WO2015121519A1 - Receptor solar abovedado y planta solar que comprende dicho receptor - Google Patents

Receptor solar abovedado y planta solar que comprende dicho receptor Download PDF

Info

Publication number
WO2015121519A1
WO2015121519A1 PCT/ES2015/070081 ES2015070081W WO2015121519A1 WO 2015121519 A1 WO2015121519 A1 WO 2015121519A1 ES 2015070081 W ES2015070081 W ES 2015070081W WO 2015121519 A1 WO2015121519 A1 WO 2015121519A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
solar receiver
receiver
cavity
domed
Prior art date
Application number
PCT/ES2015/070081
Other languages
English (en)
French (fr)
Inventor
Azucena DEL RÍO TEJERO
José Antonio BRIOSO PÉREZ-CASTILLA
Manuel QUERO GARCÍA
Roman KORZYNIETZ
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Publication of WO2015121519A1 publication Critical patent/WO2015121519A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/18Solar modules layout; Modular arrangements having a particular shape, e.g. prismatic, pyramidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/876Reflectors formed by assemblies of adjacent reflective elements having different orientation or different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • Vaulted solar receiver and solar plant comprising said receiver.
  • the invention falls within the technology of solar receivers and specifically in solar receivers that have secondary concentrators.
  • the solar plant in which said receivers are integrated is also object of the invention.
  • Solar receiver units pressurized or not, which can be tubular or volumetric, are known in the state of the art.
  • This type of units can comprise the following elements: a cavity through which a fluid that can be pressurized flows and in which the thermal exchange is carried out, optionally they can also have a transparent window that seals the cavity and allows the entrance of the solar radiation at the same time that minimizes convective losses, and a secondary concentrator of trunk-pyramidal geometry with polygonal anterior base in connection with the cavity and that concentrates the solar radiation towards said transparent window or towards the cavity if it does not exist.
  • a secondary concentrator of trunk-pyramidal geometry with polygonal anterior base in connection with the cavity and that concentrates the solar radiation towards said transparent window or towards the cavity if it does not exist.
  • high mechanical stresses are generated both in the tank and in the transparent window, thereby limiting the maximum size of the window and therefore that of the receiver, thus limiting the thermal power to be generated by a single device
  • volumetric receivers which are composed of several units of pressurized volumetric receptors with secondary concentrators.
  • the configurations known in the state of the art have sets of these receivers grouped on flat surfaces.
  • the present invention solves the above disadvantages by means of a solar receiver with an arrangement of volumetric or tubular receiver units that allows to increase the acceptance angle of the assembly.
  • the receiver units comprise: a cavity adapted for the circulation of a pressurized fluid and for the realization of the thermal exchange with said fluid, - a secondary concentrator in connection with the trunk-pyramidal geometry cavity with polygonal anterior base and that it is adapted for the concentration of a solar radiation towards the entrance of the cavity.
  • the cavity comprises a set of tubes located in said cavity. Also, for both volumetric and tubular receptors the fluid is pressurized. Additionally, the receivers may comprise a transparent window that seals the cavity.
  • the invention is characterized in that the solar receiver units are located adjacently across the edges of the polygonal base of the secondary concentrator so that the surface formed by the union of said bases is a domed surface.
  • the pressurized solar receiver units constitute a single hive-shaped and vaulted thermal exchange block.
  • the receiver object of the invention has a three-dimensional configuration in the form of a vault, not necessarily regular.
  • This configuration has the advantage that the receiver acceptance angle increases and, due to this increase in the acceptance angle, it also reduces the losses of atmospheric transmissivity of the heliostat field since increasing the acceptance angle reduces the number of heliostats which are further away from the tower. This is due to the fact that a greater number of them can be installed in the areas close to the tower, obtaining shorter fields to obtain the same thermal power.
  • the domed surface facilitates the focus of the heliostat field by making the radiation flux density map smaller.
  • the "sunspot” radiation density map is called the “sunspot” resulting from solar radiation reflected by all heliostats in the solar field and reaching the receiver. Said radiation flow density map is a result of the convolution of the radiation reflected by each heliostat in the field.
  • the smaller the size of said "sunspot” the greater the degree of concentration of the radiation on the receiver, so that most of it remains inside the receiver. In this way, it is not only possible to reduce the losses due to atmospheric transmissivity but also to reduce the overflow of the receiver, as the radiation flux density map on the receiver is smaller.
  • the solar receiver object of the invention has an acceptance angle greater than that of the receiver units that integrate it and also greater than a flat receiver configuration, since being placed on a flat surface we would need a long and narrow heliostat field, However, with the vaulted configuration, it is possible to operate with a wider and more compact heliostat field, reducing the overall optical losses of the heliostat field and aspiring to a better approach.
  • the solar plant comprising the solar receiver described above and which also includes:
  • the working fluids of the solar plant can be of any type of heat exchange fluid and the thermodynamic cycles can be those of a steam turbine, a gas turbine or a turbine that works in supercritical cycles in configurations 100% solar or hybrid.
  • This solar plant could also have several heliostat fields facing several solar receivers.
  • Figure 1A shows a schematic representation of a volumetric receiver unit according to the state of the art.
  • Figure 1 B shows a schematic representation of a tube receiver unit according to the state of the art.
  • Figure 2 shows a volumetric solar receiver with secondary concentrator composed of volumetric receiver units with secondary concentrators in a flat distribution according to the state of the art.
