WO2012086777A1 - Device for producing silicon and method for producing silicon - Google Patents

Device for producing silicon and method for producing silicon Download PDF

Info

Publication number
WO2012086777A1
WO2012086777A1 PCT/JP2011/079866 JP2011079866W WO2012086777A1 WO 2012086777 A1 WO2012086777 A1 WO 2012086777A1 JP 2011079866 W JP2011079866 W JP 2011079866W WO 2012086777 A1 WO2012086777 A1 WO 2012086777A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
reactor
gas supply
zinc
supply port
Prior art date
Application number
PCT/JP2011/079866
Other languages
French (fr)
Japanese (ja)
Inventor
中原勝正
近藤雅史
武内喜則
榊大介
Original Assignee
旭硝子株式会社
株式会社キノテック・ソーラーエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, 株式会社キノテック・ソーラーエナジー filed Critical 旭硝子株式会社
Publication of WO2012086777A1 publication Critical patent/WO2012086777A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents

Definitions

  • the present invention relates to a silicon manufacturing apparatus and a silicon manufacturing method, and more particularly to a silicon manufacturing apparatus and a silicon manufacturing method for forming a silicon deposition region in a reactor or an inner tube thereof.
  • a Siemens method As a general method for producing high-purity silicon, a Siemens method is known in which silicon is produced by chemical vapor deposition using a silane compound such as trichlorosilane obtained by reacting crude silicon with hydrogen chloride. Yes. According to the Siemens method, extremely high-purity silicon can be obtained, but not only the rate of the silicon production reaction is extremely slow but also the yield is low, so a large-scale facility is required to obtain a certain production capacity. In addition to being required, the power consumption required for production is as high as 350 kWh per kg of high-purity silicon. In other words, high-purity silicon produced by the Siemens method is suitable for high-value-added highly integrated electronic devices that require a purity of 11-nine or higher, but the market is expected to expand rapidly in the future. As silicon for solar cells, it is expensive and excessive quality.
  • the zinc reduction method using silicon tetrachloride as a raw material and reducing silicon tetrachloride with metallic zinc at a high temperature is said to have been proved in principle in the 1950s.
  • high purity silicon comparable to the Siemens method is used. It was considered difficult to obtain.
  • silicon for solar cells silicon having a purity of about 6-nine is sufficient, and a silicon having a purity as high as that for highly integrated electronic devices has become unnecessary, and in order to respond to rapid market expansion.
  • the zinc reduction method has been reviewed again, and the manufacturing method has been studied again.
  • silicon tetrachloride gas is laterally supplied from the silicon tetrachloride gas inlet below the zinc gas inlet.
  • silicone is proposed as it progresses to a horizontal direction from a zinc gas inlet and a silicon tetrachloride gas inlet (refer patent document 1).
  • shock blow gas is blown off to such silicon to be peeled off and dropped and recovered in a lower silicon recovery tank. This is preferable from the viewpoint of increasing the production amount.
  • shock blow gas is heated and blown to the same high temperature as the reaction tube or silicon, such a situation can be avoided.
  • the present invention has been made in view of such circumstances, and can produce polycrystalline silicon at a low cost and with high yield, and suppresses mixing of materials of members having a surface on which silicon is deposited. It is another object of the present invention to provide an expandable silicon manufacturing apparatus and silicon manufacturing method that enables continuous and efficient recovery of polycrystalline silicon.
  • a silicon production apparatus includes a reactor standing in a vertical direction, a silicon tetrachloride gas supply port connected to the reactor, A silicon tetrachloride gas supply pipe for supplying silicon tetrachloride gas into the reactor from a silicon chloride gas supply port; a zinc gas supply port communicating with the reactor; and zinc gas from the zinc gas supply port A zinc gas supply pipe to be supplied into the reaction vessel, a heater for heating the reactor, a bar member that enters the reactor, and a peeling mechanism that can move the bar member in the vertical direction; The silicon tetrachloride gas is supplied into the reactor from the silicon tetrachloride gas supply port while the temperature of a part of the reactor is set within a silicon deposition temperature range by the heater.
  • the zinc gas supply port Zinc gas is supplied into the reaction vessel, silicon tetrachloride is reduced with zinc in the reactor, and silicon is formed on the wall corresponding to the region set in the silicon deposition temperature range in the reactor.
  • the peeling mechanism is configured to peel the silicon deposited in the silicon deposition region by moving the rod member against the silicon deposited in the silicon deposition region. .
  • the peeling mechanism further includes an elastic tube which is an elastic member through which the rod member is inserted and seals the inside, and a weight capable of applying a load to the elastic tube.
  • the second aspect is to include
  • the present invention has a third aspect that the rod member extends in the vertical direction and is movable while facing the silicon deposition region. .
  • the present invention further includes an inner tube that is detachably inserted inside the reactor, and the silicon deposition region is formed by depositing the silicon.
  • the fourth aspect is the inner wall surface of the inner tube in the reactor corresponding to the region set in the temperature range.
  • the present invention further includes a plate-like member connected to the inner wall surface of the inner tube, wherein the silicon deposition region is set to the silicon deposition temperature range. It is a 5th situation to include the wall surface of the said plate-shaped member corresponding to.
  • a silicon production method comprising: a reactor erected in a vertical direction; a silicon tetrachloride gas supply port connected to the reactor; and a tetrachloride from the silicon tetrachloride gas supply port.
  • a silicon manufacturing apparatus comprising a supply pipe, a heater for heating the reactor, and a peeling mechanism having a rod member, the rod member being movable in the vertical direction, While setting the temperature of a part of the reactor within the silicon deposition temperature range, silicon tetrachloride gas is supplied into the reactor from the silicon tetrachloride gas supply port, and zinc gas is supplied from the zinc gas supply port.
  • the reaction vessel A silicon precipitation region where silicon tetrachloride is reduced with zinc in the reactor and silicon is deposited on the wall corresponding to the region set in the silicon deposition temperature range in the reactor.
  • the peeling mechanism peels the silicon deposited in the silicon deposition region by moving the rod member against the silicon deposited in the silicon deposition region.
  • the peeling mechanism moves while applying the rod member to the silicon deposited on the silicon deposition region, so that the silicon deposited on the silicon deposition region is peeled off.
  • Polycrystalline silicon can be produced with good yield at low cost, and polycrystal silicon can be recovered continuously and efficiently while suppressing the material of the member having the surface on which silicon is deposited.
  • a scalable configuration that can be implemented. Such an effect is also obtained in the silicon manufacturing method according to another aspect of the present invention.
  • the peeling mechanism further includes an expansion tube that is an elastic member that is inserted through the rod member and seals the inside, and a weight that can apply a load to the expansion tube. Therefore, the rod member can be efficiently moved with a simple configuration using the elastic force of the expansion tube and the load of the weight while maintaining the airtightness inside the reactor, and silicon is deposited.
  • the polycrystalline silicon can be peeled and recovered continuously and efficiently while suppressing the mixing of the material of the member.
  • the rod member extends in the vertical direction and is movable while facing the silicon precipitation region, so that it can reliably hit the silicon in the silicon precipitation region, Polycrystalline silicon can be peeled and recovered continuously and efficiently while suppressing the mixing of the material of the member on which silicon is deposited.
  • the silicon precipitation region can be defined on the inner wall surface of the inner tube that is detachably inserted into the reactor, the yield of silicon can be increased and the inner wall surface deteriorated. Since the inner tube can be easily replaced, the production of polycrystalline silicon can be continued without replacing the reactor itself.
  • the silicon precipitation region can be expanded by the surface area of the wall surface of the plate-like member connected to the inner wall surface of the inner tube, so that the silicon yield can be further increased.
  • FIG. 2 is a schematic cross-sectional view of the silicon manufacturing apparatus in the present embodiment, and corresponds to the AA cross-sectional view of FIG.
  • FIG. 2 is a schematic enlarged cross-sectional view of a zinc gas supply pipe of a silicon manufacturing apparatus in the present embodiment, which corresponds to the BB cross-sectional view of FIG.
  • FIG. 2 is a schematic enlarged cross-sectional view of a silicon tetrachloride gas supply pipe of the silicon manufacturing apparatus in the present embodiment, and corresponds to the CC cross-sectional view of FIG. FIG.
  • FIG. 6 is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus in a modification of the present embodiment, and corresponds in position to the EE cross-sectional view of FIG.
  • FIG. 10 is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus according to another modification of the present embodiment, and corresponds to the EE cross-sectional view of FIG. 1 in the same manner as FIG. 4A.
  • FIG. 10 is a schematic enlarged longitudinal sectional view of a rod member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to a GG sectional view of FIG. 5B.
  • FIG. 5B is a schematic enlarged cross-sectional view of a bar member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to the FF cross-sectional view of FIG. 5A.
  • the x-axis, y-axis, and z-axis form a three-axis orthogonal coordinate system
  • the z-axis indicates the vertical direction that is the vertical direction
  • the negative direction of the z-axis is downward and downstream.
  • FIG. 1 is a schematic longitudinal sectional view of a silicon manufacturing apparatus in the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the silicon manufacturing apparatus in the present embodiment, and corresponds to the AA cross-sectional view of FIG. 3A is a schematic enlarged cross-sectional view of the zinc gas supply pipe of the silicon manufacturing apparatus in the present embodiment, which corresponds to the BB cross-sectional view in FIG. 1, and FIG. 3B shows the silicon manufacturing in the present embodiment.
  • FIG. 2 is a schematic enlarged cross-sectional view of a silicon tetrachloride gas supply pipe of the apparatus, which corresponds to the CC cross-sectional view of FIG.
  • the silicon manufacturing apparatus 1 is typically cylindrical and coaxial with the central axis C parallel to the z axis and extends in the vertical direction.
  • the reactor 10 in which the reduction reaction reduced with zinc occurs.
  • the reactor 10 is typically made of quartz, and an insertion hole 10a is formed in the vertical wall thereof. Further, the upper end of the reactor 10 is closed by a disk-shaped upper lid 12 typically made of quartz and fixed thereto, and a connecting member 30 is provided at the lower end of the reactor 10.
  • the reactor 10 is a vertical reactor in which the length L of the mating surface to the upper lid 12 and the mating surface to the connecting member 30 is longer than the diameter D.
  • zinc gas is supplied above (upstream side) from the silicon tetrachloride gas, and the temperature of the reactor 10 is appropriately set to cause a reduction reaction to deposit silicon.
  • the precipitation region is defined below (downstream side) from the portion to which silicon tetrachloride gas is supplied, and silicon can be recovered from below (more downstream side) of the reactor 10.
  • the upper lid 12 that closes the upper open end of the reactor 10 has one insertion hole 12a coaxially with the central axis C in the central region, and adjacent insertion holes.
  • a plurality of insertion holes 12b and a plurality of insertion holes 12c are formed so as to surround 12a.
  • a zinc gas supply pipe 18 typically made of quartz is inserted and fixed in contact with a zinc gas supply source (not shown).
  • the zinc gas supply pipe 18 penetrates into the reactor 10, extends vertically downward coaxially with the central axis C, and opens in the direction perpendicular to the central axis C at the lower end of the vertical wall. While having the zinc gas supply port 18a to be operated, the vertical tip thereof is closed.
  • tube 18, and heats and evaporates a zinc wire more than a boiling point with the heater mentioned later for details May be employed, or an independent zinc gas supply device may be employed.
  • the zinc gas supply pipe 18 can be mixed with an inert gas from an inert gas source (not shown).
  • a plurality of zinc gas supply ports 18a of the zinc gas supply pipe 18 are provided.
  • the zinc gas supply ports 18a are symmetrical with respect to the central axis C at an equal interval of 120.degree. It is preferable to open three at the lower end. This is because the zinc gas is discharged into the reactor 10 in the horizontal direction and more reliably diffuses evenly, so that the mixing of the zinc gas and the silicon tetrachloride gas can be performed better.
  • only one zinc gas supply port 18a of the zinc gas supply pipe 18 may be provided, or the vertical direction of the zinc gas supply pipe 18 may be increased. The tip in the direction may be opened.
  • the plurality of insertion holes 12b are typically provided at three equal intervals from the central axis C and at equal intervals of 120 ° in the circumferential direction of the upper lid 12.
  • an inert gas supply pipe 14 that is typically made of quartz is inserted into and fixed to an inert gas supply source (not shown), and the inert gas supply pipe is fixed.
  • 14 has an inert gas supply port 14a which penetrates into the reactor 10 and extends vertically downward in parallel to the central axis C and is an opening opened at the lower end thereof.
  • a single silicon tetrachloride gas supply pipe 16 typically made of quartz is provided in contact with a silicon tetrachloride gas supply source (not shown).
  • the silicon tetrachloride gas supply pipe 16 penetrates into the reactor 10 and extends vertically downward in parallel with the central axis C.
  • the silicon tetrachloride gas supply pipe 16 has a silicon tetrachloride gas supply port 16a opened at a lower end portion of the vertical wall in a direction orthogonal to the central axis C, while its vertical end is closed. Yes.
  • tube 16 can be connected to the inert gas supply source which abbreviate
  • the silicon tetrachloride gas supply port 16a of the silicon tetrachloride gas supply pipe 16 only needs to be opened at an arbitrary position and an arbitrary number at the lower end of the vertical wall (in the drawing, as an example, (Only one opening facing the inner wall of the inner tube 26 is shown). This is because it is sufficient that the silicon tetrachloride gas is discharged in the horizontal direction from the viewpoint of the mixing of zinc gas and silicon tetrachloride gas.
  • the plurality of insertion holes 12c are typically equidistant from the central axis C and are provided at equal intervals of 120 ° in the circumferential direction of the upper lid 12 so as to sandwich the corresponding insertion holes 12b.
  • the insertion tube 24a of the peeling mechanism 24, which will be described in detail later, is inserted and fixed in each insertion hole 12c.
  • one zinc gas supply pipe 18 is inserted into the center of the upper lid 12 to extend the inside of the reactor 10, and the silicon tetrachloride gas supply included in the plurality of inert gas supply pipes 14 is surrounded by the zinc gas supply pipe 18.
  • the reason for adopting the configuration in which the pipe 16 is disposed is that the zinc gas having a boiling point of 910 ° C. needs to be introduced into the reactor 10 in a state of being heated to a higher temperature than the silicon tetrachloride gas having a boiling point of 59 ° C.
  • the diameters of the reactor 10 and the upper lid 12 tend to be slightly larger, the zinc gas maintained at a relatively high temperature can be reliably ensured in the radial direction in the reactor 10 while making the configuration of the entire apparatus more compact. This is because the convenience of introducing the silicon tetrachloride gas in a distributed manner around the central portion is considered. If the diameter of the reactor 10 or the upper lid 12 can be further increased, a plurality of zinc gas supply pipes 18 may be provided in the central region of the upper lid 12.
  • the inert gas supply port 14a opens to the inside of the reactor 10 at a position of a length L1 from the mating surface to the upper lid 12 of the reactor 10.
  • the silicon tetrachloride gas supply port 16a opens to the inside of the reactor 10 at a position of a length L2 (L2> L1) from the mating surface to the upper lid 12 of the reactor 10.
  • the zinc gas supply port 18a opens to the inside of the reactor 10 at a position of a length L3 (L3 ⁇ L2) from the mating surface to the upper lid 12 of the reactor 10.
  • the opening position (lower end position) of the inert gas supply port 14a is above the opening position (typically the center position) of the silicon tetrachloride gas supply port 16a.
  • the opening position (typically the central position) of the zinc gas supply port 18a is above the opening position of the silicon tetrachloride gas supply port 16a, and below the opening position of the inert gas supply port 14a.
  • An exhaust pipe 20 typically made of quartz is inserted into an insertion hole 10a provided in the vertical wall of the reactor 10 in communication with an exhaust gas processing device (not shown).
  • the exhaust pipe 20 is preferably welded through the insertion hole 10a of the reactor 10 and configured integrally with the reactor 10 in terms of durability. Further, the end of the exhaust pipe 20 on the side of the reactor 10 has an exhaust inlet 20 a that opens in the reactor 10.
  • the vertical wall of the reactor 10 is surrounded by a heater 22 from the outside.
  • the heater 22 is a typically cylindrical electric furnace coaxial with the central axis C, and has a first heating part 22a, a second heating part 22b, and a third heating part 22c in the vertical downward direction.
  • the third heating unit 22c is provided with a through hole 22d through which the exhaust pipe 20 passes.
  • a typically cylindrical inner tube 26 extending coaxially with the central axis C is inserted into the reactor 10 along the inner wall thereof.
  • the inner tube 26 is typically made of quartz and is detachable from the reactor 10, and the inner wall surface of the inner tube 26 becomes a precipitation region S in which polycrystalline silicon is deposited.
  • the upper end 26a of the inner pipe 26 is an open end and is at a position of a length L4 from the mating surface to the upper lid 12 of the reactor 10, and the inert gas supply port of the inert gas supply pipe 14 While the opening position of 14a is above the upper end 26a of the inner pipe 26, it is above the opening positions of the silicon tetrachloride gas supply port 16a and the silicon tetrachloride gas supply port 16a of the silicon tetrachloride gas supply pipe 16. Each opening position of the zinc gas supply port 18a of the zinc gas supply pipe 18 is located below the upper end 26a of the inner pipe 26 (L1 ⁇ L4 ⁇ L3 ⁇ L2).
  • the opening position of the silicon tetrachloride gas supply port 16a of the silicon tetrachloride gas supply pipe 16 and the opening position of the zinc gas supply port 18a of the zinc gas supply pipe 18 are lower than the upper end 26a of the inner pipe 26.
  • the reason for this is that by adopting a configuration in which the zinc gas supply pipe 18 is inserted into the center of the upper lid 12 and the inside of the reactor 10 is extended, it is simple without providing an insertion hole in the vertical wall of the inner pipe 26.
  • the zinc gas supply port 18a can be disposed below in a simple configuration
  • the zinc gas is also discharged inside the inner pipe 26 in addition to the silicon tetrachloride gas, so that the reactor 10
  • the deposition region S can be reliably defined on the inner wall surface of the inner tube 26 by reliably suppressing the phenomenon that the gas diffuses and penetrates unnecessarily in the gap between the vertical inner wall of the inner tube 26 and the outer wall of the inner tube 26. This is because of this.
  • An insertion hole 26 b is provided at a position corresponding to the insertion hole 10 a of the container 10. That is, the exhaust pipe 20 is fixed by being inserted into the insertion hole 10 a provided in the vertical wall of the reactor 10 and the insertion hole 26 b provided in the vertical wall of the inner pipe 26.
  • the inner tube 26 is heated and maintained at a high temperature such as a temperature of 1000 ° C. or higher and 1100 ° C. or lower by the second heating unit 22b and the third heating unit 22c in the heater 22, the outer wall surface reacts. Considering that there is a possibility that they may stick to each other and cannot be removed when they are in contact with the inner wall surface of the reactor 10, they are juxtaposed to the reactor 10 via a predetermined gap. In order to stably maintain such a gap, it is typically preferable to install a quartz spacer.
  • the first heating unit 22 a is a heating unit that can be heated and maintained so as to exhibit a temperature (for example, 1200 ° C.) that exceeds the deposition temperature at which silicon is deposited.
  • a temperature for example, 1200 ° C.
  • the range of 950 ° C. or higher and 1100 ° C. or lower can be evaluated as a suitable temperature range as the range of the deposition temperature at which silicon is deposited. This is because when the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the temperature inside thereof are lower than 950 ° C., the reaction rate of the reduction reaction in which silicon tetrachloride is reduced with zinc is slowed down. Thus, when the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the temperature inside thereof exceed 1100 ° C., it is more stable that silicon exists as a compound gas of silicon tetrachloride than when it exists as a solid. This is because it is considered that such a reduction reaction itself does not occur. Further, since the boiling point of zinc is 910 ° C., the range of the deposition temperature at which such silicon is deposited is a temperature range exceeding the boiling point of zinc.
  • the second heating unit 22b and the third heating unit 22c provided continuously below the second heating unit 22b are heating units that can be heated and maintained so as to exhibit a temperature within the silicon deposition temperature range, and are inactive.
  • the vertical wall of the reactor 10 in which the gas supply pipe 14, the silicon tetrachloride gas supply pipe 16 and the zinc gas supply pipe 18 are not disposed, the vertical wall of the inner pipe 26 corresponding thereto, and the inside thereof are continuously covered up and down. The region is heated and maintained at the deposition temperature at which silicon is deposited.
  • the second heating unit 22b is below the portion heated by the first heating unit 22a, and the vertical wall of the reactor 10 at a temperature (for example, 1100 ° C.) within the range of the deposition temperature at which silicon is deposited, It is a heating unit capable of heating the vertical wall of the inner tube 26 and the inside thereof.
  • the third heating unit 22c has a temperature lower than the heating temperature of the second heating unit 22b (for example, 1000) within the range of the deposition temperature at which silicon is deposited below the portion heated by the second heating unit 22b. It is a heating section capable of heating the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the inside thereof at a temperature of ° C.
  • the second heating unit 22b exhibits an intermediate heating temperature that connects the heating temperature of the first heating unit 22a and the heating temperature of the third heating unit 22c, but may be omitted as necessary.
  • the 2nd heating part 22b also has a function which adjusts so that the difference of the heating temperature of the 1st heating part 22a and the heating temperature of the 3rd heating part 22c may not become excessive, The temperature of the vertical wall etc. of the inner tube
  • the inner tube 26 is located within the inner tube 26 at a location corresponding to the deposition region S as shown in FIGS. 4A and 4B. It is preferable to include plate-like members 28 and 28 'connected to the wall surface.
  • FIG. 4A is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus according to a modification of the present embodiment, and corresponds in position to the EE cross-sectional view of FIG.
  • FIG. 4B is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus according to another modification of the present embodiment, and corresponds to the EE cross-sectional view of FIG. 1 in the same manner as FIG. 4A.
  • the plate-like member 28 shown in FIG. 4A is typically a flat plate member that is connected to the inner wall surface of the inner tube 26 and extends radially from the inner wall surface toward the central axis C. A total of three pieces are arranged around at an interval of 120 ° and are in contact with each other in the vicinity of the central axis C. Thereby, in addition to the inner wall surface of the inner pipe 26, the wall surface of the plate-like member 28 also becomes a silicon deposition surface, and the silicon deposition area can be increased, contributing to an increase in the silicon deposition rate. In this case, it is more preferable that the plate-like member 28 is positioned vertically below the silicon tetrachloride gas supply pipe 16 so that the distance from the silicon tetrachloride gas supply port 16a is relatively short.
  • a plate-like member 28 'shown in FIG. 4B may be provided.
  • the plate-like member 28 ′ is typically a flat plate member connected to the inner wall surface of the inner tube 26 and extending radially from the inner wall surface toward the central axis C.
  • the arrangement of a total of three sheets at 120 ° intervals is the same as that of the plate-like member 28, except that it does not reach the vicinity of the central axis C and is separated from each other.
  • the length in the vertical direction of the plate-like members 28 and 28 ' an effect can be obtained even if the length occupies a part of the precipitation region S, but from the viewpoint of increasing the precipitation area, the entire precipitation region S is used. It is preferable to adopt the occupied length. It should be noted that an appropriate number of the plate-like members 28 and 28 ′ can be provided as long as they do not interfere with each other in the inner tube 26.
  • the peeling mechanism 24 is a mechanism for peeling the polycrystalline silicon deposited on the precipitation region S on the inner wall surface of the inner tube 26 attached to the reactor 10 and dropping it downward under its own weight.
  • the introduction pipe 24a is inserted and fixed to 12c.
  • the peeling mechanism 24 includes a rod member 24b typically made of quartz that is inserted through an introduction tube 24a fixed to each insertion hole 12c so as to be vertically movable and extends in parallel with the central axis C. .
  • the rod member 24b penetrates into the reactor 10 and interferes with the polycrystalline silicon layer deposited on the deposition region S on the inner wall surface of the inner tube 26, but it interferes unnecessarily with the inner wall surface of the inner tube 26 itself.
  • the inner wall 26 of the inner tube 26 extends in parallel and faces the inner wall surface of the inner tube 26 while being separated by a predetermined distance.
  • the shape of the rod member 24b is typically a columnar shape when the inner tube 26 is cylindrical, and is typically a prismatic shape when the inner tube 26 is a rectangular tube.
  • the peeling mechanism 24 is interposed between the upper end portion of the introduction pipe 24a and the flange portion, which is the upper end portion of the rod member 24b, and seals an internal region through which the rod member 24b is inserted and has a predetermined spring constant. It has a bellows-like telescopic tube 24c that is an elastic member, a weight 24d that is placed on a flange that is the upper end of the rod member 24b, and an actuator 24e that communicates with the weight 24d. In the initial state, the telescopic tube 24c may be set in a compressed state in which the actuator 24e is engaged with the weight 24d at the lowest position so as to receive a load from the weight 24d and contract by a predetermined length.
  • the non-compressed state may be set so as to exhibit a substantially natural length so that the load of the weight 24d is not substantially received by locking the 24d at the uppermost position.
  • the introduction tube 24a can be omitted.
  • the rod member 24b when the telescopic tube 24c is set in the compressed state in the initial state, the rod member 24b is correspondingly at the lowest position, but the actuator 24e is operated to engage the weight 24d.
  • the rod member 24b is moved upward by the pulling force of the actuator 24e while receiving the extension force of the extension tube 24c by lifting the extension tube 24c in a compressed state by releasing the stop and pulling it upward. Can move up to.
  • the actuator 24e may keep the weight 24d not locked when necessary.
  • the telescopic tube 24c is attached to the weight 24d.
  • the bar member 24b can move downward to the lowest position, and then the bar member 24b repeats such an up / down movement as necessary. Is possible.
  • the rod member 24b when the telescopic tube 24c is set to an uncompressed state in the initial state, the rod member 24b is correspondingly at the uppermost position, but the actuator 24e is operated to lock the weight 24d.
  • the rod member 24b moves downward to the lowest position by the load of the weight 24d while receiving the compression reaction force of the telescopic tube 24c. be able to.
  • the weight 24d is locked by the actuator 24e, and the bar member 24b is maintained at the lowest position.
  • the actuator 24e may pull up the weight 24d without being locked, if necessary.
  • the telescopic tube 24c is pulled up by the weight 24d.
  • the rod member 24b can move upward and move to the uppermost position by being stretched without receiving the load, and thereafter, the rod member 24b performs such an up / down movement operation as necessary. It is possible to repeat.
  • the bar member 24b is opposed to the lower tip and the precipitation region S by performing such vertical movement.
  • the side surface mechanically hits the polycrystalline silicon typically formed of acicular crystals deposited in the precipitation region S, and the impact causes the acicular polycrystalline silicon to be removed from the precipitation region S, that is, from the inner wall surface of the inner tube 26. It can be folded and peeled and dropped by its own weight below the reactor 10.
  • the bar member 24b is required to peel the polycrystalline silicon deposited in the silicon deposition region S and move it down below the reactor 10 by moving it up and down.
  • the moving range in the vertical direction must be such that at least the lower tip can take a position between a position vertically above and a position vertically below the upper end of the silicon deposition region S. It is.
  • the lower end of the rod member 24b is moved from the lower end of the silicon deposition region S as the vertical movement range of the rod member 24b. It is more preferable to secure a moving range that reaches a position vertically below.
  • a larger contact area with the polycrystalline silicon deposited on the deposition region S on the inner wall surface of the inner tube 26 is preferable in peeling the polycrystalline silicon by mechanical impact.
  • FIG. 5A is a schematic enlarged longitudinal sectional view of a rod member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to the GG sectional view of FIG. 5B.
  • FIG. 5B is a schematic enlarged cross-sectional view of a bar member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to the FF cross-sectional view of FIG. 5A.
  • the plate-like member 24f shown in FIG. 5A and FIG. 5B is connected to the rod portion of the rod member 24b, and is typical so as to efficiently contact the polycrystalline silicon deposited on the precipitation region S on the inner wall surface of the inner tube 26.
  • the number of plate-like members 24f and the length of the arc shape can be appropriately set within a range in which the plate-like member 24f does not interfere with other components. Further, the number of the plate-like members 24f can be appropriately set within a range that does not interfere with other components.
  • the vertical position of the plate member 24f is such that the upper end of the plate member 24f is vertically above the upper end of the silicon precipitation region S and the lower end of the plate member 24f is the silicon precipitation region by the vertical movement of the bar member 24b. It is preferable to set so as to reach vertically below the lower end of S.
  • an apparatus for moving the bar member 24b up and down an apparatus including the telescopic tube 24c, the weight 24d, and the actuator 24e is shown.
  • the present invention is not limited to this and is more expensive.
  • a device such as an air cylinder may be used.
  • the connecting member 30 connected to the lower end of the reactor 10 is connected to the connecting member 30 connected to the lower end of the reactor 10.
  • the communication pipe 32, the valve device 34, and the silicon recovery tank 36 are sequentially connected to the communication pipe 32, the valve device 34, and the silicon recovery tank 36.
  • the communication pipe 32 communicates with the inside of the reactor 10 via the connecting member 30, and the valve device 34 is connected to the communication pipe 32.
  • the valve device 34 includes a valve 34 a that can shut off the internal environment and the external environment of the reactor 10.
  • the valve 34a In a state where the valve 34a is closed in order to shut off the communication between the inside of the reactor 10 and the silicon recovery tank 36, the polycrystal which is peeled off by moving the bar member 24b of the peeling mechanism 24 up and down and falls by its own weight. Silicon can be deposited on the bulb 34a.
  • the valve 34a when the valve 34a is opened, the inside of the reactor 10 communicates with the silicon recovery tank 36 provided below the valve device 34, and the polycrystalline silicon deposited on the valve 34a is transferred to the silicon recovery tank 36. It can be recovered by dropping it under its own weight.
  • the silicon recovery tank 36 is installed in a room temperature atmosphere outside the heating region of the heater 22 and is detachable from the silicon manufacturing apparatus 1.
  • a silicon manufacturing method for manufacturing polycrystalline silicon using the silicon manufacturing apparatus 1 having the above configuration will be described in detail. Note that a series of steps of the silicon manufacturing method may be automatically controlled by a controller having various databases or the like while referring to detection data from various sensors, or may be partly or wholly performed manually.
  • an inert gas is supplied into the reactor 10 from the inert gas supply port 14a for a predetermined time, The reaction atmosphere inside the reactor 10 is adjusted. At this time, if necessary, an inert gas may be supplied from the silicon tetrachloride gas supply port 16a and the zinc gas supply port 18a for a predetermined time.
  • the first heating unit 22a in the heater 22 causes the inert gas supply pipe 14 having the inert gas supply port 14a, the silicon tetrachloride gas supply pipe 16 having the silicon tetrachloride gas supply port 16a, and the zinc gas supply port.
  • the vertical wall of the reactor 10 in which the zinc gas supply pipe 18 having 18a is arranged, the corresponding vertical wall of the inner pipe 26 and the inside thereof are heated, and this part is heated and maintained at a temperature exceeding the silicon deposition temperature. To do.
  • the vertical wall of the reactor 10 in which the inert gas supply pipe 14, the silicon tetrachloride gas supply pipe 16 and the zinc gas supply pipe 18 are not arranged by the second heating part 22b and the third heating part 22c in the heater 22,
  • the corresponding vertical wall of the inner tube 26 and the inside thereof are heated, and this portion is heated and maintained within the silicon deposition temperature range.
  • the reduction reaction step is performed while maintaining such temperature conditions. Specifically, silicon tetrachloride gas is supplied into the reactor 10 from the silicon tetrachloride gas supply port 16a, and zinc gas is supplied from the zinc gas supply port 18a. At this time, an inert gas may be supplied from the inert gas supply port 14a as necessary.
  • silicon tetrachloride gas is a relatively heavy gas whose specific gravity is about 2.6 times the specific gravity of the zinc gas
  • the zinc gas above the opening position of the silicon tetrachloride gas supply port 16a It cannot substantially diffuse up to the supply port 18a, and a reduction reaction occurs in the vicinity of the silicon tetrachloride gas supply port 16a inside the reactor 10 or in a region below it, so that solid silicon and zinc chloride gas are generated. It will be.
  • precipitation in the precipitation region S in the lower portion of the inner wall surface of the inner tube 26, acicular silicon is deposited sequentially, and silicon grows using the deposited silicon as a seed crystal. A sufficient thickness of polycrystalline silicon will be deposited.
  • precipitation such a precipitation process and a crystal growth process related thereto are referred to as precipitation.
  • the valve 34a is opened and the polycrystalline silicon deposited on the valve 34a is dropped into the silicon recovery tank 36 by its own weight, and then the reactor 10 While the valve 34a is closed again to shut off the inside of the silicon, the polycrystalline silicon in the silicon recovery tank 36 is taken out and recovered, and a series of steps of the present silicon manufacturing method is completed. Continuously, a series of steps of the next silicon manufacturing method is entered.
  • the silicon recovery tank 36 is detachable with respect to the silicon manufacturing apparatus 1, when the silicon has finished dropping, the silicon recovery tank 36 is removed from the silicon manufacturing apparatus 1 after closing the valve 34a. It is also possible to move to a predetermined storage location and take out the polycrystalline silicon inside the silicon recovery tank 36.
  • the inner wall surface of the inner tube 26 deteriorates. Therefore, the inner tube 26 whose number of repetitions exceeds the reference number is determined from the reactor 10. It is removed and replaced with a new inner pipe 26.
  • the inner tube 26 is disposed in the reactor 10 in consideration of the convenience of replacement. However, if the reactor 10 itself can be replaced as appropriate, It is also possible to omit the inner tube 26 and set the silicon deposition region S directly on the inner wall surface of the reactor 10.
  • the configuration in which the zinc gas supply port 18a is disposed above the silicon tetrachloride gas supply port 16a has been described.
  • the configuration is not limited to this, and the configuration is complicated.
  • the zinc gas supply port 18a is disposed at the same height or lower than the silicon tetrachloride gas supply port 16a. It is also possible to adopt such a configuration.
  • the material of the reactor, the upper lid, the connecting member, the inert gas supply pipe, the silicon tetrachloride gas supply pipe, the zinc gas supply pipe, the exhaust pipe, the inner pipe and the rod member is 950 ° C. Since the material must be resistant to silicon tetrachloride gas, zinc gas, by-product zinc chloride gas, etc. at high temperatures, quartz, silicon carbide, silicon nitride, etc. can be mentioned. From the standpoint of avoiding carbon and nitrogen contamination, quartz, specifically, quartz glass is most preferable.
  • the material of the expansion tube is not particularly limited and may be made of metal or resin, but is preferably made of metal from the viewpoint of heat resistance.
  • examples of the inert gas include rare gases such as He gas, Ne gas, Ar gas, Kr gas, Xe gas, and Rn gas, nitrogen gas, and the like. From the standpoint of avoiding nitrogen contamination, a rare gas is preferable, and Ar gas, which is inexpensive, is most preferable.
  • the quartz reactor 10 has an outer diameter D set to 226 mm (thickness is 3 mm, inner diameter is 220 mm) and length L is set to 2330 mm, and the quartz inner tube 26, the outer diameter is set to 206 mm (the wall thickness is 3 mm, the inner diameter is 200 mm), and the length L4 of the upper end 26a from the mating surface to the upper lid 12 of the reactor 10 is set to 50 mm.
  • No. 18 has an outer diameter set to 42 mm (wall thickness is 3 mm, inner diameter is 36 mm), and closes the lower end of the zinc gas supply pipe 18 so that only the vertical wall has an equal interval of 120 ° with respect to the central axis C.
  • the opening position (the center position of the opening) of three zinc gas supply ports 18a provided at 16 mm is set so that the length L3 from the mating surface to the upper lid 12 of the reactor 10 is 300 mm, and the reactor 10 to the bottom Quartz exhaust pipe 20 having inlet 20a is an outer diameter 56 mm (wall thickness is 2 mm, internal diameter 52 mm) was set on.
  • three quartz inert gas supply pipes 14 and quartz silicon tetrachloride gas supply pipes 16 disposed therein are arranged at a distance of 85 mm from the central axis C at equal intervals of 120 degrees.
  • three rod members 24b of each peeling mechanism 24 were disposed at equal intervals of 120 ° at a distance of 85 mm from the central axis C with the three inert gas supply pipes 14 correspondingly interposed therebetween.
  • each inert gas supply pipe 14 has an outer diameter set to 16 mm (thickness is 1 mm, inner diameter is 14 mm), and the opening position of the inert gas supply port 14a (reactor of the inert gas supply pipe 14).
  • 10 is set so that the length L1 from the mating surface to the top lid 12 of the reactor 10 is 10 mm, and each silicon tetrachloride gas supply pipe 16 has an outer diameter of 9 mm (wall thickness). Is set to 1 mm and the inner diameter is 7 mm), and the silicon tetrachloride gas supply is provided by closing the lower end of the silicon tetrachloride gas supply pipe 16 so that only the vertical wall has a diameter of 4 mm and faces the inner wall of the inner pipe 26.
  • the opening position of the mouth 16a was set so that the length L2 from the mating surface to the upper lid 12 of the reactor 10 was 500 mm.
  • the rod member 24b is made of quartz and is a columnar rod member extending in the vertical direction, and its outer diameter is set to 9 mm and length 1900 mm.
  • the weight 24d was made of iron and its weight was set to 3 kg.
  • the load of the weight 24d was previously applied to the telescopic tube 24c, and the bar member 24b was positioned at the lowest position.
  • valve 34 a of the valve device 34 is closed, and then, from the inert gas supply port 14 a of the inert gas supply pipe 14.
  • Ar gas having a flow rate of 83 SLM Ar gas having a flow rate of 1.00 SLM from the silicon tetrachloride gas supply port 16 a of the silicon tetrachloride gas supply pipe 16, and 0.84 SLM from the zinc gas supply port 18 a of the zinc gas supply pipe 18 Of Ar gas (Ar gas having a total flow rate of 2.67 SLM) was discharged into the reactor 10.
  • the heater 22 is energized, and the vertical wall of the corresponding reactor 10 and the vertical length of the inner pipe 26 by the first heating unit 22a.
  • the temperature of the wall and the region inside thereof is raised and maintained so that the temperature is 1200 ° C, and the vertical wall of the corresponding reactor 10, the vertical wall of the inner pipe 26, and the region inside the wall are kept at 1100 ° C by the second heating unit 22b.
  • the temperature was raised and maintained so that the corresponding vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the region inside thereof were heated to 1000 ° C. and maintained by the third heating unit 22c.
  • the heater 22 is energized in this way, and the first heating unit 22a, the second heating unit 22b, and the third heating unit 22c are respectively connected to the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and A mixed gas obtained by mixing zinc gas with a flow rate of 10.000 SLM in addition to Ar gas at a flow rate of 10.84 SLM from the zinc gas supply port 18 a of the zinc gas supply pipe 18 in a state where the inner region is heated and maintained.
  • the inside of the reactor 10 was discharged.
  • the gas in the silicon tetrachloride gas supply pipe 16 is tetrachlorided from the Ar gas.
  • silicon tetrachloride gas having a flow rate of 5.00 SLM was discharged into the reactor 10 from the silicon tetrachloride gas supply port 16a and allowed to react for 120 minutes.
  • the telescopic tube 24c extends about 20 mm, thereby moving the bar member 24b vertically upward by about 20 mm. Thereafter, the weight 24d is again pushed down by the actuator 24e and the load is applied to the telescopic tube 24c, the telescopic tube 24c is contracted by about 20 mm, and the bar member 24b is returned to a position vertically lowered by about 20 mm.
  • valve device 34 connected below the reactor 10
  • the valve 34a is opened, the deposit on the valve 34a is dropped in the silicon recovery tank 36, and the recovered substance in the silicon recovery tank 36 is confirmed.
  • zinc and zinc chloride are present in addition to the acicular polycrystalline silicon. did.
  • Such acicular polycrystalline silicon is deposited on the valve 34a of the valve device 34 after silicon is deposited on the inner wall surface of the inner tube 26 in the reactor 10 and then peeled off by the vertical movement operation of the rod member 24b. It is thought that it was recovered.
  • zinc and zinc chloride are cooled and solidified by diffusion of raw material zinc gas and by-product zinc chloride gas into a region not heated by the heater 22 in the lower part of the reactor 10.
  • the weight of the acicular polycrystalline silicon was measured and found to be 766 g.
  • the reaction rate of silicon tetrachloride gas used for the reaction was 51%. Moreover, it was 489g when the weight of zinc and zinc chloride was measured.
  • Example 2 In Experimental Example 2, the silicon manufacturing apparatus 1 according to the present embodiment is the same as the silicon manufacturing apparatus 1 except that three plate members 24f as shown in FIGS. 5A and 5B are provided on each of the three rod members 24b. Polycrystalline silicon was produced in the process.
  • each plate-like member 24f has an arc shape with a radius of 82 mm centered on the central axis C, and the center angle is set to be 60 °.
  • the wall thickness is 2 mm, and the length in the vertical direction is 100 mm.
  • the installation positions of the three plate-like members 24f were set so that the upper ends of the plate-like members 24f were respectively positioned at 1075 mm, 1375 mm, and 1725 mm from the upper end of the bar member 24b.
  • a mixed gas in which a zinc gas having a flow rate of 16.00 SLM is mixed in addition to Ar gas is mixed with 17.34 SLM. It was discharged into the reactor 10 from the zinc gas supply port 18a of the zinc gas supply pipe 18 at a flow rate.
  • Ar gas having a flow rate of 1.33 SLM from the inert gas supply port 14a of the inert gas supply pipe 14 into the reactor 10
  • the gas in the silicon tetrachloride gas supply pipe 16 is tetrachlorided from the Ar gas. Switching to silicon gas, silicon tetrachloride gas having a flow rate of 8.00 SLM was discharged into the reactor 10 from the silicon tetrachloride gas supply port 16a and allowed to react for 120 minutes.
  • Example 3 In Experimental Example 3, in addition to providing three plate members 24f as shown in FIGS. 5A and 5B in each of the three rod members 24b in the silicon manufacturing apparatus 1 of the present embodiment, As shown in FIG. 4B, polycrystalline silicon was produced in the same manner as in Experimental Example 2, except that three plate members 28 were installed in the inner tube 26 so as not to interfere with each other.
  • each plate-like member 28 was set to have a thickness of 3 mm, a length toward the central axis C of 44 mm, and a vertical length of 805 mm.
  • the silicon tetrachloride gas supply pipe 16 and the plate-like member 28 are on a straight line parallel to the central axis C, and the plate-like member 28 exists vertically below the silicon tetrachloride gas supply pipe 16. It was arranged in the reactor 10 as described above.
  • Example 4 In Experimental Example 4, in addition to providing the three plate members 24f as shown in FIGS. 5A and 5B in each of the three rod members 24b in the silicon manufacturing apparatus 1 of the present embodiment, As shown in FIG. 4B, polycrystalline silicon was manufactured in the same manner as in Experimental Example 2 except that three plate members 28 in contact with each other at the center were installed in the inner tube 26.
  • each plate-like member 28 was set to have a thickness of 3 mm, a length toward the central axis C of 94 mm, and a vertical length of 805 mm.
  • the inner tube 26 is configured such that the silicon tetrachloride gas supply pipe 16 and the plate member 28 are on a straight line parallel to the central axis C, and the plate member 28 supplies the silicon tetrachloride gas. It arrange
  • each shock blow gas supply pipe is made of quartz, and is inserted into each insertion hole 12c of the upper lid 12 while being connected to a high-pressure inert gas supply source (not shown) and fixed to the reactor.
  • each shock blow gas supply pipe has an outer diameter set to 9 mm (wall thickness is 1 mm, inner diameter is 7 mm), and the opening position of the shock blow gas supply port (the position of the end of the shock blow gas supply pipe in the reactor 10) ) was set so that the length from the mating surface to the upper lid 12 of the reactor 10 was 600 mm.
  • each step similar to the experimental example was performed, and after reacting with zinc and silicon tetrachloride for 120 minutes, Ar gas was substituted for 5 minutes. Then, Ar gas was discharged from the shock blow gas supply port of the shock blow gas supply pipe at a high pressure to perform shock blow.
  • the shock blow conditions at this time are as follows: the pressure of Ar gas is 0.4 MPa, the time of one shock blow is set to 0.5 seconds, and the interval until the next shock blow is 3.0 seconds, for a total of 15 Shock blows were performed.
  • valve device 34 connected below the reactor 10
  • the valve 34a is opened, the deposit on the valve 34a is dropped in the silicon recovery tank 36, and the recovered substance in the silicon recovery tank 36 is confirmed.
  • zinc and zinc chloride are present in addition to the acicular polycrystalline silicon. did.
  • Such needle-shaped polycrystalline silicon is recovered from silicon deposited on the inner wall surface of the inner tube 26 in the reactor 10 and then separated by shock blow and deposited on the valve 34a of the valve device 34. Conceivable.
  • zinc and zinc chloride are cooled and solidified by diffusion of raw material zinc gas and by-product zinc chloride gas into a region not heated by the heater below the reactor 10.
  • the weight of the acicular polycrystalline silicon was measured and found to be 781 g.
  • the reaction rate of the silicon tetrachloride gas used for the reaction was 52%. Moreover, it was 499 g when the weight of zinc and zinc chloride was measured.
  • the type, arrangement, number, and the like of the members are not limited to the above-described embodiments, and the components depart from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. Of course, it can be appropriately changed within the range not to be.
  • the present invention it is possible to produce polycrystalline silicon at a low cost and in a high yield, and continuously while suppressing mixing of materials of members having a surface on which silicon is deposited.
  • a silicon manufacturing apparatus and a silicon manufacturing method that are capable of recovering polycrystalline silicon efficiently and from a general-purpose universal character, such as silicon for solar cells. It is expected that it can be applied to a wide range of manufacturing equipment.

