WO2012090320A1 - 筒内噴射式内燃機関 - Google Patents

筒内噴射式内燃機関 Download PDF

Info

Publication number
WO2012090320A1
WO2012090320A1 PCT/JP2010/073770 JP2010073770W WO2012090320A1 WO 2012090320 A1 WO2012090320 A1 WO 2012090320A1 JP 2010073770 W JP2010073770 W JP 2010073770W WO 2012090320 A1 WO2012090320 A1 WO 2012090320A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
intake
exhaust
timing
fuel
Prior art date
Application number
PCT/JP2010/073770
Other languages
English (en)
French (fr)
Inventor
森 幸生
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012550640A priority Critical patent/JP5344101B2/ja
Priority to PCT/JP2010/073770 priority patent/WO2012090320A1/ja
Priority to US13/634,050 priority patent/US20130263819A1/en
Priority to EP10861314.2A priority patent/EP2660446A4/en
Priority to CN201080067791XA priority patent/CN102971516A/zh
Publication of WO2012090320A1 publication Critical patent/WO2012090320A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This invention relates to an in-cylinder injection internal combustion engine that directly injects fuel into a cylinder.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-176607
  • an internal combustion engine including a fuel injection valve that directly injects fuel into a cylinder is known.
  • both the intake valve and the exhaust valve are closed during the exhaust stroke to seal the combustion chamber, fuel is injected into the combustion chamber during the sealing, and intake top dead center (A technique for opening an intake valve immediately after exhaust top dead center) is disclosed.
  • the intake valve is opened immediately after the intake top dead center at which the in-cylinder pressure has risen the most, so the residual gas in the combustion chamber that has been compressed and heated is blown out of the combustion chamber once from the intake port.
  • the Thereafter, the air is blown back into the combustion chamber by a sufficient negative pressure resulting from the lowering from the top dead center of the piston, and flows again into the combustion chamber together with fresh air, thereby promoting mixing with the injected fuel.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a direct injection internal combustion engine that can suppress the occurrence of knocking and increase the stability of combustion. .
  • a first invention is a direct injection internal combustion engine, A supercharger that supercharges intake air flowing into the internal combustion engine; A fuel injection valve for directly injecting fuel into the combustion chamber of the internal combustion engine; After opening the exhaust valve and the intake valve in the exhaust stroke, the intake valve and the exhaust valve are closed at a timing advanced from the intake top dead center, and the timing delayed from the intake top dead center in the intake stroke Valve control means for opening the intake valve at Injection control means for injecting fuel to the fuel injection valve between the intake top dead center and the retarded timing.
  • the second invention is the first invention, wherein The volume of the combustion chamber at the advanced timing and the retarded timing is the same.
  • the third invention is the first or second invention, wherein
  • the internal combustion engine is a lean burn engine.
  • a spark plug disposed at the center of the upper surface of the combustion chamber;
  • Stratified fuel distribution forming means for introducing intake air along the inner periphery of the cylinder forming the combustion chamber, and distributing a fuel layer in the center of the cylinder and an air layer in the inner periphery of the cylinder; It is characterized by providing.
  • the injection control means causes the fuel injection valve to inject fuel into a plurality of times during a period from the intake top dead center to the retarded timing.
  • the valve control means includes Variable valve operating means capable of relatively changing the closing timing of the intake valve and the closing timing of the exhaust valve; Low load valve control for controlling the closing timing of the intake valve in the exhaust stroke earlier than the closing timing of the exhaust valve by the variable valve means when the operating range of the internal combustion engine is a low load range And means.
  • the seventh invention is the sixth invention, wherein
  • the injection control means includes When the operating region of the internal combustion engine is the low load region, fuel is injected into the fuel injection valve in a plurality of times from the advanced timing to the retarded timing, and at least the A low load injection control means for injecting the first fuel between the advanced timing and the intake top dead center is further provided.
  • the supercharger is a turbocharger, A first exhaust valve and a second exhaust valve constituting the exhaust valve; A first exhaust port communicating with the combustion chamber by opening the first exhaust valve; A second exhaust port communicating with the combustion chamber by opening the second exhaust valve; A turbine of the turbocharger provided downstream of the first exhaust port,
  • the valve control means includes After opening and closing the first exhaust valve in the exhaust stroke, the intake valve and the second exhaust valve are opened, and after closing the second exhaust valve, the intake air is advanced at a timing advanced from the intake top dead center. The valve is closed, and the intake valve is opened at a timing delayed from the intake top dead center in the intake stroke.
  • the exhaust valve and the intake valve can be opened in the exhaust stroke. Therefore, fresh air can be introduced into the combustion chamber by supercharging, and high temperature residual gas can be scavenged. Thereby, occurrence of knocking can be suppressed.
  • the intake valve and the exhaust valve can be closed at a timing advanced from the intake top dead center. Therefore, as the piston rises, the airflow in the combustion chamber can be compressed and the flow can be eliminated.
  • fuel can be injected into the combustion chamber at a timing delayed from the intake top dead center until the intake valve is opened. By injecting fuel in a state where there is no airflow, variation in spray state between cycles can be reduced. As a result, combustion stability can be enhanced. Therefore, according to the present invention, it is possible to suppress the occurrence of knocking and improve the stability of combustion.
  • the combustion chambers at the timing advanced from the intake top dead center and the timing retarded from the intake top dead center can be made the same volume. By using the same volume, work loss due to compression and expansion can be prevented.
  • the first and second inventions described above can improve the stability of combustion, so that the lean region can be expanded. By expanding the lean region, it is possible to improve fuel consumption and reduce NOx.
  • a stratified fuel distribution is formed in which a fuel layer is distributed in the center of the cylinder and an air layer is distributed in the inner periphery of the cylinder. Further, because of the effects of the first invention, since the spray distribution fluctuation is small, a stable air-fuel mixture with little fluctuation can be formed in the vicinity of the spark plug. Therefore, according to the present invention, the stability of combustion can be improved and the lean region can be expanded.
  • fuel can be injected into the fuel injection valve in a plurality of times from the intake top dead center to the delayed timing.
  • Each fuel injection is performed at a time when the temperature and pressure in the combustion chamber are different, and the spray penetration force is different, so that the mixture formation position can be controlled.
  • a homogeneous air-fuel mixture can be generated, and NOx caused by the heterogeneity of the air-fuel mixture can be reduced.
  • the closing timing of the intake valve in the exhaust stroke can be controlled earlier than the closing timing of the exhaust valve. Therefore, a large amount of inert residual gas can be introduced in a low load region where knocking is unlikely to occur. For this reason, according to the present invention, NOx can be reduced.
  • the seventh invention when the operation region is a low load region, fuel is injected in a plurality of times, at least from the timing advanced from the intake top dead center to the intake top dead center, The first fuel injection can be performed. Therefore, the first fuel injection is performed in the high-temperature residual gas before the intake top dead center, and a fuel reforming effect is obtained. For this reason, according to the present invention, the stability of combustion can be further enhanced in a low load region where the temperature is originally low and combustion is unstable.
  • the intake valve and the second exhaust valve are opened, and the second exhaust valve is closed and then advanced from the intake top dead center. You can close the intake valve. Unburned HC in the combustion chamber is blown out to the intake port 42 and then blown back into the combustion chamber 20 again. Therefore, unburned HC can be burned again. For this reason, according to the present invention, it is possible to realize emission improvement and fuel consumption improvement.
  • Embodiment 1 of this invention It is a figure for demonstrating the system configuration
  • FIG. 1 is a diagram for explaining a system configuration according to Embodiment 1 of the present invention.
  • the system shown in FIG. 1 includes a direct injection internal combustion engine 10 that is a four-stroke engine.
  • the internal combustion engine 10 is a lean burn engine.
  • the internal combustion engine 10 has a plurality of cylinders 12 (not shown).
  • the cylinder 12 is provided with a piston 14 that reciprocates inside thereof. The reciprocating motion of the piston 14 is converted into the rotational motion of the crankshaft.
  • a crank angle sensor 16 for detecting the rotation angle (crank angle) of the crankshaft is provided in the vicinity of the crankshaft.
  • the internal combustion engine 10 includes a cylinder head 18.
  • a combustion chamber 20 is formed between the lower surface of the cylinder head 18, the inner wall of the cylinder 12 (cylinder liner 19), and the crown surface of the piston 14.
