WO2017015771A1 - Dispositivo para concentrar radiación solar parabólico y métodos para determinar la maqueta digital y para construir el dispositivo - Google Patents
Dispositivo para concentrar radiación solar parabólico y métodos para determinar la maqueta digital y para construir el dispositivo Download PDFInfo
- Publication number
- WO2017015771A1 WO2017015771A1 PCT/CL2016/000039 CL2016000039W WO2017015771A1 WO 2017015771 A1 WO2017015771 A1 WO 2017015771A1 CL 2016000039 W CL2016000039 W CL 2016000039W WO 2017015771 A1 WO2017015771 A1 WO 2017015771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar radiation
- parabola
- points
- concentrating
- section
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/74—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
Definitions
- the present invention patent is directed to a device for concentrating solar radiation in order to obtain a higher volumetric efficiency when heating various industrial process lines by thermal energy, being especially applicable in mining.
- the invention also discloses a method for determining the template or digital model that will be used to construct the reflective surface of the device for concentrating radiation and additionally a method for constructing the device for concentrating solar radiation.
- the concentrator unit is composed of three parabolic surfaces units between them which are called section a, section b, and section c.
- This new configuration resulting from the union of said three surfaces gives rise to a device for concentrating solar radiation that reflects and concentrates the radiation at two different points called optical focuses of energy concentration, with focus on the point of convergence in the space of any straight line that is generated after bouncing or hitting a tangent to any parabola.
- the resulting configuration allows to double the volume of heated liquid of an industrial process line compared to a conventional parabolic concentrator device.
- Said device for concentrating solar radiation is composed of two main elements.
- the first of these is the solar radiation concentrator whose main function is to reflect and concentrate direct solar radiation from the sun.
- the solar radiation concentrator has a structural element in the form of rings welded at (ends and centered in the solar concentrator, this element has as main function to be the physical support where the element that captures the radiation reflected by the concentrating device will be deposited , it is generally vacuum sealed absorber tubes arranged along the solar concentrator that are responsible for capturing the reflection of solar radiation, said absorber tubes are cylindrical, hence the shape of rings of the support structure.
- renewable energies are inexhaustible, clean and can be used in a self-managed way (since they can be used in the same place they are produced). Unlike fossil energies, renewable energies are characterized because in their processes of transformation and use in useful energy they are not consumed or depleted on a human scale. Among these sources of energy are: Hydraulics, solar, wind and oceans. They also have the additional advantage of complementing each other, favoring integration between them.
- solar energy is used in two main ways.
- the first is the solar thermal power, in which the sun is used to heat fluids which imputes turbines, other machines or is used directly.
- the second is the photovoltaic conversion (solar panels) in which electricity is produced directly from the sun.
- the first thing to distinguish is between solar devices that take advantage of the photoelectric effect, to directly generate electricity from the photovoltaic panels, from which they take advantage of the energy of solar radiation to raise the temperature of some fluid directly or indirectly (through of a solid).
- a solar thermal device transforms the radiant energy emitted by the sun into thermal energy.
- they are projects that can be applied from a residential, commercial to industrial scale, with powers of the order of 700 (W / m 2 ). Since thermal energy cannot be transported efficiently over large distances, this type of technology is especially suitable in areas where demand is concentrated, for example companies, houses, buildings, industries, etc.
- the main components of these devices are the solar energy collection system, the water storage unit, the exchange unit, support unit, the hydraulic network and the electrical and control unit.
- the main barriers are associated with the volatility of fossil fuel prices and their subsidies, poor awareness of environmental issues (not considering them in the calculations) and relatively high initial costs, which makes this type of energy DOCO accessible To an average home.
- the investment cost is between 1,294 and 2,000 (USD / kW), with maintenance costs between 2.14 and 28.5 (USD / kW) per year.
- the average cost of energy is 5.5 to 19.1 cents (USD / kWh).
- Passive solar devices are defined as the set of techniques aimed at the use of solar thermal energy directly, without transforming it into another type of energy, for immediate use or for storage without the need for mechanical systems or external energy input .
- Medium temperature devices are mainly based on cylindrical parabolic concepts, which consist of cylindrical mirrors whose cross section is a parabola, so that solar radiation is concentrated on the central focal axis. Concentration ratios between 30 and 90 are achieved, and powers per unit field between 30 and 80 MW. This is the most widespread thermo-solar technology in concentration applications, with more than 30 years of experience; Since the 1970s, these collectors have been used in the generation of electricity and hot water at medium temperature (between 100 and 400 ° C) for industrial uses.
- the absorber (or receiver) equipment In the parabolic trough concentration collectors, two clearly differentiated elements can be distinguished: the absorber (or receiver) equipment and the optical concentration or concentrator unit, with different functionalities and locations.
- the receiver is the element of the device where radiation is absorbed and converted into another type of energy.
- the concentrator is the optical unit of the collector that directs the radiation on the receiver.
- the opening of the concentrator is the open space through which solar radiation is intercepted.
- the parabolic trough collector is formed by mirrors in the form of a parabolic trough that reflects the irradiation of the sun, concentrating said solar radiation on a receiving tube, the tube must be located at the focal point described by the parabola.
- a fluid preferably water, oil or a thermal fluid. Said fluid circulates inside the absorber tube and is heated by radiation.
- parabolic trough solar concentrators are:
- Parabolic trough solar collector devices and solar technologies in general are relatively inefficient since they have a low load factor (or plant factor) of between 15% and 35%.
- the load factor is the ratio between the actual energy produced by a generating plant in a given period, and the maximum energy that would have been produced if it had always been kept at full load. In other words, it is the ratio between the energy generated in a period and the product between the maximum power and the number of hours of the period. Consequently, in the case of a low plant factor such as parabolic trough solar collectors, a large number of solar collectors is also required to produce large amounts of energy.
- the CN201983472 patent discloses a solar collector device with two parabolas but both pointing towards the same focus. This patent, although it optimizes the distribution of the solar rays, differs from the present application in that it has two focuses of concentration instead of one, which doubles the volume of heated liquid.
