WO2012086508A1 - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
WO2012086508A1
WO2012086508A1 PCT/JP2011/079020 JP2011079020W WO2012086508A1 WO 2012086508 A1 WO2012086508 A1 WO 2012086508A1 JP 2011079020 W JP2011079020 W JP 2011079020W WO 2012086508 A1 WO2012086508 A1 WO 2012086508A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heat transfer
transfer body
discharge lamp
lamp according
Prior art date
Application number
PCT/JP2011/079020
Other languages
French (fr)
Japanese (ja)
Inventor
清水 保雄
充 関野
芹澤 和泉
金井 信夫
壮則 早川
Original Assignee
株式会社オーク製作所
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オーク製作所, 国立大学法人信州大学 filed Critical 株式会社オーク製作所
Publication of WO2012086508A1 publication Critical patent/WO2012086508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode

Definitions

  • the present invention relates to a discharge lamp that can be used as a light source for photolithography, sterilization treatment, and the like, and more particularly, to an electrode structure of a high-power discharge lamp such as a short arc type discharge lamp.
  • a short arc type discharge lamp or the like can irradiate light with high luminance, and is used as a light source for an exposure apparatus or the like.
  • it is required to increase the output of the discharge lamp, and accordingly, it is required to increase the rated power consumption to the maximum.
  • the surface of the electrode is radiated in a fin shape, or the surface of the tungsten electrode is carbonized to form a heat dissipation layer to prevent electrode evaporation (for example, 2003-249191).
  • the electrode surface treatment is not performed, and heating of the electrode can be prevented by enclosing a metal material having a higher thermal conductivity and a lower melting point than the metal electrode body in the interior space of the body (see Japanese Patent No. 3994880). ). Due to the thermal conductivity of the metal material and heat convection in the electrode internal space caused by melting, the heat at the electrode tip is transported to the electrode support rod side, and the temperature of the entire electrode is made uniform.
  • a hollow ceramic sleeve can be arranged around the electrode body, and the temperature rise of the electrode is suppressed by ceramics having high thermal conductivity (Japanese Patent Laid-Open No. 2008-2008). -Ref. 186790).
  • the thermal conductivity inside the electrode is not improved, and the electrode tip is overheated.
  • the ceramic material is configured as a heat transfer body, an increase in the amount of current flowing between the electrodes is affected due to the insulating properties of the ceramic, and the electrode structure is limited.
  • the metal thermal conductivity is limited to its intrinsic value, so higher power and higher current will be achieved in the future. Then, overheating and melting of the electrode tip cannot be reliably suppressed.
  • the present invention is directed to effectively suppressing an increase in electrode temperature in a high output discharge lamp.
  • the discharge lamp of the present invention includes a pair of electrodes disposed opposite to each other in a discharge tube and a pair of electrode support rods that support the electrodes, and at least one of the electrodes or the electrode support rods has a higher thermal conductivity than the metal. And a heat transfer body formed of a material made of carbon in a particulate or fibrous form. And a heat transfer body comprises at least one part of an electrode or an electrode support bar by the integral structure, It is characterized by the above-mentioned.
  • the heat transfer body represents a structure in which carbon is entirely contained and an integral structure is formed.
  • a carbon fiber bundle can be used as a heat transfer body made of carbon fiber or a particulate carbon base material.
  • a carbon fiber bundle can be formed by bundling carbon fiber on a cylindrical metal member such as tantalum. It can be configured as a heat transfer body. It is also possible to mold using powdered carbon as a carbon substrate.
  • the heat transfer body it is possible to constitute a heat transfer body having only a carbon (graphite) crystal structure, or a metal / carbon composite material added with a metal such as a C / C composite or tungsten is also applicable. Is possible.
  • the heat transfer body may be formed by mixing with a metal such as powdered tungsten.
  • carbon nanofibers such as carbon nanotubes may be included in the heat transfer body.
  • the heat transfer body Since the heat transfer body has a carbon-based structure, the heat conductivity is superior to that of metal, and the melting point is similar to or higher than that of metal. Therefore, during discharge, the heat at the electrode tip is efficiently transported by the heat transfer body, and the temperature of the entire electrode is made uniform. Since heat can diffuse from the electrode body through the support rod, this reduces the temperature of the electrode, suppresses its consumption, and extends the lamp life. In addition, since the heat transfer body is conductive and has a stable strength against heat and external force, it is possible to suppress an increase in temperature even if various electrode structures are employed.
  • the temperature at the tip of the anode is most likely to rise during discharge due to electron collision.
  • the electrode structure provided with the heat transfer body can be configured in various modes, and the heat transfer body may be provided as a part of the electrode, or the entire electrode may be configured as the heat transfer body.
  • a heat transfer body is provided as a part of the electrode, it can be applied to any electrode structure portion such as an electrode tip portion, an electrode inside, or an electrode side surface portion.
  • an electrode support rod may be configured as a heat transfer body.
  • the tip portion of the electrode that rises in temperature is made of a metal such as tungsten.
  • an electrode body in which an internal space is formed along the electrode axial direction is configured, and the heat transfer body is It is desirable to accommodate in the internal space.
  • a heat transfer body is constituted by a carbon fiber bundle inserted through a cylindrical member, the heat transfer body is provided in the internal space with the carbon fiber bundle protruding from the cylindrical member along the electrode axis direction. Is good.
  • the lamp In short arc type discharge lamps, etc., the lamp is installed in the vertical direction, and the electrode support rod supports the electrode. In view of securely holding the electrode, it is desirable to provide an electrode lid that is joined to the electrode support rod and the electrode body and seals the internal space. In order to ensure the connection between the electrode lid, the electrode main body, and the electrode support rod, it is preferable to adjust the size of the heat transfer body to the internal space size and pack it in the internal space without a gap.
  • the heat transfer material In order to transport heat by convection, it is preferable to enclose the heat transfer material in the internal space so as to provide a gap, and to enclose a heat conductive material having a melting point lower than that of the electrode body in the internal space.
  • heat convection occurs in the internal space due to melting of the heat conductive material, and heat is transported to the electrode support bar side.
  • the heat transfer body is joined to the electrode lid and extends so as to contact the thermally conductive material during lighting.
  • the heat transfer body may be configured as a cylindrical portion of an electrode body that forms an internal space in order to release heat carried by thermal convection from the side surface of the electrode.
  • the “gradient structure” refers to a structure in which the composition component and structure of the internal structure change continuously / stepwise at and near the joint, and the material functions such as temperature change are continuously / It changes step by step.
  • a recess may be formed in the electrode body so that the inner space is opened to the electrode support rod side without providing an electrode lid.
  • an electrode support rod may join with a heat exchanger.
  • the electrode support rod extends to the bottom surface of the internal space to hold the electrode tip.
  • the heat transfer body is formed in a cylindrical shape, and is arranged coaxially with a gap from the electrode support rod so that the bottom surface of the internal space is connected to the outside. It is good.
  • the electrode body part excluding the electrode tip part may be formed by joining the electrode support bar and the electrode wire tab.
  • the electrode is provided with a shaft portion extending from the electrode tip portion along the electrode axial direction and coupled to the electrode support rod, and the cylindrical heat transfer body is arranged around the shaft portion. It is better to arrange them coaxially.
  • the heat at the electrode tip is transferred to the sealed tube side through the electrode support rod.
  • the temperature of the sealing tube is adjusted by cooling air, water cooling, etc., and the temperature can be effectively adjusted by transporting the heat of the electrode to the sealing tube side.
  • FIG. 1 is a schematic plan view of a short arc type discharge lamp according to a first embodiment.
  • the short arc type discharge lamp 10 includes an arc tube 12 made of transparent quartz glass, and a cathode 20 and an anode 30 are arranged in the arc tube 12 to face each other with a predetermined interval.
  • quartz glass sealing tubes 13 ⁇ / b> A and 13 ⁇ / b> B are connected to the arc tube 12 and are integrally formed.
  • the short arc type discharge lamp 10 is arranged so that the electrode axis is along the vertical direction.
  • sealing tubes 13A and 13B Inside the sealing tubes 13A and 13B, conductive electrode support rods 17A and 17B for supporting the cathode 20 and the anode 30 are disposed, and the conductive lead rods 15A and 15B are interposed through the metal foils 16A and 16B, respectively. Connected with. Both ends of the sealing tubes 13A and 13B are closed by the caps 19A and 19B, and the sealing tubes 13A and 13B are welded to a glass tube and a glass rod (not shown) provided in the discharge tube. Thus, the discharge space in the arc tube 12 is sealed. A discharge gas such as mercury and argon gas is enclosed in the arc tube 12.
  • a discharge gas such as mercury and argon gas is enclosed in the arc tube 12.
  • the lead rods 15A and 15B are connected to an external power source (not shown), and power is supplied to the cathode 20 and the anode 30 via the lead rods 15A and 15B.
  • an external power source not shown
  • power is supplied to the cathode 20 and the anode 30 via the lead rods 15A and 15B.
  • FIG. 2 is a schematic cross-sectional view of the anode 30.
  • the anode 30 includes a bottomed cylindrical anode main body (hereinafter referred to as an electrode main body) 42 including an electrode tip portion 43, and the heat transfer body 40 is accommodated in a cylindrical internal space 42 ⁇ / b> S formed in the electrode main body 42. .
  • the internal space 42S is formed in a cylindrical portion 44 extending from the electrode tip portion 43 to the electrode support rod side, and the heat transfer body 40 is filled in the internal space 42S without a gap.
  • the size of the heat transfer body 40 is determined according to the space of the internal space 42S.
  • the ring-shaped electrode lid 46 is coupled with the cylindrical portion 44 of the electrode body 42 to seal the heat transfer body 40.
  • the electrode support rod 17 ⁇ / b> B is connected to the electrode lid 46 and holds the anode 30 through the electrode lid 46.
  • the electrode body 42, the electrode lid 46, and the electrode support rod 17B are made of tungsten.
  • the heat transfer body 40 extending along the electrode axis E inside the anode 30 has a conductive tungsten / carbon composite material (hereinafter referred to as a W / C composite) having a higher thermal conductivity than the metal constituting the electrode body. Material).
  • the W / C composite material is a material in which a carbon substrate such as a C / C composite is coated with tungsten, or powdered carbon is mixed with powdered tungsten to be integrally formed.
  • the heat transfer body 40 has a higher thermal conductivity than tungsten constituting the electrode body 42 at room temperature or a temperature atmosphere during discharge, and has a higher strength against heat and external impacts. Furthermore, the melting point of the heat transfer body 40 is high, and melting due to heat during discharge does not substantially occur.
  • a heat transfer body 40 suitable for the size of the internal space 42S is enclosed in an electrode body 42 in which the internal space 42S is formed in advance. Then, a separately prepared electrode lid 46 is joined to and integrated with the cylindrical portion 44 of the electrode body 42.
  • welding such as fusion welding or brazing is possible.
  • the heat transfer body 40 is in contact with the bottom surface 42T of the internal space 42S, that is, the electrode tip portion 43. Therefore, the heat generated by the electron collision received by the electrode tip surface 43S during the discharge is transported to the electrode support rod side by the heat transfer body 40 having excellent thermal conductivity. Thereby, the temperature of the anode 30 is made uniform as a whole without the electrode tip 43 being locally overheated.
  • the internal space 42 ⁇ / b> S is formed in the electrode body including the electrode tip 43.
  • a heat transfer body 40 made of a W / C (tungsten / carbon) composite material is sealed in the internal space 42S of the anode 30, and is sealed by an electrode support rod 17B and an electrode lid 46 coupled to the electrode body 42.
  • the temperature of the entire anode is made uniform, so that it is prevented from devitrifying due to melting and evaporation of the electrode tip portion 43, thereby reducing the light emission efficiency, and suppressing electrode consumption. it can. Further, since the heat transfer body 40 has conductivity, even if the power increases and the amount of current increases, it does not affect the discharge.
  • the bondability is excellent, and the electrode support bar 17B can reliably hold the anode 30.
  • the heat transfer body 40 is not exposed on the electrode surface, carbon is released into the arc tube 12 during discharge, and a carbon thin film is formed in the tube without reducing the luminous efficiency. Further, by forming the internal space 42S in the anode 30, the weight of the electrode can be reduced.
  • the heat transfer body 40 may be coupled to the electrode body 42 by welding or the like. Further, the size of the heat transfer body 40 may be adjusted, and a clearance may be provided to enclose the heat transfer body 40 in the internal space 42S.
  • a gap is provided in the electrode internal space, and a heat conductive material that melts during discharge is enclosed.
  • a heat conductive material that melts during discharge is enclosed.
  • it is substantially the same as 1st Embodiment.
  • FIG. 3 is an anode cross-sectional view of a short arc type discharge lamp according to the second embodiment.
  • the anode 130 has an internal space 142S as in the first embodiment, and the electrode body 142 including the electrode tip 143, the electrode lid 146, and the electrode support rod 17B are integrally coupled.
  • the columnar heat transfer body 140 is smaller than the diameter of the internal space 142S and extends along the electrode axis direction.
  • One end 140A of the heat transfer body 140 is coupled to the electrode lid 146, while the other end 140B is not in contact with the bottom surface 142T of the internal space 142S, that is, the electrode tip 143.
  • the electrode lid 146 and the heat transfer body 140 which are separately formed by sintering, are prepared, and conventionally known such as laser welding, brazing, resistance welding, welding such as press fitting, or screwing. It may be combined by the method of.
  • a heat conduction material 150 is sealed with a gap, and melts and contacts the heat transfer body 140 during discharge.
  • the heat conductive material 150 is made of a metal material having a melting point lower than that of the electrode body 142 (for example, gold, silver, copper, indium, zinc, lead, or an alloy obtained by combining them).
  • the heat conductive material 150 is melted to cause convection in the gap portion of the internal space 142S. Thereby, heat generated in the electrode tip portion 143 including the electrode tip surface 143S is transported in the direction of the electrode support rod 17, and the temperature of the anode 130 is made uniform.
  • the heat transfer body 140 is in contact with the heat conductive material 150 during discharge, the heat of the molten heat conductive material 150 can be efficiently transported to the electrode support rod side.
  • the electrode lid 146 may be made of molybdenum instead of tungsten.
  • the inner surface of the cylindrical portion 144 and the heat transfer body 140 may be combined.
  • FIG. 4 is an anode cross-sectional view of a short arc type discharge lamp according to a third embodiment.
  • the anode 230 includes an electrode main body 242 composed of an electrode front end portion 243 including the electrode front end surface 243S and a cylindrical portion 244, and the heat transfer body 240 has no gap in the internal space 242S formed in the electrode main body 242. Embedded. As shown in FIG. 4, the surface 240S of the heat transfer body 240 is exposed to the outside of the electrode, and the internal space 242S is not sealed. The heat transfer body 240 is coupled to the tip portion 17S of the electrode support rod 17B by press fitting, welding, or the like.
  • the heat transfer body 240 Since the heat transfer body 240 is exposed outside the electrode, the heat transported from the electrode tip 243 can be easily released to the outside, and the temperature rise of the anode 243 can be suppressed. Moreover, since the electrode lid is not provided, the electrode can be reduced in weight.
  • the entire electrode is constituted by a heat transfer body.
  • FIG. 5 is an anode sectional view of a short arc type discharge lamp according to the fourth embodiment.
  • the anode 330 is entirely constituted by the heat conductor 340 and is joined to the electrode support rod 17B.
  • the electrode body 342 is produced by mixing and sintering tungsten and powdered carbon.
  • the electrode body 342 and the electrode support rod 17B are joined by welding, press-fitting, or the like. Since the anode 330 as a whole is composed of a heat conductor, the heat transport effect during discharge is sufficiently exerted, and electrode consumption can be suppressed.
  • the electrode tip is made of metal. About another structure, it is substantially the same as 4th Embodiment.
  • FIG. 6 is an anode cross-sectional view of a short arc type discharge lamp according to a fifth embodiment.
  • the anode 430 is constituted by a heat transfer body 440 and an electrode tip 443 constituting the electrode body, and is integrated.
  • the heat transfer body 440 and the electrode tip 443 are separately sintered and formed in advance, and are integrated by a conventionally known welding method such as brazing, press fitting, beam welding, or screwing. Or after shaping
  • the tip portion of the electrode where the temperature rises abruptly is made of metal, not a heat transfer body containing carbon, carbon is not released into the discharge space during discharge, and the electrode life can be extended.
  • a short arc type discharge lamp according to a sixth embodiment will be described with reference to FIG.
  • the sixth embodiment unlike the fifth embodiment, there is an inclined structure in the connection portion between the electrode tip and the heat transfer body. About another structure, it is substantially the same as 5th Embodiment.
  • FIG. 7 is an anode cross-sectional view of a short arc type discharge lamp according to a sixth embodiment.
  • the anode 530 is a tungsten / carbon composite material, and has a heat transfer body 540 constituting an electrode body and an electrode tip portion 543 made of tungsten, and an inclined tissue portion 545 is formed therebetween.
  • the inclined structure portion 545 is a structure layer in which tungsten / carbon is formed into an inclined structure.
  • the uppermost layer 545S has a tungsten content of almost 100%
  • the lowermost layer 545T has a carbon content of almost 100%.
  • the contents of tungsten and carbon are almost inversely proportional to each other. The higher the carbon content, the lower the tungsten content.
  • the term “gradient” refers to an integrated material that changes continuously or stepwise from one function / characteristic to another function / characteristic (for example, “Technological development of functionally graded materials” (Kamimura). Seiichi et al., Edited by CMC Publishing, published on October 31, 2003)), and the sintered body of the present invention has a continuous or stepwise density gradient, and characteristics (supply characteristics, strength, etc. of electron-emitting materials) ) Changes continuously / stepwise.
  • the inclined structure portion 545 may be formed by a known heat sintering method, and is stacked and filled while changing the mixing ratio of tungsten and carbon powders, and the tungsten / carbon compact formed by molding is slowly heated. And sinter. And the inclination structure
  • an inclined structure may be formed at the joint portion of the heat transfer body with the electrode lid. Furthermore, in the first to sixth embodiments, an inclined structure may be formed at a joint portion with a metal such as an electrode body.
  • a short arc type discharge lamp according to a seventh embodiment will be described with reference to FIG.
  • an electrode shaft portion is provided, and the electrode tip portion and the electrode support rod are connected by metal.
  • the electrode tip portion and the electrode support rod are connected by metal.
  • it is substantially the same as 6th Embodiment.
  • FIG. 8 is a cross-sectional view of the anode of the short arc type discharge lamp according to the seventh embodiment.
  • the anode 630 includes an electrode main body 642 including a columnar electrode shaft portion 636 extending along the electrode axis direction and an electrode tip portion 643, and a cylindrical heat transfer body 640 is coaxially disposed around the electrode shaft portion 636. And the electrode tip 643.
  • the electrode support rod 17 ⁇ / b> B is coupled to the end of the electrode shaft portion 636.
  • the electrode support bar 17B can reliably hold the anode 630.
  • the electrode support rod is coupled to the electrode tip.
  • the electrode support rod is coupled to the electrode tip.
  • the electrode tip is the same as 7th Embodiment.
  • FIG. 9 is an anode cross-sectional view of a short arc type discharge lamp according to the eighth embodiment.
  • the anode 730 includes a cylindrical heat transfer body 740 and an electrode tip 743, and the heat transfer body 740 forms an anode body.
  • the electrode support rod 17 ⁇ / b> B extends in the electrode axial direction through the hole 740 ⁇ / b> N of the heat transfer body 740 and is coupled to the electrode tip portion 743.
  • a gap is provided between the electrode support rod 17B and the heat transfer body 740, and the bottom surface 740T of the hole 740N is exposed to the outside.
  • the hole 740N of the heat transfer body 740 is configured as an internal space of the electrode body, and the heat of the electrode tip 743 is released to the outside through the heat transfer body 740 and the hole 740N. Heat can be effectively transported using both the heat transfer body 740 and the internal space, and electrode consumption can be suppressed. Further, since the electrode support rod 17B is directly joined to the electrode tip 743, the anode 730 is stably held.
  • the electrode body surrounds the heat transfer body.
  • the electrode body surrounds the heat transfer body.
  • it is substantially the same as 8th Embodiment.
  • FIG. 10 is an anode cross-sectional view of a short arc type discharge lamp according to the ninth embodiment.
  • the anode 830 includes an electrode main body 842 in which an internal space 842S is formed as in the first embodiment, and a cylindrical heat transfer body 840 is inserted and arranged in the internal space 842S. Yes.
  • the outer diameter size of the heat transfer body 840 is matched to the size of the internal space 842S.
  • the electrode support rod 17 ⁇ / b> B passes through the inside of the heat transfer body 840, and the tip portion thereof is coupled to the electrode tip portion 843. Since the heat transfer body 840 is not exposed on the side surface of the electrode, it is possible to prevent a decrease in luminous efficiency due to carbon emission.
  • the electrode support rod is constituted by a heat transfer body.
  • FIG. 11 is an anode cross-sectional view of a short arc type discharge lamp according to the tenth embodiment.
  • the anode 930 is constituted by a cylindrical electrode body 942 made of metal such as tungsten, and a hole 942N is formed along the central axis.
  • the electrode support rod 170B is configured by a heat transfer body made of a tungsten / carbon composite material. The electrode support rod 170B is inserted and fixed in the hole 942N of the electrode body 942, and extends to the vicinity of the electrode tip of the electrode body 942.
  • the electrode support bar 170B is coupled to the electrode body 942 by sintering or the like.
  • the electrode support rod 170B is composed of a heat transfer material having excellent heat conductivity, the heat of the electrode tip 943 is transferred to the sealed tube side through the electrode support rod 170B. Rather than trying to make the heat uniform inside the electrode, heat is released to the normally cooled sealing tube, so that overheating of the electrode tip and the entire electrode can be suppressed. Moreover, the heat
  • FIG. 12 is an anode cross-sectional view of a short arc type discharge lamp according to the eleventh embodiment.
  • the anode 1030 has a configuration in which an electrode support rod 170B is coupled to the electrode body 1042 in which the internal space 1042S is formed, and the internal space 1042S is closed by the electrode lid 1046.
  • the electrode lid 1046 is formed with a vent hole 1046N along with a center hole 1046K through which the electrode support rod 170B is inserted. As a result, heat in the internal space 1042S is released to the outside of the electrode.
  • a short arc type discharge lamp according to a twelfth embodiment will be described with reference to FIG.
  • a part of the electrode body is constituted by a heat transfer body.
  • it is substantially the same as 2nd Embodiment.
  • FIG. 13 is an anode cross-sectional view of a short arc type discharge lamp according to the twelfth embodiment.
  • the anode 1130 includes an electrode body 1142 including a metal electrode tip 1143 and a bottomed cylindrical heat transfer body 1144, and an internal space 1142 ⁇ / b> S is formed in the electrode body 1142.
  • the electrode support rod 17B is coupled to an electrode lid 1146 that seals the internal space 1142S.
  • a rod-shaped heat transfer body 1140 extends along the electrode axis E and is coupled to the electrode lid 1146.
  • a heat conductive material 1150 having a melting point lower than that of metal is enclosed in the internal space 1142S.
  • FIG. 14 is a schematic cross-sectional view of an anode 1230 of a short arc type discharge lamp according to the thirteenth embodiment.
  • the anode 1230 has a heat transfer body 1240 accommodated in a cylindrical inner space 1242S formed in a bottomed cylindrical electrode body 1242.
  • the internal space 1242S is formed in a cylindrical portion 1244 extending from the electrode tip portion 1243 toward the electrode support rod 17B, and a heat transfer body 1240 surrounded by a cylindrical constricting member 1245 is disposed in the internal space 1242S.
  • the sizes of the heat transfer body 1240 and the constricting member 1245 are determined in accordance with the space of the internal space 1242S.
  • the ring-shaped electrode lid 1246 is coupled to the cylindrical portion 1244 of the electrode main body 1242 to seal the heat transfer body 1240 and the constricting member 1245.
  • the electrode support rod 17 ⁇ / b> B is connected to the electrode lid 1246 and holds the electrode 1230 via the electrode lid 1246.
  • the electrode body 1242, the electrode lid 1246, and the electrode support rod 17B are made of tungsten.
  • the heat transfer body 1240 extending along the electrode axis E inside the anode 1230 is composed of a carbon fiber bundle and is accommodated in a constricting member 1245 made of tantalum.
  • the heat transfer body 1240 is manufactured as follows. First, the carbon fiber bundle is inserted through the tantalum cylinder along the coaxial direction. At this time, the tantalum cylinder is made shorter than the axial length of the carbon fiber bundle so that the end face of the carbon fiber bundle protrudes beyond the end face of the tantalum cylinder. Further, the end surface of the carbon fiber bundle is a plane perpendicular to the axial direction.
  • a heat transfer body 1240 suitable for the size of the internal space 1242S is enclosed in an electrode body 1242 in which the internal space 1242S is formed in advance. Furthermore, the heat transfer body 1240 may be fitted with the internal space being tapered. Alternatively, the outer peripheral surface of the tantalum cylinder may be cut with high accuracy to enhance the adhesion between the outer peripheral surface of the heat transfer body and the inner peripheral surface of the internal space 1242S. Then, a separately prepared electrode lid 1246 is joined to and integrated with the cylindrical portion 44 of the electrode main body 1242. As an integration method, welding such as fusion welding or brazing is possible.
  • the heat transfer body 1240 is in contact with the bottom surface 1242T of the internal space 1242S, that is, the electrode tip 1243. Therefore, the heat generated by the electron collision received by the electrode tip surface 1243S during discharge is transported to the electrode support rod side by the heat transfer body 1240 having excellent thermal conductivity. Thereby, the temperature of the anode 1230 is made uniform as a whole without locally heating the electrode tip 1243.
  • heat transfer body 1240 is pressed against bottom surface 1242T of internal space 1242S.
  • the tantalum cylinder is cut shorter than the axial length of the carbon fiber bundle, so that the carbon fiber is wider than the inner diameter of the tantalum cylinder, so that the adhesion between the carbon fiber and the bottom surface of the internal space (number of contacts) Can be increased. Furthermore, in order to increase the thermal conductivity between the bottom surface 1242T of the internal space and the end surface of the heat transfer body, a carbon nanotube (hereinafter referred to as CNT) is mixed into the bottom surface 1242T of the internal space to provide a bridge effect.
  • CNT carbon nanotube
  • the internal space 1242S is formed in the electrode body including the electrode tip 1243.
  • a heat transfer body 1240 made of a carbon fiber bundle and a constricting member 1245 are enclosed in the internal space 1242S of the anode 1230, and is sealed by an electrode lid 1246 coupled to the electrode support rod 17B and the electrode body 1242.
  • the heat transfer body 1240 inside the anode 1230, the temperature of the whole anode is made uniform, so that it is prevented from devitrifying due to melting and evaporation of the electrode tip portion 1243, thereby reducing the light emission efficiency and suppressing electrode consumption. it can. Further, since the heat transfer body 1240 has suitable conductivity, even if the input power increases and the amount of current increases, it does not affect the discharge.
  • the bondability is excellent, and the electrode support bar 17B can reliably hold the anode 1230.
  • the heat transfer body 1240 is not exposed on the electrode surface, carbon is discharged into the arc tube during discharge, and a carbon thin film is formed in the tube without reducing the luminous efficiency.
  • the weight of the electrode can be reduced.
  • the outer diameter of the constricting member 1245 may be adjusted, and a gap may be provided to enclose the heat transfer body 1240 in the internal space 1242S.
  • Tantalum is used as the constriction member, but in addition, a member of a refractory metal having high ductility (for example, Nb) can be used.
  • the method for bonding the metal and the heat transfer body may be performed by a method other than the above-described method.
  • a heat transfer body may be provided on both the electrode support rod and the electrode, and the internal structure similar to that of the anode may be employed for the cathode.
  • the present invention may be applied to other types of discharge lamps than the short arc type.
  • the W / C composite material constituting the heat transfer body may be produced by adding tungsten to a carbon base material other than carbon fiber.
  • the components constituting the heat transfer body are not limited to the W / C composite material, and are a metal / carbon (graphite) composite material added with a metal other than tungsten, or a metal / carbon nanotube (CNT) composite material. Also good. Furthermore, you may shape

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

Disclosed is a discharge lamp which is provided with: a pair of electrodes that are arranged so as to face each other in a discharge tube; and a pair of electrode supporting rods that support the electrodes. The discharge lamp is configured such that at least one electrode or one electrode supporting rod comprises a heat transferring body, which is molded from a material that has a higher thermal conductivity than metals and is composed of particulate or fibrous carbon, and the heat transferring body integrally constitutes at least a part of the electrode or electrode supporting rod.

Description

放電ランプDischarge lamp
 本発明は、フォトリソグラフィー、殺菌処理などに光源として利用可能な放電ランプに関し、特に、ショートアーク型放電ランプなど、高出力放電ランプの電極構造に関する。 The present invention relates to a discharge lamp that can be used as a light source for photolithography, sterilization treatment, and the like, and more particularly, to an electrode structure of a high-power discharge lamp such as a short arc type discharge lamp.
 ショートアーク型放電ランプ等では輝度の高い光を照射可能であり、露光装置などの光源として利用される。液晶基板など露光対象物の大型化、スループット向上のため、放電ランプの高出力化が求められ、それに伴って定格消費電力を最大限増加させることが要求されている。 A short arc type discharge lamp or the like can irradiate light with high luminance, and is used as a light source for an exposure apparatus or the like. In order to increase the size of an object to be exposed such as a liquid crystal substrate and to improve the throughput, it is required to increase the output of the discharge lamp, and accordingly, it is required to increase the rated power consumption to the maximum.
 定格電力を大きくすると、ランプに流れる電流量が増加し、電極温度が上昇する。特に陽極の先端部が高温となり、時間経過とともに先端部が溶融、蒸発する。その結果、不安定なアーク放電、および金属の管内表面付着によって発光効率が低下するとともに、電極消耗によってランプ寿命が低下する。 ¡When the rated power is increased, the amount of current flowing through the lamp increases and the electrode temperature rises. In particular, the tip of the anode becomes hot, and the tip melts and evaporates over time. As a result, the luminous efficiency is lowered due to unstable arc discharge and metal inner surface adhesion, and the lamp life is reduced due to electrode consumption.
 このような過熱による電極溶融を防ぐため、例えば、電極表面をフィン状にして放熱し、あるいは、タングステン電極の表面を炭化させることによって放熱層を形成して電極の蒸発を防ぐ(例えば、特開2003-249191号公報参照)。 In order to prevent such electrode melting due to overheating, for example, the surface of the electrode is radiated in a fin shape, or the surface of the tungsten electrode is carbonized to form a heat dissipation layer to prevent electrode evaporation (for example, 2003-249191).
 一方、電極表面処理を行わず、金属の電極本体よりも熱伝導率が高く、融点の低い金属材料を本体内部空間に封入することで電極の加熱を防ぐことができる(特許第3994880号公報参照)。金属材料の熱伝導性、および溶融によって生じる電極内部空間での熱対流により、電極先端部の熱が電極支持棒側へ輸送され、電極全体の温度均一化が図られる。 On the other hand, the electrode surface treatment is not performed, and heating of the electrode can be prevented by enclosing a metal material having a higher thermal conductivity and a lower melting point than the metal electrode body in the interior space of the body (see Japanese Patent No. 3994880). ). Due to the thermal conductivity of the metal material and heat convection in the electrode internal space caused by melting, the heat at the electrode tip is transported to the electrode support rod side, and the temperature of the entire electrode is made uniform.
 また、電極先端部の熱を電極側面から逃すため、電極本体周囲に中空状のセラミックススリーブを配置することも可能であり、熱伝導性の高いセラミックスによって電極の温度上昇を抑制する(特開2008-186790号公報参照)。 In addition, in order to release the heat at the electrode tip from the side surface of the electrode, a hollow ceramic sleeve can be arranged around the electrode body, and the temperature rise of the electrode is suppressed by ceramics having high thermal conductivity (Japanese Patent Laid-Open No. 2008-2008). -Ref. 186790).
 電極表面を炭化しても、電極内部での熱伝導性が改善されず、電極先端部が過熱する。また、セラミック材料を伝熱体として構成した場合、セラミックスが絶縁性のために電極間を流れる電流量の増加に影響が生じ、電極構造が制限される。一方、熱伝導率が高く、融点の低い金属材料を電極内部に封入しても、金属の熱伝導率はそれ固有の値が上限となるので、今後ますます大電力、大電流化が図られると、電極先端部の過熱、溶融を確実に抑えることができない。 Even if the electrode surface is carbonized, the thermal conductivity inside the electrode is not improved, and the electrode tip is overheated. In addition, when the ceramic material is configured as a heat transfer body, an increase in the amount of current flowing between the electrodes is affected due to the insulating properties of the ceramic, and the electrode structure is limited. On the other hand, even if a metal material with a high thermal conductivity and a low melting point is enclosed inside the electrode, the metal thermal conductivity is limited to its intrinsic value, so higher power and higher current will be achieved in the future. Then, overheating and melting of the electrode tip cannot be reliably suppressed.
 本発明は、大出力の放電ランプにおいて、電極の温度上昇を効果的に抑えることに向けられる。 The present invention is directed to effectively suppressing an increase in electrode temperature in a high output discharge lamp.
 本発明の放電ランプは、放電管内に対向配置される一対の電極と、電極を支持する一対の電極支持棒とを備え、少なくとも一方の電極もしくは電極支持棒が、金属よりも熱伝導率が高く、粒子状あるいは繊維状の形態を呈している炭素から成る素材によって成形される伝熱体を備えている。そして、伝熱体は、一体的構造で電極もしくは電極支持棒の少なくとも一部を構成することを特徴とする。 The discharge lamp of the present invention includes a pair of electrodes disposed opposite to each other in a discharge tube and a pair of electrode support rods that support the electrodes, and at least one of the electrodes or the electrode support rods has a higher thermal conductivity than the metal. And a heat transfer body formed of a material made of carbon in a particulate or fibrous form. And a heat transfer body comprises at least one part of an electrode or an electrode support bar by the integral structure, It is characterized by the above-mentioned.
 ここで、伝熱体は、全体的に炭素が含まれて一体的構造が形成されるものを表す。炭素繊維または粒子状カーボン基材を素材とする伝熱体としては、炭素繊維束を使用することが可能であり、例えば、タンタルなどの筒状金属部材に炭素繊維を束ねることで炭素繊維束を伝熱体として構成することができる。また、粉末状カーボンをカーボン基材にして成形することも可能である。一方、伝熱体としては、カーボン(黒鉛)結晶構造だけの伝熱体を構成することも可能であり、あるいは、C/Cコンポジット、タングステンなどの金属を添加した金属/カーボン複合材なども適用可能である。例えば、粉末状タングステンなどの金属に混ぜて伝熱体を成形してもよい。さらに、伝熱体に対し、カーボンナノチューブなどのカーボンナノファイバを含ませても良い。 Here, the heat transfer body represents a structure in which carbon is entirely contained and an integral structure is formed. A carbon fiber bundle can be used as a heat transfer body made of carbon fiber or a particulate carbon base material. For example, a carbon fiber bundle can be formed by bundling carbon fiber on a cylindrical metal member such as tantalum. It can be configured as a heat transfer body. It is also possible to mold using powdered carbon as a carbon substrate. On the other hand, as the heat transfer body, it is possible to constitute a heat transfer body having only a carbon (graphite) crystal structure, or a metal / carbon composite material added with a metal such as a C / C composite or tungsten is also applicable. Is possible. For example, the heat transfer body may be formed by mixing with a metal such as powdered tungsten. Furthermore, carbon nanofibers such as carbon nanotubes may be included in the heat transfer body.
 伝熱体は、炭素をベースにした構造であるため、熱伝導性が金属よりも優れており、融点も金属と同様もしくはそれ以上高い。したがって、放電中、電極先端部の熱は伝熱体によって効率よく輸送され、電極全体の温度均一化が図られる。熱は電極本体から支持棒を経て拡散し得るので、これにより、電極の温度低下が図られ、その消耗が抑制され、ランプ寿命が延びる。また、伝熱体は導電性であるとともに、熱や外力などに対して安定した強度があるため、様々な電極構造を採用しても温度上昇を抑えることが可能となる。 Since the heat transfer body has a carbon-based structure, the heat conductivity is superior to that of metal, and the melting point is similar to or higher than that of metal. Therefore, during discharge, the heat at the electrode tip is efficiently transported by the heat transfer body, and the temperature of the entire electrode is made uniform. Since heat can diffuse from the electrode body through the support rod, this reduces the temperature of the electrode, suppresses its consumption, and extends the lamp life. In addition, since the heat transfer body is conductive and has a stable strength against heat and external force, it is possible to suppress an increase in temperature even if various electrode structures are employed.
 陽極先端部などは、電子衝突によって放電中最も温度上昇しやすい。電極先端部の熱を効果的に電極支持棒側へ輸送するため、少なくとも電極内部において(電極自身あるいは電極支持棒として)電極軸方向に延在するように伝熱体を構成するのが望ましい。 The temperature at the tip of the anode is most likely to rise during discharge due to electron collision. In order to effectively transport the heat at the tip of the electrode to the electrode support rod side, it is desirable to configure the heat transfer body so as to extend in the electrode axial direction at least inside the electrode (as the electrode itself or as the electrode support rod).
 伝熱体を備える電極構造は様々な態様によって構成可能であり、電極の一部として伝熱体を設け、あるいは、電極全体を伝熱体として構成してもよい。電極の一部として伝熱体を設ける場合、電極先端部、電極内部、電極側面部など如何なる電極構造部分においても適用可能である。さらに、電極の代わりに、電極支持棒を伝熱体として構成してもよい。 The electrode structure provided with the heat transfer body can be configured in various modes, and the heat transfer body may be provided as a part of the electrode, or the entire electrode may be configured as the heat transfer body. In the case where a heat transfer body is provided as a part of the electrode, it can be applied to any electrode structure portion such as an electrode tip portion, an electrode inside, or an electrode side surface portion. Furthermore, instead of the electrode, an electrode support rod may be configured as a heat transfer body.
 炭素が放電管内に放出されると、放電管内面に炭素が付着し、炭素薄膜を管内表面に形成して発光効率を低下させる。そのため、温度上昇する電極先端部については、タングステンなどの金属で構成するのが望ましい。 When carbon is released into the discharge tube, carbon adheres to the inner surface of the discharge tube, and a carbon thin film is formed on the inner surface of the tube, thereby reducing the luminous efficiency. Therefore, it is desirable that the tip portion of the electrode that rises in temperature is made of a metal such as tungsten.
 さらに、電極側面からの炭素放出を防ぐため、金属の電極先端部と伝熱体を備えた電極の構成として、内部空間を電極軸方向に沿って形成した電極本体を構成し、伝熱体を内部空間に収容するのが望ましい。例えば、筒状部材内に挿通させた炭素繊維束で伝熱体を構成する場合、炭素繊維束が筒状部材から電極軸方向に沿って突出した状態で、伝熱体を内部空間に設けるのがよい。 Furthermore, in order to prevent carbon emission from the electrode side surface, as an electrode configuration including a metal electrode tip and a heat transfer body, an electrode body in which an internal space is formed along the electrode axial direction is configured, and the heat transfer body is It is desirable to accommodate in the internal space. For example, when a heat transfer body is constituted by a carbon fiber bundle inserted through a cylindrical member, the heat transfer body is provided in the internal space with the carbon fiber bundle protruding from the cylindrical member along the electrode axis direction. Is good.
 ショートアーク型放電ランプなどでは、ランプが鉛直方向に設置され、電極支持棒が電極を支える。電極を確実に保持することを考慮すれば、電極支持棒および電極本体と接合し、内部空間を密閉する電極蓋を設けるのが望ましい。電極蓋と電極本体、電極支持棒との連結を確実にするため、伝熱体のサイズを内部空間サイズに調整し、隙間なく内部空間に詰め込むのがよい。 In short arc type discharge lamps, etc., the lamp is installed in the vertical direction, and the electrode support rod supports the electrode. In view of securely holding the electrode, it is desirable to provide an electrode lid that is joined to the electrode support rod and the electrode body and seals the internal space. In order to ensure the connection between the electrode lid, the electrode main body, and the electrode support rod, it is preferable to adjust the size of the heat transfer body to the internal space size and pack it in the internal space without a gap.
 対流によって熱輸送するため、隙間を設けるように伝熱体を内部空間に収容し、電極本体よりも融点が低い熱伝導性材料を、内部空間に封入するのがよい。放電中、熱伝導性材料の溶融によって内部空間に熱対流が生じ、電極支持棒側へ熱が輸送される。また、溶融する熱伝導性材料の熱を効果的に輸送するため、伝熱体を電極蓋と接合させ、点灯中熱伝導性材料と接するように延びているのが望ましい。特に、熱対流によって運ばれる熱を電極側面からも放出させるため、伝熱体を、内部空間を形成する電極本体の円筒部として構成してもよい。 In order to transport heat by convection, it is preferable to enclose the heat transfer material in the internal space so as to provide a gap, and to enclose a heat conductive material having a melting point lower than that of the electrode body in the internal space. During discharge, heat convection occurs in the internal space due to melting of the heat conductive material, and heat is transported to the electrode support bar side. Further, in order to effectively transport the heat of the thermally conductive material to be melted, it is desirable that the heat transfer body is joined to the electrode lid and extends so as to contact the thermally conductive material during lighting. In particular, the heat transfer body may be configured as a cylindrical portion of an electrode body that forms an internal space in order to release heat carried by thermal convection from the side surface of the electrode.
 伝熱体と電極蓋の熱膨張率が相違するため、点灯中に結合部分から亀裂が生じやすい。伝熱体と電極蓋の一体的な結合を確実にするため、伝熱体と電極蓋との接合部分に傾斜組織を設けるのがよい。ここで、「傾斜組織」とは、その内部組織の組成成分および構造が、接合部およびその近傍において連続的/段階的に変化する組織を表し、温度変化など材料機能がそれに伴って連続的/段階的に変化する。 Since the thermal expansion coefficient of the heat transfer body and the electrode lid are different, cracks are likely to occur from the joints during lighting. In order to ensure the integral connection between the heat transfer body and the electrode lid, it is preferable to provide an inclined structure at the joint between the heat transfer body and the electrode lid. Here, the “gradient structure” refers to a structure in which the composition component and structure of the internal structure change continuously / stepwise at and near the joint, and the material functions such as temperature change are continuously / It changes step by step.
 一方、電極蓋を設けず、内部空間を電極支持棒側に開けるように凹部を電極本体に形成してもよい。この場合、電極支持棒が伝熱体と接合するように構成すればよい。 On the other hand, a recess may be formed in the electrode body so that the inner space is opened to the electrode support rod side without providing an electrode lid. In this case, what is necessary is just to comprise so that an electrode support rod may join with a heat exchanger.
 あるいは、電極を確実に保持するため、電極支持棒が、内部空間の底面まで延びて電極先端部を保持するのがよい。このとき、伝熱体を、内部空間を形成する電極本体の円筒部として構成してもよい。また、電極先端部の熱を電極支持棒側に逃すため、伝熱体を筒状に形成し、内部空間の底面が外部と繋がるように、電極支持棒と間隔を設けながら同軸的に配置するのがよい。 Alternatively, in order to securely hold the electrode, it is preferable that the electrode support rod extends to the bottom surface of the internal space to hold the electrode tip. At this time, you may comprise a heat exchanger as a cylindrical part of the electrode main body which forms internal space. In addition, in order to release the heat at the electrode tip to the electrode support rod side, the heat transfer body is formed in a cylindrical shape, and is arranged coaxially with a gap from the electrode support rod so that the bottom surface of the internal space is connected to the outside. It is good.
 電極に内部空間を設けないように構成することも可能であり、電極支持棒と電極線タブと接合し、電極先端部を除いた電極胴体部を構成してもよい。この場合、伝熱体と電極先端部との接合部において傾斜組織を設け、一体的構造を強化させるのがよい。 It is also possible to configure so that no internal space is provided in the electrode, and the electrode body part excluding the electrode tip part may be formed by joining the electrode support bar and the electrode wire tab. In this case, it is preferable to provide an inclined structure at the joint between the heat transfer body and the electrode tip to strengthen the integral structure.
 また、内部空間を電極内部に設けない構造として、電極に、電極先端部から電極軸方向に沿って延び、電極支持棒と結合する軸部を設け、円筒状の伝熱体を、軸部周りに同軸配置するのがよい。 In addition, as a structure in which the internal space is not provided inside the electrode, the electrode is provided with a shaft portion extending from the electrode tip portion along the electrode axial direction and coupled to the electrode support rod, and the cylindrical heat transfer body is arranged around the shaft portion. It is better to arrange them coaxially.
 一方、電極ではなく、電極支持棒を伝熱体として構成する場合、電極先端部の熱が電極支持棒を伝わって封止管側へ輸送される。通常、封止管では冷却風、水冷などによって温度調整を行っており、電極の熱を封止管側へ輸送することによって効果的に温度調整をすることが可能となる。電極先端部の熱を外部に放出させるため、電極支持棒側に開いた内部空間を形成するのが望ましく、電極支持棒は、内部空間の底面まで延びて電極本体と接合する。例えば、電極本体と接合し、内部空間と電極外部を連通させる穴が形成された電極蓋を設けるのがよい。 On the other hand, when an electrode support rod is used instead of the electrode as a heat transfer body, the heat at the electrode tip is transferred to the sealed tube side through the electrode support rod. Usually, the temperature of the sealing tube is adjusted by cooling air, water cooling, etc., and the temperature can be effectively adjusted by transporting the heat of the electrode to the sealing tube side. In order to release the heat at the tip of the electrode to the outside, it is desirable to form an internal space opened on the electrode support bar side, and the electrode support bar extends to the bottom surface of the internal space and is joined to the electrode body. For example, it is preferable to provide an electrode lid that is joined to the electrode main body and in which a hole for communicating the internal space and the electrode exterior is formed.
第1の実施形態であるショートアーク型放電ランプの概略的平面図である。It is a schematic plan view of the short arc type discharge lamp which is 1st Embodiment. 第1の実施形態である陽極の模式的断面図である。It is typical sectional drawing of the anode which is 1st Embodiment. 第2の実施形態であるショートアーク型放電ランプの陽極断面図である。It is anode sectional drawing of the short arc type discharge lamp which is 2nd Embodiment. 第3の実施形態であるショートアーク型放電ランプの陽極断面図である。It is an anode sectional view of the short arc type discharge lamp which is a 3rd embodiment. 第4の実施形態であるショートアーク型放電ランプの陽極断面図である。It is an anode sectional view of the short arc type discharge lamp which is a 4th embodiment. 第5の実施形態であるショートアーク型放電ランプの陽極断面図である。It is anode sectional drawing of the short arc type discharge lamp which is 5th Embodiment. 第6の実施形態であるショートアーク型放電ランプの陽極断面図である。It is an anode sectional view of the short arc type discharge lamp which is a 6th embodiment. 第7の実施形態であるショートアーク型放電ランプの陽極断面図である。It is an anode sectional view of the short arc type discharge lamp which is a 7th embodiment. 第8の実施形態であるショートアーク型放電ランプの陽極断面図である。It is anode sectional drawing of the short arc type discharge lamp which is 8th Embodiment. 第9の実施形態であるショートアーク型放電ランプの陽極断面図である。It is anode sectional drawing of the short arc type discharge lamp which is 9th Embodiment. 第10の実施形態であるショートアーク型放電ランプの陽極断面図である。It is an anode sectional view of the short arc type discharge lamp which is a 10th embodiment. 第11の実施形態であるショートアーク型放電ランプの陽極断面図である。It is an anode sectional view of the short arc type discharge lamp which is an 11th embodiment. 第12の実施形態であるショートアーク型放電ランプの陽極断面図である。It is anode sectional drawing of the short arc type discharge lamp which is 12th Embodiment. 第13の実施形態であるショートアーク型放電ランプの陽極断面図である。It is anode sectional drawing of the short arc type discharge lamp which is 13th Embodiment.
 以下では、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態であるショートアーク型放電ランプの概略的平面図である。 FIG. 1 is a schematic plan view of a short arc type discharge lamp according to a first embodiment.
 ショートアーク型放電ランプ10は、透明な石英ガラス製の発光管12を備え、発光管12内には陰極20、陽極30が所定間隔をもって対向配置されている。発光管12の両側には、石英ガラス製の封止管13A、13Bが発光管12と連設し、一体的に形成されている。ここでは、電極軸が鉛直方向に沿うようにショートアーク型放電ランプ10が配置されている。 The short arc type discharge lamp 10 includes an arc tube 12 made of transparent quartz glass, and a cathode 20 and an anode 30 are arranged in the arc tube 12 to face each other with a predetermined interval. On both sides of the arc tube 12, quartz glass sealing tubes 13 </ b> A and 13 </ b> B are connected to the arc tube 12 and are integrally formed. Here, the short arc type discharge lamp 10 is arranged so that the electrode axis is along the vertical direction.
 封止管13A、13Bの内部には、陰極20、陽極30を支持する導電性の電極支持棒17A、17Bが配設され、それぞれ金属箔16A、16Bを介して導電性のリード棒15A、15Bと接続されている。封止管13A、13Bは、その両端が口金19A、19Bによって塞がれており、封止管13A、13Bは、放電管内に設けられたガラス管、ガラス棒(図示せず)と溶着することによって、発光管12内の放電空間を封止する。発光管12内には、水銀、およびアルゴンガスなどの放電ガスが封入されている。 Inside the sealing tubes 13A and 13B, conductive electrode support rods 17A and 17B for supporting the cathode 20 and the anode 30 are disposed, and the conductive lead rods 15A and 15B are interposed through the metal foils 16A and 16B, respectively. Connected with. Both ends of the sealing tubes 13A and 13B are closed by the caps 19A and 19B, and the sealing tubes 13A and 13B are welded to a glass tube and a glass rod (not shown) provided in the discharge tube. Thus, the discharge space in the arc tube 12 is sealed. A discharge gas such as mercury and argon gas is enclosed in the arc tube 12.
 リード棒15A、15Bは外部の電源部(図示せず)に接続されており、リード棒15A、15Bを介して陰極20、陽極30に電力が供給される。陰極20、陽極30の間に電圧が印加されると電極間でアーク放電が生じ、発光管12から光が放射される。 The lead rods 15A and 15B are connected to an external power source (not shown), and power is supplied to the cathode 20 and the anode 30 via the lead rods 15A and 15B. When a voltage is applied between the cathode 20 and the anode 30, arc discharge occurs between the electrodes, and light is emitted from the arc tube 12.
 図2は、陽極30の模式的断面図である。 FIG. 2 is a schematic cross-sectional view of the anode 30.
 陽極30は、電極先端部43を含む有底筒状の陽極本体(以下、電極本体という)42を備え、電極本体42に形成された筒状内部空間42Sに伝熱体40が収容されている。内部空間42Sは、電極先端部43から電極支持棒側に延びる円筒部44内に形成され、伝熱体40が隙間無く内部空間42Sに充填されている。伝熱体40のサイズは、内部空間42Sのスペースに合わせて定められている。 The anode 30 includes a bottomed cylindrical anode main body (hereinafter referred to as an electrode main body) 42 including an electrode tip portion 43, and the heat transfer body 40 is accommodated in a cylindrical internal space 42 </ b> S formed in the electrode main body 42. . The internal space 42S is formed in a cylindrical portion 44 extending from the electrode tip portion 43 to the electrode support rod side, and the heat transfer body 40 is filled in the internal space 42S without a gap. The size of the heat transfer body 40 is determined according to the space of the internal space 42S.
 リング状の電極蓋46は、電極本体42の円筒部44と結合して伝熱体40を密封する。電極支持棒17Bは、電極蓋46と繋がっており、電極蓋46を介して陽極30を保持している。 The ring-shaped electrode lid 46 is coupled with the cylindrical portion 44 of the electrode body 42 to seal the heat transfer body 40. The electrode support rod 17 </ b> B is connected to the electrode lid 46 and holds the anode 30 through the electrode lid 46.
 電極本体42、電極蓋46、電極支持棒17Bは、タングステンによって構成される。一方、陽極30の内部で電極軸Eに沿って延在する伝熱体40は、熱伝導率が電極本体を構成する金属より高い導電性のタングステン/カーボン複合材(以下では、W/C複合材という)によって構成される。W/C複合材は、C/Cコンポジットなどのカーボン基材にタングステンをコーティングし、あるいは粉末状カーボンを粉末状タングステンとまぜて一体成形した材料である。伝熱体40は、常温あるいは放電時の温度雰囲気で電極本体42を構成するタングステンよりも熱伝導率が高く、熱、および外部からの衝撃に対する強度が大きい。さらに、伝熱体40の融点も高く、放電中熱による溶融は実質的に生じない。 The electrode body 42, the electrode lid 46, and the electrode support rod 17B are made of tungsten. On the other hand, the heat transfer body 40 extending along the electrode axis E inside the anode 30 has a conductive tungsten / carbon composite material (hereinafter referred to as a W / C composite) having a higher thermal conductivity than the metal constituting the electrode body. Material). The W / C composite material is a material in which a carbon substrate such as a C / C composite is coated with tungsten, or powdered carbon is mixed with powdered tungsten to be integrally formed. The heat transfer body 40 has a higher thermal conductivity than tungsten constituting the electrode body 42 at room temperature or a temperature atmosphere during discharge, and has a higher strength against heat and external impacts. Furthermore, the melting point of the heat transfer body 40 is high, and melting due to heat during discharge does not substantially occur.
 陽極30の成形方法としては、内部空間42Sをあらかじめ形成した電極本体42に対し、内部空間42Sのサイズに合った伝熱体40を封入する。そして、別途用意した電極蓋46を電極本体42の円筒部44と接合させ、一体化させる。一体化の方法としては、融接、ロウ接などの溶接が可能である。 As a method for forming the anode 30, a heat transfer body 40 suitable for the size of the internal space 42S is enclosed in an electrode body 42 in which the internal space 42S is formed in advance. Then, a separately prepared electrode lid 46 is joined to and integrated with the cylindrical portion 44 of the electrode body 42. As an integration method, welding such as fusion welding or brazing is possible.
 伝熱体40は、内部空間42Sの底面42T、すなわち電極先端部43と接している。したがって、放電中に電極先端面43Sが受ける電子衝突によって生じる熱は、熱伝導性の優れた伝熱体40によって電極支持棒側へ輸送される。これにより、電極先端部43が局所的に過熱することなく、陽極30の温度が全体的に均一化される。 The heat transfer body 40 is in contact with the bottom surface 42T of the internal space 42S, that is, the electrode tip portion 43. Therefore, the heat generated by the electron collision received by the electrode tip surface 43S during the discharge is transported to the electrode support rod side by the heat transfer body 40 having excellent thermal conductivity. Thereby, the temperature of the anode 30 is made uniform as a whole without the electrode tip 43 being locally overheated.
 このように第1の実施形態によれば、陰極20、陽極30を発光管12内に対向配置させたショートアーク型放電ランプ10において、電極先端部43を含む電極本体に内部空間42Sを形成する。そして、陽極30の内部空間42Sには、W/C(タングステン/カーボン)複合材から成る伝熱体40が封入されており、電極支持棒17B、電極本体42と結合する電極蓋46によって密閉される。 As described above, according to the first embodiment, in the short arc type discharge lamp 10 in which the cathode 20 and the anode 30 are disposed opposite to each other in the arc tube 12, the internal space 42 </ b> S is formed in the electrode body including the electrode tip 43. . A heat transfer body 40 made of a W / C (tungsten / carbon) composite material is sealed in the internal space 42S of the anode 30, and is sealed by an electrode support rod 17B and an electrode lid 46 coupled to the electrode body 42. The
 伝熱体40を陽極30内部に設けることによって陽極全体の温度が均一化するため、電極先端部43の溶融、蒸発によって失透し、発光効率が低下するのを防ぎ、電極消耗を抑えることができる。また、伝熱体40は導電性をもつため、電力が大きくなり電流量が増大しても、放電に影響しない。 By providing the heat transfer body 40 inside the anode 30, the temperature of the entire anode is made uniform, so that it is prevented from devitrifying due to melting and evaporation of the electrode tip portion 43, thereby reducing the light emission efficiency, and suppressing electrode consumption. it can. Further, since the heat transfer body 40 has conductivity, even if the power increases and the amount of current increases, it does not affect the discharge.
 熱伝導率が等しい電極蓋46、電極本体42、および電極支持棒17Bが一体的に金属接合するため、結合性が優れており、電極支持棒17Bは陽極30を確実に保持することができる。また、伝熱体40が電極表面に露出しないため、放電中に炭素が発光管12内に放出され、炭素薄膜が管内に形成されて発光効率を下げることがない。また、陽極30内に内部空間42Sを形成することにより、電極軽量化が図られる。なお、伝熱体40を電極本体42と溶接などによって結合させてもよい。また、伝熱体40のサイズを調整し、隙間を設けて伝熱体40を内部空間42Sに封入してもよい。 Since the electrode lid 46, the electrode body 42, and the electrode support bar 17B having the same thermal conductivity are integrally metal-bonded, the bondability is excellent, and the electrode support bar 17B can reliably hold the anode 30. In addition, since the heat transfer body 40 is not exposed on the electrode surface, carbon is released into the arc tube 12 during discharge, and a carbon thin film is formed in the tube without reducing the luminous efficiency. Further, by forming the internal space 42S in the anode 30, the weight of the electrode can be reduced. The heat transfer body 40 may be coupled to the electrode body 42 by welding or the like. Further, the size of the heat transfer body 40 may be adjusted, and a clearance may be provided to enclose the heat transfer body 40 in the internal space 42S.
 次に、図3を用いて、第2の実施形態について説明する。第2の実施形態では、第1の実施形態と異なり、電極内部空間に隙間を設け、放電中に溶融する熱伝導材料が封入される。それ以外の構成については、第1の実施形態と実質的に同じである。 Next, a second embodiment will be described with reference to FIG. In the second embodiment, unlike the first embodiment, a gap is provided in the electrode internal space, and a heat conductive material that melts during discharge is enclosed. About another structure, it is substantially the same as 1st Embodiment.
 図3は、第2の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 3 is an anode cross-sectional view of a short arc type discharge lamp according to the second embodiment.
 陽極130は、第1の実施形態と同様に内部空間142Sを有し、電極先端部143を含めた電極本体142と、電極蓋146、および電極支持棒17Bが一体的に結合している。柱状の伝熱体140は、内部空間142Sの径よりも小さく、電極軸方向に沿って延びている。伝熱体140の一端140Aは電極蓋146と結合する一方、他端140Bは、内部空間142Sの底面142T、すなわち電極先端部143と接していない。 The anode 130 has an internal space 142S as in the first embodiment, and the electrode body 142 including the electrode tip 143, the electrode lid 146, and the electrode support rod 17B are integrally coupled. The columnar heat transfer body 140 is smaller than the diameter of the internal space 142S and extends along the electrode axis direction. One end 140A of the heat transfer body 140 is coupled to the electrode lid 146, while the other end 140B is not in contact with the bottom surface 142T of the internal space 142S, that is, the electrode tip 143.
 電極蓋146と伝熱体140の接合は、それぞれ別々に焼結成形した電極蓋146と伝熱体140を用意し、レーザー溶接、ロウ付け、抵抗溶接、圧入などの溶接、あるいはねじ込みなど従来公知の方法によって結合すればよい。 For joining the electrode lid 146 and the heat transfer body 140, the electrode lid 146 and the heat transfer body 140, which are separately formed by sintering, are prepared, and conventionally known such as laser welding, brazing, resistance welding, welding such as press fitting, or screwing. It may be combined by the method of.
 内部空間142Sには、隙間を設けて熱伝導材料150が封入されており、放電中、溶融して伝熱体140と接している。熱伝導材料150は、電極本体142よりも融点の低い金属材料(例えば、金、銀、銅、インジウム、亜鉛、鉛など、あるいはそれらを組み合わせた合金)によって構成される。 In the internal space 142S, a heat conduction material 150 is sealed with a gap, and melts and contacts the heat transfer body 140 during discharge. The heat conductive material 150 is made of a metal material having a melting point lower than that of the electrode body 142 (for example, gold, silver, copper, indium, zinc, lead, or an alloy obtained by combining them).
 ランプ成形時には、熱伝導体150の塊に対して棒状伝熱体140が嵌るほどの穴を形成し、内部空間142Sに封入する。そして、放電によって電極先端部143の温度が上昇すると、熱伝導体150が溶融し、液状の熱伝導体が伝熱体140と接する。 At the time of lamp forming, a hole that fits the rod-shaped heat transfer body 140 into the lump of the heat conductor 150 is formed and sealed in the internal space 142S. When the temperature of the electrode tip 143 is increased by the discharge, the heat conductor 150 is melted and the liquid heat conductor is in contact with the heat transfer body 140.
 放電中、熱伝導材150が溶融することによって、内部空間142Sの隙間部分に対流が生じる。これにより、電極先端面143Sを含む電極先端部143に生じる熱が電極支持棒17の方向へ輸送され、陽極130の温度が均一化される。 During the discharge, the heat conductive material 150 is melted to cause convection in the gap portion of the internal space 142S. Thereby, heat generated in the electrode tip portion 143 including the electrode tip surface 143S is transported in the direction of the electrode support rod 17, and the temperature of the anode 130 is made uniform.
 さらに、放電中に伝熱体140が熱伝導材料150と接するため、溶融する熱伝導材料150の熱を効率よく電極支持棒側へ輸送することができる。なお、伝熱体140と電極蓋146との結合をより強固にするため、電極蓋146をタングステンの代わりにモリブデンによって構成してもよい。また、電極蓋ではなく円筒部144の内面と伝熱体140を結合させてもよい。 Furthermore, since the heat transfer body 140 is in contact with the heat conductive material 150 during discharge, the heat of the molten heat conductive material 150 can be efficiently transported to the electrode support rod side. In addition, in order to strengthen the coupling between the heat transfer body 140 and the electrode lid 146, the electrode lid 146 may be made of molybdenum instead of tungsten. Further, instead of the electrode lid, the inner surface of the cylindrical portion 144 and the heat transfer body 140 may be combined.
 次に、図4を用いて、第3の実施形態であるショートアーク型放電ランプについて説明する。第3の実施形態では、第1の実施形態と異なり、電極蓋が設けられていない。それ以外の構成については第1の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to a third embodiment will be described with reference to FIG. In the third embodiment, unlike the first embodiment, no electrode lid is provided. Other configurations are substantially the same as those in the first embodiment.
 図4は、第3の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 4 is an anode cross-sectional view of a short arc type discharge lamp according to a third embodiment.
 陽極230は、電極先端面243Sを含めた電極先端部243と円筒部244から構成される電極本体242を備え、電極本体242内に形成された内部空間242Sには、伝熱体240が隙間無く埋め込まれている。図4に示すように、伝熱体240の表面240Sが電極外部に露出し、内部空間242Sが密閉されていない。伝熱体240は、圧入、溶接等によって電極支持棒17Bの先端部17Sと結合している。 The anode 230 includes an electrode main body 242 composed of an electrode front end portion 243 including the electrode front end surface 243S and a cylindrical portion 244, and the heat transfer body 240 has no gap in the internal space 242S formed in the electrode main body 242. Embedded. As shown in FIG. 4, the surface 240S of the heat transfer body 240 is exposed to the outside of the electrode, and the internal space 242S is not sealed. The heat transfer body 240 is coupled to the tip portion 17S of the electrode support rod 17B by press fitting, welding, or the like.
 伝熱体240が電極外部に露出しているため、電極先端部243から輸送された熱を容易に外部へ放出することができ、陽極243の温度上昇を抑えることができる。また、電極蓋を設けないため、電極を軽量化することができる。 Since the heat transfer body 240 is exposed outside the electrode, the heat transported from the electrode tip 243 can be easily released to the outside, and the temperature rise of the anode 243 can be suppressed. Moreover, since the electrode lid is not provided, the electrode can be reduced in weight.
 次に、図5を用いて、第4の実施形態であるショートアーク型放電ランプについて説明する。第4の実施形態では、第1~第3の実施形態と異なり、電極全体が伝熱体によって構成されている。 Next, a short arc type discharge lamp according to a fourth embodiment will be described with reference to FIG. In the fourth embodiment, unlike the first to third embodiments, the entire electrode is constituted by a heat transfer body.
 図5は、第4の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 5 is an anode sectional view of a short arc type discharge lamp according to the fourth embodiment.
 陽極330は、熱伝導体340によって全体的に構成されており、電極支持棒17Bと接合している。電極本体342は、タングステンと粉末状炭素を混ぜ合わせて焼結させることによって生成されている。電極本体342と電極支持棒17Bの接合は、溶接、圧入等によって行われている。陽極330全体が熱伝導体で構成されるため、放電中の熱輸送効果が十分に発揮され、電極消耗を抑制することができる。 The anode 330 is entirely constituted by the heat conductor 340 and is joined to the electrode support rod 17B. The electrode body 342 is produced by mixing and sintering tungsten and powdered carbon. The electrode body 342 and the electrode support rod 17B are joined by welding, press-fitting, or the like. Since the anode 330 as a whole is composed of a heat conductor, the heat transport effect during discharge is sufficiently exerted, and electrode consumption can be suppressed.
 次に、図6を用いて、第5の実施形態であるショートアーク型放電ランプについて説明する。第5の実施形態では、第4の実施形態と異なり、電極先端部は金属によって構成されている。それ以外の構成については、第4の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to a fifth embodiment will be described with reference to FIG. In the fifth embodiment, unlike the fourth embodiment, the electrode tip is made of metal. About another structure, it is substantially the same as 4th Embodiment.
 図6は、第5の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 6 is an anode cross-sectional view of a short arc type discharge lamp according to a fifth embodiment.
 陽極430は、電極胴体部を構成する伝熱体440と電極先端部443とによって構成され、一体化されている。伝熱体440と電極先端部443は、あらかじめ別々に焼結成形され、ロウ付け、圧入、ビーム溶接、ねじ込みなど従来知られた溶接方法によって一体化する。あるいは、電極先端部443を成形した後、伝熱体440を電極先端部443で覆う鋳ぐるみ(鋳物の中にいれて溶着させること)などによって一体化してもよい。 The anode 430 is constituted by a heat transfer body 440 and an electrode tip 443 constituting the electrode body, and is integrated. The heat transfer body 440 and the electrode tip 443 are separately sintered and formed in advance, and are integrated by a conventionally known welding method such as brazing, press fitting, beam welding, or screwing. Or after shaping | molding the electrode front-end | tip part 443, you may integrate by the cast hole (it puts in a casting and welds it) etc. which cover the heat-transfer body 440 with the electrode front-end | tip part 443.
 温度上昇が激しい電極先端部が、炭素を含む伝熱体ではなく金属によって構成されるため、放電中に炭素が放電空間に放出されず、電極寿命を延ばすことができる。 Since the tip portion of the electrode where the temperature rises abruptly is made of metal, not a heat transfer body containing carbon, carbon is not released into the discharge space during discharge, and the electrode life can be extended.
 次に、図7を用いて、第6の実施形態であるショートアーク型放電ランプについて説明する。第6の実施形態では、第5の実施形態と異なり、電極先端部と伝熱体との接続部に傾斜組織がある。それ以外の構成については、第5の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to a sixth embodiment will be described with reference to FIG. In the sixth embodiment, unlike the fifth embodiment, there is an inclined structure in the connection portion between the electrode tip and the heat transfer body. About another structure, it is substantially the same as 5th Embodiment.
 図7は、第6の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 7 is an anode cross-sectional view of a short arc type discharge lamp according to a sixth embodiment.
 陽極530は、タングステン/カーボン複合材であって電極本体を構成する伝熱体540と、タングステンから成る電極先端部543とを有し、その間に傾斜組織部545が形成されている。傾斜組織部545は、タングステン/カーボンを傾斜組織化させた組織層であり、最上層545Sのタングステン含有率がほぼ100%、最下層545Tのカーボン含有率がほぼ100%となって、最上層545Sから最下層545Tに渡ってタングステン、カーボンの含有率が互いにほぼ反比例する。カーボンの含有率が高くなるほど、タングステン含有率が減少する。 The anode 530 is a tungsten / carbon composite material, and has a heat transfer body 540 constituting an electrode body and an electrode tip portion 543 made of tungsten, and an inclined tissue portion 545 is formed therebetween. The inclined structure portion 545 is a structure layer in which tungsten / carbon is formed into an inclined structure. The uppermost layer 545S has a tungsten content of almost 100%, and the lowermost layer 545T has a carbon content of almost 100%. To the lowermost layer 545T, the contents of tungsten and carbon are almost inversely proportional to each other. The higher the carbon content, the lower the tungsten content.
 ここでは、傾斜化とは、空間的に一つの機能、特性から他の機能、特性へと連続的または段階的に変化する一体の材料を示し(例えば、「傾斜機能材料の技術展開」(上村 誠一他編集、シーエムシー出版、2003年10月31日発行)など参照)、本発明の焼結体は連続的、あるいは段階的な密度勾配をもち、特性(電子放射性物質の供給特性、強度など)が連続的/段階的に変化するように構成されている。 Here, the term “gradient” refers to an integrated material that changes continuously or stepwise from one function / characteristic to another function / characteristic (for example, “Technological development of functionally graded materials” (Kamimura). Seiichi et al., Edited by CMC Publishing, published on October 31, 2003)), and the sintered body of the present invention has a continuous or stepwise density gradient, and characteristics (supply characteristics, strength, etc. of electron-emitting materials) ) Changes continuously / stepwise.
 傾斜組織部545は、公知の加熱焼結方法で形成すればよく、タングステン、カーボンの粉末の混合比をそれぞれ変えながら積層充填し、金型成形によって生成されるタングステン/カーボンの圧密体をゆっくり加熱して焼結する。そして、傾斜組織部545、伝熱体540、電極先端部543を一体成形する。 The inclined structure portion 545 may be formed by a known heat sintering method, and is stacked and filled while changing the mixing ratio of tungsten and carbon powders, and the tungsten / carbon compact formed by molding is slowly heated. And sinter. And the inclination structure | tissue part 545, the heat exchanger 540, and the electrode front-end | tip part 543 are integrally molded.
 このように、タングステン粒子とカーボン粒子との混合層を積層させた傾斜組織部545を形成することにより、電極先端部543と伝熱体540の材料成分が異なっていても、確実に一体成形することができ、熱、外力に対する強度が一層強まる。 In this manner, by forming the inclined structure portion 545 in which the mixed layer of tungsten particles and carbon particles is laminated, even if the material components of the electrode tip portion 543 and the heat transfer body 540 are different, it is surely integrally formed. The strength against heat and external force is further increased.
 なお、第1、第2の実施形態において、伝熱体の電極蓋との接合部分に傾斜組織を形成させてもよい。さらには、第1~第6の実施形態において、電極本体など金属との接合部分に傾斜組織を形成させるように構成してもよい。 In the first and second embodiments, an inclined structure may be formed at the joint portion of the heat transfer body with the electrode lid. Furthermore, in the first to sixth embodiments, an inclined structure may be formed at a joint portion with a metal such as an electrode body.
 次に、図8を用いて、第7の実施形態であるショートアーク型放電ランプについて説明する。第7の実施形態では、第6の実施形態と異なり、電極軸部を設け、電極先端部と電極支持棒を金属で連結する。それ以外の構成については、第6の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to a seventh embodiment will be described with reference to FIG. In the seventh embodiment, unlike the sixth embodiment, an electrode shaft portion is provided, and the electrode tip portion and the electrode support rod are connected by metal. About another structure, it is substantially the same as 6th Embodiment.
 図8は、第7の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 8 is a cross-sectional view of the anode of the short arc type discharge lamp according to the seventh embodiment.
 陽極630は、電極軸方向に沿って延びる円柱状の電極軸部636と電極先端部643から構成される電極本体642を備え、電極軸部636周りに円筒状の伝熱体640を同軸配置し、電極先端部643と結合させている。電極支持棒17Bは、電極軸部636の端部と結合している。 The anode 630 includes an electrode main body 642 including a columnar electrode shaft portion 636 extending along the electrode axis direction and an electrode tip portion 643, and a cylindrical heat transfer body 640 is coaxially disposed around the electrode shaft portion 636. And the electrode tip 643. The electrode support rod 17 </ b> B is coupled to the end of the electrode shaft portion 636.
 同じ金属の電極本体642と電極支持棒17Bが連結しているため、電極支持棒17Bが確実に陽極630を保持することができる。 Since the same metal electrode body 642 and the electrode support bar 17B are connected, the electrode support bar 17B can reliably hold the anode 630.
 次に、図9を用いて、第8の実施形態であるショートアーク型放電ランプについて説明する。第8の実施形態では、第7の実施形態と異なり、電極支持棒が電極先端部と結合する。それ以外の構成については、第7の実施形態と同じである。 Next, a short arc type discharge lamp according to an eighth embodiment will be described with reference to FIG. In the eighth embodiment, unlike the seventh embodiment, the electrode support rod is coupled to the electrode tip. About another structure, it is the same as 7th Embodiment.
 図9は、第8の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 9 is an anode cross-sectional view of a short arc type discharge lamp according to the eighth embodiment.
 陽極730は、円筒状の伝熱体740と電極先端部743から構成され、伝熱体740は陽極本体を構成する。電極支持棒17Bは、伝熱体740の穴740Nを通って電極軸方向に延び、電極先端部743と結合している。電極支持棒17Bと伝熱体740の間には隙間が設けられており、穴740Nの底面740Tが外部に露出している。 The anode 730 includes a cylindrical heat transfer body 740 and an electrode tip 743, and the heat transfer body 740 forms an anode body. The electrode support rod 17 </ b> B extends in the electrode axial direction through the hole 740 </ b> N of the heat transfer body 740 and is coupled to the electrode tip portion 743. A gap is provided between the electrode support rod 17B and the heat transfer body 740, and the bottom surface 740T of the hole 740N is exposed to the outside.
 伝熱体740の穴740Nは電極本体の内部空間として構成され、電極先端部743の熱は伝熱体740、および穴740Nを通って外部に放出される。伝熱体740と内部空間両方を利用して熱を効果的に輸送することができ、電極消耗を抑えることができる。また、電極支持棒17Bが直接電極先端部743と接合するため、陽極730が安定して保持される。 The hole 740N of the heat transfer body 740 is configured as an internal space of the electrode body, and the heat of the electrode tip 743 is released to the outside through the heat transfer body 740 and the hole 740N. Heat can be effectively transported using both the heat transfer body 740 and the internal space, and electrode consumption can be suppressed. Further, since the electrode support rod 17B is directly joined to the electrode tip 743, the anode 730 is stably held.
 次に、図10を用いて、第9の実施形態であるショートアーク型放電ランプについて説明する。第9の実施形態では、第8の実施形態と異なり、電極本体が伝熱体を囲む。それ以外の構成については、第8の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to a ninth embodiment will be described with reference to FIG. In the ninth embodiment, unlike the eighth embodiment, the electrode body surrounds the heat transfer body. About another structure, it is substantially the same as 8th Embodiment.
 図10は、第9の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 10 is an anode cross-sectional view of a short arc type discharge lamp according to the ninth embodiment.
 図10に示すように、陽極830は、第1の実施形態と同様に内部空間842Sの形成される電極本体842を備え、内部空間842Sには円筒状の伝熱体840が挿入、配置されている。伝熱体840の外径サイズは、内部空間842Sのサイズに合わせている。電極支持棒17Bは、伝熱体840内部を通り、その先端部は電極先端部843と結合している。伝熱体840が電極側面に露出していないため、炭素放出による発光効率低下を防ぐことができる。 As shown in FIG. 10, the anode 830 includes an electrode main body 842 in which an internal space 842S is formed as in the first embodiment, and a cylindrical heat transfer body 840 is inserted and arranged in the internal space 842S. Yes. The outer diameter size of the heat transfer body 840 is matched to the size of the internal space 842S. The electrode support rod 17 </ b> B passes through the inside of the heat transfer body 840, and the tip portion thereof is coupled to the electrode tip portion 843. Since the heat transfer body 840 is not exposed on the side surface of the electrode, it is possible to prevent a decrease in luminous efficiency due to carbon emission.
 次に、図11を用いて、第10の実施形態であるショートアーク型放電ランプについて説明する。第10の実施形態では、第1~9の実施形態と異なり、電極支持棒が伝熱体によって構成されている。 Next, a short arc type discharge lamp according to a tenth embodiment will be described with reference to FIG. In the tenth embodiment, unlike the first to ninth embodiments, the electrode support rod is constituted by a heat transfer body.
 図11は、第10の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 11 is an anode cross-sectional view of a short arc type discharge lamp according to the tenth embodiment.
 陽極930は、タングステンなど金属からなる円柱状電極本体942によって構成されており、中心軸に沿って穴942Nが形成されている。電極支持棒170Bは、タングステン/カーボン複合材からなる伝熱体によって構成されている。電極支持棒170Bは、電極本体942の穴942Nに挿入固定され、電極本体942の電極先端部付近まで延びている。電極支持棒170Bは、焼結などによって電極本体942と結合している。 The anode 930 is constituted by a cylindrical electrode body 942 made of metal such as tungsten, and a hole 942N is formed along the central axis. The electrode support rod 170B is configured by a heat transfer body made of a tungsten / carbon composite material. The electrode support rod 170B is inserted and fixed in the hole 942N of the electrode body 942, and extends to the vicinity of the electrode tip of the electrode body 942. The electrode support bar 170B is coupled to the electrode body 942 by sintering or the like.
 このように電極支持棒170Bが熱伝導性の優れた伝熱体によって構成されるため、電極先端部943の熱が電極支持棒170Bを伝わって封止管側へ輸送される。電極内部で熱の均一化を図るのではなく、通常冷却される封止管まで熱を逃すため、電極先端部しいては電極全体の過熱を抑えることができる。また、電極支持棒からも熱が効果的に放出されることにより、封止管の温度上昇も抑えることができる。 Thus, since the electrode support rod 170B is composed of a heat transfer material having excellent heat conductivity, the heat of the electrode tip 943 is transferred to the sealed tube side through the electrode support rod 170B. Rather than trying to make the heat uniform inside the electrode, heat is released to the normally cooled sealing tube, so that overheating of the electrode tip and the entire electrode can be suppressed. Moreover, the heat | fever is also effectively released from the electrode support rod, so that the temperature rise of the sealing tube can be suppressed.
 次に、図12を用いて、第11の実施形態であるショートアーク型放電ランプについて説明する。第11の実施形態では、第10の実施形態と異なり、電極本体に内部空間が形成され、電極蓋が設けられている。それ以外の構成については、第10の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to an eleventh embodiment will be described with reference to FIG. In the eleventh embodiment, unlike the tenth embodiment, an internal space is formed in the electrode body and an electrode lid is provided. About another structure, it is substantially the same as 10th Embodiment.
 図12は、第11の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 12 is an anode cross-sectional view of a short arc type discharge lamp according to the eleventh embodiment.
 陽極1030は、内部空間1042Sを形成した電極本体1042に電極支持棒170Bを結合させた構成であり、電極蓋1046によって内部空間1042Sを閉じている。電極蓋1046には、電極支持棒170Bを挿通させる中心穴1046Kとともに、通気孔1046Nが形成されている。これにより、内部空間1042Sの熱が電極外部へ放出される。 The anode 1030 has a configuration in which an electrode support rod 170B is coupled to the electrode body 1042 in which the internal space 1042S is formed, and the internal space 1042S is closed by the electrode lid 1046. The electrode lid 1046 is formed with a vent hole 1046N along with a center hole 1046K through which the electrode support rod 170B is inserted. As a result, heat in the internal space 1042S is released to the outside of the electrode.
 次に、図13を用いて、第12の実施形態であるショートアーク型放電ランプについて説明する。第12の実施形態では、第2の実施形態と異なり、電極本体の一部が伝熱体によって構成されている。それ以外の構成については、第2の実施形態と実質的に同じである。 Next, a short arc type discharge lamp according to a twelfth embodiment will be described with reference to FIG. In the twelfth embodiment, unlike the second embodiment, a part of the electrode body is constituted by a heat transfer body. About another structure, it is substantially the same as 2nd Embodiment.
 図13は、第12の実施形態であるショートアーク型放電ランプの陽極断面図である。 FIG. 13 is an anode cross-sectional view of a short arc type discharge lamp according to the twelfth embodiment.
 陽極1130は、金属製の電極先端部1143と有底円筒状の伝熱体1144から構成される電極本体1142を備え、電極本体1142内には内部空間1142Sが形成されている。電極支持棒17Bは、内部空間1142Sを密閉する電極蓋1146に結合している。 The anode 1130 includes an electrode body 1142 including a metal electrode tip 1143 and a bottomed cylindrical heat transfer body 1144, and an internal space 1142 </ b> S is formed in the electrode body 1142. The electrode support rod 17B is coupled to an electrode lid 1146 that seals the internal space 1142S.
 内部空間1142Sには、棒状の伝熱体1140が電極軸Eに沿って延び、電極蓋1146と結合している。そして、金属よりも融点の低い熱伝導材1150が内部空間1142Sに封入されている。 In the internal space 1142S, a rod-shaped heat transfer body 1140 extends along the electrode axis E and is coupled to the electrode lid 1146. A heat conductive material 1150 having a melting point lower than that of metal is enclosed in the internal space 1142S.
 次に、図14を用いて、第13の実施形態であるショートアーク型放電ランプについて説明する。図14は、第13の実施形態であるショートアーク型放電ランプの陽極1230の模式的断面図である。 Next, a short arc type discharge lamp according to a thirteenth embodiment will be described with reference to FIG. FIG. 14 is a schematic cross-sectional view of an anode 1230 of a short arc type discharge lamp according to the thirteenth embodiment.
 陽極1230は、有底筒状の電極本体1242に形成された筒状内部空間1242Sに伝熱体1240が収容されている。内部空間1242Sは、電極先端部1243から電極支持棒17B側に延びる円筒部1244内に形成され、筒状の狭窄部材1245により囲まれた伝熱体1240が内部空間1242Sに配設されている。伝熱体1240と狭窄部材1245のサイズは、内部空間1242Sのスペースに合わせて定められている。 The anode 1230 has a heat transfer body 1240 accommodated in a cylindrical inner space 1242S formed in a bottomed cylindrical electrode body 1242. The internal space 1242S is formed in a cylindrical portion 1244 extending from the electrode tip portion 1243 toward the electrode support rod 17B, and a heat transfer body 1240 surrounded by a cylindrical constricting member 1245 is disposed in the internal space 1242S. The sizes of the heat transfer body 1240 and the constricting member 1245 are determined in accordance with the space of the internal space 1242S.
 リング状の電極蓋1246は、電極本体1242の円筒部1244と結合して伝熱体1240と狭窄部材1245とを密封する。電極支持棒17Bは、電極蓋1246と繋がっており、電極蓋1246を介して電極1230を保持している。 The ring-shaped electrode lid 1246 is coupled to the cylindrical portion 1244 of the electrode main body 1242 to seal the heat transfer body 1240 and the constricting member 1245. The electrode support rod 17 </ b> B is connected to the electrode lid 1246 and holds the electrode 1230 via the electrode lid 1246.
 電極本体1242、電極蓋1246、電極支持棒17Bは、タングステンによって構成される。一方、陽極1230の内部で電極軸Eに沿って延在する伝熱体1240は、炭素繊維束で構成されており、タンタル製の狭窄部材1245に収納される。 The electrode body 1242, the electrode lid 1246, and the electrode support rod 17B are made of tungsten. On the other hand, the heat transfer body 1240 extending along the electrode axis E inside the anode 1230 is composed of a carbon fiber bundle and is accommodated in a constricting member 1245 made of tantalum.
 伝熱体1240は、以下のように製造される。まず、タンタル筒に対して、炭素繊維束を同軸方向に沿って挿通させる。このとき、炭素繊維束の端面がタンタル筒の端面よりも突出するように、タンタル筒は炭素繊維束の軸方向の長さより短くする。また、炭素繊維束の端面が軸方向に垂直な平面とする。 The heat transfer body 1240 is manufactured as follows. First, the carbon fiber bundle is inserted through the tantalum cylinder along the coaxial direction. At this time, the tantalum cylinder is made shorter than the axial length of the carbon fiber bundle so that the end face of the carbon fiber bundle protrudes beyond the end face of the tantalum cylinder. Further, the end surface of the carbon fiber bundle is a plane perpendicular to the axial direction.
 陽極1230の成形方法としては、内部空間1242Sをあらかじめ形成した電極本体1242に対し、内部空間1242Sのサイズに合った伝熱体1240を封入する。更に、内部空間をテーパ状として、伝熱体1240を嵌合させても良い。また、タンタル筒の外周面を高精度に切削して、伝熱体の外周面と内部空間1242Sの内周面との密着性を高めても良い。そして、別途用意した電極蓋1246を電極本体1242の円筒部44と接合させ、一体化させる。一体化の方法としては、融接、ロウ接などの溶接が可能である。 As a method for forming the anode 1230, a heat transfer body 1240 suitable for the size of the internal space 1242S is enclosed in an electrode body 1242 in which the internal space 1242S is formed in advance. Furthermore, the heat transfer body 1240 may be fitted with the internal space being tapered. Alternatively, the outer peripheral surface of the tantalum cylinder may be cut with high accuracy to enhance the adhesion between the outer peripheral surface of the heat transfer body and the inner peripheral surface of the internal space 1242S. Then, a separately prepared electrode lid 1246 is joined to and integrated with the cylindrical portion 44 of the electrode main body 1242. As an integration method, welding such as fusion welding or brazing is possible.
 伝熱体1240は、内部空間1242Sの底面1242T、すなわち電極先端部1243と接している。したがって、放電中に電極先端面1243Sが受ける電子衝突によって生じる熱は、熱伝導性の優れた伝熱体1240によって電極支持棒側へ輸送される。これにより、電極先端部1243が局所的に過熱することなく、陽極1230の温度が全体的に均一化される。好ましくは、伝熱体1240は、内部空間1242Sの底面1242Tに押付けられている。ここで、タンタル筒は炭素繊維束の軸方向の長さより短く切断されていることにより、炭素繊維がタンタル筒内径よりも広がることで、炭素繊維と内部空間の底面との密着性(接触本数)を高めることができる。更に、内部空間の底面1242Tと伝熱体の端面と間の熱伝導率を高めるために、内部空間の底面1242Tにカーボンナノチューブ(以下では、CNTという)を混ぜ入れることにより、ブリッジの効果を付与することもできる。 The heat transfer body 1240 is in contact with the bottom surface 1242T of the internal space 1242S, that is, the electrode tip 1243. Therefore, the heat generated by the electron collision received by the electrode tip surface 1243S during discharge is transported to the electrode support rod side by the heat transfer body 1240 having excellent thermal conductivity. Thereby, the temperature of the anode 1230 is made uniform as a whole without locally heating the electrode tip 1243. Preferably, heat transfer body 1240 is pressed against bottom surface 1242T of internal space 1242S. Here, the tantalum cylinder is cut shorter than the axial length of the carbon fiber bundle, so that the carbon fiber is wider than the inner diameter of the tantalum cylinder, so that the adhesion between the carbon fiber and the bottom surface of the internal space (number of contacts) Can be increased. Furthermore, in order to increase the thermal conductivity between the bottom surface 1242T of the internal space and the end surface of the heat transfer body, a carbon nanotube (hereinafter referred to as CNT) is mixed into the bottom surface 1242T of the internal space to provide a bridge effect. You can also
 このように第13の実施形態によれば、陰極、陽極1230を発光管内に対向配置させたショートアーク型放電ランプ10において、電極先端部1243を含む電極本体に内部空間1242Sを形成する。そして、陽極1230の内部空間1242Sには、炭素繊維束から成る伝熱体1240と狭窄部材1245が封入されており、電極支持棒17B、電極本体1242と結合する電極蓋1246によって密閉される。 Thus, according to the thirteenth embodiment, in the short arc type discharge lamp 10 in which the cathode and the anode 1230 are disposed to face each other in the arc tube, the internal space 1242S is formed in the electrode body including the electrode tip 1243. A heat transfer body 1240 made of a carbon fiber bundle and a constricting member 1245 are enclosed in the internal space 1242S of the anode 1230, and is sealed by an electrode lid 1246 coupled to the electrode support rod 17B and the electrode body 1242.
 伝熱体1240を陽極1230内部に設けることによって陽極全体の温度が均一化するため、電極先端部1243の溶融、蒸発によって失透し、発光効率が低下するのを防ぎ、電極消耗を抑えることができる。また、伝熱体1240は好適な導電性をもつため、入力電力が大きくなり電流量が増大しても、放電に影響しない。 By providing the heat transfer body 1240 inside the anode 1230, the temperature of the whole anode is made uniform, so that it is prevented from devitrifying due to melting and evaporation of the electrode tip portion 1243, thereby reducing the light emission efficiency and suppressing electrode consumption. it can. Further, since the heat transfer body 1240 has suitable conductivity, even if the input power increases and the amount of current increases, it does not affect the discharge.
 熱伝導率が等しい電極蓋1246、電極本体1242、および電極支持棒17Bが一体的に金属接合するため、結合性が優れており、電極支持棒17Bは陽極1230を確実に保持することができる。また、伝熱体1240が電極表面に露出しないため、放電中に炭素が発光管内に放出され、炭素薄膜が管内に形成されて発光効率を下げることがない。また、陽極1230内に内部空間1242Sを形成することにより、電極軽量化が図られる。また、狭窄部材1245の外径を調整し、隙間を設けて伝熱体1240を内部空間1242Sに封入してもよい。更に、この隙間にCNTを混ぜ入れることにより、熱伝導率を高めると更に好ましい。狭窄部材としてはタンタルを用いたが、その他にも、延展性を有する高融点耐熱金属(例えばNbなど)の部材を用いることができる。 Since the electrode lid 1246, the electrode main body 1242, and the electrode support bar 17B having the same thermal conductivity are integrally metal-bonded, the bondability is excellent, and the electrode support bar 17B can reliably hold the anode 1230. In addition, since the heat transfer body 1240 is not exposed on the electrode surface, carbon is discharged into the arc tube during discharge, and a carbon thin film is formed in the tube without reducing the luminous efficiency. Further, by forming the internal space 1242S in the anode 1230, the weight of the electrode can be reduced. Further, the outer diameter of the constricting member 1245 may be adjusted, and a gap may be provided to enclose the heat transfer body 1240 in the internal space 1242S. Furthermore, it is more preferable to increase the thermal conductivity by mixing CNTs into the gap. Tantalum is used as the constriction member, but in addition, a member of a refractory metal having high ductility (for example, Nb) can be used.
 金属と伝熱体の結合方法は、上述した以外の方法で行ってもよい。電極支持棒、電極両方に伝熱体を設けてもよく、陰極にも陽極と同様の内部構造を採用してもよい。さらに、ショートアーク型以外の種類の放電ランプに適用してもよい。 The method for bonding the metal and the heat transfer body may be performed by a method other than the above-described method. A heat transfer body may be provided on both the electrode support rod and the electrode, and the internal structure similar to that of the anode may be employed for the cathode. Furthermore, the present invention may be applied to other types of discharge lamps than the short arc type.
 伝熱体を構成するW/C複合材は、炭素繊維以外のカーボン基材にタングステンを加えて生成してもよい。また、伝熱体を構成する成分は、W/C複合材に限定されず、タングステン以外の金属を加えた金属/カーボン(黒鉛)複合材や、金属/カーボンナノチューブ(CNT)複合材であってもよい。さらに、金属を添加せず、炭素繊維あるいは粒子状カーボンを素材として伝熱体を成形してもよい。 The W / C composite material constituting the heat transfer body may be produced by adding tungsten to a carbon base material other than carbon fiber. Further, the components constituting the heat transfer body are not limited to the W / C composite material, and are a metal / carbon (graphite) composite material added with a metal other than tungsten, or a metal / carbon nanotube (CNT) composite material. Also good. Furthermore, you may shape | mold a heat exchanger by using carbon fiber or particulate carbon as a raw material, without adding a metal.
 なお、日本特許出願No.2010-284877(2010年12月21日出願)の明細書、図面およびクレームを含む開示内容は、本明細書に引用によって組み入れられる。 In addition, Japanese Patent Application No. The disclosure, including the specification, drawings and claims of 2010-284877 (filed Dec. 21, 2010) is hereby incorporated by reference.
 本発明に関しては、添付されたクレームによって定義される本発明の意図および範囲から離れることなく、様々な変更、置換、代替が可能である。さらに、本発明では、明細書に記載された特定の実施形態のプロセス、装置、製造、構成物、手段、方法およびステップに限定されることを意図していない。当業者であれば、本発明の開示から、ここに記載された実施形態がもたらす機能と同様の機能を実質的に果たし、又は同等の作用、効果を実質的にもたらす装置、手段、方法が導かれることを認識するであろう。したがって、添付クレームは、そのような装置、手段、方法の範囲に含まれることが意図されている。 -Various changes, substitutions, and alternatives are possible with respect to the present invention without departing from the spirit and scope of the present invention as defined by the appended claims. Furthermore, the present invention is not intended to be limited to the specific embodiments of the processes, apparatus, manufacture, components, means, methods, and steps described in the specification. Those skilled in the art will appreciate from the disclosure of the present invention devices, means, and methods that perform substantially the same functions as those provided by the embodiments described herein, or that provide substantially the same operations and effects. You will recognize it. Accordingly, the appended claims are intended to be included within the scope of such devices, means, or methods.
 10 ショートアーク型放電ランプ
 12 発光管
 17B 電極支持棒
 20 陰極
 30 陽極
 40 伝熱体
 42 電極本体
 42S 内部空間
 43 電極先端部
 44 円筒部
 46 電極蓋
DESCRIPTION OF SYMBOLS 10 Short arc type discharge lamp 12 Arc tube 17B Electrode support rod 20 Cathode 30 Anode 40 Heat transfer body 42 Electrode main body 42S Internal space 43 Electrode tip part 44 Cylindrical part 46 Electrode cover

Claims (25)

  1.  放電管内に対向配置される一対の電極と、
     前記電極を支持する一対の電極支持棒とを備え、
     少なくとも一方の電極もしくは電極支持棒が、金属よりも熱伝導率が高く、粒子状あるいは繊維状の炭素から成る素材によって成形される伝熱体を有し、
     前記伝熱体が、一体的構造で前記電極もしくは電極支持棒の少なくとも一部を構成することを特徴とする放電ランプ。
    A pair of electrodes arranged oppositely in the discharge tube;
    A pair of electrode support rods for supporting the electrodes;
    At least one of the electrodes or the electrode support rod has a heat transfer body that has a higher thermal conductivity than the metal and is formed of a material made of particulate or fibrous carbon,
    The discharge lamp according to claim 1, wherein the heat transfer body forms at least a part of the electrode or the electrode support rod in an integral structure.
  2.  前記伝熱体が、少なくとも前記電極内部において電極軸方向に延在することを特徴とする請求項1に記載の放電ランプ。 The discharge lamp according to claim 1, wherein the heat transfer body extends in the electrode axial direction at least inside the electrode.
  3.  前記電極が、金属の電極先端部を有し、
     前記伝熱体が、前記電極の一部を構成することを特徴とする請求項2に記載の放電ランプ。
    The electrode has a metal electrode tip;
    The discharge lamp according to claim 2, wherein the heat transfer body constitutes a part of the electrode.
  4.  前記電極が、内部空間を電極軸方向に沿って形成した電極本体を有し、
     前記伝熱体が、前記内部空間に収容されていることを特徴とする請求項3に記載の放電ランプ。
    The electrode has an electrode body in which an internal space is formed along the electrode axis direction,
    The discharge lamp according to claim 3, wherein the heat transfer body is accommodated in the internal space.
  5.  前記電極が、前記電極支持棒および前記電極本体と接合し、前記内部空間を密閉する電極蓋を有することを特徴とする請求項4に記載の放電ランプ。 The discharge lamp according to claim 4, wherein the electrode has an electrode lid that joins the electrode support rod and the electrode main body and seals the internal space.
  6.  前記伝熱体が、前記内部空間に隙間無く詰められていることを特徴とする請求項5に記載の放電ランプ。 The discharge lamp according to claim 5, wherein the heat transfer body is packed in the internal space without a gap.
  7.  前記伝熱体が、隙間を設けて前記内部空間に収容され、
     前記電極本体よりも融点が低い熱伝導性材料が、前記内部空間に封入されることを特徴とする請求項5に記載の放電ランプ。
    The heat transfer body is accommodated in the internal space with a gap;
    The discharge lamp according to claim 5, wherein a heat conductive material having a melting point lower than that of the electrode body is enclosed in the internal space.
  8.  前記伝熱体が前記電極蓋と接合し、点灯中前記熱伝導性材料と接するように延びていることを特徴とする請求項7に記載の放電ランプ。 The discharge lamp according to claim 7, wherein the heat transfer body is bonded to the electrode lid and extends so as to contact the heat conductive material during lighting.
  9.  前記伝熱体が、前記内部空間を形成する前記電極本体の円筒部をさらに構成することを特徴とする請求項8に記載の放電ランプ。 The discharge lamp according to claim 8, wherein the heat transfer body further constitutes a cylindrical portion of the electrode body forming the internal space.
  10.  前記伝熱体が、前記電極蓋との接合部分に傾斜組織を有することを特徴とする請求項8乃至9のいずれかに記載の放電ランプ。 The discharge lamp according to any one of claims 8 to 9, wherein the heat transfer body has an inclined structure at a joint portion with the electrode lid.
  11.  前記電極支持棒が、前記伝熱体と接合することを特徴とする請求項4に記載の放電ランプ。 The discharge lamp according to claim 4, wherein the electrode support rod is joined to the heat transfer body.
  12.  前記電極支持棒が、前記内部空間の底面まで延びて前記電極先端部を保持することを特徴とする請求項4に記載の放電ランプ。 The discharge lamp according to claim 4, wherein the electrode support rod extends to a bottom surface of the internal space to hold the tip of the electrode.
  13.  前記伝熱体が、前記内部空間を形成する前記電極本体の円筒部をさらに構成することを特徴とする請求項12に記載の放電ランプ。 The discharge lamp according to claim 12, wherein the heat transfer body further constitutes a cylindrical portion of the electrode body forming the internal space.
  14.  前記伝熱体が筒状であって、前記電極支持棒と間隔を設けながら同軸的に配置されていることを特徴とする請求項12に記載の放電ランプ。 The discharge lamp according to claim 12, wherein the heat transfer body has a cylindrical shape and is arranged coaxially with a space from the electrode support rod.
  15.  前記伝熱体が、前記電極先端部および前記電極支持棒と接合し、前記電極の胴体部を構成する特徴とする請求項3に記載の放電ランプ。 The discharge lamp according to claim 3, wherein the heat transfer member is joined to the electrode tip portion and the electrode support rod to constitute a body portion of the electrode.
  16.  前記電極が、前記電極先端部から電極軸方向に沿って延び、前記電極支持棒と接合する軸部を有し、
     前記伝熱体が円筒状で、前記軸部周りに同軸配置されることを特徴とする請求項3に記載の放電ランプ。
    The electrode has a shaft portion extending from the electrode tip portion along the electrode axial direction and joined to the electrode support rod;
    The discharge lamp according to claim 3, wherein the heat transfer body has a cylindrical shape and is arranged coaxially around the shaft portion.
  17.  前記電極先端部を含めた電極全体が、前記伝熱体として構成されることを特徴とする請求項1に記載の放電ランプ。 The discharge lamp according to claim 1, wherein the entire electrode including the electrode tip is configured as the heat transfer body.
  18.  前記電極支持棒が、前記伝熱体として構成されることを特徴とする請求項1に記載の放電ランプ。 The discharge lamp according to claim 1, wherein the electrode support rod is configured as the heat transfer body.
  19.  前記伝熱体が、炭素繊維をカーボン基材として成形されたものであることを特徴とする請求項1に記載の放電ランプ。 The discharge lamp according to claim 1, wherein the heat transfer body is formed by using carbon fiber as a carbon base material.
  20.  前記伝熱体が、筒状部材内に前記炭素繊維を束ねた炭素繊維束によって構成されることを特徴とする請求項19に記載の放電ランプ。 The discharge lamp according to claim 19, wherein the heat transfer body is constituted by a carbon fiber bundle in which the carbon fibers are bundled in a cylindrical member.
  21.  前記電極が、内部空間を電極軸方向に沿って形成した電極本体を有し、
     前記炭素繊維束が前記筒状部材から電極軸方向に沿って突出した状態で前記伝熱体が前記内部空間に設けられることを特徴とする請求項20に記載の放電ランプ。
    The electrode has an electrode body in which an internal space is formed along the electrode axis direction,
    The discharge lamp according to claim 20, wherein the heat transfer body is provided in the internal space in a state in which the carbon fiber bundle protrudes from the cylindrical member along the electrode axis direction.
  22.  前記伝熱体が、粉末状カーボンを基材にして成形されたものであることを特徴とする請求項1に記載の放電ランプ。 The discharge lamp according to claim 1, wherein the heat transfer body is formed using powdered carbon as a base material.
  23.  前記伝熱体が、金属/カーボン複合材によって構成されることを特徴とする請求項1に記載の放電ランプ。 The discharge lamp according to claim 1, wherein the heat transfer body is made of a metal / carbon composite material.
  24.  前記伝熱体が、タングステン/カーボン複合材によって構成されることを特徴とする請求項23に記載の放電ランプ。 The discharge lamp according to claim 23, wherein the heat transfer body is made of a tungsten / carbon composite material.
  25.  前記伝熱体が、カーボンナノファイバを含むことを特徴とする請求項1に記載の放電ランプ。
                      
                      
                      
                      
                      
    The discharge lamp according to claim 1, wherein the heat transfer body includes carbon nanofibers.




PCT/JP2011/079020 2010-12-21 2011-12-15 Discharge lamp WO2012086508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-284877 2010-12-21
JP2010284877A JP5754701B2 (en) 2010-12-21 2010-12-21 Discharge lamp

Publications (1)

Publication Number Publication Date
WO2012086508A1 true WO2012086508A1 (en) 2012-06-28

Family

ID=46313784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079020 WO2012086508A1 (en) 2010-12-21 2011-12-15 Discharge lamp

Country Status (3)

Country Link
JP (1) JP5754701B2 (en)
TW (1) TWI509655B (en)
WO (1) WO2012086508A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850451B2 (en) * 2011-12-21 2016-02-03 株式会社オーク製作所 High thermal conductive carbon fiber bulk and method for producing the same
JP6185717B2 (en) * 2012-12-26 2017-08-23 株式会社オーク製作所 Discharge lamp
TWI601183B (en) * 2013-04-24 2017-10-01 Orc Manufacturing Co Ltd Discharge lamp
JPWO2015011927A1 (en) * 2013-07-25 2017-03-02 東洋炭素株式会社 Electrode for short arc discharge lamp and manufacturing method thereof
TWI627656B (en) * 2013-09-24 2018-06-21 Orc Manufacturing Co Ltd Discharge lamp tube, electrode for discharge lamp tube and method of manufacturing the same
JP7032859B2 (en) * 2017-02-28 2022-03-09 株式会社オーク製作所 Discharge lamp and manufacturing method of discharge lamp
CN112384311A (en) * 2018-05-14 2021-02-19 艾科索成像公司 Integration techniques for micromachining pMUT arrays and electronic devices using thermocompression bonding, eutectic bonding, and solder bonding
JP7076307B2 (en) * 2018-07-06 2022-05-27 株式会社オーク製作所 Manufacturing method of discharge lamp and electrode for discharge lamp
JP7198611B2 (en) * 2018-08-28 2023-01-04 株式会社オーク製作所 Discharge lamp and method for producing electrode for discharge lamp
DE102018220944A1 (en) * 2018-12-04 2020-06-04 Osram Gmbh Electrode for gas discharge lamp and gas discharge lamp
JP7315433B2 (en) * 2019-10-23 2023-07-26 株式会社オーク製作所 Discharge lamp and method for manufacturing discharge lamp
JP7507615B2 (en) 2020-06-22 2024-06-28 株式会社オーク製作所 Discharge lamp and method of manufacturing electrode for discharge lamp
DE102022116475A1 (en) 2022-07-01 2024-01-04 Osram Gmbh ANODE ELECTRODE FOR A GAS DISCHARGE LAMP, METHOD FOR THE PRODUCTION THEREOF AND GAS DISCHARGE LAMP

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200581A (en) * 1999-01-04 2000-07-18 Orc Mfg Co Ltd Electrode structure for high pressure discharge lamp and its manufacture
JP3994880B2 (en) * 2002-04-26 2007-10-24 ウシオ電機株式会社 Discharge lamp
JP2008186790A (en) * 2007-01-31 2008-08-14 Yumex Inc Electrode for discharge lamp, and its manufacturing method
JP2009211916A (en) * 2008-03-04 2009-09-17 Yumex Inc Electrode with heat dissipation member
JP2010153292A (en) * 2008-12-26 2010-07-08 Ushio Inc Discharge lamp
JP2011070823A (en) * 2009-09-24 2011-04-07 Orc Manufacturing Co Ltd Discharge lamp

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304857A (en) * 1989-05-19 1990-12-18 Ushio Inc Short arc type high pressure mercury vapor lamp
TW535188B (en) * 1999-07-02 2003-06-01 Fusion Lighting Inc High output lamp with high brightness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200581A (en) * 1999-01-04 2000-07-18 Orc Mfg Co Ltd Electrode structure for high pressure discharge lamp and its manufacture
JP3994880B2 (en) * 2002-04-26 2007-10-24 ウシオ電機株式会社 Discharge lamp
JP2008186790A (en) * 2007-01-31 2008-08-14 Yumex Inc Electrode for discharge lamp, and its manufacturing method
JP2009211916A (en) * 2008-03-04 2009-09-17 Yumex Inc Electrode with heat dissipation member
JP2010153292A (en) * 2008-12-26 2010-07-08 Ushio Inc Discharge lamp
JP2011070823A (en) * 2009-09-24 2011-04-07 Orc Manufacturing Co Ltd Discharge lamp

Also Published As

Publication number Publication date
TWI509655B (en) 2015-11-21
JP5754701B2 (en) 2015-07-29
TW201227798A (en) 2012-07-01
JP2012133994A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5754701B2 (en) Discharge lamp
KR100891242B1 (en) Metal halide lamp
JP4484958B1 (en) Discharge lamp
JP2011249027A (en) Discharge lamp
TWI470666B (en) A discharge lamp, a discharge lamp electrode, and a discharge lamp electrode
KR20080017419A (en) Electrode system for a lamp
KR102229692B1 (en) Discharge lamp
JP6135034B2 (en) Short arc type discharge lamp
JP7198611B2 (en) Discharge lamp and method for producing electrode for discharge lamp
JP2005071972A (en) Electrode for cold cathode tube, and manufacturing method of the same
KR20100102039A (en) Ceramic discharge lamp and method for manufacturing the same
TW200908066A (en) Discharge lamp
JP4228343B2 (en) Metal vapor discharge lamp
WO2014050728A1 (en) Discharge lamp
JP2007242469A (en) Discharge lamp
JP4696163B2 (en) High pressure discharge lamp with ceramic discharge tube
AU2013319546B2 (en) High-wattage ceramic metal halide lamp
JP2019040866A (en) Short arc discharge lamp
JP2001325916A (en) Lamp
JP5311291B2 (en) Ceramic metal halide lamp and manufacturing method thereof
JP2019033084A (en) Short arc type discharge lamp
JPH0722015B2 (en) lamp
JP2017112121A (en) Short arc type discharge lamp
JPH11297272A (en) Tubular bulb mount
CN113451106A (en) Discharge lamp and method for manufacturing electrode for discharge lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850980

Country of ref document: EP

Kind code of ref document: A1