WO2012077377A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2012077377A1
WO2012077377A1 PCT/JP2011/066979 JP2011066979W WO2012077377A1 WO 2012077377 A1 WO2012077377 A1 WO 2012077377A1 JP 2011066979 W JP2011066979 W JP 2011066979W WO 2012077377 A1 WO2012077377 A1 WO 2012077377A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
compound
epoxy
equivalent
Prior art date
Application number
PCT/JP2011/066979
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 細野
一希 岩谷
留香 横山
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2012077377A1 publication Critical patent/WO2012077377A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a resin composition having excellent low-temperature rapid curability, good storage stability (storage stability), and low Tg (glass transition point).
  • a resin composition comprising an epoxy resin, a thiol compound, and a curing accelerator is known as a resin composition having excellent low-temperature curability that can be cured at 0 ° C. to ⁇ 20 ° C.
  • resin compositions are used in various applications such as adhesives and sealants for electronic parts.
  • Patent Document 1 discloses (1) an epoxy resin having two or more epoxy groups in the molecule, (2) a thiol compound having two or more thiol groups in the molecule, (3 A resin composition containing a solid dispersion type latent curing accelerator and (4) a borate compound is disclosed.
  • Patent Document 2 discloses (1) an epoxy resin having two or more epoxy groups in the molecule, (2) a polythiol compound having two or more thiol groups in the molecule, and (3) a solid dispersion type amine adduct system latency.
  • An epoxy resin composition containing a curing accelerator is disclosed.
  • the adhesive for joining these parts needs to be flexible enough to follow the thermal deformation of the parts, and has a low Tg (glass transition point), that is, a low elastic modulus. Required.
  • the present invention has been made in view of the above problems, and is excellent in low-temperature fast curability, excellent storage stability (storage stability), and Tg (glass transition point) of a cured product. It aims at providing a low resin composition.
  • the inventors of the present invention newly added that a certain long-chain amine compound is added to a resin composition containing an epoxy resin to lower the Tg (glass transition point) of a cured product obtained by curing the resin composition. Discovered and completed the present invention.
  • the resin composition of the present invention is characterized by containing (A) an epoxy resin, (B) a long-chain amine compound, (C) a thiol compound, and (D) a latent curing agent.
  • the component (B) is preferably a compound represented by the following general formula (1).
  • the component (B) is more preferably a compound represented by the following general formula (2).
  • the component (B) is preferably a compound having a weight average molecular weight of 100 to 3000.
  • the equivalent ratio of the component (A) to the component (B) is preferably 0.1 to 0.4 in terms of amine equivalent / epoxy equivalent.
  • the equivalent ratio of the component (A) and the component (C) is preferably 0.6 to 2.0 in terms of thiol equivalent / epoxy equivalent.
  • the glass transition point of the cured product is preferably 20 ° C. or less.
  • the resin composition of the present invention preferably further contains a borate ester compound.
  • the resin composition of the present invention further includes at least one additive selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent. It is preferable to contain.
  • the present invention provides an adhesive containing any one of the above resin compositions. Moreover, this invention provides the semiconductor sealing agent containing one of said resin compositions.
  • the present invention it is possible to provide a resin composition that is excellent in low-temperature fast curability and excellent in storage stability (storage stability). Moreover, the resin composition which can make low Tg (glass transition point) of the hardened
  • the resin composition according to the embodiment of the present invention is characterized by including (A) an epoxy resin, (B) a long-chain amine compound, (C) a thiol compound, and (D) a latent curing agent.
  • the epoxy resin as the component (A) may be an epoxy resin having two or more epoxy groups per molecule.
  • examples of the epoxy resin of component (A) include polyglycidyl ethers obtained by reacting polychlorophenols such as bisphenol A, bisphenol F, bisphenol AD, catechol and resorcinol, polyhydric alcohols such as glycerin and polyethylene glycol, and epichlorohydrin.
  • Glycidyl ether ester obtained by reacting a hydroxycarboxylic acid such as p-hydroxybenzoic acid or ⁇ -hydroxynaphthoic acid with epichlorohydrin, or a polycarboxylic acid obtained by reacting a polycarboxylic acid such as phthalic acid or terephthalic acid with epichlorohydrin.
  • Epoxy resin having a naphthalene skeleton such as glycidyl ester, 1,6-bis (2,3-epoxypropoxy) naphthalene, epoxidized phenol novolac resin, epoxidized crezo Novolac resins, epoxidized polyolefins, cyclic aliphatic epoxy resins, urethane modified epoxy resins, and the like.
  • the epoxy resin of the component (A) is not limited to these.
  • the long-chain amine compound as the component (B) is a compound in which two or more amino groups (—NH 2 ) are bonded to a long-chain hydrocarbon residue.
  • the long chain hydrocarbon referred to here may be linear or branched.
  • the bond between the carbon atoms contained in the long-chain hydrocarbon may be interrupted by an oxygen atom.
  • the long-chain amine compound of the component (B) is preferably a compound represented by the following general formula (1).
  • the long-chain amine compound as the component (B) is more preferably a compound represented by the following general formula (2).
  • the weight average molecular weight of the long-chain amine compound as the component (B) is preferably 100 to 3000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC), and can be measured using a standard polystyrene calibration curve.
  • the thiol compound as the component (C) may be a thiol compound having two or more thiol groups per molecule.
  • the thiol compound preferably has as little basic impurity content as possible from the viewpoint of storage stability.
  • Examples of the thiol compound of component (C) include trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris ( ⁇ -thiopropionate), Mention may be made of thiol compounds obtained by esterification reaction of polyols such as pentaerythritol tetrakis ( ⁇ -thiopropionate) and dipentaerythritol poly ( ⁇ -thiopropionate) with mercapto organic acids. These thiol compounds are preferable because it is not necessary to use a basic substance in the production.
  • Examples of the thiol compound of component (C) include 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, Alkyl polythiol compounds such as 1,10-decanedithiol; terminal thiol group-containing polyethers; terminal thiol group-containing polythioethers; thiol compounds obtained by reaction of epoxy compounds with hydrogen sulfide; obtained by reaction of polythiol compounds with epoxy compounds A thiol compound having a terminal thiol group; In the case of using a thiol compound produced using a basic substance as a reaction catalyst, it is preferable to reduce the alkali metal ion concentration of the thiol compound to 50 ppm or less by performing dealkalization treatment. Moreover, it is preferable to use a thiol compound having two or more thiol groups in the
  • the latent curing agent of the component (D) is a compound that is insoluble in an epoxy resin at room temperature, solubilized by heating, and functions as a curing accelerator for the epoxy resin.
  • latent curing agents include imidazole compounds that are solid at room temperature and solid-dispersed amine adduct-based latent curing accelerators.
  • solid dispersion type amine adduct-based latent curing accelerators include reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems), and reaction products of amine compounds and isocyanate compounds or urea compounds (urea) Type adduct system).
  • Examples of the epoxy compound that is one of the raw materials for producing the solid dispersion type amine adduct type latent curing accelerator include polyhydric phenols such as bisphenol A, bisphenol F, catechol, and resorcinol, Polyglycidyl ether obtained by reacting a polyhydric alcohol such as polyethylene glycol with epichlorohydrin; reacting a hydroxycarboxylic acid such as p-hydroxybenzoic acid or ⁇ -hydroxynaphthoic acid with epichlorohydrin Glycidyl ether ester obtained by reaction of polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin; epichlorohydric acid such as 4,4'-diaminodiphenylmethane and m-aminophenol Glycidylamine compounds obtained by reacting with dorin; moreover, polyfunctional epoxy compounds such as epoxidized phenol novolak resin,
  • the amine compound which is one of the raw materials for producing the solid dispersion type amine adduct-based latent curing accelerator, has at least one active hydrogen capable of addition reaction with an epoxy group in the molecule, and has a primary amino group, secondary class What is necessary is just to have one or more functional groups selected from an amino group and a tertiary amino group in the molecule.
  • amine compounds examples include aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane; Aromatic amine compounds such as 4'-diaminodiphenylmethane and 2-methylaniline; nitrogen atoms such as 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine and piperazine; A heterocyclic compound to be contained; and the like.
  • the amine compound that can be used as a raw material for producing the solid dispersion type amine adduct-based latent curing accelerator is not limited thereto.
  • an amine compound having a tertiary amino group in the molecule is a raw material for a latent curing accelerator having excellent curing acceleration ability.
  • amine compounds include amine compounds such as dimethylaminopropylamine, diethylaminopropylamine, di-n-propylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, N-methylpiperazine, Primary or secondary amines having a tertiary amino group in the molecule, such as imidazole compounds such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole; Dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol, 1-phenoxymethyl-2-dimethylaminoethanol, 2-diethylaminoethanol, 1-butoxymethyl-2-dimethylaminoethanol
  • the latent curing accelerator used in the present invention can be produced by addition reaction of the above epoxy compound and the above amine compound.