  • An intake passage 22 and an exhaust passage 24 are connected to the combustion chamber 20.
  • the cylinder head 18 is provided with a fuel injection valve 26 for directly injecting fuel toward the center of the combustion chamber 20.
  • the cylinder head 18 is provided with a spark plug 28 at the center of the upper surface of the combustion chamber 20.
  • An air cleaner 30 is provided in the intake passage 22.
  • An air flow meter 32 for detecting the amount of intake air is provided downstream of the air cleaner 30.
  • a supercharger 34 for supercharging is provided downstream of the air flow meter 32.
  • the supercharger 34 is driven by electric power or by utilizing the above-described rotation of the crankshaft to perform supercharging.
  • the supercharger 34 may be a turbocharger having a turbine that is rotated by the energy of the exhaust gas, and a compressor that is driven by the turbine and rotates.
  • the turbocharger 34 may be supercharged by the compressor.
  • An intercooler 36 is provided downstream of the supercharger 34.
  • An electronically controlled throttle valve 38 is provided downstream of the intercooler 36.
  • a throttle opening sensor 40 for detecting the throttle opening is provided.
  • An intake port 42 connected to the combustion chamber 20 is formed in the cylinder head 18 downstream of the throttle valve 38.
  • the intake passage 22 is a concept including an intake port 42.
  • An intake valve 44 that opens and closes between the intake port 42 and the combustion chamber 20 is provided at the downstream end of the intake passage 22.
  • an exhaust valve 48 that opens and closes between the combustion chamber 20 and the exhaust port 46 is provided at the upstream end of the exhaust passage 24.
  • the exhaust port 46 is formed in the cylinder head 18.
  • the exhaust passage 24 is a concept including an exhaust port 46.
  • the system of the present embodiment includes an ECU (Electronic Control Unit) 50.
  • ECU Electronic Control Unit
  • Various sensors such as the crank angle sensor 16, the air flow meter 32, and the throttle opening sensor 40 are connected to the input unit of the ECU 50.
  • Various actuators such as the fuel injection valve 26, the spark plug 28, and the throttle valve 38 described above are connected to the output portion of the ECU 50.
  • the ECU 50 controls the operating state of the internal combustion engine 10 by executing predetermined programs based on input information from various sensors and operating various actuators.
  • FIG. 2 is a diagram showing the sensitivity of the in-cylinder fuel amount with respect to combustion.
  • the sensitivity of the in-cylinder fuel amount to combustion is higher at the time of lean burn (for example, air-fuel ratio 20.0) than at the time of stoichiometric (for example, air-fuel ratio 14.5).
  • lean burn for example, air-fuel ratio 20.0
  • stoichiometric for example, air-fuel ratio 14.5
  • FIG. 3 is a diagram for explaining the fluctuation of the intake air flow between cycles.
  • the intake air flow in the cylinder 12 varies between cycles.
  • the fuel spray injected into the intake air flowing into the cylinder 12 is affected by the intake flow. Therefore, the amount of fuel adhering to the inner wall of the cylinder 12 varies from cycle to cycle.
  • the fuel spray becomes inhomogeneous between cycles, and its distribution fluctuates. As a result, combustion fluctuates between cycles and becomes unstable.
  • FIG. 4 is a diagram for explaining the opening / closing timing of the intake valve 44 and the exhaust valve 48 in the exhaust stroke and the intake stroke, and the fuel injection timing in the first embodiment of the present invention.
  • the exhaust valve 48 is opened at a time CA10 near the exhaust bottom dead center.
  • the intake valve 44 is opened at CA11 after CA10.
  • the exhaust valve 48 and the intake valve 44 are both closed at timing CA12 advanced from the intake top dead center (exhaust top dead center) after CA11. Further, the intake valve 44 is opened at a timing CA13 delayed from the intake top dead center.
  • CA12 and CA13 are set so that the volumes of the combustion chambers 20 at the respective crank angles are the same. By using the same volume, work loss due to compression and expansion can be prevented.
  • the system of this embodiment is provided with valve operating mechanisms 60 and 62 for opening and closing the intake valve 44 and the exhaust valve 48, respectively, at the above-described timings (FIG. 1).
  • the valve mechanism 60 on the intake side includes a cam having two lift portions for opening the intake valve 44 twice in the exhaust stroke and the intake stroke, in addition to a normal cam.
  • the valve operating mechanism 60 is connected to the output unit of the ECU 50 and can switch between a normal cam and a cam having two lift units in accordance with a control signal from the ECU 50.
  • the exhaust-side valve mechanism 62 is connected to the output unit of the ECU 50 and can change the valve timing of the exhaust valve 48 in accordance with a control signal from the ECU 50.
  • the ECU 50 outputs a control signal for realizing the valve timing shown in FIG. 4 to the valve operating mechanisms 60 and 62 in a high load region.
  • the operating range is determined by the engine speed and load.
  • the engine speed can be calculated based on the detection value of the crank angle sensor.
  • the load can be calculated based on, for example, the engine speed and the throttle opening.
  • Fuel injection timing Further, in the system of the present embodiment, fuel is injected into the combustion chamber 20 between the intake top dead center and the timing CA13 when the intake valve 44 is opened. Specifically, fuel injection is started after intake top dead center, and fuel injection is completed immediately before CA13. The ECU 50 outputs a control signal to the fuel injection valve 26 so that fuel injection is completed immediately before CA13.
  • the volume of the combustion chamber 20 is reduced by the compression by the piston 14 from the time when the exhaust valve 48 and the intake valve 44 are closed until the intake top dead center. Thereby, the airflow in the combustion chamber 20 can be compressed and the flow can be eliminated. Then, fuel is injected in a state where there is no airflow before timing CA13 when the intake valve 44 is opened. Thereby, the fluctuation
  • fuel is injected from the intake top dead center to the timing CA13 when the intake valve 44 is opened.
  • fuel injection when the in-cylinder pressure and temperature are high, it is possible to reduce spray penetration and promote vaporization. Thereby, fuel adhesion to the inner wall of the cylinder 12, which is a variation factor of the in-cylinder fuel amount can be reduced.
  • the occurrence of knocking in the high load region can be suitably suppressed by setting the fuel injection completion timing immediately before the timing CA13 at which the intake valve 44 is opened.
  • the system of the present embodiment it is possible to reduce the amount of fuel adhering to the inner wall or the like of the cylinder 12, reduce the fluctuation of the fuel adhering amount, and reduce the fluctuation of the spray distribution. Therefore, the stability of combustion can be improved and the lean region can be expanded. By expanding the lean region, it is possible to improve fuel consumption and reduce NOx.
  • the ECU 50 outputs the control signal for realizing the valve timing shown in FIG. 4 in the high load region, but the operation region for outputting this control signal is as follows. It is not limited to the high load region. This operation region may be other than the high load region.
  • the supercharger 34 is the “supercharger” in the first invention
  • the fuel injection valve 26 is the “fuel injection valve” in the first invention
  • 60, 62 and the ECU 50 are the “valve control means” in the first invention
  • the ECU 50 is the “injection control means” in the first invention
  • the internal combustion engine 10 is the “lean burn engine” in the third invention.
  • CA 12 corresponds to “timing advanced” in the first or second invention
  • CA 13 corresponds to “retarded timing” in the first or second invention.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment is the same as the configuration described in the first embodiment except that the system described in FIG. 5 is provided.
  • FIG. 5 is a top view for explaining the configuration around the intake port 42 in the system of the present embodiment.
  • the intake valve 44 includes two intake valves 44a and 44b.
  • the intake port 42 includes an intake port 42a that communicates with the combustion chamber 20 by opening the intake valve 44a, and an intake port 42b that communicates with the combustion chamber 20 by opening the intake valve 44b.
  • the intake port 42a is vertically provided with a partition, and the intake port 42a is divided into two passages 42a1 and 42a2.
  • the intake air passing through the passage 42a1 flows along the inner peripheral surface of the cylinder 12.
  • the intake air passing through the passage 42a2 flows into the center of the cylinder 12.
  • the passage 42a2 is provided with an intake control valve 64 for opening and closing the passage 42a2.
  • the intake control valve 64 is connected to the output side of the ECU 50.
  • valve mechanism 60 in the system of the present embodiment is a variable valve mechanism that can switch between a state in which the rotational force of the cam is transmitted to the intake valves 44a and 44b and a state in which only the intake valve 44a is transmitted. It is. For example, when the operation region is other than the high load region, the ECU 50 outputs a control signal to the valve mechanism 60 so that the rotational force of the cam is transmitted only to the intake valve 44a. As a result, the intake valve 44a is opened and closed while the intake valve 44b is closed.
  • the ECU 50 outputs a control signal for closing the passage 42a2 to the intake control valve 64.
  • the passage 42a2 is closed by the intake control valve 64.
  • the intake air does not flow into the central portion of the cylinder 12, but flows into the inner peripheral portion of the cylinder 12 through the passage 42a1.
  • a swirl flow along the inner peripheral surface (inner wall) of the cylinder 12 is formed.