Abstract

As the temperature of part of a reactor (10) in a heater (22) is set to within the deposition temperature range for silicon, silicon tetrachloride gas is supplied to the interior of the reactor from a silicon tetrachloride gas supply opening (16a), zinc gas is supplied to the interior of the reactor vessel from a zinc gas supply opening (18a), the silicon tetrachloride is reduced with the zinc in the reactor, and a silicon deposition region (S) for depositing silicon on a wall section corresponding to the region set to within the silicon deposition temperature range in the reactor is formed. Then, a peeling mechanism (24) peels the silicon deposited in the silicon deposition region by moving a rod-shaped member (24b) on the silicon deposited in the silicon deposition region.

Description

シリコン製造装置及びシリコン製造方法Silicon manufacturing apparatus and silicon manufacturing method
 本発明は、シリコン製造装置及びシリコン製造方法に関し、特に、反応器又はその内管にシリコン析出領域を形成するシリコン製造装置及びシリコン製造方法に関するものである。 The present invention relates to a silicon manufacturing apparatus and a silicon manufacturing method, and more particularly to a silicon manufacturing apparatus and a silicon manufacturing method for forming a silicon deposition region in a reactor or an inner tube thereof.
 一般的な高純度シリコンの製造方法としては、粗製シリコンを塩化水素と反応させて得られるトリクロロシラン等のシラン化合物を原料とし、化学的気相成長法によりシリコンを製造するシーメンス法が知られている。シーメンス法によれば、極めて高純度のシリコンを得ることができるが、シリコン生成反応の速度が極めて遅いことのみならず、収率が低いため、一定の製造能力を得るために大規模な設備が必要となることに加えて、製造に必要な電力消費量も高純度シリコン1kgあたり350kWhもの大きな電力が必要とされている。つまり、シーメンス法で製造された高純度シリコンは、11-ナイン以上の純度を必要とする付加価値の高い高集積化電子デバイス用としては好適であるが、今後、急速に市場が拡大するとされている太陽電池用のシリコンとしては、高コストで過剰品質である。 As a general method for producing high-purity silicon, a Siemens method is known in which silicon is produced by chemical vapor deposition using a silane compound such as trichlorosilane obtained by reacting crude silicon with hydrogen chloride. Yes. According to the Siemens method, extremely high-purity silicon can be obtained, but not only the rate of the silicon production reaction is extremely slow but also the yield is low, so a large-scale facility is required to obtain a certain production capacity. In addition to being required, the power consumption required for production is as high as 350 kWh per kg of high-purity silicon. In other words, high-purity silicon produced by the Siemens method is suitable for high-value-added highly integrated electronic devices that require a purity of 11-nine or higher, but the market is expected to expand rapidly in the future. As silicon for solar cells, it is expensive and excessive quality.
 一方で、四塩化珪素を原料とし、四塩化珪素を高温で金属亜鉛によって還元する亜鉛還元法は、1950年代に原理的な実証がなされたとされるが、シーメンス法に匹敵する高純度のシリコンを得ることが難しいものとされていた。しかしながら、近年、太陽電池用のシリコンとしては、6-ナイン程度の純度のシリコンで足りて高集積化電子デバイス用ほどの高純度のものが不要な状況となり、かつ、急速な市場拡大に答えるべく、設備がコンパクトであって消費エネルギーが小さく、低コストでシリコンを得る製造方法として、亜鉛還元法は、再度見直され、再びその製造方法の検討が為されるようになった。もちろん、シーメンス法で製造されたシリコンの端材やオフスペックを太陽電池用途に流用することも可能であるが、シリコンの製造量の確保やコスト削減には一定の限界があり、低コストで製造量の確保ができる亜鉛還元法の開発が急務となっている。 On the other hand, the zinc reduction method using silicon tetrachloride as a raw material and reducing silicon tetrachloride with metallic zinc at a high temperature is said to have been proved in principle in the 1950s. However, high purity silicon comparable to the Siemens method is used. It was considered difficult to obtain. However, in recent years, as silicon for solar cells, silicon having a purity of about 6-nine is sufficient, and a silicon having a purity as high as that for highly integrated electronic devices has become unnecessary, and in order to respond to rapid market expansion. As a manufacturing method for obtaining silicon at a low cost with a compact facility, the zinc reduction method has been reviewed again, and the manufacturing method has been studied again. Of course, it is possible to divert silicon scraps and off-spec manufactured by the Siemens method for solar cell applications, but there are certain limits to securing silicon production and reducing costs, and manufacturing at low cost. There is an urgent need to develop a zinc reduction method that can secure the amount.
 かかる状況下で、亜鉛還元法として、亜鉛ガス導入口から亜鉛ガスを横方向に供給する一方で、亜鉛ガス導入口よりも下方の四塩化珪素ガス導入口から四塩化珪素ガスを横方向へ供給して、亜鉛ガス導入口及び四塩化珪素ガス導入口から横方向に進むに従ってシリコンを生成せんとする構成が提案されている(特許文献1参照)。 Under such circumstances, as a zinc reduction method, while supplying zinc gas laterally from the zinc gas inlet, silicon tetrachloride gas is laterally supplied from the silicon tetrachloride gas inlet below the zinc gas inlet. And the structure which produces | generates a silicon | silicone is proposed as it progresses to a horizontal direction from a zinc gas inlet and a silicon tetrachloride gas inlet (refer patent document 1).
また、亜鉛還元法として、加熱された四塩化珪素ガスと亜鉛ガスとを接触させ、固体シリコンを四塩化珪素ガス供給配管の噴出口に析出させる構成が提案されている(特許文献2参照)。 Further, as a zinc reduction method, a configuration in which heated silicon tetrachloride gas and zinc gas are brought into contact with each other to deposit solid silicon on a jet port of a silicon tetrachloride gas supply pipe has been proposed (see Patent Document 2).
特開2004-196642号公報JP 2004-196642 A 特開2007-145663号公報JP 2007-145663 A
 しかしながら、本発明者の検討によれば、特許文献1に提案される構成では、亜鉛ガス導入口及び四塩化珪素ガス導入口から横方向に進むに従ってシリコンが生成されるようであるが、具体的な構成が開示されておらず、実用化への途が不明である。 However, according to the study of the present inventor, in the configuration proposed in Patent Document 1, it seems that silicon is generated as it proceeds in the lateral direction from the zinc gas inlet and the silicon tetrachloride gas inlet. However, the way to commercialization is unclear.
 また、特許文献2に提案される構成では、固体シリコンを四塩化珪素ガス供給配管の噴出口に限定して析出させるのみであるので、シリコンの生成領域が狭くその収量には自ずと限界があり、低コストを維持してシリコンの製造量の確保をすることが実現し難い。 In addition, in the configuration proposed in Patent Document 2, since solid silicon is only deposited at the outlet of the silicon tetrachloride gas supply pipe, the silicon production region is narrow and its yield is naturally limited. It is difficult to maintain the low cost and secure the production amount of silicon.
 また、本発明者の検討によれば、反応管の内壁面にシリコンを析出させた後、かかるシリコンにショックブローガスを吹き付けて剥離して落下させ、下方のシリコン回収槽に回収することがシリコンの製造量を増大する観点からは好ましい。 Further, according to the study of the present inventor, after silicon is deposited on the inner wall surface of the reaction tube, shock blow gas is blown off to such silicon to be peeled off and dropped and recovered in a lower silicon recovery tank. This is preferable from the viewpoint of increasing the production amount.
 しかしながら、かかる構成を採用した場合に、ショックブローガスの温度が相対的に低いときに、ショックブローガスが反応管の内壁面とシリコンとの界面に吹き付けられると、反応管を構成する材料の熱膨張係数とシリコンの熱膨張係数との差により、反応管の内壁面に応力が発生し、反応管の内壁面の一部が剥離されてシリコンと共に下方に落下してしまい、回収されたシリコン中に反応管を構成する材料(例えば石英)が混入する傾向があることが判明した。 However, when such a configuration is adopted and the shock blow gas is blown to the interface between the inner wall surface of the reaction tube and silicon when the temperature of the shock blow gas is relatively low, the heat of the material constituting the reaction tube Due to the difference between the expansion coefficient and the thermal expansion coefficient of silicon, stress is generated on the inner wall surface of the reaction tube, and a part of the inner wall surface of the reaction tube is peeled off and falls downward together with the silicon. It has been found that the material constituting the reaction tube (for example, quartz) tends to be mixed.
 ここで、ショックブローガスを反応管やシリコンと同じ高温に加熱して吹きつければ、かかる事態は回避できるが、そのためには高温高圧のショックブローガスを用いる必要があり、設備上の負荷が大きくなる傾向がある。 Here, if the shock blow gas is heated and blown to the same high temperature as the reaction tube or silicon, such a situation can be avoided. However, for that purpose, it is necessary to use a high temperature and high pressure shock blow gas, and the load on the equipment is large. Tend to be.
 本発明は、かかる事情に鑑みてなされたもので、低コストで収率よく多結晶のシリコンを生成することができると共に、シリコンが析出される面を有する部材の材料が混入されることを抑制しながら連続的かつ効率的に多結晶のシリコンを回収することも可能にする拡張性のあるシリコン製造装置及びシリコン製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can produce polycrystalline silicon at a low cost and with high yield, and suppresses mixing of materials of members having a surface on which silicon is deposited. It is another object of the present invention to provide an expandable silicon manufacturing apparatus and silicon manufacturing method that enables continuous and efficient recovery of polycrystalline silicon.
 以上の目的を達成すべく、本発明の第1の局面におけるシリコン製造装置は、鉛直方向に立設する反応器と、前記反応器に連絡して四塩化珪素ガス供給口を有すると共に、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給する四塩化珪素ガス供給管と、前記反応器に連絡する亜鉛ガス供給口を有すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給する亜鉛ガス供給管と、前記反応器を加熱する加熱器と、前記反応器の内部に侵入する棒部材を有し、前記棒部材を前記鉛直方向に移動自在な剥離機構と、を備え、 前記加熱器で、前記反応器の一部の温度をシリコンの析出温度範囲に設定しつつ、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給して、前記反応器内で四塩化珪素を亜鉛で還元して、前記反応器内において前記シリコンの析出温度範囲に設定された領域に対応した壁部にシリコンが析出するシリコン析出領域を形成した後に、前記剥離機構が、前記棒部材を前記シリコン析出領域に析出したシリコンに当てながら移動することにより、前記シリコン析出領域に析出したシリコンを剥離する構成を有する。 In order to achieve the above object, a silicon production apparatus according to the first aspect of the present invention includes a reactor standing in a vertical direction, a silicon tetrachloride gas supply port connected to the reactor, A silicon tetrachloride gas supply pipe for supplying silicon tetrachloride gas into the reactor from a silicon chloride gas supply port; a zinc gas supply port communicating with the reactor; and zinc gas from the zinc gas supply port A zinc gas supply pipe to be supplied into the reaction vessel, a heater for heating the reactor, a bar member that enters the reactor, and a peeling mechanism that can move the bar member in the vertical direction; The silicon tetrachloride gas is supplied into the reactor from the silicon tetrachloride gas supply port while the temperature of a part of the reactor is set within a silicon deposition temperature range by the heater. The zinc gas supply port Zinc gas is supplied into the reaction vessel, silicon tetrachloride is reduced with zinc in the reactor, and silicon is formed on the wall corresponding to the region set in the silicon deposition temperature range in the reactor. After the formation of the silicon deposition region where the silicon deposits, the peeling mechanism is configured to peel the silicon deposited in the silicon deposition region by moving the rod member against the silicon deposited in the silicon deposition region. .
 また本発明は、かかる第1の局面に加えて、前記剥離機構は、更に、前記棒部材が挿通されて内部を封ずる弾性部材である伸縮管と、前記伸縮管に荷重を印加自在な錘と、を備えることを第2の局面とする。 Further, according to the present invention, in addition to the first aspect, the peeling mechanism further includes an elastic tube which is an elastic member through which the rod member is inserted and seals the inside, and a weight capable of applying a load to the elastic tube. The second aspect is to include
 また本発明は、かかる第1又は第2の局面に加えて、前記棒部材は、前記鉛直方向に延在し、前記シリコン析出領域に対向しながら移動自在であることを第3の局面とする。 In addition to the first or second aspect, the present invention has a third aspect that the rod member extends in the vertical direction and is movable while facing the silicon deposition region. .
 また本発明は、かかる第1から第3のいずれかの局面に加えて、更に、前記反応器の内側に装脱自在に挿入された内管を備え、前記シリコン析出領域は、前記シリコンの析出温度範囲に設定された領域に対応する前記反応器内の前記内管の内壁面であることを第4の局面とする。 In addition to any one of the first to third aspects, the present invention further includes an inner tube that is detachably inserted inside the reactor, and the silicon deposition region is formed by depositing the silicon. The fourth aspect is the inner wall surface of the inner tube in the reactor corresponding to the region set in the temperature range.
 また本発明は、かかる第4の局面に加えて、更に、前記内管の内壁面に連結された板状部材を備え、前記シリコン析出領域は、前記シリコンの析出温度範囲に設定された前記領域に対応する前記板状部材の壁面を含むことを第5の局面とする。 In addition to the fourth aspect, the present invention further includes a plate-like member connected to the inner wall surface of the inner tube, wherein the silicon deposition region is set to the silicon deposition temperature range. It is a 5th situation to include the wall surface of the said plate-shaped member corresponding to.
 また本発明の別の局面におけるシリコン製造方法は、鉛直方向に立設する反応器と、前記反応器に連絡して四塩化珪素ガス供給口を有すると共に、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給する四塩化珪素ガス供給管と、前記反応器に連絡する亜鉛ガス供給口を有すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給する亜鉛ガス供給管と、前記反応器を加熱する加熱器と、棒部材を有し、前記棒部材を前記鉛直方向に移動自在な剥離機構と、を備えたシリコン製造装置を用いて、前記加熱器で、前記反応器の一部の温度をシリコンの析出温度範囲に設定しつつ、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給して、前記反応器内で四塩化珪素を亜鉛で還元して、前記反応器内において前記シリコンの析出温度範囲に設定された領域に対応した壁部にシリコンが析出するシリコン析出領域を形成した後に、前記剥離機構が、前記棒部材を前記シリコン析出領域に析出したシリコンに当てながら移動することにより、前記シリコン析出領域に析出したシリコンを剥離するものである。 According to another aspect of the present invention, there is provided a silicon production method comprising: a reactor erected in a vertical direction; a silicon tetrachloride gas supply port connected to the reactor; and a tetrachloride from the silicon tetrachloride gas supply port. A silicon tetrachloride gas supply pipe for supplying silicon gas into the reactor, and a zinc gas supply port communicating with the reactor, and zinc gas for supplying zinc gas into the reaction vessel from the zinc gas supply port In the heater, using a silicon manufacturing apparatus comprising a supply pipe, a heater for heating the reactor, and a peeling mechanism having a rod member, the rod member being movable in the vertical direction, While setting the temperature of a part of the reactor within the silicon deposition temperature range, silicon tetrachloride gas is supplied into the reactor from the silicon tetrachloride gas supply port, and zinc gas is supplied from the zinc gas supply port. The reaction vessel A silicon precipitation region where silicon tetrachloride is reduced with zinc in the reactor and silicon is deposited on the wall corresponding to the region set in the silicon deposition temperature range in the reactor. After forming, the peeling mechanism peels the silicon deposited in the silicon deposition region by moving the rod member against the silicon deposited in the silicon deposition region.
 本発明の第1の局面におけるシリコン製造装置によれば、剥離機構が、棒部材をシリコン析出領域に析出したシリコンに当てながら移動することにより、シリコン析出領域に析出したシリコンを剥離するため、低コストで収率よく多結晶のシリコンを生成することができると共に、シリコンが析出される面を有する部材の材料が混入されることを抑制しながら連続的かつ効率的に多結晶のシリコンを回収することができる拡張性のある構成を実現し得る。また、かかる効果は、本発明の別の局面におけるシリコン製造方法においても同様に得られる。 According to the silicon manufacturing apparatus of the first aspect of the present invention, the peeling mechanism moves while applying the rod member to the silicon deposited on the silicon deposition region, so that the silicon deposited on the silicon deposition region is peeled off. Polycrystalline silicon can be produced with good yield at low cost, and polycrystal silicon can be recovered continuously and efficiently while suppressing the material of the member having the surface on which silicon is deposited. A scalable configuration that can be implemented. Such an effect is also obtained in the silicon manufacturing method according to another aspect of the present invention.
 本発明の第2の局面における構成によれば、剥離機構が、更に、棒部材が挿通されて内部を封ずる弾性部材である伸縮管と、伸縮管に荷重を印加自在な錘と、を備えるものであるため、反応器の内部の気密を維持したまま、伸縮管の弾性力や錘の荷重を利用して、簡便な構成により効率的に棒部材を移動することができ、シリコンが析出される部材の材料が混入されることを抑制しながら連続的かつ効率的に多結晶のシリコンを剥離して回収することができる。 According to the configuration of the second aspect of the present invention, the peeling mechanism further includes an expansion tube that is an elastic member that is inserted through the rod member and seals the inside, and a weight that can apply a load to the expansion tube. Therefore, the rod member can be efficiently moved with a simple configuration using the elastic force of the expansion tube and the load of the weight while maintaining the airtightness inside the reactor, and silicon is deposited. The polycrystalline silicon can be peeled and recovered continuously and efficiently while suppressing the mixing of the material of the member.
 本発明の第3の局面における構成によれば、棒部材が、鉛直方向に延在し、シリコン析出領域に対向しながら移動自在であることにより、シリコン析出領域のシリコンにより確実に当たることができ、シリコンが析出される部材の材料が混入されることを抑制しながら連続的かつ効率的に多結晶のシリコンを剥離して回収することができる。 According to the configuration of the third aspect of the present invention, the rod member extends in the vertical direction and is movable while facing the silicon precipitation region, so that it can reliably hit the silicon in the silicon precipitation region, Polycrystalline silicon can be peeled and recovered continuously and efficiently while suppressing the mixing of the material of the member on which silicon is deposited.
 本発明の第4の局面における構成によれば、反応器に装脱自在に挿入した内管の内壁面にシリコン析出領域を画成できるので、シリコンの収量を増加できるとともに、内壁面が劣化した内管を簡便に交換できるので、反応器自体を交換することなく多結晶シリコンの製造を継続して行うことができる。 According to the configuration of the fourth aspect of the present invention, since the silicon precipitation region can be defined on the inner wall surface of the inner tube that is detachably inserted into the reactor, the yield of silicon can be increased and the inner wall surface deteriorated. Since the inner tube can be easily replaced, the production of polycrystalline silicon can be continued without replacing the reactor itself.
 本発明の第5の局面における構成によれば、内管の内壁面に連結させた板状部材の壁面の表面積の分だけシリコン析出領域を拡大できるので、シリコンの収量をより増加させることができる。 According to the configuration of the fifth aspect of the present invention, the silicon precipitation region can be expanded by the surface area of the wall surface of the plate-like member connected to the inner wall surface of the inner tube, so that the silicon yield can be further increased. .
本発明の実施形態におけるシリコン製造装置の模式的縦断面図である。It is a typical longitudinal section of a silicon manufacture device in an embodiment of the present invention. 本実施形態におけるシリコン製造装置の模式的横断面図であり、図1のA-A断面図に相当する。FIG. 2 is a schematic cross-sectional view of the silicon manufacturing apparatus in the present embodiment, and corresponds to the AA cross-sectional view of FIG. 本実施形態におけるシリコン製造装置の亜鉛ガス供給管の模式的拡大横断面図であり、図1のB-B断面図に相当する。FIG. 2 is a schematic enlarged cross-sectional view of a zinc gas supply pipe of a silicon manufacturing apparatus in the present embodiment, which corresponds to the BB cross-sectional view of FIG. 本実施形態におけるシリコン製造装置の四塩化珪素ガス供給管の模式的拡大横断面図であり、図1のC-C断面図に相当する。FIG. 2 is a schematic enlarged cross-sectional view of a silicon tetrachloride gas supply pipe of the silicon manufacturing apparatus in the present embodiment, and corresponds to the CC cross-sectional view of FIG. 本実施形態の変形例におけるシリコン製造装置の内管の模式的拡大横断面図であり、位置的には図1のE-E断面図に相当する。FIG. 6 is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus in a modification of the present embodiment, and corresponds in position to the EE cross-sectional view of FIG. 本実施形態の別の変形例におけるシリコン製造装置の内管の模式的拡大横断面図であり、位置的には図4Aと同様に図1のE-E断面図に相当する。FIG. 10 is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus according to another modification of the present embodiment, and corresponds to the EE cross-sectional view of FIG. 1 in the same manner as FIG. 4A. 本実施形態の更に別の変形例におけるシリコン製造装置の棒部材の模式的拡大縦断面図であり、図5BのG-G断面図に相当する。FIG. 10 is a schematic enlarged longitudinal sectional view of a rod member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to a GG sectional view of FIG. 5B. 本実施形態の更に別の変形例におけるシリコン製造装置の棒部材の模式的拡大横断面図であり、図5AのF-F断面図に相当する。FIG. 5B is a schematic enlarged cross-sectional view of a bar member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to the FF cross-sectional view of FIG. 5A.
 以下、図面を適宜参照して、本発明の実施形態におけるシリコン製造装置及び方法につき詳細に説明する。なお、図中、x軸、y軸、z軸は、3軸直交座標系を成し、z軸は、縦方向である鉛直方向を示し、z軸の負方向を下方であって下流側とする。 Hereinafter, a silicon manufacturing apparatus and method according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In the figure, the x-axis, y-axis, and z-axis form a three-axis orthogonal coordinate system, the z-axis indicates the vertical direction that is the vertical direction, and the negative direction of the z-axis is downward and downstream. To do.
