WO2012093510A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2012093510A1
WO2012093510A1 PCT/JP2011/070917 JP2011070917W WO2012093510A1 WO 2012093510 A1 WO2012093510 A1 WO 2012093510A1 JP 2011070917 W JP2011070917 W JP 2011070917W WO 2012093510 A1 WO2012093510 A1 WO 2012093510A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
thiol
epoxy
agent
Prior art date
Application number
PCT/JP2011/070917
Other languages
French (fr)
Japanese (ja)
Inventor
一希 岩谷
洋平 細野
留香 横山
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020137020502A priority Critical patent/KR101819785B1/en
Priority to CN201180064158XA priority patent/CN103282401A/en
Publication of WO2012093510A1 publication Critical patent/WO2012093510A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin composition that is excellent in low-temperature rapid curing properties, has a low Tg (glass transition point) of the cured product, and does not change the Tg of the cured product almost even after a long time after curing.
  • a resin composition comprising an epoxy resin, a thiol compound, and a curing accelerator is a resin composition excellent in low-temperature fast-curing property that can be cured in a short time even from 0 ° C. to ⁇ 20 ° C., and is used for sealing adhesives and electronic components. It is used for various applications such as agents.
  • Patent Documents 1 and 2 include (1) an epoxy resin having two or more epoxy groups in the molecule, (2) a polythiol compound having two or more thiol groups in the molecule, And (3) a resin composition containing a solid dispersion type latent curing accelerator is disclosed.
  • Patent Document 3 discloses an epoxy resin composition containing a bisphenol A type epoxy resin having a flexible skeleton and a polar bonding group and a polythiol having two or more thiol groups.
  • JP-A-6-211969 Japanese Patent Laid-Open No. 6-21970 JP 2006-36935 A
  • the adhesive for joining these parts needs to be flexible enough to follow the thermal deformation of the parts, and has a low Tg (glass transition point) after the adhesive is cured.
  • the elastic modulus is required to be low.
  • the epoxy resin compositions described in Patent Documents 1 and 2 described above have a problem that Tg cannot be sufficiently lowered although excellent low-temperature curability and storage stability can be obtained.
  • the epoxy resin composition described in the above-mentioned patent document 3 can be cured at a low temperature and the cured product has a certain degree of flexibility and flexibility, it can absorb stress.
  • the time passes the cured product is further cured and the flexibility and flexibility are gradually lost.
  • the present invention has been made in view of the above-described problems, and is excellent in low-temperature rapid curability, has a low Tg (glass transition point) of the cured product, and is cured even after a long time after curing.
  • An object of the present invention is to provide an epoxy resin composition in which the Tg of the resin hardly changes.
  • the present inventors contain an epoxy resin that does not contain a benzene ring, a thiol compound having two or more thiol groups in the molecule, and a latent curing agent. It has been found that the resin composition to be cured is excellent in low-temperature rapid curability, the Tg of the cured product is low, and the Tg of the cured product hardly changes even after a long time after curing.
  • the present invention is a resin composition containing (A) an epoxy resin not containing a benzene ring, (B) a thiol compound having two or more thiol groups in the molecule, and (C) a latent curing agent.
  • the component (A) is preferably a compound represented by the following formula (1).
  • the component (A) is preferably a compound represented by the following formula (2).
  • the component (A) is preferably a compound represented by the following formula (3).
  • the component (A) is preferably a compound represented by the following formula (4).
  • the component (B) is preferably blended at a thiol equivalent ratio of 1.0 to 2.0 with respect to the epoxy equivalent of the component (A).
  • the component (B) is tetraethylene glycol bis3-mercaptopropionate, trimethylolpropane tris3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and di Pentaerythritol is preferably at least one selected from tetrakis 3-mercaptopropionate.
  • the resin composition of the present invention further includes at least one additive selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent. It is preferable to contain.
  • this invention provides the electronic component sealed with the sealing agent containing either of the said resin compositions.
  • the present invention also provides an adhesive containing any one of the above resin compositions.
  • an epoxy resin composition that is excellent in low-temperature rapid curability, has a low Tg (glass transition point) of a cured product, and has a Tg that hardly changes even after a long time after curing. .
  • a resin composition according to an embodiment of the present invention includes (A) an epoxy resin not containing a benzene ring, (B) a thiol compound having two or more thiol groups in the molecule, and (C) a latent curing agent. contains.
  • the epoxy resin as the component (A) is preferably a compound represented by the following formula (1), for example.
  • the compound represented by the above formula (1) is preferably, for example, a compound represented by the following formula (2) and / or formula (3).
  • the compound represented by the said Formula (1) is a compound represented, for example by the following formula
  • R 2 to R 5 are preferably methyl groups.
  • the thiol compound as the component (B) may be any compound having two or more thiol groups per molecule. From the viewpoint of storage stability, those having as little basic impurity content as possible are preferred. Examples of such thiol compounds include trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris ( ⁇ -thiopropionate), pentaerythritol tetrakis.
  • esterification reaction of a polyol such as ( ⁇ -thiopropionate), dipentaerythritol poly ( ⁇ -thiopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and mercapto organic acid
  • a polyol such as ( ⁇ -thiopropionate), dipentaerythritol poly ( ⁇ -thiopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and mercapto organic acid
  • examples include thiol compounds obtained.
  • thiol compounds 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol
  • Alkyl thiol compounds such as: terminal thiol group-containing polyethers; terminal thiol group-containing polythioethers; thiol compounds obtained by reaction of epoxy compounds with hydrogen sulfide; terminal thiol groups obtained by reaction of polythiol compounds with epoxy compounds Thiol compounds; and the like.
  • a thiol compound having two or more thiol groups in a molecule that has been subjected to dealkalization treatment and has an alkali metal ion concentration of 50 ppm or less is preferable.
  • the latent curing agent of the component (C) is a compound that is insoluble in an epoxy resin at room temperature, is a compound that is solubilized by heating and functions as a curing accelerator, and is an imidazole compound that is solid at room temperature or a solid dispersion type Amine adduct-based latent curing accelerators such as reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems), reaction products of amine compounds with isocyanate compounds or urea compounds (urea-type adduct systems), etc. Can be mentioned.
  • Examples of the epoxy compound used as a raw material for producing the solid dispersion type amine adduct type latent curing accelerator (amine-epoxy adduct type) used in the present invention include, for example, bisphenol A, bisphenol F, catechol, resorcinol and the like.
  • Polyglycidyl ethers obtained by reacting polyhydric alcohols such as monohydric phenols or glycerin or polyethylene glycol with epichlorohydrin; hydroxycarboxylic acids such as p-hydroxybenzoic acid and ⁇ -hydroxynaphthoic acid and epichloro Glycidyl ether ester obtained by reacting with hydrin; polyglycidyl ester obtained by reacting polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin; 4,4'-diaminodiphenylmethane and m- Ami Glycidylamine compounds obtained by reacting phenol and epichlorohydrin; and polyfunctional epoxy compounds such as epoxidized phenol novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, butyl glycidyl ether, phenyl glycidyl ether Monofunctional epoxy compounds such as g
  • the amine compound used as another raw material for producing the solid dispersion type amine adduct-based latent curing accelerator used in the present invention has at least one active hydrogen capable of addition reaction with an epoxy group in the molecule. What is necessary is just to have at least one functional group selected from a secondary amino group, secondary amino group and tertiary amino group in the molecule. Examples of such amine compounds are shown below, but are not limited thereto.
  • aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane; 4,4'-diaminodiphenylmethane , Aromatic amine compounds such as 2-methylaniline; heterocyclic rings containing nitrogen atoms such as 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine, piperazine Compound; and the like.
  • a compound having a tertiary amino group in the molecule is a raw material that provides a latent curing accelerator having excellent curing acceleration ability.
  • Examples of such a compound include dimethylaminopropyl.
  • Amine compounds such as amine, diethylaminopropylamine, di-n-propylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, N-methylpiperazine, 2-methylimidazole, 2-ethylimidazole, 2-ethyl Primary or secondary amines having a tertiary amino group in the molecule, such as imidazole compounds such as -4-methylimidazole and 2-phenylimidazole; 2-dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol , 1-phenoxime 2-dimethylaminoethanol, 2-diethylaminoethanol, 1-butoxymethyl-2-di
  • an active hydrogen compound having two or more active hydrogens examples include polyphenols such as bisphenol A, bisphenol F, bisphenol S, hydroquinone, catechol, resorcinol, pyrogallol, phenol novolac resin, polyhydric alcohols such as trimethylolpropane, polyhydric alcohols such as adipic acid and phthalic acid.
  • active hydrogen compounds include carboxylic acids, 1,2-dimercaptoethane, 2-mercaptoethanol, 1-mercapto-3-phenoxy-2-propanol, mercaptoacetic acid, anthranilic acid, and lactic acid.
  • Examples of the isocyanate compound used as another production raw material of the solid dispersion type amine adduct-based latent curing accelerator used in the present invention include, for example, n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, benzyl isocyanate and the like.
  • Functional isocyanate compounds hexamethylene diisocyanate, toluylene diisocyanate, 1,5-naphthalene diisocyanate, diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, 1,3,6-hexamethylene triisocyanate, Polyfunctional isocyanate compounds such as bicycloheptane triisocyanate; and further, these polyfunctional isocyanate compounds and active water Obtained by reaction of a compound, terminal isocyanate group-containing compound; and the like can also be used.
  • terminal isocyanate group-containing compounds examples include addition compounds having terminal isocyanate groups obtained by reaction of toluylene diisocyanate and trimethylolpropane, and terminal isocyanate groups obtained by reaction of toluylene diisocyanate and pentaerythritol.
  • the present invention is not limited thereto.
  • examples of the urea compound include urea and thiourea, but are not limited thereto.
  • the solid dispersion type latent curing accelerator used in the present invention includes, for example, (a) two components of an amine compound and an epoxy compound, (b) three components of the two components and an active hydrogen compound, or (c) an amine.
  • a combination of two or three components of a compound and an isocyanate compound or / and a urea compound is mixed and reacted at a temperature of room temperature to 200 ° C. and then cooled and solidified and then ground, or methyl ethyl ketone, It can be easily obtained by reacting in a solvent such as dioxane or tetrahydrofuran, removing the solvent, and grinding the solid.
  • urea-type adducts examples include “Fujicure FXE-1000” (trade name of Fuji Kasei Co., Ltd.) and “Fujicure FXR-1030”. (Fuji Kasei Co., Ltd.).
  • the resin composition of the present invention can be prepared by mixing with a mixer such as a Henschel mixer.
  • the resin composition of the present invention can be cured by heating at 50 to 120 ° C.
  • the resin composition of the present invention is characterized by containing the components (A) to (C).
  • the resin composition which is excellent in low temperature rapid curability and has low Tg (glass transition point) of hardened
  • Tg glass transition point
  • the component (B) is 1.0 to 2.0 (1.0 to 2.0) in terms of the thiol equivalent ratio with respect to the epoxy equivalent of the component (A). It is preferable that it is blended.
  • “epoxy equivalent” is a numerical value obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups in one molecule.
  • the “thiol equivalent” is a numerical value obtained by dividing the molecular weight of the thiol compound by the number of thiol groups in one molecule. That is, the component (B) has a thiol equivalent ratio of 1.0 to 2.0 with respect to the epoxy equivalent of the component (A) because the number of epoxy groups is 1 and the number of thiol groups is 1. It means 0.0-2.0.
  • a resin composition in which Tg hardly changes can be obtained.
  • the reason why such a resin composition is obtained is considered to be that the ratio of the thiol equivalent of the component (B) to the epoxy equivalent of the component (A) is set in an appropriate range. That is, when the thiol equivalent ratio of the component (B) to the epoxy equivalent of the component (A) is smaller than 1.0, a part of the epoxy group remains without reacting with the thiol group. It is considered that the curing of the cured product further proceeds due to the remaining epoxy group.
  • the resin composition of the present invention is further selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent as necessary. It may contain at least one additive. Moreover, you may contain a viscosity modifier, a flame retardant, or a solvent.
  • the resin composition of the present invention can be used as an adhesive or a raw material for bonding parts together.
  • the resin composition of the present invention can be used as a sealant for electronic parts or a raw material thereof.
  • the elastic modulus of the adhesive using the resin composition of the present invention is preferably 0.01 to 1.5 GPa, more preferably 0.4 to 0.8 GPa.
  • the elastic modulus is smaller than 0.01 GPa, the cured portion of the adhesive becomes brittle.
  • the elastic modulus is higher than 1.5 GPa, the cured product may crack in the shrinkage stress of the adhesive.
  • the Tg of the adhesive using the resin composition of the present invention is preferably ⁇ 20 to ⁇ 55 ° C., more preferably ⁇ 30 to ⁇ 38 ° C. If Tg is greater than ⁇ 20 ° C., cracks may occur in the cured portion of the adhesive. In addition, cracks may occur in the adherend depending on the adhesive strength with the adherend. When Tg is smaller than ⁇ 55 ° C., the cured part becomes brittle.
  • Resin compositions according to Examples 1 to 20 were prepared by mixing the components shown in Tables 1 and 2 below.
  • the components shown in Table 3 below were mixed to prepare resin compositions according to Comparative Examples 1 to 4.
  • the numbers indicating the blending ratio of the components (A) to (F) all indicate parts by weight.
  • the elastic modulus was measured at ⁇ 40 ° C. using dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to Japanese Industrial Standard JIS C6481.
  • DMA dynamic thermomechanical measurement
  • Tg was measured using a dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to Japanese Industrial Standard JIS C 6481.
  • DMA dynamic thermomechanical measurement
  • the adhesive strength was measured using the following test method. (1) A sample is stencil printed on a glass epoxy substrate with a size of 2 mm ⁇ . (2) Place a 2 mm x 2 mm Si chip on the printed sample. This is cured for 60 minutes at 180 ° C. using a blow dryer. (3) The shear strength is measured with a desktop universal testing machine (1605HTP manufactured by Aiko Engineering Co., Ltd.).
  • the resin composition of the present invention has a cured product having a modulus of elasticity at ⁇ 40 ° C. of 0.1 to 0.8 [Gpa] and a small modulus of elasticity.
  • the resin composition according to Comparative Example has an elastic modulus at ⁇ 40 ° C. of 4.0 [GPa], and a cured product having a low elastic modulus can be obtained. There wasn't.
  • the resin composition of the present invention had a Tg of ⁇ 50 ° C. to ⁇ 30 ° C. and a low Tg of the cured product.
  • the resin composition according to the comparative example had a Tg of 40 ° C., and a cured product having a low Tg was not obtained.
  • the resin composition of the present invention showed almost no change in the elastic modulus and Tg of the cured product even after being left at 120 ° C. for 48 hours after curing. From this, the resin composition of the present invention was able to demonstrate that Tg hardly changed even after a long time passed after curing.