  • a stratified fuel distribution is formed in which a fuel layer is distributed in the center of the cylinder 12 and an air layer is distributed in the inner periphery of the cylinder 12. Further, as in the first embodiment, since the spray distribution fluctuation is small, a stable air-fuel mixture with little fluctuation is formed in the vicinity of the spark plug 28. Therefore, the stability of combustion can be improved and the lean region can be expanded.
  • the spark plug 28 is the “ignition plug” in the fourth invention, and the intake port 42, the intake valve 44, the valve operating mechanism 60, the intake control valve 64, and the ECU 50 are the fourth. It corresponds to “stratified fuel distribution forming means” in the present invention.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment is the same as the configuration described in the first embodiment except that the system described in FIG. 6 is provided.
  • FIG. 6 is a diagram for explaining the opening / closing timing of the intake valve 44 and the exhaust valve 48 in the exhaust stroke and the intake stroke, and the fuel injection timing in the third embodiment of the present invention.
  • the configuration shown in FIG. 6 is the same as the configuration shown in FIG. 4 except that the fuel injection timing is different. Therefore, the opening / closing timings of the intake valve 44 and the exhaust valve 48 in the exhaust stroke and the intake stroke are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • fuel is injected into the combustion chamber 20 in two portions from the intake top dead center to the timing CA13 at which the intake valve 44 is opened.
  • the ECU 50 first calculates the total fuel injection amount of the current cycle according to the operating state based on a map or the like stored in the ECU 50 in advance. Next, the ECU 50 divides the total fuel injection amount into two parts at a prescribed fuel injection rate and injects the fuel. Specifically, the ECU 50 outputs a control signal to the fuel injection valve 26 so that two fuel injections are completed immediately before CA13.
  • the above-mentioned prescribed fuel injection ratio is determined in advance based on experiments and simulations, and is stored in the ECU 50.
  • the first and second fuel injections are performed at times when the temperature and pressure in the combustion chamber 20 are different. That is, the first fuel injection is performed in the combustion chamber 20 at a higher temperature and a higher pressure than the second fuel injection. Therefore, the first fuel injection has a lower spray penetration force than the second fuel injection.
  • the mixture formation position can be controlled by utilizing the fact that the penetration force of the spray is different.
  • the stability of the combustion by the second fuel injection can be improved. This is particularly suitable in a low load region.
  • the ECU 50 may set the first fuel injection ratio higher than a specified value (for example, the second fuel injection ratio) in the low load region and the high rotation region.
  • a specified value for example, the second fuel injection ratio
  • the ECU 50 corresponds to the “injection control means” in the fifth aspect of the invention.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • the system of the present embodiment is the same as the configuration described in the first embodiment except that the closing timing of the exhaust valve 48 and the intake valve 44 in the exhaust stroke differs depending on the operation region.
  • valve mechanism 60 is retarded with respect to the cam for the low load region set at the timing when the closing timing of the intake valve 44 in the exhaust stroke is advanced with respect to CA12, and with respect to CA12.
  • the high-load region cam set at the timing is provided, and the ECU 50 can be realized by outputting a control signal for switching the cam in accordance with the operation region to the valve mechanism 60.
  • This can also be realized by the ECU 50 outputting a control signal for changing the valve timing of the exhaust valve 48 to the valve mechanism 62 on the exhaust side.
  • a large amount of inert residual gas can be introduced in a low load region where knocking is unlikely to occur.
  • NOx can be reduced.
  • the high load region sufficient scavenging is performed, and knocking can be suitably suppressed.
  • valve operating mechanisms 60 and 62 are the “variable valve operating means” in the sixth invention, and the ECU 50 is the “low load valve control means” in the sixth invention. Each corresponds.
  • Embodiment 5 FIG. Next, a fifth embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment is the same as the configuration described in the fourth embodiment except that the fuel injection timing is different.
  • FIG. 7 is a diagram for explaining the opening / closing timings of the intake valve 44 and the exhaust valve 48 in the exhaust stroke and the intake stroke, and the fuel injection timing in the fifth embodiment of the present invention.
  • the valve timing shown in FIG. 7 shows a case where the operation region described in the fourth embodiment is a low load region. That is, the intake valve 44 is closed before the exhaust valve 48 in the exhaust stroke.
  • fuel is injected into the combustion chamber 20 in two portions. Specifically, the first fuel injection is performed from the time when the intake valve 44 and the exhaust valve 48 are closed to the intake top dead center in the exhaust stroke. The second fuel injection is performed from the intake top dead center to the timing CA13 at which the intake valve 44 is opened.
  • a large amount of inert residual gas can be introduced in a low load region where knocking is unlikely to occur. Furthermore, since the first fuel injection is performed before the intake top dead center, the fuel is injected into the high-temperature residual gas, and a fuel reforming effect is obtained. Therefore, more stable combustion can be obtained at a low load where the temperature is originally low and combustion is unstable.
  • the ECU 50 corresponds to the “low load injection control means” in the seventh invention.
  • FIG. 6 a sixth embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment can be realized by using the configuration shown in FIG. 1 as a basic configuration and including the characteristic configuration described in FIGS. 8 and 9.
  • FIG. 8 is a diagram for explaining the supercharger 34, the intake valve 44, and the exhaust valve 48 included in the system according to Embodiment 6 of the present invention.
  • the supercharger 34 in the system of the present embodiment is a turbocharger that performs supercharging with the energy of exhaust gas.
  • the turbocharger has a turbine 34a that is rotated by the energy of exhaust gas, and a compressor 34b that is driven by the turbine 34a and rotates.
  • the intake valve 44 includes two intake valves 44a and 44b.
  • the intake port 42 includes an intake port 42a that communicates with the combustion chamber 20 by opening the intake valve 44a, and an intake port 42b that communicates with the combustion chamber 20 by opening the intake valve 44b.
  • the exhaust valve 48 includes two exhaust valves 48a and 48b.
  • the exhaust port 46 includes an exhaust port 46a that communicates with the combustion chamber 20 by opening the exhaust valve 48a, and an exhaust port 46b that communicates with the combustion chamber 20 by opening the exhaust valve 48b.
  • a turbine 34a is provided in the exhaust passage 24 downstream of the exhaust port 46a.
  • a common compressor 34b is provided in the intake passage 22 upstream of the intake ports 42a and 42b.
  • FIG. 9 is a diagram for explaining the opening / closing timings of the intake valve 44 and the exhaust valve 48 in the exhaust stroke and the intake stroke, and the fuel injection timing in the sixth embodiment of the present invention.
  • the exhaust valve 48a is opened at a time CA20 near the exhaust bottom dead center.
  • the exhaust valve 48a is closed.
  • the exhaust valve 48b and the intake valve 44 are opened.
  • the intake valve 44 is closed at timing CA23 advanced from the intake top dead center.
  • the intake valve 44 is opened at a timing CA24 delayed from the intake top dead center.
  • CA23 and CA24 are set so that the volumes of the combustion chambers 20 at the respective crank angles are the same. By using the same volume, work loss due to compression / expansion can be prevented.
  • Fuel injection timing Further, in the system of the present embodiment, fuel is injected into the cylinder 12 from the intake top dead center to the timing CA24 at which the intake valve 44 is opened. Specifically, fuel injection is started after intake top dead center, and fuel injection is completed immediately before CA24. The ECU 50 outputs a control signal to the fuel injection valve 26 so that fuel injection is completed immediately before the CA 24.
  • the exhaust valve 48a is closed, and the intake valve 44 and the exhaust valve 48b are opened. Therefore, the pressure in the combustion chamber 20 decreases, and unburned HC is released into the combustion chamber 20. Part of the unburned HC is also blown out to the intake port 42.
  • the exhaust valve 48b is closed (CA22) before the unburned HC released into the combustion chamber 20 is completely scavenged. Thereafter, the unburned HC blown out to the intake port 42 is blown back into the combustion chamber 20 until the intake valve 44 is closed (CA23). Therefore, unburned HC can be burned again.
  • CA23 intake valve 44
  • the supercharger 34 is the “turbo supercharger” in the eighth invention
  • the exhaust valve 48 a is the “first exhaust valve” in the eighth invention
  • the exhaust valve 48b is the “second exhaust valve” in the eighth invention
  • the exhaust port 46a is the “first exhaust port” in the eighth invention
  • the exhaust port 46b is the “second exhaust port” in the eighth invention.
  • the turbine 34a corresponds to the “turbine” in the eighth invention
  • the valve operating mechanisms 60, 62 and the ECU 50 correspond to the “valve control means” in the eighth invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 この発明は、ノッキングの発生を抑制すると共に、燃焼の安定性を高めることのできる筒内噴射式内燃機関を提供することを目的とする。 内燃機関に流入する吸気を過給する過給機と、前記内燃機関の燃焼室内に直接燃料を噴射する燃料噴射弁とを備える。排気行程において排気バルブと吸気バルブとを開いた後、吸気上死点よりも進角したタイミングで前記吸気バルブと前記排気バルブとを閉じ、吸気行程において吸気上死点よりも遅角したタイミングで前記吸気バルブを開く。前記吸気上死点から前記遅角したタイミングまでの間に、前記燃料噴射弁に燃料を噴射させる。