  • an active hydrogen compound having two or more active hydrogens in the molecule can be added as a third component.
  • the storage stability of the epoxy resin composition of the present invention can be further improved.
  • active hydrogen compounds are shown below, but are not limited thereto.
  • active hydrogen compounds include polyphenols such as bisphenol A, bisphenol F, bisphenol S, hydroquinone, catechol, resorcinol, pyrogallol, phenol novolac resin, polyhydric alcohols such as trimethylolpropane, adipic acid, phthalic acid, etc.
  • polycarboxylic acids such as 1,2-dimercaptoethane, 2-mercaptoethanol, 1-mercapto-3-phenoxy-2-propanol, mercaptoacetic acid, anthranilic acid, and lactic acid.
  • monofunctional isocyanate compounds such as n-butyl isocyanate, isopropy
  • Terminal isocyanate group-containing compounds include addition compounds having terminal isocyanate groups obtained by reaction of toluylene diisocyanate and trimethylolpropane, and terminal isocyanate groups obtained by reaction of toluylene diisocyanate and pentaerythritol. Examples thereof include, but are not limited to, addition compounds.
  • urea compounds include, but are not limited to, urea and thiourea.
  • the solid dispersion type latent curing accelerator used in the present invention can be produced by the following method. First, (a) two components of an amine compound and an epoxy compound, (b) three components of the two components and an active hydrogen compound, or (c) two or three components of an amine compound and an isocyanate compound and / or a urea compound. Mix each component in combination. Next, these components are reacted at a temperature of room temperature to 200 ° C., cooled and solidified, and then pulverized. Alternatively, these components are reacted in a solvent such as methyl ethyl ketone, dioxane, tetrahydrofuran, etc., and after removing the solvent, the solid content is pulverized. Thereby, a solid dispersion type latent hardening accelerator can be manufactured easily.
  • a solvent such as methyl ethyl ketone, dioxane, tetrahydrofuran, etc.
  • amine-epoxy adduct-based (amine adduct-based) solid dispersion type latent curing accelerators include “Amicure PN-23” (trade name of Ajinomoto Co., Inc.) and “Amicure PN-40” (Ajinomoto Co., Inc.).
  • urea-type adduct-based solid dispersion type latent curing accelerators include “Fujicure FXE-1000” (product name of Fuji Kasei Co., Ltd.), “Fujicure FXR-1030” (Fuji Kasei Co., Ltd.), etc. Can be mentioned.
  • the resin composition of the present invention preferably further contains (E) a boric acid ester compound in addition to the components (A) to (D).
  • the borate ester compound as the component (E) has an effect of further improving the storage stability of the resin composition of the present invention. It is considered that the borate ester compound exhibits such an action by reacting with the surface of the latent curing accelerator to modify and encapsulate the surface of the latent curing agent.
  • borate compound examples include trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, Trioctyl borate, trinonyl borate, tridecyl borate, tridodecyl borate, trihexadecyl borate, trioctadecyl borate, tris (2-ethylhexyloxy) borane, bis (1,4,7,10-tetraoxaundecyl) (1,4,7,10,13-pentaoxatetradecyl) (1,4,7-trioxaundecyl) borane, tribenzyl borate, triphenyl borate, tri-o-tolyl borate, tri-m-tolyl Borate, It can be mentioned triethanol
  • the boric acid ester compound of the component (E) can be mixed simultaneously with the epoxy resin, the long chain amine compound, the thiol compound and the latent curing agent.
  • the borate ester compound can be previously mixed with a latent curing agent.
  • the boric acid ester compound and the latent curing agent can be brought into contact and mixed in a solvent such as methyl ethyl ketone or toluene, in a liquid epoxy resin, or without a solvent.
  • the resin composition of the present invention can be produced using the four components of the epoxy resin, long chain amine compound, thiol compound, and latent curing agent described above as raw materials.
  • the resin composition of the present invention can be produced by a conventionally known method.
  • the resin composition of the present invention can be produced by mixing four components with a mixer such as a Henschel mixer. The same applies to the case where the resin composition of the present invention is produced by mixing five components obtained by adding a borate compound to these four components.
  • the resin composition of the present invention can be cured by a conventionally known method, for example, it can be cured by heating.
  • the equivalent ratio of the epoxy resin to the long chain amine compound is preferably 0.1 or more and 0.4 or less in terms of amine equivalent / epoxy equivalent.
  • the Tg (glass transition point) of the cured product obtained by curing the resin composition can be effectively reduced.
  • the “epoxy equivalent” is a numerical value obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups in one molecule.
  • the “amine equivalent” is a numerical value obtained by dividing the molecular weight of the amine compound by the number of amino groups in one molecule.
  • the equivalent ratio of the epoxy resin to the thiol compound is preferably 0.6 or more and 2.0 or less in terms of thiol equivalent / epoxy equivalent.
  • the resin composition is cured while maintaining the low-temperature fast curing property and the storage stability (storage stability) of the resin composition. It is possible to effectively lower the Tg (glass transition point) of the cured product.
  • the “thiol equivalent” is a numerical value obtained by dividing the molecular weight of the thiol compound by the number of thiol groups in one molecule.
  • the resin composition of the present invention preferably has a Tg (glass transition point) of a cured product of 20 ° C. or lower.
  • Tg glass transition point
  • the resin composition is used, for example, as an adhesive for joining two components having different thermal expansion coefficients, the two components It can prevent effectively that a crack generate
  • the resin composition of the present invention is at least one selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent as necessary.
  • a silica filler e.g., a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent as necessary.
  • One component can be contained.
  • a viscosity modifier, a flame retardant, a solvent, etc. can be contained as arbitrary components.
  • the resin composition of the present invention can be used as an adhesive for joining parts together.
  • it can be used as a sealing agent for semiconductor electronic components.
  • Resin compositions according to Examples 1 to 8 were prepared by mixing a plurality of components in the formulation shown in Table 1. A plurality of components were mixed according to the formulation shown in Table 2 to prepare resin compositions according to Comparative Examples 1 to 9.
  • the numbers in Tables 1 and 2 all represent parts by weight (excluding the amine / epoxy and thiol / epoxy equivalent ratios).
  • PEMP2 trimethylolpropane tris (3-mercaptopropionate)
  • C2 Thiol compound 2: “TMMP” manufactured by SC Organic Chemical Co., Pentaerythritol tetraxy (3-mercaptopropionate)
  • C3 Thiol compound 3: “DPMP” manufactured by SC Organic Chemical Co., dipentaerythritol hexa (3-mercaptopropionate)
  • Latent curing agent “PN23J” manufactured by Ajinomoto Fine-Techno Co., Ltd., epoxy resin amine adduct
  • E Boric acid ester compound: manufactured by Tokyo Chemical Industry Co., Ltd., triisopropyl borate
  • Fading agent manufactured by CABOT: “ TS720 ", surface-treated fumed silica (treatment agent: polydimethylsiloxane)
  • the appearance was evaluated by visual observation.
  • Tg was measured using a dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to a method defined in Japanese Industrial Standard JIS C 6481.
  • DMA dynamic thermomechanical measurement
  • the elastic modulus at ⁇ 40 ° C. was measured using a dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to the method defined in Japanese Industrial Standard JIS C6481.
  • DMA dynamic thermomechanical measurement
  • the resin composition was heated at 85 degreeC, and it evaluated by the shear strength measured after 3-minute progress. Specifically, the resin composition was applied to the upper surface of an alumina substrate (which may be an FR4 substrate) by stencil printing. Next, a 2 mm ⁇ 2 mm SiN chip was placed on the applied resin composition. Next, the resin composition was heated and cured, and the test of applying a lateral load to the SiN chip was repeated 10 times, and the average value of the load when the SiN chip peeled was measured. For measurement of the shear strength, a universal bond tester “DAGE 4000” manufactured by dage was used. And when shear strength was 1 kgf or more, it evaluated that curability was favorable ((circle)), and when shear strength was less than 1 kgf, it evaluated that curability was unsatisfactory (x).
  • the viscosity after leaving still at 25 degreeC conditions for 2 days was measured, and when the increase rate of a viscosity is 1.2 times or more, it is evaluated that it is inferior (x). When the viscosity increase rate was less than 1.2 times, it was evaluated as good ( ⁇ ).
  • the viscosity was measured using an RVDV viscometer (Brookfield) under the conditions of spindles SC4 to 14 and a rotation speed of 50 rpm / 1 minute.
  • the resin composition of the present invention is excellent in curability and pot life (storage stability), and the Tg (glass transition point) of the cured product is sufficiently high. It was low (below 0 ° C.).
