WO2020007292A1 - 一种增强组件光强的单轴跟踪系统 - Google Patents

一种增强组件光强的单轴跟踪系统 Download PDF

Info

Publication number
WO2020007292A1
WO2020007292A1 PCT/CN2019/094376 CN2019094376W WO2020007292A1 WO 2020007292 A1 WO2020007292 A1 WO 2020007292A1 CN 2019094376 W CN2019094376 W CN 2019094376W WO 2020007292 A1 WO2020007292 A1 WO 2020007292A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar energy
axis tracking
bracket
sunlight
light intensity
Prior art date
Application number
PCT/CN2019/094376
Other languages
English (en)
French (fr)
Inventor
李吉东
Original Assignee
驰鸟智能科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 驰鸟智能科技(上海)有限公司 filed Critical 驰鸟智能科技(上海)有限公司
Priority to CN201980029281.4A priority Critical patent/CN115956338A/zh
Publication of WO2020007292A1 publication Critical patent/WO2020007292A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar energy, and in particular to a single-axis tracking system for enhancing the light intensity of a component.
  • Solar photovoltaic power generation uses solar cells as photoelectric conversion devices to convert solar energy into electrical energy.
  • fixed flat photovoltaic power generation is the main form of solar photovoltaic power generation.
  • Fixed flat photovoltaic power generation is to fix flat solar cell modules on a carrier, facing the direction of the sun, receiving sunlight rising to sunset, and converting it into electricity.
  • the light utilization rate is low, and the solar cell's power generation is proportional to the effective radiation area.
  • the effective radiation area is the projection area of the received sunlight on the vertical plane of the sunlight. . Due to the rotation of the earth, the sun rises in the east and falls in the west every day.
  • the solar cells of a fixed flat photovoltaic power generation only face the sun for a short time during the day. When the solar cells are inclined to the sun, their effective radiation area is proportional to the solar cells and sunlight. The cosine of the angle between the vertical planes. At this time, the solar cell does not make full use of sunlight. In this way, a large amount of solar radiation energy is wasted, so the light utilization rate of fixed flat photovoltaic power generation is low.
  • an object of the present invention is to provide a single-axis tracking system for enhancing the light intensity of a component, which can not only keep the solar energy collection device facing the sun, but also keep the rays of the sunlight better in the east-west direction. Irradiate the solar energy collection device at an angle to increase the power generation of the solar energy collection device. At the same time, the sunlight is introduced to the surface of the photovoltaic module through the solar light transfer device, so that the light intensity of the surface of the solar energy collection device is enhanced and the power generation efficiency is improved.
  • the present invention provides a single-axis tracking system for enhancing the light intensity of a component, including:
  • Single-axis tracking bracket is used to set and support the solar energy collection device and sunlight transfer device, and a rotation axis is driven by the transmission actuator to adjust the angle of the bracket in real time according to the angle of the sun's movement;
  • the solar energy collecting device is arranged on the single-axis tracking bracket to follow the movement of the single-axis tracking bracket to always receive sunlight at a set angle;
  • the solar energy transfer device is higher than the solar energy collection device and is staggered with the solar energy collection device on the single-axis tracking bracket to refract the received sunlight to the solar energy collection device.
  • the solar energy transfer device is disposed above the solar energy collection device, and the angle between the solar energy collection device and the solar energy collection device is less than or equal to ⁇ , where the value of ⁇ is 0 to 180 degrees.
  • the mounting bracket of the single-axis tracking bracket is of a “concave” type
  • the solar energy collecting device is symmetrically disposed at the bottom of the “concave” type of the mounting bracket
  • the solar energy transfer device is disposed at a height of the “concave” type of mounting bracket On both sides of the “concave” bottom.
  • the mounting bracket of the single-axis tracking bracket is a "convex" type
  • two solar energy collecting devices are respectively disposed on both sides of the bottom of the "convex” type mounting bracket
  • the solar energy transfer device is disposed on a "convex” type mounting bracket Raised position.
  • the present invention also provides a single-axis tracking system for enhancing the light intensity of a component, including:
  • Single-axis tracking bracket is used to set and support the solar energy collection device and sunlight transfer device, and a rotation axis is driven by the transmission actuator to adjust the angle of the bracket in real time according to the angle of the sun's movement;
  • the solar energy collecting device is arranged on the single-axis tracking bracket to follow the movement of the single-axis tracking bracket to always receive sunlight at an optimal angle;
  • the solar energy transfer device is disposed on the single-axis tracking bracket at an angle ⁇ with the solar energy collection device to reflect the received sunlight to the solar energy collection device, and ⁇ is between 90 degrees and 180 degrees.
  • the middle of the mounting bracket of the single-axis tracking bracket has a triangular shape
  • the solar energy collection device is disposed on both sides of the mounting bracket
  • the solar energy transfer device is disposed on both sides of the middle triangle of the mounting bracket, respectively.
  • the solar energy collection device adopts a photovoltaic module that is packaged as a whole, and its structure is a packaged outer layer and a built-in photovoltaic cell.
  • the rotation center of the single-axis tracking system adopts a centroid-reducing structure, and the rotation center thereof is located between the solar energy collection device and the sunlight transfer device.
  • the solar energy transfer device adopts a Fresnel lens or an aluminum foil or a silver mirror, which adopts a flat or curved shape.
  • the solar energy transfer device uses metal or glass or PMMA or a high molecular polymer or a mixed material thereof.
  • the single-axis tracking system for enhancing the light intensity of the component of the present invention realizes the angle adjustment of the bracket through the single-axis tracking bracket to track the movement of the sun, so as to keep the solar energy collection device on the single-axis tracking bracket to receive at a better angle.
  • Sunlight increases the power generation of the solar energy collection device.
  • the solar energy transfer device is mounted on the single-axis tracking bracket or the solar energy transfer device is arranged on the single-axis tracking bracket at a certain angle.
  • the sunlight is introduced to the surface of the solar energy collection device through refraction or reflection, so as to enhance the light intensity on the surface of the solar energy collection device and improve its power generation efficiency.
  • the invention only adopts single-axis tracking and rotates only in the east-west direction to track the direction of the sun's movement, ensuring that the sunlight in the east-west direction can reach the solar energy collection device at a better angle, which can greatly reduce the system cost, and because it is only a single axis Tracking also improves reliability.
  • FIG. 1 is a top view of an embodiment of a single-axis tracking system for enhancing the light intensity of a component according to the present invention
  • FIG. 2 is a front view of a single-axis tracking system for enhancing the light intensity of a component according to the present invention
  • FIG. 3 is a side view of a single-axis tracking system for enhancing light intensity of a component according to the present invention