Description

筒内噴射式内燃機関
 この発明は、筒内に燃料を直接噴射する筒内噴射式内燃機関に関する。
 従来、例えば特許文献1(特開2004-176607号公報)に開示されるように、気筒内に燃料を直接噴射する燃料噴射弁を備えた内燃機関が知られている。また、特許文献1には、エンジンの冷態始動時に、排気行程において吸気バルブ及び排気バルブを共に閉じて燃焼室を密閉し、密閉中に燃焼室内に燃料を噴射すると共に、吸気上死点(排気上死点)直後に吸気バルブを開く技術が開示されている。このような技術によれば、筒内圧が最も上昇した吸気上死点直後に吸気バルブを開くため、圧縮されて昇温した燃焼室内の残留ガスは、吸気口からいったん燃焼室の外部に吹き出される。その後、ピストンの上死点からの下降による十分な負圧により燃焼室内に吹き戻され、新気と共に燃焼室内に再度流入し、噴射燃料との混合が促進される。
特開2004-176607号公報
 しかしながら、上記従来の内燃機関では、高温の残留ガス中に燃料を噴射するため、ノッキングの発生が顕在化するおそれがある。また、上記従来の内燃機関では、密閉中の燃焼室内に燃料を噴射し、吸気上死点直後に吸気バルブを開くため、吸気上死点前に燃料を噴射する必要がある。吸気上死点前は気筒内に未だ大きな気流が生じており、かつ、気筒内の気流はサイクル間で変動する。そのため、吸気上死点前に燃料を噴射すれば、サイクル間で噴霧状態に大きなばらつきが生じる。噴霧状態に大きなばらつきが生じれば、気筒の内壁等に付着する燃料量にばらつきが生じる。付着する燃料量にばらつきが生じれば、燃焼の安定性が低下することとなる。
 この発明は、上述のような課題を解決するためになされたもので、ノッキングの発生を抑制すると共に、燃焼の安定性を高めることのできる筒内噴射式内燃機関を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、筒内噴射式内燃機関であって、
 内燃機関に流入する吸気を過給する過給機と、
 前記内燃機関の燃焼室内に直接燃料を噴射する燃料噴射弁と、
 排気行程において排気バルブと吸気バルブとを開いた後、吸気上死点よりも進角したタイミングで前記吸気バルブと前記排気バルブとを閉じ、吸気行程において前記吸気上死点よりも遅角したタイミングで前記吸気バルブを開くバルブ制御手段と、
 前記吸気上死点から前記遅角したタイミングまでの間に、前記燃料噴射弁に燃料を噴射させる噴射制御手段と、を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記進角したタイミングと前記遅角したタイミングとにおける前記燃焼室の体積は同じであること、を特徴とする。
 また、第3の発明は、第1又は第2の発明において、
 前記内燃機関はリーンバーンエンジンであること、を特徴とする。
 また、第4の発明は、第1乃至第3の発明のいずれかにおいて、
 前記燃焼室上面の中央部に配置された点火プラグと、
 前記燃焼室を形成する気筒の内周に沿って吸気を流入させて、前記気筒の中央部に燃料の層を、前記気筒の内周部に空気の層を分布させる成層燃料分布形成手段と、
 を備えることを特徴とする。
 また、第5の発明は、第1乃至第4の発明のいずれかにおいて、
 前記噴射制御手段は、前記吸気上死点から前記遅角したタイミングまでの間に、複数回に分けて、前記燃料噴射弁に燃料を噴射させること、を特徴とする。
 また、第6の発明は、第1乃至第4の発明のいずれかにおいて、
 前記バルブ制御手段は、
 前記吸気バルブの閉じ時期と前記排気バルブの閉じ時期とを相対的に変更可能とする可変動弁手段と、
 前記内燃機関の運転領域が低負荷領域である場合に、前記可変動弁手段により前記排気行程における前記吸気バルブの閉じ時期を前記排気バルブの閉じ時期よりも早い時期に制御する低負荷時バルブ制御手段と、を更に備えることを特徴とする。
 また、第7の発明は、第6の発明において、
 前記噴射制御手段は、
 前記内燃機関の運転領域が前記低負荷領域である場合に、前記進角したタイミングから前記遅角したタイミングまでの間に、複数回に分けて、前記燃料噴射弁に燃料を噴射させ、少なくとも前記進角したタイミングから前記吸気上死点までの間に、1回目の燃料を噴射させる低負荷時噴射制御手段、を更に備えることを特徴とする。
 また、第8の発明は、第1乃至第5の発明のいずれかにおいて、
 前記過給機は、ターボ過給機であって、
 前記排気バルブを構成する第1排気バルブ及び第2排気バルブと、
 前記第1排気バルブを開くことにより前記燃焼室と連通する第1排気ポートと、
 前記第2排気バルブを開くことにより前記燃焼室と連通する第2排気ポートと、
 前記第1排気ポートの下流に設けられた前記ターボ過給機のタービンと、を更に備え、
 前記バルブ制御手段は、
 前記排気行程において前記第1排気バルブを開閉した後に、前記吸気バルブと前記第2排気バルブとを開き、前記第2排気バルブを閉じた後に、吸気上死点よりも進角したタイミングで前記吸気バルブを閉じ、吸気行程において吸気上死点よりも遅角したタイミングで前記吸気バルブを開くこと、を特徴とする。
 第1の発明によれば、排気行程において排気バルブと吸気バルブとを開くことができる。そのため、過給により新気を燃焼室に導入し、高温の残留ガスを掃気することができる。これにより、ノッキングの発生を抑制することができる。また、第1の発明によれば、排気行程において排気バルブと吸気バルブとを開いた後、吸気上死点よりも進角したタイミングで吸気バルブと排気バルブとを閉じることができる。そのため、ピストンの上昇により、燃焼室内の気流を圧縮しその流れを無くすことができる。さらに、第1の発明によれば、吸気上死点よりも遅角したタイミングであって、吸気バルブを開くまでの間に、燃焼室内に燃料を噴射することができる。気流が無い状態で燃料が噴射されることで、サイクル間の噴霧状態のばらつきを低減することができる。その結果、燃焼の安定性を高めることができる。よって、本発明によれば、ノッキングの発生を抑制すると共に、燃焼の安定性を高めることができる。
 第2の発明によれば、吸気上死点よりも進角したタイミングと吸気上死点よりも遅角したタイミングとにおける燃焼室を同体積とすることができる。同体積とすることで、圧縮や膨張による仕事損失を防ぐことができる。
 第3の発明によれば、上述した第1及び第2の発明により、燃焼の安定性を高めることができるため、リーン領域の拡大を図ることができる。リーン領域の拡大を図ることにより、燃費改善とNOx低減を実現することができる。
 第4の発明によれば、気筒の中央部に燃料の層を、気筒の内周部に空気の層を分布させた成層燃料分布が形成される。また、第1の発明の効果により、噴霧の分布変動が少ないため、点火プラグ近傍に変動の少ない安定した混合気を形成することができる。よって、本発明によれば、燃焼の安定性を高めることができ、リーン領域の拡大を図ることができる。
 第5の発明によれば、吸気上死点から遅角したタイミングまでの間に、複数回に分けて、前記燃料噴射弁に燃料を噴射させることができる。各回の燃料噴射は、燃焼室内の温度・圧力が異なる時期において行われ、噴霧の貫徹力が異なるため、混合気形成位置を制御することができる。このため、本発明によれば、均質な混合気を生成し、混合気の不均質が原因となるNOxを低減させることができる。
 第6の発明によれば、運転領域が低負荷領域である場合に、排気行程における吸気バルブの閉じ時期を排気バルブの閉じ時期よりも早い時期に制御することができる。そのため、ノッキングが発生し難い低負荷領域において、不活性である残留ガスを多く入れることができる。このため、本発明によれば、NOxを低減することができる。
 第7の発明によれば、運転領域が低負荷領域である場合に、複数回に分けて燃料を噴射し、少なくとも吸気上死点よりも進角したタイミングから吸気上死点までの間に、1回目の燃料噴射を行うことができる。そのため、1回目の燃料噴射は、吸気上死点より前の高温の残留ガス内に行われ、燃料改質効果が得られる。このため、本発明によれば、元来温度が低く燃焼が不安定な低負荷領域において、より燃焼の安定性を高めることができる。
 第8の発明によれば、排気行程において第1排気バルブを開閉した後に、吸気バルブと第2排気バルブとを開き、第2排気バルブを閉じた後に、吸気上死点よりも進角したタイミングで吸気バルブを閉じることができる。燃焼室内の未燃HCは、吸気ポート42に吹き出された後、再び燃焼室20内に吹き戻される。そのため、未燃HCを再び燃焼させることができる。このため、本発明によれば、エミッション改善と燃費改善を実現することができる。
本発明の実施の形態1に係るシステム構成を説明するための図である。 燃焼に対する筒内燃料量の感度を示す図である。 吸気流のサイクル間変動について説明するための図である。 本発明の実施の形態1について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。 本発明の実施の形態2に係るシステムの吸気ポート42周辺の構成を説明するための上面図である。 本発明の実施の形態3について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。 本発明の実施の形態5について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。 本発明の実施の形態6に係るシステムが有する過給機34、吸気バルブ44、排気バルブ48について説明するための図である。 本発明の実施の形態6について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[実施の形態1のシステム構成]
 図1は、本発明の実施の形態1に係るシステム構成を説明するための図である。図1に示すシステムは、4ストローク機関である筒内噴射式の内燃機関10を備えている。また、内燃機関10は、リーンバーンエンジンである。内燃機関10は図示しない複数の気筒12を有している。気筒12には、その内部を往復運動するピストン14が設けられている。ピストン14の往復運動は、クランク軸の回転運動に変換される。クランク軸の近傍には、クランク軸の回転角(クランク角)を検出するためのクランク角センサ16が設けられている。
 内燃機関10は、シリンダヘッド18を備えている。シリンダヘッド18の下面と気筒12の内壁(シリンダライナ19)とピストン14の冠面との間には、燃焼室20が形成されている。燃焼室20には、吸気通路22および排気通路24が接続されている。シリンダヘッド18には、燃焼室20の中央部に向けて直接燃料を噴射するための燃料噴射弁26が設けられている。シリンダヘッド18には、燃焼室20上面の中央部に点火プラグ28が設けられている。
 吸気通路22には、エアクリーナ30が設けられている。エアクリーナ30の下流には、吸入空気量を検出するためのエアフローメータ32が設けられている。エアフローメータ32の下流には、過給を行うための過給機34が設けられている。過給機34は、電動又は前述のクランク軸の回転を利用することにより駆動して過給を行う。なお、過給機34は、排気ガスのエネルギーによって回転するタービンと、このタービンに駆動されて回転するコンプレッサとを有するターボチャージャであって、このコンプレッサにより過給を行うものであってもよい。