- Patent ES2302485 discloses a solar collector device with two bulbs and two parabolic surfaces, however, the arrangement of the bulbs and the parabolic surfaces are thought of a totally different arrangement to the invention presented in the present patent.
- This patent although it has two focal points of convergence of solar rays, differs from the present application in that said concentration focuses are dependent on each other, that is, the concentration of final energy is made only at one point, the concentration focuses of the present invention they are independent of each other generating the duplicity of distribution of the solar rays causing two focuses of concentration, which is why twice as much liquid can be treated.
- the ES2302485 patent does not double the amount of liquid treated.
- the patent US2012285444 is the patent par excellence related to a conventional parabolic collector device, it discloses a parabolic solar collector that has a single parabolic geometry, as well as a single point of convergence of the solar rays or focus.
- the only similarity presented with the patent presented is the mathematical principle of the configuration of the parabola and the position of the focus at the point of concentration or convergence of the reflection of the sun's rays.
- This patent differs from the present application in that it has two focuses of concentration instead of one, it also differs in the geometry or surface of the reflector parabola.
- US2012285444 does not double the amount of liquid treated, nor does it optimize the distribution of solar rays.
- the solution proposed in the present invention is based on doubling the amount of volume or volumetric flow rate of liquid heated per unit area and thereby reducing the amount of solar collectors by 50 percent.
- thermal efficiency is expected to decrease by about 10%, this difficulty being somewhat negligible, if it is considered that the present invention is intended to have direct application as a thermal energy supply in the process of electro obtaining copper, in where the temperatures reached by the electrolyte is around 50 ° C and other medium temperature industrial applications (up to 400 ° C).
- a conventional parabolic trough collector bases its optical geometry on a parabola.
- the geometric place of the points of a plane equidistant from a given line, called a directrix, and from a point outside it, called a focus, is called a parabola.
- the tangent reflects the rays parallel to the axis of the parabola in the direction of the focus.
- the present invention proposes a parabolic solar collector device with bifocal geometry, that is, obtaining two concentration focuses while maintaining the same area unit.
- a first parable parabola 1
- parabola 1 will have the same properties of a conventional parabola (a single focus).
- the opening angles of a second parabola (parabola 2) are distorted in such a way that by truncating said parabola in half, each of the parts will join the ends of parabola 1 with it a second focus is achieved, with identical properties to the first. Consequently, a geometry is obtained that maintains the unit area of a conventional parabola, but that doubles the volumetric or liquid efficiency to be treated.
- the main advantage of the invention is that the solar concentration device will allow double concentration of the sun's rays, which will allow the treatment of twice the liquid, allowing the size of the solar fields to be reduced by 50 percent.
- Figure 1 Diagonal view of the device for concentrating parabolic solar radiation, the two main elements are distinguished; The support structure and the solar concentration unit.
- Figure 2 Front view of the support structure of the device for concentrating parabolic solar radiation, welded centered on the solar concentration unit.
- Figure 3 Front view of the solar concentration unit of the device for concentrating parabolic solar radiation.
- Figure 4 Support structure, which will serve as a support base to arrange the absorber tubes in a centered and firm manner.
- Figure 5 Superposition of parabola 1 and parabola 2 on the same central axis, this is the first step to give rise to the desired optical geometry for the device to concentrate solar radiation.
- Figure 6 The two superimposed parabolas are truncated into three sections, giving rise to section a and c of parabola 1 and section b of parabola 2.
- FIG. 7 Solar concentration unit of the device for concentrating solar radiation, focus 1 and focus 2 are included where solar radiation is projected by representative arrows. It can clearly see that section a and c (parable 1) reflect solar radiation at a single point (focus 1). Also, section b (parable 2) reflects solar radiation at a single point (focus 2).
- the invention discloses a Device concentrating solar radiation continuously and optimizes the distribution of solar radiation per unit area reducing the number of solar concentrators necessary to supply thermal energy to various industrial processes, in particular mining.
- Said device is composed of two main elements; a concentrator unit that includes three reflective surfaces; section a, section b and section c between the sections (1) (2) (3) (4) which allows the solar radiation to be reflected at two points (optical foci), thus allowing the volumetric flow rate of the heated liquid to be doubled, said sections (1) (2) (3) (4) are formed by superimposing on the same axis the parabola 1 of radius 60 cm and opening angle of 142 "on the parabola 2 of radius 60 cm and opening angle 62 ° ; notwithstanding the foregoing, the angles can extend and contract between 10 ° and 170 °, the radius of the parabolas can also vary between 5 and 2000cm; section a, b and c are covered by mirror-type stainless steel and a support structure composed of two rings (5) (7) of diameter 6 cm joined together by welding to a square metal profile of lcm x 1 cm x 3.1 cm long (6); this support structure allows stiffness and be the support base for the element designated to capture the solar radiation concentrated in
- Section a between (1) (2) is the truncation of parabola 1 at its beginning, then section a of parabola 1 adheres to a second semi-parabola truncated in the center of parabola 2 (2) section b of the parable continues until it joins section c of parable 1 (3). Section c of parabola 1 continues continuously until it stops (4);
- the construction material for the solar radiation reflection unit was initially mirror-like stainless steel, however it is presumed that other derivatives are stainless steel, anodized aluminum or its derivatives
- the proposed concentrating device in turn, contains two support elements in the form of rings (5) (7) joined by a square profile (6) where the two respective solar radiation concentration focuses are located.
- the optical focuses of solar radiation concentration are in the middle of said rings (5) (7)
- the support rings (5) (7) are welded at the ends and centered on the solar concentrator, said rings have as main function to seat the element intended to capture in the focus the solar radiation reflected by the solar concentrate.
- said element is an absorber tube that crosses along the collector in order to capture the solar radiation concentrated in the foci.
- the device for continuously concentrating solar radiation has a length of 180 cm. horizontally However, the length can vary between 5 and 3000 cm according to the requirements of the industry for each particular need.