Abstract

Provided is an epoxy resin composition which has superior low-temperature rapid curability, in which the Tg (glass transition point) of the cured material is low, and in which the Tg of the cured material substantially does not change even when a long period of time has elapsed after curing. This resin composition comprises (A) an epoxy resin that does not contain benzene rings, (B) a thiol compound having at least two thiol groups in the molecule, and (C) a latent curing agent. Preferably, the (B) component is admixed in a ratio of 1.0 to 2.0 in terms of the thiol equivalent ratio, relative to the epoxy equivalent of the (A) component.

Description

樹脂組成物Resin composition
 本発明は、低温速硬化性に優れており、硬化物のTg(ガラス転移点)が低く、硬化後に長時間経過しても硬化物のTgがほとんど変化しないエポキシ樹脂組成物に関する。 The present invention relates to an epoxy resin composition that is excellent in low-temperature rapid curing properties, has a low Tg (glass transition point) of the cured product, and does not change the Tg of the cured product almost even after a long time after curing.
 エポキシ樹脂、チオール化合物、及び硬化促進剤からなる樹脂組成物は、0℃から-20℃でも短時間で硬化可能な低温速硬化性に優れる樹脂組成物であり、接着剤や電子部品の封止剤などの様々な用途に用いられている。このような樹脂組成物の例として、特許文献1及び2には、(1)分子内にエポキシ基を2個以上有するエポキシ樹脂、(2)分子内にチオール基を2個以上有するポリチオール化合物、及び(3)固体分散型潜在性硬化促進剤を含有する樹脂組成物が開示されている。特許文献3には、柔軟性骨格及び極性結合基を有するビスフェノールA型エポキシ樹脂と、二個以上のチオール基を有するポリチオールとを含有するエポキシ樹脂組成物が開示されている。 A resin composition comprising an epoxy resin, a thiol compound, and a curing accelerator is a resin composition excellent in low-temperature fast-curing property that can be cured in a short time even from 0 ° C. to −20 ° C., and is used for sealing adhesives and electronic components. It is used for various applications such as agents. As examples of such a resin composition, Patent Documents 1 and 2 include (1) an epoxy resin having two or more epoxy groups in the molecule, (2) a polythiol compound having two or more thiol groups in the molecule, And (3) a resin composition containing a solid dispersion type latent curing accelerator is disclosed. Patent Document 3 discloses an epoxy resin composition containing a bisphenol A type epoxy resin having a flexible skeleton and a polar bonding group and a polythiol having two or more thiol groups.
特開平6-211969号公報JP-A-6-211969 特開平6-211970号公報Japanese Patent Laid-Open No. 6-21970 特開2006-36935号公報JP 2006-36935 A
 ところで、熱膨張係数の異なる2つの部品を接着剤によって互いに接合した場合には、周囲の温度の変化によってその接合部には熱応力が作用してクラック等が発生してしまう場合がある。このため、それらの部品を接合するための接着剤には、部品の熱変形に追従できる程度の柔軟性が必要であり、接着剤が硬化した後のTg(ガラス転移点)が低いこと、すなわち、弾性係数が低いことが要求される。 By the way, when two parts having different thermal expansion coefficients are joined to each other with an adhesive, thermal stress may act on the joint due to a change in ambient temperature, which may cause cracks or the like. For this reason, the adhesive for joining these parts needs to be flexible enough to follow the thermal deformation of the parts, and has a low Tg (glass transition point) after the adhesive is cured. The elastic modulus is required to be low.
 しかし、上記した特許文献1、2に記載されたエポキシ樹脂組成物は、優れた低温硬化性および保存安定性が得られるものの、Tgを十分に低くすることができないという問題があった。また、上記した特許文献3に記載されたエポキシ樹脂組成物は、低温で硬化可能であり、硬化物がある程度の柔軟性及び可撓性を有しているために応力を吸収することができるものの、時間が経過するにつれて硬化物の硬化がさらに進行して柔軟性及び可撓性が徐々に失われてしまうという問題があった。 However, the epoxy resin compositions described in Patent Documents 1 and 2 described above have a problem that Tg cannot be sufficiently lowered although excellent low-temperature curability and storage stability can be obtained. Moreover, although the epoxy resin composition described in the above-mentioned patent document 3 can be cured at a low temperature and the cured product has a certain degree of flexibility and flexibility, it can absorb stress. However, there is a problem that as the time passes, the cured product is further cured and the flexibility and flexibility are gradually lost.
 本発明は上記のような問題点に鑑みてなされたものであって、低温速硬化性に優れており、硬化物のTg(ガラス転移点)が低く、硬化後に長時間経過しても硬化物のTgがほとんど変化しないエポキシ樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above-described problems, and is excellent in low-temperature rapid curability, has a low Tg (glass transition point) of the cured product, and is cured even after a long time after curing. An object of the present invention is to provide an epoxy resin composition in which the Tg of the resin hardly changes.
 本発明者らは、上記の課題を解決すべく種々の実験を行った結果、ベンゼン環を含まないエポキシ樹脂、分子中に2個以上のチオール基を有するチオール化合物、及び潜在性硬化剤を含有する樹脂組成物は、低温速硬化性に優れており、硬化物のTgが低く、かつ、硬化後に長時間経過しても硬化物のTgがほとんど変化しないことを発見した。 As a result of conducting various experiments to solve the above problems, the present inventors contain an epoxy resin that does not contain a benzene ring, a thiol compound having two or more thiol groups in the molecule, and a latent curing agent. It has been found that the resin composition to be cured is excellent in low-temperature rapid curability, the Tg of the cured product is low, and the Tg of the cured product hardly changes even after a long time after curing.
 本発明は、(A)ベンゼン環を含まないエポキシ樹脂、(B)分子中に2個以上のチオール基を有するチオール化合物、及び(C)潜在性硬化剤を含有する樹脂組成物である。 The present invention is a resin composition containing (A) an epoxy resin not containing a benzene ring, (B) a thiol compound having two or more thiol groups in the molecule, and (C) a latent curing agent.
 本発明の樹脂組成物において、前記(A)成分は、以下の式(1)で表される化合物であることが好ましい。 In the resin composition of the present invention, the component (A) is preferably a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の樹脂組成物において、前記(A)成分は、以下の式(2)で表される化合物であることが好ましい。 In the resin composition of the present invention, the component (A) is preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、本発明の樹脂組成物において、前記(A)成分は、以下の式(3)で表される化合物であることが好ましい。 In the resin composition of the present invention, the component (A) is preferably a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明の樹脂組成物において、前記(A)成分は、以下の式(4)で表される化合物であることが好ましい。 In the resin composition of the present invention, the component (A) is preferably a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の樹脂組成物において、前記(A)成分のエポキシ当量に対して、前記(B)成分がチオール当量比で1.0~2.0の割合で配合されていることが好ましい。 In the resin composition of the present invention, the component (B) is preferably blended at a thiol equivalent ratio of 1.0 to 2.0 with respect to the epoxy equivalent of the component (A).
 本発明の樹脂組成物において、前記(B)成分が、テトラエチレングリコール ビス3-メルカプトプロピオネート、トリメチロールプロパン トリス3-メルカプトプロピオネート、ペンタエリスリトール テトラキス3-メルカプトプロピオネート、及び、ジペンタエリスリトール テトラキス3-メルカプトプロピオネートから選択される少なくとも1つであることが好ましい。 In the resin composition of the present invention, the component (B) is tetraethylene glycol bis3-mercaptopropionate, trimethylolpropane tris3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and di Pentaerythritol is preferably at least one selected from tetrakis 3-mercaptopropionate.
 本発明の樹脂組成物は、さらに、シリカフィラー、シランカップリング剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、及び、搖変剤からなる群から選択される少なくとも1つの添加剤を含有することが好ましい。 The resin composition of the present invention further includes at least one additive selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent. It is preferable to contain.
 また、本発明は、上記いずれかの樹脂組成物を含有する封止剤により封止された電子部品を提供する。
 また、本発明は、上記いずれかの樹脂組成物を含有する接着剤を提供する。
Moreover, this invention provides the electronic component sealed with the sealing agent containing either of the said resin compositions.
The present invention also provides an adhesive containing any one of the above resin compositions.
 本発明によれば、低温速硬化性に優れており、硬化物のTg(ガラス転移点)が低く、硬化後に長時間経過してもTgがほとんど変化しないエポキシ樹脂組成物を提供することができる。 According to the present invention, it is possible to provide an epoxy resin composition that is excellent in low-temperature rapid curability, has a low Tg (glass transition point) of a cured product, and has a Tg that hardly changes even after a long time after curing. .
 以下、本発明を実施するための形態について詳細に説明する。
 本発明の実施形態に係る樹脂組成物は、(A)ベンゼン環を含まないエポキシ樹脂、(B)分子中に2個以上のチオール基を有するチオール化合物、及び、(C)潜在性硬化剤を含有する。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
A resin composition according to an embodiment of the present invention includes (A) an epoxy resin not containing a benzene ring, (B) a thiol compound having two or more thiol groups in the molecule, and (C) a latent curing agent. contains.
 上記(A)成分のエポキシ樹脂は、例えば、以下の式(1)で表される化合物であることが好ましい。 The epoxy resin as the component (A) is preferably a compound represented by the following formula (1), for example.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(1)で表される化合物は、例えば、以下の式(2)及び/又は式(3)で表される化合物であることが好ましい。 The compound represented by the above formula (1) is preferably, for example, a compound represented by the following formula (2) and / or formula (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 また、上記式(1)で表される化合物は、例えば、以下の式(4)で表される化合物であることが好ましい。
 なお、以下の式(4)において、R~Rは、メチル基であることが好ましい。
Moreover, it is preferable that the compound represented by the said Formula (1) is a compound represented, for example by the following formula | equation (4).
In the following formula (4), R 2 to R 5 are preferably methyl groups.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記(B)成分のチオール化合物は、1分子当り2個以上のチオール基を有するものであればよい。保存安定性の観点から、塩基性不純物含量が極力少ないものが好ましい。このようなチオール化合物の例として、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ジペンタエリスリトールポリ(β-チオプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート等のポリオールとメルカプト有機酸のエステル化反応によって得られるチオール化合物等が挙げられる。 The thiol compound as the component (B) may be any compound having two or more thiol groups per molecule. From the viewpoint of storage stability, those having as little basic impurity content as possible are preferred. Examples of such thiol compounds include trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris (β-thiopropionate), pentaerythritol tetrakis. By esterification reaction of a polyol such as (β-thiopropionate), dipentaerythritol poly (β-thiopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and mercapto organic acid Examples include thiol compounds obtained.
 同様に、チオール化合物の例として、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、1,10-デカンジチオールなどのアルキルポリチオール化合物;末端チオール基含有ポリエーテル;末端チオール基含有ポリチオエーテル;エポキシ化合物と硫化水素との反応によって得られるチオール化合物;ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物;等が挙げられる。その製造工程上反応触媒として、塩基性物質を使用するものにあっては、脱アルカリ処理を行い、アルカリ金属イオン濃度を50ppm以下とした分子内にチオール基を2個以上有するチオール化合物が好ましい。 Similarly, as examples of thiol compounds, 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol Alkyl thiol compounds such as: terminal thiol group-containing polyethers; terminal thiol group-containing polythioethers; thiol compounds obtained by reaction of epoxy compounds with hydrogen sulfide; terminal thiol groups obtained by reaction of polythiol compounds with epoxy compounds Thiol compounds; and the like. In the case of using a basic substance as a reaction catalyst in the production process, a thiol compound having two or more thiol groups in a molecule that has been subjected to dealkalization treatment and has an alkali metal ion concentration of 50 ppm or less is preferable.
 上記(C)成分の潜在性硬化剤とは、室温ではエポキシ樹脂に不溶の固体で、加熱することにより可溶化し硬化促進剤として機能する化合物で、常温で固体のイミダゾール化合物や、固体分散型アミンアダクト系潜在性硬化促進剤、例えば、アミン化合物とエポキシ化合物との反応生成物(アミン-エポキシアダクト系)、アミン化合物とイソシアネート化合物または尿素化合物との反応生成物(尿素型アダクト系)等が挙げられる。 The latent curing agent of the component (C) is a compound that is insoluble in an epoxy resin at room temperature, is a compound that is solubilized by heating and functions as a curing accelerator, and is an imidazole compound that is solid at room temperature or a solid dispersion type Amine adduct-based latent curing accelerators such as reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems), reaction products of amine compounds with isocyanate compounds or urea compounds (urea-type adduct systems), etc. Can be mentioned.
 本発明に用いられる常温で固体のイミダゾール化合物としては、例えば、2-ヘプタデシルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2-メチルイミダゾリル-(1))-エチル-S-トリアジン、2,4-ジアミノ-6-(2′-メチルイミダゾリル-(1)′)-エチル-S-トリアジン・イソシアヌール酸付加物、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール-トリメリテイト、1-シアノエチル-2-フェニルイミダゾール-トリメリテイト、N-(2-メチルイミダゾリル-1-エチル)-尿素、N,N′-(2-メチルイミダゾリル-(1)-エチル)-アジボイルジアミド等が挙げられるが、これらに限定されるものではない。 Examples of imidazole compounds that are solid at room temperature used in the present invention include, for example, 2-heptadecylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 2-phenyl-4-methyl-5- Hydroxymethylimidazole, 2-phenyl-4-benzyl-5-hydroxymethylimidazole, 2,4-diamino-6- (2-methylimidazolyl- (1))-ethyl-S-triazine, 2,4-diamino-6 -(2'-methylimidazolyl- (1) ')-ethyl-S-triazine isocyanuric acid adduct, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2 -Phenylimidazole, 1-cyanoethyl-2-methylimidazole Trimellitate, 1-cyanoethyl-2-phenylimidazole-trimellitate, N- (2-methylimidazolyl-1-ethyl) -urea, N, N '-(2-methylimidazolyl- (1) -ethyl) -adiboyldiamide, etc. However, it is not limited to these.
 本発明に用いられる固体分散型アミンアダクト系潜在性硬化促進剤(アミン-エポキシアダクト系)の製造原料の一つとして用いられるエポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、カテコール、レゾルシノールなど多価フェノール、またはグリセリンやポリエチレングリコールのような多価アルコールとエピクロロヒドリンとを反応させて得られるポリグリシジルエーテル;p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロロヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、テレフタル酸のようなポリカルボン酸とエピクロロヒドリンとを反応させて得られるポリグリシジルエステル;4,4′-ジアミノジフェニルメタンやm-アミノフェノールなどとエピクロロヒドリンとを反応させて得られるグリシジルアミン化合物;更にはエポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィンなどの多官能性エポキシ化合物やブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレートなどの単官能性エポキシ化合物;等が挙げられるがこれらに限定されるものではない。 Examples of the epoxy compound used as a raw material for producing the solid dispersion type amine adduct type latent curing accelerator (amine-epoxy adduct type) used in the present invention include, for example, bisphenol A, bisphenol F, catechol, resorcinol and the like. Polyglycidyl ethers obtained by reacting polyhydric alcohols such as monohydric phenols or glycerin or polyethylene glycol with epichlorohydrin; hydroxycarboxylic acids such as p-hydroxybenzoic acid and β-hydroxynaphthoic acid and epichloro Glycidyl ether ester obtained by reacting with hydrin; polyglycidyl ester obtained by reacting polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin; 4,4'-diaminodiphenylmethane and m- Ami Glycidylamine compounds obtained by reacting phenol and epichlorohydrin; and polyfunctional epoxy compounds such as epoxidized phenol novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, butyl glycidyl ether, phenyl glycidyl ether Monofunctional epoxy compounds such as glycidyl methacrylate; and the like, but are not limited thereto.
 本発明に用いる上記固体分散型アミンアダクト系潜在性硬化促進剤のもう一つの製造原料として用いられるアミン化合物は、エポキシ基と付加反応しうる活性水素を分子内に1個以上有し、かつ1級アミノ基、2級アミノ基および3級アミノ基の中から選ばれた官能基を少なくとも分子内に1個以上有するものであればよい。このような、アミン化合物の例を以下に示すが、これらに限定されるものではない。すなわち、例えば、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4′-ジアミノ-ジシクロヘキシルメタンのような脂肪族アミン類;4,4′-ジアミノジフェニルメタン、2-メチルアニリンなどの芳香族アミン化合物;2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾリン、2,4-ジメチルイミダゾリン、ピペリジン、ピペラジンなどの窒素原子が含有された複素環化合物;等が挙げられる。 The amine compound used as another raw material for producing the solid dispersion type amine adduct-based latent curing accelerator used in the present invention has at least one active hydrogen capable of addition reaction with an epoxy group in the molecule. What is necessary is just to have at least one functional group selected from a secondary amino group, secondary amino group and tertiary amino group in the molecule. Examples of such amine compounds are shown below, but are not limited thereto. That is, for example, aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane; 4,4'-diaminodiphenylmethane , Aromatic amine compounds such as 2-methylaniline; heterocyclic rings containing nitrogen atoms such as 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine, piperazine Compound; and the like.
