JP7198611B2 - Discharge lamp and method for producing electrode for discharge lamp - Google Patents

Discharge lamp and method for producing electrode for discharge lamp Download PDF

Info

Publication number
JP7198611B2
JP7198611B2 JP2018159495A JP2018159495A JP7198611B2 JP 7198611 B2 JP7198611 B2 JP 7198611B2 JP 2018159495 A JP2018159495 A JP 2018159495A JP 2018159495 A JP2018159495 A JP 2018159495A JP 7198611 B2 JP7198611 B2 JP 7198611B2
Authority
JP
Japan
Prior art keywords
electrode
internal space
surface area
discharge lamp
columnar portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018159495A
Other languages
Japanese (ja)
Other versions
JP2020035572A (en
Inventor
規行 酒井
武弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2018159495A priority Critical patent/JP7198611B2/en
Priority to KR1020190091492A priority patent/KR102602644B1/en
Publication of JP2020035572A publication Critical patent/JP2020035572A/en
Application granted granted Critical
Publication of JP7198611B2 publication Critical patent/JP7198611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • H01J61/526Heating or cooling particular parts of the lamp heating or cooling of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/027Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Discharge Lamp (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

本発明は、電極を備えた放電ランプに関し、特に、電極の内部構造に関する。 The present invention relates to a discharge lamp with electrodes, and more particularly to the internal structure of the electrodes.

放電ランプは、点灯中に電極先端部が高温となり、タングステンなどの電極材料が溶融、蒸発し、放電管が黒化して、ランプ照度低下を招く。電極先端部の過熱を防ぐため、耐久性のある金属から成る電極先端部と、熱伝導性のより高い金属から成る胴体部とを別々に成形し、固相接合などによって接合する。例えば、SPSなどの固相接合によって電極を構成することができる(特許文献1参照)。複数の部材を接合して電極を構成することによって、電極が大型化しても耐久性を持たせることができると同時に、熱伝導性の優れた電極を構成することができる。 When the discharge lamp is lit, the tip of the electrode reaches a high temperature, and the electrode material such as tungsten melts and evaporates, blackening the discharge tube, and lowering the illumination of the lamp. In order to prevent overheating of the tip of the electrode, the tip of the electrode made of a durable metal and the body made of a metal with higher thermal conductivity are formed separately and joined by solid phase bonding or the like. For example, electrodes can be formed by solid-phase bonding such as SPS (see Patent Document 1). By forming the electrode by joining a plurality of members, it is possible to provide the electrode with durability even when the size of the electrode is increased, and at the same time, the electrode with excellent thermal conductivity can be formed.

特許第5472915号公報Japanese Patent No. 5472915 特願2017-36782Patent application 2017-36782

露光対象物の大型化、スループット向上のためにランプの高出力化(大電力化)が求められている。これに伴ってランプ点灯中の電極温度も高くなり、単に先端側部材と胴体側部材とを固相接合するだけでは、電極過熱を効果的に抑えることが難しい。 In order to increase the size of an object to be exposed and improve throughput, there is a demand for a higher output (higher power) lamp. Along with this, the temperature of the electrode increases during lamp lighting, and it is difficult to effectively suppress electrode overheating simply by solid-phase bonding the tip side member and the body side member.

したがって、放電ランプの点灯中、電極の温度上昇を効果的に抑えることができる電極構造が求められる。 Therefore, there is a demand for an electrode structure that can effectively suppress the temperature rise of the electrodes during lighting of the discharge lamp.

本発明の放電ランプは、放電管と、放電管内に対向配置される一対の電極とを備え、少なくとも一方の電極が、内部空間を有し、内部空間の表面積が、内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きい。例えば、内部空間の表面積が、電極軸方向に沿った電極側面部分の表面積より大きくなるようにすることができる。 The discharge lamp of the present invention comprises a discharge tube and a pair of electrodes arranged opposite to each other in the discharge tube, at least one of the electrodes having an inner space, the surface area of the inner space being the length of the inner space in the axial direction. larger than the surface area of the electrode side portion according to . For example, the surface area of the internal space can be made larger than the surface area of the electrode side portion along the electrode axial direction.

電極は、電極軸方向に沿った凹部と、凹部に位置する柱状部とを備え、内部空間が、凹部と柱状部との間に形成可能である。ここでの「柱状部」および「凹部」は、複数の部材間の接合によって形成された電極を断面で見たときに接触面あるいは接合面を含めて規定される部分であり、柱状部の端面と凹部底面との接触、非接触は問わない。例えば、凹部を形成した第1固体部材と、第1固体部材もしくは第1固体部材と接合する中間部材と接合し、柱状部を形成した第2固体部材とを有し、内部空間が、第1固体部材と第2固体部材もしくは中間部材との間に形成される。 The electrode includes a recess along the electrode axis direction and a column located in the recess, and an internal space can be formed between the recess and the column. Here, the “columnar portion” and the “recessed portion” are portions defined including contact surfaces or joint surfaces when an electrode formed by joining a plurality of members is viewed in cross section. and the bottom surface of the recess may be in contact or not. For example, it has a first solid member having a concave portion and a second solid member joined to the first solid member or an intermediate member joined to the first solid member to form a columnar portion, and the internal space is formed by the first solid member. It is formed between a solid member and a second solid member or an intermediate member.

内部空間が、電極軸回りに沿って形成された空間を含むようにしてもよい。また、内部空間は、有底管状に形成することができる。内部空間の表面部分には、放熱部を設けることができる。 The internal space may include a space formed around the electrode axis. Also, the internal space can be formed in a tubular shape with a bottom. A heat radiating portion can be provided on the surface portion of the internal space.

本発明の他の態様である放電ランプは、放電管と、放電管内に対向配置される一対の電極とを備え、少なくとも一方の電極が、電極軸方向に沿った凹部と、凹部に位置する柱状部と、凹部と柱状部との間に形成される内部空間とを備え、柱状部の体積は、内部空間の体積より大きい。 A discharge lamp according to another aspect of the present invention includes a discharge tube and a pair of electrodes arranged opposite to each other in the discharge tube. and an internal space formed between the recess and the pillar, wherein the volume of the pillar is greater than the volume of the internal space.

本発明の他の態様である放電ランプ用電極の製造方法は、電極先端面を有する柱状の先端側固体部材に対して筒状凹部を中心軸周りに形成し、柱状の後端側固体部材に対し、筒状凹部よりサイズが小さい柱状部を中心軸回りに形成し、柱状部が筒状凹部に同軸配置されるように、先端側固体部材と後端側固体部材とを組み合わせ、固相接合によって、先端側固体部材と後端側固体部材とを含む電極を形成することを特徴とする製造方法であって、筒状凹部と柱状部との間に形成される内部空間の表面積が、内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きくなるように、筒状凹部および柱状部を形成する。 According to another aspect of the present invention, there is provided a method of manufacturing an electrode for a discharge lamp, in which a cylindrical recess is formed around the center axis in a columnar tip-side solid member having an electrode tip surface, and a cylindrical recess is formed in the columnar rear-end solid member. On the other hand, a columnar portion smaller in size than the cylindrical recess is formed around the central axis, and the front end side solid member and the rear end side solid member are combined so that the columnar portion is arranged coaxially with the cylindrical recess, and solid phase bonding is performed. A manufacturing method characterized by forming an electrode including a front-end solid member and a rear-end solid member, wherein the surface area of the internal space formed between the cylindrical concave portion and the columnar portion is equal to the inner The cylindrical concave portion and the columnar portion are formed so as to be larger than the surface area of the electrode side portion corresponding to the axial length of the space.

本発明によれば、放電ランプにおいて、効果的に放熱を行って電極温度を抑えることができる。 ADVANTAGE OF THE INVENTION According to this invention, it is a discharge lamp. WHEREIN: It can heat-radiate effectively and can suppress electrode temperature.

第1の実施形態である放電ランプの平面図である。1 is a plan view of a discharge lamp according to a first embodiment; FIG. 第1の実施形態の電極の概略的断面図である。1 is a schematic cross-sectional view of an electrode of a first embodiment; FIG. 第2の実施形態である電極の概略的断面図である。FIG. 4 is a schematic cross-sectional view of an electrode of a second embodiment; 実施例と比較例の接合面からの温度変化を示したグラフである。4 is a graph showing temperature changes from the joint surfaces of an example and a comparative example.

ショートアーク型放電ランプ10は、高輝度の光を出力可能な大型放電ランプであり、透明な石英ガラス製の略球状放電管(発光管)12を備え、放電管12内には、タングステン製の一対の電極20、30が対向(同軸)配置される。放電管12の両側には、石英ガラス製の封止管13A、13Bが放電管12と連設し、一体的に形成されている。放電管12内の放電空間DSには、水銀とハロゲンやアルゴンガスなどの希ガスが封入されている。 The short-arc discharge lamp 10 is a large-sized discharge lamp capable of outputting high-intensity light, and includes a substantially spherical discharge tube (arc tube) 12 made of transparent quartz glass. A pair of electrodes 20 and 30 are arranged facing each other (coaxially). On both sides of the discharge tube 12, quartz glass sealing tubes 13A and 13B are connected to the discharge tube 12 and integrally formed. A discharge space DS in the discharge tube 12 is filled with mercury and a rare gas such as halogen or argon gas.

陰極である電極20は電極支持棒17Aによって支持されている。封止管13Aには、電極支持棒17Aが挿通されるガラス管(図示せず)と、外部電源と接続するリード棒15Aと、電極支持棒17Aとリード棒15Aを接続する金属箔16Aなどが封止されている。陽極である電極30についても同様に、電極支持棒17Bが挿通されるガラス管(図示せず)、金属箔16B、リード棒15Bなどのマウント部品が封止されている。また、封止管13A、13Bの端部には、口金19A、19Bがそれぞれ取り付けられている。 An electrode 20, which is a cathode, is supported by an electrode supporting rod 17A. The sealing tube 13A includes a glass tube (not shown) through which the electrode support rod 17A is inserted, a lead rod 15A connected to an external power source, a metal foil 16A connecting the electrode support rod 17A and the lead rod 15A, and the like. Sealed. Similarly, for the electrode 30, which is the anode, mount parts such as a glass tube (not shown) through which the electrode support rod 17B is inserted, the metal foil 16B, and the lead rod 15B are sealed. In addition, caps 19A and 19B are attached to the ends of the sealing tubes 13A and 13B, respectively.

一対の電極20、30に電圧が印加されると、電極20、30の間でアーク放電が発生し、放電管12の外部に向けて光が放射される。ここでは、1kW以上の電力が投入される。放電管12から放射された光は、反射鏡(図示せず)によって所定方向へ導かれる。例えば露光装置に放電ランプ10が組み込まれた場合、放射光はパターン光となって基板などに照射される。 When a voltage is applied to the pair of electrodes 20 , 30 , arc discharge is generated between the electrodes 20 , 30 and light is emitted outside the discharge tube 12 . Here, power of 1 kW or more is applied. Light emitted from the discharge tube 12 is guided in a predetermined direction by a reflecting mirror (not shown). For example, when the discharge lamp 10 is incorporated in an exposure apparatus, the emitted light becomes patterned light and irradiates a substrate or the like.

図2は、電極(陽極)30の概略的断面図である。なお、電極(陰極)20についても同様の構造にすることが可能である。 FIG. 2 is a schematic cross-sectional view of electrode (anode) 30 . The electrode (cathode) 20 can also have a similar structure.

電極30は、電極支持棒17Bと繋がる後端側部材32(第2固体部材)と、電極先端面34Dを有する先端側部材34(第1固体部材)からなり、後端側部材32と先端側部材34を接合することで電極30が構成されている。ここでは、後端側部材32と先端側部材34がSPSなどの固相接合によって接合されている。 The electrode 30 is composed of a rear end member 32 (second solid member) connected to the electrode support rod 17B and a front end member 34 (first solid member) having an electrode tip surface 34D. The electrode 30 is configured by joining the members 34 . Here, the rear end side member 32 and the front end side member 34 are joined by solid phase joining such as SPS.

後端側部材32は、電極軸X(以下では、軸方向Xともいう)を中心軸とした円柱状の部材であり、電極先端面34Dに向けて突出する柱状部50(ここでは円柱状)が形成されている。先端側部材34では、軸方向Xに沿って、柱状部50を囲う筒状の凹部40が同軸的に形成されている。筒状凹部40は電極先端面34Dとは逆方向を向く、すなわち逆方向に凹んでいる。後端側部材32は、その端部32Eにおいて、先端側部材34の端部34Eと固相接合している。なお、先端側部材に柱状部、後端側部材に凹部を形成してもよい。 The rear end-side member 32 is a columnar member whose central axis is the electrode axis X (hereinafter also referred to as the axial direction X), and has a columnar portion 50 (here, columnar) that protrudes toward the electrode tip surface 34D. is formed. A tubular recessed portion 40 surrounding the columnar portion 50 is coaxially formed along the axial direction X in the distal end side member 34 . The tubular concave portion 40 faces in the opposite direction to the electrode tip surface 34D, that is, is concave in the opposite direction. The rear end member 32 is solid-phase joined to the end 34E of the front end member 34 at its end 32E. It should be noted that a columnar portion may be formed in the front end side member and a concave portion may be formed in the rear end side member.

固相接合面から電極先端部側に延びる柱状部50と筒状凹部40との間には、軸方向Xおよびそれに垂直な軸垂直方向に沿って、隙間(内部空間)60が柱状部50の周囲全体に渡って形成されている。ここでは、軸垂直方向に沿った隙間部分を60D、軸方向Xに沿った隙間部分を60Vとしている。隙間部分60D、60Vは空間的に繋がっている。 A gap (internal space) 60 is formed in the columnar portion 50 along the axial direction X and the axis-perpendicular direction perpendicular thereto between the columnar portion 50 extending from the solid-phase bonding surface toward the tip end portion of the electrode and the cylindrical recess 40 . formed all around. Here, the clearance portion along the axial direction is 60D, and the clearance portion along the axial direction X is 60V. The gap portions 60D and 60V are spatially connected.

柱状部50および筒状凹部40は、ともにその中心軸が電極軸Xと一致し、電極軸Xに対して対称的形状になっている。そして、筒状凹部40の底面40Bも電極軸Xに関して対称的であり、隙間60も電極軸Xに関して対称的空間形状になっている。 Both the columnar portion 50 and the tubular concave portion 40 have their central axes aligned with the electrode axis X and are symmetrical with respect to the electrode axis X. As shown in FIG. The bottom surface 40B of the cylindrical recess 40 is also symmetrical with respect to the electrode axis X, and the gap 60 also has a symmetrical spatial shape with respect to the electrode axis X. As shown in FIG.

隙間部分60Vの径方向幅D4、すなわち柱状部50の側面50Sと筒状凹部40の側面40Sの径方向距離間隔は、柱状部50の直径D3と比べて短い(D4<D3)。隙間部分60Dの軸方向幅L4は、ここでは隙間部分60Vの径方向幅D4と同じ幅であり、柱状部50の高さL3よりも短い(L4<L3)。隙間60は電極30内に形成され、有底筒状の空間領域になっている。 The radial width D4 of the gap portion 60V, that is, the radial distance between the side surface 50S of the columnar portion 50 and the side surface 40S of the cylindrical recess 40 is shorter than the diameter D3 of the columnar portion 50 (D4<D3). The axial width L4 of the clearance portion 60D here is the same as the radial width D4 of the clearance portion 60V, and is shorter than the height L3 of the columnar portion 50 (L4<L3). The gap 60 is formed within the electrode 30 and forms a bottomed cylindrical space region.

ここでは、径方向幅D4、軸方向幅L4は、それぞれ柱状部50の直径D3、高さL3と比べて十分短く、柱状部50の側面50S、端面50Eは、それぞれ筒状凹部40の側面40S、底面40Bに近接し、隙間60が形成するスペースの容積は、柱状部50の体積よりも小さい。また、隙間60には、伝熱体のような部材は設けられていない。 Here, the radial width D4 and the axial width L4 are sufficiently shorter than the diameter D3 and the height L3 of the columnar portion 50, respectively, and the side surface 50S and the end surface 50E of the columnar portion 50 correspond to the side surface 40S of the cylindrical recess 40. , the bottom surface 40</b>B, and the volume of the space formed by the gap 60 is smaller than the volume of the columnar portion 50 . Further, the gap 60 is not provided with a member such as a heat conductor.

ランプ点灯中、電極の先端側部材34の温度が上昇し、電極先端側部材34の熱が柱状部50に伝わる。柱状部50の熱は、電極支持棒17B側へ伝わり、また、隙間60に対して放射される。軸方向Xだけでなく軸垂直方向にも移動した熱は、電極外表面30Mから放電空間DSへ伝わる。 During lamp lighting, the temperature of the electrode tip member 34 rises, and the heat of the electrode tip member 34 is transferred to the columnar portion 50 . The heat of the columnar portion 50 is transmitted to the electrode supporting rod 17B side and radiated to the gap 60. As shown in FIG. The heat that has moved not only in the axial direction X but also in the direction perpendicular to the axis is transferred from the electrode outer surface 30M to the discharge space DS.

本実施形態では、電極30の温度上昇を効果的に抑えるため、隙間60の表面積が、隙間60の軸方向長さに応じた電極側面部分Tの表面積よりも大きくなるように、隙間60が形成されている。 In this embodiment, in order to effectively suppress the temperature rise of the electrode 30, the gap 60 is formed so that the surface area of the gap 60 is larger than the surface area of the electrode side portion T corresponding to the axial length of the gap 60. It is

上述したように、柱状部50の体積は隙間60の体積よりも大きい。これによって柱状部50が大きな熱吸収量をもつことになり、筒状凹部40からの熱を吸収し、電極支持棒側へ効果的に輸送することができる。 As described above, the volume of columnar portion 50 is greater than the volume of gap 60 . As a result, the columnar portion 50 has a large amount of heat absorption, and the heat from the cylindrical recess 40 can be absorbed and effectively transported to the electrode supporting rod side.

一方で、隙間60の径方向幅D4、軸方向幅L4が比較的小さいため、柱状部50の熱が電極外表面30Mに伝わり、放電空間DSへ放熱される。このように、隙間60の軸方向長さL1に応じた電極側面部分Tに対する放熱効果が高められる。 On the other hand, since the radial width D4 and the axial width L4 of the gap 60 are relatively small, the heat of the columnar portion 50 is transmitted to the electrode outer surface 30M and radiated to the discharge space DS. In this manner, the heat dissipation effect for the electrode side surface portion T corresponding to the axial length L1 of the gap 60 is enhanced.

このような放熱効果は、できるだけ軸中心から離れた位置に軸回りに沿って隙間60を形成することによって実現される。その場合の隙間60の表面積は、軸方向長さL1に対応する電極側面部分Tの表面積よりも大きくなる。 Such a heat dissipation effect is realized by forming a gap 60 along the circumference of the shaft at a position as far away from the center of the shaft as possible. In that case, the surface area of the gap 60 is larger than the surface area of the electrode side portion T corresponding to the axial length L1.

また、本実施形態における隙間60の表面積は、電極軸Xに沿った電極側面全体T1の表面積よりも大きい。すなわち、電極表面において放熱する面積の小さい(表面積の小さい)電極先端側テーパー部34T、電極支持棒側テーパー部32T、電極先端面34D、電極後端面32Lを除いた電極側面表面積よりも、隙間60の表面積が大きい。 Further, the surface area of the gap 60 in this embodiment is larger than the surface area of the entire electrode side surface T1 along the electrode axis X. That is, the gap 60 has a large surface area.

このような電極側面部分との関係で相対的に大きな表面積をもつ隙間60を形成することで、効果的に電極温度の上昇を抑制することができる。 By forming the gap 60 having a relatively large surface area in relation to the side surface portion of the electrode, it is possible to effectively suppress the increase in the electrode temperature.

ところで、柱状部50と筒状凹部40との間に隙間60を形成した電極構造の場合、上述した隙間60の表面積が相対的に大きいことは、柱状部50の体積が隙間60の体積よりも大きいことを表しているとも言える。柱状部50の体積が隙間60の体積よりも相対的に大きいことで、効果的に電極温度の上昇を抑制することができる。 By the way, in the case of the electrode structure in which the gap 60 is formed between the columnar portion 50 and the cylindrical concave portion 40 , the relatively large surface area of the gap 60 described above means that the volume of the columnar portion 50 is larger than the volume of the gap 60 . It can be said that it represents something big. Since the volume of the columnar portion 50 is relatively larger than the volume of the gap 60, it is possible to effectively suppress the increase in electrode temperature.

このような電極温度抑制を実現する電極は、以下のように製造することができる。すなわち、電極先端面を有する柱状の先端側固体部材に対して筒状凹部を中心軸周りに形成し、柱状の後端側固体部材に対し、筒状凹部よりサイズが小さい柱状部を中心軸回りに形成する。このとき、筒状凹部と柱状部との間に形成される内部空間の表面積が、内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きくなるように、筒状凹部および柱状部を形成する。柱状部が筒状凹部に同軸配置されるように、先端側固体部材と後端側固体部材とを組み合わせ、SPSなどの固相接合によって、先端側固体部材と後端側固体部材とを含む電極を形成する。 An electrode that realizes such electrode temperature suppression can be manufactured as follows. That is, a cylindrical recess is formed around the central axis in a columnar distal end side solid member having an electrode tip surface, and a columnar portion smaller in size than the cylindrical recess is formed around the central axis in the columnar rear end side solid member. to form. At this time, the cylindrical concave portion and the columnar portion are arranged such that the surface area of the internal space formed between the cylindrical concave portion and the columnar portion is larger than the surface area of the electrode side portion corresponding to the axial length of the internal space. to form The front solid member and the rear solid member are combined so that the columnar portion is coaxially arranged in the cylindrical recess, and an electrode including the front solid member and the rear solid member is formed by solid phase bonding such as SPS. to form

隙間60の空間形状は、有底管状に限定されず、例えば軸垂直方向隙間60Dを形成しない無底管状空間を形成してもよい。また、管状空間以外の内部空間を形成してもよく、密閉状態あるいは孔を通じて外部と連なる空間を形成することができる。この場合、電極軸回りに沿って空間を形成することで、その表面積を、空間軸方向長さに応じた電極側面部分の表面積より大きくすることが可能である。なお、隙間(内部空間)の表面積は、電極外表面よりも電極中心側に形成された空間の表面積としている。さらに、高温で溶融する伝熱体を設けた密閉空間を形成してもよい。この場合、空間(隙間)の表面積は露出部分の表面積を表し、伝熱体に覆われた表面は含まれない。 The spatial shape of the gap 60 is not limited to a bottomed tubular shape, and for example, a bottomless tubular space that does not form the axis-perpendicular direction gap 60D may be formed. Also, an internal space other than the tubular space may be formed, and a space connected to the outside through a closed state or through a hole can be formed. In this case, by forming the space around the electrode axis, the surface area can be made larger than the surface area of the electrode side surface corresponding to the length in the space axis direction. The surface area of the gap (internal space) is the surface area of the space formed closer to the center of the electrode than the outer surface of the electrode. Furthermore, a closed space provided with a heat transfer body that melts at a high temperature may be formed. In this case, the surface area of the space (gap) represents the surface area of the exposed portion and does not include the surface covered with the heat conductor.

柱状部50には、放熱部を設けてもよい。例えば、既知の表面積を増やす構造や、放射率(吸収率)を高める構造、放熱素材(炭化膜や酸化膜の放熱層)、カーボンナノチューブなどの素材で構成することが可能である。また、柱状部50以外の箇所(筒状凹部40や電極側面など)に放熱部を設けてもよい。 A heat radiating portion may be provided in the columnar portion 50 . For example, it is possible to use a known structure that increases the surface area, a structure that increases the emissivity (absorption rate), a heat dissipation material (a heat dissipation layer of a carbonized film or an oxide film), or a material such as a carbon nanotube. Also, a heat radiating portion may be provided at a location other than the columnar portion 50 (cylindrical concave portion 40, electrode side surface, etc.).

次に、図3を用いて第2の実施形態について説明する。第2の実施形態では、電極側面に貫通孔が形成されている。 Next, a second embodiment will be described with reference to FIG. In the second embodiment, through holes are formed in the side surfaces of the electrodes.

図3は、第2の実施形態における電極(陽極)130の概略的断面図である。図3に示すように、複数の貫通孔J1~J4が形成されている。貫通孔J1~J4は、ここでは柱状部50の軸方向長さL3の範囲内にある。このような貫通孔J1~J4を形成することにより、隙間60の熱を逃がし、電極の温度上昇を抑制することができる。したがって、貫通孔J1~J4の表面積を含めた隙間60の表面積が、電極側面部分TあるいはT1よりも大きくなるように定められる。なお、貫通孔の角度は電極軸垂直方向(水平方向)に限らず、所定角度に規定してもよい。そのほか、数、孔径、位置は、ランプサイズ、電極サイズなどに応じて適宜定められる。例えば、電極先端面34Dに貫通孔を形成してもよい。また、第2の実施形態に放熱部を設けてもよい。 FIG. 3 is a schematic cross-sectional view of the electrode (anode) 130 in the second embodiment. As shown in FIG. 3, a plurality of through holes J1 to J4 are formed. The through holes J1 to J4 are within the axial length L3 of the columnar portion 50 here. By forming the through holes J1 to J4 in this way, the heat in the gap 60 can be released, and the temperature rise of the electrodes can be suppressed. Therefore, the surface area of the gap 60 including the surface areas of the through holes J1 to J4 is determined to be larger than the electrode side portion T or T1. The angle of the through-hole is not limited to the vertical direction (horizontal direction) of the electrode axis, and may be defined as a predetermined angle. In addition, the number, hole diameter, and position are appropriately determined according to the lamp size, electrode size, and the like. For example, a through hole may be formed in the electrode tip surface 34D. Also, a heat radiating portion may be provided in the second embodiment.

本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。第1、第2実施形態で示した電極は、ショートアーク型放電ランプ以外の放電ランプに対して適用することも可能である。電極の温度上昇を抑えることができることから、1kW以上の比較的大きな電力の放電ランプに好適である。その電極の形状は、例えば電極支持棒側テーパー部のない形状など、所望の形状、サイズにすることが可能である。また、接合方法は固相接合(SPS、HPなど)が好適だが、他の接合方法(例えば溶融接合)も適用できる。接合の際、先端側部材と後端側部材との間に中間部材を挟み、接合面間の密着化をしてもよい。中間部材としては、例えばレニウム、タンタル、モリブデン、タングステン、あるいはこれらの合金が挙げられる。 The present invention is not limited to the above-described embodiments, and various modifications are possible based on the technical idea of the present invention. The electrodes shown in the first and second embodiments can also be applied to discharge lamps other than short arc discharge lamps. Since the temperature rise of the electrode can be suppressed, it is suitable for discharge lamps with a relatively large power of 1 kW or more. The shape of the electrode can be a desired shape and size, for example, a shape without a tapered portion on the side of the electrode supporting rod. Solid phase bonding (SPS, HP, etc.) is suitable for the bonding method, but other bonding methods (for example, fusion bonding) can also be applied. At the time of joining, an intermediate member may be sandwiched between the front end side member and the rear end side member so that the joining surfaces are brought into close contact with each other. Examples of the intermediate member include rhenium, tantalum, molybdenum, tungsten, or alloys thereof.

柱状部と凹部の形状、サイズなどは任意であり、例えば軸方向Xに沿って径が変化する柱状部や、底面に縮径面を有する筒状凹部などでもよく、表面積の大きい内部空間を任意に形成できる。また、柱状部と筒状凹部をそれぞれ違う部材で構成することが可能である。例えば、熱放射性が優れて軽量な部材によって柱状部(後端側部材)を形成し、耐熱性や熱伝導性の優れた部材によって先端側部材を形成することが可能である。さらに、柱状部を後端側部材に接合して構成してよい。具体的には、タングステンやモリブデン、セラミックなどでもよく、またエミッターを含有させてもよく、また、これらの合金を適用することも可能であり、適宜選択できる。 The shape and size of the columnar portion and the recessed portion are arbitrary. can be formed to Moreover, it is possible to configure the columnar portion and the tubular recessed portion with different members. For example, it is possible to form the columnar portion (rear end side member) with a member having excellent thermal radiation and light weight, and to form the tip side member with a member having excellent heat resistance and thermal conductivity. Furthermore, the columnar portion may be configured by being joined to the rear end side member. Specifically, tungsten, molybdenum, ceramics, or the like may be used, or an emitter may be contained, or an alloy of these may be applied, and can be selected as appropriate.

以下では、第2の実施形態に応じた実施例について説明する。 Examples according to the second embodiment will be described below.

実施例の放電ランプは、8つの貫通孔を電極側面に設け、また、電極先端面にも貫通孔を設けた電極を備えた放電ランプであり、全長を60mm、L1=28mm、L3=25mm、L4=3mm、D1=38mm、D2=26mm、D3=22mm、D4=2mm、貫通孔径=3mm、電極先端孔径=3mmとしている。隙間の表面積は、隙間の軸方向長さに応じた電極側面部分の表面積より大きい(5552.3>3286.1)。 The discharge lamp of the example is a discharge lamp provided with eight through-holes on the side surface of the electrode and an electrode provided with a through-hole also on the tip surface of the electrode. L4=3 mm, D1=38 mm, D2=26 mm, D3=22 mm, D4=2 mm, through hole diameter=3 mm, and electrode tip hole diameter=3 mm. The surface area of the gap is greater than the surface area of the electrode side portion depending on the axial length of the gap (5552.3>3286.1).

このような放電ランプに所定の電力を投入して点灯させ、安定点灯状態の電極に対し、温度測定を行った。温度は、放射率:ε0.68、測定波長域:2.2~2.6μmに設定したサーモトレーサーにて測定した。一方、比較例の放電ランプとして、隙間と貫通孔を設けていない構成以外については実施例と同じ電極を組み込んだ放電ランプも同様に温度測定を行った。 Predetermined electric power was applied to such a discharge lamp to light it, and the temperature of the electrodes in a stable lighting state was measured. The temperature was measured with a thermotracer set to an emissivity of ε0.68 and a measurement wavelength range of 2.2 to 2.6 μm. On the other hand, as a discharge lamp of a comparative example, temperature measurement was performed in the same manner for a discharge lamp incorporating the same electrodes as those of the example except for the configuration in which no gaps and through holes were provided.

図4は、実施例と比較例の電極先端側への温度変化を示したグラフである。これは、接合面から電極先端側、すなわち電極側面部分Tに相当する領域で複数箇所測定し、プロットを近似直線化したものである。比較例についても同様である。図4に示すように、実施例の電極は、比較例と比べ温度が低く、電極先端に向かっても温度抑制が維持されていることが確認された。 FIG. 4 is a graph showing temperature changes toward the electrode tip side in the example and the comparative example. This is obtained by measuring a plurality of points in a region corresponding to the electrode tip side from the joint surface, ie, the electrode side portion T, and plotting the plot to approximate a straight line. The same is true for the comparative examples. As shown in FIG. 4, it was confirmed that the temperature of the electrode of the example was lower than that of the comparative example, and that temperature suppression was maintained even toward the tip of the electrode.

10 放電ランプ
30 電極(陽極)
32 後端側部材
34 先端側部材
40 筒状凹部(凹部)
50 柱状部
60 隙間(内部空間)
10 discharge lamp 30 electrode (anode)
32 Rear end side member 34 Tip side member 40 Cylindrical recess (recess)
50 columnar portion 60 gap (internal space)

Claims (10)

放電管と、
前記放電管内に対向配置される一対の電極とを備え、
少なくとも一方の電極が、内部空間を有し、
前記内部空間が、電極軸に対して対称的空間形状であり、
前記内部空間の表面積が、前記内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きいことを特徴とする放電ランプ。
a discharge tube;
A pair of electrodes arranged oppositely in the discharge tube,
at least one electrode has an interior space;
The internal space has a symmetrical spatial shape with respect to the electrode axis,
A discharge lamp, wherein the surface area of the internal space is larger than the surface area of the electrode side portion corresponding to the axial length of the internal space.
前記内部空間の表面積が、電極軸方向に沿った電極側面部分の表面積より大きいことを特徴とする請求項1に記載の放電ランプ。 2. The discharge lamp according to claim 1, wherein the surface area of said internal space is larger than the surface area of the electrode side portion along the electrode axial direction. 放電管と、
前記放電管内に対向配置される一対の電極とを備え、
少なくとも一方の電極が、内部空間を有し、
前記内部空間が、電極軸回りに全周に渡って形成された空間を有し、
前記内部空間の表面積が、前記内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きいことを特徴とする放電ランプ。
a discharge tube;
A pair of electrodes arranged oppositely in the discharge tube,
at least one electrode has an interior space;
The internal space has a space formed along the entire circumference around the electrode axis ,
A discharge lamp, wherein the surface area of the internal space is larger than the surface area of the electrode side portion corresponding to the axial length of the internal space.
放電管と、
前記放電管内に対向配置される一対の電極とを備え、
少なくとも一方の電極が、内部空間を有し、
前記電極が、電極軸方向に沿った凹部と、前記凹部に位置する柱状部とを備え、
前記内部空間が、前記凹部と前記柱状部との間に、幅をもたせるように形成され
前記内部空間の表面積が、前記内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きいことを特徴とする放電ランプ。
a discharge tube;
A pair of electrodes arranged oppositely in the discharge tube,
at least one electrode has an interior space;
the electrode includes a recess along the electrode axis direction and a columnar portion located in the recess,
the internal space is formed to have a width between the concave portion and the columnar portion ;
A discharge lamp, wherein the surface area of the internal space is larger than the surface area of the electrode side portion corresponding to the axial length of the internal space.
前記内部空間が、有底管状に形成されていることを特徴とする請求項1乃至4のいずれかに記載の放電ランプ。 5. The discharge lamp according to any one of claims 1 to 4, wherein the inner space is formed in a tubular shape with a bottom. 前記内部空間が、電極軸垂直方向に沿った貫通孔を有することを特徴とする請求項1乃至5のいずれかに記載の放電ランプ。 6. The discharge lamp according to any one of claims 1 to 5, wherein said internal space has a through hole along the direction perpendicular to the electrode axis. 前記内部空間の表面部分に、放熱部が設けられていることを特徴とする請求項1乃至6のいずれかに記載の放電ランプ。 7. The discharge lamp according to any one of claims 1 to 6, wherein a heat radiating portion is provided on a surface portion of said internal space. 前記少なくとも一方の電極が、
前記凹部を形成した第1固体部材と、前記第1固体部材もしくは前記第1固体部材と接合する中間部材と接合し、前記柱状部を形成した第2固体部材とを有し、
前記内部空間が、前記第1固体部材と前記第2固体部材もしくは前記中間部材との間に形成されることを特徴とする請求項に記載の放電ランプ。
The at least one electrode is
a first solid member having the recess and a second solid member bonded to the first solid member or an intermediate member bonded to the first solid member and having the columnar portion;
5. The discharge lamp of claim 4 , wherein said internal space is formed between said first solid member and said second solid member or said intermediate member.
放電管と、
前記放電管内に対向配置される一対の電極とを備え、
少なくとも一方の電極が、
電極軸方向に沿った凹部と、前記凹部に位置する柱状部と、
前記凹部と前記柱状部との間に形成される内部空間とを備え、
前記内部空間が、電極軸回りに全周に渡って形成された空間を有し、
前記柱状部の体積は、前記内部空間の体積より大きいことを特徴とする放電ランプ。
a discharge tube;
A pair of electrodes arranged oppositely in the discharge tube,
at least one electrode
a recess along the axial direction of the electrode; a columnar portion located in the recess;
An internal space formed between the recess and the columnar portion,
The internal space has a space formed along the entire circumference around the electrode axis,
The discharge lamp, wherein the volume of the columnar portion is larger than the volume of the internal space.
電極先端面を有する柱状の先端側固体部材に対して筒状凹部を中心軸周りに形成し、
柱状の後端側固体部材に対し、前記筒状凹部よりサイズが小さい柱状部を中心軸回りに形成し、
前記柱状部が前記筒状凹部に同軸配置されて電極軸周りに全周に渡る内部空間を前記柱状部と前記筒状凹部との間に形成するように、前記先端側固体部材と前記後端側固体部材とを組み合わせ、
固相接合によって、前記先端側固体部材と前記後端側固体部材とを含む電極を形成することを特徴とする製造方法であって、
前記筒状凹部と前記柱状部との間に形成される内部空間の表面積が、前記内部空間の軸方向長さに応じた電極側面部分の表面積よりも大きくなるように、前記筒状凹部および前記柱状部を形成することを特徴とする放電ランプ用電極の製造方法。
A cylindrical recess is formed around a central axis in a columnar tip-side solid member having an electrode tip surface,
forming a columnar portion having a size smaller than that of the cylindrical concave portion around the central axis in the columnar rear end side solid member;
The tip-side solid member and the rear end are arranged so that the columnar portion is coaxially arranged in the cylindrical recess and forms an internal space extending all around the electrode axis between the columnar portion and the cylindrical recess. Combined with the side solid member,
A manufacturing method characterized by forming an electrode including the front-end solid member and the rear-end solid member by solid phase bonding,
The cylindrical concave portion and the columnar portion are arranged such that the surface area of the internal space formed between the cylindrical concave portion and the columnar portion is larger than the surface area of the electrode side portion corresponding to the axial length of the internal space. A method of manufacturing a discharge lamp electrode, comprising forming a columnar portion.
JP2018159495A 2018-08-28 2018-08-28 Discharge lamp and method for producing electrode for discharge lamp Active JP7198611B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018159495A JP7198611B2 (en) 2018-08-28 2018-08-28 Discharge lamp and method for producing electrode for discharge lamp
KR1020190091492A KR102602644B1 (en) 2018-08-28 2019-07-29 Discharge lamp and method for producing electrode for discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159495A JP7198611B2 (en) 2018-08-28 2018-08-28 Discharge lamp and method for producing electrode for discharge lamp

Publications (2)

Publication Number Publication Date
JP2020035572A JP2020035572A (en) 2020-03-05
JP7198611B2 true JP7198611B2 (en) 2023-01-04

Family

ID=69668428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159495A Active JP7198611B2 (en) 2018-08-28 2018-08-28 Discharge lamp and method for producing electrode for discharge lamp

Country Status (2)

Country Link
JP (1) JP7198611B2 (en)
KR (1) KR102602644B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377750B2 (en) * 2020-03-24 2023-11-10 株式会社オーク製作所 Method for manufacturing discharge lamps and electrodes for discharge lamps
JP7491646B2 (en) 2020-09-29 2024-05-28 株式会社オーク製作所 Discharge lamp and method of manufacturing electrode for discharge lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129375A (en) 2008-11-27 2010-06-10 Yumex Inc Short-arc electrode for discharge lamp
JP2012133994A (en) 2010-12-21 2012-07-12 Orc Manufacturing Co Ltd Discharge lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472915B2 (en) 2010-05-24 2014-04-16 株式会社オーク製作所 Discharge lamp
TWI470666B (en) * 2009-09-24 2015-01-21 Orc Mfg Co Ltd A discharge lamp, a discharge lamp electrode, and a discharge lamp electrode
JP5580136B2 (en) * 2010-08-11 2014-08-27 株式会社オーク製作所 Discharge lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129375A (en) 2008-11-27 2010-06-10 Yumex Inc Short-arc electrode for discharge lamp
JP2012133994A (en) 2010-12-21 2012-07-12 Orc Manufacturing Co Ltd Discharge lamp

Also Published As

Publication number Publication date
KR20200024712A (en) 2020-03-09
KR102602644B1 (en) 2023-11-16
JP2020035572A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
TWI509655B (en) Discharge lamp
JP5360033B2 (en) Short arc flash lamp
JP2005243637A (en) Reflector lamp having reduced seal temperature
JP7198611B2 (en) Discharge lamp and method for producing electrode for discharge lamp
JP7076307B2 (en) Manufacturing method of discharge lamp and electrode for discharge lamp
TWI399784B (en) A high pressure discharge lamp, a manufacturing method thereof, and a light irradiation device
JPWO2005098906A1 (en) Energy conversion device and light source
US8525409B2 (en) Efficient lamp with envelope having elliptical portions
JP7032859B2 (en) Discharge lamp and manufacturing method of discharge lamp
JP4952100B2 (en) Short arc lamp
KR102469050B1 (en) Discharge lamp
JP7315433B2 (en) Discharge lamp and method for manufacturing discharge lamp
JP2007311048A (en) Flash discharge lamp device
JP7377750B2 (en) Method for manufacturing discharge lamps and electrodes for discharge lamps
JP7491646B2 (en) Discharge lamp and method of manufacturing electrode for discharge lamp
JP2019036423A (en) Discharge lamp, electrode for discharge lamp, and manufacturing method of electrode for discharge lamp
JP4628777B2 (en) Short arc type high pressure discharge lamp
JPH0896750A (en) High pressure discharge lamp, discharge lamp lighting device and light source device
JP4173077B2 (en) Reflector built-in lamp
JP6562298B2 (en) Discharge lamp
JP6753140B2 (en) Discharge lamp device
JP2017069077A (en) Discharge lamp
JP2008506231A (en) Electrodes for high intensity discharge lamps
JPS63218146A (en) Discharge lamp
JP2013527587A (en) Compact metal halide lamp with salt pool housing at the end of arc tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7198611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150