- the first ring (7) of the support structure is welded right in the center of section B, between points (2) and (3). On the top of the first ring (7) a square profile (6) is welded vertically to which the second ring (5) adhered to the center of the square profile (6) is attached, both rings (5) and ( 7) They are perfectly circular.
- the invention also discloses the method for determining the digital model or template for constructing the device to concentrate parabolic solar radiation, which includes the following steps: a) define a first parabola (parabola 1), with a radius of 60 (cm) and opening angle of 142 (cm) b) define a second parabola (parabola 2) with equal radius of 60 (cm) and with an opening angle of 62 (cm)
- the invention also discloses the method of constructing the device for concentrating parabolic solar radiation, which includes the following steps:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Optical Elements Other Than Lenses (AREA)
- Photovoltaic Devices (AREA)
Abstract
Dispositivo para concentrar radiación solar parabólico que permite optimizar la distribución de la radiación solar por unidad de área reduciendo el número de concentradores solares necesarios para abastecer de energía térmica en procesos industriales, especialmente en minería, compuesto de dos elementos principales; una unidad concentradora que incluye tres superficies reflectoras; sección a, sección b y sección c comprendidas entre los tramos (1) (2) (3) {4) que permite reflejar en dos puntos (focos ópticos) la radiación solar permitiendo así, que se pueda duplicar el caudal volumétrico de líquido calentado, dichos tramos (1) (2) (3) (4) se forman al sobreponer sobre un mismo eje la parabóla1 sobre la parabola2; la sección a, b y c están cubiertas por acero inoxidable tipo espejo; una estructura de soporte ubicada en et centra de cada uno de los extremos de la unidad, compuesta de dos argollas (5) (7) unidas entre sí mediante soldadura a un perfil cuadrado metálico (6); esta estructura de soporte permite dar rigidez y ser la base de apoyo para el elemento designado para captar la radiación solar concentrada en los focos.
Description
DISPOSITIVO PARA CONCENTRAR RADIACION SOLAR PARABOLICO Y
MÉTODOS PARA DETERMINAR LA MAQUETA DIGITAL Y PARA CONSTRUIR EL DISPOSITIVO
La presente patente de invención está dirigida a un dispositivo para concentrar radiación solar con el fin de obtener un mayor rendimiento volumétrico al calentar mediante energía térmica diversas líneas de procesos industriales, siendo aplicable especialmente en la minería. La invención divulga también un método para determinar la plantilla o maqueta digital que se utilizara para construir la superficie reflectora del dispositivo para concentrar radiación y adicionalmente un método para construir el dispositivo para concentrar radiación solar.
Específicamente, se dirige a un dispositivo para concentrar radiación solar parabólico con dos superficies curvas adyacentes a una parábola, es decir la unidad concentradora se compone de tres superficies parabólicas unidades entre si las cuales se denominan sección a, sección b, y sección c. Esta nueva configuración resultante de la unión de dichas tres superficies da origen a un dispositivo para concentrar radiación solar que refleja y concentra la radiación en dos puntos distintos llamados focos ópticos de concentración de energía, entendiéndose por foco al punto de convergencia en el espacio de cualquier línea recta que se genera luego de rebotar o chocar sobre una tangente a una parábola cualquiera. La configuración resultante permite duplicar el volumen de líquido calentado de una línea de procesos industrial en comparación a un dispositivo concentrador parabólico convencional.
Dicho dispositivo para concentrar radiación solar está compuesto por dos elementos principales. El primero de ellos es el concentrador de radiación solar que tiene como función principal reflejar y concentrar la radiación solar directa proveniente del sol. En segundo lugar posee un elemento estructural en forma de argollas soldada en (os extremos y de forma centrada en el concentrador solar, este elemento tiene como función principal ser el soporte físico en donde se depositara el elemento que capte la radiación reflejada por el dispositivo concentrador, generalmente son tubos absorbedores sellados al vacío dispuestos a lo largo del concentrador solar los encargados de captar el reflejo de la radiación solar, dichos tubos absorbedores son cilindricos, de ahí la forma de argollas de la estructura de soporte.
Estado de la Técnica
Las energías renovables son inagotables, limpias y se pueden utilizar de forma auto gestionada (ya que se pueden aprovechar en el mismo lugar en que se producen). A diferencia de las energías fósiles, las energías renovables se caracterizan porque en sus procesos de transformación y aprovechamiento en energía útil no se consumen ni se agotan en una escala humana. Entre estas fuentes de energías están: La hidráulica, la solar, la eólica y la de los océanos. Además tienen la ventaja adicional de complementarse entre sí, favoreciendo la integración entre ellas.
El aprovechamiento por el hombre de las fuentes de energía renovable, entre ellas la energía solar, es muy antiguo. Los primeros usos de la energía sotar, datan de la antigua Grecia, cuando Sófocles propuso la construcción de las viviendas en relación a la posición del sol, esta evidencia
histórica indica que desde muchos siglos antes ya se utilizaban y su empleo continuó durante toda la historia hasta la llegada de la "Revolución Industrial", en la que, debido al bajo precio del petróleo, fueron abandonadas.
Sin embargo, un punto de inflexión importante en la historia de la ejnergía solar fue un calentador solar sumamente eficiente inventado por Charles Greeley Abbott en 1936. El crecimiento de esta industria fue alto hasta mediados de los 50's, cuando el bajo costo del gas natural estanco nuevamente la creciente "industria solar".
El abandono, para fines prácticos, de la energía solar duró hasta los 70's. Pero en esos años el aumento en el precio del petróleo y gas llevó a un resurgimiento en el uso de la energía solar para calentar hogares y agua, así como en la generación de electricidad. Más aun, la Guerra del Golfo de 1990 aumentó exponencialmente hasta el día de hoy el interés en la energía solar como una alternativa viable del petróleo.
En la actualidad, la energía solar se usa de dos formas principales. La pri ñera es la potencia térmica solar, en la que el sol se usa para calentar fluidos los cuales impu san turbinas, otras máquinas o bien es utilizada de forma directa. La segunda es la conversión fotovoltaica (paneles solares) en los que la electricidad es producida directamente del sol.