  • Figure 3 shows a schematic representation of a heliostat field for a solar receiver with secondary concentrator with a flat distribution of the receiver units with secondary concentrators and a heliostat field for a vaulted distribution thereof.
  • Figure 4 shows a schematic representation of the domed surface of the solar receiver of the invention together with a heliostat field.
  • Figure 5 shows an exemplary embodiment of a solar tower.
  • Figure 6 shows an exemplary embodiment of a support structure of the solar receiver of the invention.
  • Figure 7 shows an exemplary embodiment of the joining means of each receiver unit with secondary concentrator to the support structure represented in Figure 6.
  • FIG. 1A A schematic representation of the state of the art of a volumetric receiver in Figure 1 A and of a tube receiver in Figure 1 B is included in Figures 1A and 1 B.
  • Both solar receivers (1) comprise a cavity (2) , a transparent window (3) located in the solar radiation inlet of the cavity (2) and a secondary concentrator (4).
  • FIG. 2 shows a configuration of a volumetric solar receiver known in the state of the art that is formed by three units of volumetric receivers (1) comprising secondary concentrators (4) of trunk-pyramidal geometry with polygonal anterior base (5) , specifically hexagonal.
  • the solar receiver units (1) are located adjacently across the edges of the anterior base (5) of the secondary concentrators (4) so that the union of said anterior bases (5) forms a flat surface.
  • each of the solar receiver units (1) that make up the solar receiver object of the invention are of the volumetric type and are formed by the secondary concentrator (4) with the pyramid trunk geometry with polygonal base that concentrates the solar flow on an absorber made of different materials at the rate of the final target temperature.
  • Said secondary concentrator (4) connects with the cavity (2) of the volumetric solar receiver (1) by means of a flange.
  • the proposed invention does not make use of fresnel lenses since, given the solar concentration at which it is worked, the use of said lenses is not feasible, so this invention is a pioneer in the three-dimensional stacking of concentrators without fresnel lenses.
  • Figure 3 shows the comparison of the distribution of two heliostat fields (30), for a flat solar receiver according to the state of the art, with an acceptance angle ⁇ and for a domed solar receiver according to the invention, with a angle of ⁇ acceptance. It is clear that for the same thermal power there is a large number of heliostats away from the tower (6) in the case of the flat configuration.
  • Figure 4 schematically depicts the solar receiver object of the invention comprising the set of solar receiver units (1) whose anterior bases (5) of the polygonal surfaces of the secondary concentrators (4) form the domed surface.
  • the field of heliostats (30) oriented towards said domed surface and receiving solar radiation from the sun (20) is also represented.
  • the receiver object of the invention comprises at least three solar receiver units (1), two of which comprise a secondary concentrator (4) with hexagonal anterior base (5) and a third secondary concentrator (4 ) comprises an anterior (5) pentagonal base.
  • This combination of secondary concentrator geometries (4) allows for a domed configuration using a minimum number of different regular geometries in order to reduce the cost of commercial components.
  • the domed solar receiver is located at the top of a solar tower (6) facing the heliostat field (30) with an inclination according to the number of heliostats (30), being able to have several field orientations for the same tower ( 6).
  • FIG. 5 An exemplary embodiment of a tower (6) object of the invention is shown in Figure 5.
  • Said tower (6) comprises three domed grooves (7) located in its upper part intended to house a solar receiver according to the object of the invention.
  • FIG. 6 An exemplary embodiment of a support structure (8) intended to be located in the groove (7) is shown in Figure 6.
  • the support structure (8) also has a domed shape and can be metallic. Said support structure (8) would hang each of the solar receiver units (1) with secondary concentrator (4) members of the vaulted receiver object of the invention joined by at least three fastening points. More specifically, the support structure (8) comprises a reticular structure of interconnected bars in knots forming triangles (9). The union of each solar receiver unit (1) to the support structure (8) occurs because each cavity (2) of each solar receiver unit (1) is located between the three bars of each triangle (9) of the structure (8) and because the structure (8) further comprises at least one connecting element (10) that extends between the cavity (2) and a point of the triangle (9). More specifically in FIG.
  • the connecting element comprises two bars that connect the vertices of each triangle (9) to lugs welded to the solar receiver unit (1) by means of bolts.
  • the advantage of this type of joint is that the bars are replaceable if they deteriorate.
  • This support is formed by two concentric bars joined by a high tenacity element that allows it to absorb the possible forces from the receiver and caused by anomalies in the operation, in turn these fasteners must have bearing capacity since they are responsible for fix the receivers to the structure keeping its fixed position.
  • the clamping would be carried out by the back (cavity (2)) of the receiver, in this way the polygonal ends of the secondary concentrators would form the three-dimensional geometry object of this configuration.
  • the anchoring is preferably carried out by the rear part of the solar receiver unit (1), that is, by the part of the cavity (2) furthest from the secondary concentrator (4) which facilitates the coupling between the secondary concentrators (4 ) and allows there to be no space between the coincident sides of each previous base (5) thus avoiding losses due to overflow between said spaces.
  • the support structure (8) forms a circle portion less than 180 ° in the horizontal plane and a circle portion less than 90 ° in the upper vertical plane such that the receivers will always look down to the heliostat field (30).
  • the support structure (8) is fixed to the tower (6) by several anchor points and can be both in the horizontal plane and in the vertical plane, in this way the distribution of efforts on the beams of the support structure (8) is more uniform
  • the plant containing said receiver preferably has heat transfer fluid, steam, air, Hélio or C02, which will be turbinated under a thermodynamic cycle of Brayton or Rankine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Photovoltaic Devices (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