  • FIG. 4 is a front view of another embodiment of a single-axis tracking system for enhancing the light intensity of a component according to the present invention
  • FIG. 5 is a schematic diagram of an eccentric structure of a rotation center in a preferred embodiment of a single-axis tracking system according to the present invention.
  • 6A-6C are schematic diagrams of a single-axis tracking system that enhances the light intensity of a component according to an embodiment of the present invention
  • FIGS. 7A-7C are schematic diagrams of a single-axis tracking system for enhancing the light intensity of a component according to another embodiment of the present invention.
  • FIG. 8 is a front view of another embodiment of a single-axis tracking system for enhancing the light intensity of a component according to the present invention.
  • 9A-9C are schematic diagrams of a single-axis tracking system for enhancing the light intensity of a component according to an embodiment of the present invention.
  • FIG. 1, FIG. 2, and FIG. 3 are respectively a top view, a front view, and a side view of an embodiment of a single-axis tracking system for enhancing the light intensity of a component according to the present invention.
  • a single-axis tracking system for enhancing light intensity of a component of the present invention includes:
  • a single-axis tracking bracket 100 is used to set and support a solar energy collecting device 101 and a solar light transfer device 102, and a rotation axis is controlled by a transmission actuator to adjust the angle of the bracket in real time according to the angle of the sun's movement, so that the light of the sunlight is on the east and west.
  • the solar energy collection device 101 and the solar light transfer device 102 on the tracking bracket 100 are illuminated at a preferred angle in the direction.
  • the single-axis tracking bracket 100 specifically includes: a tracking bracket body 1 for setting and supporting a solar energy collecting device 101 and a sunlight transfer device 102.
  • the tracking bracket body 1 includes a pillar 10 and a rotating shaft bracket corresponding to the pillar 10. 11.
  • a rotating shaft 12 connected to the rotating shaft frame 11 and a mounting bracket 13 fixedly connected to the rotating shaft 12.
  • the mounting bracket 13 is used to install a solar energy collecting device 101 and a solar light transferring device 102.
  • the number of pillars 10 is not limited, and it may include one or more pillars.
  • the tracking bracket body 1 includes three pillars 10 and can be simultaneously supported by the three pillars 10.
  • the two mounting brackets 13, of course, the tracking bracket body 1 may also include only one pillar 10, and the present invention is not limited to the number of pillars.
  • the invention uses a single rotation axis to rotate only in the east-west direction to track the direction of the sun's movement, to ensure that sunlight in the east-west direction can reach the solar energy collection device 101 at a better angle, the system cost is greatly reduced, and because it is only a single-axis tracking, it is reliable Sex has also been significantly improved.
  • the north-south direction of the rotating shaft 12 of the present invention may be horizontally placed or inclined, that is, there is a certain height difference at both ends, that is, if there are multiple pillars 10, the height of the pillars 10 may be The same or different, there is a height difference H between the pillars 10 as shown in FIG. 4.
  • a transmission actuator 2 for driving the rotation shaft 12 to adjust the angle of the tracking bracket is arranged on the pillar 10 and is hinged with the rotation shaft 12 to realize the driving rotation under the control of the tracking controller 4.
  • the shaft 12 is rotated to adjust the angle of the tracking bracket.
  • the transmission actuator 2 uses a linear linear pusher, as shown in FIGS. 1 to 2.
  • the transmission actuator 2 includes: fixed to the solar collector rotation shaft 12 of the tracking bracket body 1.
  • the connected driving rod 201 is a push rod 202 articulated with the driving rod 201; a driving device 203 (such as a motor) for driving the motion of the push rod 202; the driving device 203 drives the push rod 202 to move according to the control signal of the tracking controller 4, Because the push rod 202 is articulated with the drive rod 201, the drive rod 201 will move with the push rod 202, and the drive rod 201 is fixedly connected to the rotation shaft 12, so the rotation shaft 12 will move with the drive rod 201, thereby implementing a tracking bracket. Angle adjustment of the body.
  • the transmission actuator is not limited to the above structure, and the present invention can also adopt other transmission actuators that can adjust the angle of the tracking bracket in the prior art, and the present invention is not limited thereto.
  • the position angle detection unit 3 is configured to acquire position angle related information of the tracking bracket body 1 and transmit it to the tracking controller 4.
  • the position angle detection unit 3 may adopt a position angle sensor, which may be disposed on the rotation shaft 12 or the transmission actuator 2 (for example, the tail of the push rod of the transmission actuator 2 or the tail of the motor) for detecting Information about the position and angle of the rotation axis 12,
  • Tracking controller 4 is used to calculate the sun movement angle in real time according to the astronomical algorithm, convert the position angle related information obtained by the position detection unit 3 into the tracking bracket angle information, and perform logical processing according to the sun movement angle and the tracking bracket angle information to control the transmission
  • the actuator 2 adjusts the angle of the bracket.
  • the tracking controller 4 can obtain the local latitude and longitude information, the date of the day, and the real-time clock, and calculate the theoretical solar altitude angle ⁇ through an astronomical algorithm, while converting the position information detected by the position detection unit 3 into the bracket angle information ⁇ Make a decision based on the difference between the theoretical height angle ⁇ of the sun and the bracket angle information ⁇ , drive the motor of the transmission execution structure 2 to adjust the angle of the tracking bracket, and finally realize the tracking bracket to track the sun in real time.
  • the tracking controller 4 is a control cabinet, which can be provided on the pillar 10, of course, it can take other forms, such as an integrated design with a transmission actuator or a position angle detection unit. The present invention does not This is the limit.
  • the solar energy collecting device 101 is disposed on the single-axis tracking bracket 100 to follow the movement of the single-axis tracking bracket 100 to always receive sunlight at a set angle (generally the best angle, for example, directly facing).
  • the solar energy collection device can realize the utilization of solar light, heat, electricity and other forms.
  • it can be a photovoltaic module, but the invention is not limited to this.
  • the photovoltaic module itself adopts an overall package. Structure, that is, the built-in photovoltaic cells on the outer layer of the package, which can convert sunlight on its surface into electricity.
  • the photovoltaic module can be a photovoltaic module that can generate electricity on one side or a double-sided photovoltaic module that generates electricity on both sides. To repeat.
  • the solar energy transfer device 102 is higher than the solar energy collection device 101 and is staggered with the solar energy collection device 101 on a single-axis tracking bracket 100 to refract the received sunlight to the solar energy collection device 11 so that the solar energy collection device 101 is vertical.
  • the irradiated sunlight and the sunlight introduced and refracted by the sunlight transfer device 102 are superimposed on the surface of the photovoltaic module, so that the light intensity of the surface of the module can be enhanced.