Existen múltiples dispositivos de aprovechamiento de la energía solar, por lo que conviene realizar una clasificación. Lo primero que hay que distinguir es entre los dispositivos solares que aprovechan el efecto fotoeléctrico, para generar directamente electricidé d en los paneles fotovoltaicos, de los que aprovechan la energía de la radiación solar para elevar la temperatura de algún fluido directa o indirectamente (a través de un sólido).
Un dispositivo solar térmico transforma la energía radiante emitida por el sol en energía térmica. En general, son proyectos que pueden aplicarse desde una escala re sidencial, comercial hasta industrial, con potencias del orden de 700 (W/m2). Dado que la energía térmica no se puede transportar eficientemente a través de grandes distancias, este tipo ds tecnologías son especialmente adecuadas en áreas donde se concentra la demanda, por ejemplo empresas, casas, edificios, industrias, etc.
Los principales componentes de estos dispositivos son el sistema de a ptación de energía solar, la unidad de almacenamiento de agua, la unidad de intercambio, unidad de apoyo, la red hidráulica y la unidad eléctrico y de control.
Las principales barreras están asociadas con la volatilidad de los precios de los combustibles fósiles y sus subsidios, la poca conciencia de temas ambientales (no considerarlos en los cálculos) y los costos iniciales relativamente altos, lo que hace que este tipo de energía sea DOCO accesible a un hogar promedio. A nivel locat se puede mencionar como barrera, además, la falta de profesionales capacitados para diseñar, implementar y mantener estos dispositivos. El costo de inversión se encuentra entre 1.294 y 2.000 (USD/kW), con costos de mantención entre 2,14 y 28,5 (USD/kW) al año. El costo medio de la energía es de 5,5 a 19,1 centavos (USD/kWh).
Los precios en Chile son inferiores a Europa porque las instalaciones pueden ser más simples no de obra menos costosa y serán aún más bajos en la medida que se desarrolle el mercado.
Gracias al enorme potencial que posee Chile en términos del recurso, en particular en la zona norte y centro, se prevé que estos dispositivos aumenten su participación en la generación nacional de energía térmica en los próximos años. Aunque es factible de aplicar en todo el país, los dispositivos térmicos obtienen mayor eficiencia y economía en el norte y zona central de Chile.
Atendiendo a los dispositivos que funcionan transformando la radiación del sol en su modo térmico, se pueden distinguir dos: dispositivos activos y pasivos.
Los dispositivos solares pasivos se definen como el conjunto de técnicas dirigidas al aprovechamiento de la energía solar térmica de forma directa, sin transformarla en otro tipo de energía, para su utilización inmediata o para su almacenamiento sin la necesidad de sistemas mecánicos ni aporte externo de energía.
En los dispositivos solares activos, por el contrario, para transformar la energía solar en calor útil se necesitan medios como equipamientos mecánicos o eléctricos, como pueden ser bombas o ventiladores, que muevan los fluidos de trabajo.
Dentro de los dispositivos solares activos podemos encontrar los colectores solares de concentración: Colectores cilindro-parabólicos y Fresnel (concentración 2-D), y por otro los dispositivos de torre central y los discos parabólicos (concentración 3-D).
Los dispositivos de media temperatura se basan principalmente en conceptos cilínd rico- parabólicos, que consisten en espejos cilindricos cuya sección transversal es una parábola, de tal forma que la radiación solar se concentra en el eje central focal. Se consiguen razones de concentración entre 30 y 90, y potencias por campo unitario entre 30 y 80 MW. Es ésta la tecnología termo-solar la más extendida en la actualidad en aplicaciones de concentración, con más de 30 años de experiencia; desde la década de (os 70 se han utilizando estos colectores en la generación de electricidad y agua caliente a media temperatura (entre 100 y 400°C) para usos industriales.
En los colectores de concentración cilindro-parabólico se pueden distinguir dos elementos claramente diferenciados: el equipo absorbedor (o receptor) y la unidad óptica de concentración o concentrador, con funcionalidades y ubicaciones distintas. El receptor es el elemento del dispositivo donde la radiación se absorbe y se convierte en otro tipo distinto de energía. El concentrador es la unidad óptico del colector que dirige ta radiación sobre el receptor. La apertura del concentrador es el espacio abierto a través del cual se intercepta la radiación solar.
El colector cilindro parabólico está formado por espejos en forma de un cilindro parabólico que refleja la irradiación del sol, concentrando dicha radiación solar en un tubo receptor, el tubo se debe encontrar en el punto focal descrito por la parábola.
En el interior del tubo receptor circula un fluido, de preferencia agua, aceite o un fluido térmico. Dicho fluido circula por el interior del tubo absorbedor y se calienta mediante la radiación.
El uso de los concentradores solares cilindro-parabólico son:
• Uso en la industria para generar agua entre 100-400 °C para procesos industriales
• Calentamiento de agua potable para uso en la zona urbana, tales como casa, oficinas,
hoteles, etc.
• Aplicación energética, como producción de energía eléctrica
• Desalineación de agua de mar
• Detoxificación de efluentes industriales en la zona industrial y agrícola.
Los dispositivos colectores solares cilindro parabólicos y las tecnologías solares en general son relativamente ineficientes ya que posen un bajo factor de carga (o factor de planta) de entre 15% y 35%. Tomando como referencia que el factor de carga para plantas de combustible fósil es entre 60% y 90%. El factor de carga es la relación entre la energía real producida por una central generadora en un período dado, y la energía máxima que hubiera producido si se hubiera mantenido siempre a plena carga. Dicho de otro modo, es el cuociente entre la energía generada en un período y el producto entre Ja potencia máxima y el número de horas del período. En consecuencia para el caso de un bajo factor de planta como es el caso de los colectores solares cilindros parabólicos, para producir grandes cantidades de energía se necesita también, de una gran cantidad de colectores solares.
Lo anterior presenta un inconveniente serio y problemático para el emplazamiento incluso en zonas rurales de escasa población, descartándose de lleno la instalación en zonas rurales y urbanas. Debido a que se necesitan grandes cantidades de espacio físico (área) para instalar el campo de colectores solares, lo que no sofo genera problemas de contaminación ambiental visual y genera un impacto ambiental negativo aunque leve sobre la flora y fauna del lugar de emplazamiento y problemas sociopolíticos entre la comunidad y la empresa, sino que además hay un problema aun mas grave, ya que al necesitar de una gran cantidad de colectores solares para generan una cantidad mínima de energía aceptable, esto encarece en gran medida los costos de inversión de los proyectos termo solares de tecnología parabólica, en consecuencia encareciendo el costo total del proyecto que es la principal barrera de entrada al mercado (alto costo en comparación a los combustibles fósiles).
En la patente CN201983472 se divulga un dispositivo colector solar de dos parábolas pero ambas apuntando hacia un mismo foco. Esta patente, si bien optimiza la distribución de los rayos solares, se diferencia de la presente solicitud en que esta posee dos focos de concentración en vez de uno, lo que duplica el volumen de líquido calentado.
En la patente ES2302485 se divulga un dispositivo colector solar de dos focos y dos superficies parabólicas, sin embargo, la disposición de los focos y las superficies parabólicas están pensados de una disposición totalmente distinta a la invención presentada en la presente patente. Esta patente, si bien posee dos focos de convergencia de rayos solares, se diferencia de la presente solicitud en que dichos focos de concentración son dependientes uno del otro, es decir la concentración de energía final se hace solo en un punto, los focos de concentración de la presente invención son independientes uno del otro generando la duplicidad de distribución de los rayos solares provocando dos focos de concentración, razón por la cual se podrá tratar el doble de liquido. La patente ES2302485 no duplica la cantidad de líquido tratado.
La patente US2012285444 es la patente por excelencia relacionada a un dispositivo colector parabólico convencional, en ella se divulga un colector solar parabólico que posee una sola geometría parabólica, así como también un solo punto de convergencia de los rayos solares o foco.
La única similitud que presenta con la patente presentada es el principio matemático de la configuración de la parábola y la posición del foco en el punto de concentración o convergencia del reflejo de los rayos solares. Esta patente se diferencia de la presente solicitud en que esta posee dos focos de concentración en vez de uno, además se diferencia en la geometría o superficie de la parábola reflectora. La patente US2012285444 no duplica la cantidad de líquido tratado, ni tampoco optimiza la distribución de los rayos solares.
La solución propuesta en la presente invención, se basa en duplicar la cantidad de volumen o caudal volumétrico de líquido calentado por unidad de área y con ello disminuir la cantidad de colectores solares en un 50 porciento. Sin embargo, se espera que la eficiencia térmica disminuya cerca de un 10%, siendo esta dificultad algo totalmente despreciable, si se considera que el presente invento esta pensado tenga aplicación directa como suministro de energía térmica en el proceso de electro obtención del cobre, en donde las temperaturas que alcanza el electrolito es alrededor de 50 °C y otras aplicaciones industriales de mediana temperatura (hasta 400 °C).
Para poder llevar a cabo lo descrito anteriormente se desarrollo un dispositivo con una geométria óptica más eficiente de un colector solar parabólico convencional (ampliamente utilizado en el mercado).
Un colector cilindro-parabólico convencional, basa su geometría óptica en una parábola. En términos matemáticos, se denomina parábola al lugar geométrico de los puntos de un plano que equidistan de una recta dada, llamada directriz, y de un punto exterior a ella, llamado foco. Una consecuencia de gran importancia es que Ja tangente refleja los rayos paralelos al eje de la parábola en dirección al foco. La concentración de la radiación solar en un punto, mediante un reflector parabólico.
La ecuación de una parábola toma su forma más simple cuando su vértice está en el origen y su eje coincide con uno de los ejes coordenados. Considerando la parábola cuyo vértice está en el origen como es el caso observado de la figura a y cuyo eje coincide con el eje x; sean (p, 0) sus coordenadas.
Por definición de parábola, la ecuación de la directriz I es x= -p. Sea p(x, y) un punto cualquiera de la parábola. Por P se traza el segmento PA perpendicular a I. Entonces, por la definición de parábola, el punto P debe satisfacer la condición geométrica: |/p| = \pa\
Por el teorema del módulo de una línea recta, se tiene:
\FP\ = V(* - p)2 + y2
Y para el caso de la línea horizontal: \PA I = \x + p\
Elevando al cuadrado ambos miembros de la ecuación anterior y simplificando se obtiene:
y2 = 4px
Debido a que el Sol está tan alejado de la Tierra, sus rayos, en la superficie terrestre son prácticamente paralelos entre sí. Si un reflector parabólico se coloca de tal manera que su eje sea paralelo a los rayos del Sol, los rayos incidentes sobre el reflector son reflejados de manera que todos pasan por el foco, tal como se muestra en la figura d. Esta concentración de los rayos solares en el foco es el principio en que se basan los dispositivos para concentrar radiación solar parabólicos para elevar la temperatura de algún fluido o sustancia.
La presente invención propone un dispositivo colector solar parabólico con geometría bifocal, es decir obtener dos focos de concentración manteniendo la misma unidad de área. Para ello, en palabras simples, se superpondrán dos parábolas de distintos ángulos de apertura. Una primera parábola (parábola 1), la parábola 1 tendrá las mismas propiedades de una parábola convencional (un solo foco). Luego, para obtener un segundo foco, se distorsionan los ángulos de apertura de una segunda parábola (parábola 2) de tal forma que al truncar dicha parábola por la mitad, cada una de las partes se unirán a los extremos de la parábola 1 con ello se logra un segundo foco, de idénticas propiedades al primero. En consecuencia, se obtiene una geometría que mantiene la unidad de área de una parábola convencional, pero que duplica la eficiencia volumétrica o liquido a tratar.