 また、この中で特に分子内に3級アミノ基を有する化合物は、優れた硬化促進能を有する潜在性硬化促進剤を与える原料であり、そのような化合物の例としては、例えば、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジ-n-プロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、N-メチルピペラジンなどのアミン化合物や、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールなどのイミダゾール化合物のような、分子内に3級アミノ基を有する1級もしくは2級アミン類;2-ジメチルアミノエタノール、1-メチル-2-ジメチルアミノエタノール、1-フェノキシメチル-2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ブトキシメチル-2-ジメチルアミノエタノール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-フェニルイミダゾリン、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾリン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール、N-β-ヒドロキシエチルモルホリン、2-ジメチルアミノエタンチオール、2-メルカプトピリジン、2-ベンゾイミダゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾチアゾール、4-メルカプトピリジン、N,N-ジメチルアミノ安息香酸、N,N-ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸、N,N-ジメチルグリシンヒドラジド、N,N-ジメチルプロピオン酸ヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジドなどのような、分子内に3級アミノ基を有するアルコール類、フェノール類、チオール類、カルボン酸類およびヒドラジド類;等が挙げられる。 Among them, a compound having a tertiary amino group in the molecule is a raw material that provides a latent curing accelerator having excellent curing acceleration ability. Examples of such a compound include dimethylaminopropyl. Amine compounds such as amine, diethylaminopropylamine, di-n-propylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, N-methylpiperazine, 2-methylimidazole, 2-ethylimidazole, 2-ethyl Primary or secondary amines having a tertiary amino group in the molecule, such as imidazole compounds such as -4-methylimidazole and 2-phenylimidazole; 2-dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol , 1-phenoxime 2-dimethylaminoethanol, 2-diethylaminoethanol, 1-butoxymethyl-2-dimethylaminoethanol, 1- (2-hydroxy-3-phenoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3 -Phenoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3-butoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3-butoxypropyl) -2-ethyl-4 -Methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-phenylimidazoline, 1- (2-hydroxy-3-butoxypropyl) -2-methylimidazoline, 2- (dimethylaminomethyl) phenol, 2 , 4,6-Tris (dimethylaminomethyl) phenol, N-β -Hydroxyethylmorpholine, 2-dimethylaminoethanethiol, 2-mercaptopyridine, 2-benzimidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 4-mercaptopyridine, N, N-dimethylaminobenzoic acid, N, N-dimethylglycine, nicotinic acid, isonicotinic acid, picolinic acid, N, N-dimethylglycine hydrazide, N, N-dimethylpropionic hydrazide, nicotinic hydrazide, isonicotinic hydrazide, etc. And alcohols having amino groups, phenols, thiols, carboxylic acids and hydrazides.
 本発明のエポキシ樹脂組成物の保存安定性を更に向上させるため、上記のエポキシ化合物とアミン化合物を付加反応せしめ本発明に用いられる潜在性硬化促進剤を製造する際に、第三成分として分子内に活性水素を2個以上有する活性水素化合物を添加することもできる。このような活性水素化合物の例を以下に示すが、これらに限定されるものではない。すなわち、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヒドロキノン、カテコール、レゾルシノール、ピロガロール、フェノールノボラック樹脂などの多価フェノール類、トリメチロールプロパンなどの多価アルコール類、アジピン酸、フタル酸などの多価カルボン酸類、1,2-ジメルカプトエタン、2-メルカプトエタノール、1-メルカプト-3-フェノキシ-2-プロパノール、メルカプト酢酸、アントラニル酸、乳酸等が挙げられる。 In order to further improve the storage stability of the epoxy resin composition of the present invention, when the latent curing accelerator used in the present invention is produced by addition reaction of the above epoxy compound and amine compound, It is also possible to add an active hydrogen compound having two or more active hydrogens. Examples of such active hydrogen compounds are shown below, but are not limited thereto. That is, for example, polyphenols such as bisphenol A, bisphenol F, bisphenol S, hydroquinone, catechol, resorcinol, pyrogallol, phenol novolac resin, polyhydric alcohols such as trimethylolpropane, polyhydric alcohols such as adipic acid and phthalic acid. Examples thereof include carboxylic acids, 1,2-dimercaptoethane, 2-mercaptoethanol, 1-mercapto-3-phenoxy-2-propanol, mercaptoacetic acid, anthranilic acid, and lactic acid.
 本発明に用いる固体分散型アミンアダクト系潜在性硬化促進剤の更なる、もう一つの製造原料として用いられるイソシアネート化合物としては、例えば、n-ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、ベンジルイソシアネートなどの単官能イソシアネート化合物;ヘキサメチレンジイソシアネート、トルイレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、パラフェニレンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネートなどの多官能イソシアネート化合物;更には、これら多官能イソシアネート化合物と活性水素化合物との反応によって得られる、末端イソシアネート基含有化合物;等も用いることができる。このような末端イソシアネート基含有化合物の例としては、トルイレンジイソシアネートとトリメチロールプロパンとの反応により得られる末端イソシアネート基を有する付加化合物、トルイレンジイソシアネートとペンタエリスリトールとの反応により得られる末端イソシアネート基を有する付加化合物などが挙げられるが、これらに限定されるものではない。 Examples of the isocyanate compound used as another production raw material of the solid dispersion type amine adduct-based latent curing accelerator used in the present invention include, for example, n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, benzyl isocyanate and the like. Functional isocyanate compounds; hexamethylene diisocyanate, toluylene diisocyanate, 1,5-naphthalene diisocyanate, diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, 1,3,6-hexamethylene triisocyanate, Polyfunctional isocyanate compounds such as bicycloheptane triisocyanate; and further, these polyfunctional isocyanate compounds and active water Obtained by reaction of a compound, terminal isocyanate group-containing compound; and the like can also be used. Examples of such terminal isocyanate group-containing compounds include addition compounds having terminal isocyanate groups obtained by reaction of toluylene diisocyanate and trimethylolpropane, and terminal isocyanate groups obtained by reaction of toluylene diisocyanate and pentaerythritol. However, the present invention is not limited thereto.
 また、尿素化合物として、例えば、尿素、チオ尿素などが挙げられるが、これらに限定されるものでない。 Further, examples of the urea compound include urea and thiourea, but are not limited thereto.
 本発明に用いられる固体分散型潜在性硬化促進剤は、例えば、上記の(a)アミン化合物とエポキシ化合物の2成分、(b)この2成分と活性水素化合物の3成分、または(c)アミン化合物とイソシアネート化合物または/および尿素化合物の2若しくは3成分の組合せで各成分を採って混合し、室温から200℃の温度において反応させた後、冷却固化してから粉砕するか、あるいは、メチルエチルケトン、ジオキサン、テトラヒドロフラン等の溶媒中で反応させ、脱溶媒後、固形分を粉砕することにより容易に得ることが出来る。 The solid dispersion type latent curing accelerator used in the present invention includes, for example, (a) two components of an amine compound and an epoxy compound, (b) three components of the two components and an active hydrogen compound, or (c) an amine. A combination of two or three components of a compound and an isocyanate compound or / and a urea compound is mixed and reacted at a temperature of room temperature to 200 ° C. and then cooled and solidified and then ground, or methyl ethyl ketone, It can be easily obtained by reacting in a solvent such as dioxane or tetrahydrofuran, removing the solvent, and grinding the solid.