Receptor solar que comprende un conjunto de unidades de receptores solares (1) donde las unidades de receptores solares (1) están localizadas de modo adyacente a través de las aristas de la base (5) poligonal del concentrador secundario (4) de modo la superficie formada por la unión de dichas bases (5) es una superficie abovedada.

Description

DESCRIPCIÓN
Receptor solar abovedado y planta solar que comprende dicho receptor.
Campo de la invención La invención se encuadra dentro de la tecnología de receptores solares y en concreto en los receptores solares que cuentan con concentradores secundarios. Es también objeto de la invención la planta solar en la que se integran dichos receptores.
Antecedentes de la invención
Son conocidas en el estado de la técnica las unidades de receptores solares, presurizados o no, los cuales pueden ser tubulares o volumétricos. Este tipo de unidades pueden comprender los siguientes elementos: una cavidad por la que fluye un fluido que puede ser presurizado y en el que se realiza el intercambio térmico, opcionalmente pueden también poseer una ventana transparente que sella la cavidad y que permite la entrada de la radiación solar al mismo a la vez que minimiza las pérdidas convectivas, y un concentrador secundario de geometría tronco-piramidal con base anterior poligonal en conexión con la cavidad y que concentra la radiación solar hacia dicha ventana transparente o hacia la cavidad si ésta no existe. En los receptores solares que trabajan a alta presión se generan elevados esfuerzos mecánicos tanto en el tanque como en la ventana transparente, limitándose con ello el tamaño máximo de la ventana y por tanto el del receptor, quedando así limitada la potencia térmica a generar por un único dispositivo.
Para resolver esta desventaja se recurre al uso de receptores volumétricos que están compuestos por varias unidades de receptores volumétricos presurizados con concentradores secundarios. Las configuraciones conocidas en el estado de la técnica presentan conjuntos de estos receptores agrupados sobre superficies planas.
Sin embargo, esta configuración tiene el inconveniente de que limita el ángulo de aceptancia del conjunto formado por los receptores. El campo de helióstatos tiene por lo tanto que extenderse a lo largo, por lo que aumenta el número de helióstatos situados a gran distancia de la torre. Esto supone también una disminución de la eficiencia óptica del campo, dado que las pérdidas de transmisividad atmosférica afectan al mayor número de helióstatos situados lejos de la torre.
Descripción de la invención
La presente invención resuelve las desventajas anteriores mediante un receptor solar con una disposición de unidades de receptores volumétricos o tubulares que permite aumentar el ángulo de aceptancia del conjunto.
Según lo anteriormente comentado, las unidades de receptores comprenden: una cavidad adaptada para la circulación de un fluido presurizado y para la realización del intercambio térmico con dicho fluido, - un concentrador secundario en conexión con la cavidad de geometría tronco- piramidal con base anterior poligonal y que está adaptado para la concentración de una radiación solar hacia la entrada de la cavidad.
En el caso específico de un receptor tubular, la cavidad comprende un conjunto de tubos ubicados en dicha cavidad. Asimismo, tanto para receptores volumétricos como para receptores tubulares el fluido está presurizado. Adicionalmente, los receptores pueden comprender una ventana transparente que sella la cavidad.
La invención se caracteriza porque las unidades de receptores solares están localizadas de modo adyacente a través de las aristas de la base poligonal del concentrador secundario de modo qque la superficie formada por la unión de dichas bases es una superficie abovedada. De este modo las unidades de receptores solares presurizados constituyen un único bloque de intercambio térmico a modo de colmena y con forma de bóveda.
Por lo tanto, el receptor objeto de la invención presenta una configuración tridimensional en forma de bóveda, no necesariamente regular. Dicha configuración posee la ventaja de que aumenta el ángulo de aceptancia del receptor y, debido a este aumento del ángulo de aceptancia, además reduce las pérdidas de transmisividad atmosférica del campo de helióstatos ya que al aumentar el ángulo de aceptancia se reduce el número de helióstatos que se encuentran más alejados de la torre. Esto se debe a que se pueden instalar un mayor número de ellos en las zonas próximas a la torre, obteniéndose campos más cortos para la obtención de una misma potencia térmica. En función del tamaño de las aristas de los polígonos de la base del concentrador secundario se puede tener una bóveda con mayor o menor radio así como modificar el número de receptores para un radio de bóveda dado.
La superficie abovedada facilita el enfoque del campo de heliostatos haciendo que el mapa de densidad de flujo de radiación sea de menor tamaño. Se denomina mapa de densidad de flujo de radiación a la "mancha solar" resultante de la radiación solar reflejada por todos los heliostatos del campo solar y que llega al receptor. Dicho mapa de densidad de flujo de radiación es resultado de la convolución de la radiación reflejada por cada heliostato del campo. Cuanto menor es el tamaño de dicha "mancha solar" mayor es el grado de concentración de la radiación sobre el receptor, de manera que la mayor parte de ésta queda dentro del receptor. De esta manera no solamente se consigue disminuir las pérdidas por trasmisividad atmosférica sino también reducir el desbordamiento del receptor, al ser menor el mapa de densidad de flujo de radiación sobre el receptor.
El receptor solar objeto de la invención posee un ángulo de aceptación mayor que el de las unidades de receptores que lo integran y también mayor que una configuración de receptores plana, ya que siendo colocados sobre una superficie plana necesitaríamos un campo de heliostatos largo y estrecho, sin embargo, con la configuración abovedada se consigue poder operar con un campo de heliostatos más ancho y compacto, reduciendo las pérdidas ópticas globales del campo de heliostatos y aspirando a un mejor enfoque. Es también objeto de la presente invención la planta solar que comprende el receptor solar anteriormente descrito y que para ello también comprende:
- una torre que comprende dicho receptor solar, y
- un campo de heliostatos orientados hacia dicha torre.
Los fluidos de trabajo de la planta solar pueden ser de cualquier tipo de fluido de intercambio térmico y los ciclos termodinámicos podrán ser tanto los propios de una turbina de vapor, como de una turbina de gas o de una turbina que trabaje en ciclos supercríticos en configuraciones 100% solares o híbridas. Esta planta solar podría tener también varios campos de heliostatos enfrentados a varios receptores solares.
Otras ventajas adicionales del receptor solar objeto de la invención son las siguientes: • Mayor eficiencia óptica del campo solar gracias al aumento de ángulo de apertura de éste, aumentando así el número de heliostatos más cercanos a la torre.
• Reducción de las pérdidas globales por trasmisividad atmosférica al tener un menor número de heliostatos alejados. · Reducción de las pérdidas por efecto coseno.
• Mayor facilidad de interconexión y posterior mantenimiento al haber mayor separación en la parte trasera de los receptores debido a su configuración abovedada.
• Reducción de la altura de la torre al contar con heliostatos más cercanos con la consecuente reducción en los costes de construcción.
• Reducción de costes de tubería para el concepto de turbina de gas a pie de torre dada la menor altura de la torre.
• Menor ensuciamiento de los concentradores secundarios al estar más protegidos con esta disposición de una exposición al viento, suciedad, etc. Descripción de las figuras
Para completar la descripción y con el fin de proporcionar una mejor comprensión de la invención, se proporciona un conjunto de dibujos. Dichos dibujos forman una parte integral de la descripción e ilustran ejemplos de realización de la invención.
La figura 1A muestra una representación esquemática de una unidad de receptor volumétrico según el estado de la técnica.
La figura 1 B muestra una representación esquemática de una unidad de receptor de tubos según el estado de la técnica.
La figura 2 muestra un receptor solar volumétrico con concentrador secundario compuesto por unidades de receptores volumétricos con concentradores secundarios en una distribución plana según el estado de la técnica.
La figura 3 muestra una representación esquemática de un campo de heliostatos para un receptor solar con concentrador secundario con una distribución plana de las unidades de receptores con concentradores secundarios y un campo de heliostatos para una distribución abovedada de los mismos. La figura 4 muestra una representación esquemática de la superficie abovedada del receptor solar de la invención junto con un campo heliostatos.
La figura 5 muestra un ejemplo de realización de una torre solar.
La figura 6 muestra un ejemplo de realización de una estructura soporte del receptor solar de la invención.
La figura 7 muestra un ejemplo de realización de los medios de unión de cada unidad de receptor con concentrador secundario a la estructura soporte representada en la figura 6.
Descripción detallada de la invención
En las figuras 1A y 1 B se incluye una representación esquemática del estado de la técnica de un receptor volumétrico en la figura 1 A y de un receptor de tubos en la figura 1 B. Ambos receptores solares (1) compenden una cavidad (2), una ventana transparente (3) localizada en la entrada de radiación solar de la cavidad (2) y un concentrador secundario (4).
En la figura 2 se representa una configuración de receptor solar volumétrico conocida en el estado de la técnica que está formado por tres unidades de receptores volumétricos (1 ) que comprenden concentradores secundarios (4) de geometría tronco-piramidal con base anterior (5) poligonal, concretamente hexagonal. Las unidades de receptores solares (1 ) se sitúan de forma adyacente a través de las aristas de la base anterior (5) de los concentradores secundarios (4) de modo que la unión de dichas bases anteriores (5) forma una superficie plana. En una realización preferente de la invención, cada una de las unidades de receptores solares (1 ) que componen el receptor solar objeto de la invención son del tipo volumétricos y están formadas por el concentrador secundario (4) con la geometría de tronco de pirámide con base poligonal que concentra el flujo solar sobre un absorbedor fabricado de distintos materiales a razón de la temperatura final objetivo. Dicho concentrador secundario (4) conecta con la cavidad (2) del receptor solar (1 ) volumétrico por medio de una brida. La invención propuesta no hace uso de lentes fresnel ya que dada la concentración solar a la que se trabaja, es inviable el uso de dichas lentes por lo que esta invención es pionera en el apilamiento tridimensional de concentradores sin lentes fresnel.
En la figura 3 se representa la comparación de la distribución de dos campos de heliostatos (30), para un receptor solar plano según el estado de la técnica, con un ángulo de aceptación β y para un receptor solar abovedado según la invención, con un ángulo de aceptación α. Se aprecia claramente que para una misma potencia térmica existe un gran número de helióstatos alejados de la torre (6) en el caso de la configuración plana.
En la figura 4 se representa esquemáticamente el receptor solar objeto de la invención que comprende el conjunto de unidades de receptores solares (1) cuyas bases anteriores (5) de las superficies poligonales de los concentradores secundarios (4) forman la superficie abovedada. Se representa también el campo de helióstatos (30) orientado hacia dicha superficie abovedada y recibiendo la radiación solar procedente del sol (20).
Para conseguir dicha superficie abovedada en un ejemplo de realización todos los concentradores secundarios (4) tienen la misma configuración geométrica. Existen también otros ejemplos de realización donde la base anterior (5) del tronco de pirámide de los concentradores secundarios (4) es distinta. Más específicamente en un ejemplo de realización, el receptor objeto de la invención comprende al menos tres unidades de receptores solares (1), dos de ellos comprenden un concentrador secundario (4) con base anterior (5) hexagonal y un tercer concentrador secundario (4) comprende una base anterior (5) pentagonal. Esta combinación de geometrías de concentrador secundario (4) permite contar con una configuración abovedada empleando un número mínimo de geometrías regulares distintas de cara a una reducción del coste de los componentes comerciales.