 過給機34の下流には、インタークーラ36が設けられている。インタークーラ36の下流には、電子制御式のスロットルバルブ38が設けられている。スロットルバルブ38の近傍には、スロットル開度を検出するためのスロットル開度センサ40が設けられている。スロットルバルブ38の下流には、燃焼室20に接続する吸気ポート42がシリンダヘッド18内に形成されている。吸気通路22は、吸気ポート42を含む概念である。吸気通路22の下流端には、吸気ポート42と燃焼室20との間を開閉する吸気バルブ44が設けられている。
 また、排気通路24の上流端には、燃焼室20と排気ポート46との間を開閉する排気バルブ48が設けられている。排気ポート46は、シリンダヘッド18内に形成されている。排気通路24は、排気ポート46を含む概念である。
 本実施形態のシステムは、ECU(Electronic Control Unit)50を備えている。ECU50の入力部には、前述のクランク角センサ16、エアフローメータ32、スロットル開度センサ40等の各種センサが接続されている。また、ECU50の出力部には、前述の燃料噴射弁26、点火プラグ28、スロットルバルブ38等の各種アクチュエータが接続されている。ECU50は、各種センサからの入力情報に基づいて所定のプログラムを実行し、各種アクチュエータを作動させることにより、内燃機関10の運転状態を制御する。
[実施の形態1における特徴的構成]
 次に、本実施形態のシステムの特徴的構成について図2~図4を用いて説明する。図2は、燃焼に対する筒内燃料量の感度を示す図である。図1に示すように、リーンバーン時(例えば、空燃比20.0)は、ストイキ時(例えば、空燃比14.5)に比して、燃焼に対する筒内燃料量の感度が高い。リーンバーン時には、燃焼限界付近で運転するため、リーン限界の拡大を図るためには、燃焼を安定させることが求められる。
 図3は、吸気流のサイクル間変動について説明するための図である。図3に示すように、サイクル間で気筒12内の吸気流は変動する。気筒12内に流入する吸気中に噴射される燃料噴霧は、吸気流の影響を受ける。そのため、気筒12の内壁等に付着する燃料量はサイクル毎に変動する。また、サイクル間で燃料噴霧が不均質となり、その分布が変動する。その結果、サイクル間で燃焼が変動し不安定になる。
 さらに、内燃機関10のような筒内噴射式のリーンバーンエンジンでは、燃焼が不安定になると、リーン限界の拡大が妨げられる。
 そこで、本実施形態のシステムでは、吸気流のサイクル間変動による気筒12の内壁等に付着する燃料量の変動、及び分布の変動を無くし、燃焼の安定性を高めることとした。
 具体的な本実施形態の特徴的構成について図4を用いて説明する。図4は、本発明の実施の形態1について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。
(吸気バルブ44及び排気バルブ48の開閉時期)
 本実施形態のシステムでは、図4に示すように、排気下死点近傍の時期CA10において排気バルブ48が開かれる。CA10後のCA11において吸気バルブ44が開かれる。CA11後の吸気上死点(排気上死点)よりも進角したタイミングCA12において排気バルブ48と吸気バルブ44とが共に閉じられる。さらに、吸気上死点よりも遅角したタイミングCA13において吸気バルブ44が開かれる。なお、CA12とCA13とは、それぞれのクランク角における燃焼室20の体積が同じとなるように設定されている。同体積とすることで、圧縮や膨張による仕事損失を防ぐことができる。
 本実施形態のシステムには、上述の各タイミングで吸気バルブ44、排気バルブ48をそれぞれ開閉するための動弁機構60、62が設けられている(図1)。吸気側の動弁機構60は、通常のカムの他に、排気行程と吸気行程とで吸気バルブ44を2回開くための2つのリフト部を有するカムを備えている。動弁機構60は、ECU50の出力部に接続され、ECU50からの制御信号に応じて、通常のカムと、2つのリフト部を有するカムとを切り替えることができる。また、排気側の動弁機構62は、ECU50の出力部に接続され、ECU50からの制御信号に応じて、排気バルブ48のバルブタイミングを変更することができる。ECU50は、例えば、高負荷領域において、図4に示すバルブタイミングを実現するための制御信号を動弁機構60、62に出力する。
 なお、運転領域は、エンジン回転数と負荷とにより定まる。エンジン回転数は、クランク角センサの検出値に基づいて算出することができる。負荷は、例えばエンジン回転数とスロットル開度に基づいて算出することができる。
(燃料噴射時期)
 また、本実施形態のシステムでは、吸気上死点から吸気バルブ44を開くタイミングCA13までの間に、燃焼室20内に燃料が噴射される。詳細には、吸気上死点後に燃料噴射が開始され、CA13直前に燃料噴射が完了される。ECU50は、CA13直前に燃料噴射が完了されるように燃料噴射弁26に制御信号を出力する。
(作用・効果)
 上述した本実施形態のシステムによれば、排気工程において、CA11からCA12までの間、排気バルブ48と吸気バルブ44とが開かれることにより、新気を過給して燃焼室20に導入し、高温の残留ガスを掃気することができる。これにより、ノッキングの発生を抑制することができる。
 また、CA12において排気バルブ48と吸気バルブ44とが閉じられてから吸気上死点までの間、ピストン14による圧縮で燃焼室20の体積が小さくなる。これにより、燃焼室20内の気流を圧縮し、その流れを無くすことができる。そして、吸気バルブ44を開くタイミングCA13より前の気流が無い状態で燃料が噴射される。これにより、サイクル間の噴霧形状の変動を低減することができる。そのため、気筒12の内壁等に付着する燃料量の変動の低減と、噴霧の分布変動の低減とを実現することができる。
 また、本実施形態のシステムによれば、吸気上死点から吸気バルブ44を開くタイミングCA13までの間に燃料が噴射される。筒内圧力と温度が高い時期に燃料噴射を行うことにより、噴霧の貫徹力低減と気化促進とを図ることができる。これにより、筒内燃料量の変動要因である気筒12の内壁等への燃料付着を低減することができる。加えて、燃料噴射の完了時期を、吸気バルブ44を開くタイミングCA13直前とすることで、高負荷領域におけるノッキングの発生を好適に抑制することができる。
 このように、本実施形態のシステムによれば、気筒12の内壁等への燃料付着量の低減、燃料付着量の変動の低減、及び、噴霧の分布変動の低減を実現することができる。そのため、燃焼の安定性を高めることができ、リーン領域の拡大を図ることができる。リーン領域の拡大を図ることにより、燃費改善とNOx低減を実現することができる。
 ところで、上述した実施の形態1のシステムにおいては、図4に示すバルブタイミングを実現するための制御信号を、高負荷領域においてECU50が出力することとしているが、この制御信号を出力する運転領域は、高負荷領域に限定されるものではない。この運転領域は、高負荷領域以外であってもよい。
 尚、上述した実施の形態1においては、過給機34が前記第1の発明における「過給機」に、燃料噴射弁26が前記第1の発明における「燃料噴射弁」に、動弁機構60、62及びECU50が前記第1の発明における「バルブ制御手段」に、ECU50が前記第1の発明における「噴射制御手段」に、内燃機関10が前記第3の発明における「リーンバーンエンジン」に、それぞれ相当している。また、ここでは、CA12が前記第1又は第2の発明における「進角したタイミング」に、CA13が前記第1又は第2の発明における「遅角したタイミング」に、それぞれ対応している。
実施の形態2.
 次に、図5を参照して本発明の実施の形態2について説明する。本実施形態のシステムは、図5で説明する構成を備えている点を除き、実施の形態1で述べた構成と同様である。
[実施の形態2における特徴的構成]
 図5は、本実施形態のシステムにおける吸気ポート42周辺の構成を説明するための上面図である。図5に示すように、吸気バルブ44は、2つの吸気バルブ44a、44bからなる。吸気ポート42は、吸気バルブ44aを開くことにより燃焼室20と連通する吸気ポート42aと、吸気バルブ44bを開くことにより燃焼室20と連通する吸気ポート42bとからなる。本実施形態における吸気ポート42aには、縦に隔壁が設けられており、吸気ポート42aは、2つの通路42a1、42a2に区画されている。通路42a1を通過する吸気は、気筒12の内周面に沿って流れ込む。一方、通路42a2を通過する吸気は、気筒12の中央部に流れ込む。通路42a2には、通路42a2を開閉するための吸気制御弁64が設けられている。吸気制御弁64は、ECU50の出力側に接続されている。
 また、本実施形態のシステムにおける動弁機構60は、カムの回転力が吸気バルブ44a及び44bに伝達される状態と、吸気バルブ44aにのみ伝達される状態とを切り替えることができる可変動弁機構である。ECU50は、例えば、運転領域が高負荷領域以外である場合において、動弁機構60に、カムの回転力が吸気バルブ44aにのみに伝達される状態とするための制御信号を出力する。その結果、吸気バルブ44bが閉じられた状態で、吸気バルブ44aが開閉される。
 これに加えて、ECU50は、吸気制御弁64に、通路42a2を閉塞するための制御信号を出力する。その結果、吸気制御弁64により通路42a2が閉塞される。通路42a2が閉塞されることにより、吸気は、気筒12の中央部には流れ込まないで、通路42a1を通って気筒12の内周部に流れ込む。その結果、気筒12の内周面(内壁)に沿ったスワール流が形成される。
 上述した本実施形態のシステムによれば、気筒12の中心部に燃料の層を、気筒12の内周部に空気の層を分布させた成層燃料分布が形成される。また、実施の形態1と同様に、噴霧の分布変動が少ないため、点火プラグ28近傍に変動の少ない安定した混合気が形成される。そのため、燃焼の安定性を高めることができ、リーン領域の拡大を図ることができる。
 尚、上述した実施の形態2においては、点火プラグ28が前記第4の発明における「点火プラグ」に、吸気ポート42、吸気バルブ44、動弁機構60、吸気制御弁64及びECU50が前記第4の発明における「成層燃料分布形成手段」に、それぞれ相当している。
実施の形態3.
 次に、図6を参照して本発明の実施の形態3について説明する。本実施形態のシステムは、図6で説明する構成を備えている点を除き、実施の形態1で述べた構成と同様である。
[実施の形態3における特徴的構成]
 図6は、本発明の実施の形態3について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。図6に示す構成は、燃料噴射時期が異なる点を除き、図4に示す構成と同様である。そのため、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期については、同一の符号を付してその説明を省略または簡略する。