La principal ventaja de la invención radica en que el dispositivo de concentración solar, permitirá doble concentración de los rayos solares, lo que permitirá tratar el doble de líquido permitiendo reducir en un 50 porciento el tamaño de los campos solares.
Breve descripción de las figuras
Figura 1: Vista diagonal del dispositivo para concentrar radiación solar parabólico, se distinguen los dos elementos principales; La estructura de soporte y la unidad de concentración solar.
Figura 2: Vista frontal de la estructura de soporte del dispositivo para concentrar radiación solar parabólico, soldada de forma centrada en la unidad de concentración solar .
Figura 3: Vista frontal de la unidad de concentración solar del dispositivo para concentrar radiación solar parabólico.
Figura 4: Estructura de soporte, que servirá como base de apoyo para disponer en su interior, de manera centrada y firme los tubos absorbedores.
Figura 5: Superposición ia parábola 1 y parábola 2 sobre un mismo eje central, esto es el primer paso para dar origen a la geometría óptica deseada para el dispositivo para concentrar radiación solar.
Figura 6: Las dos parábolas superpuestas se truncan en tres secciones, dando origen a la sección a y c de la parábola 1 y sección b de la parábola 2.
Figura 7: Unidad de concentración solar del dispositivo para concentrar radiación solar, se incluye el foco 1 y foco 2 en donde se proyecta mediante flechas representativas la radiación solar. Se puede
ver claramente que la sección a y c (parábola 1) reflejan la radiación solar en un solo punto (foco 1). Asimismo, la sección b (parábola 2) refleja la radiación solar en un solo punto (foco 2).
Descripción detallada de la invención
La invención divulga un Dispositivo concentrar radiación solar en forma continua y optimiza la distribución de la radiación solar por unidad de área reduciendo el número de concentradores solares necesarios para abastecer de energía térmica a diversos procesos industriales, en particular la minería.
Dicho dispositivo está compuesto de dos elementos principales; una unidad concentradora que incluye tres superficies reflectoras; sección a, sección b y sección c comprendidas entre los tramos (1) (2) (3) (4) que permite reflejar en dos puntos (focos ópticos) la radiación solar permitiendo así, que se pueda duplicar el caudal volumétrico de líquido calentado, dichos tramos (1) (2) (3) (4) se forman al sobreponer sobre un mismo eje la parábola 1 de radio 60 cm y ángulo de apertura de 142" sobre la parábola 2 de radio 60 cm y ángulo de apertura 62°; sin perjuicio de lo anterior, los ángulos pueden extenderse y contraerse entre 10° y 170°, el radio de las parábolas también puede variar entre 5 y 2000cm; la sección a, b y c están cubiertas por acero inoxidable tipo espejo y una estructura de soporte compuesta de dos argollas (5) (7) de diámetro 6 cm unidas entre si mediante soldadura a un perfil cuadrado metálico de lcm x 1 cm x 3,1 cm de largo (6); esta estructura de soporte permite dar rigidez y ser la base de apoyo para el elemento designado para captar la radicación solar concentrada en los focos; el diámetro de las argollas (5) y (7) puede variar entre lcm y 200cm y la barra metálica (6) que une las argollas (5) y (7) mide entre 1 cm. y 300cm.
La sección a entre (1) (2) es el truncamiento de la parábola 1 en su inicio, luego la sección a de la parábola 1 se adhiere a una segunda semi parábola truncada en el centro de la parábola 2 (2) la sección b de la parábola sigue continua hasta unirse a la sección c de la parábola 1 (3). La sección c de la parábola 1 continúa de manera continua hasta el tope (4); el material de construcción para la unidad de reflexión de la radiación solar inicialmente a sido acero inoxidable tipo espejo, sin embargo se presume que otros derivados acero inoxidable, aluminio anodizado o sus derivados
El dispositivo concentrador que se propone, a su vez contiene dos elementos de soportes en forma de argollas (5) (7) unidos por un perfil cuadrado (6) en donde se encuentran los dos respectivos focos de concentración de radiación solar. Los focos ópticos de concentración de radiación solar están en el medio de dichas argollas (5) (7)
Las argollas de soporte (5) (7) son soldadas en los extremos y de forma centrada en el concentrador solar, dichas argollas tienen como función principal asentar el elemento destinado a captar en el foco la radiación solar reflejada por el concentrado solar. Generalmente dicho elemento es un tubo absorbedor que atraviesa a lo largo del colector para así, captar la radiación solar concentrada en el los focos. El dispositivo para concentrar radiación solar de forma continua posee un largo de 180 cm. de manera horizontal. Sin embargo el largo puede variar entre 5 y 3000 cm según los requerimientos de la industria para cada necesidad en particular.
La primera argolla (7) de la estructura de soporte esta soldada justo en el centro de la sección B, entre los puntos (2) y (3). En el tope de la primera argolla (7) esta soldado de forma vertical un perfil cuadrado (6) al cual se le adhiere la segunda argolla (5) soldada en el centro del perfil cuadrado (6), ambas argollas (5) y (7) son perfectamente circulares.
La invención también divulga el método para determinar la maqueta digital o plantilla para construir el dispositivo para concentrar radiación solar parabólico, el cual incluye los siguientes pasos: a) definir una primera parábola (parábola 1), con un radio de 60 (cm) y ángulo de apertura de 142 (cm) b) definir una segunda parábola (parábola 2) con igual radio de 60 (cm) y con un ángulo de apertura de 62 (cm)
c) superponer de forma alineada en un mismo eje central la parábola 1 y parábola 2
d) definir los puntos de corte o puntos de inflexión entre ambas parábolas (2) (3)
e) eliminar de la parábola 1 los tramos comprendidos entre los puntos (2) (3); quedando definida la sección b del dispositivo
f) eliminar de la segunda parábola los tramos comprendidos entre los puntos (8) (2); quedando definida la sección a del dispositivo
g) eliminar de la segunda parábola los tramos comprendidos entre los puntos (3) (9); quedando definida la sección c del dispositivo
h) trazar una línea continua que una los puntos (1) (2) (3) (4), siguiendo la curva de las parábolas; quedando definida la geometría del dispositivo.
i) proyectar la geometría del dispositivo en línea horizontal en un ángulo de 90 grados, una longitud de 110 cm. quedando definido el largo del colector y la superficie reflectora.
Ademas, la invención también divulga el método para construir el dispositivo para concentrar radiación solar parabólico, el cual incluye los siguientes pasos:
a) imprimir o dibujar plantilla-maqueta digital obtenida siguiendo la metodología para determinar la maqueta digital o plantilla para construir el dispositivo para concentrar radiación solar parabólico. b) cortar un trozo de cañón de 6 cm de diámetro y de 1,5 cm de ancho.
c) cortar una barra (6) de fierro metálica de 3.1 cm de largo y 1 cm de ancho
d) unir mediante soldadura las dos argollas metálicas (5 y 7) en los extremos de la barra (6); quedando armada la estructura de soporte.
e) medir y cortar los trozos de aluminio anodizado o acero inoxidable correspondientes a cubrir las superficies de las secciones a, b, c .
f) unir las secciones a, b, c mediante remaches o soldadura; quedando armada la superficie concentradora
g) unir mediante soldadura la argolla (7) de la estructura de soporte en el canto lateral centrado de la superficie colectora, es decir en el centro, entre de los puntos (2) y (3), quedando armado el dispositivo para concentrar radiación solar de doble foco de concentración.
Claims
1. - Dispositivo para concentrar radiación solar parabólico de forma continua que permite optimizar la distribución de la radiación solar por unidad de área reduciendo el número de concentradores solares necesarios para abastecer de energía térmica a procesos industriales, especialmente procesos mineros, CARACTERIZADO porque comprende dos elementos principales;
• una unidad concentradora que incluye tres superficies reflectoras; sección a, sección b y sección c comprendidas entre los tramos (1) (2) (3) (4) que permite reflejar en dos puntos (focos ópticos) la radiación solar permitiendo así, que se pueda duplicar el caudal volumétrico de líquido calentado, dichos tramos (1) (2) (3) (4) se forman al sobreponer sobre un mismo eje ta parábola 1 y la parábola 2; la sección a, b y c están cubiertas por acero inoxidable tipo espejo;
• una estructura de soporte compuesta de dos argollas (5) (7) unidas entre si mediante soldadura a un perfil cuadrado metálico (6); esta estructura de soporte permite dar rigidez y ser la base de apoyo para el elemento designado para captar la radicación solar concentrada en los focos.
2. - Dispositivo para concentrar radiación solar parabólico de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque el ángulo de apertura de la parábola 1, es de 142° y para la parábola 2 es 82° para ambos casos el radio es igual a 60 cm.
3. - Dispositivo para concentrar radiación solar parabólico de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque los ángulos de apertura para las parábolas 1 y 2, están entre 10° y 170°, con un radio de 60 cm.
4. - Dispositivo para concentrar radiación solar de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque los radios de las parábolas 1 y 2, están entre 5 y 2000 cm.
5. - Dispositivo para concentrar radiación solar parabólico de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque el largo del dispositivo para concentrar radiación solar parabólico está entre 5cm y 3000 cm.
6. - Dispositivo para concentrar radiación solar parabólico de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque el diámetro de las argollas (5 y 7) es entre lcm y 200cm.
7. - Dispositivo para concentrar radiación solar parabólico de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque la barra metálica (6) que une las argollas (5 y 7) mide entre 1 cm. y 300cm.
8. -Dispositivo para concentrar radiación solar parabólico de forma continua de acuerdo a la reivindicación 1 CARACTERIZADO porque el material constructivo para la reflexión de la radiación solar es de acero inoxidable, aluminio anodizado y sus derivados.
9. - Método para determinar la maqueta digital o plantilla para construir el dispositivo para concentrar radiación solar parabólico de la reivindicación N° 1, que permite optimizar la distribución de la radiación solar por unidad de área reduciendo el número de concentradores solares necesarios para abastecer de energía térmica a procesos industriales, CARACTERIZADO porque incluye los siguientes pasos: a) definir una primera parábola (parábola 1), con un radio de 60 (cm) y ángulo de apertura de 142 (cm) b) definir una segunda parábola (parábola 2) con igual radio de 60 (cm) y con un ángulo de apertura de 62 (cm)
c) superponer de forma alineada en un mismo eje central la parábola 1 y parábola 2
d) definir los puntos de corte o puntos de inflexión entre ambas parábolas (2) (3)
e) eliminar de la parábola 1 los tramos comprendidos entre los puntos (2) (3); quedando definida la sección b del dispositivo
f) eliminar de la segunda parábola los tramos comprendidos entre los puntos (8) (2); quedando definida la sección a del dispositivo
g) eliminar de la segunda parábola los tramos comprendidos entre los puntos (3) (9); quedando definida la sección c del dispositivo
h) trazar una línea continua que una los puntos (1) (2) (3) (4), siguiendo la curva de las parábolas; quedando definida la geometría del dispositivo.
i) proyectar la geometría del dispositivo en línea horizontal en un ángulo de 90 grados, una longitud de 110 cm, quedando definido el largo del colector y la superficie reflectora.
10. - Método para construir el dispositivo para concentrar radiación solar parabólico de la reivindicación N° 1, que permite optimizar la distribución de la radiación solar por unidad de área reduciendo el número de concentradores solares necesarios para abastecer de energía térmica a procesos industriales, CARACTERIZADO porque incluye los siguientes pasos: a) imprimir o dibujar plantilla-maqueta digital obtenida siguiendo la metodología para determinar la maqueta digital o plantilla para construir el dispositivo para concentrar radiación solar parabólico. b) cortar un trozo de cañón de 6 cm de diámetro y de 1,5 cm de ancho.
c) cortar una barra (6) de fierro metálica de 3.1 cm de largo y 1 cm de ancho
d) unir mediante soldadura las dos argollas metálicas (5 y 7) en los extremos de la barra (6); quedando armada la estructura de soporte.
e) medir y cortar los trozos de aluminio anodizado o acero inoxidable correspondientes a cubrir las superficies de las secciones a, b, c .
f) unir las secciones a, b, c mediante remaches o soldadura; quedando armada la superficie concentradora
g) unir mediante soldadura la argolla (7) de la estructura de soporte en el canto lateral centrado de la superficie colectora, es decir en el centro, entre de los puntos (2) y (3)., quedando armado el dispositivo para concentrar radiación solar de dobfe foco de concentración.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL2108-2015 | 2015-07-28 | ||
CL2015002108A CL2015002108A1 (es) | 2015-07-28 | 2015-07-28 | Dispositivo para concentrar radiación solar parabólico de forma continua y métodos para determinar la maqueta digital o planilla y para construir el dispositivo para concentrar radiación solar parabólico. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017015771A1 true WO2017015771A1 (es) | 2017-02-02 |
Family
ID=56081015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2016/000039 WO2017015771A1 (es) | 2015-07-28 | 2016-07-27 | Dispositivo para concentrar radiación solar parabólico y métodos para determinar la maqueta digital y para construir el dispositivo |
Country Status (2)
Country | Link |
---|---|
CL (1) | CL2015002108A1 (es) |
WO (1) | WO2017015771A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4123005A1 (en) | 2021-07-19 | 2023-01-25 | The Procter & Gamble Company | Cleaning composition comprising bacterial spores |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4285330A (en) * | 1979-12-13 | 1981-08-25 | Shook Wayne A | Concentrating solar collector |
US4286580A (en) * | 1979-06-11 | 1981-09-01 | Elmo Sitnam | Solar collector |
US4602613A (en) * | 1976-11-30 | 1986-07-29 | Aai Corporation | Solar energy concentrating and collecting arrangement |
US7763840B2 (en) * | 2005-04-07 | 2010-07-27 | Solar Power Solutions, Inc. | Radiant energy collector |
US8210164B2 (en) * | 2011-09-23 | 2012-07-03 | Edward Herniak | Quasi-parabolic solar concentrator and method |
-
2015
- 2015-07-28 CL CL2015002108A patent/CL2015002108A1/es unknown
-
2016
- 2016-07-27 WO PCT/CL2016/000039 patent/WO2017015771A1/es active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4602613A (en) * | 1976-11-30 | 1986-07-29 | Aai Corporation | Solar energy concentrating and collecting arrangement |
US4286580A (en) * | 1979-06-11 | 1981-09-01 | Elmo Sitnam | Solar collector |
US4285330A (en) * | 1979-12-13 | 1981-08-25 | Shook Wayne A | Concentrating solar collector |
US7763840B2 (en) * | 2005-04-07 | 2010-07-27 | Solar Power Solutions, Inc. | Radiant energy collector |
US8210164B2 (en) * | 2011-09-23 | 2012-07-03 | Edward Herniak | Quasi-parabolic solar concentrator and method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4123005A1 (en) | 2021-07-19 | 2023-01-25 | The Procter & Gamble Company | Cleaning composition comprising bacterial spores |
WO2023004213A1 (en) | 2021-07-19 | 2023-01-26 | The Procter & Gamble Company | Cleaning composition comprising bacterial spores |
Also Published As
Publication number | Publication date |
---|---|
CL2015002108A1 (es) | 2016-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Marefati et al. | Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids | |
Mokhtar et al. | A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study | |
US10345008B2 (en) | Solar thermal concentrator apparatus, system, and method | |
Cau et al. | Comparison of medium-size concentrating solar power plants based on parabolic trough and linear Fresnel collectors | |
Kim et al. | Efficient stationary solar thermal collector systems operating at a medium-temperature range | |
Macedo-Valencia et al. | Design, construction and evaluation of parabolic trough collector as demonstrative prototype | |
Roldán Serrano et al. | Concentrating solar thermal technologies | |
Muñoz et al. | Thermal regimes in solar-thermal linear collectors | |
FR2941038A1 (fr) | Concentrateur solaire statique optimal forme en spirale et muni de miroirs | |
Skouri et al. | Optical, geometric and thermal study for solar parabolic concentrator efficiency improvement under Tunisia environment: A case study | |
Mortazavi et al. | A review of solar compound parabolic collectors in water desalination systems | |
Boito et al. | Application of a fixed-receiver Linear Fresnel Reflector in concentrating photovoltaics | |
Osório et al. | One-Sun CPC-type solar collectors with evacuated tubular receivers | |
Panagopoulos et al. | Optical and thermal performance simulation of a micro-mirror solar collector | |
WO2012107605A1 (es) | Elemento, y panel de captación y concentración de la radiación solar directa | |
WO2017015771A1 (es) | Dispositivo para concentrar radiación solar parabólico y métodos para determinar la maqueta digital y para construir el dispositivo | |
AU2015101876A4 (en) | Solar concentrator comprising flat mirrors oriented north-south and a cylindrical-parabolic secondary mirror having a central absorber | |
Collares-Pereira et al. | Linear Fresnel reflector (LFR) plants using superheated steam, molten salts, and other heat transfer fluids | |
Cámara | Towards cost reduction in Concentrating Solar Power: Innovative design for an efficient Fresnel based solar field | |
Teles et al. | Optical analysis of low concentration evacuated tube solar collector | |
ES2803101A1 (es) | Colector cilindro-parabolico bifuncional e instalacion que comprende dicho colector | |
ES2726673T3 (es) | Concentrador solar con conexiones pivotantes separadas | |
ES2770726T3 (es) | Sistemas y métodos de generación de energía a partir de radiación solar | |
Tagle Salazar | Thermo-hydraulic performance modeling of thermal energy systems using parabolic trough solar collectors | |
Okafor | Optical Design and Performance Analysis of Linear Focusing Solar Thermal Collectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16829546 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16829546 Country of ref document: EP Kind code of ref document: A1 |