部未満であると、硬化促進効果が不十分となる場合がある。一方、硬化促進剤(E)の使用量が5重量部を超えると、硬化物が着色して色相が悪化する場合がある。 The amount of use (content) of the curing accelerator (E) is not particularly limited, but is 0.05 to 0.004 based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. The amount is preferably 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, and particularly preferably 0.25 to 2.5 parts by weight. When the usage-amount of a hardening accelerator (E) is less than 0.05 weight part, the hardening promotion effect may become inadequate. On the other hand, when the usage-amount of a hardening accelerator (E) exceeds 5 weight part, hardened | cured material may color and a hue may deteriorate.
 <硬化触媒(F)>
 本発明の硬化性エポキシ樹脂組成物においては、上述の硬化剤(D)及び硬化促進剤(E)の代わりに、硬化触媒(F)を用いてもよい。硬化剤(D)及び硬化促進剤(E)を用いた場合と同様に、硬化触媒(F)を用いることによってエポキシ基を有する化合物の硬化反応を進行させ、硬化物を得ることができる。上記硬化触媒(F)としては、特に限定されないが、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、重合を開始させるカチオン触媒(カチオン重合開始剤)を用いることができる。
<Curing catalyst (F)>
In the curable epoxy resin composition of the present invention, a curing catalyst (F) may be used instead of the above-described curing agent (D) and curing accelerator (E). Similarly to the case of using the curing agent (D) and the curing accelerator (E), the curing reaction of the compound having an epoxy group can be advanced by using the curing catalyst (F) to obtain a cured product. Although it does not specifically limit as said hardening catalyst (F), The cationic catalyst (cationic polymerization initiator) which generate | occur | produces a cationic seed | species by performing ultraviolet irradiation or heat processing, and starts superposition | polymerization can be used.
 紫外線照射によりカチオン種を発生するカチオン触媒としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩などが挙げられる。これらのカチオン触媒は単独で、又は2種以上を組み合わせて使用できる。上記カチオン触媒としては、例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製)、商品名「CD-1010」、「CD-1011」、「CD-1012」(以上、米国サートマー製)、商品名「イルガキュア264」(チバ・ジャパン(株)製)、商品名「CIT-1682」(日本曹達(株)製)等の市販品を好ましく使用することもできる。 Examples of the cation catalyst that generates cation species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, and hexafluoroarsenate salt. These cationic catalysts can be used alone or in combination of two or more. Examples of the cationic catalyst include trade names “UVACURE1590” (manufactured by Daicel Cytec Co., Ltd.), trade names “CD-1010”, “CD-1011”, “CD-1012” (above, manufactured by Sartomer, USA), Commercial products such as trade name “Irgacure 264” (manufactured by Ciba Japan Co., Ltd.) and trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can also be preferably used.
 加熱処理を施すことによりカチオン種を発生するカチオン触媒としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体などを挙げることができ、PP-33、CP-66、CP-77((株)ADEKA製)、FC-509(スリーエム製)、UVE1014(G.E.製)、サンエイド SI-60L、サンエイド SI-80L、サンエイド SI-100L、サンエイド SI-110L(三新化学工業(株)製)、CG-24-61(チバ・ジャパン製)等の市販品を好ましく使用することができる。さらに、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。これらのカチオン触媒は単独で、又は2種以上を組み合わせて使用できる。 Examples of the cation catalyst that generates cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, and the like. PP-33, CP-66, CP -77 (manufactured by ADEKA), FC-509 (manufactured by 3M), UVE1014 (manufactured by GE), Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L, Sun-Aid SI-110L (Sanshin Chemical) Kogyo Co., Ltd.), CG-24-61 (Ciba Japan) and other commercial products can be preferably used. Furthermore, a chelate compound of a metal such as aluminum or titanium and a acetoacetate or diketone compound and a silanol such as triphenylsilanol, or a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S The compound with phenols, such as these, may be sufficient. These cationic catalysts can be used alone or in combination of two or more.
 硬化触媒(F)の使用量(含有量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.01~15重量部が好ましく、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.1~10重量部である。硬化触媒(F)をこの範囲内で使用することにより、耐熱性、耐光性、透明性に優れた硬化物を得ることができる。 The use amount (content) of the curing catalyst (F) is not particularly limited, but is 0.01 to 15 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. Part by weight is preferable, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0.1 to 10 parts by weight. By using the curing catalyst (F) within this range, a cured product having excellent heat resistance, light resistance and transparency can be obtained.
