WO2012089870A1 - Módulo soporte para colector solar con subestructura triangular - Google Patents

Módulo soporte para colector solar con subestructura triangular Download PDF

Info

Publication number
WO2012089870A1
WO2012089870A1 PCT/ES2011/000382 ES2011000382W WO2012089870A1 WO 2012089870 A1 WO2012089870 A1 WO 2012089870A1 ES 2011000382 W ES2011000382 W ES 2011000382W WO 2012089870 A1 WO2012089870 A1 WO 2012089870A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyramids
pyramid
triangular
module
arms
Prior art date
Application number
PCT/ES2011/000382
Other languages
English (en)
French (fr)
Inventor
José DOMÍNQUEZ ABASCAL
Fernando MEDINA ENCINA
Fernando MEDINA REGUERA
Maximiliano Carrasco Gimena
José PARRA FERNÁNDEZ-MOTA
Luis GARRIDO DELGADO
Original Assignee
Europea De Construcciones Metálicas, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Europea De Construcciones Metálicas, S.A. filed Critical Europea De Construcciones Metálicas, S.A.
Priority to MX2013007619A priority Critical patent/MX2013007619A/es
Priority to US13/977,673 priority patent/US9212831B2/en
Priority to EP11852946.0A priority patent/EP2660534B1/en
Priority to MA36078A priority patent/MA34810B1/fr
Priority to CN2011800638252A priority patent/CN103403471A/zh
Publication of WO2012089870A1 publication Critical patent/WO2012089870A1/es
Priority to CY20171100916T priority patent/CY1119319T1/el

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/65Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for coupling adjacent supporting elements, e.g. for connecting profiles together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/834Other shapes trough-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention falls within the sector of the support structures for solar collectors, more specifically it relates to the modules or frames that are used for fastening the mirrors or reflectors and the receiving or absorbing tubes.
  • modules must withstand all loads and efforts, both those of the collector and those of the external agents to which they are subjected.
  • solar collectors of various types can be used and all of them require support modules for the mirrors or reflectors that are responsible for concentrating solar radiation.
  • the collectors in general, also have a device called a solar tracker that allows them to face the sun, which leads them to obtain high yields.
  • the invention claimed herein refers to the solar collector support module, the solar tracker which can then be coupled to it being not subject to the invention.
  • a single parabolic trough collector consists of several consecutive modules. Each of these modules comprises a support structure, a parabolic trough reflector and an absorber tube.
  • All support modules consist of two types of elements.
  • the first type comprises a set of elements called structural members or main structure, responsible for stiffening the assembly and supporting the torsional and flexural stresses to which the entire manifold assembly is subjected.
  • the second type includes all those elements called accessory elements or auxiliary structure, which are simply responsible for balancing the assembly and supporting the proper weight of the mirrors (reflector) or absorber tube.
  • the cords are the bars or elements that run the entire module longitudinally.
  • the arms are transverse to the cords and provide the necessary curvature for the parabolic cylindrical reflector.
  • the posts are placed in an upright position (with greater or lesser inclination) and join the cords in the nodes or connections.
  • secondary structural elements may exist depending on how the module design is conceived. For example, bracing bars that limit the buckling length of the main elements can be added,
  • the belts and the supports of the absorber tube are installed within the accessory elements.
  • the straps are installed on the arms and hold the mirrors.
  • the supports of the absorber tube rise vertically over the focus of the parabola and support the tube at the precise height for the correct concentration in the heat transfer fluid that runs through the tube of the solar rays that reflect the mirrors.
  • the structural elements include:
  • the upper layer of the structure consisting of three upper cords, one central (57) and two lateral (58, 59) the central cord of the sides being located in a different plane, to configure the curvature required by the reflector;
  • the invention describes:
  • the invention claimed herein is intended to provide a module that serves as a support for a solar collector of the parabolic-cylinder type and which, despite being formed by a reticular structure of nodes and bars, It has a series of characteristics that make it differ substantially from those known in the state of the art, providing important advantages of both structural strength, ease and cheaper transport and assembly, all thanks to the considerable simplification of the so-called structural elements, that is, those that support the loads and efforts of the collector assembly.
  • the invention describes a support module for a parabolic trough solar collector of which there is no double surface or double layer, but a lower surface and an upper line whose assembly forms a torsion beam (or torque-box) of triangular section.
  • This torsion beam is responsible for resisting torsion and bending loads due to the weight and wind on the reflectors and that are transmitted from one module to another along the collector, since each collector can be formed by several modules.
  • the invention focuses on developing a structure that, unlike the known state of the art, has a number of essential characteristics that give it important advantages over what exists in the sector.
  • the support modules are composed of:
  • Main structure the set of structural elements responsible for supporting the loads and forces of the solar collector, as well as giving it the necessary rigidity.
  • Accessory elements or auxiliary structure whose mission is to balance the whole and support only the proper weight of the mirrors or reflector and the absorber or receiver tube and transmit it to the triangular structure. The torsion induced from one module to another by wind and weight loads is not driven by the accessory elements, so these elements do not increase their load along the collector, unlike the main structure.
  • the main structure comprises the following elements:
  • Triangular substructure or triangular prism of the same length as the module, is responsible for transmitting the torsion along the module. This torsion is caused by wind loads and own weight and is transmitted from one module to another, increasing along the collector (as stated above, each collector can consist of several modules).
  • the triangular substructure consists of:
  • bracing edge Within the bars that make up the pyramids, one of them is called the bracing edge and is considered a secondary structural element. It is about
  • This bar only acts as bracing, limiting the buckling length.
  • Two pendulons vertical pieces that have good flexural stiffness characteristics and are located at each end of the triangular substructure. They are responsible for transmitting the torsion that comes from the adjacent module, to the triangular substructure of the module to which they belong. They are connected to them:
  • accessory elements or auxiliary structure that comprise the structure are:
  • Arms they connect to the triangular substructure and have the following characteristics:
  • the arms are formed by a broken tube of rectangular section or by a curved tube of rectangular section, which allows to adapt to the curvature of the parabola of the reflector,
  • Embodiment 1 it comprises two variants, one with a V layout (called V1) and the other with a Y layout (called Y1)
  • V1 two struts consisting of two inclined bars, which connect the lower vertex of the corresponding pyramid with the ends of the two adjacent arms.
  • Y1 A bar connected at the end of each arm and that joins, at the midpoint between arms and at an intermediate height, with the bar that leaves the end of the adjacent arm; from the connection point between both bars, there is already a single bar that joins them with the apex of the base of the corresponding pyramid.
  • the set of the three bars simulates a "Y" shape. All lower vertices are endowed with Y-struts.
  • Embodiment 2 it also consists of two subvariants, one in V and one in Y.
  • V2 Same as V1 but providing with "V" struts not all lower vertices if not or alternate vertices maintaining those of the module ends.
  • Y2 Same as Y1 but providing with "Y" struts not all lower vertices if not or alternate vertices maintaining those of the module ends.
  • Embodiment 3 two struts are arranged for the two end arms (the outer ones). One strut goes from the lower end of the pendulum to the end of the arm, the other runs in parallel and is fixed somewhat higher on the pendulum and on the break of the arm. In the case of the internal arms there are also two struts that start from the lower vertex that is the junction between the semipyramid and the first pyramid, the first strut going from the vertex to the upper end of the arm and the other strut from the same vertex to the break of the arm.
  • Straps bars of equal length to that of the module and that rest directly on the arms by means of small pieces of folded sheet metal (staples).
  • the reflector is also mounted on the straps by means of staples.
  • Supports of the absorber tube vertical structures that are fixed in each one of the vertices of the pyramids and in one of the two pendolons. The characteristics presented by these supports are:
  • An essential feature of the solar collector support module of the invention that distinguishes it from that existing in the state of the art is that there is no triangulation between the arms and the triangular substructure, that is, there is no additional bar connecting the arms with the triangular substructure, so that the torsional stresses can only be transmitted along the planes of the triangular substructure, the arms becoming accessory elements that support the reflectors but cannot contribute to the transmission of The main torsion efforts.
  • the straps which are simply supported on the arms, do not act as longitudinal cords capable of providing torsional stiffness of the assembly, but as simple supports for the reflector.
  • This characteristic of torsional stiffness is entrusted to the bars that connect the upper vertices of the pyramids, to the bars that form the pyramids and semi-pyramids themselves and to the diagonal bar that joins the two opposite vertices of the base.
  • This last bar is the one that supports greater efforts and therefore is of greater diameter than the others.
  • the material used, in a preferred embodiment, for all structural elements will be hot-dip galvanized steel of the qualities S275JR or S355J0 (according to Standard UNE-EN 10025) or equivalent.
  • an upper surface is not required to support the stresses, since the loads are transmitted by the three planes of the triangular substructure that define the two lower cords plus the upper cord. In the state of the art there are five longitudinal cords that form seven triangulated planes to transmit the forces.
  • cords of those making use in the state of the art are not needed, which have a length equal to the length of the module, which implies difficulties in transport and assembly.
  • the cords are pieces whose length does not coincide with that of the module but are shorter pieces that join the vertex of each pyramid with that of the adjacent pyramid;
  • the arms of the invention become accessory elements and are formed with a curved or broken rectangular tube, not requiring any additional element and any intermediate joint to form the curvature required by the reflector.
  • FIG. 1 Structural elements. Plant.
  • Figure 7 Plan view. Complete module configuration ⁇ 1 "
  • FIG. 8 Accessory elements: "V2" configuration
  • FIG. 10 Accessory elements: embodiment 3
  • the solar collector module will be described in accordance with a preferred embodiment.
  • Figure 1 shows a preferred embodiment of the complete module of the invention in which it is shown which elements form the main substructure (thick black strokes) and which accessories (thinner strokes).
  • the module has a total length of 12m.
  • the main structure two rectangular pyramids 4x3m, two semi-pyramids at the ends, three bars connecting the vertices upper of the pyramids and semi-pyramids and two pendolons at the ends.
  • the accessory elements it comprises: two outer and two inner arms, the arm supports in any of its two configurations, eight straps with their clips for fastening the mirrors and three supports of the absorber tube supported on a pendulum and in the upper vertices of the pyramids.
  • FIG. 2 shows the detail of the structural elements of the module.
  • the triangular substructure is formed by regular pyramids that have an upper vertex (1) where the four sides or diagonal edges (2) meet. These edges (2) are joined at the other end with the sides (3, 13) that form the rectangular base of the pyramid.
  • a bar (4) connects two of the opposite vertices of said base. This bar (4) has a larger diameter as the bar of the structure that supports the greatest load.
  • the base bar that is common to both pyramids (13), which is a secondary element of the main structure, which supports a reduced load but limits the buckling length of the lower cords. That is why it is done in an open section profile in "C" instead of being made with tubes of circular or square section like all the elements that make up the triangular substructure.
  • the semi-pyramids or tetrahedra located at the ends of the structure comprise a vertex (T) and two diagonal bars (2 ') as edges that connect at the lower ends with the sides (3') that form the triangular base .
  • Three adjacent bars (5) connect the upper vertices of the semi-pyramids (1 ') and the pyramids (1) between them to achieve optimal transmission and distribution of loads.
  • the two pendulons (6) responsible for transmitting the torsion that comes from the module adjacent to the triangular substructure.
  • the central axis (not shown), at one of the two ends, which is coincident with the center of gravity of the structure (calculated including the reflector and the absorber tube).
  • Figure 4 shows the embodiment according to the arrangement in V1. It reflects a part of the accessory elements. Specifically, this figure shows:
  • the arms (7, 7 ') are connected to the triangular substructure and have the following characteristics:
  • Support element (8) of the ends of each arm (7, 7 ') they only support the proportional weight of the mirror that they have above, but no torsor moment;
  • Figure 4 shows the embodiment we call "V1" configuration.
  • the struts consist of two inclined bars (8), which connect the lower vertex of the corresponding pyramid with the ends of the two adjacent arms (7, 7 '). The set of these two struts that connect at the same vertex simulates a "V" shape.
  • Figure 5 shows the complete module according to the arrangement of the struts in Y1 (8 ').
  • This configuration consists of a bar connected at the end of each arm (7, 7 ') and that joins in the midpoint between arms and at half height, with the bar that comes out of the end of the adjacent arm; from the connection point between both bars, there is already a single bar that joins them with the apex of the base of the corresponding pyramid.
  • the set of the three bars simulates a "Y" shape (8 ').
  • Supports (11) of the absorber tube (12) two supports are fixed to the vertices of the pyramids (1) and in addition another support is fixed to the pendulum (6).
  • Figure 6 shows a side view of the perspective shown in Figure 5.
  • the configuration in ⁇ 1 "of the supports (8 ') of the ends of the arms (7, 7") is clearly distinguished.
  • Figure 7 is the plan view of the previous embodiment.
  • FIG 8 shows the module configuration with the struts according to "V2". This configuration is identical to “V1", except that the struts (8) are placed at alternate vertices, maintaining those at the ends of the module.
  • FIG 9 shows the module configuration with the struts according to "Y2".
  • the struts (8 ') are placed at alternate vertices, maintaining those at the ends of the module.
  • FIG 10 shows the accessory elements according to embodiment 3.
  • two struts (8 ") are arranged for the two end arms (7, the outer ones).
  • a strut (8") goes from the bottom end of the pendulum. (6) at the end of the arm (7), the other runs in parallel and is fixed somewhat higher on the pendulum (6) and on the break of the arm (7).
  • the internal arms (7 ') there are also two struts (8 ") that start from the lower vertex that is the junction between the semi-pyramid and the first pyramid, the first prop (8") coming from the vertex to the upper end of the arm (7 ') and the other strut (8 ") from the same vertex to the break of the arm (7').
  • the described collector structure or module is specially designed for application in parabolic trough collectors, but its extension to other fields of industry that require similar characteristics is not ruled out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Módulo soporte de colector solar con subestructura triangular que se compone de una estructura principal encargado a de resistir los esfuerzos de torsión y flexión del colector y una estructura auxiliar que equilibra el conjunto y soporta el peso propio de los espejos y del tubo absorbedor, comprendiendo la estructura principal: una subestructura triangular con pirámides, regulares y dos semi-pirámides en los extremos, unas barras (5) que unen el vértice superior de cada pirámide (1) con el vértice superior (1) de la pirámide adyacente o con el vértice superior (1') de la semi-pirámide (1') adyacente, una barra diagonal (4) que une dos vértices opuestos de la base de cada pirámide y dos pendolones (6) situados uno en cada extremo de la subestructura triangular. La estructura auxiliar comprende: brazos (7, 7'), puntales (8, 8', 8") de cada brazo (7, 7'), correas (9) y soportes (11) del tubo absorbedor (12).

Description

MÓDULO SOPORTE PARA COLECTOR SOLAR CON SUBESTRUCTURA TRIANGULAR Sector técnico de la invención
La invención se encuadra dentro del sector de las estructuras soporte para colectores solares, más concretamente se refiere a los módulos o armazones que se utilizan para la sujeción de los espejos o reflectores y de los tubos receptores o absorbedores.
Estos módulos han de soportar todas las cargas y esfuerzos, tanto los propios del colector como los de los agentes externos a los que están sometidos.
Antecedentes de la invención
En las plantas de producción de energía eléctrica a partir de la radiación solar, se pueden emplear colectores solares de varios tipos (colector cilindro parabólico, disco Stirling, central de torre con helióstatos, colectores Fresnel, etcétera) y todos ellos requieren módulos de soporte para los espejos o reflectores que se encargan de concentrar la radiación solar.
Los colectores, por lo general, poseen además un dispositivo denominado seguidor solar que les permite orientarse en dirección al sol, lo que les conduce a la obtención de altos rendimientos.
La invención que aquí se reivindica hace referencia al módulo soporte del colector solar, no siendo objeto de la invención el seguidor solar que luego se le pueda acoplar.
Muchas de las invenciones del estado de la técnica describen módulos de celosía que soportan colectores de tipo cilindro-parabólicos. Los colectores cilindro parabólicos para recolectar la energía del sol emplean espejos de forma cilindro parabólica. Por el foco de la parábola pasa una tubería o tubo absorbedor por el que circula un fluido caloportador que se calienta al recibir los rayos concentrados del sol. Una vez calentado el fluido, el cual alcanza temperaturas próximas a 400 °C, si dicho fluido es vapor se envía directamente a una turbina para la producción de electricidad o si se trata de otro tipo de fluidos caloportadores que a dicha temperatura no están en fase vapor, entonces se envían a un intercambiador de calor para la producción de éste.
En cuanto a su geometría, un único colector de tipo cilindro-parabólico se compone de varios módulos consecutivos. Cada uno de estos módulos comprende una estructura soporte, un reflector cilindro-parabólico y un tubo absorbedor.
Todos los módulos de soporte se componen de dos tipos de elementos. El primer tipo comprende un conjunto de elementos denominados miembros estructurales o estructura principal, encargados de dar rigidez al conjunto y de soportar los esfuerzos de torsión y de flexión a los que se ve sometido todo el conjunto del colector. El segundo tipo comprende todos aquellos elementos denominados elementos accesorios o estructura auxiliar, que se encargan simplemente de equilibrar el conjunto y soportar el peso propio de los espejos (reflector) o del tubo absorbedor. Dentro de los elementos estructurales se encuentran los cordones, los postes, los brazos y las uniones entre ellos. Los cordones son las barras o elementos que recorren todo el módulo longitudinalmente. Los brazos son transversales a los cordones y otorgan la curvatura necesaria para el reflector cilindrico parabólico. Los postes se sitúan en posición vertical (con mayor o menor inclinación) y se unen a los cordones en los nudos o conexiones. Además, pueden existir elementos estructurales secundarios dependiendo de cómo se conciba el diseño del módulo. Por ejemplo, pueden añadirse barras de arriostramiento que limiten la longitud de pandeo de los elementos principales,
Dentro de los elementos accesorios se encuentran las correas y los soportes del tubo absorbedor. Las correas se instalan sobre los brazos y sujetan los espejos. Los soportes del tubo absorbedor se elevan verticalmente sobre el foco de la parábola y soportan el tubo a la altura precisa para la correcta concentración en el fluido caloportador que recorre el tubo de los rayos solares que reflejan los espejos.
Existe una gran cantidad de estado de la técnica referente a las estructuras soporte de módulos de colectores solares, entre las que se encuentran las patentes US6414237, US5069540, ES2326303, ES2161589, CA1088828, EP0082068, U1070880.
Concretamente, la patente WO2008039233A2 "Space frames and connection node arragement" de GOSSA ER SPACE FRAMES describe una armadura móvil para reflector curvo de las conocidas como de doble capa, llamadas así por comprender dos superficies, paralelas o no, pero situadas a diferente altura.
En esta estructura, dentro de los elementos estructurales figuran:
• la capa inferior constituida por dos cordones principales paralelos entre ellos (51 , 52) y paralelos al eje de curvatura del reflector, cuya longitud coincide con la longitud total del módulo;
· la capa superior de la estructura constituida por tres cordones superiores, uno central (57) y dos laterales (58, 59) encontrándose en distinto plano el cordón central de los laterales, para configurar la curvatura requerida por el reflector;
cordones menores de la capa inferior (53) y cordones menores de la capa superior (61) que se colocan transversalmente a los cordones principales;
postes (62) que unen en diagonal los cordones principales superiores (57, 58, 59) con los cordones principales inferiores (51, 52),
conectores de nodo que conectan cada cordón principal (51 , 52, 57, 58, 59) con los cordones menores (53) y los postes (62), • barras de torsión (92) que conectan en diagonal los cordones (58) y (59) con el cordón (57), así como conectan en diagonal los cordones principales (51 , 52) de la capa inferior
• diagonales o postes (60) que conectan los cordones principales (51, 52) del plano inferior con el cordón principal central del plano superior (57).
Entre los elementos accesorios, la invención describe:
• unos miembros de montaje del reflector (99) sobre los cordones menores, los cuales definen una superficie curva que sigue la curvatura del reflector,
• unos voladizos o miembros de montaje del reflector (100) alargados que sobresalen de los cordones superiores laterales (58, 59) y suponen una prolongación, con un ángulo diferente, del cordón menor de la capa superior (61).
• soportes (90) del tubo absorbedor que requieren barras (95, 96) para estabilizar dicho soporte y conectarlo con la base.
A la vista del estado de la técnica, la invención aquí reivindicada tiene como objetivo proporcionar un módulo que sirva de soporte a un colector solar del tipo cilindro-parabólico y que, aún a pesar de estar formado por una estructura reticular de nudos y barras, tenga una serie de características que hagan que difiera substancialmente de las conocidas en el estado de la técnica, aportando importantes ventajas tanto de resistencia estructural, como de facilidad y abaratamiento en el transporte y montaje, todo ello gracias a que se simplifica de manera considerable los elementos denominados estructurales, es decir, aquellos que soportan las cargas y los esfuerzos del conjunto del colector.
Descripción de la invención
La invención describe un módulo soporte para un colector solar cilindro-parabólico de los que no tienen doble superficie o doble capa, sino una superficie inferior y una línea superior cuyo conjunto forma una viga de torsión (o torque-box) de sección triangular.
Esta viga de torsión es la encargada de resistir las cargas de torsión y flexión debidas al peso y el viento sobre los reflectores y que se transmiten de un módulo a otro a lo largo del colector, ya que cada colector puede estar formado por varios módulos.
La invención se centra en desarrollar una estructura que, a diferencia del estado de la técnica conocido, tiene una serie de características esenciales que le aportan importantes ventajas frente a lo existente en el sector.
Como se explicó anteriormente, los módulos soportes se componen de:
• Estructura principal: se denomina así al conjunto de elementos estructurales encargados de soportar las cargas y esfuerzos del colector solar, así como de conferirle la rigidez necesaria. • Elementos accesorios o estructura auxiliar: cuya misión es la de equilibrar el conjunto y soportar únicamente el peso propio de los espejos o reflector y del tubo absorbedor o receptor y transmitirlo a la estructura triangular. La torsión inducida de un módulo a otro por las cargas de viento y peso no se conduce por los elementos accesorios, por lo que estos elementos no incrementan su carga a lo largo del colector, a diferencia de la estructura principal.
En el caso de la invención reivindicada, la estructura principal comprende los siguientes elementos:
1. Subestructura triangular o prisma triangular: de la misma longitud que el módulo, es la encargada de transmitir la torsión a lo largo del módulo. Esta torsión la originan las cargas de viento y el peso propio y se transmite de un módulo a otro, incrementándose a lo largo del colector (como se dijo anteriormente, cada colector puede estar formado por varios módulos). La subestructura triangular está formada por:
• una única fila de pirámides regulares de base rectangular situadas una a continuación de otra,
• dos tetraedros o semi-pirámides situados uno en cada extremo de la subestructura triangular completando con ella la longitud total del módulo,
• barras individuales que unen el vértice superior de cada pirámide con el mismo vértice de la pirámide o semi-pirámide adyacente,
• barra diagonal que une dos vértices opuestos de la base de la pirámide.
Dentro de las barras que conforman las pirámides una de ellas se denomina arista de arriostramiento y se considera elemento estructural secundario. Se trata
de la arista de la base de las pirámides que es común entre pirámides adyacentes. Esta barra sólo ejerce de arriostramiento, limitando la longitud de pandeo.
2. Dos pendolones: piezas verticales que presentan buenas características de rigidez a flexión y se sitúan una en cada extremo de la subestructura triangular . Son las encargadas de transmitir la torsión que proviene del módulo adyacente, a la subestructura triangular del módulo al que pertenecen. A ellas se conectan:
• las aristas diagonales de los dos tetraedros o semi-pirámides de la subestructura triangular,
• las aristas de la base triangular de la semi-pirámide,
• las barras individuales que unen los vértices superiores de las pirámides de los extremos con los de las semi-pirámides,
• el eje central, en uno de los dos extremos, el cual es coincidente con el centro de gravedad de la estructura incluido el reflector y el tubo absorbedor. En cuanto a los elementos accesorios o estructura auxiliar que comprenden la estructura se encuentran:
1. Brazos: se conectan a la subestructura triangular y tienen las siguientes características:
- Los brazos están formados por un tubo quebrado de sección rectangular o por un tubo curvo de sección rectangular, que permite adaptarse a la curvatura que presenta la parábola del reflector,
- existen brazos interiores que parten de los vértices superiores de las pirámides y dos brazos exteriores que parten de los vértices superiores de las semi-pirámides por medio de placas solidarias al pendolón.
2. Puntales o elementos que soportan los brazos: sólo soportan la carga proporcional del reflector que tienen por encima. El plano que forman los puntales no tiene capacidad para transmitir la torsión a lo largo del módulo, sólo ejerce de soporte de los brazos. Existen tres realizaciones alternativas para el diseño y la colocación de estos puntales: a) Realización 1 : comprende dos variantes, una con disposición en V (denominada V1) y otra con disposición en Y (denominada Y1)
V1 : dos puntales que consisten en dos barras inclinadas, que conectan el vértice inferior de la pirámide correspondiente con los extremos de los dos brazos adyacentes. El conjunto de estos dos puntales, los cuales se conectan en un mismo vértice, simula una forma de "V. Todos los vértices inferiores son dotados con puntales.
Y1 : Una barra conectada en el extremo de cada brazo y que se une, en el punto medio entre brazos y a una altura intermedia, con la barra que sale del extremo del brazo adyacente; del punto de conexión entre ambas barras sale ya una única barra que las une con el vértice de la base de la pirámide correspondiente. El conjunto de las tres barras simula una forma de "Y". Todos los vértices inferiores son dotados con puntales en Y.
b) Realización 2: también consiste en dos subvariantes, uno en V y otro en Y.
V2: Igual que la V1 pero dotando con puntales en "V" no a todos los vértices inferiores si no o a vértices alternos manteniendo los de los extremos del módulo.
Y2: Igual que la Y1 pero dotando con puntales en "Y" no a todos los vértices inferiores si no o a vértices alternos manteniendo los de los extremos del módulo.
c) Realización 3: se disponen dos puntales para los dos brazos de los extremos (los externos). Un puntal va desde el extremo inferior del pendolón al extremo del brazo, el otro discurre en paralelo y se fija algo más arriba en el pendolón y en el quiebro del brazo. En el caso de los brazos internos también se dispone de dos puntales que parten del vértice inferior que es nudo de unión entre la semipirámide y la primera pirámide, yendo el primer puntal desde el vértice hasta el extremo superior del brazo y el otro puntal desde el mismo vértice hasta el quiebro del brazo.
3. Correas: barras de longitud igual a la del módulo y que se apoyan directamente sobre los brazos por medio de pequeñas piezas de chapa plegada (grapas). Sobre las correas se monta el reflector también por medio de grapas.
4. Soportes del tubo absorbedor: estructuras verticales que se fijan en cada uno de los vértices de las pirámides y en uno de los dos pendolones. Las características que presentan dichos soportes son:
· Libertad de giro en el sentido longitudinal del colector, con tolerancias en los tres ejes para ajuste en el montaje.
• Rigidez a flexión transversal.
• Estructura de mínima opacidad para evitar que produzca sombras en la superficie del reflector.
Una característica esencial del módulo soporte de colector solar de la invención que lo distingue de lo existente en el estado de la técnica es que no existe triangulación entre los brazos y la subestructura triangular, es decir, no existe ninguna barra adicional que conecte los brazos con la subestructura triangular, de forma que los esfuerzos de torsión sólo tienen posibilidad de transmitirse a lo largo de los planos de la subestructura triangular, pasando los brazos a ser elementos accesorios que sirven de soporte a los reflectores pero que no pueden contribuir a la transmisión de los esfuerzos principales de torsión.
Las correas, que están simplemente apoyadas sobre los brazos, no actúan como cordones longitudinales capaces de aportar rigidez a torsión del conjunto, si no como simples soportes para el reflector.
Esta característica de rigidez a torsión se confía a las barras que conectan los vértices superiores de las pirámides, a las barras que forman las propias pirámides y semi-pirámides y a la barra diagonal que une los dos vértices opuestos de la base. Esta última barra es la que soporta mayores esfuerzos y por tanto es de mayor diámetro que las demás.
En cuanto a los perfiles estructurales empleados en este diseño serán:
· Tubos de sección circular o cuadrada en todos los elementos que componen la subestructura triangular y las barras individuales que conectan los vértices de las pirámides y semi-pirámides, pues son los encargados de soportar las cargas, a excepción de la arista de arriostramiento de la base que es común entre pirámides adyacentes, esta barra tiene como función principal limitar la longitud de pandeo de los cordones inferiores siendo la carga que soporta muy reducida. • Tubos de sección rectangular o sección abierta en C en los brazos.
• Perfiles con sección abierta en C, en omega W o equivalente para las correas y los puntales o soportes de los extremos de los brazos y la arista de arriostramiento.
El material empleado, en una realización preferente, para todos los elementos estructurales será el acero galvanizado en caliente de las calidades S275JR ó S355J0 (según Norma UNE-EN 10025 ) o equivalentes.
Estas características esenciales de la nueva estructura resuelven de manera eficaz y económica los problemas existentes hasta el momento referentes a los esfuerzos de torsión, de flexión y de transporte y montaje de la estructura, pues se simplifica en gran medida la cantidad de elementos diferenciándose, respecto a lo existente en el estado de la técnica porque:
- Se prescinde de la doble capa: no se requiere una superficie superior para soportar los esfuerzos, pues las cargas se transmiten por los tres planos de la subestructura triangular que definen los dos cordones inferiores más el cordón superior. En el estado de la técnica se disponen cinco cordones longitudinales que forman siete planos triangulados para transmitir los esfuerzos.
- No se necesitan los cordones de los que hacen uso en el estado de la técnica, los cuales tienen una longitud igual a la longitud del módulo con lo que ello implica dificultades en el transporte y montaje. En el caso de la invención, los cordones son piezas cuya longitud no coincide con la del módulo si no que son piezas más cortas que unen el vértice de cada pirámide con el de la pirámide adyacente;
- también se prescinde de los postes que soportan esfuerzo y sólo se utilizan puntales para equilibrar el extremo de los brazos y que pueden ser mucho más ligeros al soportar únicamente la carga proporcional del reflector;
- en la invención reivindicada no existe triangulación entre los brazos y la subestructura triangular, es decir, no existe ninguna barra adicional que conecte los brazos con la subestructura triangular, de forma que los esfuerzos de torsión sólo tienen posibilidad de transmitirse a lo largo de los planos de la subestructura triangular, pasando los brazos a ser elementos accesorios, que soportan la carga de los reflectores pero que no transmiten la torsión a lo largo del módulo al no estar triangulado el plano que los une, tal como ocurre en el estado de la técnica;
- los soportes del tubo absorbedor se apoyan directamente sobre los vértices superiores de las pirámides, no requiriendo ningún elemento conector adicional que transmita las cargas al cordón central;
- los pendolones terminales de cada módulo se fabrican con perfiles normalizados, lo que les confiere una alta rigidez a flexión, mientras que en el estado de la técnica los pendolones empleados se fabrican en chapa, con mucha menor resistencia estructural;
- los brazos de la invención pasan a ser elementos accesorios y se conforman con un tubo rectangular curvado o quebrado, no requiriendo ningún elemento adicional y ninguna unión intermedia para conformar la curvatura que precisa el reflector.
Descripción de los dibujos
Para completar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de la invención, se acompaña un juego de dibujos donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 : Módulo "V1 " completo distinguiendo elementos estructurales y accesorios
Figura 2: Elementos estructurales. Perspectiva
Figura 3: Elementos estructurales. Planta.
Figura 4: Elementos accesorios: configuración "V1"
Figura 5: Configuración Ύ1 "
Figura 6: Lateral configuración Ύ1"
Figura 7: Vista en planta. Módulo completo configuración Ύ1"
Figura 8: Elementos accesorios: configuración "V2"
Figura 9: Módulo completo configuración "Y2"
Figura 10: Elementos accesorios: realización 3
Las referencias de las figuras representan:
1. Vértice superior de la pirámide
V. Vértice superior de la semi-pirámide
2. Aristas diagonales de la pirámide
2'. Aristas diagonales de la semi-pirámide
3. Aristas de la base rectangular de la pirámide
3'. Aristas de la base triangular de la semi-pirámide
4. Barra diagonal de la base de la pirámide
5. Barras individuales que unen los vértices superiores de las pirámides y de las semi- pirámides contiguas
6. Pendolón
7. Brazos exteriores
7'. Brazos interiores
8. Puntales o soportes de brazos configuración en "V"
8'. Puntales o soportes de brazos configuración en "Y".
8". Puntales o soportes de brazos según realización 3.
9. Correas 10. Grapas
11. Soporte del tubo absorbedor
12. Tubo absorbedor
13. Arista de arriostramiento
Realización preferente de la invención
Para lograr una mayor comprensión de la invención a continuación se va a describir el módulo de colector solar según una realización preferente.
En la figura 1 se observa una realización preferente del módulo completo de la invención en la que se muestra qué elementos de la misma forman la subestructura principal (trazos negros gruesos) y cuáles accesorios (trazos más finos).
En una realización preferente como la mostrada en las figuras, el módulo tiene una longitud total de 12m. Para soportar los momentos torsores y flectores, así como el peso propio de los espejos y del tubo absorbedor se precisan, como elementos de la estructura principal: dos pirámides de base rectangular 4x3m, dos semi-pirámides en los extremos, tres barras conectando los vértices superiores de las pirámides y semipirámides y dos pendolones en los extremos. En cuanto a los elementos accesorios comprende: dos brazos exteriores y dos interiores, los soportes de los brazos en cualquiera de sus dos configuraciones, ocho correas con sus grapas para la sujeción de los espejos y tres soportes del tubo absorbedor apoyados en un pendolón y en los vértices superiores de las pirámides.
En la figura 2 se muestra el detalle de los elementos estructurales del módulo. La subestructura triangular está formada por pirámides regulares que cuentan con un vértice superior (1) donde se unen los cuatro lados o aristas diagonales (2). Estas aristas (2) se unen por el otro extremo con los lados (3, 13) que forman la base rectangular de la pirámide. En la base de las pirámides una barra (4) conecta dos de los vértices opuestos de dicha base. Esta barra (4) cuenta con mayor diámetro al ser la barra de la estructura que soporta mayor carga. También aparece representada la barra de la base que es común a ambas pirámides (13), que se trata de un elemento secundario de la estructura principal, que soporta una carga reducida pero que limita la longitud de pandeo de los cordones inferiores. Es por eso que se realiza en perfil de sección abierta en "C" en lugar de realizarse con tubos de sección circular o cuadrada como todos los elementos que componen la subestructura triangular.
Las semi-pirámides o tetraedros situadas en los extremos de la estructura comprenden un vértice (T) y dos barras diagonales (2') a modo de aristas que se conectan en los extremos inferiores con los lados (3') que forman la base triangular.
Tres barras (5) contiguas conectan los vértices superiores de las semi-pirámides (1 ') y las pirámides (1) entre ellos para lograr una transmisión y reparto de cargas óptimo. En los extremos del módulo se instalan los dos pendolones (6) encargados de transmitir la torsión que proviene del módulo adyacente a la subestructura triangular.
A ellos se conectan:
· las aristas diagonales de los dos tetraedros o semi-pirámides (2') de la subestructura triangular,
• las aristas de la base triangular de la semi-pirámide (3'),
• las barras individuales (5) que unen los vértices superiores (1) de las pirámides de los extremos con los de las semi-pirámides (1'),
« el eje central (no representado), en uno de los dos extremos, el cual es coincidente con el centro de gravedad de la estructura (calculado incluyendo el reflector y el tubo absorbedor).
En la figura 3 se muestra una vista en planta de los elementos estructurales.
La figura 4 muestra la realización según la disposición en V1. Refleja una parte de los elementos accesorios. Concretamente, en esta figura se muestran:
- Los brazos (7, 7'): se conectan a la subestructura triangular y tienen las siguientes características:
• Brazos con un quiebro que permiten adaptar la curvatura a la de la parábola de los espejos,
· brazos interiores (7') que parten de los vértices de las pirámides (1),
• dos brazos exteriores (7) que parten de los vértices de las semi-pirámides (1') por medio de placas solidarias al pendolón (6).
- Elemento soporte (8) de los extremos de cada brazo (7, 7'): sólo soportan el peso proporcional del espejo que tienen por encima, pero ningún momento torsor; existen una serie de realizaciones alternativas para estos elementos soportes y en la figura 4 se muestra la realización que denominamos configuración en "V1". En esta realización los puntales consisten en dos barras inclinadas (8), que conectan el vértice inferior de la pirámide correspondiente con los extremos de los dos brazos (7, 7') adyacentes. El conjunto de estos dos puntales que se conectan en un mismo vértice simula una forma de "V".
La figura 5 muestra el módulo completo según la disposición de los puntales en Y1 (8'). Esta configuración consiste en una barra conectada en el extremo de cada brazo (7, 7') y que se une en el punto medio entre brazos y a media altura, con la barra que sale del extremo del brazo adyacente; del punto de conexión entre ambas barras sale ya una única barra que las une con el vértice de la base de la pirámide correspondiente. El conjunto de las tres barras simula una forma de "Y" (8'). Correas (9): de longitud igual a la del módulo se apoyan directamente sobre los brazos (7, 7') y sobre las que se montan los espejos por medio de grapas (10).
Soportes (11) del tubo absorbedor (12): dos soportes van fijados a los vértices de las pirámides (1) y además se dispone otro soporte fijado al pendolón (6).
La figura 6 muestra una vista lateral de la perspectiva mostrada en la figura 5. Se distingue claramente la configuración en Ύ1" de los soportes (8') de los extremos de los brazos (7, 7").
La figura 7 es la vista en planta de la realización anterior.
La figura 8 muestra la configuración del módulo con los puntales según "V2". Esta configuración es idéntica a la "V1", exceptuando que los puntales (8) se colocan en vértices alternos, manteniendo los de los extremos del módulo.
La figura 9 muestra la configuración del módulo con los puntales según "Y2". En esta configuración los puntales (8') se colocan en vértices alternos, manteniendo los de los extremos del módulo.
La figura 10 muestra los elementos accesorios según la realización 3. En esta realización se disponen dos puntales (8") para los dos brazos de los extremos (7, los externos). Un puntal (8") va desde el extremo inferior del pendolón (6) al extremo del brazo (7), el otro discurre en paralelo y se fija algo más arriba en el pendolón (6) y en el quiebro del brazo (7). En el caso de los brazos internos (7') también se dispone de dos puntales (8") que parten del vértice inferior que es nudo de unión entre la semipirámide y la primera pirámide, yendo el primer puntal (8") desde el vértice hasta el extremo superior del brazo (7') y el otro puntal (8") desde el mismo vértice hasta el quiebro del brazo (7').
La estructura o módulo de colector descrito está especialmente diseñado para su aplicación en colectores cilindro parabólicos, pero no se descarta su extensión a otros campos de la industria que requieran características similares.

Claims

REIVINDICACIONES
1. Módulo soporte de colector solar con subestructura triangular, de superficie única inferior y una línea superior, conformando una subestructura triangular para resistir las cargas, que comprende una serie de miembros estructurales o estructura principal encargados de resistir los esfuerzos de torsión y flexión del colector así como todas las cargas del módulo y una serie de elementos accesorios o estructura auxiliar cuya misión es la de equilibrar el módulo y soportar el peso propio del reflector y del tubo absorbedor caracterizado porque la estructura principal comprende:
· Subestructura triangular o prisma triangular: trasmite la torsión a lo largo del módulo y comprende:
o una única fila de pirámides regulares de base rectangular, situadas una a continuación de otra, teniendo cada una de las pirámides un vértice superior (1), cuatro aristas (2) que son las diagonales que conectan el vértice superior (1) de la pirámide con los vértices inferiores de la base de pirámide y tres aristas (3-13) que forman la base;
o dos tetraedros o semi-pirámides situados uno en cada extremo de la subestructura triangular y formados por un vértice superior (1'), dos aristas (2') que conectan el vértice superior (1') con los vértices inferiores de la base de la semi-pirámide y las aristas (3') que forman la base de la semi-pirámide ; o barras individuales (5) que unen el vértice superior de cada pirámide (1) con el vértice superior (1) de la pirámide adyacente o con el vértice superior (1') de la semi-pirámide (1') adyacente,
o barra diagonal (4) que une dos vértices opuestos de la base de cada pirámide; · Dos pendolones (6): situados uno en cada extremo de la subestructura triangular, formados por una pieza vertical de perfil normalizado que transmite la torsión que proviene del módulo adyacente a la subestructura triangular y donde se conectan: o las aristas (2 ) diagonales de los dos tetraedros o semi-pirámides de la subestructura triangular,
o las aristas (3') de la base triangular de la semi-pirámide,
o las barras individuales (5) que unen los vértices superiores de las pirámides de los extremos (1) con los de las semi-pirámides (1'),
o el eje central, en uno de los dos extremos, el cual es coincidente con el centro de gravedad de la estructura incluido el reflector y el tubo absorbedor,
y la estructura auxiliar o los elementos accesorios comprenden: • Brazos (7, 7'): formados por un tubo quebrado de sección rectangular o por un tubo curvo de sección rectangular, que permite adaptarse a la curvatura que presenta la parábola del reflector, existiendo brazos interiores (7') que se unen a los vértices superiores (1) de las pirámides y dos brazos exteriores (7) que se unen a los vértices superiores (V) de las semi-pirámides por medio de placas solidarias al pendolón (6),
• puntales o elementos soporte (8, 8') de cada brazo (7, 7') hasta los vértices inferiores de las pirámides,
• correas (9): de longitud igual a la del módulo se apoyan directamente sobre los brazos (7, 7') y sobre ellas se monta el reflector por medio de grapas (10),
• soportes (11) del tubo absorbedor (12): estructuras verticales fijados a cada uno de los vértices superiores de las pirámides (1) y a uno de los dos pendolones (6).
2. Módulo soporte de colector solar con subestructura triangular según reivindicación 1 caracterizado porque los puntales (8) conectan el vértice inferior de la pirámide correspondiente con los extremos de los dos brazos adyacentes, simulando una forma de "V".
3. Módulo soporte de colector solar con subestructura triangular según reivindicación 1 caracterizado porque el elemento soporte (8') de los extremos de cada brazo (7, 7') tiene configuración en "Y" y comprende una barra conectada en el extremo de cada brazo y que se une en el punto medio entre brazos y a una altura intermedia con la barra que sale del extremo del brazo adyacente; del punto de conexión entre ambas barras sale una única barra vertical que las une con el vértice de la base de la pirámide correspondiente.
4. Módulo soporte de colector solar con subestructura triangular según reivindicación 2 ó 3 caracterizado porque todos los vértices inferiores son dotados con puntales.
5. Módulo soporte de colector solar con subestructura triangular según reivindicación 2 ó 3 caracterizado porque se dota con puntales a vértices alternos manteniendo con puntales los de los extremos del módulo.
6. Módulo soporte de colector solar con subestructura triangular según reivindicación 1 caracterizado porque se disponen dos puntales para los dos brazos de los extremos (los externos) donde un puntal va desde el extremo inferior del pendolón al extremo del brazo y el otro puntal discurre en paralelo y se fija algo más arriba en el pendolón yendo hasta el quiebro del brazo; en los brazos internos también se dispone de dos puntales que parten del vértice inferior que es nudo de unión entre la semipirámide y la primera pirámide, yendo el primer puntal desde el vértice hasta el extremo superior del brazo y el otro puntal desde el mismo vértice hasta el quiebro del brazo.
7. Módulo soporte de colector solar con subestructura triangular según reivindicación 1 caracterizado porque los soportes del tubo absorbedor presentan libertad de giro en el sentido longitudinal del colector, rigidez a flexión transversal y una estructura de mínima opacidad para evitar que produzca sombras en la superficie de los espejos.
8. Módulo soporte de colector solar con subestructura triangular según reivindicación 1 caracterizado porque los perfiles empleados en el diseño de la subestructura triangular
(2, 2', 3, 3', 4) y las barras individuales (5) que unen los vértices de las pirámides (1) y semi-pirámides (V) son tubos de sección circular o cuadrada.
9. Módulo soporte de colector solar con subestructura triangular según reivindicación 2 caracterizado porque los brazos se fabrican con tubos de sección rectangular o perfiles abiertos con sección en "C"
10. Módulo soporte de colector solar con subestructura triangular según reivindicación 2 caracterizado porque tas correas, los puntales y la arista de arriostramiento (13) o arista de la base de las pirámides que es común entre pirámides adyacentes, se fabrican a base de perfiles con sección abierta en C o en omega (W).
11. Módulo soporte de colector solar con subestructura triangular según reivindicación 1 caracterizado porque el material empleado para todos los elementos estructurales será acero S275 ó S355 galvanizado en caliente.
PCT/ES2011/000382 2010-12-30 2011-12-29 Módulo soporte para colector solar con subestructura triangular WO2012089870A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2013007619A MX2013007619A (es) 2010-12-30 2011-12-29 Modulo de soporte para colector solar con subestructura triangular.
US13/977,673 US9212831B2 (en) 2010-12-30 2011-12-29 Support module for a solar collector having a triangular substructure
EP11852946.0A EP2660534B1 (en) 2010-12-30 2011-12-29 Support module for a solar collector having a triangular substructure
MA36078A MA34810B1 (fr) 2010-12-30 2011-12-29 Module support pour collecteur solaire à sous-structure triangulaire
CN2011800638252A CN103403471A (zh) 2010-12-30 2011-12-29 具有三角底层结构的太阳能集热器的支撑模块
CY20171100916T CY1119319T1 (el) 2010-12-30 2017-08-30 Υπομοναδα στηριξης για ηλιακο συλλεκτη η οποια εχει τριγωνικη υποδομη

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201001653 2010-12-30
ES201001653A ES2385591B1 (es) 2010-12-30 2010-12-30 Módulo soporte para colector solar con subestructura triangular.

Publications (1)

Publication Number Publication Date
WO2012089870A1 true WO2012089870A1 (es) 2012-07-05

Family

ID=46382342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000382 WO2012089870A1 (es) 2010-12-30 2011-12-29 Módulo soporte para colector solar con subestructura triangular

Country Status (11)

Country Link
US (1) US9212831B2 (es)
EP (1) EP2660534B1 (es)
CN (1) CN103403471A (es)
CL (1) CL2013001924A1 (es)
CY (1) CY1119319T1 (es)
ES (1) ES2385591B1 (es)
MA (1) MA34810B1 (es)
MX (1) MX2013007619A (es)
PT (1) PT2660534T (es)
WO (1) WO2012089870A1 (es)
ZA (1) ZA201304836B (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131419A1 (en) * 2013-02-26 2014-09-04 Alpha-E Aps An improved solar unit assembly and a method for constructing such an assembly
WO2015025065A1 (es) * 2013-08-21 2015-02-26 Energia Ercam, S.A. Seguidor solar de doble eje
EP2979038A4 (en) * 2013-03-24 2016-10-26 Brenmiller Energy Ltd MODULAR SOLAR FIELD

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988415B2 (en) * 2009-08-26 2024-05-21 Werner Extrusion Solutions, Llc Solar mirror array system, methods and apparatuses thereto
WO2012145513A2 (en) 2011-04-19 2012-10-26 Abengoa Solar Inc. Structural frame and solar collector module
ES2446890B1 (es) * 2012-09-07 2014-12-16 Abengoa Solar New Technologies S.A. Estructura soporte para colector solar cilíndrico de concentración y colector solar que comprende la mencionada estructura
US10145365B2 (en) 2013-03-20 2018-12-04 Brenmiller Energy Ltd. Integrated thermal storage, heat exchange, and steam generation
US9395514B2 (en) * 2013-11-04 2016-07-19 Skyfuel, Inc. Pyramidal space frame and associated methods
CN105356831A (zh) * 2015-10-30 2016-02-24 山东齐星铁塔科技股份有限公司 单轴光伏支架
IT201700021827A1 (it) * 2017-02-27 2018-08-27 Suberia Systems Srl Impianto solare a concentrazione
WO2020227639A1 (en) * 2019-05-09 2020-11-12 Solar Dynamics, Llc Structures and techniques for solar collectors
WO2021062391A1 (en) * 2019-09-26 2021-04-01 Arizona Board Of Regents On Behalf Of The University Of Arizona Actively focused lightweight heliostat

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1070880A (en) 1912-03-02 1913-08-19 Draper Mfg Co Reversible faucet and bung.
CA1088828A (en) 1976-11-04 1980-11-04 Joseph C. Kotlarz Combined solar energy conversion and structural and mechanical beam and structures built therefrom
EP0082068A1 (fr) 1981-12-11 1983-06-22 Creusot-Loire Structure de support pour capteur solaire
US5069540A (en) 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
ES2161589A1 (es) 1997-10-10 2001-12-01 Deutsch Zentr Luft & Raumfahrt Concentrador de canal parabolica.
US6414237B1 (en) 2000-07-14 2002-07-02 Astropower, Inc. Solar collectors, articles for mounting solar modules, and methods of mounting solar modules
WO2008039233A2 (en) 2006-09-22 2008-04-03 Gossamer Space Frames Space frame connection node arrangement
ES2326303A1 (es) 2007-10-04 2009-10-06 Albiasa Solar Sl Viga de colector solar cilindro-parabolico, modo de fijacion de los soportes de espejo a la viga, bastidor de colector solar cilindro-parabolico y procedimiento de fabricacion de la viga.
US20100050560A1 (en) * 2008-08-29 2010-03-04 Werner Extrusion Solutions LLC Solar trough frame, part and method
US20100213336A1 (en) * 2009-02-24 2010-08-26 Javier Del Pico Aznar Support structure for solar collector
WO2010120349A1 (en) * 2009-04-16 2010-10-21 Werner Extrusion Solutions LLC Strut, system and method for a solar mirror frame
WO2011011728A1 (en) * 2009-07-24 2011-01-27 Abengoa Solar Inc. Solar collector module
WO2011070180A1 (es) * 2009-12-07 2011-06-16 Abengoa Solar New Technologies, S.A. Módulo de colector solar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271819A (en) * 1979-03-19 1981-06-09 Farrell Daniel L Solar energy apparatus
US4829739A (en) * 1985-12-12 1989-05-16 General Electric Company Method for construction of a truss structure
US8806834B2 (en) * 2008-08-29 2014-08-19 Werner Extrusion Solutions LLC Solar trough mirror frame, rolling rib, roller, cleaning apparatus and method
ES2366078B1 (es) * 2010-03-31 2012-08-06 Abengoa Solar New Technologies, S.A. Módulo de colector solar pretensado.
CN102162684A (zh) * 2011-03-28 2011-08-24 杭州立扬聚光蓄热科技有限公司 一种固定焦点线的太阳能槽式聚光装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1070880A (en) 1912-03-02 1913-08-19 Draper Mfg Co Reversible faucet and bung.
CA1088828A (en) 1976-11-04 1980-11-04 Joseph C. Kotlarz Combined solar energy conversion and structural and mechanical beam and structures built therefrom
EP0082068A1 (fr) 1981-12-11 1983-06-22 Creusot-Loire Structure de support pour capteur solaire
US5069540A (en) 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
ES2161589A1 (es) 1997-10-10 2001-12-01 Deutsch Zentr Luft & Raumfahrt Concentrador de canal parabolica.
US6414237B1 (en) 2000-07-14 2002-07-02 Astropower, Inc. Solar collectors, articles for mounting solar modules, and methods of mounting solar modules
WO2008039233A2 (en) 2006-09-22 2008-04-03 Gossamer Space Frames Space frame connection node arrangement
US20080204352A1 (en) * 2006-09-22 2008-08-28 Gossamer Space Frames Movable support armature for a curved reflector
ES2326303A1 (es) 2007-10-04 2009-10-06 Albiasa Solar Sl Viga de colector solar cilindro-parabolico, modo de fijacion de los soportes de espejo a la viga, bastidor de colector solar cilindro-parabolico y procedimiento de fabricacion de la viga.
US20100050560A1 (en) * 2008-08-29 2010-03-04 Werner Extrusion Solutions LLC Solar trough frame, part and method
US20100213336A1 (en) * 2009-02-24 2010-08-26 Javier Del Pico Aznar Support structure for solar collector
WO2010120349A1 (en) * 2009-04-16 2010-10-21 Werner Extrusion Solutions LLC Strut, system and method for a solar mirror frame
WO2011011728A1 (en) * 2009-07-24 2011-01-27 Abengoa Solar Inc. Solar collector module
WO2011070180A1 (es) * 2009-12-07 2011-06-16 Abengoa Solar New Technologies, S.A. Módulo de colector solar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660534A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131419A1 (en) * 2013-02-26 2014-09-04 Alpha-E Aps An improved solar unit assembly and a method for constructing such an assembly
CN105121975A (zh) * 2013-02-26 2015-12-02 阿尔法能源有限公司 改进的太阳能单元组件和构造这种组件的方法
CN105121975B (zh) * 2013-02-26 2017-08-25 阿尔法能源有限公司 改进的太阳能单元组件和构造这种组件的方法
US10317108B2 (en) 2013-02-26 2019-06-11 Alpha-E Aps Solar unit assembly and a method for constructing such an assembly
EA033093B1 (ru) * 2013-02-26 2019-08-30 Альфа-Э Апс Усовершенствованная сборка из солнечных блоков и способ ее изготовления
EP2979038A4 (en) * 2013-03-24 2016-10-26 Brenmiller Energy Ltd MODULAR SOLAR FIELD
WO2015025065A1 (es) * 2013-08-21 2015-02-26 Energia Ercam, S.A. Seguidor solar de doble eje

Also Published As

Publication number Publication date
CN103403471A (zh) 2013-11-20
ZA201304836B (en) 2014-03-26
ES2385591B1 (es) 2013-03-12
EP2660534B1 (en) 2017-06-14
ES2385591A1 (es) 2012-07-27
US9212831B2 (en) 2015-12-15
PT2660534T (pt) 2017-09-18
MX2013007619A (es) 2014-02-03
EP2660534A4 (en) 2015-09-30
EP2660534A1 (en) 2013-11-06
CL2013001924A1 (es) 2014-05-02
US20140020677A1 (en) 2014-01-23
MA34810B1 (fr) 2014-01-02
CY1119319T1 (el) 2018-02-14

Similar Documents

Publication Publication Date Title
ES2385591B1 (es) Módulo soporte para colector solar con subestructura triangular.
WO2011121153A1 (es) Módulo de colector solar pretensado
ES2733039T3 (es) Receptor solar de sal fundida de flujo de serpentina vertical ensamblado en taller
US8039777B2 (en) Solar collector with reflector having compound curvature
ES2539038T3 (es) Bastidor estructural y módulo colector solar
WO2011154567A1 (es) Estructura para colector solar cilíndrico
ES2375887A1 (es) Estructura con vigas de sujeción de reflector primario.
ES2380850B1 (es) Estructura con viga de torsión en celosía para colector solar cilindro-parabólico.
ES2337332B1 (es) Estructura soporte para colector solar cilindrico - parabolico.
ES2843253T3 (es) Conjunto de unidad solar y procedimiento de construcción de tal conjunto
WO2016166388A1 (es) Dispositivo rotatorio horizontal de concentración de la radiación solar
WO2011092353A2 (es) Estructura de soporte de un colector cilindro-parabólico
ES2400275B1 (es) Módulo de colector solar
KR20170004975A (ko) 외부 수용기를 갖는 집중형 태양열 타워
ES2578916B1 (es) Seguidor solar fotovoltaico para alta concentración
ES2735303B2 (es) Receptor solar de torre exterior
ES2549580B1 (es) Estructura soporte para colector solar cilindro parabólico descompuesto
WO2019166672A1 (es) Brazo de sustentación de colector solar
WO2015121519A1 (es) Receptor solar abovedado y planta solar que comprende dicho receptor
ES2568510A1 (es) Colector solar cilíndrico parabólico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013001924

Country of ref document: CL

Ref document number: MX/A/2013/007619

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011852946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13977673

Country of ref document: US