JP5920172B2 - Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide - Google Patents

Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide Download PDF

Info

Publication number
JP5920172B2
JP5920172B2 JP2012236605A JP2012236605A JP5920172B2 JP 5920172 B2 JP5920172 B2 JP 5920172B2 JP 2012236605 A JP2012236605 A JP 2012236605A JP 2012236605 A JP2012236605 A JP 2012236605A JP 5920172 B2 JP5920172 B2 JP 5920172B2
Authority
JP
Japan
Prior art keywords
silicon oxide
gas
carbon
reaction chamber
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012236605A
Other languages
Japanese (ja)
Other versions
JP2014084264A (en
Inventor
敦雄 川田
敦雄 川田
木村 昇
昇 木村
山村 和市
和市 山村
狩野 正樹
正樹 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012236605A priority Critical patent/JP5920172B2/en
Publication of JP2014084264A publication Critical patent/JP2014084264A/en
Application granted granted Critical
Publication of JP5920172B2 publication Critical patent/JP5920172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、バリアフィルムの蒸着源やリチウムイオン電池の負極材として使用される酸化珪素の製造装置用の部材、酸化珪素製造装置、及び被膜を形成する方法に関するものである。   The present invention relates to a member for a silicon oxide production apparatus, a silicon oxide production apparatus, and a method for forming a coating film, which are used as a barrier film deposition source and a negative electrode material for a lithium ion battery.

酸化珪素はバリアフィルムの蒸着源、リチウムイオン電池の負極材として使用されている。酸化珪素は組成SiOx(x=0.5〜1.5)で表される珪素と酸素の化合物であり、酸化珪素を800℃以上に加熱すると不均化反応が起こりSiO2マトリックス中にSiナノ粒子が分散した構造のナノコンポジットマテリアルが生成するが、これも酸化珪素の範疇に含まれる。 Silicon oxide is used as a vapor deposition source for barrier films and a negative electrode material for lithium ion batteries. Silicon oxide is a compound of silicon and oxygen represented by the composition SiOx (x = 0.5 to 1.5), and when silicon oxide is heated to 800 ° C. or higher, a disproportionation reaction occurs and Si nanocrystals are contained in the SiO 2 matrix. A nanocomposite material having a structure in which particles are dispersed is generated, and this is also included in the category of silicon oxide.

酸化珪素の製造方法としては(1)珪素の酸化、(2)二酸化珪素の還元、(3)珪素と二酸化珪素との反応が挙げられる。これらの方法では、いずれも原料を高温に加熱することで酸化珪素のガスを発生し、そのガスを冷却・凝集して固体の酸化珪素として回収する。反応装置の材質としては高温に耐える材料である炭素材料が好適に用いられている。しかしながら、黒鉛材料は酸化珪素のガスと高温下で反応し表面付近から除徐に炭化珪素に変化してしまうため、表面と内部に熱膨張率差が発生し、昇降温にともなう熱応力により材料が割れてしまい、寿命が短いという問題があった。   Examples of the method for producing silicon oxide include (1) oxidation of silicon, (2) reduction of silicon dioxide, and (3) reaction of silicon and silicon dioxide. In any of these methods, the raw material is heated to a high temperature to generate a silicon oxide gas, and the gas is cooled and aggregated to be recovered as solid silicon oxide. As the material of the reaction apparatus, a carbon material that can withstand high temperatures is preferably used. However, since graphite material reacts with silicon oxide gas at high temperature and gradually changes from near the surface to silicon carbide, a difference in coefficient of thermal expansion occurs between the surface and the interior, and the material is caused by thermal stress accompanying the temperature rise and fall. Cracked and had a problem of short life.

その対策として、特許文献1(特開2001−220124号公報)には、内部に原料容器内に収容された二酸化珪素粉末を含む混合原料粉末を、不活性ガスもしくは減圧下において1,100〜1,600℃に加熱して酸化珪素ガスを生成させる反応室が形成されたマッフルを有する反応炉と、この反応炉内に配設されて上記混合原料粉末を加熱するヒーターと、上記反応室で生成した酸化珪素ガスを、冷却基体が配設されてこの冷却基体に上記酸化珪素ガスを接触させることにより上記冷却基体上に酸化珪素粉末を析出させる析出室に搬送する搬送管とを具備してなり、上記マッフル、原料容器、ヒーター及び搬送管の少なくとも一つが高融点金属、高融点金属の化合物、又は炭化珪素膜で被覆された黒鉛により形成された、酸化珪素粉末の製造装置が提案されている。   As a countermeasure, Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-220124) discloses mixed raw material powder containing silicon dioxide powder contained in a raw material container therein to 1,100 to 1 in an inert gas or under reduced pressure. , A reaction furnace having a muffle formed with a reaction chamber for generating silicon oxide gas by heating to 600 ° C., a heater disposed in the reaction furnace for heating the mixed raw material powder, and generated in the reaction chamber And a transport pipe for transporting the silicon oxide gas to a deposition chamber in which a cooling base is disposed and the silicon oxide gas is brought into contact with the cooling base to deposit silicon oxide powder on the cooling base. And at least one of the muffle, the raw material container, the heater, and the transfer pipe is formed of a high melting point metal, a compound of a high melting point metal, or graphite coated with a silicon carbide film. Manufacturing apparatus has been proposed.

また、特許文献2(特開2009−091195号公報)には、少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを1,000℃以下の基体表面に析出させる一酸化珪素の製造方法に用いられる一酸化珪素の製造装置において、1,100〜1,600℃の一酸化珪素ガスが接触する構成部材(但し、該析出基体を除く)をC/Cコンポジット材で構成したことを特徴とする一酸化珪素の製造装置が提案されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2009-091195), a mixed raw material powder containing at least silicon dioxide powder is heated in an inert gas or under a reduced pressure in a temperature range of 1,100 to 1,600 ° C., and then oxidized. In an apparatus for producing silicon monoxide used in a method for producing silicon monoxide which generates silicon gas and deposits the silicon monoxide gas on a substrate surface of 1,000 ° C. or lower, An apparatus for producing silicon monoxide has been proposed in which the constituent members (but excluding the deposition base) with which the silicon oxide gas contacts are made of a C / C composite material.

しかしながら、特許文献1の高融点金属、高融点金属の化合物、又は炭化珪素膜で被覆された黒鉛においては、黒鉛と被覆材が異なる物質であるため、熱膨張率差により被覆が剥がれ易いという問題があり、特許文献2のC/Cコンポジット材においては、耐久性が改善されたものの、やはり積層間が炭化珪素化し劣化するという問題があり、実用化の障害となっていた。   However, in graphite coated with a refractory metal, a refractory metal compound, or a silicon carbide film of Patent Document 1, since the graphite and the coating material are different substances, the coating is easily peeled off due to a difference in thermal expansion coefficient. However, although the durability of the C / C composite material of Patent Document 2 has been improved, there is still a problem that the lamination is deteriorated by silicon carbide, which has been an obstacle to practical use.