  • the angle between the solar energy transfer device 102 and the solar energy collection device 101 should not be greater than ⁇ , where ⁇ takes a value from 0 to 180 degrees, and is best when ⁇ takes 0 degrees or 180 degrees, that is, the solar energy transfer device 102 and The solar energy collection devices 101 are parallel to each other.
  • the solar energy transfer device 102 may use Fresnel lenses, aluminum foil, silver mirrors, and the like.
  • the material of the solar energy transfer device 102 may be metal, glass, PMMA, high-molecular polymers, and their mixed materials. Sunlight
  • the shape of the transfer device 102 may adopt a shape such as a plane or a curved surface, and the present invention is not limited thereto.
  • the rotation center of the single-axis tracking system of the present invention adopts an eccentric structure, that is, the rotation center is located in a solar energy collection device 101 (photovoltaic module) and a solar light transfer device 102 (such as a Fresnel lens). between.
  • a solar energy collection device 101 photovoltaic module
  • a solar light transfer device 102 such as a Fresnel lens
  • FIGS. 6A-6C are schematic diagrams of a single-axis tracking system for enhancing the light intensity of a component according to an embodiment of the present invention.
  • the mounting bracket 13 of the tracking bracket is a “concave” type
  • the solar energy collecting device 101 is a long or square photovoltaic module, which is symmetrically disposed at the bottom of the “concave” type of the mounting bracket 13 of the tracking bracket 1.
  • the solar energy transfer device 102 is disposed in parallel on both sides of the “concave” type mounting bracket 13 above the “concave” type bottom.
  • the tracking bracket 100 can track the sunlight in real time according to the position angle of the sun, keeping the sunlight vertically incident on the photovoltaic module in the east-west direction, and at the same time the sunlight reaches above the sunlight transfer device 102 (such as a Fresnel lens).
  • the sunlight transfer device 102 such as a Fresnel lens.
  • the sunlight above the lens can be refracted above the photovoltaic module.
  • the sunlight on the surface of the photovoltaic module comes from above the module and above the lens, thereby enhancing the light intensity of the surface of the photovoltaic module.
  • FIGS. 7A-7C are schematic diagrams of a single-axis tracking system for enhancing the light intensity of a component according to another embodiment of the present invention.
  • the mounting bracket 13 of the tracking bracket has a “convex” type, and two photovoltaic modules are respectively disposed on both sides of the bottom of the “convex” type mounting bracket 13, and the solar energy transfer device 102, such as a Fresnel lens, is It is set in the middle of the convexity of the "convex” type mounting bracket 13.
  • the Fresnel lens refracts the sun, the sunlight above the lens can be refracted above the photovoltaic module.
  • the sunlight on the surface of the photovoltaic module From above the module and above the lens, the enhancement of the light intensity on the surface of the photovoltaic module is achieved.
  • the specific embodiment of the present invention only illustrates the specific structure of the single-axis tracking system for enhancing the light intensity of the component of the present invention by way of example.
  • the solar energy transfer device and the solar energy collection device are staggered and arranged in Above the solar energy collection device, the purpose of the present invention can be achieved, and the present invention is not limited thereto.
  • FIG. 8 is a front view of another embodiment of a single-axis tracking system for enhancing light intensity of a component according to the present invention.
  • a single-axis tracking system for enhancing the light intensity of a component of the present invention includes:
  • a single-axis tracking bracket 800 is used to set and support the solar energy collecting device 801 and the solar light transfer device 102, and adjusts the angle of the bracket in real time according to the angle of the sun through the transmission actuator, so that the light of the sunlight can be kept in the east-west direction.
  • the solar energy collection device 101 and the sunlight transfer device 102 on the tracking bracket 100 are illuminated at a good angle.
  • the solar energy collecting device 101 is disposed on the single-axis tracking bracket 100 to follow the movement of the single-axis tracking bracket 100 to always receive sunlight at an optimal angle.
  • the solar energy collection device can realize the utilization of solar light, heat, electricity and other forms.
  • it can be a photovoltaic module, but the invention is not limited to this.
  • the photovoltaic module itself adopts an overall package. Structure, that is, the built-in photovoltaic cells on the outer layer of the package, which can convert sunlight on its surface into electricity.
  • the photovoltaic module can be a photovoltaic module that can generate electricity on one side or a double-sided photovoltaic module that generates electricity on both sides. To repeat.
  • the solar energy transfer device 102 is disposed on the single-axis tracking bracket 100 at an angle ⁇ with the solar energy collection device 101 to reflect the received sunlight onto the solar energy collection device 11 so that the vertical solar energy collection device 101 (taking photovoltaic modules as Example)
  • the irradiated sunlight and the sunlight reflected and introduced by the sunlight transfer device 102 are superimposed on the surface of the photovoltaic module, and the light intensity of the surface of the module can be enhanced.
  • is generally between 90 degrees and 180 degrees.
  • the solar energy transfer device 102 may be a reflector.
  • the middle of the mounting bracket 13 of the uniaxial tracking bracket 800 has a triangular shape (preferably an isosceles triangle), so that the solar energy collecting device 101 (such as a photovoltaic module) can be symmetrically arranged (not limited to symmetrical) for tracking
  • the solar energy transfer device 102 for example, a reflector
  • the middle triangle of the mounting bracket 13 of the tracking bracket 1 for example, the waist of an isosceles, the outside is shown as an example, but not This is the limit.
  • the tracking bracket 100 tracks the sunlight in real time according to the position angle of the sun, and keeps the sunlight perpendicularly entering the photovoltaic module in the east-west direction
  • the sunlight transfer device 102 for example, a reflector
  • the reflector reflects the sun. Because it is at a certain angle with the photovoltaic module, the sunlight above the reflector can be reflected by the mirror to the photovoltaic module. At this time, the sunlight on the surface of the photovoltaic module comes from above the module. And the reflected light of the reflector, thus achieving the enhancement of the light intensity on the surface of the photovoltaic module.
  • the single-axis tracking system for enhancing the light intensity of the component of the present invention realizes the angle adjustment of the bracket by tracking the movement of the sun through the single-axis tracking bracket, so as to maintain the solar energy collection device on the single-axis tracking bracket to receive sunlight at a better angle.
  • Increase the power generation of the solar energy collection device and at the same time pass the refraction through the sunlight transfer device that is higher than the solar energy collection device on the single-axis tracking bracket or the sunlight transfer device that is arranged at a certain angle with the solar energy transfer device on the single-axis tracking bracket.
  • the invention only adopts single-axis tracking and rotates only in the east-west direction to track the direction of the sun's movement, ensuring that the sunlight in the east-west direction can reach the solar energy collection device at a better angle, which can greatly reduce the system cost, and because it is only a single axis Tracking also improves reliability.

Abstract

本发明公开了一种增强组件光强的单轴跟踪系统,包括:单轴跟踪支架,用于设置和支撑太阳能收集装置、太阳光转移装置,通过传动执行机构驱动一旋转轴实时实现支架角度的调整;太阳能收集装置,设置于单轴跟踪支架上,以跟随单轴跟踪支架的运动始终以设定角度接收太阳光;太阳能转移装置,高于太阳能收集装置且与太阳能收集装置交错设置于单轴跟踪支架上,以将接收到的太阳光折射到太阳能收集装置上,本发明不仅可使太阳光的光线保持较佳角度照射太阳能收集装置,同时还通过太阳光转移装置将太阳光导入到光伏组件表面,实现太阳能收集装置表面光强增强。

Description

一种增强组件光强的单轴跟踪系统 技术领域
本发明涉及太阳能技术领域,特别是涉及一种增强组件光强的单轴跟踪系统。
背景技术
目前,能源是现代社会存在和发展的基石。而太阳能作为可再生能源的重要组成部分,它的应用技术已经成为衡量一个国家整体实力的标志。我国资源储藏量大,但人均拥有量却一直低于全球人均量,外加我国是能耗大国,这些客观条件都要求我们要采用其它可利用能源来缓解我国即将面临的能源危机。正因为太阳能具有利用的普遍性、丰富性、清洁性、长久性,所以,在化石能源供应日趋紧张的背景下,太阳能的大规模开发利用是面向未来,实现可持续发展的必然选择。
太阳能的利用有光热和光伏两种主要形式,其中光伏的研究和利用发展最快。太阳能光伏发电是以太阳电池作为光电转换器件,将太阳能转换为电能。目前,固定平板光伏发电是太阳能光伏发电的主要形式,固定平板光伏发电是将平板太阳电池组件固定于承载架上,面向太阳的方向,接收日升至日落期间的日照,并转换为电能。
但这种主流的光伏发电方式有着明显的缺陷:1)光利用率低,太阳电池的发电量跟有效辐射面积成正比,有效辐射面积即被接收的太阳光在太阳光垂直面上的投影面积。而由于地球自转,每天太阳东升西落,一天之中固定平板光伏发电的太阳电池只有很短的时间是正对太阳的,当太阳电池斜对太阳时,其有效辐射面积正比于太阳电池与太阳光垂直面之间夹角的余弦,此时太阳电 池并没有充分利用太阳光,这样,会浪费大量的太阳辐照能,因而固定平板光伏发电的光利用率较低。
2)太阳电池用量大,太阳光辐照功率很低,每平米仅1kw左右,因此要达到一定的发电功率,需要大量使用太阳电池,而太阳电池的制造工艺复杂、耗能高,导致光伏发电成本过高,缺乏市场竞争力
因此,实有必要提出一种技术手段,以解决上述问题。
发明内容
为克服上述现有技术存在的不足,本发明之目的在于提供一种增强组件光强的单轴跟踪系统,不仅可以保持太阳能收集装置正对太阳,使太阳光的光线在东西方向上保持较佳角度照射太阳能收集装置,增加太阳能收集装置的发电量,同时还通过太阳光转移装置将太阳光导入到光伏组件表面,实现太阳能收集装置表面光强增强,提高发电效率。
为达上述目的,本发明提出一种增强组件光强的单轴跟踪系统,包括:
单轴跟踪支架,用于设置和支撑太阳能收集装置、太阳光转移装置,通过传动执行机构驱动一旋转轴根据太阳运动角度实时实现支架角度的调整;
太阳能收集装置,设置于所述单轴跟踪支架上,以跟随所述单轴跟踪支架的运动始终以设定角度接收太阳光;
太阳能转移装置,高于所述太阳能收集装置且与所述太阳能收集装置交错设置于所述单轴跟踪支架上,以将接收到的太阳光折射到所述太阳能收集装置上。
优选地,所述太阳能转移装置设置于所述太阳能收集装置设置上方,且与所述太阳能收集装置之间的角度小于等于α,其中α取值为0到180度。
优选地,所述单轴跟踪支架的安装支架呈“凹”型,所述太阳能收集装置对称设置于所述安装支架“凹”型底部,所述太阳能转移装置设置于“凹”型安装支架高于“凹”型底部的两侧。
优选地,所述单轴跟踪支架的安装支架呈“凸”型,两个太阳能收集装置分别设置于“凸”型安装支架的底部两侧,所述太阳能转移装置设置于“凸”型安装支架凸起的位置。
为达到上述目的,本发明还提供一种增强组件光强的单轴跟踪系统,包括:
单轴跟踪支架,用于设置和支撑太阳能收集装置、太阳光转移装置,通过传动执行机构驱动一旋转轴根据太阳运动角度实时实现支架角度的调整;
太阳能收集装置,设置于所述单轴跟踪支架上,以跟随所述单轴跟踪支架的运动始终以最佳角度接收太阳光;
太阳能转移装置,与所述太阳能收集装置呈θ角度设置于所述单轴跟踪支架上,以将接收到的太阳光反射到太阳能收集装置,θ在90度到180度之间。
优选地,所述单轴跟踪支架的安装支架中间呈三角的形状,所述太阳能收集装置设置于所述安装支架的两侧,所述太阳能转移装置则分别设置于所述安装支架中间三角形的两边。
优选地,所述太阳能收集装置采用整体封装好的光伏组件,其结构为封装外层、内置光伏电池片。
优选地,所述单轴跟踪系统的旋转中心采取降质心结构,其旋转中心位于所述太阳能收集装置与太阳光转移装置之间。
优选地,所述太阳能转移装置采用菲涅尔透镜或铝箔或银镜,其采用平面或曲面形状。
优选地,所述太阳能转移装置采用金属或玻璃或PMMA或高分子聚合物或其混合材料。
与现有技术相比,本发明一种增强组件光强的单轴跟踪系统通过单轴跟踪支架跟踪太阳的运动实现支架角度调整,以保持单轴跟踪支架上的太阳能收集装置以较佳角度接收太阳光,增加太阳能收集装置的发电量,同时通过高于太阳能收集装置设置于单轴跟踪支架上的太阳光转移装置或与太阳能转移装置呈一定角度设置于单轴跟踪支架上的太阳光转移装置通过折射或反射将太阳光导 入到太阳能收集装置表面,以实现太阳能收集装置表面光强增强,提高其发电效率。本发明仅采用单轴跟踪仅在东西方向上旋转以跟踪太阳运动方向,保证东西方向上的太阳光能以较佳角度到达太阳能收集装置,可使系统成本大为降低,且由于仅仅是单轴跟踪,可靠性也得以提高。
附图说明
图1为本发明一种增强组件光强的单轴跟踪系统之一实施例的俯视图;
图2为本发明一种增强组件光强的单轴跟踪系统的正视图;
图3为本发明一种增强组件光强的单轴跟踪系统的侧视图;
图4为本发明一种增强组件光强的单轴跟踪系统另一实施例的正视图;
图5为本发明一种单轴跟踪系统较佳实施例中旋转中心采取偏心结构的示意图;
[根据细则91更正 15.07.2019] 
[根据细则91更正 15.07.2019] 
图6A-图6C为本发明一实施例之增强组件光强的单轴跟踪系统的原理示意图;
图7A-图7C为本发明另一实施例之增强组件光强的单轴跟踪系统的原理示意图;
图8为本发明一种增强组件光强的单轴跟踪系统之另一实施例的正视图;
图9A-图9C为本发明一实施例之增强组件光强的单轴跟踪系统的原理示意图。
具体实施方式
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明 亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
图1、图2、图3分别为本发明一种增强组件光强的单轴跟踪系统之一实施例的俯视图、正视图及侧视图。如图1、图2及图3所示,本发明一种增强组件光强的单轴跟踪系统,包括:
单轴跟踪支架100,用于设置和支撑太阳能收集装置101、太阳光转移装置102,并通过传动执行机构控制一旋转轴根据太阳运动角度实时实现支架角度的调整,以使太阳光的光线在东西方向上保持较佳角度照射跟踪支架100上的太阳能收集装置101、太阳光转移装置102。
单轴跟踪支架100具体包括:用于设置和支撑太阳能收集装置101、太阳光转移装置102的跟踪支架本体1,所述跟踪支架本体1包括:支柱10,对应设置在支柱10上的旋转轴架11,连接在旋转轴架11上的旋转轴12,以及与旋转轴12固定连接的安装支架13,所述安装支架13上用于安装太阳能收集装置101以及太阳光转移装置102。在本发明中,支柱10的个数不受限制,其可以包括一个或一个以上的支柱,如图1所示,所述跟踪支架本体1包括三个支柱10,通过三个支柱10可以同时支撑两个安装架13,当然,该跟踪支架本体1也可仅包括一个支柱10,对于支柱的个数本发明不以此为限。本发明采用单个旋转轴仅在东西方向上旋转以跟踪太阳运动方向,保证东西方向上太阳光能以较佳角度到达太阳能收集装置101,系统成本大为降低,且由于仅仅是单轴跟踪,可靠性也得以明显提高。
这里需说明的是,本发明的旋转轴12的南北方向可以是水平放置,也可以是倾斜放置,即两端存在一定高度差,也就是说,若存在多个支柱10,支柱10的高度可以相同,也可以不同,如图4所示支柱10之间存在高度差H。
用于驱动旋转轴12以实现跟踪支架角度调整的传动执行机构2,所述传动执行机构2设置于其中支柱10上并与旋转轴12相铰接,以在跟踪控制器4的控制下实现驱动旋转轴12转动以实现跟踪支架角度的调整。
在本发明具体实施例中,所述传动执行机构2采用线性直线推杆,如图1-图2所示,所述传动执行机构2包括:与跟踪支架本体1的太阳能收集装置旋转轴12固定连接的驱动杆201,与驱动杆201铰接配合的推杆202;用于驱动推杆202运动的驱动装置203(如电机),驱动装置203根据跟踪控制器4的控制信号驱动推杆202运动,由于推杆202与驱动杆201铰接配合,因此驱动杆201将伴随推杆202运动,而且驱动杆201又与旋转轴12固定连接,因此旋转轴12将伴随驱动杆201发生运动,从而实现跟踪支架本体的角度调整。当然,传动执行机构并不限于上述结构,本发明也可采用现有技术中的其他可实现跟踪支架角度调整的传动执行机构,本发明不以此为限。
位置角度检测单元3,用于获取跟踪支架本体1的位置角度相关信息,并将其传送至跟踪控制器4。在本发明具体实施例中,位置角度检测单元3可采用位置角度传感器,其可以设置于旋转轴12或传动执行机构2(例如传动执行机构2的推杆尾部或电机尾部)上,用于检测旋转轴12的位置角度相关信息,
跟踪控制器4,用于根据天文算法实时计算太阳运动角度,将位置检测单元3获得的位置角度相关信息转换为跟踪支架角度信息,并根据太阳运动角度及跟踪支架角度信息进行逻辑处理,控制传动执行机构2实现支架角度的调整。具体地,跟踪控制器4可通过获取当地的经纬度信息以及当天的日期、实时时钟,通过天文算法计算出太阳理论高度角β,同时将位置检测单元3检测的位置信息转换成支架角度信息α,根据太阳理论高度角β与支架角度信息α的差值做出决策,驱动传动执行结构2的电机转动,实现跟踪支架角度的调整,最终实现跟踪支架实时跟踪太阳。在本发明具体实施例中,跟踪控制器4为一控制柜,其可设置支柱10上,当然其可以采用其他形式,例如与传动执行机构或位置角度检测单元进行集成一体化设计,本发明不以此为限。
太阳能收集装置101,设置于单轴跟踪支架100上,以跟随单轴跟踪支架100的运动始终以设定角度(一般为最佳角度,例如正对)接收太阳光。一般地,所述太阳能收集装置可实现太阳能光、热、电等形式的利用,在本发明具体实 施例中,其可为光伏组件,但本发明不以此为限,光伏组件本身采取整体封装结构,即封装外层内置光伏电池片,其可将其表面太阳光转化成电,光伏组件可以为可单面发电光伏组件,也可以是正反两面发电的双面光伏组件,在此不予赘述。
太阳能转移装置102,高于该太阳能收集装置101且与该太阳能收集装置101交错设置于单轴跟踪支架100上,以将接收到的太阳光折射到太阳能收集装置11上,这样垂直太阳能收集装置101(以光伏组件为例)照射的太阳光和太阳光转移装置102折射导入的太阳光一起叠加到光伏组件表面,可实现组件表面光强的增强。较佳地,太阳能转移装置102与太阳能收集装置101之间的角度应不大于α,其中,α取值0到180度,当α取0度或180度时最佳,即太阳能转移装置102与太阳能收集装置101之间平行。
在本发明具体实施例中,太阳能转移装置102可采用菲涅尔透镜、铝箔、银镜等,太阳能转移装置102的材料可以采用金属、玻璃、PMMA、高分子聚合物及其混合材料,太阳光转移装置102的形状可以采用平面、曲面等形状,本发明不以此为限。
较佳地,如图5所示,本发明之单轴跟踪系统的旋转中心采取偏心的结构,即旋转中心位于太阳能收集装置101(光伏组件)和太阳光转移装置102(例如菲涅尔透镜)之间。
图6A-图6C为本发明一实施例之增强组件光强的单轴跟踪系统的原理示意图。在该实施例中,所述跟踪支架的安装支架13呈“凹”型,太阳能收集装置101为长或正方形的光伏组件,其对称设置于跟踪支架1的安装支架13的“凹”型底部的中心位置,太阳能转移装置102则平行设置于“凹”型安装支架13高于“凹”型底部的两侧。这样,跟踪支架100可根据太阳位置角度实时跟踪太阳光,保持太阳光在东西方向上垂直入射光伏组件,同时太阳光到达太阳光转移装置102(例如菲涅尔透镜)上方,由于菲涅尔透镜对太阳有折射现象,所以可将透镜上方的太阳光折射到光伏组件上方,此时光伏组件表面的太阳光来源 于组件上方和透镜上方,因而实现了光伏组件表面光强的增强。
图7A-图7C为本发明另一实施例之增强组件光强的单轴跟踪系统的原理示意图。在该实施例中,所述跟踪支架的安装支架13呈“凸”型,两个光伏组件分别设置于“凸”型安装支架13的底部两侧,太阳能转移装置102,例如菲涅尔透镜则设置于“凸”型安装支架13凸起的中间位置,同样,由于菲涅尔透镜对太阳有折射现象,所以可将透镜上方的太阳光折射到光伏组件上方,此时光伏组件表面的太阳光来源于组件上方和透镜上方,因而实现了光伏组件表面光强的增强。
这里需说明的是,本发明具体实施例仅以实例的方式说明了本发明之增强组件光强的单轴跟踪系统的具体结构,事实上,只要太阳能转移装置与太阳能收集装置交错设置且设置于太阳能收集装置上方,则即可实现本发明的目的,本发明不以此为限。
图8为本发明一种增强组件光强的单轴跟踪系统之另一实施例的主视图。如图8所示,本发明一种增强组件光强的单轴跟踪系统,包括:
单轴跟踪支架800,用于设置和支撑太阳能收集装置801、太阳光转移装置102,并通过传动执行机构根据太阳运动角度实时实现支架角度的调整,以使太阳光的光线在东西方向上保持较佳角度照射跟踪支架100上的太阳能收集装置101、太阳光转移装置102。
太阳能收集装置101,设置于单轴跟踪支架100上,以跟随单轴跟踪支架100的运动始终以最佳角度接收太阳光。一般地,所述太阳能收集装置可实现太阳能光、热、电等形式的利用,在本发明具体实施例中,其可为光伏组件,但本发明不以此为限,光伏组件本身采取整体封装结构,即封装外层内置光伏电池片,其可将其表面太阳光转化成电,光伏组件可以为可单面发电光伏组件,也可以是正反两面发电的双面光伏组件,在此不予赘述。
太阳能转移装置102,与所述太阳能收集装置101呈θ角度设置于单轴跟踪支架100上,以将接收到的太阳光反射到太阳能收集装置11上,这样垂直太 阳能收集装置101(以光伏组件为例)照射的太阳光和太阳光转移装置102反射导入的太阳光一起叠加到光伏组件表面,可实现组件表面光强的增强。在本发明具体实施例中,θ一般在90度到180度之间。在本发明具体实施例中,太阳能转移装置102可为反光镜。
图9A-图9C为本发明一实施例之增强组件光强的单轴跟踪系统的原理示意图。在该实施例中,单轴跟踪支架800的安装支架13的中间呈三角形的形状(以等腰三角形为佳),这样太阳能收集装置101(例如光伏组件)可对称设置(不限于对称)于跟踪支架1的安装支架13的两侧,太阳能转移装置102(例如反光镜)则分别设置于跟踪支架1的安装支架13中间三角形的两边(例如等腰的腰部,图示以外侧为例,但不以此为限),这样,当跟踪支架100根据太阳位置角度实时跟踪太阳光,保持太阳光在东西方向上垂直入射光伏组件时,此时太阳光同时到达太阳光转移装置102(例如反光镜)上方,此时反光镜对太阳有反射现象,由于其与光伏组件呈一定角度,所以可将反光镜上方的太阳光通过镜面反射到光伏组件上方,此时光伏组件表面的太阳光来源于组件上方和反光镜的反射光,因而实现了光伏组件表面光强的增强。
综上所述,本发明一种增强组件光强的单轴跟踪系统通过单轴跟踪支架跟踪太阳的运动实现支架角度调整,以保持单轴跟踪支架上的太阳能收集装置以较佳角度接收太阳光,增加太阳能收集装置的发电量,同时通过高于太阳能收集装置设置于单轴跟踪支架上的太阳光转移装置或与太阳能转移装置呈一定角度设置于单轴跟踪支架上的太阳光转移装置通过折射或反射将太阳光导入到太阳能收集装置表面,以实现太阳能收集装置表面光强增强,提高其发电效率。本发明仅采用单轴跟踪仅在东西方向上旋转以跟踪太阳运动方向,保证东西方向上的太阳光能以较佳角度到达太阳能收集装置,可使系统成本大为降低,且由于仅仅是单轴跟踪,可靠性也得以提高。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行 修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。