 <ゴム粒子>
 本発明の硬化性エポキシ樹脂組成物は、ゴム粒子を含んでいてもよい。ゴム粒子としては、例えば、粒子状NBR(アクリロニトリル-ブタジエンゴム)、反応性末端カルボキシル基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン-ブタジエンゴム)等が挙げられる。ゴム粒子は、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とから成る多層構造(コアシェル構造)を有し、表面に脂環式エポキシ化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであるゴム粒子であって、該ゴム粒子の屈折率と当該硬化性エポキシ樹脂組成物の硬化物の屈折率との差が±0.02以内であるゴム粒子であっても良い。上記ゴム粒子の配合量は、必要に応じて適宜調整することができ、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.5~30重量部が好ましく、より好ましくは1~20重量部である。ゴム粒子の使用量が0.5重量部を下回ると、硬化物の耐クラック性が低下する傾向があり、一方、ゴム粒子の使用量が30重量部を上回ると、硬化物の耐熱性及び透明性が低下する傾向がある。
<Rubber particles>
The curable epoxy resin composition of the present invention may contain rubber particles. Examples of rubber particles include particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, particulate SBR (styrene-butadiene rubber), and the like. The rubber particle has a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion, and a functional group capable of reacting with an alicyclic epoxy compound on the surface. Rubber particles having a hydroxyl group and / or a carboxyl group, an average particle size of 10 nm to 500 nm, and a maximum particle size of 50 nm to 1000 nm, wherein the refractive index of the rubber particles and the curable epoxy resin composition Rubber particles having a difference from the refractive index of the cured product within ± 0.02 may be used. The blending amount of the rubber particles can be appropriately adjusted as necessary and is not particularly limited, but with respect to the total amount of the compound having an epoxy group contained in the curable epoxy resin composition (100 parts by weight), The amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight. If the amount of rubber particles used is less than 0.5 parts by weight, the crack resistance of the cured product tends to be reduced. On the other hand, if the amount of rubber particles used exceeds 30 parts by weight, the heat resistance and transparency of the cured product are reduced. Tend to decrease.
 <添加剤>
 本発明の硬化性エポキシ樹脂組成物には、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を使用することができる。上記添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリンなどの水酸基を有する化合物を使用すると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ-グリシドキシプロピルトリメトキシシランなどのシランカップリング剤、界面活性剤、シリカ、アルミナなどの無機充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、蛍光体、離型剤などの慣用の添加剤を使用することができる。
<Additives>
In addition to the above, various additives can be used in the curable epoxy resin composition of the present invention as long as the effects of the present invention are not impaired. For example, when a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is used as the additive, the reaction can be allowed to proceed slowly. In addition, silicone and fluorine antifoaming agents, leveling agents, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, surfactants, silica, alumina, as long as viscosity and transparency are not impaired. Conventional additives such as inorganic fillers, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors, mold release agents and the like can be used.
 <硬化物>
 本発明の硬化性エポキシ樹脂組成物を硬化させることにより、透明性、耐熱性、耐光性、及び耐クラック性などの諸物性に優れた硬化物を得ることができる。硬化の際の加熱温度(硬化温度)は、特に限定されないが、45~200℃が好ましく、より好ましくは100~190℃、さらに好ましくは100~180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30~600分が好ましく、より好ましくは45~540分、さらに好ましくは60~480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は、硬化が不十分となり、逆に上記範囲の上限値より高い場合は、樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。
<Hardened product>
By curing the curable epoxy resin composition of the present invention, a cured product having excellent physical properties such as transparency, heat resistance, light resistance, and crack resistance can be obtained. The heating temperature (curing temperature) during curing is not particularly limited, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, and still more preferably 100 to 180 ° C. Further, the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient. On the contrary, when the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed. Although the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased.
 <光半導体封止用樹脂組成物>
 本発明の光半導体封止用樹脂組成物は、本発明の硬化性エポキシ樹脂組成物からなる。本発明の光半導体封止用樹脂組成物を用いることにより、透明性、耐熱性、耐光性、及び耐クラック性などの諸物性に優れた硬化物により光半導体素子が封止された、経時で光度が低下しにくい光半導体装置が得られる。上記光半導体装置は、高出力、高輝度の光半導体素子を備える場合であっても、経時で光度が低下しにくい。
<Resin composition for optical semiconductor encapsulation>
The resin composition for optical semiconductor encapsulation of the present invention comprises the curable epoxy resin composition of the present invention. By using the resin composition for encapsulating an optical semiconductor of the present invention, the optical semiconductor element was sealed over time with a cured product excellent in various properties such as transparency, heat resistance, light resistance, and crack resistance. An optical semiconductor device in which the luminous intensity is unlikely to decrease can be obtained. Even if the optical semiconductor device includes an optical semiconductor element with high output and high brightness, the light intensity is unlikely to decrease with time.