 図1は、本実施形態におけるシリコン製造装置の模式的縦断面図である。図2は、本実施形態におけるシリコン製造装置の模式的横断面図であり、図1のA-A断面図に相当する。また、図3Aは、本実施形態におけるシリコン製造装置の亜鉛ガス供給管の模式的拡大横断面図であり、図1のB-B断面図に相当し、図3Bは、本実施形態におけるシリコン製造装置の四塩化珪素ガス供給管の模式的拡大横断面図であり、図1のC-C断面図に相当する。 FIG. 1 is a schematic longitudinal sectional view of a silicon manufacturing apparatus in the present embodiment. FIG. 2 is a schematic cross-sectional view of the silicon manufacturing apparatus in the present embodiment, and corresponds to the AA cross-sectional view of FIG. 3A is a schematic enlarged cross-sectional view of the zinc gas supply pipe of the silicon manufacturing apparatus in the present embodiment, which corresponds to the BB cross-sectional view in FIG. 1, and FIG. 3B shows the silicon manufacturing in the present embodiment. FIG. 2 is a schematic enlarged cross-sectional view of a silicon tetrachloride gas supply pipe of the apparatus, which corresponds to the CC cross-sectional view of FIG.
 図1及び図2に示すように、シリコン製造装置1は、z軸に平行な中心軸Cと同軸で鉛直方向に延在する典型的には円筒状で、かつ、その内部で四塩化珪素が亜鉛で還元される還元反応が生じる反応器10を備える。かかる反応器10は、典型的には石英製であり、その縦壁に挿通孔10aが形成されている。また、反応器10の上方端は、それに固設された典型的には石英製で円板状の上蓋12で閉じられ、反応器10の下方端には、連結部材30が設けられる。 As shown in FIGS. 1 and 2, the silicon manufacturing apparatus 1 is typically cylindrical and coaxial with the central axis C parallel to the z axis and extends in the vertical direction. The reactor 10 in which the reduction reaction reduced with zinc occurs. The reactor 10 is typically made of quartz, and an insertion hole 10a is formed in the vertical wall thereof. Further, the upper end of the reactor 10 is closed by a disk-shaped upper lid 12 typically made of quartz and fixed thereto, and a connecting member 30 is provided at the lower end of the reactor 10.
 ここで、シリコン製造装置1においては、反応器10が、その径Dよりも、上蓋12への合わせ面と連結部材30への合わせ面との長さLが長い寸法を有する縦型の反応器であり、反応器の10の内部において、亜鉛ガスを四塩化珪素ガスよりも上方(上流側)で供給し、適宜反応器10の温度を設定しながら、還元反応を生じて、シリコンを析出する析出領域を四塩化珪素ガスが供給される部位よりも下方(下流側)に画成し、反応器10のより下方(より下流側)から、シリコンを回収し得るものである。 Here, in the silicon production apparatus 1, the reactor 10 is a vertical reactor in which the length L of the mating surface to the upper lid 12 and the mating surface to the connecting member 30 is longer than the diameter D. In the reactor 10, zinc gas is supplied above (upstream side) from the silicon tetrachloride gas, and the temperature of the reactor 10 is appropriately set to cause a reduction reaction to deposit silicon. The precipitation region is defined below (downstream side) from the portion to which silicon tetrachloride gas is supplied, and silicon can be recovered from below (more downstream side) of the reactor 10.
 具体的には、図2にも示すように、反応器10の上方開放端を閉じる上蓋12に、その中央領域で中心軸Cと同軸に1個の挿通孔12a、並びにそれぞれ隣接して挿通孔12aを囲うように複数個の挿通孔12b及び複数個の挿通孔12cが、形成される。 Specifically, as shown in FIG. 2, the upper lid 12 that closes the upper open end of the reactor 10 has one insertion hole 12a coaxially with the central axis C in the central region, and adjacent insertion holes. A plurality of insertion holes 12b and a plurality of insertion holes 12c are formed so as to surround 12a.
 1個の挿通孔12aには、図示を省略する亜鉛ガス供給源に連絡して典型的には石英製である1本の亜鉛ガス供給管18が挿通されて固定される。かかる亜鉛ガス供給管18は、反応器10の内部に侵入して、中心軸Cと同軸で鉛直下方に延在すると共に、その縦壁の下端部で中心軸Cに直交する方向に向いて開口する亜鉛ガス供給口18aを有する一方で、その鉛直方向の先端は閉じられている。なお、亜鉛ガス供給源としては、かかる亜鉛ガス供給管18の鉛直方向に延在する部分に亜鉛線を導入して、詳細は後述する加熱器で亜鉛線を沸点以上に加熱して気化する構成を採用してもよいし、独立した亜鉛ガス供給装置を採用してもよい。また、必要に応じて、亜鉛ガス供給管18には、図示を省略する不活性ガス源から不活性ガスを混入可能である。 In one insertion hole 12a, a zinc gas supply pipe 18 typically made of quartz is inserted and fixed in contact with a zinc gas supply source (not shown). The zinc gas supply pipe 18 penetrates into the reactor 10, extends vertically downward coaxially with the central axis C, and opens in the direction perpendicular to the central axis C at the lower end of the vertical wall. While having the zinc gas supply port 18a to be operated, the vertical tip thereof is closed. In addition, as a zinc gas supply source, the structure which introduce | transduces a zinc wire into the part extended in the perpendicular direction of this zinc gas supply pipe | tube 18, and heats and evaporates a zinc wire more than a boiling point with the heater mentioned later for details May be employed, or an independent zinc gas supply device may be employed. If necessary, the zinc gas supply pipe 18 can be mixed with an inert gas from an inert gas source (not shown).
 亜鉛ガス供給管18の亜鉛ガス供給口18aは、図3Aに示すように、複数個備えられることが好ましく、典型的には中心軸Cに軸対称に120°の等間隔で、その縦壁の下端に3個開口することが好ましい。これは、亜鉛ガスが反応器10の内部に水平方向で吐出されてより確実に均等に拡散し、亜鉛ガスと四塩化珪素ガスとの混合がより良好に行われ得るためである。なお、もちろん、亜鉛ガスと四塩化珪素ガスとが良好に混合する場合には、亜鉛ガス供給管18の亜鉛ガス供給口18aは、1個のみ設けてもよいし、亜鉛ガス供給管18の鉛直方向の先端を開放して設けてもよい。 As shown in FIG. 3A, it is preferable that a plurality of zinc gas supply ports 18a of the zinc gas supply pipe 18 are provided. Typically, the zinc gas supply ports 18a are symmetrical with respect to the central axis C at an equal interval of 120.degree. It is preferable to open three at the lower end. This is because the zinc gas is discharged into the reactor 10 in the horizontal direction and more reliably diffuses evenly, so that the mixing of the zinc gas and the silicon tetrachloride gas can be performed better. Of course, when zinc gas and silicon tetrachloride gas are mixed well, only one zinc gas supply port 18a of the zinc gas supply pipe 18 may be provided, or the vertical direction of the zinc gas supply pipe 18 may be increased. The tip in the direction may be opened.
 複数の挿通孔12bは、典型的には中心軸Cから等距離であって上蓋12の周方向に120°の等間隔で3個設けられている。かかる各挿通孔12bには、図示を省略する不活性ガス供給源に連絡して典型的には石英製である1本の不活性ガス供給管14が挿通されて固定され、不活性ガス供給管14は、反応器10の内部に侵入して、中心軸Cと平行で鉛直下方に延在し、その下端で開放された開口である不活性ガス供給口14aを有する。また、不活性ガス供給管14の内部には、図示を省略する四塩化珪素ガス供給源に連絡して典型的には石英製である1本の四塩化珪素ガス供給管16が配設されて、四塩化珪素ガス供給管16は、反応器10の内部に侵入して、中心軸Cと平行で鉛直下方に延在する。かかる四塩化珪素ガス供給管16は、その縦壁の下端部で中心軸Cに直交する方向に向いて開口する四塩化珪素ガス供給口16aを有する一方で、その鉛直方向の先端は閉じられている。なお、四塩化珪素ガス供給管16は、必要に応じて図示を省略する不活性ガス供給源に連絡可能である。 The plurality of insertion holes 12b are typically provided at three equal intervals from the central axis C and at equal intervals of 120 ° in the circumferential direction of the upper lid 12. In each of the insertion holes 12b, an inert gas supply pipe 14 that is typically made of quartz is inserted into and fixed to an inert gas supply source (not shown), and the inert gas supply pipe is fixed. 14 has an inert gas supply port 14a which penetrates into the reactor 10 and extends vertically downward in parallel to the central axis C and is an opening opened at the lower end thereof. Further, inside the inert gas supply pipe 14, a single silicon tetrachloride gas supply pipe 16 typically made of quartz is provided in contact with a silicon tetrachloride gas supply source (not shown). The silicon tetrachloride gas supply pipe 16 penetrates into the reactor 10 and extends vertically downward in parallel with the central axis C. The silicon tetrachloride gas supply pipe 16 has a silicon tetrachloride gas supply port 16a opened at a lower end portion of the vertical wall in a direction orthogonal to the central axis C, while its vertical end is closed. Yes. In addition, the silicon tetrachloride gas supply pipe | tube 16 can be connected to the inert gas supply source which abbreviate | omits illustration as needed.
 四塩化珪素ガス供給管16の四塩化珪素ガス供給口16aは、図3Bに示すように、その縦壁の下端において任意の位置及び任意の個数で開口すれば足りる(図中では、一例として、内管26の内壁に対向して1個のみ開口するものを示す)。これは、亜鉛ガスと四塩化珪素ガスとの混合性の観点からは、四塩化珪素ガスが水平方向に吐出されるものであれば足りるからである。 As shown in FIG. 3B, the silicon tetrachloride gas supply port 16a of the silicon tetrachloride gas supply pipe 16 only needs to be opened at an arbitrary position and an arbitrary number at the lower end of the vertical wall (in the drawing, as an example, (Only one opening facing the inner wall of the inner tube 26 is shown). This is because it is sufficient that the silicon tetrachloride gas is discharged in the horizontal direction from the viewpoint of the mixing of zinc gas and silicon tetrachloride gas.
 複数の挿通孔12cは、典型的には中心軸Cから等距離であって上蓋12の周方向に120°の等間隔で、かつ対応する挿通孔12bを挟むように3個設けられている。かかる各挿通孔12cには、詳細は後述する剥離機構24の導入管24aが挿通されて固定される。 The plurality of insertion holes 12c are typically equidistant from the central axis C and are provided at equal intervals of 120 ° in the circumferential direction of the upper lid 12 so as to sandwich the corresponding insertion holes 12b. The insertion tube 24a of the peeling mechanism 24, which will be described in detail later, is inserted and fixed in each insertion hole 12c.
 このように上蓋12の中央に1本の亜鉛ガス供給管18を挿通して反応器10内を延在させると共に、その周囲に複数の不活性ガス供給管14に内包される四塩化珪素ガス供給管16を配設する構成を採用した理由は、沸点が910℃の亜鉛ガスは、沸点が59℃の四塩化珪素ガスよりも高温に加熱された状態で反応器10に導入される必要があるため、反応器10や上蓋12の径が若干大きくなる傾向にはあるものの、装置全体の構成をよりコンパクトにしながら、相対的に高温に維持した亜鉛ガスを確実に反応器10内の径方向の中央部に集中的に導入すると共に、四塩化珪素ガスをその周囲に分散的に導入し得る利便性を考慮したためである。なお、反応器10や上蓋12の径を更に大型化できる場合には、亜鉛ガス供給管18を上蓋12の中央領域に複数個設けてもかまわない。 In this way, one zinc gas supply pipe 18 is inserted into the center of the upper lid 12 to extend the inside of the reactor 10, and the silicon tetrachloride gas supply included in the plurality of inert gas supply pipes 14 is surrounded by the zinc gas supply pipe 18. The reason for adopting the configuration in which the pipe 16 is disposed is that the zinc gas having a boiling point of 910 ° C. needs to be introduced into the reactor 10 in a state of being heated to a higher temperature than the silicon tetrachloride gas having a boiling point of 59 ° C. Therefore, although the diameters of the reactor 10 and the upper lid 12 tend to be slightly larger, the zinc gas maintained at a relatively high temperature can be reliably ensured in the radial direction in the reactor 10 while making the configuration of the entire apparatus more compact. This is because the convenience of introducing the silicon tetrachloride gas in a distributed manner around the central portion is considered. If the diameter of the reactor 10 or the upper lid 12 can be further increased, a plurality of zinc gas supply pipes 18 may be provided in the central region of the upper lid 12.
 ここで、不活性ガス供給口14aは、反応器10の上蓋12への合わせ面からの長さL1の位置で、反応器10の内部に開口する。また、四塩化珪素ガス供給口16aは、反応器10の上蓋12への合わせ面からの長さL2(L2>L1)の位置で、反応器10の内部に開口する。また、亜鉛ガス供給口18aは、反応器10の上蓋12への合わせ面からの長さL3(L3<L2)の位置で、反応器10の内部に開口する。つまり、不活性ガス供給口14aの開口位置(下端位置)は、四塩化珪素ガス供給口16aの開口位置(典型的には中心位置)よりも、上方にある。また、亜鉛ガス供給口18aの開口位置(典型的には中心位置)は、四塩化珪素ガス供給口16aの開口位置よりも、上方にあり、不活性ガス供給口14aの開口位置よりも、下方にある(L1<L3<L2)。 Here, the inert gas supply port 14a opens to the inside of the reactor 10 at a position of a length L1 from the mating surface to the upper lid 12 of the reactor 10. Further, the silicon tetrachloride gas supply port 16a opens to the inside of the reactor 10 at a position of a length L2 (L2> L1) from the mating surface to the upper lid 12 of the reactor 10. Further, the zinc gas supply port 18a opens to the inside of the reactor 10 at a position of a length L3 (L3 <L2) from the mating surface to the upper lid 12 of the reactor 10. That is, the opening position (lower end position) of the inert gas supply port 14a is above the opening position (typically the center position) of the silicon tetrachloride gas supply port 16a. Moreover, the opening position (typically the central position) of the zinc gas supply port 18a is above the opening position of the silicon tetrachloride gas supply port 16a, and below the opening position of the inert gas supply port 14a. (L1 <L3 <L2).
 反応器10の縦壁に設けられた挿通孔10aには、図示を省略する排気ガス処理装置に連絡して典型的には石英製である排気管20が挿通される。かかる排気管20は、反応器10の挿通孔10aで溶着され、反応器10と一体構成されることが耐久上好ましい。また、排気管20の反応器10側の端部は、反応器10内で開口する排気導入口20aを有する。 An exhaust pipe 20 typically made of quartz is inserted into an insertion hole 10a provided in the vertical wall of the reactor 10 in communication with an exhaust gas processing device (not shown). The exhaust pipe 20 is preferably welded through the insertion hole 10a of the reactor 10 and configured integrally with the reactor 10 in terms of durability. Further, the end of the exhaust pipe 20 on the side of the reactor 10 has an exhaust inlet 20 a that opens in the reactor 10.
 また、反応器10の縦壁は、その外部から加熱器22で囲われる。かかる加熱器22は、中心軸Cと同軸な典型的には円筒状の電気炉であり、鉛直下方に向かって、第1加熱部22a、第2加熱部22b及び第3加熱部22cを順次有し、第3加熱部22cには、排気管20が貫通する貫通孔22dが設けられる。 Also, the vertical wall of the reactor 10 is surrounded by a heater 22 from the outside. The heater 22 is a typically cylindrical electric furnace coaxial with the central axis C, and has a first heating part 22a, a second heating part 22b, and a third heating part 22c in the vertical downward direction. The third heating unit 22c is provided with a through hole 22d through which the exhaust pipe 20 passes.
 更に、反応器10には、その内壁に沿って、中心軸Cと同軸で延在する典型的には円筒状の内管26が挿入される。かかる内管26は、典型的には石英製であって、反応器10に対して装脱自在であり、内管26の内壁面が、多結晶シリコンが析出する析出領域Sとなる。 Furthermore, a typically cylindrical inner tube 26 extending coaxially with the central axis C is inserted into the reactor 10 along the inner wall thereof. The inner tube 26 is typically made of quartz and is detachable from the reactor 10, and the inner wall surface of the inner tube 26 becomes a precipitation region S in which polycrystalline silicon is deposited.
 具体的には、内管26の上端26aは、開放端であって反応器10の上蓋12への合わせ面からの長さL4の位置にあり、不活性ガス供給管14の不活性ガス供給口14aの開口位置は、内管26の上端26aよりも上方にある一方で、四塩化珪素ガス供給管16の四塩化珪素ガス供給口16a、及び四塩化珪素ガス供給口16aの開口位置よりも上方にある亜鉛ガス供給管18の亜鉛ガス供給口18aの各開口位置は、内管26の上端26aよりも下方にある(L1<L4<L3<L2)。 Specifically, the upper end 26a of the inner pipe 26 is an open end and is at a position of a length L4 from the mating surface to the upper lid 12 of the reactor 10, and the inert gas supply port of the inert gas supply pipe 14 While the opening position of 14a is above the upper end 26a of the inner pipe 26, it is above the opening positions of the silicon tetrachloride gas supply port 16a and the silicon tetrachloride gas supply port 16a of the silicon tetrachloride gas supply pipe 16. Each opening position of the zinc gas supply port 18a of the zinc gas supply pipe 18 is located below the upper end 26a of the inner pipe 26 (L1 <L4 <L3 <L2).
 このように、四塩化珪素ガス供給管16の四塩化珪素ガス供給口16aの開口位置及び亜鉛ガス供給管18の亜鉛ガス供給口18aの開口位置が、内管26の上端26aよりも下方になるように設定したのは、上蓋12の中央に亜鉛ガス供給管18を挿通して反応器10内を延在させる構成を採用したことで、内管26の縦壁に挿通孔を設けることなく簡便な構成で亜鉛ガス供給口18aを下方に配置することが可能となったことのみならず、四塩化珪素ガスに加えて亜鉛ガスもが内管26の内部で吐出されることにより、反応器10の縦内壁と内管26の縦外壁との隙間でかかるガスが不要に拡散して侵入してしまう現象を確実に抑制して、内管26の内壁面に析出領域Sが確実に画成できることを考慮したためである。 Thus, the opening position of the silicon tetrachloride gas supply port 16a of the silicon tetrachloride gas supply pipe 16 and the opening position of the zinc gas supply port 18a of the zinc gas supply pipe 18 are lower than the upper end 26a of the inner pipe 26. The reason for this is that by adopting a configuration in which the zinc gas supply pipe 18 is inserted into the center of the upper lid 12 and the inside of the reactor 10 is extended, it is simple without providing an insertion hole in the vertical wall of the inner pipe 26. In addition to the fact that the zinc gas supply port 18a can be disposed below in a simple configuration, the zinc gas is also discharged inside the inner pipe 26 in addition to the silicon tetrachloride gas, so that the reactor 10 The deposition region S can be reliably defined on the inner wall surface of the inner tube 26 by reliably suppressing the phenomenon that the gas diffuses and penetrates unnecessarily in the gap between the vertical inner wall of the inner tube 26 and the outer wall of the inner tube 26. This is because of this.
 また、内管26は、その下方端が連結部材30で支持されるため排気管20を超えて下方に延在するから、不要に排気管20の排気導入口20aを塞がないように、反応器10の挿通孔10aに対応する位置に挿通孔26bを有している。つまり、排気管20は、反応器10の縦壁に設けられた挿通孔10a及び内管26の縦壁に設けられ挿通孔26bに挿通されて固定される。 Further, since the lower end of the inner pipe 26 is supported by the connecting member 30 and extends downward beyond the exhaust pipe 20, the reaction is performed so as not to unnecessarily block the exhaust inlet 20 a of the exhaust pipe 20. An insertion hole 26 b is provided at a position corresponding to the insertion hole 10 a of the container 10. That is, the exhaust pipe 20 is fixed by being inserted into the insertion hole 10 a provided in the vertical wall of the reactor 10 and the insertion hole 26 b provided in the vertical wall of the inner pipe 26.
 また、内管26は、加熱器22における第2加熱部22b及び第3加熱部22cにより、1000℃以上1100℃以下の温度のような高温に加熱されて維持されるため、その外壁面が反応器10の内壁面と接していると、互いに固着して取り外せなくなる可能性があることを考慮して、所定の間隙を介して反応器10に対して並置されている。なお、かかる間隙を安定的に維持するには、典型的には石英製のスペーサを設置することも好ましい。 Moreover, since the inner tube 26 is heated and maintained at a high temperature such as a temperature of 1000 ° C. or higher and 1100 ° C. or lower by the second heating unit 22b and the third heating unit 22c in the heater 22, the outer wall surface reacts. Considering that there is a possibility that they may stick to each other and cannot be removed when they are in contact with the inner wall surface of the reactor 10, they are juxtaposed to the reactor 10 via a predetermined gap. In order to stably maintain such a gap, it is typically preferable to install a quartz spacer.
 より詳しくは、加熱器22において、第1加熱部22aは、シリコンが析出する析出温度を超える温度(例えば、1200℃)を呈するように加熱して維持可能な加熱部であり、不活性ガス供給口14aを有する不活性ガス供給管14、四塩化珪素ガス供給口16aを有する四塩化珪素ガス供給管16及び亜鉛ガス供給口18aを有する亜鉛ガス供給管18が配された反応器10の縦壁、それに対応する内管26の縦壁及びその内部を囲って、かかる領域をシリコンが析出する析出温度を超える温度に加熱して維持する。 More specifically, in the heater 22, the first heating unit 22 a is a heating unit that can be heated and maintained so as to exhibit a temperature (for example, 1200 ° C.) that exceeds the deposition temperature at which silicon is deposited. Vertical wall of the reactor 10 in which an inert gas supply pipe 14 having a port 14a, a silicon tetrachloride gas supply pipe 16 having a silicon tetrachloride gas supply port 16a, and a zinc gas supply pipe 18 having a zinc gas supply port 18a are arranged. Then, surrounding the vertical wall of the corresponding inner tube 26 and the inside thereof, the region is heated and maintained at a temperature exceeding the deposition temperature at which silicon is deposited.
 ここで、シリコンが析出する析出温度の範囲としては、950℃以上1100℃以下の範囲が好適な温度範囲として評価できる。というのは、反応器10の縦壁、内管26の縦壁及びその内部の温度が950℃未満であると、四塩化珪素が亜鉛で還元される還元反応の反応速度が遅くなってしまう一方で、反応器10の縦壁、内管26の縦壁及びその内部の温度が1100℃を超えると、シリコンが固体で存在するよりも四塩化珪素という化合物の気体として存在することが安定なためかかる還元反応自体が起こらないと考えられるからである。また、亜鉛の沸点は910℃であるので、かかるシリコンが析出する析出温度の範囲自体は、亜鉛の沸点を超えた温度範囲である。 Here, the range of 950 ° C. or higher and 1100 ° C. or lower can be evaluated as a suitable temperature range as the range of the deposition temperature at which silicon is deposited. This is because when the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the temperature inside thereof are lower than 950 ° C., the reaction rate of the reduction reaction in which silicon tetrachloride is reduced with zinc is slowed down. Thus, when the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the temperature inside thereof exceed 1100 ° C., it is more stable that silicon exists as a compound gas of silicon tetrachloride than when it exists as a solid. This is because it is considered that such a reduction reaction itself does not occur. Further, since the boiling point of zinc is 910 ° C., the range of the deposition temperature at which such silicon is deposited is a temperature range exceeding the boiling point of zinc.
 また、第2加熱部22b及びその鉛直下方に連続的に設けられた第3加熱部22cは、シリコンの析出温度範囲にある温度を呈するように加熱して維持可能な加熱部であり、不活性ガス供給管14、四塩化珪素ガス供給管16及び亜鉛ガス供給管18が配されない反応器10の縦壁、それに対応する内管26の縦壁及びその内部を上下に連続して覆って、かかる領域をシリコンが析出する析出温度に加熱して維持する。 Further, the second heating unit 22b and the third heating unit 22c provided continuously below the second heating unit 22b are heating units that can be heated and maintained so as to exhibit a temperature within the silicon deposition temperature range, and are inactive. The vertical wall of the reactor 10 in which the gas supply pipe 14, the silicon tetrachloride gas supply pipe 16 and the zinc gas supply pipe 18 are not disposed, the vertical wall of the inner pipe 26 corresponding thereto, and the inside thereof are continuously covered up and down. The region is heated and maintained at the deposition temperature at which silicon is deposited.
