WO2012089370A1 - Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine - Google Patents

Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine Download PDF

Info

Publication number
WO2012089370A1
WO2012089370A1 PCT/EP2011/069345 EP2011069345W WO2012089370A1 WO 2012089370 A1 WO2012089370 A1 WO 2012089370A1 EP 2011069345 W EP2011069345 W EP 2011069345W WO 2012089370 A1 WO2012089370 A1 WO 2012089370A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
switching valve
closure body
inlet
pump
Prior art date
Application number
PCT/EP2011/069345
Other languages
English (en)
French (fr)
Inventor
Klaus Joos
Thorsten Allgeier
Juergen Arnold
Siamend Flo
Frank Nitsche
Peter Schenk
Alexander Schenck Zu Schweinsberg
Michael Bauer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN2011800629319A priority Critical patent/CN103282645A/zh
Priority to EP11778882.8A priority patent/EP2659127B1/de
Publication of WO2012089370A1 publication Critical patent/WO2012089370A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/0245Means for varying pressure in common rails by bleeding fuel pressure between the high pressure pump and the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/005Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/028Returnless common rail system

Definitions

  • the invention relates to a pressure-switching valve for a fuel injection system of an internal combustion engine, in particular a gasoline engine or gasoline engine, with a
  • a cylinder in which a closure body is movable for selectively closing an inlet, and wherein the closure body is provided with a first effective area on which hydraulic pressure acts to open the inlet. Furthermore, the invention relates to a fuel injection system with such a pressure-switching valve.
  • Such a fuel injection system comprises a high-pressure area (rail) and a low-pressure area to which fuel is supplied from a tank, preferably by means of a low-pressure pump, through lines.
  • the high-pressure area is additionally preceded by a high-pressure pump, which increases the pressure of the fuel for direct injection or high-pressure injection to preferably up to approximately 200 bar.
  • the fuel thus passes through the low-pressure pump first to the high-pressure pump, which additionally increases the pressure of the fuel.
  • a quantity control valve which makes it possible to regulate the pressure generated by the high-pressure pump by it can flow as a valve fuel from the pump delivery to the low pressure area.
  • an electromagnetic pressure control valve may be provided on the rail, which allows the fuel to flow from the rail back to the low-pressure region.
  • Switching valve should comprise at least one second valve device, which is connected in parallel with the first valve device.
  • a pressure control valve for a fuel injection system of an internal combustion engine comprising a cylinder in which a closure body for selectively closing an inlet is movable and the closure body is provided with a first effective area to the hydraulic pressure for opening the inlet acts.
  • the closure body also has a second active surface, which is designed larger than the first Wrk Discovery.
  • the pressure switching valve of this type works as follows: First, the closure body closes the inlet until a pressure has risen to a pressure value p1 at the first pressure surface. The pressure value p1 and the force thus achieved at the first wrist area is just so great that the closure body is displaced by the pressure then acting on the first wrist area, and thus the
  • Inlet is opened.
  • This fuel or fuel can flow through the inlet in the pressure-switching valve.
  • the flowing fuel now acts on the second Wrk knowledge which is larger than the first Wrk Discovery. Because of this difference in the size of the
  • Wrc inhabit the pressure at the inlet decreases to a pressure value p2, wherein the Pressure value p2 is less than the pressure value p1.
  • the pressure value p2 can be substantially smaller than the pressure value pl
  • a pressure-switching valve which has a very simple structure. Compared to known systems advantageously a more expensive electrical control is avoided because the problem is solved mechanically. This eliminates therefore also an otherwise required wiring of electrical components. A dependence on a control unit or the electric power amplifiers is eliminated. With the invention, a fuel injection system having a self-contained, independent from a control unit
  • the invention eliminates further components in the fuel injection system. Additional high pressure sensors are no longer needed. Consequently, it is a cost-effective system.
  • the power loss of the high pressure pump is small by this type of pressure control. Because of the second, larger effective area of the closure body, the residual delivery of the piston stroke of the fuel quantity not required back into the low-pressure region or the closure body stroke is more easily possible. Thus, the drive torque at the cam gear, which is required for the residual promotion of the high-pressure pump, correspondingly lower.
  • Another advantage of such a system is that the high pressure in the pump delivery chamber immediately drops after the valve has been opened and can only be exchanged with a slight over- pressure is promoted back to the low pressure range, so that the fuel heats up only slightly. This reduces the power loss.
  • an outlet is also advantageously provided, the body optionally closes the closure 5.
  • the closure body gives this outlet or
  • the closure body is advantageously resiliently biased against the inlet by means of a spring or a spring element. In this way, comes from the resilient bias a contact pressure on the preferably designed as a piston closure body. This contact pressure acts against the force of the fuel, which acts on the first or second Wrk Biology.
  • suitable choice of preferably arranged in the cylinder itself spring can thus be the pressure levels at which the pressure-switching valve opens and closes selected.
  • the closure body is resiliently biased by means of fluid pressure against the inlet.
  • a pressurized gas is used as the fluid.
  • the use of such a fluid also gives the closure body a dampening effect. This improves the vibration behavior of the closure body and thus the regulation of the fuel pressure.
  • the cylinder has a pressure chamber, which seals the closure body.
  • the closure body is preferably designed as a piston or a membrane, which spatially separates the pressure chamber within the cylinder. On the basis of the spatial separation within the cylinder is made possible that different pressures occur in the pressure-switching valve.
  • the pressure or overpressure of the fuel is applied.
  • the cylinder has an inlet space into which the inlet leads.
  • a line leads from the inlet space to said pressure chamber. Constructed in this way, a pressure equalization takes place in the pressure switching valve.
  • This pressure compensation influences the damping effect of the fluid of the spring-biased closure body in the pressure chamber. Due to the pressure compensation, damage can be preventively prevented if, for example, pressure fluctuations occur, which could briefly cause strong pressure surges.
  • the inlet is preferably closed and this closure is designed in the form of a seat valve with a valve seat.
  • This is a structurally simple and effective way to close the pressure switching valve and open.
  • seat valves which are known as poppet valves
  • the closure body is plate-shaped and is seated with its edge on the inlet opening so that it is closed and sealed.
  • the second Wrk Chemistry of the closure body is formed on a piston which acts together with the cylinder as a slide valve or forms a slide valve.
  • a slide valve also known as a piston valve
  • the fuel pressure can be controlled improved.
  • closure body is designed so that it acts both as a slide valve and as a seat valve or can be used.
  • the invention also provides for a use of the pressure switching valve according to the invention in a fuel injection system of a pump, in which the pump has a pumping space, which is connected by means of a first line to the inlet of the pressure switching valve.
  • a second line is provided here, which leads into the pumping space, and a third line, the connects one or the outlet of the pressure switching valve to the second line.
  • a pressure switching valve used in this way is able to regulate the overpressure occurring in a pump or high-pressure pump so that no impermissible overpressure is applied to the injection valves and can not damage them.
  • the pressure-switching valve leads in excess of the target pressure, the low-pressure fuel back into the fuel circuit in front of the high-pressure pump, i. into the low-pressure or inlet area of the high-pressure pump.
  • FIG. 1 is a diagram of an embodiment of a fuel injection system according to the prior art
  • Fig. 2 is a diagram of an embodiment of a fuel injection system according to the invention.
  • FIG. 3 shows the detail III of FIG. 2.
  • a fuel injection system 10 is illustrated according to the prior art, in which from a tank 12 by means of an electric fuel pump or low pressure pump 14 liquid fuel with about 5 bar pressure is conveyed into a conduit 16.
  • the line 16 serves as a supply line to a low pressure region 18 and a high pressure region 20 of the fuel injection system 10.
  • a pump 22 which is mechanically driven by a cam drive from an internal combustion engine used. This generates the required pressure for the high-pressure region 20, which then rests in a rail 24.
  • high-pressure injection valves 26 the fuel from the rail 24 finally reaches the internal combustion engine.
  • a possible, generated by the pump 22 overpressure can be regulated. This is done by a high pressure sensor 30 of the am
  • Rail 24 applied fuel pressure determined. This value is sent to a controller 32 passed, which in turn can control the pressure-switching valve 28. Together with the measured high pressure signal of the high pressure sensor 30, the controller 32 regulates the pressure to the desired level. This is necessary, inter alia, because excessive overpressure could cause damage to the fuel injection system 10.
  • a low-pressure damper 34 can be seen in FIG. 1, whose task is to damp the pressure pulsations in the low-pressure region 18. These pulsations can be caused in particular by a return of fuel from the pump 22 back into the low-pressure region 18.
  • a similar fuel injection system 10 as shown in Fig. 1 is shown. However, this has been dispensed with an electronic pressure control. Instead, an inventive pressure-switching valve 28 is provided on the fuel injection system 10 according to these figures.
  • the fuel injection system 10 according to FIG. 2 and FIG. 3 differs by an additional securing mechanism 38 in the form of a so-called rupture disk 40 or a mechanical pressure relief valve.
  • the pressure-switching valve 28 is installed in a cylinder 42 as a housing.
  • Cylinder 42 is a closure body 44 of the piston mold or a piston-shaped configuration.
  • One of the end faces of the piston-shaped closure body 44 has a stepped design and, in the direction of an inlet 46 formed on the front side of the cylinder 42, has two differently sized effective surfaces 48 and 50.
  • the active surface 48 is formed in the center of the closure body 44 as a circular disk and in its areal extent smaller than the active surface 50, which is to be found on a further recessed annular annular disc.
  • the closure body 44 is biased by a spring 52 toward the inlet 46 such that it can optionally close or open the inlet 46 with its wrinkle surface 48.
  • the first active surface 48 corresponds to the inlet 46 in order to seal it as well as possible.
  • the first active surface 48 and the inlet 46 are designed as a so-called seat valve or poppet valve.
  • an outlet 54 is provided on the lateral surface thereof to deliver fuel from pressure-switching valve 28 to the low-pressure region 18.
  • This outlet 54 can be optionally closed by the closure body 44. Depending on the pressure or force acting on the closure body 44, this shifts axially in the cylinder 42 and thereby can open or close the outlet 54.
  • a pressure chamber 56 in which the spring 52 is arranged, which urges the closure body 44 in the direction of the inlet 46, and an inlet space 58, in which the pressurized fuel flow through the inlet 46 and from which the fuel through the Outlet 54 can also flow out of the pressure-switching valve 28 again.
  • the two spaces 56 and 58 are thus sealed by the closure body 44 against each other and spatially separated.
  • a line 60 leads from the outlet 54 to the pressure chamber 56 and thus provides a pressure equalization between the low pressure region 18 and the pressure chamber 56 ago. In the pressure chamber 56, therefore, there is at least the low pressure which also urges the closure body 44 in the direction of the inlet 46. Therefore, the
  • Spring 52 equipped with relatively low spring force and be correspondingly small and lightweight.
  • the pump 22 is mechanical, usually driven by a camshaft. It generates in a pump chamber 62 that pressure which it discharges into the line 20. At the same time a line 64 is connected to the pump chamber 62, which leads to the inlet 46 of the pressure-switching valve 28. The outlet 54 of the pressure switching valve 28 is connected by means of a line 66 to the low-pressure region 18. Fuel under pressure can thus be discharged from the pumping chamber 62 into the conduit 64, through the pressure-switching valve 28 and through the conduit 66 into the low-pressure region 18.
  • the high-pressure pump 22 of the fuel injection system 10 generates an overpressure to be dissipated, this is present through the line 64 at the inlet 46 of the pressure-switching valve 28.
  • the inlet 46 of the pressure-switching valve 28 is thus at a pressure on the first, the inlet occlusive active surface 48th the piston-shaped closure body 44 acts. Since the piston-shaped closure body 44 is urged only resiliently against the inlet 46, this retracts as soon as the pressure force on the first active surface 48 is greater than the contact pressure of the closure body 44 of the spring 52 and the pressure chamber 56.
  • the inlet 46 is released and fuel first flows into the inlet space 58 of the pressure switching valve 28. Then, the fuel and its pressure is distributed to the second, larger Wrk Chemistry 50 of the closure body 44. This creates a larger pressure force on the closure body 44 and it can easily be moved axially further in the cylinder 42.
  • the closure body 44 releases the outlet 54 or opens it.
  • the fuel now flows through the outlet 54 in the direction of the low-pressure region 18.
  • the pressure during closing of the inlet 46 is much lower than that required to open the inlet 46.
  • the closure body 44 can be displaced axially in the cylinder 42 with less hydraulic pressure than through the smaller first pressure surface 48.
  • the pump 22 can therefore reduce its overpressure particularly quickly and, after the beginning of the discharge, that is, after the opening of the inlet 46, it must only convey against a comparatively low pressure.
  • the pump 22 therefore has a lower power loss, which is created by the release of pressure at the pressure-switching valve 28.
  • the rupture disks 40 helps, in particular in the case that the pump 22 generates an overpressure, which can not be compensated by the pressure-switching valve 28.
  • a pressure relief valve may be provided instead of the rupture disk. This can also reduce a pressure increase in the so-called hot soak. Then this overpressure enters the high-pressure region 20, which is connected to the low-pressure region 18 through a line 68.
  • the rupture disk 40 or the pressure limiting valve is arranged.
  • the rupture disk 40 has such a material nature and shape that it breaks or bursts if a certain overpressure rests against it. In this
  • 40 is realized may also be designed by other devices, such as another valve or a material with predetermined breaking point.
  • the pressure-switching valve 28 is integrated into the pump 22 and in particular in the housing.
  • the pressure-switching valve 28 may be integrated in the region above the pump chamber 62 of the pump 22 in a pump housing. This integral design reduces space requirements and weight.
  • the principle of the present invention thus lies in the fact that the fuel pump has a pump chamber 62 or delivery chamber with a hydraulically controllable pressure-switching valve 28 or pressure-switching valve connected thereto.
  • the pressure-switching valve 28 is designed so that when, during a pressure stroke, the pump-space pressure or pumping chamber pressure reaches a pressure value p1, the
  • Pressure switching valve 28 opens. Immediately thereafter, the pressure-switching valve 28 drops the pump-space pressure to a pressure value p2, wherein the pressure value p2 is smaller than the pressure value pl depending on the ratio of the size of the second effective area to the size of the first
  • the pressure value p2 can be substantially smaller than the pressure value p1.
  • the advantage of the pump 22 with such a two-stage pressure switching valve 28 over a pump with a pressure control valve with only one pressure value is a lower dissipation when operating the pump.
  • the advantage of the pump 22 with the two-stage pressure-switching valve 28 with respect to a pump with an electrically controllable quantity control valve is in particular in a lower manufacturing cost.

Abstract

Bei einem Druck- Schaltventil für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine, mit einem Zylinder (42), in dem ein Verschlusskörper (44) zum wahlweisen Verschließen eines Einlasses (46) beweglich ist, ist der Verschlusskörper (44) mit einer ersten Wirkfläche (48) versehen, auf die hydraulischer Druck zum Öffnen des Einlasses (46) wirkt, und der Verschlusskörper (44) weist eine zweite Wirkfläche (50) auf, die größer als die erste Wirkfläche (48) gestaltet ist. In den Figuren ist ein Druckregelventil (28) dargestellt, das abhängig von dem Druck in der Nierderdruck- Förderleitung (18,66) und dem hydraulischen Druck auf die erste (48) und zweite (50) Wirkfläche den Kraftstoff durch einen Auslass (54) absteuert.

Description

Beschreibung
Titel
Druck-Schaltventil für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft ein Druck-Schaltventil für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine, insbesondere einen Benzinmotor bzw. Ottomotor, mit einem
Zylinder, in dem ein Verschlusskörper zum wahlweisen Verschließen eines Einlasses beweglich ist, und bei dem der Verschlusskörper mit einer ersten Wirkfläche versehen ist, auf die hydraulischer Druck zum Öffnen des Einlasses wirkt. Ferner betrifft die Erfindung ein Kraftstoffeinspritzsystem mit einem derartigen Druck-Schaltventil.
Ein derartiges Kraftstoffeinspritzsystem umfasst einen Hochdruckbereich (Rail) und einen Niederdruckbereich, denen durch Leitungen Kraftstoff aus einem Tank, vorzugsweise mittels einer Niederdruckpumpe, zugeführt wird. Dem Hochdruckbereich ist zusätzlich eine Hochdruckpumpe vorgeschaltet, die den Druck des Kraftstoffs für eine Direkteinspritzung bzw. Hochdruckeinspritzung auf vorzugsweise bis zu ca. 200 bar erhöht. Der Kraftstoff gelangt also durch die Niederdruckpumpe zunächst zur Hochdruckpumpe, die den Druck des Kraftstoffs zusätzlich erhöht. Zum Einstellen der Fördermenge der Pumpe dient in der Regel ein Mengensteuerventil, welches es ermöglicht, den durch die Hochdruckpumpe erzeugten Druck zu regulieren, indem es als Ventil Kraftstoff vom Pumpenförder- raum zum Niederdruckbereich zurückströmen lassen kann. Alternativ kann ein elektromagnetisches Druckregelventil am Rail vorgesehen sein, das den Kraftstoff vom Rail zurück zum Niederdruckbereich strömen lässt.
Bekannte Direkteinspritzungen bei Ottomotoren arbeitet mit Einspritzdrücken von bis zu 200 bar. Der Druck wird dabei betriebspunktabhängig im Bereich 40 bis 200 bar eingeregelt. Stand der Technik bei der Hochdruckerzeugung sind Systeme mit einer Kolbenpumpe, die mechanisch vom Verbrennungsmotor angetrieben wird, mit einem Mengensteuerventil und mit einem Hochdrucksensor. Die Fördermenge der Pumpe wird über das Mengesteuerventil verändert. Zusammen mit dem gemessenen Hochdrucksignal regelt das Motor-Steuergerät den Druck auf das gewünschte Niveau ein. Die Ansteuerung der Einspritzventile erfolgt auf Basis des gemessenen Drucksignals. Aus DE 10 2005 022 661 A1 ist eine Fluidpumpe bzw. Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit einem Druck-Schaltventil bekannt, welches einem Förderraum der Fluidpumpe und einem Niederdruckeinlass zugeordnet ist. Ferner ist dort mindestens eine Ventileinrichtung vorgesehen. Das Druck- Schaltventil kann während einer Saugphase der Fluidpumpe eine Verbindung zwischen dem Förderraum und dem Niederdruckeinlass sperren. Das Druck-
Schaltventil soll mindestens eine zweite Ventileinrichtung umfassen, welche zu der ersten Ventileinrichtung parallel geschaltet ist. Die Verwendung von zwei unterschiedlichen und parallel angeordneten Ventileinrichtungen führt allerdings zu einer komplexen Konstruktion.
Offenbarung der Erfindung
Erfindungsgemäß ist ein Druck-Schaltventil bzw. Druckregelventil für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine geschaffen, mit einem Zylinder, in dem ein Verschlusskörper zum wahlweisen Verschließen eines Einlasses beweglich ist, und der Verschlusskörper mit einer ersten Wirkfläche versehen ist, auf die hydraulischer Druck zum Öffnen des Einlasses wirkt. Der Verschlusskörper weist ferner eine zweite Wirkfläche auf, die größer als die erste Wrkfläche gestaltet ist.
Das derartige Druck-Schaltventil funktioniert wir folgt: Zunächst verschließt der Verschlusskörper den Einlass so lange, bis an der ersten Wrkfläche ein Druck auf einen Druckwert p1 angestiegen ist. Der Druckwert p1 und die damit erzielte Kraft an der ersten Wrkfläche ist gerade so groß, dass der Verschlusskörper von dem dann an der ersten Wrkfläche wirkenden Druck verschoben und damit der
Einlass geöffnet wird.
Damit kann Brennstoff bzw. Kraftstoff durch den Einlass in das Druck-Schaltventil einströmen. Der strömende Kraftstoff wirkt nun an der zweiten Wrkfläche, die größer als die erste Wrkfläche ist. Aufgrund dieser Differenz in der Größe der
Wrkflächen sinkt der Druck am Einlass auf einen Druckwert p2 ab, wobei der Druckwert p2 kleiner als der Druckwert p1 ist. Abhängig vom Größenverhältnis der ersten und der zweiten Wirkfläche kann der Druckwert p2 wesentlich kleiner sein als der Druckwert pl
5 Durch die vorgeschlagene Gestaltung eines besonders bevorzugt kolbenförmigen Verschlusskörpers mit zwei unterschiedlich großen Wirkflächen, wird erreicht, dass der unter Hochdruck stehende Kraftstoffs zunächst an der kleineren Wrkfläche angreift und den Verschlusskörper öffnet, aber unmittelbar danach durch das Druck-Schaltventil bzw. dessen Zylinder strömt und die größere Wirk- l o fläche erfasst, so dass das Ventil leichter weiter aufgedrückt wird und der Kraftstoff mit nur geringem Überdruck in den Niederdruckbereich zurückgefördert wird.
Gemäß der Erfindung ist damit ein Druck-Schaltventil geschaffen, das einen sehr 15 einfachen Aufbau aufweist. Im Vergleich zu bekannten Systemen wird vorteilhaft eine aufwendigere elektrische Ansteuerung vermieden, da das Problem mechanisch gelöst wird. Damit entfällt folglich auch eine sonst erforderliche Verkabelung elektrischer Komponenten. Auch eine Abhängigkeit von einem Steuergerät oder den elektrischen Endstufen entfällt. Mit der Erfindung kann ein Kraftstoff ei n- 20 spritzsystem mit einer eigenständigen, von einem Steuergerät unabhängigen
Regelung, realisiert werden.
Im Weiteren entfallen durch die Erfindung weitere Komponenten im Kraftstoff ei n- spritzsystem. Zusätzliche Hochdrucksensoren werden nicht mehr benötigt. Folg- 25 lieh handelt es sich um ein kostengünstiges System.
Zusätzlich vorteilhaft ist, dass die Verlustleistung der Hochdruckpumpe durch diese Art der Druckregelung klein ist. Aufgrund der zweiten, größeren Wirkfläche des Verschlusskörpers ist nämlich die Restförderung des Kolbenhubs der nicht 30 benötigten Kraftstoffmenge zurück in den Niederdruckbereich bzw. des Verschlusskörperhubs leichter möglich. Damit ist das Antriebsmoment am Nockentrieb, das für die Restförderung der Hochdruckpumpe erforderlich ist, entsprechend geringer.
35 Ein weiterer Vorteil eines solchen Systems ist, dass der Hochdruck im Pumpen- förderraum nach Öffnen des Ventils sofort absinkt und nur mit geringem Über- druck zurück zum Niederdruckbereich gefördert wird, so dass sich auch der Kraftstoff nur gering erwärmt. Dies verringert die Verlustleistung.
Am Zylinder ist ferner vorteilhaft ein Auslass vorgesehen, den der Verschluss- 5 körper wahlweise verschließt. Der Verschlusskörper gibt diesen Auslass bzw.
diese Auslassöffnung frei, sobald er eine bestimmte Strecke aus seiner Ruhelage bzw. seiner den Einlass verschließenden Lage zurückgedrückt worden ist. Durch den Auslass strömt dann der mit Überdruck behaftete Kraftstoff wieder aus dem Druck-Schaltventil hinaus. Dies führt dazu, dass der Druck im Druck-Schaltventil l o wie erläutert sinkt und die Gegenkraft, welche auf den Verschlusskörper wirkt, stärker wird als jene Kraft die der Druck des Kraftstoffs auf die zweite Wirkfläche ausüben kann. Somit bewegt sich der Verschlusskörper wieder in Richtung seiner Ruhelage und schließt den Auslass und damit das Druck-Schaltventil wieder. ls Der Verschlusskörper ist vorteilhaft mittels einer Feder bzw. einem Federelement federnd gegen den Einlass vorgespannt. Auf diese Weise kommt von der federnden Vorspannung ein Anpressdruck auf den bevorzugt als Kolben gestalteten Verschlusskörper zustande. Dieser Anpressdruck wirkt entgegen der Kraft des Kraftstoffs, welche auf die erste bzw. zweite Wrkfläche einwirkt. Durch eine ge¬
20 eignete Wahl der bevorzugt im Zylinder selbst anzuordnenden Feder können somit die Druckstufen, an denen das Druck-Schaltventil öffnet und schließt, gewählt werden.
Alternativ oder zusätzlich wird bei dem erfindungsgemäßen Druck-Schaltventil der Verschlusskörper mittels Fluiddruck gegen den Einlass federnd vorgespannt. Als Fluid kommt insbesondere ein unter Druck gesetztes Gas zur Anwendung. Die Verwendung eines solchen Fluids verleiht dem Verschlusskörper auch eine dämpfende Wirkung. Dies verbessert das Schwingungsverhalten des Verschlusskörpers und damit die Regelung des Kraftstoffdrucks.
Gemäß einer weiteren Weiterbildung weist der Zylinder einen Druckraum auf, den der Verschlusskörper abdichtet. Der Verschlusskörper ist dabei vorzugsweise als ein Kolben oder eine Membran gestaltet, die den Druckraum innerhalb des Zylinders räumlich abtrennt. Anhand der räumlichen Trennung innerhalb des Zylinders wird ermöglicht, dass im Druck-Schaltventil verschiedene Drücke auftreten. So kann im Druckraum nebst der Federkraft der Fluiddruck für das Ver schließen des Druck-Schaltventils anliegen, während im restlichen Bereich des Zylinders der Druck bzw. Überdruck des Kraftstoffs anliegt.
Gemäß einer weiteren Weiterbildung weist der Zylinder einen Einlassraum auf, in den der Einlass hineinführt. Zudem führt eine Leitung vom Einlassraum zum genannten Druckraum. Derart konstruiert, findet im Druck-Schaltventil ein Druckausgleich statt. Dieser Druckausgleich beeinflusst die dämpfende Wirkung des Fluids des federnd vorgespannten Verschlusskörpers im Druckraum. Durch den Druckausgleich kann Schäden präventiv vorgebeugt werden, falls beispielsweise Druckfluktuationen auftreten, welche kurzzeitig starke Druckstöße auslösen könnten.
Mit der ersten Wirkfläche des Verschlusskörpers ist vorzugsweise der Einlass verschließbar und dieser Verschluss ist in Form eines Sitzventil mit einem Ventil- sitz gestaltet. Dies stellt eine konstruktiv einfache und wirkungsvolle Möglichkeit dar, das Druck-Schaltventil zu verschließen und zu öffnen. Bei Sitzventilen, die als Tellerventile bekannt sind, ist der Verschlusskörper tellerförmig ausgebildet und sitzt derart mit seinem Rand auf der Einlassöffnung auf, dass diese verschlossen und abgedichtet wird.
Gemäß einer weiteren Weiterbildung ist die zweite Wrkfläche des Verschlusskörpers an einem Kolben ausgebildet, der zusammen mit dem Zylinder als Schieberventil wirkt bzw. ein Schieberventil bildet. Durch die zusätzliche Verwendung des Verschlusskörpers bzw. Kolbens als Schieberventil, auch bekannt als Kolbenventil, kann der Kraftstoffüberdruck verbessert gesteuert werden. Die
Verwendung eines Schieberventils zur Regulierung von Drücken ist zwar üblich, jedoch ist in der vorliegenden Form der Verschlusskörper derart konzipiert, dass er sowohl als Schieberventil als auch als Sitzventil wirkt bzw. verwendet werden kann.
Die Erfindung sieht schließlich auch eine Verwendung des erfindungsgemäßen Druck-Schaltventils in einem Kraftstoffeinspritzsystem einer Pumpe vor, bei der die Pumpe einen Pumpraum aufweist, der mittels einer ersten Leitung mit dem Einlass des Druck-Schaltventils verbunden ist. Zudem ist hierbei eine zweite Lei- tung vorgesehen, die in den Pumpraum hinein führt, und eine dritte Leitung, die einen bzw. den Auslass des Druck-Schaltventils mit der zweiten Leitung verbindet.
Ein auf diese Weise verwendetes Druck-Schaltventil ist in der Lage, den bei einer Pumpe bzw. Hochdruckpumpe vorkommenden Überdruck so zu regeln, dass kein unzulässiger Überdruck an den Einspritzventilen anliegt und diese nicht beschädigen kann. Das Druck-Schaltventil führt bei Überschreitung des Solldrucks den Kraftstoff mit niedrigem Druck wieder zurück in den Kraftstoff kreislauf vor die Hochdruckpumpe, d.h. in den Niederdruck- bzw. Einlassbereich der Hochdruck- pumpe.
Nachfolgend wird ein Ausführungsbeispiel der erfindungsgemäßen Lösung anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
Fig. 1 ein Schaubild eines Ausführungsbeispiels eines Kraftstoffeinspritzsystems gemäß dem Stand der Technik,
Fig. 2 ein Schaubild eines Ausführungsbeispiels eines Kraftstoffeinspritzsystems gemäß der Erfindung und
Fig. 3 das Detail III aus Fig. 2.
In Fig. 1 ist ein Kraftstoffeinspritzsystem 10 gemäß dem Stand der Technik veranschaulicht, bei dem aus einem Tank 12 mittels einer elektrischen Kraftstoffpumpe bzw. Niederdruckpumpe 14 flüssiger Kraftstoff mit ca. 5 bar Druck in eine Leitung 16 gefördert wird. Die Leitung 16 dient als Zuleitung zu einem Niederdruckbereich 18 und einem Hochdruckbereich 20 des Kraftstoffeinspritzsystems 10. Zur Hochdruckerzeugung wird eine Pumpe 22, die mechanisch durch einen Nockenantrieb von einem Verbrennungsmotor angetrieben wird, verwendet. Diese erzeugt den benötigten Druck für den Hochdruckbereich 20, welcher dann in einem Rail 24 anliegt. Durch Hochdruckeinspritzventile 26 gelangt der Kraftstoff aus dem Rail 24 schließlich in den Verbrennungsmotor.
Zur Steuerung und Regulierung der Fördermenge, welche die Pumpe 22 in den Hochdruckbereich 20 abgibt, stehen mehrere Möglichkeiten zur Verfügung.
Durch ein Druck-Schaltventil 28 kann ein möglicher, von der Pumpe 22 erzeugter Überdruck reguliert werden. Dazu wird von einem Hochdrucksensor 30 der am
Rail 24 anliegende Kraftstoff druck ermittelt. Dieser Wert wird an ein Steuergerät 32 weitergegeben, das wiederum das Druck-Schaltventil 28 ansteuern kann. Zusammen mit dem gemessenen Hochdrucksignal des Hochdrucksensors 30 regelt das Steuergerät 32 den Druck auf das gewünschte Niveau ein. Dies ist u.a. nötig, da ein zu großer Überdruck Schäden am Kraftstoffeinspritzsystem 10 verursa- chen könnte.
Im Weiteren ist in Fig. 1 ein Niederdruckdämpfer 34 zu sehen, dessen Aufgabe es ist die Druckpulsationen im Niederdruckbereich 18 zu dämpfen. Diese Pulsationen können insbesondere durch ein Zurückfördern von Kraftstoff aus der Pumpe 22 zurück in den Niederdruckbereich 18 verursacht werden.
In Fig. 2 und Fig. 3 wird ein ähnliches Kraftstoffeinspritzsystem 10, wie in Fig. 1 gezeigt. Jedoch ist bei diesem auf eine elektronische Druckregelung verzichtet worden. Stattdessen ist ein erfindungsgemäßes Druck-Schaltventil 28 an dem Kraftstoffeinspritzsystem 10 gemäß dieser Figuren vorgesehen. Im Übrigen unterscheidet sich das Kraftstoffeinspritzsystem 10 gemäß Fig. 2 und Fig. 3 durch einen zusätzlichen Sicherungsmechanismus 38 in Form einer so genannten Berstscheibe 40 oder eines mechanischen Druckbegrenzungsventils. Das Druck-Schaltventil 28 ist in einem Zylinder 42 als Gehäuse verbaut. In dem
Zylinder 42 befindet sich ein Verschlusskörper 44 der Kolbenform bzw. eine kolbenförmige Gestaltung aufweist. Ein der Stirnflächen des derart kolbenförmigen Verschlusskörpers 44 ist gestuft gestaltet und weist in Richtung eines am Zylinder 42 stirnseitig ausgebildeten Einlasses 46 zwei verschieden große Wirkflä- chen 48 und 50 auf. Von diesen Wrkflächen ist die Wirkfläche 48 im Zentrum des Verschlusskörpers 44 als Kreisscheibe ausgebildet und in ihrer Flächenerstreckung kleiner als die Wirkfläche 50, welche an einer weiter zurückgesetzten kreisförmigen Ringscheibe vorzufinden ist. Der Verschlusskörper 44 ist durch eine Feder 52 in Richtung auf den Einlass 46 vorgespannt, derart dass er mit seiner Wrkfläche 48 den Einlass 46 wahlweise verschließen oder öffnen kann. Beim Verschließen korrespondiert die erste Wirkfläche 48 dabei mit dem Einlass 46, um diesen möglichst gut abzudichten. Hierfür sind die erste Wirkfläche 48 und der Einlasse 46 als so genanntes Sitzventil oder Tellerventil gestaltet. Am Zylinder 42 ist an dessen Mantelfläche ein Auslass 54 vorgesehen, um Kraftstoff aus Druck-Schaltventil 28 an den Niederdruckbereich 18 abzugeben. Dieser Auslass 54 kann vom Verschlusskörper 44 wahlweise verschlossen werden. Je nach Druck bzw. Kraft, die auf den Verschlusskörper 44 einwirkt, verschiebt sich dieser axial im Zylinder 42 und kann dadurch den Auslass 54 öffnen oder verschließen.
Im Zylinder 42 sind dabei im Wesentlichen zwei durch den Verschlusskörper 44 begrenzte Räume ausgebildet. Ein Druckraum 56, in welchem die Feder 52 an- geordnet ist, die den Verschlusskörper 44 in Richtung auf den Einlass 46 drängt, und ein Einlassraum 58, in den der mit Überdruck behaftete Kraftstoff durch den Einlass 46 einfließen und aus dem der Kraftstoff durch den Auslass 54 auch wieder aus dem Druck-Schaltventil 28 ausströmen kann. Die beiden Räume 56 und 58 werden also durch den Verschlusskörper 44 gegeneinander abgedichtet und voneinander räumlich getrennt.
Eine Leitung 60 führt vom Auslass 54 zum Druckraum 56 und stellt somit einen Druckausgleich zwischen dem Niederdruckbereich 18 und dem Druckraum 56 her. Im Druckraum 56 herrscht daher zumindest der Niederdruck, der den Ver- schlusskörper 44 ebenfalls in Richtung des Einlasses 46 drängt. Daher kann die
Feder 52 mit vergleichsweise geringer Federkraft ausgestattet und entsprechend klein und leicht gebaut sein.
Die Pumpe 22 ist mechanisch, im Regelfall durch eine Nockenwelle angetrieben. Sie erzeugt in einem Pumpraum 62 jenen Druck, den sie in die Leitung 20 abführt. Zugleich ist am Pumpraum 62 eine Leitung 64 angeschlossen, die zum Einlass 46 des Druck-Schaltventils 28 führt. Der Auslass 54 des Druck-Schaltventils 28 ist mittels einer Leitung 66 mit dem Niederdruckbereich 18 verbunden. Kraftstoff unter Druck kann also aus dem Pumpraum 62 in die Leitung 64, durch das Druck-Schaltventil 28 und durch die Leitung 66 in den Niederdruckbereich 18 abgeführt werden.
Sobald die Hochdruckpumpe 22 des Kraftstoffeinspritzsystems 10 einen derart abzuführenden Überdruck erzeugt, liegt dieser durch die Leitung 64 am Einlass 46 des Druck-Schaltventils 28 an. Am Einlass 46 des Druck-Schaltventils 28 liegt damit ein Druck an, der auf die erste, den Einlass verschließende Wirkfläche 48 des kolbenförmigen Verschlusskörpers 44 einwirkt. Da der kolbenförmige Verschlusskörper 44 nur federnd gegen den Einlass 46 gedrängt ist, zieht sich dieser zurück, sobald die Druckkraft auf der ersten Wirkfläche 48 größer wird als der Anpressdruck des Verschlusskörpers 44 von der Feder 52 und dem Druckraum 56 ist.
Der Einlass 46 wird dabei freigegeben und es strömt Kraftstoff zunächst in den Einlassraum 58 des Druck-Schaltventils 28 ein. Dann verteilt sich der Kraftstoff und dessen Druck auf die zweite, größere Wrkfläche 50 des Verschlusskörpers 44. Damit entsteht am Verschlusskörper 44 eine größere Druckkraft und er kann leicht weiter axial im Zylinder 42 verschoben werden.
Nach kurzer Zeit gibt der Verschlusskörper 44 dabei den Auslass 54 frei bzw. öffnet diesen. Der Kraftstoff strömt jetzt durch den Auslass 54 in Richtung Niederdruckbereich 18 ab.
Dabei ist der Druck beim Schließen des Einlasses 46 weit geringer, als zum Öffnen des Einlasses 46 erforderlich ist. Durch die zweite, größere Wirkfläche 50 lässt sich der Verschlusskörper 44 mit weniger hydraulischem Druck axial im Zy- linder 42 verschieben, als durch die kleinere erste Wrkfläche 48.
Die Pumpe 22 kann daher ihren Überdruck besonders schnell abbauen und muss nach dem Beginn des Abführens, also nach dem Öffnen des Einlasses 46 nur noch gegen einen vergleichsweise geringen Druck anfördern. Die Pumpe 22 weist daher eine geringere Verlustleistung auf, welche ja durch das Entspannen von Druck am Druck-Schaltventil 28 entsteht.
Bei einem Ausfall, einer Fehlfunktion oder einem sonstigen Versagen des Druckausgleichs mittels des Druck-Schaltventils 28 besteht für das Kraftstoffe! nspritz- Systems 10 eine weitere Sicherung in Form der Berstscheibe 40. Die Berstscheiben 40 hilft insbesondere in dem Fall, dass die Pumpe 22 einen Überdruck erzeugt, welcher nicht vom Druck-Schaltventil 28 kompensiert werden kann. Alternativ kann anstelle der Berstscheibe ein Druckbegrenzungsventil vorgesehen sein. Dieses kann auch einen Druckanstieg im so genannten Hot-Soak abbauen. Dann gelangt dieser Überdruck in den Hochdruckbereich 20, der mit dem Niederdruckbereich 18 durch eine Leitung 68 verbunden ist. An oder in der Leitung 68 ist die Berstscheibe 40 oder das Druckbegrenzungsventil angeordnet. Die Berstscheibe 40 weist eine derartige Materialbeschaffenheit und Form auf, dass sie zerbricht bzw. berstet falls ein bestimmter Überdruck an ihr anliegt. In diesem
Fall wird die vorher von der Berstscheibe 40 verschlossene Leitung 68 freigegeben, so dass der Kraftstoff vom Hochdruckbereich 20, durch die Leitung 68, in den Niederdruckbereich 18 gelangen kann. Die Sicherung in der Leitung 68, die in diesem Beispiel durch eine Berstscheibe
40 realisiert wird, kann auch durch andere Vorrichtungen, wie beispielsweise ein weiteres Ventil oder ein Material mit Sollbruchstelle gestaltet sein.
Eine Möglichkeit zur kompakteren Bauweise des Kraftstoffeinspritzsystems 10 bzw. des Druck-Schaltventil 28 besteht darin, dass das Druck-Schaltventil 28 in die Pumpe 22 und insbesondere in deren Gehäuse integriert ist. Insbesondere kann das Druck-Schaltventil 28 im Bereich oberhalb des Pumpraums 62 der Pumpe 22 in ein Pumpengehäuse integriert sein. Durch diese Integralbauweise verringert sich der Platzbedarf und das Gewicht.
Das Prinzip der vorliegenden Erfindung liegt also darin, dass die Kraftstoffpumpe einen Pumpraum 62 bzw. Förderraum mit einem daran angeschlossenen hydraulisch steuerbaren Druck-Schaltventil 28 bzw. Druck-Schaltventil hat. Das Druck- Schaltventil 28 ist so gestaltet, dass, wenn, während eines Druckhubs, der Pumpraum-Druck bzw. Förderraum-Druck einen Druckwert p1 erreicht, das
Druck-Schaltventil 28 öffnet. Unmittelbar danach lässt das Druck-Schaltventil 28 den Pumpraum-Druck auf einen Druckwert p2 abfallen, wobei der Druckwert p2 kleiner ist als der Druckwert pl Abhängig vom Verhältnis der Größe der zweiten Wirkfläche zur Größe der ersten
Wirkfläche kann der Druckwert p2 wesentlich kleiner als der Druckwert p1 sein.
Sobald das dabei hydraulisch steuerbare Druck-Schaltventil 28 im Verlauf eines Druckhubs öffnet, bleibt der Pumpraum-Druck während des gesamten Rests des Druckhubs auf dem niedrigeren Druckwert p2. Das Druck-Schaltventil 28 schließt erst wieder, wenn der Pumpraum-Druck unter den Druckwert p2 abfällt, was un- ter normalen Umständen erst wieder der Fall ist, wenn die Pumpe 22 vom Druckhub in den Saughub übergeht.
Der Vorteil der Pumpe 22 mit einem derartigen zweistufigen Druck-Schaltventil 28 gegenüber einer Pumpe mit einem Druckregelventil mit nur einem Druckwert liegt in einer geringeren Dissipation beim Betreiben der Pumpe. Der Vorteil der Pumpe 22 mit dem zweistufigen Druck-Schaltventil 28 gegenüber einer Pumpe mit einem elektrisch steuerbaren Mengensteuerventil liegt insbesondere in einem geringeren Herstellaufwand.

Claims

Patentansprüche:
1. Druck-Schaltventil (28) für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine, mit einem Zylinder (42), in dem ein Verschlusskörper (44) zum wahlweisen Verschließen eines Einlasses (46) beweglich ist,
wobei der Verschlusskörper (44) mit einer ersten Wirkfläche (48) versehen ist, auf die hydraulischer Druck zum Öffnen des Einlasses (46) wirkt, und der Verschlusskörper (44) eine zweite Wirkfläche (50) aufweist, die größer als die erste Wirkfläche (48) gestaltet ist.
2. Druck-Schaltventil nach Anspruch 1 ,
dadurch gekennzeichnet, dass am Zylinder (42) ein Auslass (54) vorgesehen ist und der Verschlusskörper (44) den Auslass (54) wahlweise verschließen kann.
3. Druck-Schaltventil nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Verschlusskörper (44) federnd gegen den Einlass (46) vorgespannt ist.
4. Druck-Schaltventil nach Anspruch 3,
dadurch gekennzeichnet, dass der Verschlusskörper (44) mittels Fluiddruck gegen den Einlass (46) federnd vorgespannt ist.
5. Druck-Schaltventil nach Anspruch 1 bis 4,
dadurch gekennzeichnet, dass der Zylinder (42) einen Druckraum (56) aufweist, den der Verschlusskörper (44) abdichtet.
6. Druck-Schaltventil nach Anspruch 5,
dadurch gekennzeichnet, dass der Zylinder (42) einen Einlassraum (58) aufweist, in den der Einlass (46) hineinführt, und eine Leitung (60) vom Einlassraum (58) zum Druckraum (56) führt.
7. Druck-Schaltventil nach Anspruch 1 bis 6,
dadurch gekennzeichnet, dass mit der ersten Wirkfläche (48) des Verschlusskörpers (44) der Einlass (46) in Gestalt eines Ventilsitzes verschließbar ist.
8. Druck-Schaltventil nach Anspruch 1 bis 7,
dadurch gekennzeichnet, dass der Verschlusskörpers (44) als ein Kolben ausgebildet ist, der zusammen mit dem Zylinder (42) ein Schieberventil bildet.
9. Kraftstoffeinspritzsystem mit einem Druck-Schaltventil (28) nach einem der Ansprüche 1 bis 8 und einer Pumpe (22),
dadurch gekennzeichnet, dass die Pumpe (22) einen Pumpraum (62) aufweist, der mittels einer ersten Leitung (64) mit dem Einlass (46) des Druck- Schaltventils (28) verbunden ist.
10 Kraftstoffeinspritzsystem nach Anspruch 9,
dadurch gekennzeichnet, dass eine zweite Leitung (16) vorgesehen ist, die in den Pumpraum (62) hinein führt, und eine dritte Leitung (66) einen bzw. den Auslass (54) des Druck-Schaltventils (28) mit der zweiten Leitung (16) verbindet.
PCT/EP2011/069345 2010-12-27 2011-11-03 Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine WO2012089370A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800629319A CN103282645A (zh) 2010-12-27 2011-11-03 用于内燃机的燃料喷射系统的压力转换阀
EP11778882.8A EP2659127B1 (de) 2010-12-27 2011-11-03 Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010064192.8 2010-12-27
DE201010064192 DE102010064192A1 (de) 2010-12-27 2010-12-27 Druck-Schaltventil für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2012089370A1 true WO2012089370A1 (de) 2012-07-05

Family

ID=44906132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/069345 WO2012089370A1 (de) 2010-12-27 2011-11-03 Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP2659127B1 (de)
CN (1) CN103282645A (de)
DE (1) DE102010064192A1 (de)
WO (1) WO2012089370A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216817A1 (de) * 2013-08-23 2015-02-26 Continental Automotive Gmbh Pumpenanordnung und System für ein Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251266A1 (de) * 2001-04-18 2002-10-23 Robert Bosch Gmbh Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
DE10129822A1 (de) * 2001-06-13 2003-01-02 Mtu Friederichshafen Gmbh Druckbegrenzungsventil für Kraftstoff-Einspritzeinrichtungen
WO2004048770A1 (de) * 2002-11-26 2004-06-10 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102005022661A1 (de) 2005-05-17 2007-02-15 Robert Bosch Gmbh Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
FR2905146A1 (fr) * 2006-08-25 2008-02-29 Renault Sas Dispositif d'alimentation en carburant pour moteur a combustion
EP2055929A2 (de) * 2007-11-01 2009-05-06 Hitachi Ltd. Hochdruckflüssigkeitsförderpumpe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008059638A1 (de) * 2008-11-28 2010-06-02 Continental Automotive Gmbh Hochdruckpumpe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251266A1 (de) * 2001-04-18 2002-10-23 Robert Bosch Gmbh Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
DE10129822A1 (de) * 2001-06-13 2003-01-02 Mtu Friederichshafen Gmbh Druckbegrenzungsventil für Kraftstoff-Einspritzeinrichtungen
WO2004048770A1 (de) * 2002-11-26 2004-06-10 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102005022661A1 (de) 2005-05-17 2007-02-15 Robert Bosch Gmbh Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
FR2905146A1 (fr) * 2006-08-25 2008-02-29 Renault Sas Dispositif d'alimentation en carburant pour moteur a combustion
EP2055929A2 (de) * 2007-11-01 2009-05-06 Hitachi Ltd. Hochdruckflüssigkeitsförderpumpe

Also Published As

Publication number Publication date
CN103282645A (zh) 2013-09-04
EP2659127B1 (de) 2016-04-20
DE102010064192A1 (de) 2012-06-28
EP2659127A1 (de) 2013-11-06

Similar Documents

Publication Publication Date Title
EP2238338B1 (de) Kraftstoffsystem einer Brennkraftmaschine
EP3059437B1 (de) Pumpeneinheit für eine hochdruckpumpe
EP2016278B1 (de) Druckregelventil mit notfahr- und belüftungsfunktion
EP2678562B1 (de) Druckregelnde hubkolbenpumpe mit magnetischem antrieb
EP2137400B1 (de) Druckregelventil
EP1373718A1 (de) Druckbegrenzungsventil für kraftstoff-einspritzeinrichtungen
DE102011089478B3 (de) Einspritzsystem
DE102014215774B4 (de) Vorrichtung für eine Hochdruckpumpe für ein Kraftfahrzeug
EP1403509A2 (de) Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
WO2016058805A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
WO2020094310A1 (de) Systemdruckventil für ein hydrauliksystem eines kraftfahrzeug-getriebes
EP2659127B1 (de) Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine
DE102012221157A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
DE102007026834A1 (de) Elektromagnetisches Regelventil und Einspritzanlage für eine Brennkraftmaschine
EP1961953A1 (de) Mehrwegeventil
DE10261415B3 (de) Druckanpassungsvorrichtung
EP2138709A1 (de) Direkt betätigter Kraftstoffinjektor
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
WO2016134930A1 (de) Teildruckausgeglichenes druckregelventil für einen hochdruckspeicher
DE102007030224A1 (de) Kraftstoffpumpe, insbesondere für ein Kraftstoffsystem einer Brennkraftmaschine
EP2880297B1 (de) Hochdruckpumpe für brennkraftmaschinen
DE102011007182A1 (de) Hydraulische Fördereinrichtung
WO2007033861A1 (de) Kraftstoffeinspritzvorrichtung
DE102013211196A1 (de) Ventilanordnung zur Steuerung der Fördermenge einer Hochdruckpumpe sowie Hochdruckpumpe
DE102007050807B4 (de) Kraftstoffsystem für eine Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011778882

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11778882

Country of ref document: EP

Kind code of ref document: A1