Claims (10)

  1. 一种增强组件光强的单轴跟踪系统,包括:
    单轴跟踪支架,用于设置和支撑太阳能收集装置、太阳光转移装置,通过传动执行机构驱动一旋转轴根据太阳运动角度实时实现支架角度的调整;
    太阳能收集装置,设置于所述单轴跟踪支架上,以跟随所述单轴跟踪支架的运动始终以设定角度接收太阳光;
    太阳能转移装置,高于所述太阳能收集装置且与所述太阳能收集装置交错设置于所述单轴跟踪支架上,以将接收到的太阳光折射到所述太阳能收集装置上。
  2. 如权利要求1所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述太阳能转移装置设置于所述太阳能收集装置设置上方,且与所述太阳能收集装置之间的角度小于等于α,其中α取值为0到180度。
  3. 如权利要求2所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述单轴跟踪支架的安装支架呈“凹”型,所述太阳能收集装置对称设置于所述安装支架“凹”型底部,所述太阳能转移装置设置于“凹”型安装支架高于“凹”型底部的两侧。
  4. 如权利要求2所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述单轴跟踪支架的安装支架呈“凸”型,两个太阳能收集装置分别设置于“凸”型安装支架的底部两侧,所述太阳能转移装置设置于“凸”型安装支架凸起的位置。
  5. 一种增强组件光强的单轴跟踪系统,包括:
    单轴跟踪支架,用于设置和支撑太阳能收集装置、太阳光转移装置,通过传动执行机构驱动一旋转轴根据太阳运动角度实时实现支架角度的调整;
    太阳能收集装置,设置于所述单轴跟踪支架上,以跟随所述单轴跟踪支架的运动始终以设定角度接收太阳光;
    太阳能转移装置,与所述太阳能收集装置呈θ角度设置于所述单轴跟踪支 架上,以将接收到的太阳光反射到太阳能收集装置,θ在90度到180度之间。
  6. 如权利要求5所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述单轴跟踪支架的安装支架中间呈三角形的形状,所述太阳能收集装置设置于所述安装支架的两侧,所述太阳能转移装置则分别设置于所述安装支架中间三角形的两边。
  7. 如权利要求1或5所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述太阳能收集装置采用整体封装好的光伏组件,其结构为封装外层、内置光伏电池片。
  8. 如权利要求1或5所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述单轴跟踪系统的旋转中心采取降质心结构,其旋转中心位于所述太阳能收集装置与太阳光转移装置之间。
  9. 如权利要求1或5所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述太阳能转移装置采用菲涅尔透镜或铝箔或银镜;所述太阳能转移装置采用平面或曲面形状。
  10. 如权利要求1或5所述的一种增强组件光强的单轴跟踪系统,其特征在于:所述太阳能转移装置采用金属或玻璃或PMMA或高分子聚合物或其混合材料。
PCT/CN2019/094376 2018-07-06 2019-07-02 一种增强组件光强的单轴跟踪系统 WO2020007292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980029281.4A CN115956338A (zh) 2018-07-06 2019-07-02 一种增强组件光强的单轴跟踪系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810739758.5 2018-07-06
CN201810739758 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020007292A1 true WO2020007292A1 (zh) 2020-01-09

Family

ID=69060088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094376 WO2020007292A1 (zh) 2018-07-06 2019-07-02 一种增强组件光强的单轴跟踪系统

Country Status (2)

Country Link
CN (1) CN115956338A (zh)
WO (1) WO2020007292A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127658A (zh) * 2020-09-16 2020-12-25 浙江美约风家居股份有限公司 一种基于太阳能的智能移动式木屋
CN116833643A (zh) * 2023-09-01 2023-10-03 江苏曦日新能源科技有限公司 一种光伏跟踪支架组合式主轴的自动化焊接系统及方法
CN117081485A (zh) * 2023-08-08 2023-11-17 上海第二工业大学 一种光伏发电高精度跟踪系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200969562Y (zh) * 2006-10-17 2007-10-31 陈晓东 平面反射聚光太阳能光伏发电设备
CN102177591A (zh) * 2008-09-04 2011-09-07 摩根阳光公司 用于聚光太阳能板的交错开的光收集器
CN104345741A (zh) * 2013-07-31 2015-02-11 浙江同景新能源集团有限公司 新型太阳能倾角单轴跟踪系统
CN208572005U (zh) * 2018-07-06 2019-03-01 驰鸟智能科技(上海)有限公司 一种增强组件光强的单轴跟踪系统
CN208807372U (zh) * 2018-03-22 2019-05-03 优良食(北京)生物科技有限公司 一种生态养鱼池用人工智能自动喂料装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200969562Y (zh) * 2006-10-17 2007-10-31 陈晓东 平面反射聚光太阳能光伏发电设备
CN102177591A (zh) * 2008-09-04 2011-09-07 摩根阳光公司 用于聚光太阳能板的交错开的光收集器
CN104345741A (zh) * 2013-07-31 2015-02-11 浙江同景新能源集团有限公司 新型太阳能倾角单轴跟踪系统
CN208807372U (zh) * 2018-03-22 2019-05-03 优良食(北京)生物科技有限公司 一种生态养鱼池用人工智能自动喂料装置
CN208572005U (zh) * 2018-07-06 2019-03-01 驰鸟智能科技(上海)有限公司 一种增强组件光强的单轴跟踪系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127658A (zh) * 2020-09-16 2020-12-25 浙江美约风家居股份有限公司 一种基于太阳能的智能移动式木屋
CN117081485A (zh) * 2023-08-08 2023-11-17 上海第二工业大学 一种光伏发电高精度跟踪系统
CN117081485B (zh) * 2023-08-08 2024-03-29 上海第二工业大学 一种光伏发电高精度跟踪系统
CN116833643A (zh) * 2023-09-01 2023-10-03 江苏曦日新能源科技有限公司 一种光伏跟踪支架组合式主轴的自动化焊接系统及方法
CN116833643B (zh) * 2023-09-01 2023-11-14 江苏曦日新能源科技有限公司 一种光伏跟踪支架组合式主轴的自动化焊接系统及方法

Also Published As

Publication number Publication date
CN115956338A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
US7923624B2 (en) Solar concentrator system
JP5337961B2 (ja) 太陽追尾モジュール装置
WO2020007292A1 (zh) 一种增强组件光强的单轴跟踪系统
EP2221553A2 (en) Two-part Solar Energy Collection System with Replaceable Solar Collector Component
US20100154866A1 (en) Hybrid solar power system
CA2632853A1 (en) Adaptive solar concentrator system
TW200941747A (en) Thin and efficient collecting optics for solar system
US20100206379A1 (en) Rotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
EP2221552A2 (en) Rotational Trough Reflector Array with Solid Optical Element for Solar-Electricity Generation
CN101471615A (zh) ∧型聚光双轴跟踪太阳能光伏发电装置
CN208572005U (zh) 一种增强组件光强的单轴跟踪系统
CN101610044B (zh) 一种用于聚光发电的高精度二维跟踪太阳机构
US20140048117A1 (en) Solar energy systems using external reflectors
CN201918922U (zh) 便携式菲涅尔透镜太阳能自动跟踪发电加热两用装置
WO2015113447A1 (en) Solar tracker and solar energy collection system
US20160301357A1 (en) Solar tracker and solar energy collection system
CN102800731A (zh) 一种增加太阳能光照度的装置
US20090301469A1 (en) Solar collectors
CN201238271Y (zh) 尖顶型聚光双轴跟踪太阳能光伏发电装置
CN201918932U (zh) 混合跟踪策略式聚光型光伏发电装置
CN102130629B (zh) 均匀反射聚焦式太阳能发电装置
CN201937509U (zh) 一种聚光光伏系统
CN211011959U (zh) 基于线性菲涅尔透镜的三棱式集热发电综合系统
WO2014176881A1 (zh) 一种管状聚光光伏电池组件
CN202182968U (zh) 一种超级聚光设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19831489

Country of ref document: EP

Kind code of ref document: A1