 ここで、第2加熱部22bは、第1加熱部22aが加熱する部分よりも下方において、シリコンが析出する析出温度の範囲内である温度(例えば、1100℃)で反応器10の縦壁、内管26の縦壁及びその内部を加熱可能な加熱部である。また、第3加熱部22cは、第2加熱部22bが加熱する部分よりも下方において、シリコンが析出する析出温度の範囲内であるが第2加熱部22bの加熱温度よりは低い温度(例えば1000℃)で反応器10の縦壁、内管26の縦壁及びその内部を加熱可能な加熱部である。 Here, the second heating unit 22b is below the portion heated by the first heating unit 22a, and the vertical wall of the reactor 10 at a temperature (for example, 1100 ° C.) within the range of the deposition temperature at which silicon is deposited, It is a heating unit capable of heating the vertical wall of the inner tube 26 and the inside thereof. In addition, the third heating unit 22c has a temperature lower than the heating temperature of the second heating unit 22b (for example, 1000) within the range of the deposition temperature at which silicon is deposited below the portion heated by the second heating unit 22b. It is a heating section capable of heating the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the inside thereof at a temperature of ° C.
 かかる第2加熱部22bは、第1加熱部22aの加熱温度と第3加熱部22cの加熱温度とをつなぐ中間の加熱温度を呈するものであるが、必要に応じて省略可能であり、いずれにせよ、四塩化珪素ガス供給口16aを有する四塩化珪素ガス供給管16及び亜鉛ガス供給口18aを有する亜鉛ガス供給管18が配される部分において反応器10の縦壁、それに対応する内管26の縦壁及びその内部をシリコンが析出する析出温度を超える温度で加熱する第1加熱部22aの鉛直下方において、かかる四塩化珪素ガス供給管16及び亜鉛ガス供給管18が配されない部分における反応器10の縦壁、それに対応する内管26の縦壁及びその内部をシリコンが析出する析出温度範囲で加熱するような加熱部を設ければよい。なお、第2加熱部22bは、第1加熱部22aの加熱温度と第3加熱部22cの加熱温度との差が過大にならないように調整する機能もあり、内管26の縦壁等の温度変化が過大になることを抑制できる。 The second heating unit 22b exhibits an intermediate heating temperature that connects the heating temperature of the first heating unit 22a and the heating temperature of the third heating unit 22c, but may be omitted as necessary. In other words, the vertical wall of the reactor 10 and the corresponding inner pipe 26 in the portion where the silicon tetrachloride gas supply pipe 16 having the silicon tetrachloride gas supply opening 16a and the zinc gas supply pipe 18 having the zinc gas supply opening 18a are arranged. A reactor in a portion where the silicon tetrachloride gas supply pipe 16 and the zinc gas supply pipe 18 are not arranged vertically below the first heating section 22a that heats the vertical wall and the inside thereof at a temperature exceeding the deposition temperature at which silicon is deposited. What is necessary is just to provide the heating part which heats the vertical wall of 10 vertical walls, the corresponding vertical wall of the inner pipe | tube 26, and the inside in the precipitation temperature range which silicon precipitates. In addition, the 2nd heating part 22b also has a function which adjusts so that the difference of the heating temperature of the 1st heating part 22a and the heating temperature of the 3rd heating part 22c may not become excessive, The temperature of the vertical wall etc. of the inner tube | pipe 26, etc. An excessive change can be suppressed.
 なお、加熱器22における第1加熱部22a、第2加熱部22b及び第3加熱部22cの加熱温度の全ては、いずれも亜鉛の沸点である910℃を超えていることになる。 In addition, all of the heating temperature of the 1st heating part 22a in the heater 22, the 2nd heating part 22b, and the 3rd heating part 22c all exceed 910 degreeC which is the boiling point of zinc.
 また、内管26の内壁面等でのシリコン析出速度を増大させる観点からは、図4A及び図4Bに示すように、内管26は、析出領域Sに相当する箇所において、内管26の内壁面に連結させた板状部材28、28’を備えることが好ましい。 Further, from the viewpoint of increasing the silicon deposition rate on the inner wall surface of the inner tube 26, the inner tube 26 is located within the inner tube 26 at a location corresponding to the deposition region S as shown in FIGS. 4A and 4B. It is preferable to include plate-like members 28 and 28 'connected to the wall surface.
 図4Aは、本実施形態の変形例におけるシリコン製造装置の内管の模式的拡大横断面図であり、位置的には図1のE-E断面図に相当する。図4Bは、本実施形態の別の変形例におけるシリコン製造装置の内管の模式的拡大横断面図であり、位置的には図4Aと同様に図1のE-E断面図に相当する。 FIG. 4A is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus according to a modification of the present embodiment, and corresponds in position to the EE cross-sectional view of FIG. FIG. 4B is a schematic enlarged cross-sectional view of an inner tube of a silicon manufacturing apparatus according to another modification of the present embodiment, and corresponds to the EE cross-sectional view of FIG. 1 in the same manner as FIG. 4A.
 図4Aに示す板状部材28は、内管26の内壁面に連結されて、その内壁面から中心軸Cに向かって径方向に延在する典型的には平板部材であり、中心軸Cの周りに120°間隔で計3枚配設されて、中心軸Cの近傍で互いに接触している。これにより、内管26の内壁面に加えて、板状部材28の壁面もシリコンの析出面となり、シリコン析出面積が増加してシリコン析出速度の増大に寄与し得る。この場合、四塩化珪素ガス供給口16aからの距離が相対的に短距離となるように、四塩化珪素ガス供給管16の鉛直下方に板状部材28を位置させることがより好ましい。 The plate-like member 28 shown in FIG. 4A is typically a flat plate member that is connected to the inner wall surface of the inner tube 26 and extends radially from the inner wall surface toward the central axis C. A total of three pieces are arranged around at an interval of 120 ° and are in contact with each other in the vicinity of the central axis C. Thereby, in addition to the inner wall surface of the inner pipe 26, the wall surface of the plate-like member 28 also becomes a silicon deposition surface, and the silicon deposition area can be increased, contributing to an increase in the silicon deposition rate. In this case, it is more preferable that the plate-like member 28 is positioned vertically below the silicon tetrachloride gas supply pipe 16 so that the distance from the silicon tetrachloride gas supply port 16a is relatively short.
 また、シリコンの析出面を図4Aに示す程度まで増大させる必要がない場合等は、図4Bに示す板状部材28’を設けてもかまわない。板状部材28’は、内管26の内壁面に連結されて、その内壁面から中心軸Cに向かって径方向に延在する典型的には平板部材であって、中心軸Cの周りに120°間隔で計3枚配設されていることは、板状部材28と同様であるが、中心軸Cの近傍まで達しておらず互いに離間していることが相違する。 Further, when it is not necessary to increase the silicon deposition surface to the extent shown in FIG. 4A, a plate-like member 28 'shown in FIG. 4B may be provided. The plate-like member 28 ′ is typically a flat plate member connected to the inner wall surface of the inner tube 26 and extending radially from the inner wall surface toward the central axis C. The arrangement of a total of three sheets at 120 ° intervals is the same as that of the plate-like member 28, except that it does not reach the vicinity of the central axis C and is separated from each other.
 また、板状部材28、28’の上下方向の長さについては、析出領域Sの一部を占める長さでも効果は得られるが、析出面積を大きくする観点からは、析出領域Sの全体を占める長さを採用することが好ましい。なお、板状部材28、28’は、内管26内で互いに干渉しない範囲内で適宜の個数設けることも可能である。 In addition, as for the length in the vertical direction of the plate-like members 28 and 28 ', an effect can be obtained even if the length occupies a part of the precipitation region S, but from the viewpoint of increasing the precipitation area, the entire precipitation region S is used. It is preferable to adopt the occupied length. It should be noted that an appropriate number of the plate- like members 28 and 28 ′ can be provided as long as they do not interfere with each other in the inner tube 26.
 さて、剥離機構24は、反応器10に装着された内管26の内壁面における析出領域Sに堆積した多結晶シリコンを剥離して自重で下方に落下させる機構であり、上蓋12の各挿通孔12cに、その導入管24aが挿通されて固定される。 The peeling mechanism 24 is a mechanism for peeling the polycrystalline silicon deposited on the precipitation region S on the inner wall surface of the inner tube 26 attached to the reactor 10 and dropping it downward under its own weight. The introduction pipe 24a is inserted and fixed to 12c.
 より詳しくは、剥離機構24は、各挿通孔12cに固定された導入管24aに上下移動自在に挿通されて、中心軸Cと平行に延在する典型的には石英製の棒部材24bを備える。かかる棒部材24bは、反応器10内に侵入して内管26の内壁面の析出領域Sに析出した多結晶シリコンの層には干渉するが、内管26の内壁面自体には不要に干渉することがないように、内管26の内壁面に対して所定の間隔でもって離間しながら平行に延在して対向する。棒部材24bの形状は、内管26が円筒状の場合には典型的には円柱状であり、内管26が角筒状の場合には典型的には角柱状である。 More specifically, the peeling mechanism 24 includes a rod member 24b typically made of quartz that is inserted through an introduction tube 24a fixed to each insertion hole 12c so as to be vertically movable and extends in parallel with the central axis C. . The rod member 24b penetrates into the reactor 10 and interferes with the polycrystalline silicon layer deposited on the deposition region S on the inner wall surface of the inner tube 26, but it interferes unnecessarily with the inner wall surface of the inner tube 26 itself. In order to prevent this, the inner wall 26 of the inner tube 26 extends in parallel and faces the inner wall surface of the inner tube 26 while being separated by a predetermined distance. The shape of the rod member 24b is typically a columnar shape when the inner tube 26 is cylindrical, and is typically a prismatic shape when the inner tube 26 is a rectangular tube.
 更に、剥離機構24は、導入管24aの上端部と棒部材24bの上端部であるフランジ部との間に介装されて棒部材24bが挿通される内部領域を封ずると共に所定のバネ定数を有した弾性部材である蛇腹状の伸縮管24cと、棒部材24bの上端部であるフランジ部上に載置された錘24dと、錘24dに連絡したアクチュエータ24eと、を備える。伸縮管24cは、初期状態において、アクチュエータ24eが錘24dを最下位で係止することにより錘24dの荷重を受けて所定長さほど縮んだ圧縮状態に設定されていてもよいし、アクチュエータ24eが錘24dを最上位で係止することにより錘24dの荷重を実質受けないような実質的に自然長を呈する非圧縮状態に設定されていてもよい。なお、伸縮管24cの下端部を上蓋12の上面に直接当接する場合には、導入管24aは、省略可能である。 Further, the peeling mechanism 24 is interposed between the upper end portion of the introduction pipe 24a and the flange portion, which is the upper end portion of the rod member 24b, and seals an internal region through which the rod member 24b is inserted and has a predetermined spring constant. It has a bellows-like telescopic tube 24c that is an elastic member, a weight 24d that is placed on a flange that is the upper end of the rod member 24b, and an actuator 24e that communicates with the weight 24d. In the initial state, the telescopic tube 24c may be set in a compressed state in which the actuator 24e is engaged with the weight 24d at the lowest position so as to receive a load from the weight 24d and contract by a predetermined length. The non-compressed state may be set so as to exhibit a substantially natural length so that the load of the weight 24d is not substantially received by locking the 24d at the uppermost position. In addition, when the lower end part of the expansion / contraction tube 24c is brought into direct contact with the upper surface of the upper lid 12, the introduction tube 24a can be omitted.
 かかる剥離機構24では、伸縮管24cが初期状態において圧縮状態に設定されている場合には、棒部材24bは、対応して最下位の位置にあるが、アクチュエータ24eを作動して錘24dの係止を解いて上方に引っ張り上げて、圧縮状態の伸縮管24cを伸ばすことにより、棒部材24bは、伸縮管24cの伸張力を受けながらアクチュエータ24eの引き上げ力により上方に移動して最上位の位置まで移動することができる。そして、棒部材24bが最上位の位置まで移動したならば、アクチュエータ24eで錘24dを係止して、棒部材24bを最上位の位置に維持することになる。もちろん、棒部材24bが最上位の位置まで移動した際に、必要に応じて、アクチュエータ24eで錘24dを係止しない状態に維持してもよく、かかる場合には、伸縮管24cが錘24dの荷重を受けて縮むことにより、棒部材24bは、下方に移動して最下位の位置まで移動することができ、その後必要に応じて、棒部材24bは、このような上下移動の動作を繰り返すことが可能である。 In the peeling mechanism 24, when the telescopic tube 24c is set in the compressed state in the initial state, the rod member 24b is correspondingly at the lowest position, but the actuator 24e is operated to engage the weight 24d. The rod member 24b is moved upward by the pulling force of the actuator 24e while receiving the extension force of the extension tube 24c by lifting the extension tube 24c in a compressed state by releasing the stop and pulling it upward. Can move up to. When the bar member 24b moves to the uppermost position, the weight 24d is locked by the actuator 24e, and the bar member 24b is maintained at the uppermost position. Of course, when the rod member 24b is moved to the uppermost position, the actuator 24e may keep the weight 24d not locked when necessary. In such a case, the telescopic tube 24c is attached to the weight 24d. By contracting in response to the load, the bar member 24b can move downward to the lowest position, and then the bar member 24b repeats such an up / down movement as necessary. Is possible.
 一方で、伸縮管24cが初期状態において非圧縮状態に設定されている場合には、棒部材24bは、対応して最上位の位置にあるが、アクチュエータ24eを作動して錘24dの係止を解いて錘24dの荷重を伸縮管24cに印加して縮めることにより、棒部材24bは、伸縮管24cの圧縮反力を受けながら錘24dの荷重により下方に移動して最下位の位置まで移動することができる。そして、棒部材24bが最下位の位置まで移動したならば、アクチュエータ24eで錘24dを係止して、棒部材24bを最下位の位置に維持することになる。もちろん、棒部材24bが最下位の位置まで移動した際に、必要に応じて、アクチュエータ24eで錘24dを係止しないで上方に引っ張り上げてもよく、かかる場合には、伸縮管24cが錘24dの荷重を受けないで伸びることにより、棒部材24bは、上方に移動して最上位の位置まで移動することができ、その後必要に応じて、棒部材24bは、このような上下移動の動作を繰り返すことが可能である。 On the other hand, when the telescopic tube 24c is set to an uncompressed state in the initial state, the rod member 24b is correspondingly at the uppermost position, but the actuator 24e is operated to lock the weight 24d. By unwinding and applying the load of the weight 24d to the telescopic tube 24c and contracting, the rod member 24b moves downward to the lowest position by the load of the weight 24d while receiving the compression reaction force of the telescopic tube 24c. be able to. When the bar member 24b moves to the lowest position, the weight 24d is locked by the actuator 24e, and the bar member 24b is maintained at the lowest position. Of course, when the rod member 24b moves to the lowest position, the actuator 24e may pull up the weight 24d without being locked, if necessary. In such a case, the telescopic tube 24c is pulled up by the weight 24d. The rod member 24b can move upward and move to the uppermost position by being stretched without receiving the load, and thereafter, the rod member 24b performs such an up / down movement operation as necessary. It is possible to repeat.
 ここで、内管26の内壁面の析出領域Sに多結晶シリコンが析出している場合には、棒部材24bが、かかる上下移動を行うことにより、その下方の先端や析出領域Sに対向する側面が、析出領域Sに析出した典型的には針状結晶から成る多結晶シリコンに機械的に当たって、その衝撃で針状の多結晶シリコンを、析出領域Sから、つまり内管26の内壁面から折って剥離させて反応器10の下方に自重で落下させることができる。 Here, in the case where polycrystalline silicon is deposited in the precipitation region S on the inner wall surface of the inner tube 26, the bar member 24b is opposed to the lower tip and the precipitation region S by performing such vertical movement. The side surface mechanically hits the polycrystalline silicon typically formed of acicular crystals deposited in the precipitation region S, and the impact causes the acicular polycrystalline silicon to be removed from the precipitation region S, that is, from the inner wall surface of the inner tube 26. It can be folded and peeled and dropped by its own weight below the reactor 10.
 つまり、棒部材24bは、それを上下移動することによって、シリコン析出領域Sに析出した多結晶シリコンを剥離して反応器10の下方に落下させることが必要なものであるから、棒部材24bの上下方向の移動範囲としては、少なくとも、その下方の先端が、シリコン析出領域Sの上端に対してより鉛直上方の位置とより鉛直下方の位置との間の位置をとりえるような移動範囲が必要である。また、より確実にシリコン析出領域Sに析出した多結晶シリコンを剥離するためには、棒部材24bの上下方向の移動範囲としては、棒部材24bの下方の先端が、シリコン析出領域Sの下端よりも鉛直下方となる位置に達するような移動範囲を確保することがより好ましい。 That is, the bar member 24b is required to peel the polycrystalline silicon deposited in the silicon deposition region S and move it down below the reactor 10 by moving it up and down. The moving range in the vertical direction must be such that at least the lower tip can take a position between a position vertically above and a position vertically below the upper end of the silicon deposition region S. It is. In order to peel the polycrystalline silicon deposited in the silicon deposition region S more reliably, the lower end of the rod member 24b is moved from the lower end of the silicon deposition region S as the vertical movement range of the rod member 24b. It is more preferable to secure a moving range that reaches a position vertically below.
 また、棒部材24bの構造としては、内管26の内壁面における析出領域Sに析出した多結晶シリコンとの接触面積が大きいほうが、かかる多結晶シリコンを機械的な衝撃で剥離する上では好ましいため、図5A及び図5Bに示すように、棒部材24bに接触板である板状部材24fを設けることが望ましい。 Further, as the structure of the rod member 24b, a larger contact area with the polycrystalline silicon deposited on the deposition region S on the inner wall surface of the inner tube 26 is preferable in peeling the polycrystalline silicon by mechanical impact. As shown in FIGS. 5A and 5B, it is desirable to provide a plate-like member 24f as a contact plate on the rod member 24b.
 図5Aは、本実施形態の更に別の変形例におけるシリコン製造装置の棒部材の模式的拡大縦断面図であり、図5BのG-G断面図に相当する。図5Bは、本実施形態の更に別の変形例におけるシリコン製造装置の棒部材の模式的拡大横断面図であり、図5AのF-F断面図に相当する。 FIG. 5A is a schematic enlarged longitudinal sectional view of a rod member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to the GG sectional view of FIG. 5B. FIG. 5B is a schematic enlarged cross-sectional view of a bar member of a silicon manufacturing apparatus in still another modified example of the present embodiment, and corresponds to the FF cross-sectional view of FIG. 5A.
 図5A及び図5Bに示す板状部材24fは、棒部材24bの棒部分に連結され、内管26の内壁面における析出領域Sに析出した多結晶シリコンに効率的に接触できるように、典型的には、上下方向で見た場合に中心軸Cを中心とする円弧形状を有する。板状部材24fの個数や円弧形状の長さは、板状部材24fが他の構成要素と干渉しない範囲内で適宜設定自在である。また、板状部材24fの個数も、他の構成要素と干渉しない範囲内で適宜設定自在である。また、板状部材24fの上下方向の位置は、棒部材24bの上下移動により、板状部材24fの上端がシリコン析出領域Sの上端よりも鉛直上方に、板状部材24fの下端がシリコン析出領域Sの下端よりも鉛直下方に、各々達するように設定することが好ましい。 The plate-like member 24f shown in FIG. 5A and FIG. 5B is connected to the rod portion of the rod member 24b, and is typical so as to efficiently contact the polycrystalline silicon deposited on the precipitation region S on the inner wall surface of the inner tube 26. Has an arc shape centered on the central axis C when viewed in the vertical direction. The number of plate-like members 24f and the length of the arc shape can be appropriately set within a range in which the plate-like member 24f does not interfere with other components. Further, the number of the plate-like members 24f can be appropriately set within a range that does not interfere with other components. Further, the vertical position of the plate member 24f is such that the upper end of the plate member 24f is vertically above the upper end of the silicon precipitation region S and the lower end of the plate member 24f is the silicon precipitation region by the vertical movement of the bar member 24b. It is preferable to set so as to reach vertically below the lower end of S.
 なお、棒部材24bを上下に移動するための装置として、伸縮管24c、錘24d及びアクチュエータ24eから成るものを示したが、もちろんこれに限定されるものではなく、より高価なものとはなるがエアーシリンダー等の装置を用いてもかまわない。 In addition, as an apparatus for moving the bar member 24b up and down, an apparatus including the telescopic tube 24c, the weight 24d, and the actuator 24e is shown. However, the present invention is not limited to this and is more expensive. A device such as an air cylinder may be used.
 更に、このように内管26の内壁面の析出領域Sに堆積した多結晶シリコンが剥離されて自重で下方に落下することになるので、反応器10の下方端に接続された連結部材30には、順次、連絡管32、バルブ装置34及びシリコン回収槽36が接続する。 Furthermore, since the polycrystalline silicon deposited on the precipitation region S on the inner wall surface of the inner tube 26 is peeled off and falls downward due to its own weight, the connecting member 30 connected to the lower end of the reactor 10 is connected to the connecting member 30 connected to the lower end of the reactor 10. Are sequentially connected to the communication pipe 32, the valve device 34, and the silicon recovery tank 36.
 具体的には、連絡管32が、連結部材30を介して反応器10の内部と連通し、かかる連絡管32には、バルブ装置34が接続する。 Specifically, the communication pipe 32 communicates with the inside of the reactor 10 via the connecting member 30, and the valve device 34 is connected to the communication pipe 32.
 かかるバルブ装置34は、反応器10の内部の環境と外部の環境とを遮断自在なバルブ34aを備える。反応器10の内部とシリコン回収槽36との連通を遮断するためにバルブ34aを閉じた状態では、剥離機構24の棒部材24bを上下移動することにより剥離されて自重により落下してくる多結晶シリコンを、バルブ34a上に堆積自在である。一方で、バルブ34aを開いた状態では、反応器10の内部とバルブ装置34の下方に設けられたシリコン回収槽36とが連通し、バルブ34a上に堆積した多結晶シリコンをシリコン回収槽36に自重で落下させて回収自在である。 The valve device 34 includes a valve 34 a that can shut off the internal environment and the external environment of the reactor 10. In a state where the valve 34a is closed in order to shut off the communication between the inside of the reactor 10 and the silicon recovery tank 36, the polycrystal which is peeled off by moving the bar member 24b of the peeling mechanism 24 up and down and falls by its own weight. Silicon can be deposited on the bulb 34a. On the other hand, when the valve 34a is opened, the inside of the reactor 10 communicates with the silicon recovery tank 36 provided below the valve device 34, and the polycrystalline silicon deposited on the valve 34a is transferred to the silicon recovery tank 36. It can be recovered by dropping it under its own weight.
 また、かかるシリコン回収槽36は、加熱器22の加熱領域外の常温雰囲気中に設置されており、シリコン製造装置1に対して装脱自在である。 Further, the silicon recovery tank 36 is installed in a room temperature atmosphere outside the heating region of the heater 22 and is detachable from the silicon manufacturing apparatus 1.
 ついで、以上の構成のシリコン製造装置1を用いて、多結晶のシリコンを製造するシリコンの製造方法につき、詳細に説明する。なお、かかるシリコンの製造方法の一連の工程は、各種センサからの検出データを参照しながら各種データベース等を有するコントローラで自動制御してもよいし、一部又は全部を手動で行ってもよい。 Next, a silicon manufacturing method for manufacturing polycrystalline silicon using the silicon manufacturing apparatus 1 having the above configuration will be described in detail. Note that a series of steps of the silicon manufacturing method may be automatically controlled by a controller having various databases or the like while referring to detection data from various sensors, or may be partly or wholly performed manually.