 <光半導体装置>
 本発明の光半導体装置は、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)で光半導体素子を封止することにより得られる。光半導体素子の封止は、上述の方法で調製された硬化性エポキシ樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行う。これにより、硬化性エポキシ樹脂組成物によって光半導体素子が封止されてなる光半導体装置が得られる。硬化温度と硬化時間は、上記と同様の範囲で設定することができる。
<Optical semiconductor device>
The optical semiconductor device of the present invention is obtained by sealing an optical semiconductor element with the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention. The optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heating and curing under predetermined conditions. Thereby, an optical semiconductor device in which the optical semiconductor element is sealed with the curable epoxy resin composition is obtained. The curing temperature and the curing time can be set in the same range as described above.
 本発明の硬化性エポキシ樹脂組成物は、上記の光半導体(光半導体素子)の封止用途に限定されず、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどとしても利用することができる。 The curable epoxy resin composition of the present invention is not limited to the optical semiconductor (optical semiconductor element) sealing application described above, and includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, and a resist. , Composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, etc. Can do.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 製造例1
 (硬化剤と硬化促進剤と添加剤の混合物、以下K剤と記載する)
 硬化剤(新日本理化(株)製、リカシッド MH-700):100重量部、硬化促進剤(サンアプロ(株)製、U-CAT 18X):0.5重量部、添加剤(和光純薬工業(株)製、エチレングリコール):1重量部を、自公転式攪拌装置((株)シンキー製、あわとり練太郎AR-250)を使用して均一に混合し、脱泡してK剤を得た。
Production Example 1
(A mixture of curing agent, curing accelerator and additive, hereinafter referred to as K agent)
Curing agent (Shin Nippon Rika Co., Ltd., Ricacid MH-700): 100 parts by weight Curing accelerator (San Apro Co., Ltd., U-CAT 18X): 0.5 parts by weight, additive (Wako Pure Chemical Industries, Ltd.) (Ethylene glycol, manufactured by Co., Ltd.): 1 part by weight was mixed evenly using a self-revolving stirrer (manufactured by Shinky Co., Ltd., Narataro Awatori AR-250), defoamed to obtain K agent. Obtained.
 製造例2
 (エポキシ樹脂)
 モノアリルジグリシジルイソシアヌレート(四国化成工業(株)、MA-DGIC)、脂環式エポキシ化合物((株)ダイセル製、セロキサイド2021P)、及び分子内に2以上のエポキシ基を有するシロキサン誘導体(信越化学工業(株)製、X-40-2678;信越化学工業(株)製、X-40-2720;信越化学工業(株)製、X-40-2670)を、表1、表2に示す配合処方(単位:重量部)に従って混合し、80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレートを溶解させ、エポキシ樹脂(混合物)を得た。
Production Example 2
(Epoxy resin)
Monoallyl diglycidyl isocyanurate (Shikoku Kasei Kogyo Co., Ltd., MA-DGIC), alicyclic epoxy compound (manufactured by Daicel Corporation, Celoxide 2021P), and siloxane derivatives having two or more epoxy groups in the molecule (Shin-Etsu) Tables 1 and 2 show Chemical Industry Co., Ltd., X-40-2678; Shin-Etsu Chemical Co., Ltd., X-40-2720; Shin-Etsu Chemical Co., Ltd., X-40-2670). The mixture was mixed according to the formulation (unit: parts by weight), and stirred at 80 ° C. for 1 hour to dissolve monoallyl diglycidyl isocyanurate to obtain an epoxy resin (mixture).
 実施例1~12、比較例1~4
 実施例1~12では、製造例2にて得たエポキシ樹脂と製造例1にて得たK剤とを、表1に示す配合処方(単位:重量部)に従って、各成分を自公転式攪拌装置((株)シンキー製、あわとり練太郎AR-250)を使用して均一に混合し、脱泡して硬化性エポキシ樹脂組成物を得た。また、表1に示すように、比較例1ではエポキシ樹脂として脂環式エポキシ化合物(ダイセル化学工業(株)製、セロキサイド2021P)のみを、比較例2~4では、エポキシ樹脂として分子内に2以上のエポキシ基を有するシロキサン誘導体(信越化学工業(株)製、X-40-2678;信越化学工業(株)製、X-40-2720;信越化学工業(株)製、X-40-2670)のみを用いて、上記と同様にして硬化性エポキシ樹脂組成物を得た。
 上記硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱することで、硬化した樹脂でLED素子を封止した光半導体装置を得た。図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線、102はLED素子、103はボンディングワイヤ、104は透明封止樹脂(硬化物)を示す。
Examples 1 to 12 and Comparative Examples 1 to 4
In Examples 1 to 12, the epoxy resin obtained in Production Example 2 and the K agent obtained in Production Example 1 were subjected to self-revolving stirring according to the formulation (unit: parts by weight) shown in Table 1. Using a device (manufactured by Shinky Co., Ltd., Awatori Nertaro AR-250), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition. Further, as shown in Table 1, in Comparative Example 1, only an alicyclic epoxy compound (Dacel Chemical Industries, Ltd., Celoxide 2021P) was used as an epoxy resin, and in Comparative Examples 2 to 4, an epoxy resin containing 2 in the molecule. Siloxane derivatives having the above epoxy groups (Shin-Etsu Chemical Co., Ltd., X-40-2678; Shin-Etsu Chemical Co., Ltd., X-40-2720; Shin-Etsu Chemical Co., Ltd., X-40-2670) ) Was used in the same manner as above to obtain a curable epoxy resin composition.