  • the Tg of the cured product is 20 It was as high as °C or higher, and the elastic modulus was 4000 [MPa] or more, or measurement was impossible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a resin composition that has excellent low-temperature fast-curing properties and favorable storage stability (preservation stability), and in which the Tg (glass transition point) thereof is low. The resin composition contains (A) an epoxy resin, (B) a long-chain amine compound, (C) a thiol compound, and (D) a latent curing agent. It is preferable for the equivalent ratio of the (A) component and the (B) component to be 0.1-0.4, with amine equivalent/epoxy equivalent. It is also preferable for the equivalent ratio of the (A) component and the (C) component to be 0.6-2.0, with thiol equivalent/epoxy equivalent.

Description

樹脂組成物Resin composition
 本発明は、低温速硬化性に優れ、貯蔵安定性(保存安定性)が良好であるとともに、Tg(ガラス転移点)が低い樹脂組成物に関する。 The present invention relates to a resin composition having excellent low-temperature rapid curability, good storage stability (storage stability), and low Tg (glass transition point).
 エポキシ樹脂、チオール化合物、及び硬化促進剤からなる樹脂組成物は、0℃から-20℃でも硬化可能な低温硬化性に優れる樹脂組成物として知られている。このような樹脂組成物は、接着剤や電子部品の封止剤などの様々な用途に用いられている。このような樹脂組成物の一例として、特許文献1には、(1)分子内にエポキシ基を2個以上有するエポキシ樹脂、(2)分子内にチオール基を2個以上有するチオール化合物、(3)固体分散型潜在性硬化促進剤、及び(4)ホウ酸エステル化合物を含有する樹脂組成物が開示されている。特許文献2には、(1)分子内にエポキシ基を2個以上有するエポキシ樹脂、(2)分子内にチオール基を2個以上有するポリチオール化合物、及び(3)固体分散型アミンアダクト系潜在性硬化促進剤を含有するエポキシ樹脂組成物が開示されている。 A resin composition comprising an epoxy resin, a thiol compound, and a curing accelerator is known as a resin composition having excellent low-temperature curability that can be cured at 0 ° C. to −20 ° C. Such resin compositions are used in various applications such as adhesives and sealants for electronic parts. As an example of such a resin composition, Patent Document 1 discloses (1) an epoxy resin having two or more epoxy groups in the molecule, (2) a thiol compound having two or more thiol groups in the molecule, (3 A resin composition containing a solid dispersion type latent curing accelerator and (4) a borate compound is disclosed. Patent Document 2 discloses (1) an epoxy resin having two or more epoxy groups in the molecule, (2) a polythiol compound having two or more thiol groups in the molecule, and (3) a solid dispersion type amine adduct system latency. An epoxy resin composition containing a curing accelerator is disclosed.
特開平11-256013号公報Japanese Patent Application Laid-Open No. 11-256013 特開平6-211969号公報JP-A-6-211969
 ところで、熱膨張係数の異なる2つの部品を接着剤によって互いに接合した場合には、周囲の温度の変化によってその接合部には熱応力が作用するため、その接合部にはクラック等が発生してしまう場合がある。このため、それらの部品を接合するための接着剤には、部品の熱変形に追従できる程度の柔軟性が必要であり、Tg(ガラス転移点)が低いこと、すなわち、弾性係数が低いことが要求される。 By the way, when two parts having different coefficients of thermal expansion are joined to each other with an adhesive, thermal stress acts on the joint due to changes in ambient temperature, so that cracks or the like occur in the joint. May end up. For this reason, the adhesive for joining these parts needs to be flexible enough to follow the thermal deformation of the parts, and has a low Tg (glass transition point), that is, a low elastic modulus. Required.
 しかし、上記した特許文献1、2に記載されたエポキシ樹脂組成物は、優れた低温硬化性および保存安定性を有するものの、硬化物のTgを十分に低くすることができないという問題があった。 However, although the epoxy resin compositions described in Patent Documents 1 and 2 have excellent low-temperature curability and storage stability, there is a problem that the Tg of the cured product cannot be sufficiently lowered.
 本発明は上記のような問題点に鑑みてなされたものであって、低温速硬化性に優れ、貯蔵安定性(保存安定性)が良好であるとともに、硬化物のTg(ガラス転移点)が低い樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above problems, and is excellent in low-temperature fast curability, excellent storage stability (storage stability), and Tg (glass transition point) of a cured product. It aims at providing a low resin composition.
 本発明者らは、エポキシ樹脂を含有する樹脂組成物にある種の長鎖アミン化合物を加えることによって、その樹脂組成物を硬化させた硬化物のTg(ガラス転移点)を低くできることを新たに発見し、本発明を完成させた。 The inventors of the present invention newly added that a certain long-chain amine compound is added to a resin composition containing an epoxy resin to lower the Tg (glass transition point) of a cured product obtained by curing the resin composition. Discovered and completed the present invention.
 すなわち、本発明の樹脂組成物は、(A)エポキシ樹脂、(B)長鎖アミン化合物、(C)チオール化合物、及び(D)潜在性硬化剤、を含むことを特徴とする。 That is, the resin composition of the present invention is characterized by containing (A) an epoxy resin, (B) a long-chain amine compound, (C) a thiol compound, and (D) a latent curing agent.
 本発明の樹脂組成物において、前記(B)成分は、以下の一般式(1)で表される化合物であることが好ましい。 In the resin composition of the present invention, the component (B) is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明の樹脂組成物において、前記(B)成分は、以下の一般式(2)で表される化合物であることがより好ましい。 In the resin composition of the present invention, the component (B) is more preferably a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本発明の樹脂組成物において、前記(B)成分は、重量平均分子量100~3000の化合物であることが好ましい。 In the resin composition of the present invention, the component (B) is preferably a compound having a weight average molecular weight of 100 to 3000.
 本発明の樹脂組成物において、前記(A)成分と前記(B)成分との当量比が、アミン当量/エポキシ当量で0.1~0.4であることが好ましい。 In the resin composition of the present invention, the equivalent ratio of the component (A) to the component (B) is preferably 0.1 to 0.4 in terms of amine equivalent / epoxy equivalent.
 本発明の樹脂組成物において、前記(A)成分と前記(C)成分との当量比が、チオール当量/エポキシ当量で0.6~2.0であることが好ましい。 In the resin composition of the present invention, the equivalent ratio of the component (A) and the component (C) is preferably 0.6 to 2.0 in terms of thiol equivalent / epoxy equivalent.
 本発明の樹脂組成物は、硬化物のガラス転移点が20℃以下であることが好ましい。 In the resin composition of the present invention, the glass transition point of the cured product is preferably 20 ° C. or less.
 本発明の樹脂組成物は、さらに、ホウ酸エステル化合物を含有することが好ましい。 The resin composition of the present invention preferably further contains a borate ester compound.
 本発明の樹脂組成物は、さらに、シリカフィラー、シランカップリング剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、及び、搖変剤からなる群から選択される少なくとも1つの添加剤を含有することが好ましい。 The resin composition of the present invention further includes at least one additive selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent. It is preferable to contain.
 本発明は、上記のいずれかの樹脂組成物を含有する接着剤を提供する。
 また、本発明は、上記のいずれかの樹脂組成物を含有する半導体封止剤を提供する。
The present invention provides an adhesive containing any one of the above resin compositions.
Moreover, this invention provides the semiconductor sealing agent containing one of said resin compositions.
 本発明によれば、低温速硬化性に優れ、貯蔵安定性(保存安定性)が良好である樹脂組成物を提供することができる。また、樹脂組成物を硬化させた硬化物のTg(ガラス転移点)を低くすることのできる樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition that is excellent in low-temperature fast curability and excellent in storage stability (storage stability). Moreover, the resin composition which can make low Tg (glass transition point) of the hardened | cured material which hardened the resin composition can be provided.
 以下、本発明を実施するための形態について詳細に説明する。
 本発明の実施形態に係る樹脂組成物は、(A)エポキシ樹脂、(B)長鎖アミン化合物、(C)チオール化合物、および(D)潜在性硬化剤を含むことを特徴とする。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
The resin composition according to the embodiment of the present invention is characterized by including (A) an epoxy resin, (B) a long-chain amine compound, (C) a thiol compound, and (D) a latent curing agent.
