JP7076307B2 - Manufacturing method of discharge lamp and electrode for discharge lamp - Google Patents

Manufacturing method of discharge lamp and electrode for discharge lamp Download PDF

Info

Publication number
JP7076307B2
JP7076307B2 JP2018129391A JP2018129391A JP7076307B2 JP 7076307 B2 JP7076307 B2 JP 7076307B2 JP 2018129391 A JP2018129391 A JP 2018129391A JP 2018129391 A JP2018129391 A JP 2018129391A JP 7076307 B2 JP7076307 B2 JP 7076307B2
Authority
JP
Japan
Prior art keywords
electrode
columnar portion
discharge lamp
hole
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018129391A
Other languages
Japanese (ja)
Other versions
JP2020009624A (en
Inventor
武弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2018129391A priority Critical patent/JP7076307B2/en
Publication of JP2020009624A publication Critical patent/JP2020009624A/en
Application granted granted Critical
Publication of JP7076307B2 publication Critical patent/JP7076307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一対の電極を備えた放電ランプに関し、特に、電極の内部構造に関する。 The present invention relates to a discharge lamp having a pair of electrodes, and more particularly to the internal structure of the electrodes.

放電ランプは、点灯中に電極先端部が高温となり、タングステンなどの電極材料が溶融、蒸発し、放電管が黒化して、ランプ照度低下を招く。電極先端部の過熱を防ぐため、耐久性のある金属から成る電極先端部と、熱伝導性のより高い金属から成る胴体部とを別々に成形し、固相接合などによって接合する。例えば、SPSなどの固相接合によって電極を構成することができる(特許文献1参照)。複数の部材を接合して電極を構成することによって、電極が大型化しても耐久性を持たせることができると同時に、熱伝導性の優れた電極を構成することができる。 In the discharge lamp, the tip of the electrode becomes hot during lighting, the electrode material such as tungsten melts and evaporates, the discharge tube becomes black, and the illuminance of the lamp is lowered. In order to prevent the tip of the electrode from overheating, the tip of the electrode made of a durable metal and the body made of a metal having higher thermal conductivity are separately molded and joined by solid phase bonding or the like. For example, the electrode can be configured by solid phase bonding such as SPS (see Patent Document 1). By joining a plurality of members to form an electrode, it is possible to provide durability even if the electrode is enlarged, and at the same time, it is possible to form an electrode having excellent thermal conductivity.

特許第5472915号公報Japanese Patent No. 5472915

露光対象物の大型化、スループット向上のためにランプの高出力化(大電力化)が求められている。これに伴ってランプ点灯中の電極温度も高くなり、単に先端側部材と胴体部側部材とを固相接合するだけでは、電極過熱を効果的に抑えることが難しい。 In order to increase the size of the exposed object and improve the throughput, it is required to increase the output (high power) of the lamp. Along with this, the electrode temperature during lighting of the lamp also rises, and it is difficult to effectively suppress electrode overheating by simply solid-phase joining the tip side member and the body portion side member.

したがって、放電ランプの点灯中、電極の温度上昇を効果的に抑えることができる電極構造が求められる。 Therefore, there is a need for an electrode structure that can effectively suppress the temperature rise of the electrode while the discharge lamp is lit.

本発明の放電ランプは、放電管と、放電管内に対向配置される一対の電極とを備え、少なくとも一方の電極が、電極先端面側とは逆方向を向く軸方向に沿った筒状凹部と、筒状凹部に囲まれる柱状部と、少なくとも柱状部の側面周囲に軸方向に沿って形成される放熱空間とを備える。ここでの「柱状部」および「筒状凹部」は、複数の部材間の接合によって形成された電極を断面で見たときに接触面あるいは接合面を含めて規定される部分であり、例えば、柱状部の端面と筒状凹部底面との接触、非接触は問わない。筒状凹部は、電極先端面を有する先端側部材に形成され、柱状部は、電極支持棒と繋がる後端側部材に形成される。例えば、柱状部および筒状凹部の中心軸が、電極軸と一致するように構成することができる。 The discharge lamp of the present invention includes a discharge tube and a pair of electrodes arranged to face each other in the discharge tube, and at least one of the electrodes has a cylindrical recess along an axial direction facing in the direction opposite to the electrode tip surface side. A columnar portion surrounded by a cylindrical recess and a heat dissipation space formed along the axial direction at least around the side surface of the columnar portion are provided. Here, the "columnar portion" and the "cylindrical recess" are portions defined by including the contact surface or the joint surface when the electrode formed by the joint between the plurality of members is viewed in cross section, for example. It does not matter whether the end face of the columnar portion is in contact with or not in contact with the bottom surface of the tubular recess. The tubular recess is formed in the tip side member having the electrode tip surface, and the columnar portion is formed in the rear end side member connected to the electrode support rod. For example, the central axis of the columnar portion and the cylindrical recess can be configured to coincide with the electrode axis.

さらに電極には、筒状凹部の底面と電極先端面とを繋げる貫通孔が形成されている。放熱空間は、筒状凹部の底面と柱状部の端面との間に軸垂直方向に沿って形成されている軸垂直方向放熱空間を含むように構成することが可能である。その場合、貫通孔は、軸垂直方向放熱空間と空間的に繋がる。 Further, the electrode is formed with a through hole connecting the bottom surface of the tubular recess and the tip surface of the electrode. The heat dissipation space can be configured to include a vertical axis heat dissipation space formed along the vertical direction of the axis between the bottom surface of the tubular recess and the end face of the columnar portion. In that case, the through hole is spatially connected to the heat dissipation space in the vertical direction of the axis.

貫通孔は、電極軸の通る空間領域を含むように構成することが可能である。例えば電極軸と一致する中心軸をもつ貫通孔を形成することが可能である。 The through hole can be configured to include a spatial region through which the electrode shaft passes. For example, it is possible to form a through hole having a central axis that coincides with the electrode axis.

電極には放熱部を設けることが可能であり、例えば、放熱部は、柱状部の端面および側面の少なくとも一方に形成される。また、筒状凹部の底面において、貫通孔に向けて電極先端面へ近づく方向に傾斜する傾斜面を形成することが可能である。 The electrode can be provided with a heat radiating portion, for example, the heat radiating portion is formed on at least one of the end face and the side surface of the columnar portion. Further, on the bottom surface of the tubular recess, it is possible to form an inclined surface that is inclined in a direction approaching the electrode tip surface toward the through hole.

本発明の放電ランプ用電極の製造方法は、電極先端面を有する柱状の先端側固体部材に対して筒状凹部を中心軸回りに形成し、筒状凹部に対し、中心軸周りに貫通孔を形成し、柱状の後端側固体部材に対し、筒状凹部よりもサイズが小さい柱状部を中心軸回りに形成し、柱状部が筒状凹部に同軸配置されるように、先端側固体部材と後端側固体部材とを組み合わせ、固相接合する。例えば、先端側固体部材と後端側固体部材とを直接固相接合する。あるいは、先端側固体部材と後端側固体部材との間に中間部材を挟んで固相接合することも可能である。 In the method for manufacturing an electrode for a discharge lamp of the present invention, a cylindrical recess is formed around a central axis for a columnar tip-side solid member having an electrode tip surface, and a through hole is formed around the central axis for the tubular recess. For the solid member on the rear end side of the columnar shape, a columnar portion smaller in size than the tubular recess is formed around the central axis, and the solid member on the tip side is arranged so that the columnar portion is coaxially arranged in the cylindrical recess. Combine with the rear end side solid member and perform solid phase bonding. For example, the front end side solid member and the rear end side solid member are directly solid-phase bonded. Alternatively, it is also possible to perform solid phase bonding by sandwiching an intermediate member between the front end side solid member and the rear end side solid member.

本発明によれば、放電ランプにおいて、効果的に放熱を行って電極温度を抑えることができる。 According to the present invention, in a discharge lamp, heat can be effectively dissipated and the electrode temperature can be suppressed.

第1の実施形態である放電ランプの平面図である。It is a top view of the discharge lamp which is 1st Embodiment. 電極の概略的断面図である。It is a schematic cross-sectional view of an electrode. 電極の製造工程の一部を簡略して示した図である。It is a figure which showed the part of the manufacturing process of an electrode simplified. 第2の実施形態である電極の概略的断面図である。It is a schematic cross-sectional view of the electrode which is 2nd Embodiment.

以下では、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態である放電ランプの平面図である。 FIG. 1 is a plan view of a discharge lamp according to the first embodiment.

ショートアーク型放電ランプ10は、高輝度の光を出力可能な大型放電ランプであり、透明な石英ガラス製の略球状放電管(発光管)12を備え、放電管12内には、タングステン製の一対の電極20、30が対向(同軸)配置される。放電管12の両側には、石英ガラス製の封止管13A、13Bが放電管12と連設し、一体的に形成されている。放電管12内の放電空間DSには、水銀とハロゲンやアルゴンガスなどの希ガスが封入されている。 The short arc type discharge lamp 10 is a large discharge lamp capable of outputting high-intensity light, and includes a substantially spherical discharge tube (light emitting tube) 12 made of transparent quartz glass, and the inside of the discharge tube 12 is made of tungsten. A pair of electrodes 20 and 30 are arranged to face each other (coaxially). Quartz glass sealing tubes 13A and 13B are connected to and integrally formed with the discharge tube 12 on both sides of the discharge tube 12. The discharge space DS in the discharge tube 12 is filled with mercury and a rare gas such as halogen or argon gas.

陰極である電極20は電極支持棒17Aによって支持されている。封止管13Aには、電極支持棒17Aが挿通されるガラス管(図示せず)と、外部電源と接続するリード棒15Aと、電極支持棒17Aとリード棒15Aを接続する金属箔16Aなどが封止されている。陽極である電極30についても同様に、電極支持棒17Bが挿通されるガラス管(図示せず)、金属箔16B、リード棒15Bなどのマウント部品が封止されている。また、封止管13A、13Bの端部には、口金19A、19Bがそれぞれ取り付けられている。 The electrode 20 which is a cathode is supported by the electrode support rod 17A. The sealing tube 13A includes a glass tube (not shown) through which the electrode support rod 17A is inserted, a lead rod 15A connected to an external power source, a metal foil 16A connecting the electrode support rod 17A and the lead rod 15A, and the like. It is sealed. Similarly, for the electrode 30 which is an anode, mounting parts such as a glass tube (not shown) through which the electrode support rod 17B is inserted, a metal foil 16B, and a lead rod 15B are sealed. Further, the bases 19A and 19B are attached to the ends of the sealing tubes 13A and 13B, respectively.

一対の電極20、30に電圧が印加されると、電極20、30の間でアーク放電が発生し、放電管12の外部に向けて光が放射される。ここでは、1kW以上の電力が投入される。放電管12から放射された光は、反射鏡(図示せず)によって所定方向へ導かれる。例えば露光装置に放電ランプ10が組み込まれた場合、放射光はパターン光となって基板などに照射される。 When a voltage is applied to the pair of electrodes 20 and 30, an arc discharge is generated between the electrodes 20 and 30, and light is radiated to the outside of the discharge tube 12. Here, 1 kW or more of electric power is input. The light emitted from the discharge tube 12 is guided in a predetermined direction by a reflecting mirror (not shown). For example, when the discharge lamp 10 is incorporated in the exposure apparatus, the synchrotron radiation becomes pattern light and irradiates the substrate or the like.

図2は、電極(陽極)30の概略的断面図である。なお、電極(陰極)20についても同様の構造にすることが可能である。 FIG. 2 is a schematic cross-sectional view of the electrode (anode) 30. The electrode (cathode) 20 can have the same structure.

電極30は、電極支持棒17Bと繋がる後端側部材32と、電極先端面30Sを有する先端側部材34からなり、後端側部材32と先端側部材34を接合することで電極30が構成されている。ここでは、後端側部材32と先端側部材34がSPSなどの固相接合によって接合されている。 The electrode 30 is composed of a rear end side member 32 connected to the electrode support rod 17B and a front end side member 34 having an electrode front end surface 30S, and the electrode 30 is configured by joining the rear end side member 32 and the front end side member 34. ing. Here, the rear end side member 32 and the front end side member 34 are joined by solid phase bonding such as SPS.

後端側部材32は、電極軸X(以下では、軸方向Xともいう)を中心軸とした円柱状の部材であり、電極先端面30Sに向けて突出する柱状部50(ここでは円柱状)が形成されている。先端側部材34では、柱状部50を囲う筒状凹部40が同軸的に形成されている。筒状凹部40は電極先端面30Sとは逆方向を向く、すなわち逆方向に凹んでいる。後端側部材32は、その端部32Eにおいて、先端側部材34の端部34Eと固相接合している。 The rear end side member 32 is a columnar member having an electrode shaft X (hereinafter, also referred to as an axial direction X) as a central axis, and a columnar portion 50 (here, a columnar shape) protruding toward the electrode tip surface 30S. Is formed. In the tip side member 34, a cylindrical recess 40 surrounding the columnar portion 50 is coaxially formed. The cylindrical recess 40 faces in the direction opposite to the electrode tip surface 30S, that is, is recessed in the opposite direction. The rear end side member 32 is solid-phase bonded to the end portion 34E of the front end side member 34 at the end portion 32E.

柱状部50と筒状凹部40との間には、軸方向Xおよびそれに垂直な軸垂直方向に沿って、隙間60が柱状部50の周囲全体に渡って形成されている。ここでは、軸垂直方向に沿った隙間部分を60D、軸方向Xに沿った隙間部分を60Vとしている。隙間部分60D、60Vは空間的に繋がっている。 Between the columnar portion 50 and the tubular recess 40, a gap 60 is formed over the entire circumference of the columnar portion 50 along the axial direction X and the axial vertical direction perpendicular to the axial direction X. Here, the gap portion along the axis vertical direction is 60D, and the gap portion along the axial direction X is 60V. The gap portions 60D and 60V are spatially connected.

柱状部50および筒状凹部40は、ともにその中心軸が電極軸Xと一致し、電極軸Xに対して対称的形状になっている。そして、筒状凹部40の底面40Bも電極軸Xに関して対称的であり、隙間60も電極軸Xに関して対称的空間形状になっている。 The central axis of both the columnar portion 50 and the cylindrical recess 40 coincides with the electrode axis X, and the shape is symmetrical with respect to the electrode axis X. The bottom surface 40B of the cylindrical recess 40 is also symmetrical with respect to the electrode axis X, and the gap 60 is also symmetrical with respect to the electrode axis X.

隙間部分60Vの径方向幅W、すなわち柱状部50の側面50Sと筒状凹部40の側面40Sの径方向距離間隔は、柱状部50の直径Rと比べて短い(W<R)。隙間部分60Dの軸方向幅Tは、ここでは隙間部分60Vの径方向幅Wと同じ幅であり、柱状部50の高さHよりも短い(T<H)。隙間60は電極30内に形成され、有底管状の空間領域になっている。 The radial width W of the gap portion 60V, that is, the radial distance between the side surface 50S of the columnar portion 50 and the side surface 40S of the tubular recess 40 is shorter than the diameter R of the columnar portion 50 (W <R). The axial width T of the gap portion 60D is the same as the radial width W of the gap portion 60V here, and is shorter than the height H of the columnar portion 50 (T <H). The gap 60 is formed in the electrode 30 and is a bottomed tubular space region.

ここでは、径方向幅W、軸方向幅Tは、それぞれ柱状部50の直径R、高さHと比べて十分短く、柱状部50の側面50S、端面50Eは、それぞれ筒状凹部40の側面40S、底面40Bに近接し、隙間60が形成するスペースの容積は、柱状部50の体積よりも小さい。また、隙間60には、伝熱体のような部材は設けられていない。 Here, the radial width W and the axial width T are sufficiently shorter than the diameter R and the height H of the columnar portion 50, respectively, and the side surface 50S and the end surface 50E of the columnar portion 50 are the side surfaces 40S of the tubular recess 40, respectively. The volume of the space formed by the gap 60, which is close to the bottom surface 40B, is smaller than the volume of the columnar portion 50. Further, the gap 60 is not provided with a member such as a heat transfer body.

筒状凹部40には、電極軸Xに沿って貫通孔80が形成されている。貫通孔80は、断面円状であって、電極先端面30Sと筒状凹部40の底面40Bとの間に形成され、電極外部と隙間60とを空間的に繋げている。ここでは、貫通孔80の中心軸が電極軸Xと一致している。貫通孔80の直径rは、柱状部50の直径Rよりも小さい。 A through hole 80 is formed in the tubular recess 40 along the electrode shaft X. The through hole 80 has a circular cross section and is formed between the electrode tip surface 30S and the bottom surface 40B of the cylindrical recess 40, and spatially connects the outside of the electrode and the gap 60. Here, the central axis of the through hole 80 coincides with the electrode axis X. The diameter r of the through hole 80 is smaller than the diameter R of the columnar portion 50.

貫通孔80の筒状凹部底面側の端部には、傾斜面70が形成されている。傾斜面70は、筒状凹部40の底面40Bにおいて電極軸Xに垂直な平面と連続的に繋がり、電極先端面30Sに向けて近づく方向、すなわち柱状部50から離れる方向に傾斜している。傾斜面70は、貫通孔80の端部において電極軸Xに関し対称的な環状面として形成され、ここではその傾きが一定である。 An inclined surface 70 is formed at the end of the through hole 80 on the bottom surface side of the cylindrical recess. The inclined surface 70 is continuously connected to a plane perpendicular to the electrode axis X at the bottom surface 40B of the tubular recess 40, and is inclined in a direction approaching the electrode tip surface 30S, that is, a direction away from the columnar portion 50. The inclined surface 70 is formed as an annular surface symmetrical with respect to the electrode axis X at the end of the through hole 80, and the inclination thereof is constant here.

ランプ点灯中、電極の先端側部材34の温度が上昇し、電極先端側部材34の熱が柱状部50に伝わる。また、柱状部50は、その端面50Eが電極先端面30S付近と空間的に繋がっているため、貫通孔80によってアーク放電の熱を直接吸収する。柱状部50の熱は、隙間60に対して放射され、また電極支持棒17B側へ伝わる。軸方向Xだけでなく軸垂直方向にも移動した熱は、電極外表面30Mから放電空間DSへ伝わる。 While the lamp is lit, the temperature of the electrode tip side member 34 rises, and the heat of the electrode tip side member 34 is transferred to the columnar portion 50. Further, since the end surface 50E of the columnar portion 50 is spatially connected to the vicinity of the electrode tip surface 30S, the heat of the arc discharge is directly absorbed by the through hole 80. The heat of the columnar portion 50 is radiated to the gap 60 and transferred to the electrode support rod 17B side. The heat transferred not only in the axial direction X but also in the vertical direction of the axis is transferred from the electrode outer surface 30M to the discharge space DS.

放熱空間として機能する隙間60を設けることにより、電極先端側の過熱を抑えることができる。特に、隙間60へ放熱する部分の形状を柱状部50とすることによって表面積が増え、熱容量が上がり、電極の温度上昇を効果的に抑えることができる。また、隙間60が、電極軸Xに対して対称的な有底管状空間として形成されることにより、柱状部50の軸方向Xと軸垂直方向、周方向に関して均等に放熱することができ、電極30からの放熱に対しても偏った放熱を防ぐことができる。 By providing the gap 60 that functions as a heat dissipation space, it is possible to suppress overheating on the electrode tip side. In particular, by making the shape of the portion that dissipates heat to the gap 60 into the columnar portion 50, the surface area is increased, the heat capacity is increased, and the temperature rise of the electrode can be effectively suppressed. Further, since the gap 60 is formed as a bottomed tubular space symmetrical with respect to the electrode axis X, heat can be dissipated evenly in the axial direction X and the axial direction and the circumferential direction of the columnar portion 50, and the electrode It is possible to prevent uneven heat dissipation even with respect to heat dissipation from 30.

隙間部分(軸垂直方向放熱空間)60Dの軸方向幅Tは柱状部50の高さHよりも小さい(T<H)。これによって、柱状部50の熱容量が上がるだけでなく、先端側部材34の熱(アーク放電の熱)が柱状部50に伝わりやすくなる。また柱状部50(端面50E)から後端側部材32へ熱を速やかに輸送することができる。一方、隙間部分60Vの径方向幅Wは、柱状部50の直径Rよりも小さく定められている(W<R)。これによって、柱状部50の熱容量が上がるだけでなく、柱状部50(側面50S)の熱が筒状凹部40(側面40S)を経由して電極外表面30M側へ伝わりやすくなる。 The axial width T of the gap portion (radiation space in the vertical direction of the axis) 60D is smaller than the height H of the columnar portion 50 (T <H). As a result, not only the heat capacity of the columnar portion 50 increases, but also the heat of the tip side member 34 (heat of the arc discharge) is easily transferred to the columnar portion 50. Further, heat can be quickly transported from the columnar portion 50 (end face 50E) to the rear end side member 32. On the other hand, the radial width W of the gap portion 60V is set to be smaller than the diameter R of the columnar portion 50 (W <R). As a result, not only the heat capacity of the columnar portion 50 increases, but also the heat of the columnar portion 50 (side surface 50S) is easily transferred to the electrode outer surface 30M side via the cylindrical recess 40 (side surface 40S).

さらに本実施形態では、電極先端面30Sから柱状部50に向けて貫通孔80が形成されている。これにより、アーク放電が貫通孔80の空間領域周辺で安定する。特に、貫通孔80の直径rが柱状部50の直径Rよりも小さいため、アーク放電が貫通孔80に集中しやすい。その結果、アーク放電の揺らぎが抑えられ、高照度化される。また、電極先端面30Sの中心付近が開口していることにより、電極先端面30Sの消耗を防ぎ、ランプ寿命が長くなる。柱状部50の直径Rが貫通孔80の直径rよりも大きく、その中心軸同士が一致しているため、アーク放電からの熱を柱状部50が受けやすい。さらに、放電空間DS内のガスが、貫通孔80を通じて電極内部に流入、流出する。これによって、電極内部の温度上昇を抑えることができる。 Further, in the present embodiment, a through hole 80 is formed from the electrode tip surface 30S toward the columnar portion 50. As a result, the arc discharge is stabilized around the space region of the through hole 80. In particular, since the diameter r of the through hole 80 is smaller than the diameter R of the columnar portion 50, the arc discharge tends to concentrate in the through hole 80. As a result, the fluctuation of the arc discharge is suppressed and the illuminance is increased. Further, since the vicinity of the center of the electrode tip surface 30S is open, the electrode tip surface 30S is prevented from being consumed, and the lamp life is extended. Since the diameter R of the columnar portion 50 is larger than the diameter r of the through hole 80 and the central axes thereof coincide with each other, the columnar portion 50 is likely to receive heat from the arc discharge. Further, the gas in the discharge space DS flows in and out of the electrode through the through hole 80. As a result, the temperature rise inside the electrode can be suppressed.

一方で、貫通孔80は、電極製造工程時における電極洗浄において、洗浄液を排出する孔として機能する。特に、傾斜面70を設けることにより、洗浄液が残留し、放電管が汚れるのを防ぐことができる。 On the other hand, the through hole 80 functions as a hole for discharging the cleaning liquid in the electrode cleaning during the electrode manufacturing process. In particular, by providing the inclined surface 70, it is possible to prevent the cleaning liquid from remaining and the discharge tube from becoming dirty.

以上のような特徴をもつ電極は、以下のように製造することができる。 An electrode having the above characteristics can be manufactured as follows.

図3は、電極の製造工程の一部を簡略して示した図である。 FIG. 3 is a diagram showing a part of the electrode manufacturing process in a simplified manner.

まず、筒状凹部40を形成した先端側部材34の電極軸垂直方向に沿った底面に対し、中心軸周りに貫通孔80を形成する。また、貫通孔80の底面側端部に対し、その中心軸周りに傾斜面70を形成する。そして、筒状凹部40に収容可能な柱状部50を有し、電極支持棒用の挿入孔32Bを形成した後端側部材32と、先端側部材34とを固相接合する。このとき、柱状部50が筒状凹部40に同軸配置されるように接合する。なお、先端側部材34と後端側部材32との間に中間部材を挟んで接合してもよい。電極には、固相接合によって金属粉末などが電極内部(筒状凹部40内)や電極表面に残ったり、汚れが付着していたりする。これを除去するため、固相接合の後に電極洗浄を行う。具体的には、水やアルコール成分を含む洗浄液によって電極を洗う。例えば、超音波洗浄などが適用できる。隙間60は電極外部と貫通孔80を通じて空間的に繋がっているため、洗浄液が隙間60に入り込む。 First, a through hole 80 is formed around the central axis with respect to the bottom surface of the tip side member 34 having the cylindrical recess 40 formed in the direction perpendicular to the electrode axis. Further, an inclined surface 70 is formed around the central axis of the through hole 80 with respect to the bottom surface side end portion. Then, the rear end side member 32 having a columnar portion 50 accommodating in the tubular recess 40 and forming the insertion hole 32B for the electrode support rod and the front end side member 34 are solid-phase bonded. At this time, the columnar portion 50 is joined so as to be coaxially arranged in the cylindrical recess 40. An intermediate member may be sandwiched between the front end side member 34 and the rear end side member 32 for joining. Metal powder or the like may remain inside the electrode (inside the tubular recess 40) or on the surface of the electrode due to solid phase bonding, or dirt may be attached to the electrode. To remove this, electrode cleaning is performed after solid phase bonding. Specifically, the electrodes are washed with a cleaning solution containing water or an alcohol component. For example, ultrasonic cleaning can be applied. Since the gap 60 is spatially connected to the outside of the electrode through the through hole 80, the cleaning liquid enters the gap 60.

洗浄後、電極先端面30Sを下側にし、接合した電極に対して乾燥処理を行う。隙間60に残った洗浄液(図3において符号“K”で示す)は、筒状凹部40の底面40Bに流れ落ち、傾斜面70によって貫通孔80に流れ込み、そのまま電極外部に流れていく。これによって、電極内部に残った洗浄液は電極外部に排出される。乾燥処理が終了すると、定められた時間、温度に従い、熱処理を行う。熱処理後、電極支持棒17Bを挿入孔32Bに挿入する。なお、図3においては、接合前に先端側部材34と後端側部材32を電極形状に加工しているが、接合後に円錐台部分を形成するなどの電極形状加工を実施してもよく、このときの金属粉末や汚れを洗浄するようにしてもよい。 After cleaning, the electrode tip surface 30S is on the lower side, and the bonded electrode is dried. The cleaning liquid remaining in the gap 60 (indicated by the reference numeral “K” in FIG. 3) flows down to the bottom surface 40B of the tubular recess 40, flows into the through hole 80 through the inclined surface 70, and flows to the outside of the electrode as it is. As a result, the cleaning liquid remaining inside the electrode is discharged to the outside of the electrode. When the drying process is completed, heat treatment is performed according to the specified time and temperature. After the heat treatment, the electrode support rod 17B is inserted into the insertion hole 32B. In FIG. 3, the front end side member 34 and the rear end side member 32 are processed into an electrode shape before joining, but electrode shape processing such as forming a truncated cone portion after joining may be performed. The metal powder and dirt at this time may be cleaned.

貫通孔80に対しては、面取り加工を行ってもよい(例えば、貫通孔と電極先端面が繋がる角など)。また、傾斜面70の形状は角度が一定の環状面(テーパー面)に限定されず、曲面形状にすることが可能であり、また、筒状凹部40の底面40Bを全体的に傾斜面にしてもよい。 The through hole 80 may be chamfered (for example, the angle at which the through hole and the tip surface of the electrode are connected). Further, the shape of the inclined surface 70 is not limited to the annular surface (tapered surface) having a constant angle, and can be a curved surface shape, and the bottom surface 40B of the cylindrical recess 40 is made an inclined surface as a whole. May be good.

このように本実施形態によれば、筒状凹部40を形成した先端側部材34と、柱状部50を形成した後端側部材32とを固相接合した電極30において、筒状凹部40と柱状部50との間に隙間60が形成される。それとともに、電極先端面30Sと筒状凹部40の底面40B、すなわち隙間60とを空間的に繋げる貫通孔80が電極軸Xに沿って形成されている。なお、筒状凹部40と柱状部50との隙間60Dを設けず、柱状部50(端面50E)が筒状凹部40の底面40Bに接する構成にしてもよい。 As described above, according to the present embodiment, in the electrode 30 in which the distal end side member 34 in which the tubular concave portion 40 is formed and the rear end side member 32 in which the columnar portion 50 is formed are solid-phase bonded, the cylindrical concave portion 40 and the columnar shape are formed. A gap 60 is formed between the portion 50 and the portion 50. At the same time, a through hole 80 that spatially connects the electrode tip surface 30S and the bottom surface 40B of the cylindrical recess 40, that is, the gap 60 is formed along the electrode shaft X. The columnar portion 50 (end surface 50E) may be in contact with the bottom surface 40B of the tubular recess 40 without providing the gap 60D between the tubular recess 40 and the columnar portion 50.

次に、図4を用いて第2の実施形態である放電ランプについて説明する。第2の実施形態では、放熱構造(以下、放熱部ともいう)をもつ電極が構成されている。 Next, the discharge lamp according to the second embodiment will be described with reference to FIG. In the second embodiment, an electrode having a heat dissipation structure (hereinafter, also referred to as a heat dissipation portion) is configured.

図4は、第2の実施形態である電極130(陽極)の断面図である。なお、陰極についても同様の構造にすることが可能である。 FIG. 4 is a cross-sectional view of the electrode 130 (anode) according to the second embodiment. The cathode can have the same structure.

後端側部材132の側面には、放熱部210が周方向全体に渡って形成されている。例えば、アルミナブラスト処理などによって酸化膜などの層を形成した放熱部210を形成することが可能である。一方、先端側部材134の側面140Sおよびテーパー面140Mには、周方向に渡って放熱部250、240が形成されている。放熱部240、250は、例えば放電やレーザー、切削加工による凹部として形成することができる。 A heat radiating portion 210 is formed on the side surface of the rear end side member 132 over the entire circumferential direction. For example, it is possible to form a heat radiating portion 210 having a layer such as an oxide film formed by an alumina blast treatment or the like. On the other hand, heat radiating portions 250 and 240 are formed on the side surface 140S and the tapered surface 140M of the tip side member 134 in the circumferential direction. The heat radiating portions 240 and 250 can be formed as recesses formed by, for example, electric discharge, laser, or cutting.

柱状部150の側面150Sには、放熱部220として凹部が周方向に沿って周全体に形成されており、また、軸方向Xに柱状部150の高さに応じた長さをもって形成されている。先端側部材134の放熱部250の形成位置は、放熱部220の形成位置に対応し、二重放熱構造となっている。放熱部220は、例えばレーザーや切削加工などの手段によって形成することができる。ただし、凹部以外の構成によって放熱構造(放熱部)を実現してもよく、既知の表面積増加構造や放熱素材(例えば炭化膜や酸化膜の放熱層)などで側面150Sを覆うように構成してもよい。また、カーボンナノチューブのような放射率の高い部材も適用できる。 On the side surface 150S of the columnar portion 150, a recess is formed as a heat radiating portion 220 along the entire circumference along the circumferential direction, and is formed in the axial direction X with a length corresponding to the height of the columnar portion 150. .. The formation position of the heat dissipation portion 250 of the tip side member 134 corresponds to the formation position of the heat dissipation portion 220, and has a double heat dissipation structure. The heat radiating portion 220 can be formed by means such as laser or cutting. However, a heat dissipation structure (heat dissipation part) may be realized by a configuration other than the recess, and the side surface 150S is covered with a known surface area increasing structure or a heat dissipation material (for example, a heat dissipation layer of a carbonized film or an oxide film). May be good. Further, a member having a high emissivity such as a carbon nanotube can also be applied.

柱状部150の端面150Eにも、微細な凹部の放熱部230が形成されている。放熱部230は、いくつもの環となって中心部の周りに(周方向に)形成されている。これにより、アーク放電の熱の吸収を高め、隙間160への効率の良い放熱や、電極支持棒側へ効率よく熱輸送することができる。ただし、端面150Eに対して放射状に(径方向に)放熱部230を形成してもよい。 A heat radiating portion 230 having a fine recess is also formed on the end surface 150E of the columnar portion 150. The heat radiating portion 230 is formed as a number of rings around the central portion (in the circumferential direction). As a result, the heat absorption of the arc discharge can be enhanced, the heat can be efficiently dissipated to the gap 160, and the heat can be efficiently transported to the electrode support rod side. However, the heat radiating portion 230 may be formed radially (diameterally) with respect to the end face 150E.

このような放熱部210、220、230、240、250を設けることにより、効果的に熱を電極外部へ放出することができる。ただし、放熱部210、220、230、240、250の形成位置については他の位置に形成することも可能である。また、放熱部210、220、230、240、250のうち、一部のみ設けることも可能である。 By providing such heat radiating portions 210, 220, 230, 240, 250, heat can be effectively released to the outside of the electrode. However, the heat radiating portions 210, 220, 230, 240, and 250 can be formed at other positions. Further, it is also possible to provide only a part of the heat radiating portions 210, 220, 230, 240 and 250.

一方で、電極130には、隙間(放熱空間)160と電極外表面130Mとを空間的に繋げる一対の貫通孔178A、178Bが対称的な位置に形成されている。貫通孔178A、178Bを形成することにより、放電空間DS内のガスの流入、流出が多くなり、電極温度を効果的に抑制することができる。ここでは一対の貫通孔178A、178Bとしたが、数、孔径、位置、軸方向Xに対する孔の形成角度は、ランプサイズ、電極サイズなどに応じて適宜定められる。 On the other hand, in the electrode 130, a pair of through holes 178A and 178B that spatially connect the gap (heat dissipation space) 160 and the electrode outer surface 130M are formed at symmetrical positions. By forming the through holes 178A and 178B, the inflow and outflow of gas in the discharge space DS increases, and the electrode temperature can be effectively suppressed. Here, a pair of through holes 178A and 178B are used, but the number, the hole diameter, the position, and the hole formation angle with respect to the axial direction X are appropriately determined according to the lamp size, the electrode size, and the like.

本実施形態で示した電極は、ショートアーク型放電ランプ以外の放電ランプに対して適用することも可能である。電極の温度上昇を抑えることができることから、1kW以上の比較的大きな電力の放電ランプに好適である。また、接合方法は固相接合(SPS、HPなど)が好適だが、他の接合方法(例えば溶融接合)も適用できる。接合の際、先端側部材と後端側部材との間に中間部材を挟み、接合面間の密着化をしてもよい。中間部材としては、例えばレニウム、タンタル、モリブデン、タングステン、あるいはこれらの合金が挙げられる。 The electrodes shown in this embodiment can also be applied to discharge lamps other than short arc type discharge lamps. Since the temperature rise of the electrode can be suppressed, it is suitable for a discharge lamp having a relatively large power of 1 kW or more. Further, although solid phase bonding (SPS, HP, etc.) is preferable as the bonding method, other bonding methods (for example, melt bonding) can also be applied. At the time of joining, an intermediate member may be sandwiched between the front end side member and the rear end side member to bring the joint surfaces into close contact with each other. Examples of the intermediate member include rhenium, tantalum, molybdenum, tungsten, or alloys thereof.

柱状部と筒状凹部の形状、サイズなどは任意であり、例えば軸方向Xに沿って径が変化する柱状部や、底面に縮径面を有する筒状凹部などでもよい。また、柱状部と筒状凹部をそれぞれ違う部材で構成することが可能である。例えば、熱放射性が優れて軽量な部材によって柱状部を形成し、耐熱性や熱伝導性の優れた部材によって先端側部材を形成することが可能である。さらに、柱状部を後端側部材に接合して構成してよい。具体的には、タングステンやモリブデン、あるいはこれらの合金、セラミックなどでもよく、またエミッターを含有させてもよく、また、これらの合金を適用することも可能であり、適宜選択できる。 The shape, size, and the like of the columnar portion and the tubular concave portion are arbitrary, and may be, for example, a columnar portion whose diameter changes along the axial direction X, a cylindrical concave portion having a reduced diameter surface on the bottom surface, or the like. Further, it is possible to configure the columnar portion and the cylindrical concave portion with different members. For example, it is possible to form a columnar portion by a member having excellent thermal radiation and being lightweight, and to form a tip side member by a member having excellent heat resistance and thermal conductivity. Further, the columnar portion may be joined to the rear end side member to form a structure. Specifically, tungsten, molybdenum, alloys thereof, ceramics, etc. may be used, an emitter may be contained, and these alloys can be applied and can be appropriately selected.

10 放電ランプ
30 電極(陽極)
32 後端側部材
34 先端側部材
40 筒状凹部
50 柱状部
60 隙間(放熱空間)
70 傾斜面
80 貫通孔
10 Discharge lamp 30 Electrode (anode)
32 Rear end side member 34 Front end side member 40 Cylindrical recess 50 Columnar part 60 Gap (heat dissipation space)
70 Inclined surface 80 Through hole

Claims (8)

放電管と、
前記放電管内に対向配置される一対の電極とを備え、
少なくとも一方の電極が、
電極先端面側とは逆方向を向く軸方向に沿った筒状凹部と、
前記筒状凹部に囲まれる柱状部と、
少なくとも前記柱状部の側面周囲に軸方向に沿って形成される放熱空間とを備え、
前記筒状凹部の底面と電極先端面とを繋げる貫通孔が、形成されていることを特徴とする放電ランプ。
With the discharge tube
It is provided with a pair of electrodes arranged to face each other in the discharge tube.
At least one of the electrodes
Cylindrical recesses along the axial direction facing the opposite direction to the electrode tip surface side,
A columnar portion surrounded by the cylindrical recess and
It is provided with at least a heat dissipation space formed along the axial direction around the side surface of the columnar portion.
A discharge lamp characterized in that a through hole connecting the bottom surface of the tubular recess and the tip surface of the electrode is formed.
前記放熱空間が、前記筒状凹部の底面と前記柱状部の端面との間に軸垂直方向に沿って形成されている軸垂直方向放熱空間をさらに備え、
前記貫通孔が、前記軸垂直方向放熱空間と繋がっていることを特徴とする請求項1に記載の放電ランプ。
The heat dissipation space further includes an axial vertical heat dissipation space formed along the vertical direction of the axis between the bottom surface of the tubular recess and the end surface of the columnar portion.
The discharge lamp according to claim 1, wherein the through hole is connected to the heat radiation space in the vertical direction of the axis.
前記貫通孔が、電極軸の通る空間領域を有することを特徴とする請求項1または2に記載の放電ランプ。 The discharge lamp according to claim 1 or 2, wherein the through hole has a spatial region through which an electrode shaft passes. 前記柱状部および前記筒状凹部の中心軸が、電極軸と一致し、
前記貫通孔が、電極軸を中心軸にして形成されていることを特徴とする請求項1乃至3のいずれかに記載の放電ランプ。
The central axis of the columnar portion and the tubular recess coincides with the electrode axis,
The discharge lamp according to any one of claims 1 to 3, wherein the through hole is formed with the electrode shaft as the central axis.
放熱部が、前記柱状部の端面および側面の少なくとも一方に形成されていることを特徴とする請求項1乃至4のいずれかに記載の放電ランプ。 The discharge lamp according to any one of claims 1 to 4, wherein the heat radiating portion is formed on at least one of the end surface and the side surface of the columnar portion. 前記筒状凹部の底面において、前記貫通孔に向けて電極先端面へ近づく方向に傾斜する傾斜面が形成されていることを特徴とする請求項1乃至5のいずれかに記載の放電ランプ。 The discharge lamp according to any one of claims 1 to 5, wherein an inclined surface inclined in a direction approaching the electrode tip surface toward the through hole is formed on the bottom surface of the tubular recess. 前記筒状凹部が、電極先端面を有する先端側部材に形成され、
前記柱状部が、電極支持棒と繋がる後端側部材に形成されていることを特徴とする請求項1乃至6のいずれかに記載の放電ランプ。
The cylindrical recess is formed in the tip side member having the electrode tip surface, and is formed.
The discharge lamp according to any one of claims 1 to 6, wherein the columnar portion is formed on a rear end side member connected to an electrode support rod.
電極先端面を有する柱状の先端側固体部材に対して筒状凹部を中心軸回りに形成し、
前記筒状凹部に対し、中心軸周りに貫通孔を形成し、
柱状の後端側固体部材に対し、前記筒状凹部よりもサイズが小さい柱状部を中心軸回りに形成し、
前記柱状部が前記筒状凹部に同軸配置されるように、前記先端側固体部材と前記後端側固体部材とを組み合わせ、
固相接合によって、前記先端側固体部材と前記後端側固体部材とを含む電極を形成することを特徴とする放電ランプ用電極の製造方法。
A cylindrical recess is formed around the central axis with respect to the columnar tip-side solid member having the electrode tip surface.
A through hole is formed around the central axis of the cylindrical recess to form a through hole.
For the solid member on the rear end side of the columnar, a columnar portion smaller in size than the tubular recess is formed around the central axis.
The front end side solid member and the rear end side solid member are combined so that the columnar portion is coaxially arranged in the cylindrical recess.
A method for manufacturing an electrode for a discharge lamp, which comprises forming an electrode including the front end side solid member and the rear end side solid member by solid phase bonding.
JP2018129391A 2018-07-06 2018-07-06 Manufacturing method of discharge lamp and electrode for discharge lamp Active JP7076307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018129391A JP7076307B2 (en) 2018-07-06 2018-07-06 Manufacturing method of discharge lamp and electrode for discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129391A JP7076307B2 (en) 2018-07-06 2018-07-06 Manufacturing method of discharge lamp and electrode for discharge lamp

Publications (2)

Publication Number Publication Date
JP2020009624A JP2020009624A (en) 2020-01-16
JP7076307B2 true JP7076307B2 (en) 2022-05-27

Family

ID=69152116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129391A Active JP7076307B2 (en) 2018-07-06 2018-07-06 Manufacturing method of discharge lamp and electrode for discharge lamp

Country Status (1)

Country Link
JP (1) JP7076307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225139B2 (en) * 2020-01-24 2023-02-20 株式会社三共 game machine
JP7225138B2 (en) * 2020-01-24 2023-02-20 株式会社三共 game machine
JP7377750B2 (en) 2020-03-24 2023-11-10 株式会社オーク製作所 Method for manufacturing discharge lamps and electrodes for discharge lamps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221934A (en) 2005-02-09 2006-08-24 Yumex Inc Positive electrode for discharge lamp
JP2007287705A (en) 2000-08-03 2007-11-01 Ushio Inc Short arc type high pressure discharge lamp
JP2012133994A (en) 2010-12-21 2012-07-12 Orc Manufacturing Co Ltd Discharge lamp
JP2013257968A (en) 2012-06-11 2013-12-26 Ushio Inc Discharge lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287705A (en) 2000-08-03 2007-11-01 Ushio Inc Short arc type high pressure discharge lamp
JP2006221934A (en) 2005-02-09 2006-08-24 Yumex Inc Positive electrode for discharge lamp
JP2012133994A (en) 2010-12-21 2012-07-12 Orc Manufacturing Co Ltd Discharge lamp
JP2013257968A (en) 2012-06-11 2013-12-26 Ushio Inc Discharge lamp

Also Published As

Publication number Publication date
JP2020009624A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7076307B2 (en) Manufacturing method of discharge lamp and electrode for discharge lamp
CN101752183B (en) Extra-high pressure mercury lamp
JP7032859B2 (en) Discharge lamp and manufacturing method of discharge lamp
JP2007012777A (en) Light irradiation apparatus
JP4998826B2 (en) Flash lamp and method of manufacturing flash lamp
JP4952100B2 (en) Short arc lamp
JP7198611B2 (en) Discharge lamp and method for producing electrode for discharge lamp
JP6971703B2 (en) Manufacturing method of discharge lamp, electrode for discharge lamp and electrode for discharge lamp
JP6649734B2 (en) Discharge lamp
KR102469050B1 (en) Discharge lamp
JP7259664B2 (en) SHORT ARC DISCHARGE LAMP AND LIGHT RADIATION DEVICE
JP2006210237A (en) Discharge lamp
JP7377750B2 (en) Method for manufacturing discharge lamps and electrodes for discharge lamps
JP7315433B2 (en) Discharge lamp and method for manufacturing discharge lamp
TWI837408B (en) Discharge lamp and method of manufacturing electrode for discharge lamp
JP2021047983A (en) Short arc type discharge lamp and light irradiation device
US8519623B2 (en) High-pressure discharge lamp having a cooling element
JP4721720B2 (en) Discharge lamp
JP6707345B2 (en) Discharge lamp
JP5186823B2 (en) High pressure discharge lamp and light irradiation device using high pressure discharge lamp
JP6570398B2 (en) Discharge lamp
JP2008541371A (en) Electrodes for high intensity discharge lamps
JP7207244B2 (en) SHORT ARC DISCHARGE LAMP AND LIGHT RADIATION DEVICE
JP7251420B2 (en) SHORT ARC DISCHARGE LAMP AND LIGHT RADIATION DEVICE
JP2022055818A (en) Discharge lamp and manufacturing method for electrodes for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150