 まず、バルブ装置34のバルブ34aを閉じて、反応器10の内部と外部とを遮断した状態で、反応器10の内部に、不活性ガス供給口14aから不活性ガスを所定時間供給して、反応器10の内部の反応雰囲気を整える。この際、必要に応じて、四塩化珪素ガス供給口16a及び亜鉛ガス供給口18aからも、不活性ガスを所定時間供給してもかまわない。 First, in a state where the valve 34a of the valve device 34 is closed and the inside and outside of the reactor 10 are shut off, an inert gas is supplied into the reactor 10 from the inert gas supply port 14a for a predetermined time, The reaction atmosphere inside the reactor 10 is adjusted. At this time, if necessary, an inert gas may be supplied from the silicon tetrachloride gas supply port 16a and the zinc gas supply port 18a for a predetermined time.
 次に、加熱器22における第1加熱部22aにより、不活性ガス供給口14aを有する不活性ガス供給管14、四塩化珪素ガス供給口16aを有する四塩化珪素ガス供給管16及び亜鉛ガス供給口18aを有する亜鉛ガス供給管18が配された反応器10の縦壁、それに対応する内管26の縦壁及びその内部を加熱し、かかる部分をシリコンの析出温度を超える温度に加熱して維持する。同時に、加熱器22における第2加熱部22b及び第3加熱部22cにより、かかる不活性ガス供給管14、四塩化珪素ガス供給管16及び亜鉛ガス供給管18が配されない反応器10の縦壁、それに対応する内管26の縦壁及びその内部を加熱し、かかる部分をシリコンの析出温度範囲に加熱して維持する。 Next, the first heating unit 22a in the heater 22 causes the inert gas supply pipe 14 having the inert gas supply port 14a, the silicon tetrachloride gas supply pipe 16 having the silicon tetrachloride gas supply port 16a, and the zinc gas supply port. The vertical wall of the reactor 10 in which the zinc gas supply pipe 18 having 18a is arranged, the corresponding vertical wall of the inner pipe 26 and the inside thereof are heated, and this part is heated and maintained at a temperature exceeding the silicon deposition temperature. To do. At the same time, the vertical wall of the reactor 10 in which the inert gas supply pipe 14, the silicon tetrachloride gas supply pipe 16 and the zinc gas supply pipe 18 are not arranged by the second heating part 22b and the third heating part 22c in the heater 22, The corresponding vertical wall of the inner tube 26 and the inside thereof are heated, and this portion is heated and maintained within the silicon deposition temperature range.
 次に、かかる温度条件を維持して、還元反応工程を実施する。具体的には、反応器10の内部に、四塩化珪素ガス供給口16aから四塩化珪素ガスを供給し、かつ亜鉛ガス供給口18aから亜鉛ガスを供給する。この際、必要に応じて、不活性ガス供給口14aから不活性ガスを供給していてもかまわない。 Next, the reduction reaction step is performed while maintaining such temperature conditions. Specifically, silicon tetrachloride gas is supplied into the reactor 10 from the silicon tetrachloride gas supply port 16a, and zinc gas is supplied from the zinc gas supply port 18a. At this time, an inert gas may be supplied from the inert gas supply port 14a as necessary.
 すると、反応器10の内部で、四塩化珪素が亜鉛で還元される還元反応が生じ得ることになる。しかし、ここで、四塩化珪素ガスは、その比重が亜鉛ガスの比重の2.6倍程度である相対的に重いガスなので、四塩化珪素ガス供給口16aの開口位置よりも上方にある亜鉛ガス供給口18aまでは実質拡散できず、反応器10の内部における四塩化珪素ガス供給口16aの近傍かそれよりも下方領域で、還元反応が生じて、固体のシリコンと塩化亜鉛ガスとが生成することになる。 Then, a reduction reaction in which silicon tetrachloride is reduced with zinc can occur inside the reactor 10. However, since the silicon tetrachloride gas is a relatively heavy gas whose specific gravity is about 2.6 times the specific gravity of the zinc gas, the zinc gas above the opening position of the silicon tetrachloride gas supply port 16a. It cannot substantially diffuse up to the supply port 18a, and a reduction reaction occurs in the vicinity of the silicon tetrachloride gas supply port 16a inside the reactor 10 or in a region below it, so that solid silicon and zinc chloride gas are generated. It will be.
 更に、ここで、不活性ガス供給管14、四塩化珪素ガス供給管16及び亜鉛ガス供給管18が配されない反応器10の縦壁、それに対応する内管26の縦壁及びその内部は、第2加熱部22b及び第3加熱部22cにより、シリコンの析出温度範囲の温度を呈するように加熱され維持されているため、還元反応により生成されたシリコンは、かかる内管26の縦壁の下部、つまり内管26の内壁面における四塩化珪素ガス供給口16aよりも下方であって排気導入口20aよりも上方である領域である析出領域Sに針状結晶として析出していく。この際、四塩化珪素ガス供給口16aや亜鉛ガス供給口18aには、シリコンが析出することはなく、かかる供給口がシリコンで閉塞されることもない。 Further, here, the vertical wall of the reactor 10 where the inert gas supply pipe 14, the silicon tetrachloride gas supply pipe 16 and the zinc gas supply pipe 18 are not arranged, the corresponding vertical wall of the inner pipe 26 and the inside thereof are Since the second heating unit 22b and the third heating unit 22c are heated and maintained so as to exhibit a temperature in the silicon deposition temperature range, the silicon generated by the reduction reaction is below the vertical wall of the inner tube 26, That is, it precipitates as a needle-like crystal in the precipitation region S, which is a region below the silicon tetrachloride gas supply port 16a and above the exhaust introduction port 20a on the inner wall surface of the inner pipe 26. At this time, silicon is not deposited in the silicon tetrachloride gas supply port 16a and the zinc gas supply port 18a, and the supply port is not blocked by silicon.
 更にこのように、内管26の内壁面の下部における析出領域Sでは、針状結晶のシリコンが順次析出されていくと共に、その析出されたシリコンを種結晶としてシリコンが結晶成長していくため、十分な厚みの多結晶シリコンが堆積されることになる。ここでは、このような析出のプロセス及びそれに関連する結晶成長のプロセスを含めて、析出と呼ぶことにする。 Further, in this manner, in the precipitation region S in the lower portion of the inner wall surface of the inner tube 26, acicular silicon is deposited sequentially, and silicon grows using the deposited silicon as a seed crystal. A sufficient thickness of polycrystalline silicon will be deposited. Here, such a precipitation process and a crystal growth process related thereto are referred to as precipitation.
 次に、かかる還元反応を所定時間継続した後、内管26の内壁面の下部における析出領域Sに十分な厚みの多結晶シリコンが堆積されたならば、反応の原料である四塩化珪素ガスと亜鉛ガスとの供給を停止する。そして、不活性ガス供給管14の不活性ガス供給口14a等から不活性ガスを反応器10の内部に供給した状態で、反応器10の内部の雰囲気を不活性ガスで置換する。 Next, after the reduction reaction is continued for a predetermined time, if polycrystalline silicon having a sufficient thickness is deposited in the precipitation region S in the lower portion of the inner wall surface of the inner tube 26, Stop supplying zinc gas. Then, with the inert gas supplied from the inert gas supply port 14a of the inert gas supply pipe 14 to the inside of the reactor 10, the atmosphere inside the reactor 10 is replaced with the inert gas.
 次に、剥離機構24のアクチュエータ24eを作動し、錘24dの係止を解いて伸縮管24cを伸張又は圧縮することにより、棒部材24bを対応して上下移動させると、その先端や側面が内管26の内壁面の析出領域Sに堆積した多結晶シリコンに当たり、その衝撃で針状の多結晶シリコンが折れることにより内管26の内壁面から機械的に剥離され、その剥離物が自重で下方に落下する。この際、バルブ34aは、反応器10の内部と外部とを遮断すべく閉じられているから、落下してきたシリコンはバルブ34a上に堆積していく。 Next, when the rod member 24b is moved up and down correspondingly by actuating the actuator 24e of the peeling mechanism 24 and releasing or locking the weight 24d to extend or compress the telescopic tube 24c, the tip and side surfaces thereof are The polycrystalline silicon deposited on the precipitation region S on the inner wall surface of the tube 26 is mechanically peeled off from the inner wall surface of the inner tube 26 by breaking the needle-like polycrystalline silicon by the impact, and the peeled material is moved downward by its own weight. Fall into. At this time, since the valve 34a is closed so as to shut off the inside and the outside of the reactor 10, the silicon that has fallen accumulates on the valve 34a.
 そして、このように棒部材24bを上下移動する剥離工程が終了したならば、バルブ34aを開いてバルブ34a上に堆積した多結晶シリコンを自重でシリコン回収槽36に落下させた後、反応器10の内部を外部から遮断すべくバルブ34aを再び閉じる一方で、シリコン回収槽36内の多結晶シリコンを取り出して回収して、今回のシリコンの製造方法の一連の工程は終了し、必要に応じて連続的に、次回のシリコンの製造方法の一連の工程に入る。ここで、シリコン回収槽36は、シリコン製造装置1に対して装脱自在であるので、シリコンが落下し終わったならば、バルブ34aを閉じた後に、シリコン回収槽36をシリコン製造装置1から取り外して所定の保管場所に移動して、シリコン回収槽36の内部の多結晶シリコンを取り出すことも可能となる。 When the peeling step for moving the rod member 24b up and down in this way is completed, the valve 34a is opened and the polycrystalline silicon deposited on the valve 34a is dropped into the silicon recovery tank 36 by its own weight, and then the reactor 10 While the valve 34a is closed again to shut off the inside of the silicon, the polycrystalline silicon in the silicon recovery tank 36 is taken out and recovered, and a series of steps of the present silicon manufacturing method is completed. Continuously, a series of steps of the next silicon manufacturing method is entered. Here, since the silicon recovery tank 36 is detachable with respect to the silicon manufacturing apparatus 1, when the silicon has finished dropping, the silicon recovery tank 36 is removed from the silicon manufacturing apparatus 1 after closing the valve 34a. It is also possible to move to a predetermined storage location and take out the polycrystalline silicon inside the silicon recovery tank 36.
 ここで、かかるシリコンの製造方法を一連の工程を何回か繰り返すと、内管26の内壁面が劣化してくるため、繰り返し回数が規準回数を超えた内管26については、反応器10から取り外して、新たな内管26に交換することになる。 Here, when a series of steps are repeated several times in such a silicon production method, the inner wall surface of the inner tube 26 deteriorates. Therefore, the inner tube 26 whose number of repetitions exceeds the reference number is determined from the reactor 10. It is removed and replaced with a new inner pipe 26.
 なお、以上の本実施形態においては、交換の利便性等を考慮して内管26を反応器10内に配設したが、反応器10自体を適宜交換することが可能な場合であれば、内管26を省略して、反応器10の内壁面に直接的にシリコン析出領域Sを設定することも可能である。 In the above embodiment, the inner tube 26 is disposed in the reactor 10 in consideration of the convenience of replacement. However, if the reactor 10 itself can be replaced as appropriate, It is also possible to omit the inner tube 26 and set the silicon deposition region S directly on the inner wall surface of the reactor 10.
 また、以上の本実施形態においては、亜鉛ガス供給口18aが四塩化珪素ガス供給口16aよりも上方に配置される構成について説明したが、これに限定されるものではなく、構成は煩雑にはなるが、ガスの吐出方向や流速等を制御してガスの拡散性等が調整できる場合には、亜鉛ガス供給口18aが四塩化珪素ガス供給口16aに対して同じ高さやより下方に配置されるような構成を採用することも可能である。 In the above-described embodiment, the configuration in which the zinc gas supply port 18a is disposed above the silicon tetrachloride gas supply port 16a has been described. However, the configuration is not limited to this, and the configuration is complicated. However, when the gas diffusibility and the like can be adjusted by controlling the gas discharge direction and flow velocity, the zinc gas supply port 18a is disposed at the same height or lower than the silicon tetrachloride gas supply port 16a. It is also possible to adopt such a configuration.
 また、以上の本実施形態において、反応器、上蓋、連結部材、不活性ガス供給管、四塩化珪素ガス供給管、亜鉛ガス供給管、排気管、内管及び棒部材の材質としては、950℃以上もの高温において、原料の四塩化珪素ガスや亜鉛ガス、副生する塩化亜鉛ガス等に耐える材質でなければならないので、石英、炭化珪素、窒化珪素等が挙げられるが、析出したシリコン中への炭素や窒素の混入を避ける見地からは、石英、具体的には石英ガラスが最も好ましい。また、伸縮管の材質としては、特に限定されず、金属製や樹脂製が挙げられるが、耐熱性の点からは金属製であることが好ましい。 In the above embodiment, the material of the reactor, the upper lid, the connecting member, the inert gas supply pipe, the silicon tetrachloride gas supply pipe, the zinc gas supply pipe, the exhaust pipe, the inner pipe and the rod member is 950 ° C. Since the material must be resistant to silicon tetrachloride gas, zinc gas, by-product zinc chloride gas, etc. at high temperatures, quartz, silicon carbide, silicon nitride, etc. can be mentioned. From the standpoint of avoiding carbon and nitrogen contamination, quartz, specifically, quartz glass is most preferable. In addition, the material of the expansion tube is not particularly limited and may be made of metal or resin, but is preferably made of metal from the viewpoint of heat resistance.
 また、以上の本実施形態において、不活性ガスとしては、Heガス、Neガス、Arガス、Krガス、Xeガス、Rnガス等の希ガスや窒素ガス等が挙げられるが、析出したシリコン中への窒素の混入を避ける見地からは希ガスが好ましく、中でも低価格であるArガスが最も好ましい。 In the above embodiment, examples of the inert gas include rare gases such as He gas, Ne gas, Ar gas, Kr gas, Xe gas, and Rn gas, nitrogen gas, and the like. From the standpoint of avoiding nitrogen contamination, a rare gas is preferable, and Ar gas, which is inexpensive, is most preferable.
 さて、以下、本実施形態に対応する各実験例及びその比較例について、詳細に説明する。 Now, each experimental example and comparative example corresponding to this embodiment will be described in detail.
 (実験例1)
 本実験例1では、本実施形態のシリコン製造装置1を用いて、多結晶シリコンを製造した。
(Experimental example 1)
In Experimental Example 1, polycrystalline silicon was manufactured using the silicon manufacturing apparatus 1 of the present embodiment.
 具体的には、シリコン製造装置1において、石英製の反応器10は、外径Dを226mm(肉厚は3mmで、内径は220mm)及び長さLを2330mmに設定し、石英製の内管26は、外径を206mm(肉厚は3mmで、内径は200mm)及び反応器10の上蓋12への合わせ面からの上端26aの長さL4を50mmに設定し、石英製の亜鉛ガス供給管18は、外径を42mm(肉厚は3mmで、内径は36mm)に設定し、亜鉛ガス供給管18の下端を塞いで縦壁のみに中心軸Cについて120°の等間隔になるように径16mmで3個設けた亜鉛ガス供給口18aの開口位置(開口の中心位置)は、反応器10の上蓋12への合わせ面からの長さL3が300mmになるように設定し、かつ、反応器10の下部に連絡する排気導入口20aを有する石英製の排気管20は、外径を56mm(肉厚は2mmで、内径は52mm)に設定した。 Specifically, in the silicon production apparatus 1, the quartz reactor 10 has an outer diameter D set to 226 mm (thickness is 3 mm, inner diameter is 220 mm) and length L is set to 2330 mm, and the quartz inner tube 26, the outer diameter is set to 206 mm (the wall thickness is 3 mm, the inner diameter is 200 mm), and the length L4 of the upper end 26a from the mating surface to the upper lid 12 of the reactor 10 is set to 50 mm. No. 18 has an outer diameter set to 42 mm (wall thickness is 3 mm, inner diameter is 36 mm), and closes the lower end of the zinc gas supply pipe 18 so that only the vertical wall has an equal interval of 120 ° with respect to the central axis C. The opening position (the center position of the opening) of three zinc gas supply ports 18a provided at 16 mm is set so that the length L3 from the mating surface to the upper lid 12 of the reactor 10 is 300 mm, and the reactor 10 to the bottom Quartz exhaust pipe 20 having inlet 20a is an outer diameter 56 mm (wall thickness is 2 mm, internal diameter 52 mm) was set on.
 また、石英製の不活性ガス供給管14及びその内部に配設される石英製の四塩化珪素ガス供給管16は、中心軸Cから85mmの距離で120度の均等な間隔で3個配設し、各剥離機構24の棒部材24bは、3個の不活性ガス供給管14を対応して挟んで中心軸Cから85mmの距離で120°の均等な間隔で3個配設した。 Further, three quartz inert gas supply pipes 14 and quartz silicon tetrachloride gas supply pipes 16 disposed therein are arranged at a distance of 85 mm from the central axis C at equal intervals of 120 degrees. Then, three rod members 24b of each peeling mechanism 24 were disposed at equal intervals of 120 ° at a distance of 85 mm from the central axis C with the three inert gas supply pipes 14 correspondingly interposed therebetween.
 ここで、各不活性ガス供給管14は、外径を16mm(肉厚は1mmで、内径は14mm)に設定し、不活性ガス供給口14aの開口位置(不活性ガス供給管14の反応器10内における端部位置)は、反応器10の上蓋12への合わせ面からの長さL1が10mmになるように設定し、各四塩化珪素ガス供給管16は、外径を9mm(肉厚は1mmで、内径は7mm)に設定し、四塩化珪素ガス供給管16の下端を塞いで縦壁のみに径4mmで内管26の内壁に対向するように1個設けた四塩化珪素ガス供給口16aの開口位置(開口の中心位置)は、反応器10の上蓋12への合わせ面からの長さL2が500mmになるように設定した。 Here, each inert gas supply pipe 14 has an outer diameter set to 16 mm (thickness is 1 mm, inner diameter is 14 mm), and the opening position of the inert gas supply port 14a (reactor of the inert gas supply pipe 14). 10 is set so that the length L1 from the mating surface to the top lid 12 of the reactor 10 is 10 mm, and each silicon tetrachloride gas supply pipe 16 has an outer diameter of 9 mm (wall thickness). Is set to 1 mm and the inner diameter is 7 mm), and the silicon tetrachloride gas supply is provided by closing the lower end of the silicon tetrachloride gas supply pipe 16 so that only the vertical wall has a diameter of 4 mm and faces the inner wall of the inner pipe 26. The opening position of the mouth 16a (the center position of the opening) was set so that the length L2 from the mating surface to the upper lid 12 of the reactor 10 was 500 mm.
 また、各剥離機構24については、棒部材24bは、石英製であって鉛直方向に延在する円柱状の棒部材として、その外径を9mm及び長さ1900mmに設定し、伸縮管24cは、金属製として、その自然長を100mm及びバネ定数を0.15kg/mmに設定し、錘24dは、鉄製として、その重量を3kgに設定した。かかる剥離機構24の初期状態としては、予め錘24dの荷重を伸縮管24cに印加して、棒部材24bを最下位に位置させておいた。 Further, for each peeling mechanism 24, the rod member 24b is made of quartz and is a columnar rod member extending in the vertical direction, and its outer diameter is set to 9 mm and length 1900 mm. As a metal, its natural length was set to 100 mm and its spring constant was set to 0.15 kg / mm, and the weight 24d was made of iron and its weight was set to 3 kg. As an initial state of the peeling mechanism 24, the load of the weight 24d was previously applied to the telescopic tube 24c, and the bar member 24b was positioned at the lowest position.
 以上の具体的構成において、反応器10の内部を外部から遮断するために、バルブ装置34のバルブ34aを閉じた状態で、まず、不活性ガス供給管14の不活性ガス供給口14aより0.83SLMの流量のArガス、四塩化珪素ガス供給管16の四塩化珪素ガス供給口16aより1.00SLMの流量のArガス、及び亜鉛ガス供給管18の亜鉛ガス供給口18aより0.84SLMの流量のArガス(計2.67SLMの流量のArガス)を反応器10の内部に吐出した。 In the specific configuration described above, in order to shut off the inside of the reactor 10 from the outside, first, the valve 34 a of the valve device 34 is closed, and then, from the inert gas supply port 14 a of the inert gas supply pipe 14. Ar gas having a flow rate of 83 SLM, Ar gas having a flow rate of 1.00 SLM from the silicon tetrachloride gas supply port 16 a of the silicon tetrachloride gas supply pipe 16, and 0.84 SLM from the zinc gas supply port 18 a of the zinc gas supply pipe 18 Of Ar gas (Ar gas having a total flow rate of 2.67 SLM) was discharged into the reactor 10.
 次に、このようにArガスを反応器10の内部に供給している状態で、加熱器22を通電して、第1加熱部22aにより対応する反応器10の縦壁、内管26の縦壁及びその内部の領域が1200℃になるように昇温して維持し、第2加熱部22bにより対応する反応器10の縦壁、内管26の縦壁及びその内部の領域が1100℃になるように昇温して維持し、第3加熱部22cにより対応する反応器10の縦壁、内管26の縦壁及びその内部の領域が1000℃になるように昇温して維持した。 Next, in such a state where Ar gas is supplied to the inside of the reactor 10, the heater 22 is energized, and the vertical wall of the corresponding reactor 10 and the vertical length of the inner pipe 26 by the first heating unit 22a. The temperature of the wall and the region inside thereof is raised and maintained so that the temperature is 1200 ° C, and the vertical wall of the corresponding reactor 10, the vertical wall of the inner pipe 26, and the region inside the wall are kept at 1100 ° C by the second heating unit 22b. The temperature was raised and maintained so that the corresponding vertical wall of the reactor 10, the vertical wall of the inner tube 26, and the region inside thereof were heated to 1000 ° C. and maintained by the third heating unit 22c.
 次に、このように加熱器22を通電して、第1加熱部22a、第2加熱部22b及び第3加熱部22cが、それぞれ対応する反応器10の縦壁、内管26の縦壁及びその内部の領域を加熱して維持した状態で、Arガスに加えて流量が10.00SLMの亜鉛ガスを混合した混合ガスを10.84SLMの流量で亜鉛ガス供給管18の亜鉛ガス供給口18aより反応器10の内部に吐出した。同時に、不活性ガス供給管14の不活性ガス供給口14aより0.83SLMの流量のArガスを反応器10の内部に吐出しながら、四塩化珪素ガス供給管16のガスをArガスから四塩化珪素ガスに切り替えて、四塩化珪素ガス供給口16aより5.00SLMの流量の四塩化珪素ガスを反応器10の内部に吐出して、120分の間、反応させた。 Next, the heater 22 is energized in this way, and the first heating unit 22a, the second heating unit 22b, and the third heating unit 22c are respectively connected to the vertical wall of the reactor 10, the vertical wall of the inner tube 26, and A mixed gas obtained by mixing zinc gas with a flow rate of 10.000 SLM in addition to Ar gas at a flow rate of 10.84 SLM from the zinc gas supply port 18 a of the zinc gas supply pipe 18 in a state where the inner region is heated and maintained. The inside of the reactor 10 was discharged. At the same time, while discharging Ar gas at a flow rate of 0.83 SLM from the inert gas supply port 14a of the inert gas supply pipe 14 into the reactor 10, the gas in the silicon tetrachloride gas supply pipe 16 is tetrachlorided from the Ar gas. Switching to silicon gas, silicon tetrachloride gas having a flow rate of 5.00 SLM was discharged into the reactor 10 from the silicon tetrachloride gas supply port 16a and allowed to react for 120 minutes.
 次に、このように120分間反応させた後、加熱器22の通電を維持した状態で、反応の原料である四塩化珪素ガス及び亜鉛ガスの供給を停止した。その後、再び、不活性ガス供給管14の不活性ガス供給口14aより200SLMの流量のArガス、四塩化珪素ガス供給管16の四塩化珪素ガス供給口16aより200SLMの流量のArガス、亜鉛ガス供給管18の亜鉛ガス供給口18aより200SLMの流量のArガスを、反応器10の内部にそれぞれ吐出して、反応器10の内部をArガスで5分間置換した。 Next, after reacting for 120 minutes in this way, the supply of silicon tetrachloride gas and zinc gas, which are raw materials for the reaction, was stopped while the heater 22 was kept energized. Thereafter, again, Ar gas at a flow rate of 200 SLM from the inert gas supply port 14 a of the inert gas supply pipe 14, Ar gas at a flow rate of 200 SLM from the silicon tetrachloride gas supply port 16 a of the silicon tetrachloride gas supply pipe 16, and zinc gas Ar gas at a flow rate of 200 SLM was discharged from the zinc gas supply port 18a of the supply pipe 18 into the reactor 10, and the inside of the reactor 10 was replaced with Ar gas for 5 minutes.