 上記(A)成分のエポキシ樹脂は、1分子当り2個以上のエポキシ基を有するエポキシ樹脂であればよい。上記(A)成分のエポキシ樹脂の例として、ビスフェノールA、ビスフェノールF、ビスフェノールAD、カテコール、レゾルシノール等の多価フェノール、グリセリンやポリエチレングリコール等の多価アルコールとエピクロルヒドリンを反応させて得られるポリグリシジルエーテル、p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンを反応させて得られるグリシジルエーテルエステル、フタル酸、テレフタル酸のようなポリカルボン酸とエピクロルヒドリンを反応させて得られるポリグリシジルエステル、1,6-ビス(2,3-エポキシプロポキシ)ナフタレンのようなナフタレン骨格を有するエポキシ樹脂、さらにはエポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィン、環式脂肪族エポキシ樹脂、ウレタン変性エポキシ樹脂、等を挙げることができる。しかし、上記(A)成分のエポキシ樹脂は、これらに限定されるものではない。 The epoxy resin as the component (A) may be an epoxy resin having two or more epoxy groups per molecule. Examples of the epoxy resin of component (A) include polyglycidyl ethers obtained by reacting polychlorophenols such as bisphenol A, bisphenol F, bisphenol AD, catechol and resorcinol, polyhydric alcohols such as glycerin and polyethylene glycol, and epichlorohydrin. Glycidyl ether ester obtained by reacting a hydroxycarboxylic acid such as p-hydroxybenzoic acid or β-hydroxynaphthoic acid with epichlorohydrin, or a polycarboxylic acid obtained by reacting a polycarboxylic acid such as phthalic acid or terephthalic acid with epichlorohydrin. Epoxy resin having a naphthalene skeleton such as glycidyl ester, 1,6-bis (2,3-epoxypropoxy) naphthalene, epoxidized phenol novolac resin, epoxidized crezo Novolac resins, epoxidized polyolefins, cyclic aliphatic epoxy resins, urethane modified epoxy resins, and the like. However, the epoxy resin of the component (A) is not limited to these.
 上記(B)成分の長鎖アミン化合物は、長鎖炭化水素残基に2個以上のアミノ基(-NH)が結合した化合物である。ここでいう長鎖炭化水素は、直鎖状であってもよいし、分岐状であってもよい。また、長鎖炭化水素に含まれる炭素原子同士の結合は、酸素原子で中断されていてもよい。 The long-chain amine compound as the component (B) is a compound in which two or more amino groups (—NH 2 ) are bonded to a long-chain hydrocarbon residue. The long chain hydrocarbon referred to here may be linear or branched. Moreover, the bond between the carbon atoms contained in the long-chain hydrocarbon may be interrupted by an oxygen atom.
 具体的には、上記(B)成分の長鎖アミン化合物は、下記一般式(1)で表される化合物であることが好ましい。 Specifically, the long-chain amine compound of the component (B) is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記(B)成分の長鎖アミン化合物は、下記一般式(2)で表される化合物であることがさらに好ましい。 The long-chain amine compound as the component (B) is more preferably a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記(B)成分の長鎖アミン化合物の重量平均分子量は、100~3000であることが好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により測定可能であり、標準ポリスチレンの検量線を用いて測定可能である。 The weight average molecular weight of the long-chain amine compound as the component (B) is preferably 100 to 3000. The weight average molecular weight can be measured by gel permeation chromatography (GPC), and can be measured using a standard polystyrene calibration curve.
 上記(C)成分のチオール化合物は、1分子当り2個以上のチオール基を有するチオール化合物であればよい。チオール化合物は、保存安定性の観点から、塩基性不純物含量が極力少ないものが好ましい。上記(C)成分のチオール化合物の例として、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ジペンタエリスリトールポリ(β-チオプロピオネート)等のポリオールとメルカプト有機酸のエステル化反応によって得られるチオール化合物を挙げることができる。これらのチオール化合物は、製造の際に塩基性物質を使用する必要がないため、好ましい。 The thiol compound as the component (C) may be a thiol compound having two or more thiol groups per molecule. The thiol compound preferably has as little basic impurity content as possible from the viewpoint of storage stability. Examples of the thiol compound of component (C) include trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris (β-thiopropionate), Mention may be made of thiol compounds obtained by esterification reaction of polyols such as pentaerythritol tetrakis (β-thiopropionate) and dipentaerythritol poly (β-thiopropionate) with mercapto organic acids. These thiol compounds are preferable because it is not necessary to use a basic substance in the production.
 また、上記(C)成分のチオール化合物の例として、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、1,10-デカンジチオールなどのアルキルポリチオール化合物;末端チオール基含有ポリエーテル;末端チオール基含有ポリチオエーテル;エポキシ化合物と硫化水素との反応によって得られるチオール化合物;ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物;等を挙げることができる。
 反応触媒として塩基性物質を使用して製造されたチオール化合物を用いる場合には、脱アルカリ処理を行うことによってチオール化合物のアルカリ金属イオン濃度を50ppm以下にすることが好ましい。また、分子内にチオール基を2個以上有するチオール化合物を用いることが好ましい。
Examples of the thiol compound of component (C) include 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, Alkyl polythiol compounds such as 1,10-decanedithiol; terminal thiol group-containing polyethers; terminal thiol group-containing polythioethers; thiol compounds obtained by reaction of epoxy compounds with hydrogen sulfide; obtained by reaction of polythiol compounds with epoxy compounds A thiol compound having a terminal thiol group;
In the case of using a thiol compound produced using a basic substance as a reaction catalyst, it is preferable to reduce the alkali metal ion concentration of the thiol compound to 50 ppm or less by performing dealkalization treatment. Moreover, it is preferable to use a thiol compound having two or more thiol groups in the molecule.
 上記(D)成分の潜在性硬化剤は、室温ではエポキシ樹脂に不溶の固体であり、加熱することにより可溶化してエポキシ樹脂の硬化促進剤として機能する化合物である。このような潜在性硬化剤の例として、常温で固体のイミダゾール化合物、及び、固体分散型アミンアダクト系潜在性硬化促進剤を挙げることができる。固体分散型アミンアダクト系潜在性硬化促進剤の例として、アミン化合物とエポキシ化合物との反応生成物(アミン-エポキシアダクト系)、及び、アミン化合物とイソシアネート化合物または尿素化合物との反応生成物(尿素型アダクト系)等を挙げることができる。 The latent curing agent of the component (D) is a compound that is insoluble in an epoxy resin at room temperature, solubilized by heating, and functions as a curing accelerator for the epoxy resin. Examples of such latent curing agents include imidazole compounds that are solid at room temperature and solid-dispersed amine adduct-based latent curing accelerators. Examples of solid dispersion type amine adduct-based latent curing accelerators include reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems), and reaction products of amine compounds and isocyanate compounds or urea compounds (urea) Type adduct system).
 常温で固体のイミダゾール化合物としては、例えば、2-ヘプタデシルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2-メチルイミダゾリル-(1))-エチル-s-トリアジン、2,4-ジアミノ-6-(2′-メチルイミダゾリル-(1)′)-エチル-s-トリアジン・イソシアヌール酸付加物、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール-トリメリテイト、1-シアノエチル-2-フェニルイミダゾール-トリメリテイト、N-(2-メチルイミダゾリル-1-エチル)-尿素、N,N′-(2-メチルイミダゾリル-(1)-エチル)-アジボイルジアミド等を挙げることができる。しかし、常温で固体のイミダゾール化合物は、これらに限定されるものではない。 Examples of imidazole compounds that are solid at room temperature include 2-heptadecylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2 -Phenyl-4-benzyl-5-hydroxymethylimidazole, 2,4-diamino-6- (2-methylimidazolyl- (1))-ethyl-s-triazine, 2,4-diamino-6- (2'- Methylimidazolyl- (1) ′)-ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 -Cyanoethyl-2-methylimidazole-trimellitate, -Cyanoethyl-2-phenylimidazole-trimellitate, N- (2-methylimidazolyl-1-ethyl) -urea, N, N '-(2-methylimidazolyl- (1) -ethyl) -aziboyldiamide, etc. Can do. However, the imidazole compound that is solid at room temperature is not limited thereto.
 固体分散型アミンアダクト系潜在性硬化促進剤(アミン-エポキシアダクト系)の製造原料の一つであるエポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、カテコール、レゾルシノールなど多価フェノール、またはグリセリンやポリエチレングリコールのような多価アルコールとエピクロロヒドリンとを反応させて得られるポリグリシジルエーテル;p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロロヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、テレフタル酸のようなポリカルボン酸とエピクロロヒドリンとを反応させて得られるポリグリシジルエステル;4,4′-ジアミノジフェニルメタンやm-アミノフェノールなどとエピクロロヒドリンとを反応させて得られるグリシジルアミン化合物;更にはエポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィンなどの多官能性エポキシ化合物やブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレートなどの単官能性エポキシ化合物;等を挙げることができる。しかし、固体分散型アミンアダクト系潜在性硬化促進剤(アミン-エポキシアダクト系)の製造原料として用いることのできるエポキシ化合物は、これらに限定されるものではない。 Examples of the epoxy compound that is one of the raw materials for producing the solid dispersion type amine adduct type latent curing accelerator (amine-epoxy adduct type) include polyhydric phenols such as bisphenol A, bisphenol F, catechol, and resorcinol, Polyglycidyl ether obtained by reacting a polyhydric alcohol such as polyethylene glycol with epichlorohydrin; reacting a hydroxycarboxylic acid such as p-hydroxybenzoic acid or β-hydroxynaphthoic acid with epichlorohydrin Glycidyl ether ester obtained by reaction of polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin; epichlorohydric acid such as 4,4'-diaminodiphenylmethane and m-aminophenol Glycidylamine compounds obtained by reacting with dorin; moreover, polyfunctional epoxy compounds such as epoxidized phenol novolak resin, epoxidized cresol novolac resin, epoxidized polyolefin, and butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate A functional epoxy compound; and the like. However, the epoxy compound that can be used as a raw material for producing the solid dispersion type amine adduct-based latent curing accelerator (amine-epoxy adduct system) is not limited thereto.
 固体分散型アミンアダクト系潜在性硬化促進剤の製造原料の一つであるアミン化合物は、エポキシ基と付加反応しうる活性水素を分子内に1個以上有し、かつ1級アミノ基、2級アミノ基および3級アミノ基の中から選ばれた官能基を分子内に1個以上有するものであればよい。このようなアミン化合物の例として、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4′-ジアミノ-ジシクロヘキシルメタンのような脂肪族アミン類;4,4′-ジアミノジフェニルメタン、2-メチルアニリンなどの芳香族アミン化合物;2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾリン、2,4-ジメチルイミダゾリン、ピペリジン、ピペラジンなどの窒素原子を含有する複素環化合物;等を挙げることができる。しかし、固体分散型アミンアダクト系潜在性硬化促進剤の製造原料として用いることのできるアミン化合物は、これらに限定されるものではない。 The amine compound, which is one of the raw materials for producing the solid dispersion type amine adduct-based latent curing accelerator, has at least one active hydrogen capable of addition reaction with an epoxy group in the molecule, and has a primary amino group, secondary class What is necessary is just to have one or more functional groups selected from an amino group and a tertiary amino group in the molecule. Examples of such amine compounds include aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane; Aromatic amine compounds such as 4'-diaminodiphenylmethane and 2-methylaniline; nitrogen atoms such as 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine and piperazine; A heterocyclic compound to be contained; and the like. However, the amine compound that can be used as a raw material for producing the solid dispersion type amine adduct-based latent curing accelerator is not limited thereto.
 また、この中で、特に、分子内に3級アミノ基を有するアミン化合物は、優れた硬化促進能を有する潜在性硬化促進剤の原料となる。そのようなアミン化合物の例としては、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジ-n-プロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、N-メチルピペラジンなどのアミン化合物や、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールなどのイミダゾール化合物のような、分子内に3級アミノ基を有する1級もしくは2級アミン類;2-ジメチルアミノエタノール、1-メチル-2-ジメチルアミノエタノール、1-フェノキシメチル-2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ブトキシメチル-2-ジメチルアミノエタノール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-フェニルイミダゾリン、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾリン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール、N-β-ヒドロキシエチルモルホリン、2-ジメチルアミノエタンチオール、2-メルカプトピリジン、2-ベンゾイミダゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾチアゾール、4-メルカプトピリジン、N,N-ジメチルアミノ安息香酸、N,N-ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸、N,N-ジメチルグリシンヒドラジド、N,N-ジメチルプロピオン酸ヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジドなどのような、分子内に3級アミノ基を有するアルコール類、フェノール類、チオール類、カルボン酸類およびヒドラジド類;等を挙げることができる。 Of these, particularly, an amine compound having a tertiary amino group in the molecule is a raw material for a latent curing accelerator having excellent curing acceleration ability. Examples of such amine compounds include amine compounds such as dimethylaminopropylamine, diethylaminopropylamine, di-n-propylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, N-methylpiperazine, Primary or secondary amines having a tertiary amino group in the molecule, such as imidazole compounds such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole; Dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol, 1-phenoxymethyl-2-dimethylaminoethanol, 2-diethylaminoethanol, 1-butoxymethyl-2-dimethylaminoethanol, 1- 2-hydroxy-3-phenoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3-butoxypropyl)- 2-methylimidazole, 1- (2-hydroxy-3-butoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-phenylimidazoline, 1- (2- Hydroxy-3-butoxypropyl) -2-methylimidazoline, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, N-β-hydroxyethylmorpholine, 2-dimethylaminoethanethiol , 2-mercaptopyridine, 2-benzimidazole, 2-mer Captobenzimidazole, 2-mercaptobenzothiazole, 4-mercaptopyridine, N, N-dimethylaminobenzoic acid, N, N-dimethylglycine, nicotinic acid, isonicotinic acid, picolinic acid, N, N-dimethylglycine hydrazide, N , N-dimethylpropionic acid hydrazide, nicotinic acid hydrazide, isonicotinic acid hydrazide and the like, alcohols having a tertiary amino group in the molecule, phenols, thiols, carboxylic acids and hydrazides; it can.
 上記のエポキシ化合物と上記のアミン化合物とを付加反応させることによって、本発明に用いられる潜在性硬化促進剤を製造することができる。潜在性硬化促進剤を製造する際に、第三成分として、分子内に活性水素を2個以上有する活性水素化合物を添加することもできる。これにより、本発明のエポキシ樹脂組成物の保存安定性を更に向上させることができる。以下、このような活性水素化合物の例を示すが、これらに限定されるものではない。
 活性水素化合物の例として、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヒドロキノン、カテコール、レゾルシノール、ピロガロール、フェノールノボラック樹脂などの多価フェノール類、トリメチロールプロパンなどの多価アルコール類、アジピン酸、フタル酸などの多価カルボン酸類、1,2-ジメルカプトエタン、2-メルカプトエタノール、1-メルカプト-3-フェノキシ-2-プロパノール、メルカプト酢酸、アントラニル酸、乳酸等を挙げることができる。
The latent curing accelerator used in the present invention can be produced by addition reaction of the above epoxy compound and the above amine compound. When producing the latent curing accelerator, an active hydrogen compound having two or more active hydrogens in the molecule can be added as a third component. Thereby, the storage stability of the epoxy resin composition of the present invention can be further improved. Examples of such active hydrogen compounds are shown below, but are not limited thereto.
Examples of active hydrogen compounds include polyphenols such as bisphenol A, bisphenol F, bisphenol S, hydroquinone, catechol, resorcinol, pyrogallol, phenol novolac resin, polyhydric alcohols such as trimethylolpropane, adipic acid, phthalic acid, etc. And polycarboxylic acids such as 1,2-dimercaptoethane, 2-mercaptoethanol, 1-mercapto-3-phenoxy-2-propanol, mercaptoacetic acid, anthranilic acid, and lactic acid.
 固体分散型アミンアダクト系潜在性硬化促進剤の製造原料として用いることのできるイソシアネート化合物の例として、n-ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、ベンジルイソシアネートなどの単官能イソシアネート化合物;ヘキサメチレンジイソシアネート、トルイレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、パラフェニレンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネートなどの多官能イソシアネート化合物;更には、これら多官能イソシアネート化合物と活性水素化合物との反応によって得られる、末端イソシアネート基含有化合物;等を挙げることができる。このような末端イソシアネート基含有化合物の例としては、トルイレンジイソシアネートとトリメチロールプロパンとの反応により得られる末端イソシアネート基を有する付加化合物、トルイレンジイソシアネートとペンタエリスリトールとの反応により得られる末端イソシアネート基を有する付加化合物などを挙げることができるが、これらに限定されるものではない。 Examples of isocyanate compounds that can be used as raw materials for the production of solid dispersion type amine adduct-based latent curing accelerators include monofunctional isocyanate compounds such as n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, and benzyl isocyanate; hexamethylene diisocyanate, toluic acid Polyfunctional isocyanates such as diisocyanate, 1,5-naphthalene diisocyanate, diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate Compounds; furthermore, obtained by reaction of these polyfunctional isocyanate compounds with active hydrogen compounds. , Terminal isocyanate group-containing compounds; and the like. Examples of such terminal isocyanate group-containing compounds include addition compounds having terminal isocyanate groups obtained by reaction of toluylene diisocyanate and trimethylolpropane, and terminal isocyanate groups obtained by reaction of toluylene diisocyanate and pentaerythritol. Examples thereof include, but are not limited to, addition compounds.
 尿素化合物の例として、尿素、チオ尿素などを挙げることができるが、これらに限定されるものでない。 Examples of urea compounds include, but are not limited to, urea and thiourea.
 本発明に用いる固体分散型潜在性硬化促進剤は、以下の方法によって製造することができる。
 まず、上記の(a)アミン化合物とエポキシ化合物の2成分、(b)この2成分と活性水素化合物の3成分、または(c)アミン化合物とイソシアネート化合物または/および尿素化合物の2若しくは3成分の組合せで各成分を混合する。つぎに、これらの各成分を、室温から200℃の温度で反応させた後、冷却固化した後に、粉砕する。あるいは、メチルエチルケトン、ジオキサン、テトラヒドロフラン等の溶媒中でこれらの各成分を反応させ、脱溶媒した後、固形分を粉砕する。これにより、固体分散型潜在性硬化促進剤を容易に製造することができる。
The solid dispersion type latent curing accelerator used in the present invention can be produced by the following method.
First, (a) two components of an amine compound and an epoxy compound, (b) three components of the two components and an active hydrogen compound, or (c) two or three components of an amine compound and an isocyanate compound and / or a urea compound. Mix each component in combination. Next, these components are reacted at a temperature of room temperature to 200 ° C., cooled and solidified, and then pulverized. Alternatively, these components are reacted in a solvent such as methyl ethyl ketone, dioxane, tetrahydrofuran, etc., and after removing the solvent, the solid content is pulverized. Thereby, a solid dispersion type latent hardening accelerator can be manufactured easily.
 上記の固体分散型潜在性硬化促進剤の代表的な市販品の例を以下に示すが、これらに限定されるものではない。
 アミン-エポキシアダクト系(アミンアダクト系)の固体分散型潜在性硬化促進剤の例としては、「アミキュアPN-23」(味の素(株)商品名)、「アミキュアPN-40」(味の素(株)商品名)、「ハードナーX-3661S」(エー・シー・アール(株)商品名)、「ハードナーX-3670S」(エー・シー・アール(株)商品名)、「ノバキュアHX-3742」(旭化成(株)商品名)、「ノバキュアHX-3721」(旭化成(株)商品名)などを挙げることができる。また、尿素型アダクト系の固体分散型潜在性硬化促進剤の例としては、「フジキュアFXE-1000」(富士化成(株)商品名)、「フジキュアFXR-1030」(富士化成(株))などを挙げることができる。
Although the example of the typical commercial item of said solid dispersion type | mold latent hardening accelerator is shown below, it is not limited to these.
Examples of amine-epoxy adduct-based (amine adduct-based) solid dispersion type latent curing accelerators include “Amicure PN-23” (trade name of Ajinomoto Co., Inc.) and “Amicure PN-40” (Ajinomoto Co., Inc.). (Trade name), “Hardner X-3661S” (trade name of ARC Corporation), “Hardner X-3670S” (tradename of ARC Corporation), “Novacure HX-3742” (Asahi Kasei) (Trade name), "Novacure HX-3721" (trade name, Asahi Kasei Corporation), and the like. Examples of urea-type adduct-based solid dispersion type latent curing accelerators include “Fujicure FXE-1000” (product name of Fuji Kasei Co., Ltd.), “Fujicure FXR-1030” (Fuji Kasei Co., Ltd.), etc. Can be mentioned.
 本発明の樹脂組成物は、上記(A)~(D)成分に加えて、さらに、(E)ホウ酸エステル化合物を含有することが好ましい。
 上記(E)成分のホウ酸エステル化合物は、本発明の樹脂組成物の保存安定性をより向上させる作用がある。ホウ酸エステル化合物は、潜在性硬化促進剤の表面と反応して、潜在性硬化剤の表面を修飾してカプセル化することによって、このような作用を発揮すると考えられる。
 ホウ酸エステル化合物の具体例としては、トリメチルボレート、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレート等を挙げることができる。しかし、本発明に用いることのできるホウ酸エステル化合物は、これらに限定されるものではない。これらの中では、トリエチルボレート、及び、トリイソプロピルボレートが好ましい。
The resin composition of the present invention preferably further contains (E) a boric acid ester compound in addition to the components (A) to (D).
The borate ester compound as the component (E) has an effect of further improving the storage stability of the resin composition of the present invention. It is considered that the borate ester compound exhibits such an action by reacting with the surface of the latent curing accelerator to modify and encapsulate the surface of the latent curing agent.
Specific examples of the borate compound include trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, Trioctyl borate, trinonyl borate, tridecyl borate, tridodecyl borate, trihexadecyl borate, trioctadecyl borate, tris (2-ethylhexyloxy) borane, bis (1,4,7,10-tetraoxaundecyl) (1,4,7,10,13-pentaoxatetradecyl) (1,4,7-trioxaundecyl) borane, tribenzyl borate, triphenyl borate, tri-o-tolyl borate, tri-m-tolyl Borate, It can be mentioned triethanolamine borate and the like. However, boric acid ester compounds that can be used in the present invention are not limited to these. Among these, triethyl borate and triisopropyl borate are preferable.
 上記(E)成分のホウ酸エステル化合物は、エポキシ樹脂、長鎖アミン化合物、チオール化合物及び潜在性硬化剤と同時に混合することができる。あるいは、ホウ酸エステル化合物は、予め、潜在性硬化剤と混合しておくことも可能である。この場合、メチルエチルケトン、トルエンなどの溶媒中で、または、液状のエポキシ樹脂中で、あるいは、無溶媒で、ホウ酸エステル化合物と潜在性硬化剤とを接触させて混合することができる。 The boric acid ester compound of the component (E) can be mixed simultaneously with the epoxy resin, the long chain amine compound, the thiol compound and the latent curing agent. Alternatively, the borate ester compound can be previously mixed with a latent curing agent. In this case, the boric acid ester compound and the latent curing agent can be brought into contact and mixed in a solvent such as methyl ethyl ketone or toluene, in a liquid epoxy resin, or without a solvent.
 上記で説明したエポキシ樹脂、長鎖アミン化合物、チオール化合物、及び潜在性硬化剤の4成分を原料として、本発明の樹脂組成物を製造することができる。本発明の樹脂組成物は、従来公知の方法によって製造することができる。例えば、本発明の樹脂組成物は、ヘンシェルミキサーなどの混合機で4成分を混合することによって製造することができる。これらの4成分にホウ酸エステル化合物を加えた5成分を混合して本発明の樹脂組成物を製造する場合も同様である。 The resin composition of the present invention can be produced using the four components of the epoxy resin, long chain amine compound, thiol compound, and latent curing agent described above as raw materials. The resin composition of the present invention can be produced by a conventionally known method. For example, the resin composition of the present invention can be produced by mixing four components with a mixer such as a Henschel mixer. The same applies to the case where the resin composition of the present invention is produced by mixing five components obtained by adding a borate compound to these four components.
 本発明の樹脂組成物は、従来公知の方法によって硬化させることが可能であり、例えば、加熱によって硬化させることが可能である。 The resin composition of the present invention can be cured by a conventionally known method, for example, it can be cured by heating.
 本発明の樹脂組成物において、エポキシ樹脂と長鎖アミン化合物との当量比は、アミン当量/エポキシ当量で0.1以上0.4以下であることが好ましい。エポキシ樹脂に対して長鎖アミン化合物がこの範囲内の当量比で加えられることによって、樹脂組成物を硬化させた硬化物のTg(ガラス転移点)を効果的に低下させることが可能である。なお、「エポキシ当量」とは、エポキシ樹脂の分子量を1分子中のエポキシ基の数で割った数値のことである。「アミン当量」とは、アミン化合物の分子量を1分子中のアミノ基の数で割った数値のことである。 In the resin composition of the present invention, the equivalent ratio of the epoxy resin to the long chain amine compound is preferably 0.1 or more and 0.4 or less in terms of amine equivalent / epoxy equivalent. By adding the long-chain amine compound to the epoxy resin at an equivalent ratio within this range, the Tg (glass transition point) of the cured product obtained by curing the resin composition can be effectively reduced. The “epoxy equivalent” is a numerical value obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups in one molecule. The “amine equivalent” is a numerical value obtained by dividing the molecular weight of the amine compound by the number of amino groups in one molecule.
 本発明の樹脂組成物において、エポキシ樹脂とチオール化合物との当量比は、チオール当量/エポキシ当量で0.6以上2.0以下であることが好ましい。エポキシ樹脂に対してチオール化合物がこの範囲内の当量比で加えられることによって、樹脂組成物の低温速硬化性と貯蔵安定性(保存安定性)を良好に維持しつつ、樹脂組成物を硬化させた硬化物のTg(ガラス転移点)を効果的に低下させることが可能である。なお、「チオール当量」とは、チオール化合物の分子量を1分子中のチオール基の数で割った数値のことである。 In the resin composition of the present invention, the equivalent ratio of the epoxy resin to the thiol compound is preferably 0.6 or more and 2.0 or less in terms of thiol equivalent / epoxy equivalent. By adding the thiol compound to the epoxy resin at an equivalent ratio within this range, the resin composition is cured while maintaining the low-temperature fast curing property and the storage stability (storage stability) of the resin composition. It is possible to effectively lower the Tg (glass transition point) of the cured product. The “thiol equivalent” is a numerical value obtained by dividing the molecular weight of the thiol compound by the number of thiol groups in one molecule.
 本発明の樹脂組成物は、硬化物のTg(ガラス転移点)が20℃以下であることが好ましい。樹脂組成物が硬化した後の硬化物のTgが20℃以下であると、樹脂組成物を例えば熱膨張係数の異なる2つの部品を接合するための接着剤として用いた場合に、それら2つの部品の接合部においてクラックが発生することを効果的に防止することができる。 The resin composition of the present invention preferably has a Tg (glass transition point) of a cured product of 20 ° C. or lower. When the Tg of the cured product after the resin composition is cured is 20 ° C. or less, when the resin composition is used, for example, as an adhesive for joining two components having different thermal expansion coefficients, the two components It can prevent effectively that a crack generate | occur | produces in this junction part.
 本発明の樹脂組成物は、必要に応じて、シリカフィラー、シランカップリング剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、及び、搖変剤からなる群から選択される少なくとも1つの成分を含有することができる。また、粘度調整剤、難燃剤、溶剤等を、任意成分として含有することができる。 The resin composition of the present invention is at least one selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent as necessary. One component can be contained. Moreover, a viscosity modifier, a flame retardant, a solvent, etc. can be contained as arbitrary components.
 本発明の樹脂組成物は、部品同士を接合するための接着剤として用いることができる。その他、接着剤以外にも、半導体電子部品の封止剤などに用いることができる。 The resin composition of the present invention can be used as an adhesive for joining parts together. In addition to the adhesive, it can be used as a sealing agent for semiconductor electronic components.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
 表1に示す配合で複数の成分を混合して、実施例1~8に係る樹脂組成物を調製した。
 表2に示す配合で複数の成分を混合して、比較例1~9に係る樹脂組成物を調製した。
 なお、表1、表2中の数字は、すべて重量部を表す(ただし、アミン/エポキシ、チオール/エポキシ当量比を除く)。
Resin compositions according to Examples 1 to 8 were prepared by mixing a plurality of components in the formulation shown in Table 1.
A plurality of components were mixed according to the formulation shown in Table 2 to prepare resin compositions according to Comparative Examples 1 to 9.
The numbers in Tables 1 and 2 all represent parts by weight (excluding the amine / epoxy and thiol / epoxy equivalent ratios).
 表1、表2中の各成分の具体的な物質名等は、以下の通りである。
 (A1)エポキシ樹脂1:新日鐵化学社製「YDF8170」、ビスフェノールF型エポキシ樹脂
 (A2)エポキシ樹脂2:GE東芝シリコーン社製「TSL9906」、1,3ビス-(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン
 (A3)エポキシ樹脂3:DIC社製「EXA850CRP」、ビスフェノールA型エポキシ樹脂
 (A4)エポキシ樹脂4:DIC社製「HP4032D」、1,6-ビス(2,3-エポキシプロポキシ)ナフタレン
 (A5)エポキシ樹脂5:JER社製「YL7410」、ポリエーテルエポキシ樹脂
 (B)長鎖アミン化合物:ハンツマン社製「D2000」、ポリオキシプロピレンジアミン(重量平均分子量Mw:2000前後)
 (C1)チオール化合物1:SC有機化学社製「PEMP2」、トリメチロールプロパントリス(3-メルカプトプロピオネート)
 (C2)チオール化合物2:SC有機化学社製「TMMP」、ペンタエリスリトールテトラキシ(3-メルカプトプロピオネート)
 (C3)チオール化合物3:SC有機化学社製「DPMP」、ジペンタエリスリトールヘキサ(3-メルカプトプロピオネート)
 (D)潜在性硬化剤:味の素ファインテクノ社製「PN23J」、エポキシ樹脂アミンアダクト
 (E)ホウ酸エステル化合物:東京化成工業社製、トリイソプロピルボレート
 (F)搖変剤:CABOT社製:「TS720」、表面処理ヒュームドシリカ(処理剤:ポリジメチルシロキサン)
Specific substance names and the like of each component in Tables 1 and 2 are as follows.
(A1) Epoxy resin 1: “YDF8170” manufactured by Nippon Steel Chemical Co., Ltd., bisphenol F type epoxy resin (A2) Epoxy resin 2: “TSL9906” manufactured by GE Toshiba Silicone Co., Ltd., 1,3 bis- (3-glycidoxypropyl ) -1,1,3,3-tetramethyldisiloxane (A3) Epoxy resin 3: “EXA850CRP” manufactured by DIC, bisphenol A type epoxy resin (A4) Epoxy resin 4: “HP4032D” manufactured by DIC, 1,6 -Bis (2,3-epoxypropoxy) naphthalene (A5) Epoxy resin 5: "YL7410" manufactured by JER, polyether epoxy resin (B) Long chain amine compound: "D2000" manufactured by Huntsman, polyoxypropylenediamine (weight) Average molecular weight Mw: around 2000)
(C1) Thiol compound 1: SC Organic Chemical Co., Ltd. “PEMP2”, trimethylolpropane tris (3-mercaptopropionate)
(C2) Thiol compound 2: “TMMP” manufactured by SC Organic Chemical Co., Pentaerythritol tetraxy (3-mercaptopropionate)
(C3) Thiol compound 3: “DPMP” manufactured by SC Organic Chemical Co., dipentaerythritol hexa (3-mercaptopropionate)
(D) Latent curing agent: “PN23J” manufactured by Ajinomoto Fine-Techno Co., Ltd., epoxy resin amine adduct (E) Boric acid ester compound: manufactured by Tokyo Chemical Industry Co., Ltd., triisopropyl borate (F) Fading agent: manufactured by CABOT: “ TS720 ", surface-treated fumed silica (treatment agent: polydimethylsiloxane)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~8、及び、比較例1~9で得られた各樹脂組成物について、外観、硬化物のTg(ガラス転移点)及び弾性率、硬化性、及びポットライフの評価・測定を行った。 For each of the resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 9, the appearance, Tg (glass transition point) and elastic modulus, curability, and pot life of the cured product were evaluated and measured. It was.
 外観については、目視で観察して評価した。 The appearance was evaluated by visual observation.
 Tgについては、日本工業規格JIS C6481に規定された方法に従って、セイコーインスツル社製、動的熱機械測定(DMA)を用いて測定した。 Tg was measured using a dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to a method defined in Japanese Industrial Standard JIS C 6481.
 弾性率については、日本工業規格JIS C6481に規定された方法に従って、セイコーインスツル社製、動的熱機械測定(DMA)を用いて、-40℃での弾性率を測定した。 Regarding the elastic modulus, the elastic modulus at −40 ° C. was measured using a dynamic thermomechanical measurement (DMA) manufactured by Seiko Instruments Inc. according to the method defined in Japanese Industrial Standard JIS C6481.
 硬化性については、樹脂組成物を85℃で加熱して3分経過後に測定したシェア強度によって評価した。
 具体的には、アルミナ基板(FR4基板でもよい)の上面に、樹脂組成物を孔版印刷によって塗布した。つぎに、塗布した樹脂組成物の上に、2mm×2mmのSiNチップを載置した。つぎに、樹脂組成物を加熱して硬化させ、SiNチップに対して側方からの荷重を加える試験を10回繰り返して、SiNチップが剥離したときの荷重の平均値を測定した。なお、シェア強度の測定には、dage社製万能型ボンドテスター「DAGE4000」を用いた。
 そして、シェア強度が1kgf以上の場合は硬化性が良好(○)であると評価し、シェア強度が1kgf未満の場合は硬化性が不良(×)であると評価した。
About sclerosis | hardenability, the resin composition was heated at 85 degreeC, and it evaluated by the shear strength measured after 3-minute progress.
Specifically, the resin composition was applied to the upper surface of an alumina substrate (which may be an FR4 substrate) by stencil printing. Next, a 2 mm × 2 mm SiN chip was placed on the applied resin composition. Next, the resin composition was heated and cured, and the test of applying a lateral load to the SiN chip was repeated 10 times, and the average value of the load when the SiN chip peeled was measured. For measurement of the shear strength, a universal bond tester “DAGE 4000” manufactured by dage was used.
And when shear strength was 1 kgf or more, it evaluated that curability was favorable ((circle)), and when shear strength was less than 1 kgf, it evaluated that curability was unsatisfactory (x).
 ポットライフについては、樹脂組成物を調製した後に25℃の条件で2日間静置した後の粘度を測定し、粘度の増加率が1.2倍以上の場合は不良(×)であると評価し、粘度の増加率が1.2倍未満の場合は良好(○)であると評価した。
 粘度は、RVDV型粘度計(ブルックフィールド社製)を用いて、スピンドルSC4~14、回転速度50rpm/1分の条件で測定した。
About pot life, after preparing a resin composition, the viscosity after leaving still at 25 degreeC conditions for 2 days was measured, and when the increase rate of a viscosity is 1.2 times or more, it is evaluated that it is inferior (x). When the viscosity increase rate was less than 1.2 times, it was evaluated as good (◯).
The viscosity was measured using an RVDV viscometer (Brookfield) under the conditions of spindles SC4 to 14 and a rotation speed of 50 rpm / 1 minute.
 実施例1~8及び比較例1~9の評価・測定結果を、上記の表1、表2にそれぞれ示す。 The evaluation and measurement results of Examples 1 to 8 and Comparative Examples 1 to 9 are shown in Table 1 and Table 2, respectively.
 実施例1~8の結果を見れば分かる通り、本発明の樹脂組成物は、硬化性及びポットライフ(保存安定性)に優れており、かつ、硬化物のTg(ガラス転移点)が十分に低かった(0℃以下)。
 これに対し、比較例1~7の結果を見れば分かる通り、長鎖アミン化合物を含まない、もしくは、アミン/エポキシ当量比が0.1未満の場合には、硬化物のTgがいずれも20℃以上と高く、かつ、弾性率が4000[MPa]以上もしくは測定不可であった。
As can be seen from the results of Examples 1 to 8, the resin composition of the present invention is excellent in curability and pot life (storage stability), and the Tg (glass transition point) of the cured product is sufficiently high. It was low (below 0 ° C.).
On the other hand, as can be seen from the results of Comparative Examples 1 to 7, when the long chain amine compound is not included or the amine / epoxy equivalent ratio is less than 0.1, the Tg of the cured product is 20 It was as high as ℃ or higher, and the elastic modulus was 4000 [MPa] or more, or measurement was impossible.
 比較例8の結果を見れば分かる通り、アミン/エポキシ当量比が0.4を超える場合には、得られた樹脂組成物が固形となってしまうために、接着剤などの用途には使い物にならなかった。 As can be seen from the results of Comparative Example 8, when the amine / epoxy equivalent ratio exceeds 0.4, the obtained resin composition becomes solid, so that it is useful for applications such as adhesives. did not become.
 比較例9の結果を見れば分かる通り、チオール/エポキシ当量比が2.0を超える場合には、得られた樹脂組成物のポットライフが2日以内であり、保存安定性が著しく劣っていた。 As can be seen from the results of Comparative Example 9, when the thiol / epoxy equivalent ratio exceeded 2.0, the pot life of the obtained resin composition was within 2 days, and the storage stability was remarkably inferior. .

Claims (11)

  1.  以下の(A)~(D)成分を含有する樹脂組成物。
     (A)エポキシ樹脂
     (B)長鎖アミン化合物
     (C)チオール化合物
     (D)潜在性硬化剤
    A resin composition containing the following components (A) to (D).
    (A) Epoxy resin (B) Long chain amine compound (C) Thiol compound (D) Latent curing agent
  2.  前記(B)成分が、下記一般式(1)で表される化合物である、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    The resin composition according to claim 1, wherein the component (B) is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
  3.  前記(B)成分が、下記一般式(2)で表される化合物である、請求項2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    The resin composition according to claim 2, wherein the component (B) is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
  4.  前記(B)成分が、重量平均分子量100~3000の化合物である、請求項1から請求項3のうちいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the component (B) is a compound having a weight average molecular weight of 100 to 3,000.
  5.  前記(A)成分と前記(B)成分との当量比が、アミン当量/エポキシ当量で0.1~0.4である、請求項1から請求項4のうちいずれか1項に記載の樹脂組成物。 The resin according to any one of claims 1 to 4, wherein an equivalent ratio of the component (A) to the component (B) is 0.1 to 0.4 in terms of amine equivalent / epoxy equivalent. Composition.
  6.  前記(A)成分と前記(C)成分との当量比が、チオール当量/エポキシ当量で0.6~2.0である、請求項1から請求項5のうちいずれか1項に記載の樹脂組成物。 The resin according to any one of claims 1 to 5, wherein an equivalent ratio of the component (A) and the component (C) is 0.6 to 2.0 in terms of thiol equivalent / epoxy equivalent. Composition.
  7.  硬化物のガラス転移点が20℃以下である、請求項1から請求項6のうちいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the glass transition point of the cured product is 20 ° C or lower.
  8.  さらに、ホウ酸エステル化合物を含有する、請求項1から請求項7記載のうちいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising a borate ester compound.
  9.  さらに、シリカフィラー、シランカップリング剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、及び、搖変剤からなる群から選択される少なくとも1つの添加剤を含有する、請求項1から請求項8のうちいずれか1項に記載の樹脂組成物。 Furthermore, it contains at least one additive selected from the group consisting of a silica filler, a silane coupling agent, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, and a tampering agent. The resin composition according to claim 1.
  10.  請求項1から請求項9のうちいずれか1項に記載の樹脂組成物を含有する接着剤。 An adhesive containing the resin composition according to any one of claims 1 to 9.
  11.  請求項1から請求項9のうちいずれか1項に記載の樹脂組成物を含有する半導体封止剤。 A semiconductor encapsulant containing the resin composition according to any one of claims 1 to 9.
PCT/JP2011/066979 2010-12-10 2011-07-26 Resin composition WO2012077377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275965 2010-12-10
JP2010-275965 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077377A1 true WO2012077377A1 (en) 2012-06-14

Family

ID=46206883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066979 WO2012077377A1 (en) 2010-12-10 2011-07-26 Resin composition

Country Status (1)

Country Link
WO (1) WO2012077377A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173007A (en) * 2013-03-08 2014-09-22 Sekisui Chem Co Ltd Epoxy adhesive and lens-provided printed wiring board
JP2015221866A (en) * 2014-05-23 2015-12-10 株式会社Adeka One-component thermosetting epoxy resin composition
JP2016050301A (en) * 2014-08-28 2016-04-11 スリーボンドファインケミカル株式会社 Thermally conductive resin composition
KR20160077132A (en) * 2013-10-25 2016-07-01 아지노모토 가부시키가이샤 Flexible epoxy resin composition
JP2018503711A (en) * 2014-12-04 2018-02-08 ピーアールシー−デソト インターナショナル,インコーポレイティド Long-acting polythioether sealant
CN110272704A (en) * 2018-03-13 2019-09-24 松下知识产权经营株式会社 Resin combination and anisotropic conductive film and electronic equipment comprising it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185518A (en) * 1988-11-23 1990-07-19 Ciba Geigy Ag Curable mixture of epoxy resin material containing polyoxyalkylenedithiol and polyamine
JPH11256013A (en) * 1998-03-12 1999-09-21 Ajinomoto Co Inc Epoxy resin composition
JP2008260850A (en) * 2007-04-12 2008-10-30 Cemedine Co Ltd Curing agent composition for epoxy resin and epoxy resin adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185518A (en) * 1988-11-23 1990-07-19 Ciba Geigy Ag Curable mixture of epoxy resin material containing polyoxyalkylenedithiol and polyamine
JPH11256013A (en) * 1998-03-12 1999-09-21 Ajinomoto Co Inc Epoxy resin composition
JP2008260850A (en) * 2007-04-12 2008-10-30 Cemedine Co Ltd Curing agent composition for epoxy resin and epoxy resin adhesive composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173007A (en) * 2013-03-08 2014-09-22 Sekisui Chem Co Ltd Epoxy adhesive and lens-provided printed wiring board
KR20160077132A (en) * 2013-10-25 2016-07-01 아지노모토 가부시키가이샤 Flexible epoxy resin composition
JPWO2015060439A1 (en) * 2013-10-25 2017-03-09 味の素株式会社 Flexible epoxy resin composition
KR102217397B1 (en) 2013-10-25 2021-02-22 아지노모토 가부시키가이샤 Flexible epoxy resin composition
JP2015221866A (en) * 2014-05-23 2015-12-10 株式会社Adeka One-component thermosetting epoxy resin composition
JP2016050301A (en) * 2014-08-28 2016-04-11 スリーボンドファインケミカル株式会社 Thermally conductive resin composition
JP2018503711A (en) * 2014-12-04 2018-02-08 ピーアールシー−デソト インターナショナル,インコーポレイティド Long-acting polythioether sealant
CN110272704A (en) * 2018-03-13 2019-09-24 松下知识产权经营株式会社 Resin combination and anisotropic conductive film and electronic equipment comprising it
CN110272704B (en) * 2018-03-13 2022-04-15 松下知识产权经营株式会社 Resin composition, anisotropic conductive film comprising same, and electronic device

Similar Documents

Publication Publication Date Title
KR101819785B1 (en) Resin composition
EP0942028B1 (en) Epoxy resin composition
JP4976575B1 (en) Resin composition
TWI811288B (en) One-component resin composition
KR102374782B1 (en) Resin composition, adhesive, sealing material, dam material, semiconductor device and image sensor module
EP2640765B1 (en) One component epoxy resin composition
KR102451905B1 (en) Resin composition, adhesive and encapsulant
WO2012077377A1 (en) Resin composition
TW201527405A (en) Heat-resistant epoxy resin composition
JP4715010B2 (en) Curable epoxy resin composition, adhesive, and sealant
CN112823176B (en) resin composition
JP4204814B2 (en) Thermosetting liquid resin composition
TWI814922B (en) resin composition
JP7148848B2 (en) One-component resin composition
JP6174461B2 (en) Epoxy resin composition and cured product
WO2023026872A1 (en) Epoxy resin composition
JP2022151779A (en) resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846337

Country of ref document: EP

Kind code of ref document: A1