The curable epoxy resin composition is cast on an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1 and then heated in an oven (resin curing oven) at 120 ° C. for 5 hours. Thus, an optical semiconductor device in which the LED element was sealed with the cured resin was obtained. In FIG. 1, 100 is a reflector (a resin composition for reflecting light), 101 is a metal wiring, 102 is an LED element, 103 is a bonding wire, and 104 is a transparent sealing resin (cured product).
 実施例13~24、比較例5~8
 実施例13~24では、製造例2にて得たエポキシ樹脂と硬化触媒(三新化学工業(株)製、サンエイド SI-100L)を、表2に示す配合処方(単位:重量部)に従って、各成分を自公転式攪拌装置((株)シンキー製、あわとり練太郎AR-250)を使用して均一に混合し、脱泡して硬化性エポキシ樹脂組成物を得た。また、表2に示すように、比較例5ではエポキシ樹脂として脂環式エポキシ化合物(ダイセル化学工業(株)製、セロキサイド2021P)のみを、比較例6~8では、エポキシ樹脂として分子内に2以上のエポキシ基を有するシロキサン誘導体(信越化学工業(株)製、X-40-2678;信越化学工業(株)製、X-40-2720;信越化学工業(株)製、X-40-2670)のみを用いて、上記と同様にして硬化性エポキシ樹脂組成物を得た。
 上記硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、オーブン(樹脂硬化オーブン)を用いて、110℃で3時間、続いて、140℃で4時間加熱することで、硬化した樹脂でLED素子を封止した光半導体装置を得た。
Examples 13 to 24, Comparative Examples 5 to 8
In Examples 13 to 24, the epoxy resin obtained in Production Example 2 and a curing catalyst (manufactured by Sanshin Chemical Industry Co., Ltd., Sun-Aid SI-100L) were added according to the formulation (unit: parts by weight) shown in Table 2. Each component was uniformly mixed using a self-revolving stirrer (manufactured by Shinky Co., Ltd., Awatori Nertaro AR-250) and defoamed to obtain a curable epoxy resin composition. Further, as shown in Table 2, in Comparative Example 5, only an alicyclic epoxy compound (Delcel Chemical Industries, Ltd., Celoxide 2021P) was used as an epoxy resin, and in Comparative Examples 6 to 8, 2 in the molecule as an epoxy resin. Siloxane derivatives having the above epoxy groups (Shin-Etsu Chemical Co., Ltd., X-40-2678; Shin-Etsu Chemical Co., Ltd., X-40-2720; Shin-Etsu Chemical Co., Ltd., X-40-2670) ) Was used in the same manner as above to obtain a curable epoxy resin composition.
The curable epoxy resin composition is cast into an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1, and then heated at 110 ° C. for 3 hours using an oven (resin curing oven). Then, the optical semiconductor device which sealed the LED element with the hardened resin was obtained by heating at 140 degreeC for 4 hours.
 <評価>
 実施例及び比較例で得られた硬化性エポキシ樹脂組成物ならびに光半導体装置について、以下の方法で評価試験を行った。
<Evaluation>
About the curable epoxy resin composition and optical semiconductor device obtained by the Example and the comparative example, the evaluation test was done with the following method.
 [通電試験]
 実施例及び比較例で得られた光半導体装置の全光束を全光束測定機を用いて測定した(「0時間の全光束」とした)。さらに、85℃の恒温槽内で100時間、光半導体装置に60mAの電流を流した後の全光束を測定した(「100時間後の全光束」とした)。そして、次式から光度保持率を算出した。結果を表1、表2に示す。
 {光度保持率(%)}
   ={100時間後の全光束(lm)}/{0時間の全光束(lm)}×100
[Energization test]
The total luminous fluxes of the optical semiconductor devices obtained in the examples and comparative examples were measured using a total luminous flux measuring instrument (referred to as “zero hour total luminous flux”). Furthermore, the total luminous flux after flowing a current of 60 mA through the optical semiconductor device in a thermostat at 85 ° C. for 100 hours was measured (referred to as “total luminous flux after 100 hours”). And luminous intensity retention was computed from the following formula. The results are shown in Tables 1 and 2.