 上記の固体分散型潜在性硬化促進剤として市販されている代表的な例を以下に示すが、これらに限定されるものではない。すなわち、例えば、アミン-エポキシアダクト系(アミンアダクト系)としては、「アミキュアPN-23」(味の素(株)商品名)、「アミキュアPN-40」(味の素(株)商品名)、「ハードナーX-3661S」(エー・シー・アール(株)商品名)、「ハードナーX-3670S」(エー・シー・アール(株)商品名)、「ノバキュアHX-3742」(旭化成(株)商品名)、「ノバキュアHX-3721」(旭化成(株)商品名)などが挙げられ、また、尿素型アダクト系としては、「フジキュアFXE-1000」(富士化成(株)商品名)、「フジキュアFXR-1030」(富士化成(株))などが挙げられる。 Representative examples commercially available as the above solid dispersion type latent curing accelerator are shown below, but are not limited thereto. That is, for example, as the amine-epoxy adduct system (amine adduct system), “Amicure PN-23” (Ajinomoto Co., Ltd. trade name), “Amicure PN-40” (Ajinomoto Co., Ltd. trade name), “Hardener X” -3661S "(trade name of ARC Corporation)," Hardener X-3670S "(tradename of ARC Corporation)," Novacure HX-3742 "(tradename of Asahi Kasei Corporation), “Novacure HX-3721” (trade name of Asahi Kasei Co., Ltd.) and the like, and examples of urea-type adducts include “Fujicure FXE-1000” (trade name of Fuji Kasei Co., Ltd.) and “Fujicure FXR-1030”. (Fuji Kasei Co., Ltd.).
 上記で説明した(A)~(C)成分を原料として本発明の樹脂組成物を調製するには特別の困難はなく、従来公知の方法に準ずることができる。例えば、ヘンシェルミキサーなどの混合機で混合することによって、本発明の樹脂組成物を調製することができる。 There is no particular difficulty in preparing the resin composition of the present invention using the components (A) to (C) described above as raw materials, and conventional methods can be applied. For example, the resin composition of the present invention can be prepared by mixing with a mixer such as a Henschel mixer.
 また、本発明の樹脂組成物を硬化するにも特別の困難はなく、従来公知の方法を用いることができる。例えば、50~120℃で加熱することによって、本発明の樹脂組成物を硬化させることができる。 Also, there is no particular difficulty in curing the resin composition of the present invention, and a conventionally known method can be used. For example, the resin composition of the present invention can be cured by heating at 50 to 120 ° C.
 本発明の樹脂組成物は、上記(A)~(C)成分を含有することを特徴とする。これにより、低温速硬化性に優れており、硬化物のTg(ガラス転移点)が低い樹脂組成物を得ることができる。また、樹脂組成物が加熱により硬化して硬化物となった後に長時間経過しても、その硬化物のTgがほとんど変化しない樹脂組成物を得ることができる。 The resin composition of the present invention is characterized by containing the components (A) to (C). Thereby, the resin composition which is excellent in low temperature rapid curability and has low Tg (glass transition point) of hardened | cured material can be obtained. Moreover, even if it passes for a long time after the resin composition hardens | cures by heating and turns into hardened | cured material, the resin composition in which Tg of the hardened | cured material hardly changes can be obtained.
 このような樹脂組成物が得られる理由は、上記(A)成分のエポキシ樹脂の分子中にベンゼン環が含まれていないことに起因すると考えられる。あるいは、上記式(2)及び(3)で表される化合物のエポキシ当量が比較的高いことに起因すると考えられる。あるいは、上記式(4)で表される化合物の分子中にシリコン骨格が存在することに起因すると考えられる。 It is considered that the reason why such a resin composition is obtained is that the benzene ring is not contained in the molecule of the epoxy resin as the component (A). Or it is thought that it originates in the epoxy equivalent of the compound represented by the said Formula (2) and (3) being comparatively high. Alternatively, it is considered that the silicon skeleton is present in the molecule of the compound represented by the above formula (4).
 本発明の樹脂組成物において、上記(A)成分のエポキシ当量に対して、上記(B)成分がチオール当量比で1.0~2.0(1.0以上2.0以下)の割合で配合されていることが好ましい。ここでいう「エポキシ当量」とは、エポキシ樹脂の分子量を1分子中のエポキシ基の数で割った数値のことである。「チオール当量」とは、チオール化合物の分子量を1分子中のチオール基の数で割った数値のことである。つまり、上記(A)成分のエポキシ当量に対して、上記(B)成分がチオール当量比で1.0~2.0というのは、エポキシ基の数が1に対してチオール基の数が1.0~2.0という意味である。 In the resin composition of the present invention, the component (B) is 1.0 to 2.0 (1.0 to 2.0) in terms of the thiol equivalent ratio with respect to the epoxy equivalent of the component (A). It is preferable that it is blended. Here, “epoxy equivalent” is a numerical value obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups in one molecule. The “thiol equivalent” is a numerical value obtained by dividing the molecular weight of the thiol compound by the number of thiol groups in one molecule. That is, the component (B) has a thiol equivalent ratio of 1.0 to 2.0 with respect to the epoxy equivalent of the component (A) because the number of epoxy groups is 1 and the number of thiol groups is 1. It means 0.0-2.0.
 上記(A)成分と上記(B)成分の配合割合がこのような範囲に設定されることによって、樹脂組成物が硬化して硬化物となった後に長時間経過しても、その硬化物のTgがほとんど変化しない樹脂組成物を得ることができる。このような樹脂組成物が得られる理由は、上記(A)成分のエポキシ当量に対する上記(B)成分のチオール当量比が適切な範囲に設定されているためであると考えられる。すなわち、上記(A)成分のエポキシ当量に対する上記(B)成分のチオール当量比が1.0よりも小さい場合には、エポキシ基の一部がチオール基と反応せずに余ってしまうために、この余ったエポキシ基が原因となって硬化物の硬化がさらに進行するものと考えられる。一方、上記(A)成分のエポキシ当量に対する上記(B)成分のチオール当量比が2.0よりも大きい場合には、チオール基の一部がエポキシ基と反応せずに余ってしまうために、この余ったチオール基が原因となって硬化物の硬化がさらに進行するものと考えられる。 By setting the blending ratio of the component (A) and the component (B) within such a range, even if a long time elapses after the resin composition is cured to become a cured product, A resin composition in which Tg hardly changes can be obtained. The reason why such a resin composition is obtained is considered to be that the ratio of the thiol equivalent of the component (B) to the epoxy equivalent of the component (A) is set in an appropriate range. That is, when the thiol equivalent ratio of the component (B) to the epoxy equivalent of the component (A) is smaller than 1.0, a part of the epoxy group remains without reacting with the thiol group. It is considered that the curing of the cured product further proceeds due to the remaining epoxy group. On the other hand, when the thiol equivalent ratio of the component (B) to the epoxy equivalent of the component (A) is larger than 2.0, a part of the thiol group remains without reacting with the epoxy group, It is thought that the curing of the cured product further proceeds due to the surplus thiol group.
 本発明の樹脂組成物は、さらに、必要に応じて、シリカフィラー、シランカップリング剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、及び、搖変剤からなる群から選択される少なくとも1つの添加剤を含有してもよい。また、粘度調整剤、難燃剤、あるいは溶剤等を含有してもよい。 The resin composition of the present invention is further selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent as necessary. It may contain at least one additive. Moreover, you may contain a viscosity modifier, a flame retardant, or a solvent.
 本発明の樹脂組成物は、部品同士を接合するための接着剤あるいはその原料として用いることができる。
 本発明の樹脂組成物は、電子部品の封止剤あるいはその原料として用いることができる。
The resin composition of the present invention can be used as an adhesive or a raw material for bonding parts together.
The resin composition of the present invention can be used as a sealant for electronic parts or a raw material thereof.
 本発明の樹脂組成物を用いた接着剤の弾性率は、好ましくは0.01~1.5GPaであり、更に好ましくは0.4~0.8GPaである。
 弾性率が0.01GPaより小さい場合には、接着剤の硬化部分が脆くなってしまう。弾性率が1.5GPaより大きい場合には、接着剤の収縮応力に硬化物がクラック生じるおそれがある。
The elastic modulus of the adhesive using the resin composition of the present invention is preferably 0.01 to 1.5 GPa, more preferably 0.4 to 0.8 GPa.
When the elastic modulus is smaller than 0.01 GPa, the cured portion of the adhesive becomes brittle. When the elastic modulus is higher than 1.5 GPa, the cured product may crack in the shrinkage stress of the adhesive.
 また、本発明の樹脂組成物を用いた接着剤のTgは、好ましくは-20~-55℃であり、更に好ましくは-30~-38℃である。
 Tgが-20℃より大きい場合には、接着剤の硬化部分にクラックが生じるおそれがある。また、被着体との接着強度によっては、被着体にクラックが発生する場合もある。Tgが-55℃よりも小さい場合には、硬化部分が脆くなってしまう。
The Tg of the adhesive using the resin composition of the present invention is preferably −20 to −55 ° C., more preferably −30 to −38 ° C.
If Tg is greater than −20 ° C., cracks may occur in the cured portion of the adhesive. In addition, cracks may occur in the adherend depending on the adhesive strength with the adherend. When Tg is smaller than −55 ° C., the cured part becomes brittle.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
(樹脂組成物の調製)
 以下の表1、2に示す配合で各成分を混合して、実施例1~20に係る樹脂組成物を調製した。
 以下の表3に示す配合で各成分を混合して、比較例1~4に係る樹脂組成物を調製した。
 なお、表1~3において、(A)~(F)成分の配合割合を示す数字は、すべて重量部を示している。
(Preparation of resin composition)
Resin compositions according to Examples 1 to 20 were prepared by mixing the components shown in Tables 1 and 2 below.
The components shown in Table 3 below were mixed to prepare resin compositions according to Comparative Examples 1 to 4.
In Tables 1 to 3, the numbers indicating the blending ratio of the components (A) to (F) all indicate parts by weight.
 表1~3中の各成分の具体的な物質名等は、以下の通りである。
 (A1)エポキシ樹脂1:新日鐵化学社製「YDF8170」、ビスフェノールF型エポキシ樹脂、重量平均分子量165
 (A2)エポキシ樹脂2:ジャパンエポキシレジン株式会社製「YL7410」(上式(2)のエポキシ樹脂)、重量平均分子量435
 (A3)エポキシ樹脂3: 三洋化成工業株式会社製「PP300P」(上式(3)のエポキシ樹脂)、重量平均分子量181.3
 (A4)エポキシ樹脂4: モメンティブパフォーマンスマテリアルズ社製「TSL9906」(上式(4)において、R~Rがメチル基であるエポキシ樹脂)、重量平均分子量296
 (B1)チオール化合物1: SC有機化学株式会社製「PEMP」ペンタエリスリトール テトラキス(3-メルカプトプロピオネート)、重量平均分子量489
 (B2)チオール化合物2:SC有機化学株式会社製「TMMP」トリメチロールプロパントリス(3-メルカプトプロピオネート)、重量平均分子量398
 (B3)チオール化合物3:SC有機化学株式会社製「DPMP」、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、重量平均分子量783
 (C)潜在性硬化剤:味の素ファインテクノ社製「PN40J」、エポキシ樹脂アミンアダクト
 (D)安定剤:四国化成工業株式会社製「L07N」、ビスフェノールA型エポキシ樹脂/フェノール樹脂/ホウ酸エステル
 (E)搖変剤:日本アエロジル株式会社製「R805」、ヒュームドシリカ
 (F)カップリング剤:信越化学株式会社製「KBM403」、3-グリシドキシプロピルトリメトキシシラン
Specific substance names and the like of each component in Tables 1 to 3 are as follows.
(A1) Epoxy resin 1: “YDF8170” manufactured by Nippon Steel Chemical Co., Ltd., bisphenol F type epoxy resin, weight average molecular weight 165
(A2) Epoxy resin 2: “YL7410” (epoxy resin of the above formula (2)) manufactured by Japan Epoxy Resin Co., Ltd., weight average molecular weight 435
(A3) Epoxy resin 3: “PP300P” (epoxy resin of the above formula (3)) manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 181.3
(A4) Epoxy resin 4: “TSL9906” manufactured by Momentive Performance Materials (an epoxy resin in which R 2 to R 5 are methyl groups in the above formula (4)), weight average molecular weight 296
(B1) Thiol compound 1: “PEMP” pentaerythritol tetrakis (3-mercaptopropionate) manufactured by SC Organic Chemical Co., Ltd., weight average molecular weight 489
(B2) Thiol compound 2: “TMMP” trimethylolpropane tris (3-mercaptopropionate) manufactured by SC Organic Chemical Co., Ltd., weight average molecular weight 398
(B3) Thiol compound 3: “DPMP” manufactured by SC Organic Chemical Co., Ltd., dipentaerythritol hexakis (3-mercaptopropionate), weight average molecular weight 783
(C) Latent curing agent: “PN40J” manufactured by Ajinomoto Fine-Techno Co., Ltd., epoxy resin amine adduct (D) Stabilizer: “L07N” manufactured by Shikoku Kasei Kogyo Co., Ltd., bisphenol A type epoxy resin / phenol resin / borate ester ( E) Fading agent: Nippon Aerosil Co., Ltd. “R805”, fumed silica (F) Coupling agent: Shin-Etsu Chemical Co., Ltd. “KBM403”, 3-glycidoxypropyltrimethoxysilane
(硬化物の作製)
 実施例1~20及び比較例1~4の各樹脂組成物を、80℃の条件で、10分加熱した。この結果、実施例1~20、及び、比較例1については、樹脂組成物が硬化した硬化物が得られた。比較例2~4については、樹脂組成物が硬化しなかったので硬化物が得られなかった。
(Production of cured product)
Each resin composition of Examples 1 to 20 and Comparative Examples 1 to 4 was heated at 80 ° C. for 10 minutes. As a result, for Examples 1 to 20 and Comparative Example 1, cured products obtained by curing the resin compositions were obtained. In Comparative Examples 2 to 4, no cured product was obtained because the resin composition was not cured.
(Tg及び弾性率の測定)
 樹脂組成物を硬化させて得られた硬化物について、弾性率[GPa]、硬化後に120℃の温度条件で48時間放置した後の弾性率[GPa]、ガラス転移点Tg[℃]、硬化後に120℃の温度条件で48時間放置した後のガラス転移点Tg[℃]、及び、接着強度[N/mm2]をそれぞれ測定した。測定結果を表1~3に示す。
(Measurement of Tg and elastic modulus)
About the cured product obtained by curing the resin composition, the elastic modulus [GPa], the elastic modulus [GPa] after standing for 48 hours at 120 ° C. after curing, the glass transition point Tg [° C.], after curing The glass transition point Tg [° C.] and the adhesive strength [N / mm 2 ] after standing at 120 ° C. for 48 hours were measured. The measurement results are shown in Tables 1 to 3.
 弾性率については、日本工業規格JIS C6481に従い、セイコーインスツル社製、動的熱機械測定(DMA)を用いて、-40℃での弾性率を測定した。 The elastic modulus was measured at −40 ° C. using dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to Japanese Industrial Standard JIS C6481.
 Tgについては、日本工業規格JIS C6481に従い、セイコーインスツル社製、動的熱機械測定(DMA)を用いて測定した。 Tg was measured using a dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to Japanese Industrial Standard JIS C 6481.
 接着強度については、以下の試験方法を用いて測定した。
(1)試料をガラスエポキシ基板上に2mmφの大きさで孔版印刷する。
(2)印刷した試料上に2mm×2mmのSiチップを乗せる。これを送風乾燥機を用いて180℃で60min間硬化させる。
(3)卓上万能試験機(アイコーエンジニアリング(株)社製1605HTP)にてシェア強度を測定する。
The adhesive strength was measured using the following test method.
(1) A sample is stencil printed on a glass epoxy substrate with a size of 2 mmφ.
(2) Place a 2 mm x 2 mm Si chip on the printed sample. This is cured for 60 minutes at 180 ° C. using a blow dryer.
(3) The shear strength is measured with a desktop universal testing machine (1605HTP manufactured by Aiko Engineering Co., Ltd.).
 評価方法
 硬化物を120℃で48時間放置した後のTgの変化が±5℃以内であれば、Tgの変化が「無し」であると評価した。
 硬化物を120℃で48時間放置した後の弾性率の変化が±0.1GPa以内であれば、弾性率の変化が「無し」であると評価した。
Evaluation Method If the change in Tg after leaving the cured product for 48 hours at 120 ° C. is within ± 5 ° C., the change in Tg was evaluated as “None”.
If the change in elastic modulus after leaving the cured product at 120 ° C. for 48 hours was within ± 0.1 GPa, the change in elastic modulus was evaluated as “none”.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例1~20の結果を見れば分かる通り、本発明の樹脂組成物は、いずれも80℃という加熱条件でも短時間で硬化可能であり、低温速硬化性に優れていることがわかった。これに対して、比較例に係る樹脂組成物は、比較例2~4の結果を見れば分かる通り、エポキシ当量対するチオール当量比が0.5と小さすぎるために、80℃という加熱条件では十分に硬化しないことがわかった。 As can be seen from the results of Examples 1 to 20, it was found that all of the resin compositions of the present invention can be cured in a short time even under a heating condition of 80 ° C., and are excellent in low-temperature rapid curability. On the other hand, as can be seen from the results of Comparative Examples 2 to 4, the resin composition according to the comparative example has a thiol equivalent ratio with respect to the epoxy equivalent of 0.5 which is too small. It was found that it did not cure.
 実施例1~20の結果を見れば分かる通り、本発明の樹脂組成物は、硬化物の-40℃における弾性率が0.1~0.8[Gpa]であり、弾性率の小さい硬化物が得られることがわかった。これに対して、比較例に係る樹脂組成物は、比較例1の結果を見れば分かる通り、-40℃における弾性率が4.0[GPa]であり、弾性率の小さい硬化物が得られなかった。 As can be seen from the results of Examples 1 to 20, the resin composition of the present invention has a cured product having a modulus of elasticity at −40 ° C. of 0.1 to 0.8 [Gpa] and a small modulus of elasticity. Was found to be obtained. On the other hand, as can be seen from the results of Comparative Example 1, the resin composition according to Comparative Example has an elastic modulus at −40 ° C. of 4.0 [GPa], and a cured product having a low elastic modulus can be obtained. There wasn't.
 実施例1~20の結果を見れば分かる通り、本発明の樹脂組成物は、Tgが-50℃~-30℃であり、硬化物のTgが低いことがわかった。これに対して、比較例に係る樹脂組成物は、比較例1の結果を見れば分かる通り、Tgが40℃であり、Tgの低い硬化物が得られなかった。 As can be seen from the results of Examples 1 to 20, it was found that the resin composition of the present invention had a Tg of −50 ° C. to −30 ° C. and a low Tg of the cured product. On the other hand, as can be seen from the results of Comparative Example 1, the resin composition according to the comparative example had a Tg of 40 ° C., and a cured product having a low Tg was not obtained.
 実施例1~17の結果を見れば分かる通り、本発明の樹脂組成物は、硬化後に120℃で48時間放置した後も、硬化物の弾性率及びTgがほとんど変化していなかった。このことから、本発明の樹脂組成物は、硬化後に長時間経過してもTgがほとんど変化しないことを実証することができた。 As can be seen from the results of Examples 1 to 17, the resin composition of the present invention showed almost no change in the elastic modulus and Tg of the cured product even after being left at 120 ° C. for 48 hours after curing. From this, the resin composition of the present invention was able to demonstrate that Tg hardly changed even after a long time passed after curing.

Claims (10)

  1.  以下の(A)~(C)成分を含有する樹脂組成物。
     (A)ベンゼン環を含まないエポキシ樹脂
     (B)分子中に2個以上のチオール基を有するチオール化合物
     (C)潜在性硬化剤
    A resin composition containing the following components (A) to (C).
    (A) Epoxy resin containing no benzene ring (B) Thiol compound having two or more thiol groups in the molecule (C) Latent curing agent
  2.  前記(A)成分が、下記式(1)で表される化合物である樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    The resin composition whose said (A) component is a compound represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
  3.  前記(A)成分が、下記式(2)で表される化合物である請求項2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    The resin composition according to claim 2, wherein the component (A) is a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
  4.  前記(A)成分が、下記式(3)で表される化合物である請求項2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    The resin composition according to claim 2, wherein the component (A) is a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
  5.  前記(A)成分が、下記式(4)で表される化合物である請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    The resin composition according to claim 1, wherein the component (A) is a compound represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
  6.  前記(A)成分のエポキシ当量に対して、前記(B)成分がチオール当量比で1.0~2.0の割合で配合されている請求項1から請求項5のうちいずれか1項に記載の樹脂組成物。 The component (B) is blended at a thiol equivalent ratio of 1.0 to 2.0 with respect to the epoxy equivalent of the component (A). The resin composition as described.
  7.  前記(B)成分が、テトラエチレングリコール ビス3-メルカプトプロピオネート、トリメチロールプロパン トリス3-メルカプトプロピオネート、ペンタエリスリトール テトラキス3-メルカプトプロピオネート、及び、ジペンタエリスリトール テトラキス3-メルカプトプロピオネートから選択される少なくとも1つである請求項1から請求項6のうちいずれか1項に記載の樹脂組成物。 The component (B) is tetraethylene glycol bis 3-mercaptopropionate, trimethylolpropane tris 3-mercaptopropionate, pentaerythritol tetrakis 3-mercaptopropionate, and dipentaerythritol tetrakis 3-mercaptopropionate. The resin composition according to any one of claims 1 to 6, wherein the resin composition is at least one selected from nates.
  8.  さらに、シリカフィラー、シランカップリング剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、及び、搖変剤からなる群から選択される少なくとも1つの添加剤を含有する請求項1から請求項7のうちいずれか1項に記載の樹脂組成物。 Furthermore, it contains at least one additive selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent. 8. The resin composition according to any one of items 7.
  9.  請求項1から請求項8のうちいずれか1項に記載の樹脂組成物を含有する封止剤により封止された電子部品。 An electronic component sealed with a sealant containing the resin composition according to any one of claims 1 to 8.
  10.  請求項1から請求項8のうちいずれか1項に記載の樹脂組成物を含有する接着剤。
     
    The adhesive agent containing the resin composition of any one of Claims 1-8.
PCT/JP2011/070917 2011-01-05 2011-09-14 Resin composition WO2012093510A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137020502A KR101819785B1 (en) 2011-01-05 2011-09-14 Resin composition
CN201180064158XA CN103282401A (en) 2011-01-05 2011-09-14 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-000465 2011-01-05
JP2011000465 2011-01-05

Publications (1)

Publication Number Publication Date
WO2012093510A1 true WO2012093510A1 (en) 2012-07-12

Family

ID=46457373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070917 WO2012093510A1 (en) 2011-01-05 2011-09-14 Resin composition

Country Status (4)