El receptor solar abovedado está ubicado en la parte superior de una torre (6) solar mirando hacia el campo de helióstatos (30) con una inclinación acorde al número de helióstatos (30), pudiéndose contar con varias orientaciones de campos para una misma torre (6).
En la figura 5 se representa un ejemplo de realización de una torre (6) objeto de la invención. Dicha torre (6) comprende tres hendiduras (7) con forma abovedada localizadas en su parte superior destinadas a alojar un receptor solar según el objeto de la invención.
En la figura 6 se representa un ejemplo de realización de una estructura soporte (8) destinada a estar localizada en la hendidura (7). La estructura soporte (8) posee también una forma abovedada y puede ser metálica. De dicha estructura soporte (8) colgarían cada una de las unidades de los receptores solares (1) con concentrador secundario (4) integrantes del receptor abovedado objeto de la invención unidos por al menos tres puntos de sujeción. Más específicamente, la estructura soporte (8) comprende una estructura reticular de barras interconectadas en nudos formando triángulos (9). La unión de cada unidad de receptor solar (1 ) a la estructura soporte (8) se produce porque cada cavidad (2) de cada unidad de receptor solar (1 ) está localizada entre las tres barras de cada triángulo (9) de la estructura (8) y porque la estructura (8) comprende además al menos un elemento de unión (10) que se extiende entre la cavidad (2) y un punto del triángulo (9). Más concretamente en la figura 7 se representa un ejemplo de realización donde el elemento de unión comprende sendas barras que unen los vértices de cada triangulo (9) a unas orejetas soldadas a la unidad de receptor solar (1 ) volumétrico por medio de pernos. La ventaja de este tipo de unión es que la barras son reemplazables en el caso de que se deterioraren.
Esta sujeción, está formada por dos barras concéntricas unidas por un elemento de alta tenacidad que le permite absorber las posibles fuerzas provenientes del receptor y provocados por anomalías en la operación, a su vez estas sujeciones han de tener capacidad portante ya que son los encargados de fijar los receptores a la estructura manteniendo su posición fija. La sujeción se realizaría por la parte posterior (cavidad (2)) del receptor, de esta forma los extremos poligonales de los concentradores secundarios formarían la geometría tridimensional objeto de esta configuración.
El anclaje se realiza preferentemente por la parte posterior de la unidad de receptor solar (1 ), es decir, por la parte de la cavidad (2) más alejada del concentrador secundario (4) lo que facilita el acople entre los concentradores secundarios (4) y permite que no haya espacio entre los lados coincidentes de cada base anterior (5) evitando así que se produzcan pérdidas por desbordamiento entre dichos espacios. Además se consigue evitar que la estructura soporte (8) reciba radiación directa, ya que si se anclase a algún punto de la cavidad (2) de la unidad del receptor (1 ) más cercano al concentrador secundario (4) se correría el riesgo de que algunos rayos entrasen por los posibles huecos que queden entre las aristas de los concentradores secundarios (4) limítrofes y dañasen la estructura soporte (8).
En el ejemplo de realización mostrado en las figuras la estructura soporte (8) forma una porción de círculo inferior a 180° en el plano horizontal y una porción de círculo inferior a 90° en el plano vertical superior de tal forma que los receptores siempre mirarán hacia abajo al campo de heliostatos (30). La estructura soporte (8) se fija a la torre (6) por varios puntos de anclaje pudiendo estar tanto en el plano horizontal como en el plano vertical, de esta manera el reparto de esfuerzos en las vigas de la estructura soporte (8) es más uniforme. La planta que contiene dicho receptor tiene como fluido caloportador preferentemente vapor, aire, Hélio o C02, los cuales serán turbinados bajo un ciclo termodinámico de Brayton o de Rankine.