{Luminance retention (%)}
= {Total luminous flux after 100 hours (lm)} / {total luminous flux after 0 hours (lm)} × 100
 [はんだ耐熱性試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個用いた)を、30℃、70%RHの条件下で168時間吸湿させた後、リフロー炉を用いて260℃で10秒間の加熱処理を2回施した。その後、光半導体装置の封止樹脂(硬化性エポキシ樹脂組成物の硬化物)に生じたクラックの長さを、デジタルマイクロスコープ(VHX-900、(株)キーエンス製)を使用して観察し、光半導体装置2個のうち長さが90μm以上のクラックを有する光半導体装置の個数を計測した。結果を表1、表2に示す。
[Solder heat resistance test]
The optical semiconductor devices (two used for each curable epoxy resin composition) obtained in Examples and Comparative Examples were absorbed for 168 hours under the conditions of 30 ° C. and 70% RH, and then reflow oven was used. Heat treatment was performed twice at 260 ° C. for 10 seconds. Thereafter, the length of cracks generated in the sealing resin of the optical semiconductor device (cured product of the curable epoxy resin composition) was observed using a digital microscope (VHX-900, manufactured by Keyence Corporation), Of the two optical semiconductor devices, the number of optical semiconductor devices having cracks having a length of 90 μm or more was measured. The results are shown in Tables 1 and 2.
 [熱衝撃試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個用いた)に対し、-40℃の雰囲気下に30分曝露し、続いて、100℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機を用いて200サイクル分与えた。その後、光半導体装置の封止樹脂(硬化性エポキシ樹脂組成物の硬化物)に生じたクラックの長さを、デジタルマイクロスコープ(VHX-900、(株)キーエンス製)を使用して観察し、光半導体装置2個のうち長さが90μm以上のクラックを有する光半導体装置の個数を計測した。結果を表1、表2に示す。
[Thermal shock test]
The optical semiconductor devices obtained in Examples and Comparative Examples (two used for each curable epoxy resin composition) were exposed in an atmosphere of −40 ° C. for 30 minutes, and then in an atmosphere of 100 ° C. A thermal shock with one cycle of exposure for 30 minutes was applied for 200 cycles using a thermal shock tester. Thereafter, the length of cracks generated in the sealing resin of the optical semiconductor device (cured product of the curable epoxy resin composition) was observed using a digital microscope (VHX-900, manufactured by Keyence Corporation), Of the two optical semiconductor devices, the number of optical semiconductor devices having cracks having a length of 90 μm or more was measured. The results are shown in Tables 1 and 2.
 [総合判定]
 通電試験において光度保持率が90%以上であり、なおかつ、はんだ耐熱性試験と熱衝撃試験において共に、長さ90μm以上のクラックが生じた光半導体装置の個数が0個となったものを、総合判定○(良好)とした。これ以外のものを総合判定×(不良)とした。結果を表1、表2に示す。
[Comprehensive judgment]
In the energization test, the luminous intensity retention was 90% or more, and in both the solder heat resistance test and the thermal shock test, the number of optical semiconductor devices in which cracks of 90 μm or more occurred was zero. Judgment ○ (good). Other than this, the overall judgment was x (defective). The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 なお、実施例及び比較例で使用した成分は、以下の通りである。
 (エポキシ樹脂)
  CEL2021P(セロキサイド2021P):3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
  MA-DGIC:モノアリルジグリシジルイソシアヌレート、四国化成工業(株)製
  X-40-2678:分子内に2個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
  X-40-2720:分子内に3個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
  X-40-2670:分子内に4個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
 (K剤)
  リカシッド MH-700:4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30、新日本理化(株)製
  U-CAT 18X:硬化促進剤、サンアプロ(株)製
  エチレングリコール:和光純薬工業(株)製
 (硬化触媒)
  SI-100L(サンエイド SI-100L):アリールスルホニウム塩、三新化学工業(株)製
In addition, the component used by the Example and the comparative example is as follows.
(Epoxy resin)
CEL2021P (Celoxide 2021P): 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, manufactured by Daicel Corporation MA-DGIC: monoallyl diglycidyl isocyanurate, manufactured by Shikoku Kasei Kogyo Co., Ltd. X-40 -2678: Siloxane derivative having two epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd. X-40-2720: Siloxane derivative having three epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd. X -40-2670: Siloxane derivative having 4 epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd. (K agent)
Rikacid MH-700: 4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride = 70/30, manufactured by Shin Nippon Rika Co., Ltd. U-CAT 18X: curing accelerator, manufactured by San Apro Co., Ltd. Ethylene glycol: Wako Pure Chemicals Industrial Co., Ltd. (curing catalyst)
SI-100L (Sun-Aid SI-100L): Arylsulfonium salt, manufactured by Sanshin Chemical Industry Co., Ltd.
 試験機器
 ・樹脂硬化オーブン
  エスペック(株)製 GPHH-201
 ・恒温槽
  エスペック(株)製 小型高温チャンバー ST-120B1
 ・全光束測定機
  オプトロニックラボラトリーズ社製 マルチ分光放射測定システム OL771
 ・熱衝撃試験機
  エスペック(株)製 小型冷熱衝撃装置 TSE-11-A
 ・リフロー炉
  日本アントム(株)製、UNI-5016F
Test equipment ・ Resin curing oven Espec Co., Ltd. GPHH-201
-Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1
・ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771
・ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A
・ Reflow furnace manufactured by Nippon Antom Co., Ltd., UNI-5016F
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線
 102:LED素子
 103:ボンディングワイヤ
 104:透明封止樹脂
100: Reflector (resin composition for light reflection)
101: Metal wiring 102: LED element 103: Bonding wire 104: Transparent sealing resin
 本発明の硬化性エポキシ樹脂組成物は、光半導体素子の封止用途に好ましく使用することができる。また、本発明の硬化性エポキシ樹脂組成物は、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどにも利用することができる。 The curable epoxy resin composition of the present invention can be preferably used for sealing an optical semiconductor element. In addition, the curable epoxy resin composition of the present invention includes an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, a transparent substrate, a transparent sheet, a transparent film, an optical element, and an optical element. It can also be used for lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.

Claims (8)

  1.  脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)と、硬化剤(D)と、硬化促進剤(E)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
    Alicyclic epoxy compound (A) and the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
    A monoallyl diglycidyl isocyanurate compound (B) represented by the formula, a siloxane derivative (C) having two or more epoxy groups in the molecule, a curing agent (D), and a curing accelerator (E). A curable epoxy resin composition characterized by the above.
  2.  脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(C)と、硬化触媒(F)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
    Alicyclic epoxy compound (A) and the following formula (1)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
    A curable epoxy resin comprising a monoallyl diglycidyl isocyanurate compound (B) represented by the formula: a siloxane derivative (C) having two or more epoxy groups in the molecule; and a curing catalyst (F). Composition.
  3.  前記分子内に2以上のエポキシ基を有するシロキサン誘導体(C)の含有量が、成分(A)、成分(B)、及び成分(C)の合計量(100重量%)に対して、5~60重量%である請求項1又は2に記載の硬化性エポキシ樹脂組成物。 The content of the siloxane derivative (C) having two or more epoxy groups in the molecule is from 5 to 5 with respect to the total amount (100% by weight) of the component (A), the component (B), and the component (C). The curable epoxy resin composition according to claim 1 or 2, which is 60% by weight.
  4.  前記脂環式エポキシ化合物(A)の脂環エポキシ基がシクロヘキセンオキシド基である請求項1~3のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 3, wherein the alicyclic epoxy group of the alicyclic epoxy compound (A) is a cyclohexene oxide group.
  5.  前記脂環式エポキシ化合物(A)が下記式(I-1)
    Figure JPOXMLDOC01-appb-C000003
    で表される化合物である請求項1~4のいずれか1項に記載の硬化性エポキシ樹脂組成物。
    The alicyclic epoxy compound (A) is represented by the following formula (I-1)
    Figure JPOXMLDOC01-appb-C000003
    The curable epoxy resin composition according to any one of claims 1 to 4, which is a compound represented by the formula:
  6.  請求項1~5のいずれか1項に記載の硬化性エポキシ樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable epoxy resin composition according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項に記載の硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物。 A resin composition for optical semiconductor encapsulation comprising the curable epoxy resin composition according to any one of claims 1 to 5.
  8.  請求項7に記載の光半導体封止用樹脂組成物で光半導体素子を封止した光半導体装置。 An optical semiconductor device in which an optical semiconductor element is sealed with the resin composition for sealing an optical semiconductor according to claim 7.
PCT/JP2011/079686 2011-01-07 2011-12-21 Curable epoxy resin composition WO2012093589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180048619.4A CN103154073B (en) 2011-01-07 2011-12-21 Curable epoxy resin composition
KR1020137013075A KR101864462B1 (en) 2011-01-07 2011-12-21 Curable epoxy resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011001871 2011-01-07
JP2011-001871 2011-01-07
JP2011030576 2011-02-16
JP2011-030576 2011-02-16
JP2011-182599 2011-08-24
JP2011182599A JP5764432B2 (en) 2011-01-07 2011-08-24 Curable epoxy resin composition

Publications (1)

Publication Number Publication Date
WO2012093589A1 true WO2012093589A1 (en) 2012-07-12

Family

ID=46457449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079686 WO2012093589A1 (en) 2011-01-07 2011-12-21 Curable epoxy resin composition

Country Status (6)

Country Link
JP (1) JP5764432B2 (en)
KR (1) KR101864462B1 (en)
CN (1) CN103154073B (en)
MY (1) MY161464A (en)
TW (1) TWI535748B (en)
WO (1) WO2012093589A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033937A1 (en) * 2012-08-31 2014-03-06 新日鉄住金化学株式会社 Epoxy silicone resin and curable resin composition employing same
WO2014034507A1 (en) * 2012-08-31 2014-03-06 株式会社ダイセル Curable composition, cured product thereof, optical member and optical device
WO2014038446A1 (en) * 2012-09-07 2014-03-13 株式会社ダイセル Curable epoxy resin composition and cured product thereof, and optical semiconductor device
JP2014055220A (en) * 2012-09-12 2014-03-27 Daicel Corp Curable epoxy resin composition
WO2014083845A1 (en) * 2012-11-28 2014-06-05 日本化薬株式会社 Resin composition, and cured product (3) thereof
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
WO2015129503A1 (en) * 2014-02-28 2015-09-03 株式会社ダイセル Curable composition, cured product thereof, and wafer level lens
CN105143345A (en) * 2013-02-14 2015-12-09 Lg伊诺特有限公司 Epoxy resin composition and light-emitting apparatus using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875269B2 (en) * 2011-07-13 2016-03-02 株式会社ダイセル Curable epoxy resin composition
JP5577539B2 (en) * 2011-07-14 2014-08-27 Jnc株式会社 Resin composition and thin film using the same
CN104245847B (en) * 2011-12-22 2016-07-27 株式会社大赛璐 Hardening resin composition and solidfied material thereof
WO2014109317A1 (en) * 2013-01-09 2014-07-17 株式会社ダイセル Curable epoxy resin composition
JP6059538B2 (en) * 2013-01-09 2017-01-11 株式会社ダイセル Curable epoxy resin composition
CN105637008A (en) * 2013-10-16 2016-06-01 日本化药株式会社 Curable resin composition and cured product thereof
JPWO2015115128A1 (en) * 2014-01-29 2017-03-23 株式会社ダイセル Photo-curable composition for nanoimprint and method for forming fine pattern using the same
JP2019065175A (en) * 2017-09-29 2019-04-25 東京応化工業株式会社 Curable composition, cured film, and method for producing cured product
JP7215300B2 (en) * 2019-03-29 2023-01-31 味の素株式会社 Curable resin composition
JP2021178941A (en) * 2020-05-15 2021-11-18 株式会社ダイセル Novel epoxy resin and epoxy resin composition
CN116004149A (en) * 2021-10-22 2023-04-25 韩国太阳油墨股份公司 Curable transparent resin composition and various articles derived therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344867A (en) * 1999-06-01 2000-12-12 Shikoku Chem Corp Thermosetting epoxy resin composition
JP2002003582A (en) * 2000-04-17 2002-01-09 Mitsubishi Electric Corp Liquid thermosetting resin composition and method of fabricating insulating coil using the same
JP2003277591A (en) * 2002-03-26 2003-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and laminate
WO2011093219A1 (en) * 2010-02-01 2011-08-04 ダイセル化学工業株式会社 Curable epoxy resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180012A (en) * 2000-12-18 2002-06-26 Sumitomo Bakelite Co Ltd Anisotropic electroconductive adhesive
CN101538367B (en) * 2008-01-28 2013-09-04 信越化学工业株式会社 Diglycidylisocyanuryl-modified organopolysiloxane and composition containing the same
JP5037385B2 (en) * 2008-02-26 2012-09-26 新日鐵化学株式会社 Curable resin composition containing epoxy silicone resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344867A (en) * 1999-06-01 2000-12-12 Shikoku Chem Corp Thermosetting epoxy resin composition
JP2002003582A (en) * 2000-04-17 2002-01-09 Mitsubishi Electric Corp Liquid thermosetting resin composition and method of fabricating insulating coil using the same
JP2003277591A (en) * 2002-03-26 2003-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and laminate
WO2011093219A1 (en) * 2010-02-01 2011-08-04 ダイセル化学工業株式会社 Curable epoxy resin composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674206A (en) * 2012-08-31 2018-02-09 株式会社大赛璐 Solidification compound and its solidfied material, optical component and Optical devices
CN104540868A (en) * 2012-08-31 2015-04-22 株式会社大赛璐 Curable composition, cured product thereof, optical member and optical device
TWI572634B (en) * 2012-08-31 2017-03-01 Daicel Corp Hardening composition and its hardened material, optical member and optical device, and wafer-level lens manufacturing method
JPWO2014034507A1 (en) * 2012-08-31 2016-08-08 株式会社ダイセル Curable composition, cured product thereof, optical member, and optical apparatus
EP3572447A1 (en) * 2012-08-31 2019-11-27 Daicel Corporation Use of curable composition, cured product thereof, optical member and optical device
WO2014033937A1 (en) * 2012-08-31 2014-03-06 新日鉄住金化学株式会社 Epoxy silicone resin and curable resin composition employing same
WO2014034507A1 (en) * 2012-08-31 2014-03-06 株式会社ダイセル Curable composition, cured product thereof, optical member and optical device
US11029497B2 (en) 2012-08-31 2021-06-08 Daicel Corporation Curable composition, cured product thereof, optical member and optical device
EP2891673A4 (en) * 2012-08-31 2016-05-18 Daicel Corp Curable composition, cured product thereof, optical member and optical device
CN107674206B (en) * 2012-08-31 2021-05-25 株式会社大赛璐 Curable composition, cured product thereof, optical member, and optical device
US10018810B2 (en) 2012-08-31 2018-07-10 Daicel Corporation Curable composition, cured product thereof, optical member and optical device
JPWO2014038446A1 (en) * 2012-09-07 2016-08-08 株式会社ダイセル Curable epoxy resin composition, cured product thereof, and optical semiconductor device
WO2014038446A1 (en) * 2012-09-07 2014-03-13 株式会社ダイセル Curable epoxy resin composition and cured product thereof, and optical semiconductor device
JP2014055220A (en) * 2012-09-12 2014-03-27 Daicel Corp Curable epoxy resin composition
WO2014083845A1 (en) * 2012-11-28 2014-06-05 日本化薬株式会社 Resin composition, and cured product (3) thereof
US9812618B2 (en) 2013-02-14 2017-11-07 Lg Innotek Co., Ltd. Epoxy resin composition and light-emitting apparatus using the same
US20160005937A1 (en) * 2013-02-14 2016-01-07 Lg Innotek Co., Ltd. Epoxy Resin Composition and Light-Emitting Apparatus Using the Same
CN105143345A (en) * 2013-02-14 2015-12-09 Lg伊诺特有限公司 Epoxy resin composition and light-emitting apparatus using the same
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
US9856347B2 (en) 2014-02-28 2018-01-02 Daicel Corporation Curable composition, cured product thereof, and wafer level lens
WO2015129503A1 (en) * 2014-02-28 2015-09-03 株式会社ダイセル Curable composition, cured product thereof, and wafer level lens

Also Published As

Publication number Publication date
JP2012184394A (en) 2012-09-27
TWI535748B (en) 2016-06-01
JP5764432B2 (en) 2015-08-19
MY161464A (en) 2017-04-14
CN103154073A (en) 2013-06-12
KR101864462B1 (en) 2018-06-04
CN103154073B (en) 2016-04-27
TW201237059A (en) 2012-09-16
KR20140009200A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5764432B2 (en) Curable epoxy resin composition
JP5638812B2 (en) Curable epoxy resin composition
JP2019023316A (en) Curable epoxy resin composition
JP5852014B2 (en) Curable epoxy resin composition
JP6430787B2 (en) Optical semiconductor device
JP5703153B2 (en) Curable epoxy resin composition
JP5988791B2 (en) Curable epoxy resin composition
JP6014134B2 (en) Curable epoxy resin composition
JP2016224338A (en) Antireflection material and method for producing the same
JP2015096602A (en) Curable epoxy resin composition
JP2015110772A (en) Curable epoxy resin composition
JP6571923B2 (en) Method for producing cured product by laser light irradiation
JP2017115006A (en) Curable epoxy resin composition
JP2015098586A (en) Curable epoxy resin composition
JP5977794B2 (en) Curable epoxy resin composition
JP6306483B2 (en) Curable epoxy resin composition
JP6118313B2 (en) Curable epoxy resin composition
JP2015086376A (en) Curable epoxy resin composition
JP6472754B2 (en) Curable epoxy resin composition
JP2020003818A (en) Antireflection material
JP2015214646A (en) Curable epoxy resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048619.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013075

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854746

Country of ref document: EP

Kind code of ref document: A1