特開2001−220124号公報JP 2001-220124 A 特開2009−091195号公報JP 2009-091195 A

従って、本発明は下記発明を提供する。
[1].酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置に、上記加熱手段により800〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に熱分解炭素の被膜形成することを特徴とする酸化珪素製造装置の製造方法。
[2].酸化珪素ガスと接触する部分が、少なくとも反応室である[1]記載の酸化珪素製造装置の製造方法。
[3].被覆の厚さが1〜500μmであり、熱分解炭素の密度が1.8〜2.3g/cm 3 であり、炭素材料の表面粗さR a が、0.1〜1,000μmである、[1]又は[2]記載の酸化珪素製造装置の製造方法。
[4].酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置を用いて酸化珪素を製造する前に、上記加熱手段により800〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に、熱分解炭素の被膜を形成することを特徴とする、酸化珪素製造装置の処理方法。
[5].酸化珪素ガスと接触する部分が、少なくとも反応室である[4]記載の酸化珪素製造装置の処理方法。
[6].被覆の厚さが1〜500μmであり、熱分解炭素の密度が1.8〜2.3g/cm 3 であり、炭素材料の表面粗さR a が、0.1〜1,000μmである、[4]又は[5]記載の酸化珪素製造装置の処理方法。
[7].酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置を用いて、上記加熱手段により800〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に、熱分解炭素の被膜を形成させる工程と、この被膜が形成された酸化珪素製造装置を用いて、酸化珪素のガスを発生させ、そのガスを冷却・凝集して固体の酸化珪素として回収する工程を含む酸化珪素の製造方法。
[8].酸化珪素ガスと接触する部分が、少なくとも反応室である[7]記載の酸化珪素の製造方法。
[9].被覆の厚さが1〜500μmであり、熱分解炭素の密度が1.8〜2.3g/cm 3 であり、炭素材料の表面粗さR a が、0.1〜1,000μmである、[7]又は[8]記載の酸化珪素の製造方法。
Accordingly, the present invention provides the following inventions.
[1]. A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas A carbon-containing gas is supplied to a silicon oxide production apparatus having a part made of a carbon material and heated to 800 to 2,200 ° C. by the heating means, and heat is applied to the surface of the carbon material in a part in contact with the silicon oxide gas. the method for producing a silicon oxide-manufacturing apparatus characterized by forming a coating of pyrocarbon.
[2]. The method for producing a silicon oxide production apparatus according to [1], wherein the portion in contact with the silicon oxide gas is at least a reaction chamber.
[3]. The thickness of the coating is 1 to 500 [mu] m, the density of pyrolytic carbon is 1.8~2.3g / cm 3, a surface roughness R a of the carbon material is 0.1~1,000Myuemu, The manufacturing method of the silicon oxide manufacturing apparatus as described in [1] or [2].
[4]. A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas Before producing silicon oxide using a silicon oxide production apparatus having a part made of a carbon material, a carbon-containing gas is supplied into the apparatus heated to 800 to 2,200 ° C. by the heating means, and is in contact with the silicon oxide gas. A method for treating a silicon oxide manufacturing apparatus, comprising: forming a pyrolytic carbon film on a surface of a carbon material in a portion to be processed.
[5]. The processing method for a silicon oxide production apparatus according to [4], wherein the portion in contact with the silicon oxide gas is at least a reaction chamber.
[6]. The thickness of the coating is 1 to 500 [mu] m, the density of pyrolytic carbon is 1.8~2.3g / cm 3, a surface roughness R a of the carbon material is 0.1~1,000Myuemu, The processing method of the silicon oxide manufacturing apparatus as described in [4] or [5].
[7]. A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas The surface of the carbon material in the part that is in contact with the silicon oxide gas by supplying a carbon-containing gas into the apparatus heated to 800 to 2,200 ° C. by the heating means using a silicon oxide production apparatus having a part made of a carbon material In addition, a process of forming a film of pyrolytic carbon and a silicon oxide production apparatus on which the film is formed are used to generate a silicon oxide gas, which is cooled and aggregated to be recovered as solid silicon oxide. A method for producing silicon oxide comprising a step.
[8]. The method for producing silicon oxide according to [7], wherein the portion in contact with the silicon oxide gas is at least a reaction chamber.
[9]. The thickness of the coating is 1 to 500 [mu] m, the density of pyrolytic carbon is 1.8~2.3g / cm 3, a surface roughness R a of the carbon material is 0.1~1,000Myuemu, The method for producing silicon oxide according to [7] or [8].

本発明者らは、上記目的を達成するため鋭意検討した結果、酸化珪素反応温度での耐熱性が十分にあり、かつ酸化珪素ガスとその温度で接触しても内部に化学変化が進行しにくい材料を種々探索した結果、表面に熱分解炭素の被覆を有する炭素材料が好適であることを知見し、本発明をなすに至ったものである。   As a result of intensive investigations to achieve the above object, the present inventors have sufficient heat resistance at the silicon oxide reaction temperature, and even if they contact the silicon oxide gas at that temperature, it is difficult for chemical changes to proceed inside. As a result of various searches for materials, it has been found that a carbon material having a pyrolytic carbon coating on its surface is suitable, and has led to the present invention.

従って、本発明は下記発明を提供する。
[1].炭素材料の表面に熱分解炭素の被覆を有することを特徴とする酸化珪素製造装置用部材。
[2].被覆の厚さが1〜500μmであることを特徴とする[1]記載の酸化珪素製造装置用部材。
[3].熱分解炭素の密度が1.8g/cm3以上であることを特徴とする[1]又は[2]記載の酸化珪素製造装置用部材。
[4].炭素材料の表面粗さRaが、0.1〜1,000μmであることを特徴とする[1]〜[3]のいずれかに記載の酸化珪素製造装置用部材。
[5].炭素材料が、黒鉛であることを特徴とする[1]〜[4]のいずれかに記載の酸化珪素製造装置用部材。
[6].炭素材料が、カーボンコンポジットであることを特徴とする[1]〜[4]のいずれかに記載の酸化珪素製造装置用部材。
[7].酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備えた酸化珪素製造装置であって、酸化珪素ガスと接触する部分に、[1]〜[6]のいずれかに記載の部材を使用することを特徴とする酸化珪素製造装置。
[8].酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置に、上記加熱手段により800℃以上に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に熱分解炭素の被膜が形成されたことを特徴とする酸化珪素製造装置。
[9].酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置に、上記加熱手段により800℃以上に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に、熱分解炭素の被膜を形成する方法。
Accordingly, the present invention provides the following inventions.
[1]. A member for a silicon oxide production apparatus, comprising a pyrolytic carbon coating on a surface of a carbon material.
[2]. The member for a silicon oxide production apparatus according to [1], wherein the coating has a thickness of 1 to 500 μm.
[3]. The silicon oxide production apparatus member according to [1] or [2], wherein the pyrolytic carbon has a density of 1.8 g / cm 3 or more.
[4]. Surface roughness R a, characterized in that a 0.1~1,000μm [1] ~ a silicon oxide manufacturing equipment member according to any one of [3] of the carbon material.
[5]. The member for a silicon oxide production apparatus according to any one of [1] to [4], wherein the carbon material is graphite.
[6]. The member for a silicon oxide production apparatus according to any one of [1] to [4], wherein the carbon material is a carbon composite.
[7]. A silicon oxide production apparatus comprising: a reaction chamber for reacting a silicon oxide raw material to generate silicon oxide gas; a heating means for heating the reaction chamber; and a recovery chamber for depositing silicon oxide gas to recover silicon oxide. Then, the member according to any one of [1] to [6] is used for a portion in contact with the silicon oxide gas.
[8]. A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas A carbon-containing gas is supplied to a silicon oxide production apparatus having a part made of a carbon material, and the carbon-containing gas is supplied into the apparatus heated to 800 ° C. or higher by the heating means, and the surface of the carbon material in the part in contact with the silicon oxide gas An apparatus for producing silicon oxide, wherein a film is formed.
[9]. A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas A carbon-containing gas is supplied to a silicon oxide production apparatus having a part made of a carbon material and heated to 800 ° C. or higher by the heating means, and the pyrolytic carbon is applied to the surface of the carbon material in a part in contact with the silicon oxide gas. A method of forming a coating film.

本発明の酸化珪素製造装置用部材は、酸化珪素反応温度での耐熱性が十分にあり、かつ酸化珪素ガスとその温度で接触しても内部に化学変化が進行しにくいため、従来用いられてきた炭素材料に比べより長寿命となる。そのためそれを用いた酸化珪素製造装置は修繕コストを低減できダウンタイムも減少するため、製造コストを低減することが可能となる。   The member for a silicon oxide production apparatus of the present invention has been conventionally used because it has sufficient heat resistance at the silicon oxide reaction temperature and hardly undergoes chemical changes inside even if it contacts the silicon oxide gas at that temperature. Longer life than carbon materials. Therefore, the silicon oxide manufacturing apparatus using the same can reduce the repair cost and the downtime, so that the manufacturing cost can be reduced.

熱CVD装置の一例を示す概略図である。It is the schematic which shows an example of a thermal CVD apparatus. 酸化珪素製造装置の一例を示す概略図である。It is the schematic which shows an example of a silicon oxide manufacturing apparatus. 本発明の一参考例に係る熱CVD装置を示す概略図である。It is the schematic which shows the thermal CVD apparatus which concerns on one reference example of this invention. 本発明の一参考例に係る酸化珪素製造装置を示す概略図である。It is the schematic which shows the silicon oxide manufacturing apparatus which concerns on one reference example of this invention. 本発明の一実施例に係る酸化珪素製造装置を示す概略図である。It is the schematic which shows the silicon oxide manufacturing apparatus which concerns on one Example of this invention. 参考例1及び比較例2の部材を示す写真である。 4 is a photograph showing members of Reference Example 1 and Comparative Example 2.