 本実施形態のシステムでは、図6に示すように、吸気上死点から吸気バルブ44を開くタイミングCA13までの間に、燃焼室20内に2回に分けて燃料が噴射される。ECU50は、まず、運転状態に応じた現サイクルの総燃料噴射量を、予めECU50に記憶されたマップ等に基づいて算出する。次に、ECU50は、総燃料噴射量を規定の燃料噴射割合で2回に分割して噴射する。具体的には、ECU50は、CA13直前までに2回の燃料噴射が完了するように燃料噴射弁26に制御信号を出力する。上述の規定の燃料噴射割合は、実験やシミュレーションに基づいて予め定められ、ECU50に記憶されている。
 1回目及び2回目の燃料噴射は、それぞれ、燃焼室20内の温度・圧力が異なる時期において行われる。すなわち、1回目の燃料噴射は、2回目の燃料噴射に比して高温・高圧の燃焼室20内で行われる。そのため、1回目の燃料噴射は、2回目の燃料噴射に比して噴霧の貫徹力が低くなる。噴霧の貫徹力が異なることを利用して、混合気形成位置を制御することができる。また、1回目の燃料噴射によって燃料の一部が燃焼状態となることで、2回目の燃料噴射による燃焼の安定性を高めることができる。これは、特に低負荷領域において好適である。
 また、ECU50は、低負荷領域や高回転領域において、1回目の燃料噴射割合を規定値(例えば、2回目の燃料噴射割合)よりも高く設定することとしてもよい。低負荷領域では、より高温・高圧の筒内に多くの燃料を噴射することができ、燃焼の安定性を高めることができる。また、高回転領域では、より長い気化時間を確保することができ、燃焼の安定性を高めることができる。
 このように、本実施形態のシステムによれば、混合気形成位置を制御することにより、均質な混合気を生成することが可能となる。その結果、混合気の不均質が原因となるNOxを低減させることができ、好適なエミッションを実現することができる。
 ところで、上述した実施の形態3のシステムにおいては、実施の形態2で述べた図5に示す構成を併用することとしてもよい。なお、この点は以下の実施の形態でも同様である。
 尚、上述した実施の形態3においては、ECU50が前記第5の発明における「噴射制御手段」に相当している。
実施の形態4.
 次に、本発明の実施の形態4について説明する。本実施形態のシステムは、排気行程における排気バルブ48及び吸気バルブ44の閉弁時期が運転領域に応じて異なる点を除き、実施の形態1で述べた構成と同様である。
[実施の形態4における特徴的構成]
 上述した実施の形態1のシステムでは、図4に示すように、吸気上死点よりも進角したタイミングCA12において、排気バルブ48と吸気バルブ44とが同時に閉じられる。これに対して、実施の形態4のシステムでは、運転領域が低負荷領域である場合には、排気行程において吸気バルブ44が排気バルブ48よりも先に閉じられる。また、高負荷領域である場合には、排気行程において吸気バルブ44が排気バルブ48よりも後に閉じられる。
 このようなバルブ制御は、例えば、動弁機構60が、排気行程における吸気バルブ44の閉じ時期がCA12よりも進角したタイミングに設定された低負荷領域用のカムと、CA12よりも遅角したタイミングに設定された高負荷領域用のカムとを備え、ECU50が、動弁機構60に、運転領域に応じてカムを切り替える制御信号を出力することにより実現することができる。また、ECU50が、排気側の動弁機構62に、排気バルブ48のバルブタイミングを変更させる制御信号を出力することによっても実現することができる。
 このように、本実施形態のシステムによれば、実施の形態1で述べた効果に加えて、ノッキングが発生し難い低負荷領域において、不活性である残留ガスを多く入れることができる。その結果、NOxの低減を図ることができる。一方、高負荷領域においては、十分な掃気が行われ、ノッキングを好適に抑制することができる。
 尚、上述した実施の形態4においては、動弁機構60、62が前記第6の発明における「可変動弁手段」に、ECU50が前記第6の発明における「低負荷時バルブ制御手段」に、それぞれ相当している。
実施の形態5.
 次に、図7を参照して本発明の実施の形態5について説明する。本実施形態のシステムは、燃料噴射時期が異なる点を除き、実施の形態4で述べた構成と同様である。
[実施の形態5における特徴的構成]
 図7は、本発明の実施の形態5について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。図7に示すバルブタイミングは、実施の形態4で述べた運転領域が低負荷領域である場合を示している。すなわち、吸気バルブ44は、排気行程において排気バルブ48よりも先に閉じられる。
 さらに、本実施形態のシステムでは、運転領域が低負荷領域である場合に、燃焼室20内に2回に分けて燃料が噴射される。具体的には、1回目の燃料噴射は、排気行程において吸気バルブ44と排気バルブ48とが閉じられてから吸気上死点までの間に行われる。2回目の燃料噴射は、吸気上死点から吸気バルブ44を開くタイミングCA13までの間に行われる。
 このように、本実施形態のシステムによれば、実施の形態4で述べたように、ノッキングが発生し難い低負荷領域において、不活性である残留ガスを多く入れることができる。さらに、1回目の燃料噴射は、吸気上死点よりも前に行われるため、高温の残留ガス内に燃料が噴射されることとなり、燃料改質効果が得られる。そのため、元来温度が低く燃焼が不安定な低負荷において、より安定した燃焼が得られる。
 尚、上述した実施の形態5においては、ECU50が前記第7の発明における「低負荷時噴射制御手段」に相当している。
実施の形態6.
 次に、図8、図9を参照して本発明の実施の形態6について説明する。本実施形態のシステムは、図1に示す構成を基本構成とし、図8、図9で説明する特徴的構成を備えることにより実現することができる。
[実施の形態6における特徴的構成]
 図8は、本発明の実施の形態6に係るシステムが有する過給機34、吸気バルブ44、排気バルブ48について説明するための図である。本実施形態のシステムにおける過給機34は、排気ガスのエネルギーによって過給を行うターボチャージャである。このターボチャージャは、排気ガスのエネルギーによって回転するタービン34aと、このタービン34aに駆動されて回転するコンプレッサ34bとを有している。
 図8に示すように、吸気バルブ44は、2つの吸気バルブ44a、44bからなる。吸気ポート42は、吸気バルブ44aを開くことにより燃焼室20と連通する吸気ポート42aと、吸気バルブ44bを開くことにより燃焼室20と連通する吸気ポート42bとからなる。排気バルブ48は、2つの排気バルブ48a、48bからなる。排気ポート46は、排気バルブ48aを開くことにより燃焼室20と連通する排気ポート46aと、排気バルブ48bを開くことにより燃焼室20と連通する排気ポート46bとからなる。排気ポート46a下流の排気通路24には、タービン34aが設けられている。吸気ポート42a、42b上流の吸気通路22には、共通のコンプレッサ34bが設けられている。以下、吸気ポート42a、42bを区別しない場合には単に吸気ポート42という。
 図9は、本発明の実施の形態6について、排気行程及び吸気行程における吸気バルブ44及び排気バルブ48の開閉時期と、燃料噴射時期とを説明するための図である。
(吸気バルブ44及び排気バルブ48の開閉時期)
 本実施形態のシステムでは、図9に示すように、排気下死点近傍の時期CA20において排気バルブ48aが開かれる。CA20後のCA21において排気バルブ48aが閉じられる。また、CA21において排気バルブ48bと吸気バルブ44とが開かれる。CA21後のCA22において排気バルブ48bが閉じられた後、吸気上死点よりも進角したタイミングCA23において吸気バルブ44が閉られる。さらに、吸気上死点よりも遅角したタイミングCA24において吸気バルブ44が開かれる。なお、CA23とCA24とは、それぞれのクランク角における燃焼室20の体積が同じとなるように設定されている。同体積とすることで、圧縮・膨張による仕事損失を防ぐことができる。
(燃料噴射時期)
 また、本実施形態のシステムでは、吸気上死点から吸気バルブ44を開くタイミングCA24までの間に、気筒12内に燃料が噴射される。詳細には、吸気上死点後に燃料噴射が開始され、CA24直前に燃料噴射が完了される。ECU50は、CA24直前に燃料噴射が完了されるように燃料噴射弁26に制御信号を出力する。
(作用・効果)
 上述した本実施形態のシステムによれば、排気工程において、CA20からCA21までの間、排気バルブ48aのみが開かれる。これにより、高温、高圧の排気ガスがタービン34aに供給される。そのため、コンプレッサ34bを好適に駆動させることができる。また、タービン34a側の排気バルブ48aのみが開かれるため、燃焼室20内の圧力は高く、未燃HCは、ピストン14とシリンダライナ19とピストンリング70との隙間に保持される(図9)。
 その後、CA21において、排気バルブ48aが閉じられ、吸気バルブ44と排気バルブ48bとが開かれる。そのため、燃焼室20内の圧力は低下し、未燃HCは燃焼室20内に放出される。未燃HCの一部は、吸気ポート42にも吹き出される。なお、排気バルブ48bは、燃焼室20内に放出された未燃HCが完全に掃気されるより前(CA22)に閉じられる。その後、吸気ポート42に吹き出された未燃HCは、吸気バルブ44が閉じられる(CA23)までの間に、燃焼室20内に再び吹き戻される。そのため、未燃HCを再び燃焼させることができる。このように、本実施形態のシステムによれば、エミッション改善と燃費改善とを図ることができる。また、実施の形態1と同様に、吸気上死点から吸気バルブ44が開かれるCA25までの間に、燃料が噴射されるため、実施の形態1と同様の効果が得られる。
 尚、上述した実施の形態6においては、過給機34が前記第8の発明における「ターボ過給機」に、排気バルブ48aが前記第8の発明における「第1排気バルブ」に、排気バルブ48bが前記第8の発明における「第2排気バルブ」に、排気ポート46aが前記第8の発明における「第1排気ポート」に、排気ポート46bが前記第8の発明における「第2排気ポート」に、タービン34aが前記第8の発明における「タービン」に、動弁機構60、62及びECU50が前記第8の発明における「バルブ制御手段」に、それぞれ相当している。
10 内燃機関
12 気筒
14 ピストン
16 クランク角センサ
18 シリンダヘッド
19 シリンダライナ
20 燃焼室
22 吸気通路
24 排気通路
26 燃料噴射弁
28 点火プラグ
30 エアクリーナ
32 エアフローメータ
34 過給機
34a タービン
34b コンプレッサ
36 インタークーラ
38 スロットルバルブ
40 スロットル開度センサ
42、42a、42b 吸気ポート
42a1、42a2 通路
44、44a、44b 吸気バルブ
46、46a、46b 排気ポート
48、48a、48b 排気バルブ
50 ECU(Electronic Control Unit)
60、62 動弁機構
64 吸気制御弁
70 ピストンリング

Claims (8)

  1.  内燃機関に流入する吸気を過給する過給機と、
     前記内燃機関の燃焼室内に直接燃料を噴射する燃料噴射弁と、
     排気行程において排気バルブと吸気バルブとを開いた後、吸気上死点よりも進角したタイミングで前記吸気バルブと前記排気バルブとを閉じ、吸気行程において前記吸気上死点よりも遅角したタイミングで前記吸気バルブを開くバルブ制御手段と、
     前記吸気上死点から前記遅角したタイミングまでの間に、前記燃料噴射弁に燃料を噴射させる噴射制御手段と、
     を備えることを特徴とする筒内噴射式内燃機関。
  2.  前記進角したタイミングと前記遅角したタイミングとにおける前記燃焼室の体積は同じであること、を特徴とする請求項1記載の筒内噴射式内燃機関。
  3.  前記内燃機関はリーンバーンエンジンであること、を特徴とする請求項1又は2記載の筒内噴射式内燃機関。
  4.  前記燃焼室上面の中央部に配置された点火プラグと、
     前記燃焼室を形成する気筒の内周に沿って吸気を流入させて、前記気筒の中央部に燃料の層を、前記気筒の内周部に空気の層を分布させる成層燃料分布形成手段と、
     を備えることを特徴とする請求項1乃至3のいずれか1項記載の筒内噴射式内燃機関。
  5.  前記噴射制御手段は、前記吸気上死点から前記遅角したタイミングまでの間に、複数回に分けて、前記燃料噴射弁に燃料を噴射させること、
     を特徴とする請求項1乃至4のいずれか1項記載の筒内噴射式内燃機関。
  6.  前記バルブ制御手段は、
     前記吸気バルブの閉じ時期と前記排気バルブの閉じ時期とを相対的に変更可能とする可変動弁手段と、
     前記内燃機関の運転領域が低負荷領域である場合に、前記可変動弁手段により前記排気行程における前記吸気バルブの閉じ時期を前記排気バルブの閉じ時期よりも早い時期に制御する低負荷時バルブ制御手段と、
     を更に備えることを特徴とする請求項1乃至4のいずれか1項記載の筒内噴射式内燃機関。
  7.  前記噴射制御手段は、
     前記内燃機関の運転領域が前記低負荷領域である場合に、前記進角したタイミングから前記遅角したタイミングまでの間に、複数回に分けて、前記燃料噴射弁に燃料を噴射させ、少なくとも前記進角したタイミングから前記吸気上死点までの間に、1回目の燃料を噴射させる低負荷時噴射制御手段、
     を更に備えることを特徴とする請求項6記載の筒内噴射式内燃機関。
  8.  前記過給機は、ターボ過給機であって、
     前記排気バルブを構成する第1排気バルブ及び第2排気バルブと、
     前記第1排気バルブを開くことにより前記燃焼室と連通する第1排気ポートと、
     前記第2排気バルブを開くことにより前記燃焼室と連通する第2排気ポートと、
     前記第1排気ポートの下流に設けられた前記ターボ過給機のタービンと、を更に備え、
     前記バルブ制御手段は、
     前記排気行程において前記第1排気バルブを開閉した後に、前記吸気バルブと前記第2排気バルブとを開き、前記第2排気バルブを閉じた後に、吸気上死点よりも進角したタイミングで前記吸気バルブを閉じ、吸気行程において吸気上死点よりも遅角したタイミングで前記吸気バルブを開くこと、
     を特徴とする請求項1乃至5のいずれか1項記載の筒内噴射式内燃機関。
PCT/JP2010/073770 2010-12-28 2010-12-28 筒内噴射式内燃機関 WO2012090320A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012550640A JP5344101B2 (ja) 2010-12-28 2010-12-28 筒内噴射式内燃機関
PCT/JP2010/073770 WO2012090320A1 (ja) 2010-12-28 2010-12-28 筒内噴射式内燃機関
US13/634,050 US20130263819A1 (en) 2010-12-28 2010-12-28 Direct-injection internal combustion engine
EP10861314.2A EP2660446A4 (en) 2010-12-28 2010-12-28 COMBUSTION ENGINE WITH DIRECT INJECTION
CN201080067791XA CN102971516A (zh) 2010-12-28 2010-12-28 气缸内喷射式内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073770 WO2012090320A1 (ja) 2010-12-28 2010-12-28 筒内噴射式内燃機関

Publications (1)

Publication Number Publication Date
WO2012090320A1 true WO2012090320A1 (ja) 2012-07-05

Family

ID=46382469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073770 WO2012090320A1 (ja) 2010-12-28 2010-12-28 筒内噴射式内燃機関

Country Status (5)

Country Link
US (1) US20130263819A1 (ja)
EP (1) EP2660446A4 (ja)
JP (1) JP5344101B2 (ja)
CN (1) CN102971516A (ja)
WO (1) WO2012090320A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284909B2 (en) * 2013-08-23 2016-03-15 Ford Global Technologies, Llc Method and system for knock control
JP6090280B2 (ja) * 2014-10-09 2017-03-08 トヨタ自動車株式会社 内燃機関の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176607A (ja) 2002-11-26 2004-06-24 Mitsubishi Automob Eng Co Ltd エンジン
JP2008069740A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 内燃機関
JP2009138655A (ja) * 2007-12-07 2009-06-25 Hitachi Ltd 火花点火式内燃機関の制御装置
JP2009174344A (ja) * 2008-01-22 2009-08-06 Suzuki Motor Corp 筒内噴射型内燃機関の制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512943C2 (sv) * 1998-10-05 2000-06-12 Saab Automobile Förbränningsmotor
US5894826A (en) * 1997-11-26 1999-04-20 Chrysler Corporation Combustion chamber for direct injection of fuel into exhaust recirculation rich mixture
SE514969C2 (sv) * 1999-09-15 2001-05-21 Saab Automobile Förbränningsmotor
DE60015885T2 (de) * 1999-09-17 2005-03-17 Nissan Motor Co., Ltd., Yokohama Benzinbrennkraftmaschine mit Verdichtungszündung
US6439210B1 (en) * 2000-07-12 2002-08-27 Caterpillar Inc. Exhaust gas reprocessing/recirculation with variable valve timing
ITTO20010660A1 (it) * 2001-07-06 2003-01-06 Fiat Ricerche Motore diesel pluricilindrico con azionamento variabile delle valvole.
DE10151530A1 (de) * 2001-10-18 2003-04-30 Fev Motorentech Gmbh Abgasabführung für einen Hochleistungs-Mehrzylinder-Viertaktmotor
AT5783U1 (de) * 2001-11-06 2002-11-25 Avl List Gmbh Verfahren zur durchführung einer internen abgasrückführung in den brennraum einer brennkraftmaschine
US7093568B2 (en) * 2003-01-13 2006-08-22 Ford Global Technologies, Llc Control of autoignition timing in a HCCI engine
EP1706616A1 (en) * 2004-01-14 2006-10-04 Lotus Cars Limited A turbocharged internal combustion engine
ITAP20040011A1 (it) * 2004-07-23 2004-10-23 Aria S R L Composto batteriostatico di sostanze di origine naturale antibatteriche
US7150250B2 (en) * 2004-07-26 2006-12-19 General Motors Corporation Valve and fueling strategy for operating a controlled auto-ignition four-stroke internal combustion engine
FR2877047A1 (fr) * 2004-10-25 2006-04-28 Renault Sas Procede de commande d'un moteur de vehicule via des lois de levee de soupapes
US8096108B2 (en) * 2007-05-01 2012-01-17 GM Global Technology Operations LLC Engine warm-up of a homogeneous charge compression ignition engine
JP4623064B2 (ja) * 2007-08-13 2011-02-02 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
WO2009134854A2 (en) * 2008-05-02 2009-11-05 Gm Global Technology Operations, Inc. Extension of the application of multiple injection hcci combustion strategy from idle to medium load
US7845335B2 (en) * 2009-03-23 2010-12-07 Gm Global Technology Operations, Inc. Operating strategy for HCCI combustion during engine warm-up
JP4748255B2 (ja) * 2009-06-03 2011-08-17 マツダ株式会社 エンジンの制御方法および制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176607A (ja) 2002-11-26 2004-06-24 Mitsubishi Automob Eng Co Ltd エンジン
JP2008069740A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 内燃機関
JP2009138655A (ja) * 2007-12-07 2009-06-25 Hitachi Ltd 火花点火式内燃機関の制御装置
JP2009174344A (ja) * 2008-01-22 2009-08-06 Suzuki Motor Corp 筒内噴射型内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660446A4

Also Published As

Publication number Publication date
EP2660446A1 (en) 2013-11-06
JPWO2012090320A1 (ja) 2014-06-05
JP5344101B2 (ja) 2013-11-20
EP2660446A4 (en) 2014-06-25
CN102971516A (zh) 2013-03-13
US20130263819A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
US10794317B2 (en) Control device for compression-ignition engine
KR100879486B1 (ko) 엔진
US7481185B1 (en) Multi-mode 2-stroke/4-stroke internal combustion engine
US7684925B2 (en) Engine warm-up of a homogeneous charge compression ignition engine
US10767593B2 (en) Control system for compression-ignition engine
US10221791B2 (en) Method for operating a combustion engine following a cold start
US10641193B2 (en) Control system for compression-ignition engine
US20190186394A1 (en) Control system for compression-ignition engine
JP2010236496A (ja) 内燃機関を制御する方法及び装置
US20190186396A1 (en) Control system for compression-ignition engine
JP2002242709A (ja) 自動車用4サイクルエンジン
WO2013080454A1 (ja) 火花点火式ガソリンエンジンの制御装置及び制御方法
JP5540730B2 (ja) 火花点火式エンジンの制御装置
US10982616B2 (en) Premixed compression ignition type engine with supercharging system
JP5428473B2 (ja) 内燃機関を制御する方法及び装置
JP2013007353A (ja) 過給機付リーンバーンエンジン
JP5589763B2 (ja) 内燃機関
JP5344101B2 (ja) 筒内噴射式内燃機関
US20170107922A1 (en) Control system of internal combustion engine
JP5593827B2 (ja) 火花点火式エンジンの制御装置
JP2006257999A (ja) 内燃機関
JP5998752B2 (ja) 火花点火式直噴エンジン
JP2013221496A (ja) 高効率ロータリピストン機関
GB2546115A (en) Internal combustion engine
JP2017020397A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067791.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550640

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13634050

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010861314

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE