WO2012088679A1 - 太阳能装置 - Google Patents
太阳能装置 Download PDFInfo
- Publication number
- WO2012088679A1 WO2012088679A1 PCT/CN2010/080451 CN2010080451W WO2012088679A1 WO 2012088679 A1 WO2012088679 A1 WO 2012088679A1 CN 2010080451 W CN2010080451 W CN 2010080451W WO 2012088679 A1 WO2012088679 A1 WO 2012088679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moving component
- spherical
- solar
- solar panel
- sun
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/30—Arrangements for concentrating solar-rays for solar heat collectors with lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Definitions
- the present invention relates to a device that utilizes solar energy. Background branch
- the conventional solar collector or generator is to receive heat from a solar panel directly facing the sun, or to convert the received heat to generate electric current. Therefore, a large-area solar panel is required, which is more expensive, and the solar panel is Is fixed at an angle. Due to the rotation of the earth and the revolving around the sun, the angle of the sun shining on the earth changes at any time. Therefore, the solar panel receives the sunlight at the best illumination angle to obtain higher heat (the solar panel is perpendicular to the sunlight). ), the tracker and the transmission mechanism must be installed.
- the tracker After the tracker continuously detects the direction of the sun, it transmits a signal to the transmission mechanism, and then the transmission mechanism drives the solar panel to properly steer to maintain the solar panel in the direction of the sun;
- the transmission mechanism drives the solar panel to properly steer to maintain the solar panel in the direction of the sun;
- FIG. 1 shows another conventional way of using solar energy as concentrating solar energy, which uses concave mirror A to reflect sunlight and focus on a solar panel B, since the light energy is self-contained from a large area. A concentrates on a small area of solar panel B, so the size of the solar panel used to receive the light energy can also be greatly reduced, thereby saving the cost of the solar panel.
- the mirror A needs to be rotated by the sun to form a focal point, a large number or a large number of lenses or lens groups are required to have a large or high load transmission system, resulting in a high cost and power consumption problem. Summary of the invention
- An object of the present invention is to solve the problems of expensive lens manufacturing costs and high lens transmission system costs of conventional concentrating solar devices.
- the solar device of the present invention can automatically move and adjust the position of the solar panel vertically facing the sunlight to obtain the highest thermal efficiency according to the path of the sun moving relative to the earth, without the need to move the lens with a large weight, thereby reducing the transmission system. Cost and energy consumption of the drive system.
- the present invention provides a solar device comprising a spherical concentrator, an arcuate track, a moving component and at least one solar panel; points of the arcuate track and a spherical concentrating center point The distance is the same; the moving component is disposed on the curved track, and the moving component is controlled to move along the arc track along with the sun's eastward and westward path; the solar panel is disposed on the moving component and faces the spherical concentrator, After passing the sunlight through the spherical concentrator, the focus of the light falls on the solar panel.
- the solar device can set the curved track on another track, so that the orientation of the curved track can be adjusted according to the change of the direct solar angle caused by the season, so that the sunlight always passes through the spherical shape.
- the concentrator is then focused on the track.
- the spherical concentrator used to condense sunlight is a solid glass sphere or
- the spherical concentrator used to condense sunlight is a hollow glass sphere or
- the PU (polyurethane) sphere is filled with a liquid inside the hollow light-transmissive sphere, and sunlight is concentrated by the hollow sphere and the liquid.
- the spherical concentrator of the present invention as a lens is a spherical lens, no matter how the sun moves, it necessarily produces a focus on a straight line between the sun and the center of the spherical lens, and as the sun moves eastward and westward, The movement of the focus is in an arc with respect to the spherical lens, so that only a small area of the solar panel can be controlled to move on the arc relative to the sun, so that the focus falls on the solar panel without moving huge or large. Lens or mirror.
- FIG. 1 is a schematic view of a conventional solar device including a solar panel and a lens.
- FIG. 2 is a schematic view of a first embodiment of a solar device of the present invention comprising a solid light transmissive sphere, an arcuate track, a moving component and a solar panel.
- FIG. 3 is a schematic view showing the movement assembly of the first embodiment of the present invention driving the solar panel to move along the curved track to focus sunlight.
- 4 is a schematic view showing a second embodiment of a solar device according to the present invention comprising a hollow light-transmissive sphere filled with liquid, a curved track, a moving component and a solar panel.
- Fig. 5 is a schematic view showing the movement of the solar panel according to the second embodiment of the present invention to move the solar panel along the curved track to focus the sunlight.
- the light body 1 is a solid permeable sphere which can be made of a light transmissive material such as glass, PU, acryl or the like, and the diameter of the sphere depends on the surface area of the desired condensed light.
- Each point of the curved track 2 is the same distance from the center point of the spherical concentrating body 1; that is, the curved track 2 is a circle centered on the center of the spherical concentrating body i, and has a curved shape formed by a specific radius .
- the solar panel 4 is fixedly disposed on the moving unit 3.
- the moving component 3 is a carrier provided with a power unit, the power source of which can be provided by the motor, and the moving component 3 is configured with a roller capable of rolling on the curved track 2; the moving component 3 utilizes the planning and design of the computer program, The moving component 3 is moved along the curved track 2 at a specific speed according to the law of the eastward and westward movement during the known solar eclipse of the location, or a conventional sun tracker may be provided to control the movement component 3 to track the sun during the daytime
- the eastward and westward paths cause the focus of the concentrated light to always fall on the surface of the solar panel 4 on the moving component 3.
- the present invention can In order to set the curved track 2 on another track, according to the orientation of the season I 2 , the image is always kept - 1 and then focused on the solar panel 4
- the spherical concentrating body 1 having a large volume and weight is fixed, and when the sunlight emitted from the sun 5 passes through the spherical concentrating body 1, it is subjected to the spherical concentrating body. 1 refracting and concentrating, and focusing the focus on the solar panel 4; while the sun is moving, the moving component 3 is driven to move along the curved track 2 at an appropriate speed (as shown in Fig. 3), so that the concentrated The focus always falls on the solar panel 4.
- Figure 4 shows a second embodiment of the solar device of the present invention comprising a hollow spherical concentrator
- the hollow spherical concentrating body can be made of a light transmissive material such as glass, PU, acrylic, etc., and in the spherical concentrating body 1A
- the liquid 11 (for example, pure water) having good light permeability is filled therein; the diameter of the spherical concentrator 1A is determined by the surface area of the sphere to be condensed.
- the points of the curved track 2 are the same as the distance from the center point of the spherical concentrating body 1A; that is, the curved track 2 is centered on the center of the spherical concentrating body 1A and has an arc formed by a specific radius.
- the solar panel 4 is fixedly disposed on the moving unit 3.
- the moving assembly 3 is the same as the first embodiment described above, and is a carrier provided with a power unit, and the moving unit 3 is provided with a roller that can roll on the curved track 2; the moving component 3 utilizes the planning of the computer program and The design moves the moving component 3 along the curved track 2 at a specific speed according to the known movement law of the sun in the daytime, or can set a conventional sun tracker to control the moving component 3 to track the sun.
- the eastward and westward path during the daylighting causes the focus of the spotlight to always fall on the surface of the solar panel 4 on the moving component 3.
- the solar device of the second embodiment when the sunlight emitted from the sun 5 passes through the spherical concentrating body 1A, it is condensed by the spherical concentrating body 1A itself and the liquid 11 to collect light, and the focus is concentrated on the solar panel. 4; while the sun moves, the moving component 3 is driven to move along the curved track 2 at an appropriate speed (as shown in FIG. 5), so that the focus of the concentrated light always falls on the solar panel 4.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Description
太阳能装置
本发明涉及一种利用太阳能的装置。 背景支术
习知的太阳能集热器或发电器, 是将一太阳能板直接面向太阳接收热量, 或将接收后的热量进行能量转换产生电流, 故需要较大面积太阳能板, 较耗费 材料, 且太阳能板均被固定在一角度。 由于地球自转与围绕太阳公转的因素, 太阳光照射到地球的角度随时都在变化, 因此, 若要使太阳能板接收到最佳照 射角度的太阳光以获得较高热量 (太阳能板垂直于太阳光),必须加装追踪器与传 动机构, 藉由追踪器不断侦测太阳的方向后, 传递讯号给传动机构, 再由传动 机构驱动太阳能板适当地转向, 使太阳能板维持朝向太阳的方向; 但此种习知 太阳能装置因大面积的太阳能板及高负重的传动机构, 导致成本高昂。
图 1 显示了另一种习知利用太阳能的方式为聚光型太阳能, 其利用凹形反 射镜 A将太阳光反射后聚焦于一太阳能板 B上, 由于光能自大面积的反.射镜 A 集中到小面积的太阳能板 B , 所以用来.接受光能的太阳能板尺寸也可大量减少, 达到节省太阳能板的成本。 但由于反射镜 A需随太阳移动而旋转角度以形成焦 点, 驱动数量庞大或重量巨大的透镜或透镜群则需有大量或高载重的传动系统, 造成了造价高昂且耗能传动的问题。 发明内容
本发明的目的在于解决现有聚光型太阳能装置需耗费高昂的透镜制造费用 及高昂的透镜传动系统费用的问题。
本发明的太阳能装置可依据太阳相对于地球移动的路径, 自动移动调整小 面积的太阳能板垂直面向太阳光的位置以获得最高的热效率, 而不需移动重量 巨大的透镜, 从而降低了传动系统的费用及传动系统的能耗。
为实现上述目的, 本发明提供了一种太阳能装置, 包括有一球形聚光体、 一弧形轨道、 一移动组件与至少一太阳能板; 所述弧形轨道的各点与球形聚光 体中心点的距离相同; 移动组件设于该弧形轨道, 移动组件被控制随着太阳的 东升西落路径而沿着该弧形轨道移动; 所述太阳能板设于该移动组件且面向球 形聚光体, 使太阳光通过该球形聚光体后, 光线的焦点落于该太阳能板上。
可选地, 所述太阳能装置可以将所述弧形轨道设于一另一轨道上, 从而可 依据季节更替造成太阳直射地球角度的转变而调整弧形轨道的方位, 让太阳光 始终保持通过球形聚光体后聚焦于所述轨道上。
可选地, 本发明用以将太阳光聚光的球形聚光体为一实心的玻璃球体或
PU (聚胺脂)球体, 太阳光通过该实心的球体后产生聚光作用。
可选地, 本发明用以将太阳光聚光的球形聚光体为一空心的玻璃球体或
PU (聚胺脂)球体, 并在空心的透光球体内部注满液体, 太阳光通过该空心的球 体与液体后产生聚光作用。
因为本发明做为透镜的球形聚光体为球形透镜, 所以无论太阳如何移动, 其必然产生一焦点落于太阳与球形透镜中心之间的直线上, 而随着太阳东升西 落的移动路径, 所述焦点的移动相对于球形透镜呈一弧线, 因此只需控制小面 积的太阳能板在该弧线上相对于太阳移动即可使焦点落于太阳能板上, 而不需 移动巨大或数量庞大的透镜或反射镜。
通过以下的描述并结合附图, 本发明将变得更加清晰, 这些酎图用于解释 本发明的实施例。 附图说明
图 1为习知太阳能装置包含太阳能板与透镜的示意图。
图 2 为本发明太阳能装置包含实心透光球体、 弧形轨道, 移动组件与太阳 能板的第一实施例示意图。
图 3 为本发明第一实施例的移动组件带动太阳能板沿着弧形轨道移动以聚 焦太阳光的示意图。
图 4为本发明太阳能装置包含注满液体的空心透光球体, 弧形轨道、 移动 组件与太阳能板的第二实施例示意图。
图 5 为本发明第二实施例的移动组件带动太阳能板沿着弧形轨道移动以聚 焦太阳光的示意图。
图中各附图标记说明如下:
1A.,.,..球形聚光体 1丄..,.,液体 2,.,.,,弧形轨道
3.,,.,.移动组件 4,.,…太阳能板 5,,.,..太阳
现在参考酎图描述本发明的实施例, 酎图中类 ^的元件标号代表类似的元 件。
图 2显示了本发明太阳能装置的第一实施例, 包括有一球形聚光体 1、一弧 形轨道 2、 一移动组件 3与至少一太阳能板 4; 其中, 第一实施例所示的球形聚 光体 1是一种实心的可透光球体, 其可使用玻璃、 PU、 压克力等可透光材料制 造, 球体的直径依所需聚光的表面积而定。 所述弧形轨道 2 的各点与该球形聚 光体 1 中心点的距离相同; 即, 弧形轨道 2是以球形聚光体 i的中心为圓心, 并以一特定半径所构成的弧形。 太阳能板 4固定地设于移动组件 3上。 所述移 动组件 3 为一种设有动力装置的载体, 其动力来源可由马达提供, 并在移动组 件 3配置能在弧形轨道 2上滚动的滚轮; 移动组件 3利用计算机程序的规划与 设计, 依据所在地已知的太阳白昼期间的东升西落移动规律而带动移动组件 3 以特定速度沿着弧形轨道 2移动, 或可设置一习知的太阳追踪器, 控制移动组 件 3追踪太阳白昼期间的东升西落路径, 使聚光的焦点始终落于移动组件 3上 的太阳能板 4表面。
另外, 由于地球是以倾斜 23,5。的角度绕着太阳公转, 致使太阳相对于地球 的移动会随季节变换而改变, 从而改变太阳光照射到地球的角度 (夏季直射北半 球, 冬季直射南半球.)。 因此, 为了在季节变换时获 ^"直射的太阳光, 本发明可
以将所述弧形轨道 2设于一另一轨道上, 从而可依据季节 I 2的 方位, 始终保持- 1后聚焦于太阳能板 4
如上所述第一实施例的太阳能装置, 体积与重量均较大的球形聚光体 1 被 固定不动, 当太阳 5发射的太阳光穿过球形聚光体 1 时, 会受到球形聚光体 1 折射而聚光, 并使焦点聚集在太阳能板 4上; 而太阳移动过程中, 移动组件 3 被驱动以适当的速度沿着弧形轨道 2移动 (如图 3所示),使聚光的焦点始终落于 太阳能板 4上。
图 4显示了本发明太阳能装置的第二实施例, 包括有一空心的球形聚光体
1A、 九道 2、 一移动组件 3与至少一太阳能板 4; 其中, 空心的球形聚光 体] ίΑ可使用玻璃、 PU、 压克力等可透光材料制造, 并在球形聚光体 1A内注满 具备良好光可穿透性的液体 11(例如纯水); 球形聚光体 1A的直径依所需聚光的 球体表面积来决定。所述弧形轨道 2的各点与该球形聚光体 1A中心点的距离相 同; 即, 弧形轨道 2以球形聚光体 1A的中心为圆心, 并以一特定半径所构成的 弧形。 太阳能板 4固定地设于移动组件 3上。 所述移动组件 3与前述第一实施 例相同, 均为一种设有动力装置的载体, 并在移动组件 3 配置能在弧形轨道 2 上滚动的滚轮; 移动组件 3 利用计算机程序的规划与设计, 依据所在地已知的 太阳在白昼期间的东升西落移动规律而带动移动组件 3 以特定速度沿着弧形轨 道 2移动, 或可设置一习知的太阳追踪器, 控制移动组件 3追踪太阳白昼期间 的东升西落路径, 使聚光的焦点始终落于移动组件 3上的太阳能板 4表面。
如上所述第二实施例的太阳能装置, 当太阳 5发射的太阳光穿过球形聚光 体 1A时,会受到球形聚光体 1A本身及液体 11折射而聚光, 并使焦点聚集在太 阳能板 4上; 而太阳移动过程中, 移动组件 3被驱动以适当的速度沿着弧形轨 道 2移动 (如图 5所示), 使聚光的焦点始终落于太阳能板 4上。
以上结合最佳实施例对本发明进行了描述, 但本发明并不局限于以上揭示 的实施例, 而应当涵盖各种根据本发明的本质进行的修改、 等效组合。
Claims
1,一种太阳能装置, 包括:
一球形聚光体;
一弧形轨道, 该轨道的各点与该球形聚光体中心点的距离相同;
一移动组件, 设于该弧形轨道, 该移动组件可被驱动随着太阳白昼期间东 升西落的移动路径而沿着该弧形轨道移动;
至少一太阳能板, 设于该移动组件, 且该太阳能板面向该球形聚光体, 配 合所述移动组件的移动速度, 使太阳光通过该球形聚光体后聚焦于该太阳能板 上。
2。如权利要求 i所述的太阳能装置, 其特征在于, 所述球形聚光体为一实心 的玻璃球体。
6. 如权利要求 4所述的太阳能装置, 其特征在于, 所述空心的透光球体为
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/080451 WO2012088679A1 (zh) | 2010-12-29 | 2010-12-29 | 太阳能装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/080451 WO2012088679A1 (zh) | 2010-12-29 | 2010-12-29 | 太阳能装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012088679A1 true WO2012088679A1 (zh) | 2012-07-05 |
Family
ID=46382196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/080451 WO2012088679A1 (zh) | 2010-12-29 | 2010-12-29 | 太阳能装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012088679A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012007577A1 (de) * | 2012-04-14 | 2013-10-17 | Steffen Luck | Solarthermisches Kraftwerk "Himmelslinse" |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2249389Y (zh) * | 1996-01-18 | 1997-03-12 | 陈鹤聪 | 全方位聚光水球太阳能热水器 |
CN2674358Y (zh) * | 2004-02-20 | 2005-01-26 | 付长彪 | 太阳能聚热装置 |
CN200950174Y (zh) * | 2006-02-05 | 2007-09-19 | 孙鹏 | 万向聚光镜 |
US20100108121A1 (en) * | 2008-10-30 | 2010-05-06 | Solapoint Corporation | Concentrating solar cell module |
CN102072562A (zh) * | 2010-12-29 | 2011-05-25 | 东莞和佳塑胶制品有限公司 | 太阳能装置 |
-
2010
- 2010-12-29 WO PCT/CN2010/080451 patent/WO2012088679A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2249389Y (zh) * | 1996-01-18 | 1997-03-12 | 陈鹤聪 | 全方位聚光水球太阳能热水器 |
CN2674358Y (zh) * | 2004-02-20 | 2005-01-26 | 付长彪 | 太阳能聚热装置 |
CN200950174Y (zh) * | 2006-02-05 | 2007-09-19 | 孙鹏 | 万向聚光镜 |
US20100108121A1 (en) * | 2008-10-30 | 2010-05-06 | Solapoint Corporation | Concentrating solar cell module |
CN102072562A (zh) * | 2010-12-29 | 2011-05-25 | 东莞和佳塑胶制品有限公司 | 太阳能装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012007577A1 (de) * | 2012-04-14 | 2013-10-17 | Steffen Luck | Solarthermisches Kraftwerk "Himmelslinse" |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2559955B1 (en) | Solar heat collecting system | |
US7640931B2 (en) | Revolutionary solar collecting system | |
CN1447058A (zh) | 利用阳光进行室内照明的装置 | |
WO2000071942A1 (fr) | Capteur du trace des rayons du soleil et son utilisation dans un dispositif de trace automatique des rayons du soleil | |
WO2020007292A1 (zh) | 一种增强组件光强的单轴跟踪系统 | |
WO2009049454A1 (fr) | Dispositif de génération d'énergie photovoltaïque, du type à huit diagrammes taichi, doté de contrepoids | |
CA2901746C (en) | Solar tracking concentrator | |
KR101182832B1 (ko) | 태양광 발전장치 | |
KR20110096734A (ko) | 태양광 추적 집광장치 | |
CN206211902U (zh) | 一种新型带跟踪装置的太阳能聚光发电装置 | |
US20160301357A1 (en) | Solar tracker and solar energy collection system | |
KR101082718B1 (ko) | 태양광 추적장치 | |
KR100600934B1 (ko) | 태양광 집광장치 | |
JP2003074989A (ja) | シーソー式ソーラー発電温水器システム | |
CN2572217Y (zh) | 利用阳光进行室内照明的装置 | |
WO2012088679A1 (zh) | 太阳能装置 | |
CN102072562A (zh) | 太阳能装置 | |
TWI510733B (zh) | 引太陽光於室內照明裝置 | |
JP2001047033A (ja) | 太陽光利用淡水化装置 | |
JPH08148711A (ja) | 太陽電池装置 | |
KR101616757B1 (ko) | 집중가열이 가능한 태양 자동 추적 집광기 | |
KR20090113797A (ko) | 일사량 변화에 따른 태양광 발전장치 및 그 방법 | |
KR101182834B1 (ko) | 태양광 발전 집광 보조장치 | |
KR20170032635A (ko) | LFR(Linear Fresnel Reflector)를 이용한 집광 방법 및 장치 | |
TWM408020U (en) | solar energy device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10861457 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10861457 Country of ref document: EP Kind code of ref document: A1 |