以下、本発明について詳細に説明する。
[酸化珪素製造装置用部材]
本発明の酸化珪素製造装置用部材は、炭素材料の表面に熱分解炭素の被覆を有するものである。炭素材料としては、黒鉛やグラッシーカーボン、炭素繊維、カーボンコンポジット等が挙げられる。中でも、耐熱性と強度の観点から、黒鉛又はカーボンコンポジットが好ましい。黒鉛の材料としては、押し出し材、CIP(Cold Isostatic Press(冷間静水圧プレス))材等が挙げられるが、表面熱分解炭素被膜にピンホールが生じ難いという点から、CIP材がより好ましい。割れ難いという点からは、炭素繊維と炭素の複合材料であるカーボンコンポジットがより好ましい。
Hereinafter, the present invention will be described in detail.
[Components for silicon oxide production equipment]
The member for a silicon oxide production apparatus of the present invention has a pyrolytic carbon coating on the surface of a carbon material. Examples of the carbon material include graphite, glassy carbon, carbon fiber, and carbon composite. Among these, graphite or carbon composite is preferable from the viewpoint of heat resistance and strength. Examples of the graphite material include an extruded material, a CIP (Cold Isostatic Press) material, and the CIP material is more preferable because pinholes are unlikely to occur in the surface pyrolytic carbon coating. From the viewpoint of being hard to break, a carbon composite that is a composite material of carbon fiber and carbon is more preferable.

被覆膜である熱分解炭素は、高温で炭素含有ガスを熱分解することにより生成する炭素である。炭素材料の表面に熱分解炭素被覆を形成する方法としては、炭素含有ガスを供給しつつ加熱する、熱CVD法が挙げられる。熱分解温度としては800〜3,000℃が好ましく、1,000〜2,500℃がより好ましく、1,500〜2,000℃がさらに好ましい。熱分解温度が800℃未満では、熱分解炭素被膜の生成速度が遅すぎ、3,000℃を超えると、熱分解炭素被膜の着きまわりが悪くピンホールが生成し易くなるおそれがある。   Pyrolytic carbon that is a coating film is carbon generated by pyrolyzing a carbon-containing gas at a high temperature. As a method for forming the pyrolytic carbon coating on the surface of the carbon material, there is a thermal CVD method in which heating is performed while supplying a carbon-containing gas. The thermal decomposition temperature is preferably 800 to 3,000 ° C, more preferably 1,000 to 2,500 ° C, and further preferably 1,500 to 2,000 ° C. If the pyrolysis temperature is less than 800 ° C., the rate of formation of the pyrolytic carbon coating is too slow, and if it exceeds 3,000 ° C., the contact of the pyrolytic carbon coating is poor and pinholes are likely to be generated.

炭素含有ガスは特に限定されないが、炭化水素、アルコール類が好適であり、常温で液体のものも加熱やバブリング等により気化させることで使用できる。炭素含有ガスとしては、例えば、メタンガス、エタンガス、プロパンガス、エチレンガス、アセチレンガス、天然ガス、メタノール、エタノール、プロパノール、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン及びこれらの混合物等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。さらに、炭素含有ガスと共に窒素ガスやアルゴンガス等の不活性ガスを供給することもできる。   The carbon-containing gas is not particularly limited, but hydrocarbons and alcohols are suitable, and those that are liquid at room temperature can be used by being vaporized by heating or bubbling. Examples of the carbon-containing gas include methane gas, ethane gas, propane gas, ethylene gas, acetylene gas, natural gas, methanol, ethanol, propanol, hexane, cyclohexane, benzene, toluene, xylene, and mixtures thereof. It can use individually or in combination of 2 or more types as appropriate. Further, an inert gas such as nitrogen gas or argon gas can be supplied together with the carbon-containing gas.

熱分解の雰囲気は0.1Torr〜1atm(13.3Pa〜101kPa)が好適であり、熱分解炭素被膜の均一性の点から、0.1〜100Torr(13.3Pa〜13.3kPa)がより好ましい。0.1Torrより低いと熱分解炭素被膜の生成速度が遅すぎ、1atm以上では気相成長した微粒子が混入し熱分解炭素被膜の緻密性が劣るため好ましくない。   The pyrolysis atmosphere is preferably 0.1 Torr to 1 atm (13.3 Pa to 101 kPa), and more preferably 0.1 to 100 Torr (13.3 Pa to 13.3 kPa) from the viewpoint of the uniformity of the pyrolytic carbon coating. . If it is lower than 0.1 Torr, the generation rate of the pyrolytic carbon film is too slow, and if it is 1 atm or more, fine particles grown in a vapor phase are mixed and the denseness of the pyrolytic carbon film is inferior.

熱分解炭素の被膜の厚さは、1〜500μmが好ましく、5〜300μmがより好ましく、10〜100μmがさらに好ましい。1μm未満だと、酸化珪素ガスが炭素材料まで透過してしまう可能性があり、500μmを超えると、熱分解炭素被膜と炭素材料との熱膨張率差により昇降温時に剥離してしまう可能性がある。なお、熱分解炭素の被膜の厚さは、原料の種類、反応温度、反応圧力、反応時間等により適宜調整することができるが、一般的には反応時間によって調節するのが簡便である。なお、被膜の厚さは断面をSEMで観察することにより求めることができる。   The thickness of the pyrolytic carbon coating is preferably 1 to 500 μm, more preferably 5 to 300 μm, and still more preferably 10 to 100 μm. If it is less than 1 μm, the silicon oxide gas may permeate to the carbon material, and if it exceeds 500 μm, the silicon oxide gas may be peeled off when the temperature is raised or lowered due to the difference in thermal expansion coefficient between the pyrolytic carbon coating and the carbon material. is there. The thickness of the pyrolytic carbon film can be appropriately adjusted depending on the type of raw material, reaction temperature, reaction pressure, reaction time, etc., but it is generally easy to adjust the thickness depending on the reaction time. The thickness of the coating can be obtained by observing the cross section with an SEM.

熱分解炭素の密度は1.8g/cm3以上が好ましく、1.9g/cm3以上がより好ましい。1.8g/cm3未満だと、酸化珪素ガスが炭素材料まで透過するおそれがある。なお、上限は特に限定されないが、2.3g/cm3以下程度である。熱分解炭素の密度は、原料の種類、反応温度、反応圧力等により調節することができる。一般的には反応温度が高く、反応圧力が低いほど高密度になる。なお、ここでの密度は25℃での値とし、簡便な測定方法としては、被膜形成前後での重量増加を基材の表面積と被膜の厚さの積で割ることで求めることができる。また、より精度の高い測定方法として、被膜を厚く堆積させた後、基材から剥離させ、JIS Z 8807:2012に規定された液中秤量法で測定することも可能である。 The density of pyrolytic carbon is preferably 1.8 g / cm 3 or more, and more preferably 1.9 g / cm 3 or more. If it is less than 1.8 g / cm 3 , silicon oxide gas may permeate to the carbon material. The upper limit is not particularly limited, but is about 2.3 g / cm 3 or less. The density of pyrolytic carbon can be adjusted by the type of raw material, reaction temperature, reaction pressure, and the like. Generally, the higher the reaction temperature and the lower the reaction pressure, the higher the density. The density here is a value at 25 ° C., and a simple measurement method can be obtained by dividing the weight increase before and after the film formation by the product of the surface area of the substrate and the thickness of the film. As a more accurate measurement method, it is also possible to measure the film by a submerged weighing method defined in JIS Z 8807: 2012 after depositing a thick film and peeling it off from the substrate.

炭素材料の表面に熱分解炭素被覆を形成する前の炭素材料の表面粗さRaは、0.1〜1,000μmが好ましく、0.5〜200μmがより好ましい。表面粗さRaが0.1μm未満ではアンカー効果が弱く、熱分解炭素被膜が剥離する可能性があり、1,000μmを超えると、凹部にピンホールが発生する可能性がある。表面粗さは、例えばサンドブラストにより粗面化する等で調節が可能である。なお、表面粗さRaはJIS B 0601:2001に定義された測定方法で測定する。具体的には、表面粗さ測定機(例えば(株)小坂研究所製SE3500)で測定することができる。   The surface roughness Ra of the carbon material before forming the pyrolytic carbon coating on the surface of the carbon material is preferably 0.1 to 1,000 μm, and more preferably 0.5 to 200 μm. If the surface roughness Ra is less than 0.1 μm, the anchor effect is weak and the pyrolytic carbon film may peel off, and if it exceeds 1,000 μm, pinholes may be generated in the recesses. The surface roughness can be adjusted, for example, by roughening by sandblasting. The surface roughness Ra is measured by a measurement method defined in JIS B 0601: 2001. Specifically, it can be measured with a surface roughness measuring machine (for example, SE3500 manufactured by Kosaka Laboratory Ltd.).

炭素材料の表面に熱分解炭素被覆を形成する装置としては、熱CVD装置が挙げられる。熱CVD装置の一例を、図1を用いて説明する。炭素材料1を入れ被覆を行う反応室2、反応室2に連結し、炭素含有ガスや不活性ガスを導入するガス導入管3、排気ガスを排出する排気管4、炭素材料を加熱するための加熱手段5、必要に応じて反応室を減圧にするための真空ポンプ6を備えている。   An apparatus for forming a pyrolytic carbon coating on the surface of a carbon material includes a thermal CVD apparatus. An example of a thermal CVD apparatus will be described with reference to FIG. Connected to the reaction chamber 2 for coating with the carbon material 1 and the reaction chamber 2, the gas introduction pipe 3 for introducing the carbon-containing gas and the inert gas, the exhaust pipe 4 for exhausting the exhaust gas, and for heating the carbon material A heating means 5 and a vacuum pump 6 for depressurizing the reaction chamber as necessary are provided.

具体的には、反応室2に炭素材料1を入れ、加熱手段5により800℃以上に加熱しつつ、ガス導入管3から反応室2内に炭素含有ガスを供給し、排気管4から排気ガスを排出し、場合によっては真空ポンプ6で反応室を減圧に排気しながら炭素材料1の表面に熱分解炭素の被膜を形成することができる。一方、熱CVD装置の代わりに、図2に示すような一般的な酸化珪素製造装置自体を用いて被覆を施すこともできる。この方法については後述する。   Specifically, the carbon material 1 is placed in the reaction chamber 2, the carbon-containing gas is supplied from the gas introduction pipe 3 into the reaction chamber 2 while being heated to 800 ° C. or more by the heating means 5, and the exhaust gas is discharged from the exhaust pipe 4. In some cases, a pyrolytic carbon film can be formed on the surface of the carbon material 1 while evacuating the reaction chamber to a reduced pressure with a vacuum pump 6. On the other hand, instead of the thermal CVD apparatus, a general silicon oxide production apparatus itself as shown in FIG. 2 can be used for coating. This method will be described later.

[酸化珪素の製造方法]
酸化珪素の製造方法としては、(1)珪素の酸化、(2)二酸化珪素の還元、(3)珪素と二酸化珪素との反応が挙げられる。これらの方法では、いずれも原料を高温に加熱することで酸化珪素のガス発生させ、そのガスを冷却・凝集して固体の酸化珪素として回収する。上記酸化珪素製造装置用部材は、酸化珪素ガスと接触する部分に用いられることで、その効果をより発揮することができる。
[Method for producing silicon oxide]
Examples of the method for producing silicon oxide include (1) oxidation of silicon, (2) reduction of silicon dioxide, and (3) reaction between silicon and silicon dioxide. In any of these methods, the raw material is heated to a high temperature to generate a silicon oxide gas, and the gas is cooled and aggregated to be recovered as solid silicon oxide. The said silicon oxide manufacturing apparatus member can exhibit the effect more by being used for the part which contacts silicon oxide gas.

上記(3)珪素と二酸化珪素との反応について、具体的な例としては、金属珪素粉末と二酸化珪素粉末を含有する混合粉末を、不活性ガスもしくは不活性ガスの減圧下、1,200〜1,800℃に加熱して酸化珪素ガスを発生させ、この酸化珪素ガスを基体表面に析出させる方法が挙げられる。   As a specific example of the reaction between (3) silicon and silicon dioxide, a mixed powder containing metal silicon powder and silicon dioxide powder is subjected to 1,200 to 1 under reduced pressure of inert gas or inert gas. , Heated to 800 ° C. to generate silicon oxide gas, and this silicon oxide gas is deposited on the substrate surface.

金属珪素粉末と二酸化珪素粉末は下記の反応スキームによって進行する。
Si(s)+SiO2(s)→2SiO(g)
Metallic silicon powder and silicon dioxide powder proceed according to the following reaction scheme.
Si (s) + SiO 2 (s) → 2SiO (g)

二酸化珪素粉末の平均粒子径は0.1μm以下であり、通常0.005〜0.1μm、好ましくは0.005〜0.08μmである。また金属珪素粉末の平均粒子径は30μm以下であり、通常0.05〜30μm、好ましくは0.1〜20μmである。二酸化珪素粉末の平均粒子径が0.1μmより大きい、金属珪素粉末の平均粒子径が30μmより大きいと、反応性が低下し、生産性が低下するおそれがある。なお、本発明において、平均粒子径はレーザー光回折法による粒度分布測定における累積重量平均値D50(又はメジアン径)等として測定することができる。 The average particle diameter of the silicon dioxide powder is 0.1 μm or less, usually 0.005 to 0.1 μm, preferably 0.005 to 0.08 μm. The average particle size of the metal silicon powder is 30 μm or less, and is usually 0.05 to 30 μm, preferably 0.1 to 20 μm. When the average particle diameter of the silicon dioxide powder is larger than 0.1 μm and the average particle diameter of the metal silicon powder is larger than 30 μm, the reactivity is lowered and the productivity may be lowered. In the present invention, the average particle diameter can be measured as the cumulative weight average value D 50 (or median diameter) or the like in the particle size distribution measurement by the laser light diffraction method.

上記混合原料粉末を反応室内において1,200〜1,800℃、好ましくは1,300〜1,700℃の温度に加熱、保持し、酸化珪素ガスを生成させる。反応温度が1,200℃未満では反応が進行しがたく、生産性が低下する場合があり、一方、1,800℃を超えると、混合原料粉末が溶融・凝集して2層に分離してしまい、反応が進まなくなる場合がある。   The mixed raw material powder is heated and maintained at a temperature of 1,200 to 1,800 ° C., preferably 1,300 to 1,700 ° C. in the reaction chamber to generate silicon oxide gas. If the reaction temperature is less than 1,200 ° C., the reaction is difficult to proceed and the productivity may decrease. On the other hand, if the reaction temperature exceeds 1,800 ° C., the mixed raw material powder melts and aggregates and separates into two layers. As a result, the reaction may not proceed.

一方、炉内(反応室)雰囲気は、不活性ガスもしくは不活性ガスの減圧下(好ましくは1,000Pa以下)で行う。中でも、酸化珪素が蒸気として発生しやすい減圧下で行うことが好ましい。不活性ガスとしては、アルゴン、ヘリウム等が挙げられる。   On the other hand, the atmosphere in the furnace (reaction chamber) is carried out under a reduced pressure of inert gas or inert gas (preferably 1,000 Pa or less). Among these, it is preferable to carry out under reduced pressure at which silicon oxide is easily generated as vapor. Examples of the inert gas include argon and helium.

上記反応室には、原料供給機構にて、上記混合原料粉末を適宜間隔ごと、又は連続的に供給し反応を連続的に行うものである。上記原料供給機構としては、スクリューフィーダー等による連続供給や、上下にダンパーを設けた中間ホッパーによる間欠供給、及びこれらの組み合わせが挙げられる。   In the reaction chamber, the mixed raw material powder is supplied at appropriate intervals or continuously by a raw material supply mechanism to continuously perform the reaction. Examples of the raw material supply mechanism include continuous supply using a screw feeder or the like, intermittent supply using an intermediate hopper having upper and lower dampers, and combinations thereof.

上記反応室で生成した酸化珪素ガスは、酸化珪素を回収する回収室に供給される。この際、反応室と酸化珪素を回収する回収室を連結するための搬送管を介してもよい。本発明において、搬送管は反応室と同じ温度以上に保持されることが好ましい。   The silicon oxide gas generated in the reaction chamber is supplied to a recovery chamber that recovers silicon oxide. At this time, the reaction chamber and a recovery chamber for recovering silicon oxide may be connected via a transfer pipe. In this invention, it is preferable that a conveyance pipe | tube is hold | maintained more than the same temperature as a reaction chamber.

上記酸化珪素を回収する回収室の内壁面や、回収室に配置され基体に、酸化珪素ガスが接触し、冷却されることにより酸化珪素が析出する。回収室や基体の冷却温度は、全工程において1,000℃以下が好ましく、析出のための温度(析出温度)は1,000℃まで下げればよいが、冷却温度は200〜1,000℃が好ましい。基体の種類については特に限定されないが、金属材料が好ましく、加工性の点でステンレス鋼、ニッケル合金、チタン合金等の金属材料が好適に用いられる。   Silicon oxide gas is deposited when the silicon oxide gas comes into contact with the inner wall surface of the recovery chamber for recovering the silicon oxide or the substrate disposed in the recovery chamber and is cooled. The cooling temperature of the recovery chamber and the substrate is preferably 1,000 ° C. or lower in all steps, and the temperature for precipitation (deposition temperature) may be lowered to 1,000 ° C., but the cooling temperature is 200 to 1,000 ° C. preferable. The type of the substrate is not particularly limited, but a metal material is preferable, and a metal material such as stainless steel, a nickel alloy, or a titanium alloy is preferably used in terms of workability.

[酸化珪素製造装置]
本発明の酸化珪素製造装置としては、酸化珪素ガスと接触する部分に上記酸化珪素製造装置用部材を用いる必要があり、その部分を全面被覆するのがより好ましい。特に、カーボンコンポジットの場合は端面(炭素繊維の層に概ね垂直の面)から酸化珪素ガスが浸入し劣化しやすいため、端面も被覆するのが好ましい。全面を被覆するために支持点を変えながら複数回に分けて被覆してもよい。
[Silicon oxide production equipment]
In the silicon oxide production apparatus of the present invention, it is necessary to use the above-mentioned member for a silicon oxide production apparatus in a portion in contact with the silicon oxide gas, and it is more preferable to cover the entire surface. In particular, in the case of a carbon composite, since the silicon oxide gas easily enters and deteriorates from the end surface (a surface substantially perpendicular to the carbon fiber layer), it is preferable to cover the end surface. In order to coat the entire surface, the coating may be performed in multiple times while changing the support points.

本発明の酸化珪素製造装置を得る方法としては、[1]予め酸化珪素製造装置用部材を作製し、これを使用して酸化珪素製造装置を組み立ててもよい。また、[2]酸化珪素ガスと接触する部分が炭素材料からなり、既に組み立てられた酸化珪素製造装置を用いて、上記炭素材料の表面に熱分解炭素の被膜を形成してもよい。[2]の場合は、別途熱CVD装置を用意する必要がなく簡便であるとともに、必要な部分全体を一度に被膜することができるため特に有用である。   As a method for obtaining the silicon oxide production apparatus of the present invention, [1] A silicon oxide production apparatus member may be produced in advance, and a silicon oxide production apparatus may be assembled using this. [2] The portion in contact with the silicon oxide gas may be made of a carbon material, and a coating of pyrolytic carbon may be formed on the surface of the carbon material using an already assembled silicon oxide manufacturing apparatus. In the case of [2], it is not necessary to prepare a separate thermal CVD apparatus, and it is convenient and can be coated at the same time on the entire necessary part, so that it is particularly useful.

酸化珪素製造装置としては、酸化珪素原料(例えば、金属珪素粉末と二酸化珪素粉末を含む混合原料粉末)を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備えた装置が挙げられる。さらに、上記反応室内に上記混合原料粉末を供給する原料供給機構、上記基体を冷却する冷却機構等を有していてもよい。   As a silicon oxide production apparatus, a silicon oxide raw material (for example, a mixed raw material powder containing metal silicon powder and silicon dioxide powder) is reacted to generate silicon oxide gas, a heating means for heating the reaction chamber, An apparatus including a recovery chamber for recovering silicon oxide by depositing silicon gas can be used. Further, a raw material supply mechanism for supplying the mixed raw material powder into the reaction chamber, a cooling mechanism for cooling the substrate, and the like may be provided.

酸化珪素製造装置の一例を、図2を用いて説明する。
外気との気密を保つ真空容器7内に、酸化珪素反応室8が設けられている。酸化珪素反応室8を取り囲んで加熱手段12が配設されている。酸化珪素反応室8には、ガス導入管10が連結されており、炭素含有ガスや不活性ガスが導入される。酸化珪素反応室8の上端は開口し、酸化珪素ガスを析出させて酸化珪素を回収する回収室9が連結され、この回収室9内壁面、特に上部内壁面が、析出基体(酸化珪素析出ゾーン)として構成される。酸化珪素反応室8と回収室9の間に搬送管が連結されていてもよい。さらに搬送管の加熱手段を配設してもよい。
An example of a silicon oxide manufacturing apparatus will be described with reference to FIG.
A silicon oxide reaction chamber 8 is provided in the vacuum vessel 7 that keeps airtight with the outside air. A heating means 12 is provided surrounding the silicon oxide reaction chamber 8. A gas introduction pipe 10 is connected to the silicon oxide reaction chamber 8 to introduce a carbon-containing gas or an inert gas. The upper end of the silicon oxide reaction chamber 8 is opened, and a recovery chamber 9 for recovering silicon oxide by depositing silicon oxide gas is connected. The inner wall surface of the recovery chamber 9, particularly the upper inner wall surface, is a deposition substrate (silicon oxide deposition zone). ). A transfer pipe may be connected between the silicon oxide reaction chamber 8 and the recovery chamber 9. Furthermore, a heating means for the transport pipe may be provided.

排気ガスを排出する排気管11により、排気ガスが排出され、この真空ポンプ13に連結された排気管11が真空容器7に連通されていることにより、上記真空ポンプ13の作動で、回収室9、搬送管内及び酸化珪素反応室9がそれぞれ所定の減圧度となるように減圧されるものである。   Exhaust gas is exhausted by an exhaust pipe 11 that exhausts exhaust gas, and the exhaust pipe 11 connected to the vacuum pump 13 communicates with the vacuum vessel 7, whereby the recovery chamber 9 is operated by the operation of the vacuum pump 13. In addition, the pressure in the transfer tube and the silicon oxide reaction chamber 9 are reduced to a predetermined degree of pressure reduction.

この装置において、酸化珪素ガスと接触する部分として、少なくとも、酸化珪素反応室8、搬送管(設置されている場合)を、上記酸化珪素製造装置用部材を用いる必要があり、加熱手段12、搬送管の加熱手段(設置されている場合)も上記酸化珪素製造装置用部材とすることが好ましい。   In this apparatus, it is necessary to use at least the silicon oxide reaction chamber 8 and the transfer pipe (when installed) as the parts in contact with the silicon oxide gas, using the above-mentioned silicon oxide production apparatus member, the heating means 12, It is preferable that the heating means (when installed) of the pipe is also the above-mentioned member for a silicon oxide production apparatus.

[1]予め酸化珪素製造装置用部材を作製し、これを使用して酸化珪素製造装置を組み立てる場合は、上記部分に酸化珪素製造装置用部材を用いればよい。
[2]既に組み立てられた酸化珪素製造装置を用いて、上記炭素材料の表面に熱分解炭素の被膜を形成する場合は、酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置に、上記加熱手段により800℃以上、好適には1,200〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に、熱分解炭素の被膜を形成する方法が挙げられる。より具体的に図2を用いて説明すると、炭素材料からなる酸化珪素反応室8を加熱手段12により800℃以上に加熱しつつ、ガス導入管10から酸化珪素反応室8内に炭素含有ガスを供給し、排気管11から排気ガスを排出し、真空ポンプ13で真空容器7内を減圧に排気しながら、炭素材料の表面に熱分解炭素の被膜を形成することができる。
[1] When a member for a silicon oxide production apparatus is prepared in advance and a silicon oxide production apparatus is assembled using the member, the silicon oxide production apparatus member may be used for the above portion.
[2] When forming a pyrolytic carbon film on the surface of the carbon material using an already assembled silicon oxide production apparatus, a reaction chamber for reacting a silicon oxide raw material to generate silicon oxide gas, and a reaction A heating means for heating the chamber and a recovery chamber for collecting the silicon oxide by precipitating the silicon oxide gas, and a silicon oxide production apparatus in which a portion in contact with the silicon oxide gas is made of a carbon material is heated to 800 ° C. by the heating means. As described above, a method of supplying a carbon-containing gas into an apparatus heated to 1,200 to 2,200 ° C. and forming a pyrolytic carbon film on the surface of the carbon material in contact with the silicon oxide gas. Is mentioned. More specifically, referring to FIG. 2, the carbon-containing gas is introduced into the silicon oxide reaction chamber 8 from the gas introduction pipe 10 while the silicon oxide reaction chamber 8 made of a carbon material is heated to 800 ° C. or higher by the heating means 12. It is possible to form a pyrolytic carbon film on the surface of the carbon material while supplying and exhausting exhaust gas from the exhaust pipe 11 and exhausting the inside of the vacuum vessel 7 to a reduced pressure by the vacuum pump 13.

以下、実施例、参考例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example , a reference example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

参考例1]
図3に示す熱CVD装置を用いて、酸化珪素製造装置用部材を調製した。図3に示す装置は、真空容器15、炭素材料を入れ被覆を行う反応室16、反応室16に連結し、炭素含有ガスや不活性ガスを導入するガス導入管17、排気ガスを排出する排気管18、炭素材料を加熱するためのカーボンヒーター19、反応室を減圧にするための真空ポンプ20、圧力調節弁21を備えている。
[ Reference Example 1]
A member for a silicon oxide manufacturing apparatus was prepared using the thermal CVD apparatus shown in FIG. The apparatus shown in FIG. 3 is connected to a vacuum vessel 15, a reaction chamber 16 in which a carbon material is placed for coating, a reaction chamber 16, a gas introduction pipe 17 for introducing a carbon-containing gas or an inert gas, and an exhaust for exhausting exhaust gas. A tube 18, a carbon heater 19 for heating the carbon material, a vacuum pump 20 for depressurizing the reaction chamber, and a pressure control valve 21 are provided.

20mm×20mm×100mmの四角柱形状の炭素材料(CIP黒鉛材)からなる、(被覆前の)酸化珪素製造装置用部材14(表面の粗さRa0.3μm)を100個(図3は配置を示す)、熱CVD装置の反応室16(直径800mm×高さ1500mm)内に入れ、真空ポンプ20により真空容器15内を0.1Torrまで減圧した。カーボンヒーター19により酸化珪素製造装置用部材14を1,700℃に加熱後、真空ポンプ20により排気しつつ、ガス導入管17からメタンガスを5L/minの速度で供給した。その状態で圧力調節弁21により真空容器15内の圧力を1Torrに調整しながら6時間保持し、支持点を除く全面に熱分解炭素の被覆を施した。その後、メタンガス供給と加熱を停止し、室温まで放冷後、真空ポンプ20を停止して常圧に復圧し、熱分解炭素の被覆が施された酸化珪素製造装置用部材を取り出した。この部材を縦半分に切って断面をSEMで観察したところ、熱分解炭素被覆の厚さは40〜60μmであった。この被覆の密度は1.9g/cm3であった。 100 pieces of silicon oxide production equipment members 14 (surface roughness Ra 0.3 μm) (before coating) made of a square columnar carbon material (CIP graphite material) of 20 mm × 20 mm × 100 mm (FIG. 3 shows the arrangement) In the reaction chamber 16 (diameter 800 mm × height 1500 mm) of the thermal CVD apparatus, the inside of the vacuum vessel 15 was depressurized to 0.1 Torr by the vacuum pump 20. After heating the silicon oxide production apparatus member 14 to 1,700 ° C. by the carbon heater 19, the methane gas was supplied from the gas introduction pipe 17 at a rate of 5 L / min while being evacuated by the vacuum pump 20. In this state, the pressure in the vacuum vessel 15 was maintained for 6 hours while adjusting the pressure in the vacuum vessel 15 to 1 Torr, and the entire surface except the support point was coated with pyrolytic carbon. Thereafter, the supply of methane gas and heating were stopped, and after cooling to room temperature, the vacuum pump 20 was stopped and the pressure was returned to normal pressure, and the silicon oxide production apparatus member coated with pyrolytic carbon was taken out. When this member was cut in half vertically and the cross section was observed by SEM, the thickness of the pyrolytic carbon coating was 40 to 60 μm. The density of this coating was 1.9 g / cm 3 .

参考例2]
図3に示す熱CVD装置を用いて、酸化珪素製造装置用部材を調製した。
50mm×50mm×5mmの四角板形状のカーボンコンポジットマテリアルからなる酸化珪素製造装置用部材(表面の粗さRa3.5μm)100個を、図3に示す熱CVD装置の反応室16(直径800mm×高さ1500mm)内に入れ、真空ポンプ20により真空容器15内を0.1Torrまで減圧した。カーボンヒーター19により酸化珪素製造装置用部材を1,500℃に加熱後、真空ポンプ20により排気しつつガス導入管17からメタンガスを10L/minの速度で供給した。その状態で圧力調節弁21により真空容器15内の圧力を3Torrに調整しながら20時間保持し、支持点を除く全面に熱分解炭素の被覆を施した。その後、メタンガス供給と加熱を停止し、室温まで放冷後、真空ポンプ20を停止して常圧に復圧し、熱分解炭素の被覆が施された酸化珪素製造装置用部材を取り出した。この部材を縦半分に切って断面をSEMで観察したところ、熱分解炭素被覆の厚さは80〜100μmであった。この被覆の密度は1.8g/cm3であった。
[ Reference Example 2]
A member for a silicon oxide manufacturing apparatus was prepared using the thermal CVD apparatus shown in FIG.
100 pieces of silicon oxide production equipment members (surface roughness Ra: 3.5 μm) made of a carbon composite material of a square plate shape of 50 mm × 50 mm × 5 mm are used in the reaction chamber 16 (diameter 800 mm × high height) shown in FIG. The inside of the vacuum vessel 15 was depressurized to 0.1 Torr by the vacuum pump 20. The member for a silicon oxide production apparatus was heated to 1,500 ° C. by the carbon heater 19, and then methane gas was supplied from the gas introduction pipe 17 at a rate of 10 L / min while being evacuated by the vacuum pump 20. In this state, the pressure in the vacuum vessel 15 was maintained at 3 Torr with the pressure control valve 21 for 20 hours, and the entire surface except the support point was coated with pyrolytic carbon. Thereafter, the supply of methane gas and heating were stopped, and after cooling to room temperature, the vacuum pump 20 was stopped and the pressure was returned to normal pressure, and the silicon oxide production apparatus member coated with pyrolytic carbon was taken out. When this member was cut in half vertically and the cross section was observed with SEM, the thickness of the pyrolytic carbon coating was 80 to 100 μm. The density of this coating was 1.8 g / cm 3 .

参考例3]
50mm×50mm×5mmの四角板形状のカーボンコンポジットからなる酸化珪素製造装置用部材の表面にサンドブラスト処理を施し、表面の粗さRaを510μmとした以外は参考例2と同様に熱分解炭素の被覆を施した。この部材を縦半分に切って断面をSEMで観察したところ、熱分解炭素被覆の厚さは70〜110μmであった。この被覆の密度は1.8g/cm3であった。
[ Reference Example 3]
Covering with pyrolytic carbon in the same manner as in Reference Example 2 except that the surface of a silicon oxide production device member made of a carbon composite having a square plate shape of 50 mm × 50 mm × 5 mm is subjected to sand blasting to have a surface roughness Ra of 510 μm. Was given. When this member was cut in half and the cross section was observed by SEM, the thickness of the pyrolytic carbon coating was 70 to 110 μm. The density of this coating was 1.8 g / cm 3 .

[試験例]
図4に示す酸化珪素製造装置を用いて、炭素材料の表面に熱分解炭素の被覆を形成した部材の強度を確認した。
真空容器24内に、酸化珪素反応室25が設けられている。酸化珪素反応室25を取り囲んでカーボンヒーター29が配設されている。酸化珪素反応室25には、ガス導入管27が連結されている。酸化珪素反応室25の上端は開口し、回収室26が連結され、この回収室26の内壁面、特に上部内壁面が、析出基体(酸化珪素析出ゾーン)として構成される。なお、30は真空ポンプであり、この真空ポンプ30に連結された排気管28が上記回収室36に連通されていることにより、上記真空ポンプ30の作動で、回収室26、搬送管(設置されている場合)内、及び酸化珪素反応室25がそれぞれ所定の減圧度となるように減圧されるものである。
[Test example]
Using the silicon oxide production apparatus shown in FIG. 4, the strength of a member having a pyrolytic carbon coating formed on the surface of the carbon material was confirmed.
A silicon oxide reaction chamber 25 is provided in the vacuum vessel 24. A carbon heater 29 is disposed surrounding the silicon oxide reaction chamber 25. A gas introduction pipe 27 is connected to the silicon oxide reaction chamber 25. The upper end of the silicon oxide reaction chamber 25 is opened and a recovery chamber 26 is connected. The inner wall surface of the recovery chamber 26, particularly the upper inner wall surface, is configured as a deposition substrate (silicon oxide deposition zone). Reference numeral 30 denotes a vacuum pump. Since the exhaust pipe 28 connected to the vacuum pump 30 communicates with the recovery chamber 36, the operation of the vacuum pump 30 causes the recovery chamber 26 and the transfer pipe (installed) to be installed. And the silicon oxide reaction chamber 25 are depressurized so as to have a predetermined depressurization degree.

反応室25(直径500mm×高さ400mm)内に金属珪素粉末(平均粒径30μm)5kgと二酸化珪素粉末(平均粒径10μm)10kgを均一に混合した酸化珪素原料23を入れ、その上に実施例1〜3の被覆済み部材22を各5個配置した(図4は配置を示す)。真空ポンプ30により真空容器24内を0.1Torrまで減圧した後、真空ポンプ30により排気しつつカーボンヒーター29により反応室25を1,500℃に加熱し、その状態で10時間保持し酸化珪素ガスを発生させ、回収室26で発生した酸化珪素ガスを冷却・凝固させて酸化珪素を回収した。その後、加熱を停止し、室温まで放冷後、真空ポンプ30を停止して常圧に復圧し、参考例1〜3の被覆済み部材を取り出した。この操作を10バッチ繰り返したところ、参考例1の部材には重量及び外観に変化は見られなかった(図6左)。また、参考例2及び3の部材にも重量変化や層間の亀裂などの劣化は見られなかった。 Into a reaction chamber 25 (diameter: 500 mm × height: 400 mm), a silicon oxide raw material 23 in which 5 kg of metal silicon powder (average particle size 30 μm) and 10 kg of silicon dioxide powder (average particle size 10 μm) are uniformly mixed is placed. Five coated members 22 of Examples 1 to 3 were arranged (FIG. 4 shows the arrangement). After the pressure in the vacuum vessel 24 is reduced to 0.1 Torr by the vacuum pump 30, the reaction chamber 25 is heated to 1,500 ° C. by the carbon heater 29 while being evacuated by the vacuum pump 30, and kept in that state for 10 hours, and silicon oxide gas The silicon oxide gas generated in the recovery chamber 26 was cooled and solidified to recover silicon oxide. Thereafter, the heating was stopped, and after cooling to room temperature, the vacuum pump 30 was stopped and the pressure was returned to normal pressure, and the coated members of Reference Examples 1 to 3 were taken out. When this operation was repeated 10 batches, no change was found in the weight and appearance of the member of Reference Example 1 (left of FIG. 6). In addition, the members of Reference Examples 2 and 3 were not deteriorated such as a change in weight or a crack between layers.

[比較例1]
熱分解炭素の被覆が施されていない20mm×20mm×100mmの四角柱形状の炭素材料(CIP黒鉛材)からなる酸化珪素製造装置用部材及び50mm×50mm×5mmの四角板形状のカーボンコンポジットマテリアルからなる酸化珪素製造装置用部材を用いた以外は、試験例と同様の操作を10バッチ繰り返した。その結果、熱分解炭素の被覆が施されていない炭素材料からなる部材は全ての角部が欠損し5質量%以上の重量減少がみられた(図6右)。また、カーボンコンポジットマテリアルからなる部材は層間に亀裂が発生していた。これらの表面を分析したところSiC化していることが確認された。
[Comparative Example 1]
From a member for a silicon oxide production device made of a carbon material (CIP graphite material) of a square column shape of 20 mm × 20 mm × 100 mm not coated with pyrolytic carbon and a carbon composite material of a square plate shape of 50 mm × 50 mm × 5 mm The same operation as in the test example was repeated 10 batches except that the silicon oxide production device member was used. As a result, all the corners of the member made of the carbon material not coated with pyrolytic carbon were lost and a weight loss of 5% by mass or more was observed (right side of FIG. 6). Moreover, the member which consists of carbon composite material had the crack generate | occur | produced between the layers. When these surfaces were analyzed, it was confirmed that they were converted to SiC.

[実施例
図5に示す酸化珪素製造装置の真空ポンプ38により真空容器32内を0.1Torrまで減圧した後、炭素材料(CIP黒鉛材、表面の粗さRa1.2μm)からなる反応室33(直径500mm×高さ400mm)を、カーボンヒーター(押出し黒鉛材、表面の粗さRa5.7μm)37により1,500℃に加熱しつつ、ガス導入管35から真空容器32内にメタンガスを10L/minの速度で供給し、排気管36から排気ガスを排出し、真空ポンプ38で真空容器32内を1Torr減圧に排気しながら10hr(時間)保持し、反応室33及びカーボンヒーター37の表面に熱分解炭素の被膜を形成した。冷却後、金属珪素粉末(平均粒径30μm)5kgと二酸化珪素粉末(平均粒径10μm)10kgを均一に混合した酸化珪素原料31を反応室33に入れ、真空ポンプ38により真空容器32内を0.1Torrまで減圧した後、真空ポンプ38により排気しつつカーボンヒーター37により反応室33を1,500℃に加熱し、その状態で10時間保持し酸化珪素ガスを発生させ、回収室34で発生した酸化珪素ガスを冷却・凝固させて、酸化珪素を回収した。その後、加熱を停止し、室温まで放冷後、真空ポンプ38を停止して常圧に復圧し、回収した酸化珪素を取り出した。この操作を20バッチ繰り返したが、反応室33及びカーボンヒーター37の外観には全く損傷が見られなかった。
[Example 1 ]
After reducing the pressure in the vacuum vessel 32 to 0.1 Torr by the vacuum pump 38 of the silicon oxide production apparatus shown in FIG. 5, a reaction chamber 33 (diameter 500 mm × diameter) made of a carbon material (CIP graphite material, surface roughness Ra 1.2 μm). 400 mm in height) is heated to 1,500 ° C. by a carbon heater (extruded graphite material, surface roughness Ra 5.7 μm) 37 and methane gas is introduced into the vacuum vessel 32 from the gas introduction pipe 35 at a rate of 10 L / min. Then, the exhaust gas is discharged from the exhaust pipe 36, and the vacuum vessel 32 is held for 10 hours (hours) while evacuating the inside of the vacuum vessel 32 to 1 Torr reduced pressure. The surface of the reaction chamber 33 and the carbon heater 37 is coated with pyrolytic carbon Formed. After cooling, a silicon oxide raw material 31 in which 5 kg of metal silicon powder (average particle size 30 μm) and 10 kg of silicon dioxide powder (average particle size 10 μm) are uniformly mixed is placed in the reaction chamber 33, and the inside of the vacuum vessel 32 is reduced to 0 by a vacuum pump 38. After reducing the pressure to 1 Torr, the reaction chamber 33 was heated to 1,500 ° C. by the carbon heater 37 while being evacuated by the vacuum pump 38, and kept in that state for 10 hours to generate silicon oxide gas. The silicon oxide gas was recovered by cooling and solidifying the silicon oxide gas. Thereafter, the heating was stopped, and after cooling to room temperature, the vacuum pump 38 was stopped and the pressure was returned to normal pressure, and the recovered silicon oxide was taken out. This operation was repeated 20 batches, but no damage was observed in the appearance of the reaction chamber 33 and the carbon heater 37.

[比較例2]
熱分解炭素の被覆を施さない以外は実施例と同様の操作を15バッチ繰り返したところ、この熱分解炭素の被覆が施されていない反応室は一部割れが発生し、カーボンヒーターは減肉が見られ、これ以降の反応は困難であった。
[Comparative Example 2]
When the same operation as in Example 1 was repeated 15 batches except that the pyrolytic carbon coating was not applied, the reaction chamber not coated with the pyrolytic carbon partially cracked, and the carbon heater was thinned. The reaction after this was difficult.

1 炭素材料
2 反応室
3 ガス導入管
4 排気管
5 加熱手段
6 真空ポンプ
7 真空容器
8 酸化珪素反応室
9 回収室
10 ガス導入管
11 排気管
12 加熱手段
13 真空ポンプ
14 酸化珪素製造装置用部材
15 真空容器
16 反応室
17 ガス導入管
18 排気管
19 カーボンヒーター
20 真空ポンプ
21 圧力調節弁
22 被覆済み部材
23 酸化珪素原料
24 真空容器
25 酸化珪素反応室
26 回収室
27 ガス導入管
28 排気管
29 カーボンヒーター
30 真空ポンプ
31 酸化珪素原料
32 真空容器
33 反応室
34 回収室
35 ガス導入管
36 排気管
37 カーボンヒーター
38 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Carbon material 2 Reaction chamber 3 Gas introduction pipe 4 Exhaust pipe 5 Heating means 6 Vacuum pump 7 Vacuum container 8 Silicon oxide reaction chamber 9 Recovery chamber 10 Gas introduction pipe 11 Exhaust pipe 12 Heating means 13 Vacuum pump 14 Member for silicon oxide manufacturing apparatus 15 vacuum vessel 16 reaction chamber 17 gas introduction pipe 18 exhaust pipe 19 carbon heater 20 vacuum pump 21 pressure control valve 22 coated member 23 silicon oxide raw material 24 vacuum vessel 25 silicon oxide reaction chamber 26 recovery chamber 27 gas introduction pipe 28 exhaust pipe 29 Carbon heater 30 Vacuum pump 31 Silicon oxide raw material 32 Vacuum vessel 33 Reaction chamber 34 Recovery chamber 35 Gas introduction pipe 36 Exhaust pipe 37 Carbon heater 38 Vacuum pump

Claims (9)

酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置に、上記加熱手段により800〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に熱分解炭素の被膜形成することを特徴とする酸化珪素製造装置の製造方法。 A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas A carbon-containing gas is supplied to a silicon oxide production apparatus having a part made of a carbon material and heated to 800 to 2,200 ° C. by the heating means, and heat is applied to the surface of the carbon material in a part in contact with the silicon oxide gas. the method for producing a silicon oxide-manufacturing apparatus characterized by forming a coating of pyrocarbon. 酸化珪素ガスと接触する部分が、少なくとも反応室である請求項1記載の酸化珪素製造装置の製造方法。The method for manufacturing a silicon oxide manufacturing apparatus according to claim 1, wherein the portion in contact with the silicon oxide gas is at least a reaction chamber. 被覆の厚さが1〜500μmであり、熱分解炭素の密度が1.8〜2.3g/cmThe thickness of the coating is 1 to 500 μm, and the density of pyrolytic carbon is 1.8 to 2.3 g / cm. 3Three であり、炭素材料の表面粗さRThe surface roughness R of the carbon material aa が、0.1〜1,000μmである、請求項1又は2記載の酸化珪素製造装置の製造方法。The manufacturing method of the silicon oxide manufacturing apparatus of Claim 1 or 2 which is 0.1-1,000 micrometers. 酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置を用いて酸化珪素を製造する前に、上記加熱手段により800〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に、熱分解炭素の被膜を形成することを特徴とする、酸化珪素製造装置の処理方法。 A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas Before producing silicon oxide using a silicon oxide production apparatus having a part made of a carbon material, a carbon-containing gas is supplied into the apparatus heated to 800 to 2,200 ° C. by the heating means, and is in contact with the silicon oxide gas. A method for treating a silicon oxide manufacturing apparatus, comprising: forming a pyrolytic carbon film on a surface of a carbon material in a portion to be processed. 酸化珪素ガスと接触する部分が、少なくとも反応室である請求項4記載の酸化珪素製造装置の処理方法。The processing method of the silicon oxide manufacturing apparatus according to claim 4, wherein the portion in contact with the silicon oxide gas is at least a reaction chamber. 被覆の厚さが1〜500μmであり、熱分解炭素の密度が1.8〜2.3g/cmThe thickness of the coating is 1 to 500 μm, and the density of pyrolytic carbon is 1.8 to 2.3 g / cm. 3Three であり、炭素材料の表面粗さRThe surface roughness R of the carbon material aa が、0.1〜1,000μmである、請求項4又は5記載の酸化珪素製造装置の処理方法。The processing method of the silicon oxide manufacturing apparatus of Claim 4 or 5 which is 0.1-1,000 micrometers. 酸化珪素原料を反応させて酸化珪素ガスを生成させる反応室と、反応室を加熱する加熱手段と、酸化珪素ガスを析出させて酸化珪素を回収する回収室とを備え、酸化珪素ガスと接触する部分が炭素材料からなる酸化珪素製造装置を用いて、上記加熱手段により800〜2,200℃に加熱した装置内に炭素含有ガスを供給し、上記酸化珪素ガスと接触する部分の炭素材料の表面に、熱分解炭素の被膜を形成させる工程と、この被膜が形成された酸化珪素製造装置を用いて、酸化珪素のガスを発生させ、そのガスを冷却・凝集して固体の酸化珪素として回収する工程を含む酸化珪素の製造方法。A reaction chamber for generating silicon oxide gas by reacting a silicon oxide raw material, a heating means for heating the reaction chamber, and a recovery chamber for depositing silicon oxide gas to recover silicon oxide, which are in contact with the silicon oxide gas The surface of the carbon material in the part that is in contact with the silicon oxide gas by supplying a carbon-containing gas into the apparatus heated to 800 to 2,200 ° C. by the heating means using a silicon oxide production apparatus having a part made of a carbon material In addition, a process of forming a film of pyrolytic carbon and a silicon oxide production apparatus on which the film is formed are used to generate a silicon oxide gas, which is cooled and aggregated to be recovered as solid silicon oxide. A method for producing silicon oxide comprising a step. 酸化珪素ガスと接触する部分が、少なくとも反応室である請求項7記載の酸化珪素の製造方法。The method for producing silicon oxide according to claim 7, wherein the portion in contact with the silicon oxide gas is at least a reaction chamber. 被覆の厚さが1〜500μmであり、熱分解炭素の密度が1.8〜2.3g/cmThe thickness of the coating is 1 to 500 μm, and the density of pyrolytic carbon is 1.8 to 2.3 g / cm. 3Three であり、炭素材料の表面粗さRThe surface roughness R of the carbon material aa が、0.1〜1,000μmである、請求項7又は8記載の酸化珪素の製造方法。The manufacturing method of the silicon oxide of Claim 7 or 8 whose is 0.1-1,000 micrometers.
JP2012236605A 2012-10-26 2012-10-26 Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide Active JP5920172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236605A JP5920172B2 (en) 2012-10-26 2012-10-26 Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236605A JP5920172B2 (en) 2012-10-26 2012-10-26 Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide

Publications (2)

Publication Number Publication Date
JP2014084264A JP2014084264A (en) 2014-05-12
JP5920172B2 true JP5920172B2 (en) 2016-05-18

Family

ID=50787676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236605A Active JP5920172B2 (en) 2012-10-26 2012-10-26 Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide

Country Status (1)

Country Link
JP (1) JP5920172B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483048A (en) * 2019-09-12 2019-11-22 北京动力机械研究所 A kind of graphite heat storage and preparation method thereof
JP7260516B2 (en) * 2020-09-16 2023-04-18 株式会社大阪チタニウムテクノロジーズ Silicon monoxide (SiO) gas continuous generation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673459B2 (en) * 1999-05-07 2011-04-20 イビデン株式会社 Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus
JP2001220124A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Device for manufacturing silicon oxide powder
JP2003183076A (en) * 2001-12-17 2003-07-03 Nippon Carbon Co Ltd Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JP2003192459A (en) * 2001-12-27 2003-07-09 Nippon Carbon Co Ltd Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon

Also Published As

Publication number Publication date
JP2014084264A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
EP2309039B1 (en) Seed crystal for growth of silicon carbide single crystal, process for producing the same, and process for producing silicon carbide single crystal by sublimation
US7988941B2 (en) Graphene sheet and method of preparing the same
US9017634B2 (en) In-line manufacture of carbon nanotubes
Ali et al. Tantalum carbide films synthesized by hot-filament chemical vapor deposition technique
CN113549895A (en) Method for preparing tantalum carbide coating on surface of graphite substrate and graphite device
KR20140138109A (en) Method and system for the production of silicon oxide deposit
TWI526585B (en) Graphite crucible for single crystal pulling device and method for manufacturing the same
JP5920172B2 (en) Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide
Zhang et al. Preparation and ablation behavior of HfC-SiC co-deposited coatings with different proportions
Gai et al. HfB2 coating on C/C composites prepared by chemical vapor deposition: Thermodynamics and experimental investigation
JP3638345B2 (en) Pyrolytic boron nitride container
US20080187685A1 (en) Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
Piazza et al. Carbon nanotubes coated with diamond nanocrystals and silicon carbide by hot-filament chemical vapor deposition below 200 C substrate temperature
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
Yoon et al. Effect of Cl/H input ratio on the growth rate of MoSi2 coatings formed by chemical vapor deposition of Si on Mo substrates from SiCl4–H2 precursor gases
JP6468240B2 (en) Silicon monoxide manufacturing apparatus and manufacturing method
TWI667363B (en) Method for fabricating carbon nanotube array
JP2000272990A (en) Crucible comprising pyrolytic graphite and used for growing single crystal
JP3942158B2 (en) Method for producing cylindrical SiC molded body
Bhattacharyya Raman Analysis of Deposition Pressure Variations in Nanocomposite SiCN Coatings: A 4-Stage Model
US20220290324A1 (en) SiC SUBSTRATE PRODUCTION METHOD
JP3803148B2 (en) Method for recycling and using laminated member and laminated member used therefor
JP5723615B2 (en) Graphite crucible for single crystal pulling apparatus and manufacturing method thereof
JP5627089B2 (en) Carbon material and manufacturing method thereof
JPH11171669A (en) Production of boron carbide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5920172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150