Claims

REIVINDICACIONES
1. - Receptor solar abovedado, que comprende un conjunto de unidades de receptores solares (1) que a su vez comprenden: una cavidad (2) adaptada para la circulación de un fluido presurizado y para la realización de un intercambio térmico con dicho fluido, un concentrador secundario (4) en conexión con la cavidad (2) de geometría tronco-piramidal con base anterior (5) poligonal y que está adaptado para la concentración de una radiación solar hacia la entrada de la cavidad (2), caracterizado por que las unidades de receptores solares (1) están localizadas de modo adyacente a través de las aristas de la base anterior (5) poligonal del concentrador secundario (4) de modo que la superficie formada por la unión de dichas bases anteriores (5) es una superficie abovedada.
2. - Receptor solar abovedado, según la reivindicación 1 , caracterizado por que las unidades de receptores solares (1) comprenden receptores tubulares.
3.- Receptor solar abovedado, según la reivindicación 1 , caracterizado por que las unidades de receptores solares (1) comprenden receptores volumétricos.
4.- Receptor solar abovedado, según una cualquiera de las reivindicaciones anteriores, caracterizado por que los concentradores secundarios (4) de las unidades de receptores solares (1) poseen la misma geometría tronco-piramidal.
5.- Receptor solar abovedado, según una cualquiera de las reivindicaciones 1 a 3, caracterizado por que comprende al menos tres unidades de receptores solares (1) donde la base anterior (5) poligonal de dos concentradores secundarios (4) es hexagonal y un tercer concentrador secundario (4) comprende una base anterior (5) pentagonal.
6. - Planta solar que comprende: - una torre (6),
- un campo de heliostatos (30) orientados hacia dicha torre (6), caracterizada por que la torre (6) comprende el receptor solar abovedado descrito en una cualquiera de las reivindicaciones anteriores.
7. - Planta solar, según la reivindicación 6, caracterizada por que la torre (6) comprende: - al menos una hendidura (7) con forma abovedada localizada en su parte superior, y
- una estructura soporte (8) del receptor solar abovedado con forma abovedada localizada en el interior de dicha hendidura (7).
8. - Planta solar, según la reivindicación 7, caracterizada por que la estructura soporte (8) comprende una estructura reticular de barras interconectadas en nudos formando triángulos (9).
9. - Planta solar, según la reivindicación 8, caracterizada por que la cavidad (2) de cada unidad de receptor solar (1) está localizada entre las tres barras de cada triángulo (9) de la estructura soporte (8) y por que la estructura soporte (8) comprende al menos un elemento de unión (10) que se extiende entre la cavidad (2) y un punto del triángulo (9).
PCT/ES2015/070081 2014-02-11 2015-02-10 Receptor solar abovedado y planta solar que comprende dicho receptor WO2015121519A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430185A ES2545695B1 (es) 2014-02-11 2014-02-11 Receptor solar abovedado y planta solar que comprende dicho receptor
ESP201430185 2014-02-11

Publications (1)

Publication Number Publication Date
WO2015121519A1 true WO2015121519A1 (es) 2015-08-20

Family

ID=53799624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070081 WO2015121519A1 (es) 2014-02-11 2015-02-10 Receptor solar abovedado y planta solar que comprende dicho receptor

Country Status (2)

Country Link
ES (1) ES2545695B1 (es)
WO (1) WO2015121519A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384320B1 (en) * 2000-10-13 2002-05-07 Leon Lung-Chen Chen Solar compound concentrator of electric power generation system for residential homes
WO2013160872A2 (en) * 2012-04-26 2013-10-31 Stellenbosch University Solar power tower receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384320B1 (en) * 2000-10-13 2002-05-07 Leon Lung-Chen Chen Solar compound concentrator of electric power generation system for residential homes
WO2013160872A2 (en) * 2012-04-26 2013-10-31 Stellenbosch University Solar power tower receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEGAL A ET AL.: "Solar ground reformer.", SOLAR ENERGY, vol. 75, no. 6, OXFORD, pages 479 - 481, XP004473181, ISSN: 0038-092X *
YOGEV A ET AL.: "Solar tower reflector systems: a new approach for high- temperature solar plants.", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 23, no. 4, pages 239 - 245, XP004101155, ISSN: 0360-3199 *

Also Published As

Publication number Publication date
ES2545695B1 (es) 2016-06-23
ES2545695A1 (es) 2015-09-15

Similar Documents

Publication Publication Date Title
ES2385591B1 (es) Módulo soporte para colector solar con subestructura triangular.
ES2201080T3 (es) Central solar para la produccion de energia electrica y/o hidrogeno.
ES2631805T3 (es) Conjunto óptico con alto nivel de eficiencia para el almacenamiento y el uso de energía de una fuente solar
ES2375389B1 (es) Planta de concentración solar tipo fresnel con reconcentrador secundario optimizado.
ES2425466A1 (es) Dispositivo de generación solar mediante sistema de haz descendente
ES2345759B2 (es) Receptor para central solar con espejos longitudinales.
ES2330143T3 (es) Sistema de campo de colectores solares hiperbolicos.
ES2703050T3 (es) Sistema de concentración de energía solar que comprende unas estructuras de soporte para múltiples heliostatos
ES2375887A1 (es) Estructura con vigas de sujeción de reflector primario.
ES2715612T3 (es) Elemento de captación y concentración de la radiación solar directa
ES2380850B1 (es) Estructura con viga de torsión en celosía para colector solar cilindro-parabólico.
ES2525196A1 (es) Receptor solar de torre tubular aislado a las pérdidas energéticas por radiación
ES2537607B2 (es) Dispositivo rotatorio horizontal de concentración de la radiación solar
WO2015121519A1 (es) Receptor solar abovedado y planta solar que comprende dicho receptor
WO2011144773A1 (es) Dispositivo de concentración de la radiación solar, con espejos y receptor longitudinales
ES2639583B1 (es) Generador de energía termosolar
KR20120123944A (ko) 다목적 태양광 집광장치
WO2015139152A1 (es) Concentrador solar con espejos planos orientados de norte-sur y espejo secundario cilindro-parabólico con absorbedor centrado
ES2794777T3 (es) Receptor solar que comprende aberturas de luz y una camisa de agua para enfriar las aberturas de luz
WO2016108156A1 (es) Sistema de precalentamiento solar de líquidos que tiene una abertura termosifónica y nanolentes concentradores y aceleradores convectivos
KR20170142631A (ko) 태양광 멀티목적 집광장치
ES2317802B1 (es) Captador solar fototermico activo de baja temperatura.
ES2735303B2 (es) Receptor solar de torre exterior
WO2013164496A1 (es) Receptor termosolar
WO2017015771A1 (es) Dispositivo para concentrar radiación solar parabólico y métodos para determinar la maqueta digital y para construir el dispositivo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748658

Country of ref document: EP

Kind code of ref document: A1