Country Link
KR (1) KR101819785B1 (en)
CN (1) CN103282401A (en)
TW (1) TWI629291B (en)
WO (1) WO2012093510A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136484A1 (en) * 2013-03-07 2014-09-12 住友ベークライト株式会社 Apparatus, composition for adhesive, and adhesive sheet
JP2015093887A (en) * 2013-11-08 2015-05-18 アセック株式会社 Epoxy resin composition and cure product
WO2015098875A1 (en) * 2013-12-24 2015-07-02 株式会社ブリヂストン Adhesive sheet, manufacturing method therefor, and laminate
JP2016102206A (en) * 2014-11-12 2016-06-02 株式会社スリーボンド Epoxy resin composition
JP2018039889A (en) * 2016-09-06 2018-03-15 株式会社スリーボンド Epoxy resin composition
JPWO2017057019A1 (en) * 2015-09-30 2018-07-19 ナミックス株式会社 Epoxy resin composition
US10287466B2 (en) 2015-02-13 2019-05-14 3M Innovative Properties Company Cold-tolerant sealants and components thereof
JP2019085408A (en) * 2017-11-02 2019-06-06 四国化成工業株式会社 Thiol compound, method for synthesizing the same and use of the thiol compound
WO2019163818A1 (en) * 2018-02-21 2019-08-29 ナミックス株式会社 Epoxy resin composition
CN110194942A (en) * 2019-06-20 2019-09-03 广州机械科学研究院有限公司 A kind of low-temperature rapid thermal cured one-component epoxy adhesive and preparation method thereof
KR102129331B1 (en) 2019-08-21 2020-07-03 나믹스 가부시끼가이샤 Epoxy resin composition
KR102187495B1 (en) 2019-08-21 2020-12-08 나믹스 가부시끼가이샤 Epoxy resin composition
KR20210078480A (en) 2018-10-17 2021-06-28 나믹스 가부시끼가이샤 resin composition
CN113851055A (en) * 2021-09-27 2021-12-28 京东方科技集团股份有限公司 Display module, preparation method thereof and splicing display device
US11584823B2 (en) 2016-12-13 2023-02-21 3M Innovative Properties Company Epoxy stabilization using substituted barbituric acids
US11807596B2 (en) 2017-10-26 2023-11-07 Shikoku Chemicals Corporation Thiol compounds, synthesis method therefor, and utilization of said thiol compounds
US11884850B2 (en) 2017-09-15 2024-01-30 3M Innovative Properties Company Adhesive film including a (meth)acrylate matrix including a curable epoxy/thiol resin composition, tape, and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086249A (en) * 2013-10-28 2015-05-07 スリーボンドファインケミカル株式会社 Microcapsule type thermosetting resin composition
WO2015141347A1 (en) * 2014-03-17 2015-09-24 ナミックス株式会社 Resin composition
US10472461B2 (en) * 2015-03-12 2019-11-12 Namics Corporation Semiconductor device and image sensor module
KR102043160B1 (en) * 2017-12-20 2019-11-12 이아이씨티코리아 주식회사 Low Temperature Curing Epoxy Resin Composition
CN110183818A (en) * 2018-02-22 2019-08-30 味之素株式会社 Wafer-class encapsulation resin composition for encapsulating
CN109355048A (en) * 2018-09-26 2019-02-19 烟台德邦科技有限公司 A kind of quick-setting epoxy cement glue of ultralow temperature and preparation method thereof
CN110591622B (en) * 2019-09-12 2022-11-22 深圳市百丽春粘胶实业有限公司 High-weather-resistance low-temperature thermosetting epoxy module adhesive and preparation method thereof
KR102271763B1 (en) * 2020-02-18 2021-07-01 한국기술교육대학교 산학협력단 Thermosetting Rapid Curing Adhesive Composition
CN114057995B (en) * 2021-12-16 2023-09-01 韦尔通科技股份有限公司 Underfill material, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186727A (en) * 1987-01-29 1988-08-02 Kashima Kogyo Kk Epoxy resin composition having rubber elasticity
JPH06211970A (en) * 1992-10-22 1994-08-02 Ajinomoto Co Inc Epoxy resin composition
JPH06211969A (en) * 1992-10-22 1994-08-02 Ajinomoto Co Inc Epoxy resin composition
JP2008088212A (en) * 2006-09-29 2008-04-17 Sekisui Chem Co Ltd Epoxy composition for electronic component and sealant for semiconductor
WO2010052823A1 (en) * 2008-11-07 2010-05-14 横浜ゴム株式会社 Curing accelerator for epoxy resin composition and one-pack type thermosetting epoxy resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955206A (en) * 1995-05-12 1999-09-21 Mitsui Chemicals, Inc. Polysulfide-based resin composition, polysulfide-based resin, and optical material comprising the resin
US6153719A (en) * 1998-02-04 2000-11-28 Lord Corporation Thiol-cured epoxy composition
WO2001092416A1 (en) * 1999-02-12 2001-12-06 Ajinomoto Co., Inc. Conductive resin composition
CN101147210B (en) * 2005-03-23 2011-03-30 松下电器产业株式会社 Electroconductive joining material
JP4594851B2 (en) * 2005-11-25 2010-12-08 株式会社東芝 Resin composition and resin-encapsulated semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186727A (en) * 1987-01-29 1988-08-02 Kashima Kogyo Kk Epoxy resin composition having rubber elasticity
JPH06211970A (en) * 1992-10-22 1994-08-02 Ajinomoto Co Inc Epoxy resin composition
JPH06211969A (en) * 1992-10-22 1994-08-02 Ajinomoto Co Inc Epoxy resin composition
JP2008088212A (en) * 2006-09-29 2008-04-17 Sekisui Chem Co Ltd Epoxy composition for electronic component and sealant for semiconductor
WO2010052823A1 (en) * 2008-11-07 2010-05-14 横浜ゴム株式会社 Curing accelerator for epoxy resin composition and one-pack type thermosetting epoxy resin composition

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136484A1 (en) * 2013-03-07 2014-09-12 住友ベークライト株式会社 Apparatus, composition for adhesive, and adhesive sheet
JP2015093887A (en) * 2013-11-08 2015-05-18 アセック株式会社 Epoxy resin composition and cure product
JPWO2015098875A1 (en) * 2013-12-24 2017-03-23 株式会社ブリヂストン Adhesive sheet, method for producing the same, and laminate
WO2015098875A1 (en) * 2013-12-24 2015-07-02 株式会社ブリヂストン Adhesive sheet, manufacturing method therefor, and laminate
JP2016102206A (en) * 2014-11-12 2016-06-02 株式会社スリーボンド Epoxy resin composition
US10544339B2 (en) 2015-02-13 2020-01-28 3M Innovative Properties Company Cold-tolerant sealants and components thereof
US10287466B2 (en) 2015-02-13 2019-05-14 3M Innovative Properties Company Cold-tolerant sealants and components thereof
JP6996743B2 (en) 2015-09-30 2022-02-03 ナミックス株式会社 Epoxy resin composition
JPWO2017057019A1 (en) * 2015-09-30 2018-07-19 ナミックス株式会社 Epoxy resin composition
JP7220974B2 (en) 2016-09-06 2023-02-13 株式会社スリーボンド epoxy resin composition
JP2018039889A (en) * 2016-09-06 2018-03-15 株式会社スリーボンド Epoxy resin composition
US11584823B2 (en) 2016-12-13 2023-02-21 3M Innovative Properties Company Epoxy stabilization using substituted barbituric acids
US11884850B2 (en) 2017-09-15 2024-01-30 3M Innovative Properties Company Adhesive film including a (meth)acrylate matrix including a curable epoxy/thiol resin composition, tape, and method
US11807596B2 (en) 2017-10-26 2023-11-07 Shikoku Chemicals Corporation Thiol compounds, synthesis method therefor, and utilization of said thiol compounds
JP7199917B2 (en) 2017-11-02 2023-01-06 四国化成工業株式会社 Thiol compound, its synthesis method and use of said thiol compound
JP2019085408A (en) * 2017-11-02 2019-06-06 四国化成工業株式会社 Thiol compound, method for synthesizing the same and use of the thiol compound
JPWO2019163818A1 (en) * 2018-02-21 2021-02-04 ナミックス株式会社 Epoxy resin composition
JP7426098B2 (en) 2018-02-21 2024-02-01 ナミックス株式会社 epoxy resin composition
WO2019163818A1 (en) * 2018-02-21 2019-08-29 ナミックス株式会社 Epoxy resin composition
KR20210078480A (en) 2018-10-17 2021-06-28 나믹스 가부시끼가이샤 resin composition
CN110194942B (en) * 2019-06-20 2022-05-24 广州机械科学研究院有限公司 Low-temperature fast thermosetting one-component epoxy adhesive and preparation method thereof
CN110194942A (en) * 2019-06-20 2019-09-03 广州机械科学研究院有限公司 A kind of low-temperature rapid thermal cured one-component epoxy adhesive and preparation method thereof
KR102129331B1 (en) 2019-08-21 2020-07-03 나믹스 가부시끼가이샤 Epoxy resin composition
KR20220039515A (en) 2019-08-21 2022-03-29 나믹스 가부시끼가이샤 Epoxy resin composition
KR102187495B1 (en) 2019-08-21 2020-12-08 나믹스 가부시끼가이샤 Epoxy resin composition
CN113851055B (en) * 2021-09-27 2023-09-29 京东方科技集团股份有限公司 Display module, preparation method thereof and spliced display device
CN113851055A (en) * 2021-09-27 2021-12-28 京东方科技集团股份有限公司 Display module, preparation method thereof and splicing display device

Also Published As

Publication number Publication date
TWI629291B (en) 2018-07-11
KR101819785B1 (en) 2018-01-17
TW201229080A (en) 2012-07-16
CN103282401A (en) 2013-09-04
KR20140047574A (en) 2014-04-22

Similar Documents

Publication Publication Date Title
KR101819785B1 (en) Resin composition
EP0942028B1 (en) Epoxy resin composition
JP4976575B1 (en) Resin composition
TWI732059B (en) Resin composition, adhesive, packaging material, damping agent, semiconductor device and image sensor module
KR102451905B1 (en) Resin composition, adhesive and encapsulant
KR102442254B1 (en) Semiconductor device and image sensor module
EP2640765B1 (en) One component epoxy resin composition
JP4715010B2 (en) Curable epoxy resin composition, adhesive, and sealant
JP5441447B2 (en) Insulating paint for electronic parts and electronic parts using the same
WO2012077377A1 (en) Resin composition
TWI814922B (en) resin composition
JP4204814B2 (en) Thermosetting liquid resin composition
TW202028285A (en) Resin composition
JP7148848B2 (en) One-component resin composition
JP2015093887A (en) Epoxy resin composition and cure product
JP2014173008A (en) Curable resin composition
WO2023026872A1 (en) Epoxy resin composition
JP2015059174A (en) Epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137020502

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11854935

Country of ref document: EP

Kind code of ref document: A1