 次に、このようにArガスで置換した後、アクチュエータ24eで錘24dの係止を解いて引き上げると、伸縮管24cが約20mm伸びることによって、棒部材24bを鉛直上方に約20mm移動させた。その後、再びアクチュエータ24eで錘24dを押し下げてその荷重を伸縮管24cに印加し、伸縮管24cを約20mm縮ませて、棒部材24bを鉛直下方に約20mm下げた位置に復帰させておいた。 Next, after replacing with Ar gas in this way, when the weight 24d is unlocked by the actuator 24e and pulled up, the telescopic tube 24c extends about 20 mm, thereby moving the bar member 24b vertically upward by about 20 mm. Thereafter, the weight 24d is again pushed down by the actuator 24e and the load is applied to the telescopic tube 24c, the telescopic tube 24c is contracted by about 20 mm, and the bar member 24b is returned to a position vertically lowered by about 20 mm.
 そして、以上のような120分間の反応、5分間のArガスによる置換、及び棒の上下移動操作の一連の工程を合計2回繰り返した後で、反応器10の下方で連結するバルブ装置34のバルブ34aを開けて、シリコン回収槽36にバルブ34a上の堆積物を落下させ、シリコン回収槽36の中の回収物を確認したところ、針状の多結晶シリコンに加えて亜鉛及び塩化亜鉛が存在した。 Then, after repeating the above series of steps of 120 minutes of reaction, 5 minutes of replacement with Ar gas, and up and down movement of the rod twice in total, the valve device 34 connected below the reactor 10 The valve 34a is opened, the deposit on the valve 34a is dropped in the silicon recovery tank 36, and the recovered substance in the silicon recovery tank 36 is confirmed. As a result, zinc and zinc chloride are present in addition to the acicular polycrystalline silicon. did.
 かかる針状の多結晶シリコンは、反応器10内の内管26の内壁面にシリコンが析出した後、棒部材24bの上下移動操作によって剥離されてバルブ装置34のバルブ34a上に堆積したものが回収されたものと考えられる。また、亜鉛及び塩化亜鉛は、原料の亜鉛ガス及び副生の塩化亜鉛ガスが、反応器10の下部における加熱器22で加熱されていない領域に拡散して、冷却固化したものと考えられる。かかる針状の多結晶シリコンの重量を計測したところ、766gであり、反応に供した四塩化珪素ガスの反応率は51%であった。また、亜鉛及び塩化亜鉛の重量を計測したところ、489gであった。 Such acicular polycrystalline silicon is deposited on the valve 34a of the valve device 34 after silicon is deposited on the inner wall surface of the inner tube 26 in the reactor 10 and then peeled off by the vertical movement operation of the rod member 24b. It is thought that it was recovered. In addition, it is considered that zinc and zinc chloride are cooled and solidified by diffusion of raw material zinc gas and by-product zinc chloride gas into a region not heated by the heater 22 in the lower part of the reactor 10. The weight of the acicular polycrystalline silicon was measured and found to be 766 g. The reaction rate of silicon tetrachloride gas used for the reaction was 51%. Moreover, it was 489g when the weight of zinc and zinc chloride was measured.
 ここで、針状の多結晶シリコンを光学顕微鏡で観察したところ、内管26の材料である無色透明の石英片は認められなかった。これは、剥離機構24の棒部材24bを上下移動して反応器10の内管26の内壁面に析出したシリコンを剥離することにより、回収された多結晶シリコン中への石英片の混入が防止できたためと考えられる。 Here, when the acicular polycrystalline silicon was observed with an optical microscope, a colorless transparent quartz piece as a material of the inner tube 26 was not recognized. This is because the rod member 24b of the peeling mechanism 24 is moved up and down to peel silicon deposited on the inner wall surface of the inner tube 26 of the reactor 10, thereby preventing the quartz pieces from being mixed into the recovered polycrystalline silicon. It is thought that it was made.
 (実験例2)
 本実験例2では、本実施形態のシリコン製造装置1において、3本の棒部材24bの各々に、図5A及び図5Bに示すような3枚の板状部材24fを設けた以外は、同様の工程で多結晶シリコンを製造した。
(Experimental example 2)
In Experimental Example 2, the silicon manufacturing apparatus 1 according to the present embodiment is the same as the silicon manufacturing apparatus 1 except that three plate members 24f as shown in FIGS. 5A and 5B are provided on each of the three rod members 24b. Polycrystalline silicon was produced in the process.
 具体的には、各板状部材24fは、中心軸Cを中心とした半径82mmの円弧形状を有し、その中心角が60°となるように設定してある。また、その肉厚は2mm、及びその上下方向の長さは100mmである。また、3枚の板状部材24fの設置位置は、棒部材24b上端から1075mm、1375mm、1725mmの位置に板状部材24fの上端が各々くるように設定した。  Specifically, each plate-like member 24f has an arc shape with a radius of 82 mm centered on the central axis C, and the center angle is set to be 60 °. The wall thickness is 2 mm, and the length in the vertical direction is 100 mm. Further, the installation positions of the three plate-like members 24f were set so that the upper ends of the plate-like members 24f were respectively positioned at 1075 mm, 1375 mm, and 1725 mm from the upper end of the bar member 24b. *
 反応器10の縦壁、内管26の縦壁及びその内部の領域を加熱して維持した状態で、Arガスに加えて流量が16.00SLMの亜鉛ガスを混合した混合ガスを17.34SLMの流量で亜鉛ガス供給管18の亜鉛ガス供給口18aより反応器10の内部に吐出した。同時に、不活性ガス供給管14の不活性ガス供給口14aより1.33SLMの流量のArガスを反応器10の内部に吐出しながら、四塩化珪素ガス供給管16のガスをArガスから四塩化珪素ガスに切り替えて、四塩化珪素ガス供給口16aより8.00SLMの流量の四塩化珪素ガスを反応器10の内部に吐出して、120分の間、反応させた。 In a state where the vertical wall of the reactor 10, the vertical wall of the inner tube 26 and the region inside the reactor are heated and maintained, a mixed gas in which a zinc gas having a flow rate of 16.00 SLM is mixed in addition to Ar gas is mixed with 17.34 SLM. It was discharged into the reactor 10 from the zinc gas supply port 18a of the zinc gas supply pipe 18 at a flow rate. At the same time, while discharging Ar gas having a flow rate of 1.33 SLM from the inert gas supply port 14a of the inert gas supply pipe 14 into the reactor 10, the gas in the silicon tetrachloride gas supply pipe 16 is tetrachlorided from the Ar gas. Switching to silicon gas, silicon tetrachloride gas having a flow rate of 8.00 SLM was discharged into the reactor 10 from the silicon tetrachloride gas supply port 16a and allowed to react for 120 minutes.
 次に実験例1と同様に、5分間のArガスによる置換、及び棒の上下移動操作によるシリコンの回収工程を実施した。以上のような120分の反応から回収工程までの一連の工程を合計2回繰り返したところ、シリコン回収槽36に針状の多結晶シリコンに加えて亜鉛及び塩化亜鉛が存在した。 Next, in the same manner as in Experimental Example 1, a silicon recovery step was performed by replacement with Ar gas for 5 minutes and a vertical movement operation of the rod. When a series of steps from the reaction for 120 minutes to the recovery step as described above was repeated twice in total, zinc and zinc chloride were present in the silicon recovery tank 36 in addition to acicular polycrystalline silicon.
 かかる針状の多結晶シリコンの重量を計測したところ、1082gであり、反応に供した四塩化珪素ガスの反応率は45%であった。また、亜鉛及び塩化亜鉛の重量を計測したところ、583gであった。 When the weight of such acicular polycrystalline silicon was measured, it was 1082 g, and the reaction rate of silicon tetrachloride gas subjected to the reaction was 45%. Moreover, when the weight of zinc and zinc chloride was measured, it was 583g.
 ここで、針状の多結晶シリコンを光学顕微鏡で観察したところ、内管26の材料である無色透明の石英片は認められなかった。 Here, when the acicular polycrystalline silicon was observed with an optical microscope, a colorless transparent quartz piece as a material of the inner tube 26 was not recognized.
 (実験例3)
 本実験例3では、本実施形態のシリコン製造装置1において、3本の棒部材24bの各々に、図5A及び図5Bに示すような3枚の板状部材24fを設けたことに加えて、図4Bに示すように、内管26内に互いが干渉しないように板状部材28を3枚設置した以外は、実験例2と同様に多結晶シリコンを製造した。
(Experimental example 3)
In Experimental Example 3, in addition to providing three plate members 24f as shown in FIGS. 5A and 5B in each of the three rod members 24b in the silicon manufacturing apparatus 1 of the present embodiment, As shown in FIG. 4B, polycrystalline silicon was produced in the same manner as in Experimental Example 2, except that three plate members 28 were installed in the inner tube 26 so as not to interfere with each other.
 具体的には、板状部材28は、内管26の周方向に120°の均等な間隔で3枚設置した。各板状部材28は厚さ3mm、中心軸Cに向かっての長さは44mm、上下方向の長さは805mmになるように設定した。かかる内管26は、四塩化珪素ガス供給管16と板状部材28とが、中心軸Cに対して平行な直線上で、板状部材28が四塩化珪素ガス供給管16の鉛直下方に存在するように、反応器10内に配置した。 Specifically, three plate-like members 28 were installed at equal intervals of 120 ° in the circumferential direction of the inner tube 26. Each plate-like member 28 was set to have a thickness of 3 mm, a length toward the central axis C of 44 mm, and a vertical length of 805 mm. In the inner pipe 26, the silicon tetrachloride gas supply pipe 16 and the plate-like member 28 are on a straight line parallel to the central axis C, and the plate-like member 28 exists vertically below the silicon tetrachloride gas supply pipe 16. It was arranged in the reactor 10 as described above.
 以上の具体的構成において、実験例2と同様の各工程を行って、亜鉛と四塩化珪素とで120分の間、反応を行った。 In the above specific configuration, the same steps as in Experimental Example 2 were performed, and the reaction was performed with zinc and silicon tetrachloride for 120 minutes.
 次に実験例1と同様に、5分間のArガスによる置換、及び棒の上下移動操作によるシリコンの回収工程を実施した。以上の120分の反応から回収工程までの一連の工程を合計2回繰り返したところ、シリコン回収槽36に針状の多結晶シリコンに加えて亜鉛及び塩化亜鉛が存在した。 Next, in the same manner as in Experimental Example 1, a silicon recovery step was performed by replacement with Ar gas for 5 minutes and a vertical movement operation of the rod. When a series of steps from the reaction for 120 minutes to the recovery step was repeated twice in total, zinc and zinc chloride were present in the silicon recovery tank 36 in addition to acicular polycrystalline silicon.
 かかる針状の多結晶シリコンの重量を計測したところ、1240gであり、反応に供した四塩化珪素ガスの反応率は52%であった。また、亜鉛及び塩化亜鉛の重量を計測したところ、694gであった。 When the weight of such acicular polycrystalline silicon was measured, it was 1240 g, and the reaction rate of the silicon tetrachloride gas subjected to the reaction was 52%. Moreover, when the weight of zinc and zinc chloride was measured, it was 694 g.
 ここで、針状の多結晶シリコンを光学顕微鏡で観察したところ、内管26の材料である無色透明の石英片は認められなかった。 Here, when the acicular polycrystalline silicon was observed with an optical microscope, a colorless transparent quartz piece as a material of the inner tube 26 was not recognized.
 (実験例4)
 本実験例4では、本実施形態のシリコン製造装置1において、3本の棒部材24bの各々に、図5A及び図5Bに示すような3枚の板状部材24fを設けたことに加えて、図4Bに示すように、内管26内に中央で互いに接触した板状部材28を3枚設置した以外は、実験例2と同様に多結晶シリコンを製造した。
(Experimental example 4)
In Experimental Example 4, in addition to providing the three plate members 24f as shown in FIGS. 5A and 5B in each of the three rod members 24b in the silicon manufacturing apparatus 1 of the present embodiment, As shown in FIG. 4B, polycrystalline silicon was manufactured in the same manner as in Experimental Example 2 except that three plate members 28 in contact with each other at the center were installed in the inner tube 26.
 具体的には、板状部材28は、内管26の周方向に120°の均等な間隔で3枚設置した。各板状部材28は肉厚は3mm、中心軸Cに向かっての長さは94mm、上下方向の長さは805mmになるように設定した。かかる内管26は、実験例3と同様に、四塩化珪素ガス供給管16と板状部材28とが、中心軸Cに対して平行な直線上で、板状部材28が四塩化珪素ガス供給管16の鉛直下方に存在するように、反応器10内に配置した。 Specifically, three plate-like members 28 were installed at equal intervals of 120 ° in the circumferential direction of the inner tube 26. Each plate-like member 28 was set to have a thickness of 3 mm, a length toward the central axis C of 94 mm, and a vertical length of 805 mm. Similar to Experimental Example 3, the inner tube 26 is configured such that the silicon tetrachloride gas supply pipe 16 and the plate member 28 are on a straight line parallel to the central axis C, and the plate member 28 supplies the silicon tetrachloride gas. It arrange | positioned in the reactor 10 so that it might exist below the pipe | tube 16 vertically.
 以上の具体的構成において、実験例2と同様の各工程を行って、亜鉛と四塩化珪素とで120分の間、反応を行った。 In the above specific configuration, the same steps as in Experimental Example 2 were performed, and the reaction was performed with zinc and silicon tetrachloride for 120 minutes.
 次に実験例1と同様に、5分間のArガスによる置換、及び棒の上下移動操作によるシリコンの回収工程を実施した。以上の120分の反応から回収工程までの一連の工程を合計2回繰り返したところ、シリコン回収槽36に針状の多結晶シリコンに加えて亜鉛及び塩化亜鉛が存在した。 Next, in the same manner as in Experimental Example 1, a silicon recovery step was performed by replacement with Ar gas for 5 minutes and a vertical movement operation of the rod. When a series of steps from the reaction for 120 minutes to the recovery step was repeated twice in total, zinc and zinc chloride were present in the silicon recovery tank 36 in addition to acicular polycrystalline silicon.
 かかる針状の多結晶シリコンの重量を計測したところ、1294gであり、反応に供した四塩化珪素ガスの反応率は54%であった。また、亜鉛及び塩化亜鉛の重量を計測したところ、660gであった。 When the weight of such acicular polycrystalline silicon was measured, it was 1294 g, and the reaction rate of the silicon tetrachloride gas subjected to the reaction was 54%. Moreover, it was 660 g when the weight of zinc and zinc chloride was measured.
 ここで、針状の多結晶シリコンを光学顕微鏡で観察したところ、内管26の材料である無色透明の石英片は認められなかった。 Here, when the acicular polycrystalline silicon was observed with an optical microscope, a colorless transparent quartz piece as a material of the inner tube 26 was not recognized.
 (比較例)
 本比較例では、本実施形態のシリコン製造装置1において剥離機構24をショックブローガス供給管に置き換えた構成のシリコン製造装置を用いたこと以外は、実験例と同様に多結晶シリコンを製造した。ここで、各ショックブローガス供給管は、石英製であって、図示を省略する高圧の不活性ガス供給源に連絡しながら上蓋12の各挿通孔12cに挿通されて固定されると共に、反応器10の内部に侵入して、反応器10及び内管26の内壁面に沿って鉛直下方に延在するもので、反応器10の内部における端部において、鉛直下方に向いて開口するショックブローガス供給口を有する。
(Comparative example)
In this comparative example, polycrystalline silicon was manufactured in the same manner as in the experimental example, except that a silicon manufacturing apparatus having a configuration in which the peeling mechanism 24 was replaced with a shock blow gas supply pipe in the silicon manufacturing apparatus 1 of the present embodiment was used. Here, each shock blow gas supply pipe is made of quartz, and is inserted into each insertion hole 12c of the upper lid 12 while being connected to a high-pressure inert gas supply source (not shown) and fixed to the reactor. Shock blow gas that penetrates into the interior of the reactor 10 and extends vertically downward along the inner wall surfaces of the reactor 10 and the inner tube 26, opens at the end inside the reactor 10 toward the vertically downward direction. Has a supply port.
 具体的には、ショックブローガス供給管は、3個の不活性ガス供給管14を対応して挟んで中心軸Cから85mmの距離で120°の均等な間隔で3個配設した。各ショックブローガス供給管は、外径を9mm(肉厚は1mmで、内径は7mm)に設定し、ショックブローガス供給口の開口位置(ショックブローガス供給管の反応器10内における端部位置)は、反応器10の上蓋12への合わせ面からの長さが600mmになるように設定した。 Specifically, three shock blow gas supply pipes were arranged at an equal interval of 120 ° at a distance of 85 mm from the central axis C with the three inert gas supply pipes 14 correspondingly sandwiched therebetween. Each shock blow gas supply pipe has an outer diameter set to 9 mm (wall thickness is 1 mm, inner diameter is 7 mm), and the opening position of the shock blow gas supply port (the position of the end of the shock blow gas supply pipe in the reactor 10) ) Was set so that the length from the mating surface to the upper lid 12 of the reactor 10 was 600 mm.
 以上の具体的構成において、実験例と同様の各工程を行って、亜鉛と四塩化珪素とで120分間の反応を行った後、Arガスで5分間置換した。その後、ショックブローガス供給管のショックブローガス供給口よりArガスを高圧で吐出して、ショックブローを行った。この際のショックブローの条件は、Arガスの圧力を0.4MPaとして1回のショックブロー時間を0.5秒に設定し、次のショックブローまでの間隔を3.0秒間空けて、合計15回のショックブローを実行した。 In the above specific configuration, each step similar to the experimental example was performed, and after reacting with zinc and silicon tetrachloride for 120 minutes, Ar gas was substituted for 5 minutes. Then, Ar gas was discharged from the shock blow gas supply port of the shock blow gas supply pipe at a high pressure to perform shock blow. The shock blow conditions at this time are as follows: the pressure of Ar gas is 0.4 MPa, the time of one shock blow is set to 0.5 seconds, and the interval until the next shock blow is 3.0 seconds, for a total of 15 Shock blows were performed.
 そして、以上の120分間の反応、5分間のArガスによる置換及びArガスによる15回のショックブローの一連の工程を合計2回繰り返した後で、反応器10の下方で連結するバルブ装置34のバルブ34aを開けて、シリコン回収槽36にバルブ34a上の堆積物を落下させ、シリコン回収槽36の中の回収物を確認したところ、針状の多結晶シリコンに加えて亜鉛及び塩化亜鉛が存在した。 Then, after repeating the above-mentioned 120 minutes of reaction, 5 minutes of Ar gas replacement, and 15 shock blows of Ar gas for a total of 2 times in total, the valve device 34 connected below the reactor 10 The valve 34a is opened, the deposit on the valve 34a is dropped in the silicon recovery tank 36, and the recovered substance in the silicon recovery tank 36 is confirmed. As a result, zinc and zinc chloride are present in addition to the acicular polycrystalline silicon. did.
 かかる 針状の多結晶シリコンは、反応器10内の内管26の内壁面にシリコンが析出した後、ショックブローによって剥離されてバルブ装置34のバルブ34a上に堆積したものが回収されたものと考えられる。また、亜鉛及び塩化亜鉛は、原料の亜鉛ガス及び副生の塩化亜鉛ガスが、反応器10の下部の加熱器で加熱されていない領域に拡散して、冷却固化したものと考えられる。かかる針状の多結晶シリコンの重量を計測したところ、781gであり、反応に供した四塩化珪素ガスの反応率は52%であった。また、亜鉛及び塩化亜鉛の重量を計測したところ、499gであった。 Such needle-shaped polycrystalline silicon is recovered from silicon deposited on the inner wall surface of the inner tube 26 in the reactor 10 and then separated by shock blow and deposited on the valve 34a of the valve device 34. Conceivable. In addition, it is considered that zinc and zinc chloride are cooled and solidified by diffusion of raw material zinc gas and by-product zinc chloride gas into a region not heated by the heater below the reactor 10. The weight of the acicular polycrystalline silicon was measured and found to be 781 g. The reaction rate of the silicon tetrachloride gas used for the reaction was 52%. Moreover, it was 499 g when the weight of zinc and zinc chloride was measured.
  ここで、針状の多結晶シリコンを光学顕微鏡で観察したところ、極微量ではあるが、無色透明の石英片が混入していた。また、内管26のシリコン析出領域Sに相当する部位の内壁面を目視で観察した結果、無数のクラックが観察された。これは、温度の低いArガスが、ショックブローの際に石英製の内管26の内壁面とシリコンとの界面に吹き付けられ、これら2種類の材料の熱膨張係数の差により、内管26の内壁面に応力が発生して内管26の内壁面の一部が剥離し、シリコンと共に下方に落下して回収されたシリコン中に混入したものと考えられる。 針 Here, when the acicular polycrystalline silicon was observed with an optical microscope, a very small amount of colorless and transparent quartz pieces were mixed. Further, as a result of visually observing the inner wall surface of the portion corresponding to the silicon precipitation region S of the inner tube 26, innumerable cracks were observed. This is because Ar gas having a low temperature is blown to the interface between the inner wall surface of the quartz inner tube 26 and silicon at the time of shock blow, and due to the difference in thermal expansion coefficient between these two types of materials, It is considered that stress was generated on the inner wall surface, and a part of the inner wall surface of the inner tube 26 was peeled off and dropped into the silicon recovered by dropping downward together with the silicon.
 以上の各実験例と比較例との比較により、各実験例では、比較例で見られるような回収された多結晶シリコン中への石英片の混入が防止できており、剥離機構24において移動自在な棒部材24bを設ける有意性が確認できたものといえる。 By comparing each of the above experimental examples with the comparative example, in each experimental example, mixing of quartz pieces into the recovered polycrystalline silicon as seen in the comparative example can be prevented, and the separation mechanism 24 can move freely. It can be said that the significance of providing the rod member 24b is confirmed.
 また、実験例1と実験例2との比較により、棒部材24bに板状部材24fを設けることで、シリコンの回収量が増加しており、板状部材24fを設ける有意性が確認できたものといえる。また、実験例2と、実験例3又は実験例4と、の比較により、内管26に板状部材28を設けることで、シリコンの回収量が増加しており、板状部材28の設置による析出速度増大の効果が確認できたものといえる。 In addition, by comparing the experimental example 1 and the experimental example 2, it was confirmed that the provision of the plate member 24f increases the amount of silicon recovered by providing the plate member 24f on the rod member 24b. It can be said. Further, by comparing the experimental example 2 with the experimental example 3 or the experimental example 4, by providing the plate-like member 28 in the inner tube 26, the silicon recovery amount is increased. It can be said that the effect of increasing the deposition rate was confirmed.
 なお、本発明においては、部材の種類、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 In the present invention, the type, arrangement, number, and the like of the members are not limited to the above-described embodiments, and the components depart from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. Of course, it can be appropriately changed within the range not to be.
 以上のように、本発明においては、低コストで収率よく多結晶のシリコンを生成することができると共に、シリコンが析出される面を有する部材の材料が混入されることを抑制しながら連続的かつ効率的に多結晶のシリコンを回収することも可能にする拡張性のあるシリコン製造装置及びシリコン製造方法を提供することができるものであり、その汎用普遍的な性格から、太陽電池用シリコン等の製造装置に広範に適用され得るものと期待される。 As described above, in the present invention, it is possible to produce polycrystalline silicon at a low cost and in a high yield, and continuously while suppressing mixing of materials of members having a surface on which silicon is deposited. In addition, it is possible to provide a silicon manufacturing apparatus and a silicon manufacturing method that are capable of recovering polycrystalline silicon efficiently and from a general-purpose universal character, such as silicon for solar cells. It is expected that it can be applied to a wide range of manufacturing equipment.

Claims (6)

  1.  鉛直方向に立設する反応器と、
     前記反応器に連絡して四塩化珪素ガス供給口を有すると共に、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給する四塩化珪素ガス供給管と、
     前記反応器に連絡する亜鉛ガス供給口を有すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給する亜鉛ガス供給管と、
     前記反応器を加熱する加熱器と、
     前記反応器の内部に侵入する棒部材を有し、前記棒部材を前記鉛直方向に移動自在な剥離機構と、を備え、
     前記加熱器で、前記反応器の一部の温度をシリコンの析出温度範囲に設定しつつ、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給して、前記反応器内で四塩化珪素を亜鉛で還元して、前記反応器内において前記シリコンの析出温度範囲に設定された領域に対応した壁部にシリコンが析出するシリコン析出領域を形成した後に、前記剥離機構が、前記棒部材を前記シリコン析出領域に析出したシリコンに当てながら移動することにより、前記シリコン析出領域に析出したシリコンを剥離するシリコン製造装置。
    A reactor standing vertically,
    A silicon tetrachloride gas supply pipe that communicates with the reactor and has a silicon tetrachloride gas supply port, and supplies silicon tetrachloride gas into the reactor from the silicon tetrachloride gas supply port;
    A zinc gas supply port communicating with the reactor, and a zinc gas supply pipe for supplying zinc gas into the reaction vessel from the zinc gas supply port;
    A heater for heating the reactor;
    A peeling member that has a rod member that enters the reactor, and is movable in the vertical direction.
    While supplying a silicon tetrachloride gas into the reactor from the silicon tetrachloride gas supply port while setting a temperature of a part of the reactor in the precipitation temperature range of silicon in the heater, the zinc gas supply Zinc gas is supplied into the reaction vessel from the mouth, silicon tetrachloride is reduced with zinc in the reactor, and the wall corresponding to the region set in the silicon deposition temperature range in the reactor After the silicon deposition region where silicon is deposited on the silicon deposition region, the peeling mechanism moves while applying the rod member to the silicon deposited on the silicon deposition region, thereby separating the silicon deposited on the silicon deposition region. Manufacturing equipment.
  2.  前記剥離機構は、更に、前記棒部材が挿通されて内部を封ずる弾性部材である伸縮管と、前記伸縮管に荷重を印加自在な錘と、を備える請求項1に記載のシリコン製造装置。 2. The silicon manufacturing apparatus according to claim 1, wherein the peeling mechanism further includes an expansion tube that is an elastic member through which the rod member is inserted to seal the inside, and a weight that can apply a load to the expansion tube.
  3.  前記棒部材は、前記鉛直方向に延在し、前記シリコン析出領域に対向しながら移動自在である請求項1又は2に記載のシリコン製造装置。 3. The silicon manufacturing apparatus according to claim 1, wherein the bar member extends in the vertical direction and is movable while facing the silicon deposition region.
  4.  更に、前記反応器の内側に装脱自在に挿入された内管を備え、前記シリコン析出領域は、前記シリコンの析出温度範囲に設定された領域に対応する前記反応器内の前記内管の内壁面である請求項1から3のいずれかに記載のシリコン製造装置。 And an inner tube detachably inserted inside the reactor, wherein the silicon deposition region is an inner tube of the reactor in the reactor corresponding to a region set in the silicon deposition temperature range. The silicon manufacturing apparatus according to claim 1, wherein the silicon manufacturing apparatus is a wall surface.
  5.  更に、前記内管の内壁面に連結された板状部材を備え、前記シリコン析出領域は、前記シリコンの析出温度範囲に設定された前記領域に対応する前記板状部材の壁面を含む請求項4に記載のシリコン製造装置 Furthermore, the plate-shaped member connected with the inner wall face of the said inner tube is provided, The said silicon precipitation area | region contains the wall face of the said plate-like member corresponding to the said area | region set to the precipitation temperature range of the said silicon | silicone. Silicon manufacturing equipment as described in
  6.  鉛直方向に立設する反応器と、
     前記反応器に連絡して四塩化珪素ガス供給口を有すると共に、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給する四塩化珪素ガス供給管と、
     前記反応器に連絡する亜鉛ガス供給口を有すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給する亜鉛ガス供給管と、
     前記反応器を加熱する加熱器と、
     棒部材を有し、前記棒部材を前記鉛直方向に移動自在な剥離機構と、
    を備えたシリコン製造装置を用いて、
     前記加熱器で、前記反応器の一部の温度をシリコンの析出温度範囲に設定しつつ、前記四塩化珪素ガス供給口から四塩化珪素ガスを前記反応器内に供給すると共に、前記亜鉛ガス供給口から亜鉛ガスを前記反応容器内に供給して、前記反応器内で四塩化珪素を亜鉛で還元して、前記反応器内において前記シリコンの析出温度範囲に設定された領域に対応した壁部にシリコンが析出するシリコン析出領域を形成した後に、前記剥離機構が、前記棒部材を前記シリコン析出領域に析出したシリコンに当てながら移動することにより、前記シリコン析出領域に析出したシリコンを剥離するシリコン製造方法。
    A reactor standing vertically,
    A silicon tetrachloride gas supply pipe that communicates with the reactor and has a silicon tetrachloride gas supply port, and supplies silicon tetrachloride gas into the reactor from the silicon tetrachloride gas supply port;
    A zinc gas supply port communicating with the reactor, and a zinc gas supply pipe for supplying zinc gas into the reaction vessel from the zinc gas supply port;
    A heater for heating the reactor;
    A peeling mechanism having a bar member, the bar member being movable in the vertical direction;
    Using a silicon manufacturing apparatus equipped with
    While supplying a silicon tetrachloride gas into the reactor from the silicon tetrachloride gas supply port while setting a temperature of a part of the reactor in the precipitation temperature range of silicon in the heater, the zinc gas supply Zinc gas is supplied into the reaction vessel from the mouth, silicon tetrachloride is reduced with zinc in the reactor, and the wall corresponding to the region set in the silicon deposition temperature range in the reactor After the silicon deposition region where silicon is deposited on the silicon deposition region, the peeling mechanism moves while applying the rod member to the silicon deposited on the silicon deposition region, thereby separating the silicon deposited on the silicon deposition region. Production method.
PCT/JP2011/079866 2010-12-22 2011-12-22 Device for producing silicon and method for producing silicon WO2012086777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-286130 2010-12-22
JP2010286130A JP2014040330A (en) 2010-12-22 2010-12-22 Apparatus and method for producing silicon

Publications (1)

Publication Number Publication Date
WO2012086777A1 true WO2012086777A1 (en) 2012-06-28

Family

ID=46314043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079866 WO2012086777A1 (en) 2010-12-22 2011-12-22 Device for producing silicon and method for producing silicon

Country Status (2)

Country Link
JP (1) JP2014040330A (en)
WO (1) WO2012086777A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256720A (en) * 1987-04-08 1988-10-24 Showa Denko Kk Production of vapor-phase carbon fiber
JPH09142847A (en) * 1995-11-22 1997-06-03 Tdk Corp Magnetitic magnetic powder, magnetic toner using the same and their production
JP2007145663A (en) * 2005-11-29 2007-06-14 Chisso Corp Method for producing high purity polycrystalline silicon
JP2009248043A (en) * 2008-04-09 2009-10-29 Masakatsu Takayasu Method and device for recovering granular material
WO2009142538A1 (en) * 2008-05-22 2009-11-26 Общество С Ограниченной Ответственностью "Гpyппa Ctp" Method for producing polycrystalline silicon
JP2010042934A (en) * 2008-08-08 2010-02-25 Toshiba Corp Nano-carbon production furnace
WO2010134544A1 (en) * 2009-05-22 2010-11-25 旭硝子株式会社 Device for producing silicon and process for producing silicon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256720A (en) * 1987-04-08 1988-10-24 Showa Denko Kk Production of vapor-phase carbon fiber
JPH09142847A (en) * 1995-11-22 1997-06-03 Tdk Corp Magnetitic magnetic powder, magnetic toner using the same and their production
JP2007145663A (en) * 2005-11-29 2007-06-14 Chisso Corp Method for producing high purity polycrystalline silicon
JP2009248043A (en) * 2008-04-09 2009-10-29 Masakatsu Takayasu Method and device for recovering granular material
WO2009142538A1 (en) * 2008-05-22 2009-11-26 Общество С Ограниченной Ответственностью "Гpyппa Ctp" Method for producing polycrystalline silicon
JP2010042934A (en) * 2008-08-08 2010-02-25 Toshiba Corp Nano-carbon production furnace
WO2010134544A1 (en) * 2009-05-22 2010-11-25 旭硝子株式会社 Device for producing silicon and process for producing silicon

Also Published As

Publication number Publication date
JP2014040330A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
US8092754B2 (en) Carbon nanotubes mass fabrication system and mass fabrication method
KR100813131B1 (en) Method for sustainable preparation of polycrystalline silicon using fluidized bed reactor
TWI386526B (en) Production process for high purity polycrystal silicon and production apparatus for the same
KR20140138109A (en) Method and system for the production of silicon oxide deposit
US8657956B2 (en) Apparatus for producing solid product
KR101047842B1 (en) Apparatus and method for depositing ultrafine particles from the gas phase
KR101545201B1 (en) Thermal plasma fluidized bed reactor and method for preparing polysilicon using the same
WO2012086777A1 (en) Device for producing silicon and method for producing silicon
WO2010134544A1 (en) Device for producing silicon and process for producing silicon
JP2007223822A (en) Production apparatus for high purity polycrystal silicon
WO2012086778A1 (en) High-temperature valve device
JP4704418B2 (en) Carbon nanotube synthesis apparatus and method
KR20140082638A (en) Cartridge reactor for production of materials via the chemical vapor deposition process
JP5920172B2 (en) Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide
US10246334B2 (en) Method of producing heterophase graphite
CN201148465Y (en) Double-temperature field chemical vapor deposition apparatus
JP2015113251A (en) Production apparatus of polycrystalline silicon and production method thereof
JP5059665B2 (en) Silicon production equipment
WO2012043316A1 (en) Device for producing polycrystalline silicon and method for producing polycrystalline silicon
US20140131911A1 (en) Cartridge Reactor for Production of Materials via the Chemical Vapor Deposition Process
JP2011148666A (en) Apparatus and process for producing silicon
JP2012025609A (en) Reaction furnace for producing polycrystalline silicon
JP2009102190A (en) Silicon manufacturing apparatus
JP2011207637A (en) Reaction furnace for manufacturing polycrystalline silicon, and method for manufacturing polycrystalline silicon using the same
JP2011121799A (en) Method for producing polycrystalline silicon and reaction furnace for producing polycrystalline silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP