JP7507615B2 - Discharge lamp and method of manufacturing electrode for discharge lamp - Google Patents

Discharge lamp and method of manufacturing electrode for discharge lamp Download PDF

Info

Publication number
JP7507615B2
JP7507615B2 JP2020106865A JP2020106865A JP7507615B2 JP 7507615 B2 JP7507615 B2 JP 7507615B2 JP 2020106865 A JP2020106865 A JP 2020106865A JP 2020106865 A JP2020106865 A JP 2020106865A JP 7507615 B2 JP7507615 B2 JP 7507615B2
Authority
JP
Japan
Prior art keywords
electrode
heat transfer
members
transfer member
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020106865A
Other languages
Japanese (ja)
Other versions
JP2022002187A (en
Inventor
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2020106865A priority Critical patent/JP7507615B2/en
Publication of JP2022002187A publication Critical patent/JP2022002187A/en
Application granted granted Critical
Publication of JP7507615B2 publication Critical patent/JP7507615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Description

本発明は、一対の電極を備えた放電ランプに関し、特に、電極の構造に関する。 The present invention relates to a discharge lamp having a pair of electrodes, and in particular to the structure of the electrodes.

放電ランプは、点灯中に電極先端部が高温となり、タングステンなどの電極材料が溶融、蒸発し、放電管が黒化してランプ照度低下を招く。電極先端部の過熱を防ぐため、異なる材料を接合した接合電極が知られている。例えば、タングステンから成る電極本体に対し、熱伝導性のより高いセラミックスなどの材料を後端側(電極支持棒側)に接合させ、放熱性を高めている(特許文献1参照)。 When a discharge lamp is turned on, the tip of the electrode becomes very hot, causing the electrode material, such as tungsten, to melt and evaporate, blackening the discharge tube and reducing the illuminance of the lamp. To prevent the tip of the electrode from overheating, a bonded electrode made by bonding different materials is known. For example, a material with higher thermal conductivity, such as ceramics, is bonded to the rear end (electrode support rod side) of the electrode body, which is made of tungsten, to improve heat dissipation (see Patent Document 1).

また、タングステンなどを主成分とする電極先端部の後端側に、電極先端部よりも低密度の材料から成る電極胴体部を接合する接合電極も知られている(特許文献2参照)。そこでは、電極先端部に対し、モリブデン、ニオブなどの焼結体を接合し、さらにその後端側に、炭化ケイ素の焼結体を接合させている。 Also known is a bonded electrode in which an electrode body made of a material with a lower density than the electrode tip is bonded to the rear end of an electrode tip mainly composed of tungsten or the like (see Patent Document 2). In this case, a sintered body of molybdenum, niobium, or the like is bonded to the electrode tip, and a sintered body of silicon carbide is further bonded to the rear end of the electrode.

特開2009-211916号公報JP 2009-211916 A 特開2013-4397号公報JP 2013-4397 A

異種材料の部材をその端面同士で接合し、電極を構成する場合、その接合面は電極端面にまで渡ることから、セラミックスなどの部材とタングステンなどの部材とを接合すると、熱膨張率の違いによる力が接合面全体にかかり、接合剥がれの恐れがある。 When components made of different materials are joined at their end faces to form an electrode, the joint surface extends to the electrode end face. Therefore, when a component such as ceramics is joined to a component such as tungsten, the force due to the difference in thermal expansion coefficients is applied to the entire joint surface, which may cause the joint to come apart.

したがって、接合剥がれを抑えながら、より放熱性を向上させた電極構造が求められる。 Therefore, there is a demand for an electrode structure that improves heat dissipation while suppressing peeling.

本発明の放電ランプは、放電管と、放電管内に対向配置される一対の電極とを備え、少なくとも一方の電極において、内部空間が形成され、内部空間には、単結晶炭化ケイ素から成る伝熱部材が設けられている。例えば、伝熱部材は、電極軸に沿って延び、その内部を電極軸が通るように配置することが可能である。 The discharge lamp of the present invention comprises a discharge tube and a pair of electrodes arranged opposite each other within the discharge tube, with an internal space being formed in at least one of the electrodes, and a heat transfer member made of single crystal silicon carbide being provided in the internal space. For example, the heat transfer member can be arranged so that it extends along the electrode axis and the electrode axis passes through its interior.

伝熱部材は、内部空間の電極軸垂直方向に沿った先端側底面および電極支持棒側底面と接するように構成することができる。ここでの「接する」には、固相接合などの接合や、接触が含まれる。 The heat transfer member can be configured to be in contact with the bottom surface on the tip side and the bottom surface on the electrode support rod side along the direction perpendicular to the electrode axis in the internal space. In this case, "in contact" includes bonding such as solid-state bonding, and contact.

例えば、内部空間には、単結晶炭化ケイ素以外の素材から成り、電極軸垂直方向に関して伝熱部材を挟むように配置される部材(ここでは、付随部材という)を設けることができる。例えば、板状の伝熱部材を付随部材で挟みこみ、あるいは、柱状の伝熱部材を同心円状に覆う付随部材を設けることが可能である。 For example, the internal space can be provided with components (herein referred to as accessory components) made of a material other than single crystal silicon carbide and arranged to sandwich the heat transfer member in the direction perpendicular to the electrode axis. For example, it is possible to sandwich a plate-shaped heat transfer member between accessory components, or to provide accessory components that concentrically cover a columnar heat transfer member.

複数の伝熱部材を設ける場合、複数の伝熱部材と複数の付随部材とを、交互に配置することが可能である。例えば、板状の伝熱部材と付随部材とを列状に交互に配置し、また、同心円状に筒状の伝熱部材と付随部材を交互に配置することも可能である。 When multiple heat transfer members are provided, the multiple heat transfer members and the multiple associated members can be arranged alternately. For example, plate-shaped heat transfer members and associated members can be arranged alternately in a row, and cylindrical heat transfer members and associated members can be arranged alternately in a concentric circle shape.

伝熱部材と付随部材との間の熱膨張係数の差が、1.0×10-6/K以下となるように、伝熱部材と付随部材を構成するのがよい。また、板状の伝熱部材の場合、伝熱部材の厚さが、330μm以上にすればよい。 The heat transfer member and the associated member are preferably configured so that the difference in thermal expansion coefficient between the heat transfer member and the associated member is 1.0×10 −6 /K or less. In the case of a plate-shaped heat transfer member, the thickness of the heat transfer member may be 330 μm or more.

本発明の一態様である放電ランプ用電極の製造方法は、凹部を形成した第1の部材と、第1の部材と同じ素材から成る第2の部材とを形成し、単結晶炭化ケイ素から成る伝熱部材、あるいは伝熱部材と単結晶炭化ケイ素以外の素材から成る付随部材とを含む第3の部材とを形成し、伝熱部材または第3の部材を、第1の部材の凹部に配置し、第1の部材、第2の部材、伝熱部材または第3の部材とを固相接合する。 The method for manufacturing an electrode for a discharge lamp, which is one aspect of the present invention, comprises forming a first member having a recess and a second member made of the same material as the first member, forming a heat transfer member made of single crystal silicon carbide or a third member including a heat transfer member and an associated member made of a material other than single crystal silicon carbide, placing the heat transfer member or the third member in the recess of the first member, and solid-state joining the first member, the second member, the heat transfer member, or the third member.

例えば、複数の伝熱部材と、複数の付随部材とを交互に配置し、固相接合することによって、第3の部材を形成することができる。 For example, the third member can be formed by alternately arranging multiple heat transfer members and multiple auxiliary members and solid-state bonding them.

本発明によれば、放電ランプにおいて、接合剥がれを抑えながら、より放熱性を向上させた電極を得ることができる。 According to the present invention, it is possible to obtain electrodes in a discharge lamp that have improved heat dissipation while suppressing peeling.

第1の実施形態である放電ランプの平面図である。1 is a plan view of a discharge lamp according to a first embodiment; 電極の電極軸方向に沿った概略的断面図である。FIG. 2 is a schematic cross-sectional view taken along the electrode axis direction of an electrode. 電極の径方向に沿った概略的断面図である。FIG. 2 is a schematic cross-sectional view taken along the radial direction of an electrode. 第2の実施形態である電極の電極軸方向に沿った概略的断面図である。5 is a schematic cross-sectional view of an electrode according to a second embodiment taken along an electrode axis direction. FIG. 第2の実施形態である電極の径方向に沿った断面図である。FIG. 11 is a cross-sectional view taken along a radial direction of an electrode according to a second embodiment. 第2の実施形態の伝熱部材の製造方法を示した図である。10A to 10C are diagrams illustrating a method for manufacturing a heat transfer member according to a second embodiment.

以下では、図面を参照して本発明の実施形態について説明する。 Below, an embodiment of the present invention will be described with reference to the drawings.

ショートアーク型放電ランプ10は、高輝度の光を出力可能な大型放電ランプであり、透明な石英ガラス製の略球状放電管(発光管)12を備え、放電管12内には、タングステン製の一対の電極20、30が対向配置される。放電管12の両側には、石英ガラス製の封止管13A、13Bが放電管12と連設し、一体的に形成されている。放電管12内の放電空間DSには、水銀とハロゲンやアルゴンガスなどの希ガスが封入されている。 The short arc type discharge lamp 10 is a large discharge lamp capable of outputting high-intensity light, and includes a transparent quartz glass, approximately spherical discharge tube (light emitting tube) 12, in which a pair of tungsten electrodes 20, 30 are arranged facing each other. On both sides of the discharge tube 12, quartz glass sealing tubes 13A, 13B are connected to the discharge tube 12 and formed integrally with it. Mercury and rare gases such as halogen and argon gas are sealed in the discharge space DS within the discharge tube 12.

陰極である電極20は、電極支持棒17Aによって支持されている。封止管13Aには、電極支持棒17Aが挿通されるガラス管(図示せず)と、外部電源と接続するリード棒15Aと、電極支持棒17Aとリード棒15Aを接続する金属箔16Aなどが封止されている。陽極である電極30についても同様に、電極支持棒17Bが挿通されるガラス管(図示せず)、金属箔16B、リード棒15Bなどのマウント部品が封止されている。また、封止管13A、13Bの端部には、口金19A、19Bがそれぞれ取り付けられている。 The cathode electrode 20 is supported by an electrode support rod 17A. Sealed in the sealed tube 13A are a glass tube (not shown) through which the electrode support rod 17A is inserted, a lead rod 15A that connects to an external power source, and metal foil 16A that connects the electrode support rod 17A and the lead rod 15A. Similarly, the anode electrode 30 is sealed with mounting parts such as a glass tube (not shown) through which the electrode support rod 17B is inserted, metal foil 16B, and lead rod 15B. In addition, caps 19A and 19B are attached to the ends of the sealed tubes 13A and 13B, respectively.

一対の電極20、30に電圧が印加されると、電極20、30との間でアーク放電が発生し、放電管12の外部に向けて光が放射される。ここでは、1kW以上の電力が投入される。放電管12から放射された光は、反射鏡(図示せず)によって所定方向へ導かれる。例えば露光装置に放電ランプ10が組み込まれた場合、放射光はパターン光となって基板などに照射される。 When a voltage is applied to the pair of electrodes 20, 30, an arc discharge occurs between the electrodes 20, 30, and light is emitted toward the outside of the discharge tube 12. Here, a power of 1 kW or more is input. The light emitted from the discharge tube 12 is guided in a predetermined direction by a reflector (not shown). For example, when the discharge lamp 10 is incorporated in an exposure device, the emitted light becomes a pattern light and is irradiated onto a substrate, etc.

図2は、電極30の電極軸方向に沿った概略的断面図である。図3は、図2のラインIII―IIIに沿った概略的断面図である。 Figure 2 is a schematic cross-sectional view of electrode 30 along the electrode axis direction. Figure 3 is a schematic cross-sectional view along line III-III in Figure 2.

電極30は、電極先端面30Sを有するテーパー状の電極先端部42と、柱状の電極胴体部44から構成され、電極支持棒17Bが電極軸Eに対して同軸的に接続されている。電極30は、ここではタングステンやモリブデンなどの金属によって構成される。 The electrode 30 is composed of a tapered electrode tip 42 having an electrode tip surface 30S and a columnar electrode body 44, and the electrode support rod 17B is coaxially connected to the electrode axis E. Here, the electrode 30 is composed of a metal such as tungsten or molybdenum.

電極30の電極胴体部44には、内部空間50が形成されている。内部空間50は、電極軸Eに対して同軸的である。ここでは、内部空間50が筒状空間として形成され、また、密閉空間として形成されている。 An internal space 50 is formed in the electrode body 44 of the electrode 30. The internal space 50 is coaxial with the electrode axis E. Here, the internal space 50 is formed as a cylindrical space and is also formed as a sealed space.

内部空間50には、伝熱部材60が設けられている。伝熱部材60は、電極軸Eに沿って延び、ここでは断面矩形の板状に形成され、その中心が電極軸Eと一致するように内部空間50に配置されている。なお、伝熱部材60は板状に限定されず、内部空間50に対して同軸的に配置可能な形状(例えば円柱状)にすればよい。あるいは、電極軸Eを通る配置であってもよい。 A heat transfer member 60 is provided in the internal space 50. The heat transfer member 60 extends along the electrode axis E, and here is formed in a plate shape with a rectangular cross section, and is arranged in the internal space 50 so that its center coincides with the electrode axis E. Note that the heat transfer member 60 is not limited to being plate-shaped, and may have any shape (e.g., cylindrical) that allows it to be arranged coaxially with the internal space 50. Alternatively, it may be arranged to pass through the electrode axis E.

伝熱部材60は、単結晶炭化ケイ素(SiC)で組成された成形体で構成されている。単結晶炭化ケイ素(SiC)は、タングステン、モリブデンなどの電極30の素材よりも熱伝導率が大きく、また、多結晶炭化ケイ素よりも熱伝導率が高い。伝熱部材60の厚さT0は、クラック発生を抑制するため、330μm以上に定められている。 The heat transfer member 60 is composed of a molded body composed of single crystal silicon carbide (SiC). Single crystal silicon carbide (SiC) has a higher thermal conductivity than the materials of the electrode 30, such as tungsten and molybdenum, and also has a higher thermal conductivity than polycrystalline silicon carbide. The thickness T0 of the heat transfer member 60 is set to 330 μm or more to suppress the occurrence of cracks.

伝熱部材60は、内部空間50の側面、すなわち電極30内の電極軸に沿った内表面50Sと接しておらず、内表面50Sとの間に隙間が形成されている。一方、電極軸方向に関しては、伝熱部材60が内部空間50の両底面と接合している。すなわち、伝熱部材60の電極支持棒側端面60T1は、電極内の電極軸垂直方向に沿った内表面50T1と接続し、伝熱部材60の電極先端側端面60T2は、反対側(電極先端側)の内表面50T2と接続している。 The heat transfer member 60 is not in contact with the side of the internal space 50, i.e., the inner surface 50S along the electrode axis in the electrode 30, and a gap is formed between the heat transfer member 60 and the inner surface 50S. On the other hand, in the electrode axis direction, the heat transfer member 60 is joined to both bottom surfaces of the internal space 50. In other words, the electrode support rod side end surface 60T1 of the heat transfer member 60 is connected to the inner surface 50T1 along the electrode axis perpendicular direction in the electrode, and the electrode tip side end surface 60T2 of the heat transfer member 60 is connected to the inner surface 50T2 on the opposite side (electrode tip side).

単結晶炭化ケイ素は、熱膨張率などに関してタングステンなどの電極30の素材と一致しない異種材のため、ランプ点灯中、熱膨張率の違いによって接合部分が剥がれる可能性がないわけではない。しかしながら、本実施形態では、タングステンなどから成る同一素材で電極30が構成される一方、熱伝導性のより高い単結晶炭化ケイ素から成る伝熱部材60を、内部空間50に設けている。 Since single crystal silicon carbide is a dissimilar material that does not match the material of the electrode 30, such as tungsten, in terms of thermal expansion coefficient, there is a possibility that the joint may come apart due to the difference in thermal expansion coefficient while the lamp is turned on. However, in this embodiment, the electrode 30 is made of the same material, such as tungsten, while a heat transfer member 60 made of single crystal silicon carbide, which has higher thermal conductivity, is provided in the internal space 50.

従来のような、タングステンなどの部材と炭化ケイ素などから成る部材とをその端面同士で接合する電極構造とは異なり、炭化ケイ素とタングステンなどの電極部材との接合部分が電極外表面に露出せず、部材間の端面全体に渡って接合していない。そのため、接合時のエネルギーが集中し、接合の剥がれを抑制することができる。 Unlike conventional electrode structures in which a member such as tungsten and a member made of silicon carbide are joined at their end faces, the joint between the electrode members such as silicon carbide and tungsten is not exposed on the outer surface of the electrode, and the joint is not across the entire end face between the members. This allows the energy applied during joining to be concentrated, suppressing peeling of the joint.

そして、電極軸Eに沿って延びる熱伝導性の高い伝熱部材60が、電極先端側と電極支持棒側を繋ぐように電極内部で接合することによって、電極先端側の熱を電極支持棒側へ効果的に輸送することができる。また、多結晶の炭化ケイ素よりも熱伝導率が高い単結晶で伝熱部材60を組成するため、より効果的に熱を輸送することができる。 The heat transfer member 60, which has high thermal conductivity and extends along the electrode axis E, is joined inside the electrode to connect the electrode tip side and the electrode support rod side, so that heat from the electrode tip side can be effectively transported to the electrode support rod side. In addition, because the heat transfer member 60 is made of single crystals that have a higher thermal conductivity than polycrystalline silicon carbide, heat can be transported more effectively.

伝熱部材60が電極軸Eを通るように内部空間50に対して同軸的に配置することにより、例えばコストなどの制約から内部空間50に対してサイズの小さい伝熱部材60を用意する場合であっても、電極先端側から電極支持棒側へ効率よく熱を伝達することができる。 By arranging the heat transfer member 60 coaxially with respect to the internal space 50 so that it passes through the electrode axis E, heat can be efficiently transferred from the electrode tip side to the electrode support rod side even when a heat transfer member 60 that is small in size relative to the internal space 50 is prepared due to cost or other constraints, for example.

単結晶炭化ケイ素は、多結晶炭化ケイ素と比べて接合強度が劣り、接合部分の剥がれが生じやすい。しかしながら、伝熱部材60が内部空間50において接合しているため、仮に伝熱部材60と電極30との間に接合剥がれが生じたとしても、落下の恐れがない。 Single crystal silicon carbide has inferior bonding strength compared to polycrystalline silicon carbide, and is prone to peeling at the bonded portion. However, because the heat transfer member 60 is bonded in the internal space 50, even if peeling occurs between the heat transfer member 60 and the electrode 30, there is no risk of it falling.

また、単結晶炭化ケイ素の熱膨張係数(約4.6×10-6/K)は、多結晶炭化ケイ素の熱膨張係数(約4.0×10-6/K)と比べ、タングステン、モリブデンの熱膨張係数との差が小さい。そのため、点灯時に伝熱部材60の熱膨張があっても、電極30の電極先端部42と胴体部44との接合部分に大きな力が掛かるのを抑制することができる。 Furthermore, the thermal expansion coefficient of single crystal silicon carbide (approximately 4.6×10 -6 /K) is smaller than that of polycrystalline silicon carbide (approximately 4.0×10 -6 /K), and has a smaller difference from the thermal expansion coefficients of tungsten and molybdenum. Therefore, even if there is thermal expansion of heat transfer member 60 during lighting, it is possible to prevent a large force from being applied to the joint between electrode tip portion 42 and body portion 44 of electrode 30.

このような内部空間50に伝熱部材60を設けた電極30は、以下のように製造することができる。まず、凹部を設けた電極胴体部となる部材(第1の部材)と、電極先端部となる部材(第2の部材)とを形成し、伝熱部材を用意する。そして、伝熱部材を凹部に配置した後、所定の圧力、温度、加圧時間を設定して、第1の部材と第2の部材とを、固相接合する。例えば、SPSによって固相接合することができる。 An electrode 30 having a heat transfer member 60 in such an internal space 50 can be manufactured as follows. First, a member (first member) that will become the electrode body portion with a recess and a member (second member) that will become the electrode tip portion are formed to prepare the heat transfer member. Then, after placing the heat transfer member in the recess, the first member and the second member are solid-state bonded by setting a predetermined pressure, temperature, and pressurization time. For example, solid-state bonding can be performed by SPS.

固相接合後、切削加工などの加工処理を施すことにより、所望のサイズ、形状をもつ電極が製造される。そして、電極製造後にマウント、封止など従来周知の方法によって放電ランプを製造することができる。なお、上記以外の方法で接合することも可能であり、電極胴体部と電極先端部との接合に限定されず、内部空間を形成するように電極を構成すればよく、インサート部材を介在させて電極を構成してもよい。内部空間は密閉空間を形成することに限定されず、例えば内部空間と通じる貫通孔を設けることも可能である。 After solid-state bonding, machining and other processing is performed to produce electrodes of the desired size and shape. After the electrodes are manufactured, the discharge lamp can be manufactured by conventional methods such as mounting and sealing. Note that bonding can also be done by methods other than those described above, and is not limited to bonding the electrode body and electrode tip, as long as the electrode is configured to form an internal space, and the electrode may be configured with an insert member interposed. The internal space is not limited to being an enclosed space, and it is also possible to provide a through hole that communicates with the internal space, for example.

次に、図4~6を用いて、第2の実施形態である放電ランプ用電極について説明する。第2の実施形態では、伝熱部材を単体で内部空間に配置する代わりに、電極と同じ素材と伝熱部材とを接合させた部材を内部空間に設けている。 Next, a discharge lamp electrode according to a second embodiment will be described with reference to Figures 4 to 6. In the second embodiment, instead of disposing a heat transfer member alone in the internal space, a member made of the same material as the electrode and bonded to the heat transfer member is provided in the internal space.

図4は、第2の実施形態である放電ランプの電極の概略的断面図である。図5は、図4のラインV-Vに沿った電極の概略的断面図である。 Figure 4 is a schematic cross-sectional view of an electrode of a discharge lamp according to a second embodiment. Figure 5 is a schematic cross-sectional view of the electrode taken along line V-V in Figure 4.

電極130は、第1の実施形態と同様、電極先端部42、電極胴体部44から構成され、電極内部には内部空間50が形成されている。そして、内部空間50には、複数の伝熱部材60A~60Cと、電極と同じ素材から成る複数の部材(以下、付随部材という)とによって構成される柱状部材160が設けられ、電極130と内部空間50で接合している。 As in the first embodiment, the electrode 130 is composed of an electrode tip portion 42 and an electrode body portion 44, and an internal space 50 is formed inside the electrode. In the internal space 50, a columnar member 160 is provided, which is composed of multiple heat transfer members 60A-60C and multiple members (hereinafter referred to as accessory members) made of the same material as the electrode, and is joined to the electrode 130 at the internal space 50.

柱状部材160は、伝熱部材60A~60Cと付随部材70A~70Dが交互に並んで接する一体的構造になっている。伝熱部材60A、60B、60Cは、それぞれ、付随部材70Aと付随部材70B、付随部材70Bと付随部材70C、付随部材70Cと付随部材70Dとの間に挟まれている。 The columnar member 160 has an integral structure in which the heat transfer members 60A-60C and the associated members 70A-70D are arranged alternately and in contact with each other. The heat transfer members 60A, 60B, and 60C are sandwiched between the associated members 70A and 70B, the associated members 70B and 70C, and the associated members 70C and 70D, respectively.

このような柱状部材160を内部空間50に設けることにより、電極の熱容量を確保しながら、また、付随部材70A~70Dの素材が電極130と同じ素材(タングステン)であるため、電極内部における柱状部材160の接合が強固になる。さらに、伝熱部材60Bを電極軸Eが通るように配置することで、電極先端部42の熱を電極支持棒側へより効果的に伝達することができる。 By providing such a columnar member 160 in the internal space 50, the heat capacity of the electrode is ensured, and because the material of the auxiliary members 70A-70D is the same material (tungsten) as that of the electrode 130, the bond of the columnar member 160 inside the electrode is strong. Furthermore, by arranging the heat transfer member 60B so that the electrode axis E passes through it, the heat of the electrode tip 42 can be transferred more effectively to the electrode support rod side.

なお、付随部材70A~70Dの素材は電極130と同じ素材に限定されず、単結晶炭化ケイ素と熱膨張係数の差が所定値以下となるような素材を定めればよく、例えば、熱膨張係数の差が1.0×10-6/Kとなるように素材を定めればよい。これによって、電極130と柱状部材160とがより一体化した構造にすることができ、接合剥がれを抑制することができる。 The material of the auxiliary members 70A to 70D is not limited to the same material as that of the electrode 130, and any material may be selected so that the difference in thermal expansion coefficient from that of single crystal silicon carbide is equal to or less than a predetermined value, for example, the material may be selected so that the difference in thermal expansion coefficient is 1.0×10 -6 /K. This allows the electrode 130 and the columnar member 160 to have a more integrated structure, and makes it possible to suppress peeling from the joint.

伝熱部材60A~60Cの厚さTは、いずれも330μm以上の同じ厚さに定められ、付随部材70A~70Dの厚さT1も、伝熱部材60A~60Cの厚さTと等しい。なお、伝熱部材60A~60Cの厚さTはすべて同一でなくもよく、電極軸Eが通る位置の伝熱部材を厚くしてもよく、付随部材70A~70Dの厚さも同様に揃えなくてもよい。 The thickness T of the heat transfer members 60A to 60C is set to the same thickness of 330 μm or more, and the thickness T1 of the associated members 70A to 70D is also equal to the thickness T of the heat transfer members 60A to 60C. Note that the thickness T of the heat transfer members 60A to 60C does not have to be the same for all of them, and the heat transfer member may be thicker at the position where the electrode axis E passes, and the thickness of the associated members 70A to 70D does not have to be uniform as well.

図6は、柱状部材160の製造工程を示した図である。 Figure 6 shows the manufacturing process for the columnar member 160.

板状の単結晶炭化ケイ素から成る素材と板状のタングステンから成る素材とを交互に接するように配置し、SPSなどの固相接合を行う。そして、切削して柱状部材(第3の部材)を形成する。なお、柱状に成形することに限定されず、板状に切削してもよい。さらには、環状の伝熱部材と環状の付随部材と同心円状に交互に配置して接合する構成にすることも可能である。 Plate-shaped materials made of single crystal silicon carbide and plate-shaped materials made of tungsten are arranged so that they are in contact with each other, and solid-phase bonding such as SPS is performed. Then, a columnar member (third member) is formed by cutting. Note that it is not limited to being formed into a columnar shape, and it may be cut into a plate shape. Furthermore, it is also possible to have a configuration in which an annular heat transfer member and an annular auxiliary member are arranged concentrically and alternately to be joined.

ここでは3つの伝熱部材を用いているが、3つ以上用いてもよく、1つの伝熱部材で両側に付随部材を配置する構成でもよい。また、伝熱部材と付随部材との間に他の素材から成るインサート部材を介在させてもよい。 Three heat transfer members are used here, but more than three may be used, or a single heat transfer member may be configured with associated members on either side. Also, an insert member made of another material may be interposed between the heat transfer member and the associated member.

第1、第2の実施形態では、伝熱部材を内部空間で電極と接合する構成であるが、接合させずに接するだけの構成にしてもよい。また、電極先端側端面、電極支持棒側端面の一方にのみ接合、あるいは接するような構成にすることも可能である。 In the first and second embodiments, the heat transfer member is joined to the electrode in the internal space, but it may be configured so that it is only in contact with the electrode without being joined. It is also possible to configure it so that it is joined to or in contact with only one of the end face on the electrode tip side or the end face on the electrode support rod side.

10 放電ランプ
30 陽極(電極)
50 内部空間
60 伝熱部材
10 Discharge lamp 30 Anode (electrode)
50 Internal space 60 Heat transfer member

Claims (5)

放電管と、A discharge tube;
前記放電管内に対向配置される一対の電極とを備え、A pair of electrodes disposed opposite each other within the discharge tube,
少なくとも一方の電極において、内部空間が形成され、An internal space is formed in at least one of the electrodes,
前記内部空間には、単結晶炭化ケイ素から成る複数の伝熱部材と、単結晶炭化ケイ素以外の素材から成り、電極軸垂直方向に関して前記伝熱部材を挟むように配置される複数の付随部材とが設けられ、The internal space is provided with a plurality of heat transfer members made of single crystal silicon carbide and a plurality of auxiliary members made of a material other than single crystal silicon carbide and arranged to sandwich the heat transfer members in a direction perpendicular to the electrode axis;
前記複数の伝熱部材と複数の付随部材とが、交互に配置されていることを特徴とする放電ランプ。A discharge lamp, characterized in that the plurality of heat transfer members and the plurality of associated members are arranged alternately.
前記伝熱部材と前記付随部材との間の熱膨張係数の差が、1.0×10The difference in thermal expansion coefficient between the heat transfer member and the associated member is 1.0×10 -6-6 /K以下であることを特徴とする請求項1に記載の放電ランプ。2. The discharge lamp according to claim 1, wherein the temperature is 0.15 to 1.5° C. 前記伝熱部材が板状であって、The heat transfer member is plate-shaped,
前記伝熱部材の厚さが、330μm以上であることを特徴とする請求項1または2に記載の放電ランプ。3. The discharge lamp according to claim 1, wherein the heat transfer member has a thickness of 330 [mu]m or more.
凹部を形成した第1の部材と、前記第1の部材と同じ素材から成る第2の部材とを形成し、forming a first member having a recess and a second member made of the same material as the first member;
単結晶炭化ケイ素から成る伝熱部材、あるいは前記伝熱部材と単結晶炭化ケイ素以外の素材から成る付随部材とを含む第3の部材とを形成し、forming a heat transfer member made of single crystal silicon carbide, or a third member including the heat transfer member and an associated member made of a material other than single crystal silicon carbide;
前記伝熱部材または前記第3の部材を、前記第1の部材の凹部に配置し、The heat transfer member or the third member is disposed in a recess of the first member;
前記第1の部材、前記第2の部材、前記伝熱部材または前記第3の部材とを固相接合することを特徴とする放電ランプ用電極の製造方法。A method for manufacturing an electrode for a discharge lamp, comprising solid-state joining the first member, the second member, the heat transfer member or the third member.
複数の伝熱部材と、複数の付随部材とを交互に配置し、固相接合することによって、前記第3の部材を形成することを特徴とする請求項4に記載の放電ランプ用電極の製造方法。5. The method for manufacturing an electrode for a discharge lamp according to claim 4, wherein the third member is formed by alternately arranging a plurality of heat transfer members and a plurality of auxiliary members and solid-state bonding the members.
JP2020106865A 2020-06-22 2020-06-22 Discharge lamp and method of manufacturing electrode for discharge lamp Active JP7507615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106865A JP7507615B2 (en) 2020-06-22 2020-06-22 Discharge lamp and method of manufacturing electrode for discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106865A JP7507615B2 (en) 2020-06-22 2020-06-22 Discharge lamp and method of manufacturing electrode for discharge lamp

Publications (2)

Publication Number Publication Date
JP2022002187A JP2022002187A (en) 2022-01-06
JP7507615B2 true JP7507615B2 (en) 2024-06-28

Family

ID=79244464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106865A Active JP7507615B2 (en) 2020-06-22 2020-06-22 Discharge lamp and method of manufacturing electrode for discharge lamp

Country Status (1)

Country Link
JP (1) JP7507615B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002157A1 (en) 2004-06-21 2006-01-05 Honeywell International Inc. Woven carbon-fiber heat spreader constructions and methods of forming heat spreader constructions
JP2008186790A (en) 2007-01-31 2008-08-14 Yumex Inc Electrode for discharge lamp, and its manufacturing method
US20080211379A1 (en) 2007-03-01 2008-09-04 Kazuhiro Miyamoto Fluorescent Lamp
JP2009211916A (en) 2008-03-04 2009-09-17 Yumex Inc Electrode with heat dissipation member
JP2012133994A (en) 2010-12-21 2012-07-12 Orc Manufacturing Co Ltd Discharge lamp
JP2013004397A (en) 2011-06-20 2013-01-07 Ushio Inc Short arc type discharge lamp
WO2015059589A1 (en) 2013-09-24 2015-04-30 株式会社オーク製作所 Discharge lamp
JP2018019055A (en) 2016-10-24 2018-02-01 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method for manufacturing heat dissipation substrate
JP2019096860A (en) 2018-08-02 2019-06-20 Jfe精密株式会社 Radiator plate and manufacturing method for the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002157A1 (en) 2004-06-21 2006-01-05 Honeywell International Inc. Woven carbon-fiber heat spreader constructions and methods of forming heat spreader constructions
JP2008186790A (en) 2007-01-31 2008-08-14 Yumex Inc Electrode for discharge lamp, and its manufacturing method
US20080211379A1 (en) 2007-03-01 2008-09-04 Kazuhiro Miyamoto Fluorescent Lamp
JP2008218071A (en) 2007-03-01 2008-09-18 Stanley Electric Co Ltd Fluorescence tube
JP2009211916A (en) 2008-03-04 2009-09-17 Yumex Inc Electrode with heat dissipation member
JP2012133994A (en) 2010-12-21 2012-07-12 Orc Manufacturing Co Ltd Discharge lamp
JP2013004397A (en) 2011-06-20 2013-01-07 Ushio Inc Short arc type discharge lamp
WO2015059589A1 (en) 2013-09-24 2015-04-30 株式会社オーク製作所 Discharge lamp
JP2018019055A (en) 2016-10-24 2018-02-01 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method for manufacturing heat dissipation substrate
JP2019096860A (en) 2018-08-02 2019-06-20 Jfe精密株式会社 Radiator plate and manufacturing method for the same

Also Published As

Publication number Publication date
JP2022002187A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP5472915B2 (en) Discharge lamp
JP4484958B1 (en) Discharge lamp
CN102034672B (en) Discharge lamp, electrode for discharge lamp and method for manufacturing electrode for discharge lamp
US20060220558A1 (en) Luminous vessels
JP7507615B2 (en) Discharge lamp and method of manufacturing electrode for discharge lamp
US20060222878A1 (en) Composite bodies
JP4498468B1 (en) Manufacturing method of electrode for discharge lamp
JP4826613B2 (en) Discharge lamp
JP3475815B2 (en) Short arc discharge lamp
US7868552B2 (en) Short arc lamp
TW201034045A (en) Ceramic discharge lamp and method of manufacturing ceramic discharge lamp
JP3183145B2 (en) Short arc lamp
JP2013247338A (en) Cover member for light-emitting device, and light-emitting device
JP7491646B2 (en) Discharge lamp and method of manufacturing electrode for discharge lamp
JP6092557B2 (en) Manufacturing method of discharge lamp electrode
JP7315433B2 (en) Discharge lamp and method for manufacturing discharge lamp
JP7377750B2 (en) Method for manufacturing discharge lamps and electrodes for discharge lamps
JP2003229090A (en) Short-arc type mercury lamp
JP2005340051A (en) Short arc lamp
JP4600541B2 (en) Short arc discharge lamp and manufacturing method thereof
TW200939289A (en) Short arc type high-pressure discharge lamp
JP7145429B2 (en) discharge lamp
JP5187698B2 (en) Discharge lamp and method of manufacturing a bulb neck for a discharge lamp
JP5773252B2 (en) Short arc type discharge lamp
TW202335037A (en) Discharge lamp capable of preventing rectifying body disposed in sealed space from cracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240618

R150 Certificate of patent or registration of utility model

Ref document number: 7507615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150