WO2012086362A1 - 画像処理装置、そのプログラム、および画像処理方法 - Google Patents

画像処理装置、そのプログラム、および画像処理方法 Download PDF

Info

Publication number
WO2012086362A1
WO2012086362A1 PCT/JP2011/077187 JP2011077187W WO2012086362A1 WO 2012086362 A1 WO2012086362 A1 WO 2012086362A1 JP 2011077187 W JP2011077187 W JP 2011077187W WO 2012086362 A1 WO2012086362 A1 WO 2012086362A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image processing
processing apparatus
pixel
area
Prior art date
Application number
PCT/JP2011/077187
Other languages
English (en)
French (fr)
Inventor
宏 大和
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012549695A priority Critical patent/JP5464279B2/ja
Priority to US13/994,038 priority patent/US9332247B2/en
Publication of WO2012086362A1 publication Critical patent/WO2012086362A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/002Eyestrain reduction by processing stereoscopic signals or controlling stereoscopic devices

Definitions

  • the present invention relates to an image processing technique.
  • a stereoscopic image of a subject is generated by generating left-eye and right-eye pseudo-images that are observed as if the distant view of a subject including a distant view and a foreground exists at a distant distance from the actual distance.
  • Techniques for generating visual images have been proposed. More specifically, in the stereoscopic image generated by the technique of Patent Document 1, the display position of the distant view is in a state in which the relative positional relationship between each part of the distant view image corresponding to the original distance is maintained. In the pseudo image for the right eye, the position is approximately the center of the image moved to the right from the original display position. In the pseudo image for the left eye, the position is approximately the center of the image moved to the left from the original display position. . And in patent document 1, by reducing the distant view display position in each of the pseudo image for the left eye and the pseudo image for the right eye by moving the distant view, the observer's eye fatigue is reduced. Yes.
  • the present invention has been made to solve these problems, and an object of the present invention is to provide a technique capable of reducing eye fatigue of an observer who observes a stereoscopic image.
  • an image processing apparatus includes a first acquisition unit that acquires a reference image obtained by photographing a subject, and each pixel of the reference image among the points of the subject.
  • a second acquisition unit that acquires each reference distance information expressing distance information from a predetermined origin position for each point corresponding to each of the reference distance information corresponding to the pixel array of the reference image
  • a first generation unit that performs a generation process for generating a derived image and each derived distance information respectively corresponding to the reference image and each reference distance information as a result of the blurring process on the image, and the derived image and each derived distance information
  • a second generation unit that generates a pseudo image of the subject corresponding to shooting from a virtual viewpoint different from the viewpoint from which the reference image was shot.
  • An image processing apparatus is the image processing apparatus according to the first aspect, wherein the specifying unit sets at least one of a color statistical distribution state and a spatial distribution state in the reference image. The identification process is performed based on this.
  • the image processing apparatus is the image processing apparatus according to the first aspect, wherein the specifying unit performs the specifying process by setting a blurred portion in the reference image as the non-gaze area.
  • An image processing apparatus is the image processing apparatus according to the first aspect, wherein the specifying unit performs the specifying process based on region information that defines a range of a central portion of the reference image. .
  • An image processing apparatus is the image processing apparatus according to the first aspect, wherein the first acquisition unit acquires another image obtained by capturing the subject at a time different from the reference image.
  • the image processing apparatus further includes a two-dimensional movement vector acquisition unit that obtains each two-dimensional movement vector for each pixel of the reference image based on the reference image and the separate image, and the specifying unit includes: The specifying process is performed based on each two-dimensional movement vector.
  • the image processing apparatus is the image processing apparatus according to the fourth aspect, wherein the specifying unit performs the specifying process based on a vanishing point of each two-dimensional movement vector.
  • the image processing apparatus is the image processing apparatus according to the first aspect, wherein the specifying unit performs the specifying process based on the reference distance information.
  • An image processing apparatus is the image processing apparatus according to the seventh aspect, wherein the specifying unit performs the specifying process based on distance information of a predetermined distance range among the reference distance information. I do.
  • An image processing apparatus is the image processing apparatus according to the seventh aspect, wherein the specifying unit is specified based on focusing distance information about the reference image among the reference distance information. The identification process is performed based on each distance information.
  • An image processing device is the image processing device according to the seventh aspect, wherein the specifying unit includes pixels in which a difference in distance information among the reference distance images is within a predetermined distance range.
  • the identification process is performed by setting an area of a predetermined size or more connected to each other as the gaze area.
  • An image processing apparatus is the image processing apparatus according to the seventh aspect, wherein the specifying unit includes pixels in which a difference in distance information among the reference distance images is within a predetermined distance range.
  • the specifying process is performed by setting a region of the maximum size among the regions of a predetermined size or more connected to be the gaze region.
  • An image processing device is the image processing device according to the seventh aspect, wherein the specifying unit is based on region information defining a range of a predetermined spatial region in the reference distance image. Then, the specific process is performed.
  • An image processing device is the image processing device according to the first aspect, wherein the first acquisition unit acquires another image obtained by capturing the subject at a time different from the reference image.
  • the second acquisition unit acquires individual distance information for each point corresponding to each pixel of the different image among the points of the subject
  • the image processing device includes the reference image and the A three-dimensional movement vector acquisition unit that obtains each three-dimensional movement vector for each pixel of the reference image based on the different image, the reference distance information, and the different distance information; The specifying process is performed based on the three-dimensional movement vector.
  • An image processing device is the image processing device according to the thirteenth aspect, wherein the specifying unit is an area in which a moving object is photographed in the reference image based on each three-dimensional movement vector. Is extracted, and the specific processing is performed by setting the region as the gaze region.
  • An image processing device is the image processing device according to the thirteenth aspect, wherein the specifying unit has a size of each of the three-dimensional movement vectors equal to or greater than a predetermined threshold in the reference image.
  • the specifying process is performed by setting a region as the gaze region.
  • An image processing device is the image processing device according to the thirteenth aspect, wherein the specifying unit is configured to capture an extension line of a three-dimensional movement vector among the three-dimensional movement vectors.
  • the specifying process is performed by specifying a three-dimensional movement vector that intersects with the imaging system and setting the region of the reference image corresponding to the specified three-dimensional movement vector as the gaze region.
  • An image processing device is the image processing device according to any one of the first to sixteenth aspects, wherein the first generation unit is arranged in the non-gaze region of the reference distance image.
  • the derived distance information is generated by blurring the corresponding region image.
  • An image processing device is the image processing device according to the seventeenth aspect, wherein the first generation unit averages the images of the region corresponding to the non-gaze region in the reference distance image.
  • the blurring process is performed by performing a normalization filter process.
  • An image processing device is the image processing device according to the seventeenth aspect, wherein the first generation unit is configured for each pixel in a region corresponding to the non-gaze region in the reference distance image.
  • the blurring process is performed by setting the mode value of each distance information in an area of a predetermined size including each pixel as the pixel value of each pixel.
  • An image processing device is the image processing device according to the seventeenth aspect, wherein the first generation unit includes each distance information in a region corresponding to the non-gaze region in the reference distance image.
  • the blurring process is performed by changing each to the far side with respect to the origin position.
  • An image processing device is the image processing device according to any one of the first to sixteenth aspects, wherein the first generation unit corresponds to the non-gaze region in the reference image.
  • the derived image is generated by the blurring process on the image of the area to be performed.
  • An image processing apparatus is the image processing apparatus according to the fifth or sixth aspect, wherein the first generation unit a) an area corresponding to the non-gaze area in the reference image And b) associating each pixel of the different image associated with each two-dimensional movement vector corresponding to each pixel in the region with each pixel.
  • a different derived image corresponding to the different image is generated by performing the same blurring process as the blurring process applied to the pixels of the reference image that has been subjected to.
  • An image processing device is the image processing device according to the twenty-first or twenty-second aspect, wherein the first generation unit is an image of a region corresponding to the non-gaze region in the reference image.
  • the blurring process is performed by performing an averaging filter process on the.
  • An image processing device is the image processing device according to the twenty-first or twenty-second aspect, wherein the first generation unit is discrete in a region corresponding to the non-gaze region in the reference image.
  • the blurring process is performed by acquiring pixel values of pixels other than the discretely specified pixels in the region based on the pixel values of the pixels specified in a specific manner.
  • An image processing device is the image processing device according to the twenty-first or twenty-second aspect, wherein the first generator is a pixel in a region corresponding to the non-gaze region in the reference image.
  • the blurring process is performed by removing the spatial high-frequency component of the value.
  • An image processing device is the image processing device according to the first aspect, wherein the first generation unit applies the at least one of the reference image and the reference distance image to the non-gaze region.
  • the image of the corresponding region blur of different strengths in a region farther than the gaze region with respect to the origin position and a region nearer than the gaze region with respect to the origin position in the image. Each process is applied.
  • the image processing device is the image processing device according to the first aspect, further comprising a third acquisition unit that acquires a stereoscopic image based on the pseudo image.
  • the program according to the twenty-eighth aspect is executed by a computer mounted on the image processing apparatus, thereby causing the image processing apparatus to function as the image processing apparatus according to any one of the first to twenty-seventh aspects.
  • An image processing method includes a first acquisition step of acquiring a reference image in which a subject is photographed, and a predetermined point for each point corresponding to each pixel of the reference image among the points of the subject.
  • a second generation step of generating a pseudo image of the subject corresponding to shooting from a virtual viewpoint different from the viewpoint from which the reference image was shot based on the first generation step of performing a generation process for generating the derived image and each derived distance information respectively corresponding to the reference image and each reference distance information, and the derived image and each derived distance information.
  • the program according to the twenty-eighth aspect, or the image processing method according to the twenty-ninth aspect the fatigue of the eyes of the observer observing the stereoscopic image is reduced. It becomes possible.
  • FIG. 1 is a diagram illustrating an example of a main configuration of an image processing system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a main functional configuration of the image processing apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a main functional configuration of the stereo camera according to the embodiment.
  • FIG. 4 is a diagram illustrating a camera coordinate system and an image coordinate system related to a stereo camera.
  • FIG. 5 is a diagram illustrating an example of a reference image.
  • FIG. 6 is a diagram illustrating an example of a reference image.
  • FIG. 7 is a diagram illustrating an example of the original distance image.
  • FIG. 8 is a diagram illustrating an example of a reference image.
  • FIG. 1 is a diagram illustrating an example of a main configuration of an image processing system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a main functional configuration of the image processing apparatus according to the embodiment.
  • FIG. 3 is a diagram
  • FIG. 9 is a diagram illustrating an example of a gaze area and a non-gaze area in the reference image.
  • FIG. 10 is a diagram illustrating an example of a reference image.
  • FIG. 11 is a diagram for explaining an example of the labeling process.
  • FIG. 12 is a diagram for explaining an example of processing for specifying a gaze area.
  • FIG. 13 is a diagram illustrating an example of the averaging filter 55.
  • FIG. 14 is a diagram illustrating an example of a two-dimensional movement vector acquisition process.
  • FIG. 15 is a diagram for explaining an example of the calculation process of the three-dimensional movement vector.
  • FIG. 16 is a diagram for explaining an example of the calculation process of the three-dimensional movement vector.
  • FIG. 17 is a diagram for explaining an example of the parallax between the standard image and the reference image.
  • FIG. 18 is a diagram for explaining an example of a basic method for generating a pseudo image.
  • FIG. 19 is a diagram illustrating an example of a correspondence relationship between each pixel in the partial image of the reference image and the partial image of the pseudo image.
  • FIG. 20 is a diagram illustrating an example of a correspondence relationship between the pixel coordinates and distance information of the reference image and the pixel coordinates of the pseudo image.
  • FIG. 21 is a diagram illustrating an operation flow of the image processing apparatus according to the embodiment.
  • FIG. 22 is a diagram illustrating an operation flow of a basic method for generating a pseudo image.
  • FIG. 1 is a block diagram illustrating an example of a main configuration of an image processing system 100A according to the embodiment.
  • the image processing system 100A mainly includes a stereo camera 300 and an image processing apparatus 200A.
  • the image processing device 200A acquires the reference image 21 (FIGS. 1 and 2) and the reference image 22 (FIGS. 1 and 2) captured by the stereo camera 300, and the image processing device 200A acquires the reference image 21. Further, by processing the reference image 22, a pseudo image 25 (FIG.
  • FIG. 3 is a diagram illustrating an example of a main functional configuration of the stereo camera 300 according to the embodiment.
  • the stereo camera 300 mainly includes a base camera 61 and a reference camera 62. Further, the reference camera 61 and the reference camera 62 are provided with a predetermined baseline length apart in the vertical direction.
  • the reference camera 61 mainly includes a photographing optical system 72a, an image sensor 75a, and a control processing circuit 85a.
  • the reference camera 62 mainly includes a photographing optical system 72b, an image sensor 75b, and a control processing circuit 85b.
  • the stereo camera 300 captures the light from the subject 71 with the standard camera 61 and the reference camera 62, acquires the standard image 21 and the reference image 22 constituting the stereo image, and supplies the acquired image to the image processing apparatus 200A.
  • the photographing optical systems 72a and 72b mainly include a thin lens and a lens barrel (not shown) that supports the lens, and an optical system that forms an image of the subject 71 on the imaging elements 75a and 75b, respectively. It is. At this time, the image of the object point M on the subject 71 is formed as image points Pa and Pb on the image sensors 75a and 75b along principal rays 76a and 76b passing through the optical centers 73a and 73b, respectively.
  • the optical centers 73a and 73b are usually the main points of the imaging optical system. For example, when a telecentric optical system is employed as the imaging optical system, the focal point of the imaging optical system is usually the optical center.
  • the virtual principal ray 76av is a virtual principal ray obtained by translating the principal ray 76a so as to pass through the optical center 73b, and the virtual image point Pav corresponding to the image point Pa is taken along the virtual principal ray 76av. 75b.
  • the imaging centers 77a and 77b of the reference camera 61 and the reference camera 62 are the intersection of the image sensor 75a and the optical axis 74a, and the intersection of the image sensor 75b and the optical axis 74b, respectively, and the photographing optical systems 72a and 72b.
  • the base line length b is the distance between the optical centers 73a and 73b.
  • the distance d between the virtual image point Pav and the image point Pb is obtained when the image points Pa and Pb corresponding to the same object point M on the subject 71 are expressed by a common image coordinate system in which the coordinates of the imaging center are equal.
  • the distance between the image point positions is equivalent to the parallax between the base camera 61 and the reference camera 62 with respect to the object point M. The parallax will be described later.
  • the focal lengths fr (more precisely, the distance between the optical center and the image sensor) of the photographing optical systems 72a and 72b are equal, and the optical axes 74a and 74b are parallel to each other.
  • the main planes of the photographing optical systems 72a and 72b are on the same plane perpendicular to the optical axes 74a and 74b, and the optical centers 73a and 73b are also on the same plane.
  • the image sensors 75a and 75b of the respective photographing optical systems are on the same plane perpendicular to the optical axes 74a and 74b.
  • the image pickup devices 75a and 75b are installed so that their scanning lines are parallel so that the corresponding point search process between the standard image 21 and the reference image 22 can be easily performed.
  • the image processing device 200A uses camera parameters and the like for the standard image 21 and the reference image 22 supplied from the standard cameras 61 and 62.
  • processing also referred to as “parallelization processing”
  • the image pickup devices 75a and 75b are image pickup devices configured by, for example, a CCD image sensor or a CMOS image sensor having an effective pixel number of 3456 ⁇ 2592 pixels, and the intensity of the image formed on the image pickup devices 75a and 75b.
  • the image signal corresponding to is generated and supplied to the control processing circuit 85a and the control processing circuit 85b.
  • the imaging elements 75a and 75b are color image sensors or monochrome image sensors, so that the usefulness of the present invention is not impaired.
  • the control processing circuit 85a and the control processing circuit 85b shown in FIG. 3 process the image signals supplied from the image sensors 75a and 75b in synchronization with each other and convert them into digital images, so that the number of effective pixels of each image sensor A reference image 21 (FIGS. 1 and 2) and a reference image 22 (FIGS. 1 and 2) corresponding to the above are generated and supplied to the image processing apparatus 200A.
  • the generated standard image 21 and reference image 22 constitute a stereo image of the subject.
  • the stereo camera 300 continuously captures the subject in time sequence while synchronizing the reference camera 61 and the reference camera 62, so that the plurality of reference images 21 and the plurality of reference images 22 (“time-series stereo images”). Can also be generated. Note that when the stereo camera 300 captures a time-series stereo image of the subject, the stereo camera 300 may be moved.
  • the generated standard image 21 and reference image 22 are supplied to the input / output unit 41 of the image processing apparatus 200A via the data line DL.
  • FIG. 4 is a diagram illustrating a camera coordinate system C1 and image coordinate systems C2 and C3 according to the stereo camera 300. 4 that are the same as those shown in FIG. 3 are assigned the same reference numerals as in FIG. 3 and description thereof is omitted.
  • the camera coordinate system C ⁇ b> 1 is an orthogonal coordinate system provided with respect to the photographing optical system 72 a of the reference camera 61.
  • the origin of the camera coordinate system C1 is the optical center 73a, and each coordinate axis is Xc, Yc, Zc.
  • the direction of the Zc axis coincides with the optical axis 74a, and the Xc axis and the scanning line of the image sensor 75a are parallel.
  • the image coordinate system C2 is an orthogonal coordinate system representing the coordinates of each image point in the reference image 21.
  • the origin of the image coordinate system C2 is the corner portion Op of the image sensor 75a provided with respect to the photographing optical system 72a, and the coordinate axes thereof are Xa and Ya.
  • the direction of the Xa axis coincides with the horizontal scanning direction (main scanning direction) of the image sensor 75a
  • the direction of the Ya axis coincides with the vertical scanning direction (sub-scanning direction) of the image sensor 75a.
  • the image coordinate system C3 is an orthogonal coordinate system representing the coordinates of each image point in the reference image 22.
  • the origin of the image coordinate system C3 is the corner Oq of the image sensor 75b provided with respect to the imaging optical system 72b, and the coordinate axes thereof are Xb and Yb.
  • the direction of the Xb axis coincides with the horizontal scanning direction (main scanning direction) of the image sensor 75b
  • the direction of the Yb axis coincides with the vertical scanning direction (sub-scanning direction) of the image sensor 75b.
  • the image coordinate system in the image observed by the observer is set to, for example, a reference image 21 in FIG.
  • the upper left corner of the image is the origin, and the directions of the X and Y axes of the image coordinate system on the image sensor are reversed.
  • ⁇ ⁇ Description of 3D measurement method based on stereo image > Next, a three-dimensional measurement method based on a stereo image photographed by the stereo camera 300 will be described.
  • the three-dimensional measurement method is used by the second vector acquisition unit 19 described later in the image processing apparatus 200A.
  • the distance D between the main plane of the photographing optical systems 72a and 72b and the object point M shown in FIG. 3 is the distance between the parallax d, the focal length fr, and the photographing optical systems 72a and 72b. Is given by the equation (1) using the base line length b.
  • the parallax is an index value regarding the distance from the stereo camera 300 of the point on the subject.
  • the distance D in the equation (1) is the same as the coordinate z c shown in the equation (2), first, for each image point Pa and Pb corresponding to the object point M obtained by the corresponding point search process described later.
  • X c and y c are also obtained by substituting the parallax d into the equation (1) to obtain the distance D and substituting the obtained distance D into z c in the equation (2).
  • the photographing optical systems 72a and 72b have aberration. If the distortion of the parallax d and the coordinate Pac caused by the aberration is corrected by the aberration correction process, the coordinate Mc of the object point M can be obtained more accurately. However, even if the aberration correction processing is not performed, the usefulness of the present invention is not impaired. Further, the processing content of the aberration correction processing is given by equation (3).
  • the focal length fr, the base length b, the pixel size ps of the image sensor, the imaging center coordinates u0 and v0, and the aberration correction coefficients k1 to k5 in the expressions (1) to (3) are used for three-dimensionalization. It is a camera parameter.
  • the aberration correction coefficients k1 to k3 are coefficients for correcting aberrations in the radial direction of the lenses of the photographing optical system 72a and the photographing optical system 72b, and the aberration correction coefficients k4 to k5 are for the direction orthogonal to the lens diameter.
  • the image processing apparatus 200 ⁇ / b> A mainly includes a CPU 11 ⁇ / b> A, an input / output unit 41, an operation unit 42, a display unit 43, a ROM 44, a RAM 45, and a storage device 46. This is realized by executing a program on a computer.
  • the input / output unit 41 includes, for example, an input / output interface such as a USB interface, a multimedia drive, and an interface for connecting to a LAN or the Internet such as a network adapter, and exchanges data with the CPU 11A. Is. Specifically, the input / output unit 41 supplies, for example, various control signals for the CPU 11A to control the stereo camera 300 to the stereo camera 300 connected to the input / output unit 41 via the data line DL or the like. To do. The input / output unit 41 also supplies the standard image 21 and the reference image 22 captured by the stereo camera 300 to the image processing apparatus 200A. The input / output unit 41 supplies the standard image 21 and the reference image 22 to the image processing apparatus 200A, for example, by receiving a storage medium such as an optical disk in which the standard image 21 and the reference image 22 are stored in advance. Can do.
  • a storage medium such as an optical disk in which the standard image 21 and the reference image 22 are stored in advance. Can do.
  • the operation unit 42 includes, for example, a keyboard or a mouse. When the operator operates the operation unit 42, setting of various control parameters for the image processing apparatus 200A and various operation modes of the image processing apparatus 200A are performed. Settings are made.
  • the functional unit of the image processing apparatus 200 ⁇ / b> A is configured to perform processing according to each operation mode set from the operation unit 42.
  • the display unit 43 includes, for example, a liquid crystal display and the like, and various images such as the standard image 21 supplied from the stereo camera 300, the reference image 22, and the pseudo image 25 (FIG. 2) generated by the image processing apparatus 200A. Information is displayed, and various types of information related to the image processing system 100A and control GUI (Graphical User Interface) are displayed.
  • various images such as the standard image 21 supplied from the stereo camera 300, the reference image 22, and the pseudo image 25 (FIG. 2) generated by the image processing apparatus 200A.
  • Information is displayed, and various types of information related to the image processing system 100A and control GUI (Graphical User Interface) are displayed.
  • ROM (Read Only Memory) 44 is a read-only memory and stores a program for operating the CPU 11A.
  • a readable / writable nonvolatile memory for example, a flash memory may be used instead of the ROM 44.
  • a RAM (Random Access Memory) 45 is a readable / writable volatile memory that temporarily stores various images acquired by the image processing apparatus 200A, pseudo images generated by the image processing apparatus 200A, distance information (distance images), and the like. It functions as an image storage unit for storing, a work memory for temporarily storing processing information of the CPU 11A, and the like.
  • the storage device 46 is configured by, for example, a readable / writable nonvolatile memory such as a flash memory, a hard disk device, or the like, and permanently records information such as various control parameters and various operation modes of the image processing device 200A. Further, the storage device 46 corresponds to information that specifies the smoothing filter used for the blurring process performed by the first generation unit 14A, that is, information that specifies the type of the smoothing filter, the strength of the smoothing, or the like. Various information relating to the smoothing processing such as the program is also stored.
  • a CPU (Central Processing Unit) 11A is a control processing device that controls each functional unit of the image processing device 200A, and executes control and processing according to a program stored in the ROM 44. As will be described later, the CPU 11A includes a first acquisition unit 12, a second acquisition unit 13, a first generation unit 14A, a second generation unit 15A, a third acquisition unit 16, a specifying unit 17A, a first vector acquisition unit 18, and It also functions as the second vector acquisition unit 19.
  • the CPU 11A includes a first acquisition unit 12, a second acquisition unit 13, a first generation unit 14A, a second generation unit 15A, a third acquisition unit 16, a specifying unit 17A, a first vector acquisition unit 18, and It also functions as the second vector acquisition unit 19.
  • the CPU 11A uses these functional units and the like to create a pseudo image 25 (FIG. 2) of a subject corresponding to photographing from a virtual viewpoint different from the reference viewpoint from the reference image 21 (FIG. 2) of the subject photographed from the reference viewpoint. ) Is generated.
  • the CPU 11A controls the imaging operation of the stereo camera 300 and controls the display unit 43 to display various images, calculation results, various control information, and the like on the display unit 43.
  • each of the CPU 11A, the input / output unit 41, the operation unit 42, the display unit 43, the ROM 44, the RAM 45, the storage device 46, and the like are electrically connected via a signal line 49. Therefore, for example, the CPU 11A can execute control of the stereo camera 300 via the input / output unit 41, acquisition of image information from the stereo camera 300, display on the display unit 43, and the like at a predetermined timing.
  • the first acquisition unit 12, the second acquisition unit 13, the first generation unit 14A, the second generation unit 15A, the third acquisition unit 16, the specifying unit 17A, the first vector acquisition unit 18 and the second vector acquisition unit 19 are realized by a predetermined program being executed by the CPU 11A.
  • Each of these functional units is realized by, for example, a dedicated hardware circuit. May be.
  • FIG. 2 is a block diagram illustrating an example of a main functional configuration of the image processing apparatus 200A according to the embodiment.
  • the image processing apparatus 200A acquires each reference distance information 27 (FIG. 2), which is distance information about the subject, based on the reference image 21 (FIG. 2) and the reference image 22 (FIG. 2).
  • a stereoscopic image 26 (FIG. 2) is generated through generation of a pseudo image 25 (FIG. 2) based on each reference distance information 27.
  • the first acquisition unit 12 acquires the reference image 21 in which the subject is captured by the stereo camera 300.
  • the second acquisition unit 13 obtains each point corresponding to each pixel of the reference image 21 from each point of the subject from, for example, a predetermined origin position such as the optical center 73a (FIG. 3) of the reference camera 61.
  • Each reference distance information 27 expressing the distance information is acquired.
  • An image in which each reference distance information 27 is arranged corresponding to the pixel arrangement of the reference image 21 is an original distance image 31 (FIG. 2).
  • the specifying unit 17A creates an image space corresponding to each of the reference image 21 and the original distance image 31 according to a predetermined determination criterion.
  • Region information defining a range of the non-gaze region in the image space by performing a specific process of classifying and identifying the gaze region determined to include the main subject among the subjects and a non-gaze region other than the gaze region 2a (FIG. 2) is generated.
  • the first vector acquisition unit 18 (FIG. 2) and the second vector acquisition unit 19 (FIG. 2) correspond to the set operation mode.
  • a two-dimensional movement vector 91 (FIG. 2) and a three-dimensional movement vector 92 (FIG. 2) described later are respectively generated.
  • the specifying unit 17A can also perform the specifying process using the two-dimensional movement vector 91 or the three-dimensional movement vector 92.
  • the first generation unit 14A blurs the image of the area corresponding to at least one non-gaze area of the reference image 21 and the original distance image 31 based on the area information 2a, which will be described later. Process. Then, as a result of the blurring process, the first generation unit 14A causes the derived image 24 (FIG. 2) and the derived distance information 28 (derived distance image 32) corresponding to the reference image 21 and the reference distance information 27, respectively (respective figures). 2) is generated respectively.
  • the second generation unit 15A corresponds to shooting from a virtual viewpoint different from the viewpoint from which the reference image 21 was shot.
  • a pseudo image 25 (FIG. 2) of the subject is generated.
  • the third acquisition unit 16 acquires the reference image 21 and the pseudo image 25 as a stereoscopic image, and causes the display unit 43 to display the acquired stereoscopic image.
  • the third acquisition unit 16 can also acquire the left-eye pseudo image and the right-eye pseudo image 25 generated by the second generation unit 15A based on the reference image 21 as the stereoscopic image 26, respectively. .
  • the images of the gaze regions of the derived image 24 and the derived distance image 32 are the reference image 21 and the original distance image 31 that are not subjected to the blurring process. Are generated based on the images of the respective gaze regions. Therefore, the image quality such as the color and brightness of the portion corresponding to the gaze area in the pseudo image 25 retains the image quality of the image of the subject photographed in the gaze area of the reference image 21, and the gaze in the pseudo image 25. In each parallax with the reference image 21 in a portion corresponding to the region, the distance of each portion of the subject corresponding to the gaze region is held and reflected. Therefore, an observer who observes a portion corresponding to the gaze area in the stereoscopic image 26 can recognize a stereoscopic image that retains the original image quality and the sense of distance of the subject.
  • At least one of the images of the non-gaze areas of the derived image 24 and the derived distance image 32 is the image of the non-gaze area of the reference image 21 or the non-gaze area of the original distance image 31 that has been subjected to the blurring process. Generated based on the image. Therefore, with respect to the portion corresponding to the non-gaze area in the pseudo image 25, the subject image captured in the non-gaze area of the reference image 21 and each part of the subject corresponding to the non-gaze area in the original distance image 31 are displayed. At least one of the phenomena in which the variation in the parallax between the pseudo image 25 and the reference image 21 based on the distance is reduced occurs. For this reason, an observer who observes a portion corresponding to the non-gaze area in the stereoscopic image 26 recognizes a stereoscopic image in which the spatial change of the stereoscopic image information is gradual and the visual information amount is reduced.
  • the observer who observes the stereoscopic image 26 generated by the image processing apparatus 200A can recognize the stereoscopic image of the subject in which the original image quality and the sense of distance are maintained in the gaze area, and the stereoscopic view in the non-gaze area.
  • the visual information related to stereoscopic viewing includes, for example, color, brightness, and distance information.
  • FIGS. 5 and 6 are reference images as examples of the reference image 21 (FIG. 2) and the reference image 22 (FIG. 2) in which the reference camera 61 and the reference camera 62 of the stereo camera 300 according to the embodiment respectively photograph a subject. It is a figure which shows 21a and the reference image 22a, respectively.
  • FIG. 21 is a diagram illustrating an operation flow of the image processing apparatus 200A according to the embodiment. In the following, the image processing apparatus 200A is based on the standard image 21 and the reference image 22, and the pseudo image 25 (FIG. 2) corresponding to the photographing of the subject from a virtual viewpoint different from the viewpoint from which the standard image 21 was photographed. The operation of each functional unit of the image processing apparatus 200A will be described in detail with reference to the operation flow of FIG. 21 as appropriate.
  • the position and orientation of the stereo camera 300 Prior to shooting a subject that is a target for generating a pseudo image corresponding to shooting from a virtual viewpoint, the position and orientation of the stereo camera 300 are set so that the subject can be shot from both the reference camera 61 and the reference camera 62. Adjusted. For example, the optical center (principal point position, etc.) of the photographing optical system of the reference camera 61 becomes the reference viewpoint at which the reference image 21 is taken.
  • the stereo camera 300 is supplied with a control signal. The photographing operation of the camera 300 is performed.
  • the standard image 21 and the reference image 22 that constitute the stereo image of the subject which are respectively photographed by the standard camera 61 and the reference camera 62, are respectively generated and input to the input / output unit 41 of the image processing apparatus 200A. Supplied.
  • the first acquisition unit 12 acquires the reference image 21 via the input / output unit 41 ( In step S110 in the operation flow S100A of FIG. 21, the reference image 22 is acquired. Since the baseline length direction of the reference camera 61 and the reference camera 62 is along the vertical scanning direction (Y-axis direction in FIGS. 5 and 6), the reference image 21a (see FIG. 5) and the reference image 22a (FIG. 5), parallax occurs along the Y-axis direction. In FIGS. 5 and 6, coordinate axes of an image coordinate system are provided for each of the standard image 21a and the reference image 22a.
  • the first acquisition unit 12 may acquire the reference image 21 and the reference image 22 that have been captured in advance and stored in the recording medium via the input / output unit 41.
  • the acquired reference image 21 includes a second acquisition unit 13, a first generation unit 14A, a second generation unit 15A, a third acquisition unit 16, a specifying unit 17A, a first vector acquisition unit 18, and a second vector acquisition unit 19. Supplied to.
  • the reference image 22 is supplied to the second acquisition unit 13.
  • FIG. 7 is a diagram showing an original distance image 31a (each reference distance information 27a) as an example of the original distance image 31 (each reference distance information 27) (each FIG. 2) acquired by the second acquisition unit 13 (FIG. 2). It is.
  • the second acquisition unit 13 performs a matching process using a correlation calculation method or the like on the standard image 21 and the reference image 22.
  • each corresponding pixel of the reference image 22 corresponding to each target pixel of the standard image 21 is specified. 6. Even if these matching processes are performed in units of pixels or in sub-pixel units equal to or less than the pixel units, the usefulness of the present invention is not impaired.
  • the second acquisition unit 13 determines the ratio of the shooting magnification of the camera with the higher shooting magnification to the shooting magnification of the camera with the lower shooting magnification (“shooting magnification ratio”).
  • the second acquisition unit 13 increases the resolution of an image captured at a low magnification according to the imaging magnification ratio by interpolating pixel values and the like, and the number of pixels and the arrangement shape of the increased resolution image are the same.
  • a partial image equal to the number of pixels and the array shape of an image photographed at a high magnification may be extracted, and the partial image and an image photographed at a high magnification may be subjected to matching processing.
  • the second acquisition unit 13 determines the pixel coordinate of the target pixel in the image coordinate system of the standard image 21 and the image of the reference image 22 for the target pixel and the corresponding pixel corresponding to each other.
  • a process for obtaining a difference also referred to as “parallax” in the present application is performed on each target pixel of the reference image 21.
  • the parallax is an index value related to the distance of the point on the subject from the optical center 73a (FIG. 3).
  • distance is a collective term for the parallax and the distance.
  • information is used.
  • each parallax constituting each reference distance information 27 is associated with pixel coordinates of each pixel of the corresponding reference image 21. For this reason, each reference distance information 27 can be acquired as, for example, an original distance image 31 arranged in accordance with the pixel arrangement of the reference image 21.
  • Each reference distance information 27 (original distance image 31) acquired by the second acquisition unit 13 is supplied to the specifying unit 17A, the first generation unit 14A, and the second vector acquisition unit 19.
  • the second acquisition unit 13 uses the subject corresponding to each pixel of the reference image 21 instead of each parallax described above. You may acquire each distance about each upper point as each reference distance information 27.
  • FIG. For example, each distance on the subject measured by another coordinate measuring machine as described later in the explanation section of the modification example by the second acquisition unit 13 performing the calculation of the expression (1). It is acquired by acquiring each distance about the point via the input / output unit 41 or the like. That is, the second acquisition unit 13 acquires each reference distance information 27 representing distance information from a predetermined origin position for each point corresponding to each pixel of the reference image 21 among the respective points of the subject (see FIG. 21 step S120).
  • FIG. 17 is a diagram for explaining an example of parallax between the standard image 21e and the reference image 22e.
  • the reference image 21e is an example of the reference image 21 (FIG. 2) of the subject photographed by the reference camera 61, and the reference image 22e is perpendicular to the reference camera 61 (+ Y direction in FIG. 17).
  • the standard image 21e and the reference image 22e are horizontal (X-axis direction in FIG. 17) so that the Y coordinates of the upper end (lower end) of both images are equal to each other in order to easily grasp the parallax. Are displayed side by side.
  • foreground subject images 66a and 66b of the same near subject located in the + Z direction with respect to the stereo camera 300 are respectively photographed, and for the stereo camera 300, respectively.
  • Distant view subject images 67a and 67b are photographed for the same far-side subject that is further in the + Z direction than the near-side subject.
  • FIG. 17 only the edges (outlines) of the characteristic portions in the respective subject images are displayed for easy explanation.
  • the pixel 68a on the foreground subject image 66a and the pixel 68b on the foreground subject image 66b are pixels corresponding to the same point of the near-side subject, respectively
  • the pixel 69b is a pixel corresponding to the same point of the far-side subject.
  • the parallax 9a is a parallax about the pixel 68a and the pixel 68b
  • the parallax 9b is a parallax about the pixel 69a and the pixel 69b.
  • the parallax 9 a and the parallax 9 b have different values due to the difference in distance between the near subject and the far subject with respect to the stereo camera 300.
  • the size of the parallax 9a corresponding to the near subject is larger than that of the parallax 9b corresponding to the far subject.
  • the magnitude of the parallax varies according to the distance from the stereo camera 300 of the point on the subject corresponding to the pixel on the image.
  • the two-dimensional movement vector 91 (FIG. 2) and the three-dimensional movement vector 92 (FIG. 2) to be used as appropriate according to the operation mode set by the specifying unit 17A are respectively shown. Operations of the generated first vector acquisition unit 18 and second vector acquisition unit 19 will be described.
  • FIG. 14 is a diagram for explaining an example of a two-dimensional movement vector acquisition process performed by the first vector acquisition unit 18 (FIG. 2).
  • the reference images 21f and 21g shown in FIG. 14 are images of the subject including the moving car 103 taken in time series by the reference camera 61 of the stationary stereo camera 300.
  • the reference images 21f and 21g They are displayed overlaid on the same image space.
  • the reference image 21g is taken at a time later than the reference image 21f.
  • the car 103 photographed in the reference image 21 f is moving linearly in the direction of the vanishing point 104.
  • the car 103 is also photographed in the reference image 21g, but the display of the car 103 in the reference image 21g is omitted.
  • the two-dimensional movement vector 91 (FIG. 2) represents each image corresponding to the same point on the subject between a plurality of images in which the same subject is photographed in time series and displayed in the same image space. Is expressed as a vector. That is, the two-dimensional movement vector 91 is a motion vector of the same point on the subject in a three-dimensional space such as the camera coordinate system C1 (FIG. 4), for example, an Xc-Yc plane in the camera coordinate system C1, etc. This is a motion vector projected onto a two-dimensional space without depth information. Corresponding pixels (corresponding points) corresponding to the same point on the subject in each reference image taken in time series are subjected to corresponding point search processing using the correlation calculation method described above between the reference images.
  • the two-dimensional movement vector 91 may be calculated by using a gradient-based method. In the calculation process of the two-dimensional movement vector 91 using the gradient method, it is not necessary to search for corresponding points, and the processing time can be further shortened.
  • the first vector acquisition unit 18 performs a two-dimensional movement vector acquisition process according to the operation mode. Note that even if the two-dimensional movement vector 91 is obtained as a movement vector per unit time using the shooting time of each time-series image, the usefulness of the present invention is not impaired.
  • two two-dimensional movement vectors 91 a and 91 b are shown as examples of the two-dimensional movement vector 91.
  • the two-dimensional movement vectors 91a and 91b are two-dimensional movement vectors between the reference images 21f and 21g corresponding to two different points on the car 103 photographed in the reference image 21f.
  • subjects other than the car 103 are stationary.
  • the two-dimensional movement vector 91 having a non-zero magnitude is obtained only for the car 103 that is a moving body. Therefore, when the camera is stationary, the moving body in the captured image can be detected by detecting the two-dimensional movement vector 91 having a non-zero magnitude.
  • each two-dimensional movement vector obtained by extending the two-dimensional movement vectors 91a and 91b as shown in FIG. (Focus of Expansion: FOE) 104 is calculated by, for example, solving a plurality of straight line equations each representing a two-dimensional movement vector corresponding to each of a plurality of points of the same subject and using a least square method.
  • the vanishing point is a fixed point determined by the relative movement direction of each subject with respect to the camera.
  • the vanishing point for a subject moving relative to the camera is usually at a different position from the vanishing point for a stationary object. Exists. Therefore, if the vanishing point is used, even when the camera is moving, it is possible to detect a moving body that moves along a direction different from a stationary object relative to the camera.
  • FIGS. 15 and 16 are diagrams for explaining an example of the calculation process of the three-dimensional movement vector performed by the second vector acquisition unit 19 (FIG. 2).
  • the base images F311 and F312 and the reference images F321 and F322 are shown in a simplified manner.
  • 2592 pixels are arranged in the vertical direction and 3456 pixels are arranged in the horizontal direction. It has a grid-like pixel arrangement.
  • the base image F311 and the reference image F321 are images obtained by the first acquisition unit 12 that are images of subjects respectively captured by the base camera 61 and the reference camera 62 of the stereo camera 300 at time t.
  • the standard image F312 and the reference image F322 are images obtained by the first acquisition unit 12 that are images of the same subject that are respectively captured by the standard camera 61 and the reference camera 62 of the stereo camera 300 at time t + ⁇ t.
  • the display of the photographed subject image is omitted.
  • the subject is moving relative to the stereo camera 300.
  • the second vector acquisition unit 19 performs a three-dimensional movement vector acquisition process when the standard image 21 and the reference image 22 are acquired as time-series images, respectively.
  • the following steps (a-1) to (a-4) are sequentially executed by the second vector acquisition unit 19 or the like, so that the three-dimensional movement vector for the subject photographed in the reference image is obtained. Desired.
  • the acquired parallax is supplied to the second vector acquisition unit 19, and the second vector acquisition unit 19 calculates the coordinates (i 1t , j 1t ) of the point P 311 and the coordinates (i 2t , j 2t ) of the point P 321.
  • the three-dimensional coordinates (x t , y t , z t ) relating to a part of the subject corresponding to each of the point P311 and the point P321 are acquired using the above-described equations (1) and (2). .
  • the matching process is performed by the second acquisition unit 13 between the reference image F312 and the reference image F322 taken by the stereo camera 300 at time t + ⁇ t.
  • the coordinates of P322 i 2 (t + ⁇ t) , j 2 (t + ⁇ t) ) are detected.
  • the acquired parallax is supplied to the second vector acquisition unit 19, and the second vector acquisition unit 19 determines the coordinates of the point P 312 (i 1 (t + ⁇ t) , j 1 (t + ⁇ t) ) and the point P 322.
  • the second vector acquisition unit 19 uses the three-dimensional coordinates (x t , y t , z t ) relating to a part of the subject at time t and the three-dimensional coordinates relating to a part of the subject at time t + ⁇ t. From the coordinates (x t + ⁇ t , y t + ⁇ t , z t + ⁇ t ), the movement direction and the size in the relative three-dimensional space of the stereo camera 300 for a part of the subject as a three-dimensional movement vector. Desired. Note that even if the second vector acquisition unit 19 acquires a three-dimensional movement vector per unit time between the stereo camera 300 and a part of the subject using the time ⁇ t, the usefulness of the present invention is impaired. is not.
  • the matching process between the reference image captured at the same time and the reference image, and between the reference images captured at different times respectively.
  • the matching processing is performed by the second acquisition unit 13
  • the present invention can be applied even if various configurations are changed, for example, the matching processing is performed by the second vector acquisition unit 19. It does not impair the usefulness.
  • these matching processes are performed in units of pixels or in units of sub-pixels equal to or less than the units of pixels, the usefulness of the present invention is not impaired.
  • the three-dimensional movement vector By using the three-dimensional movement vector, it is possible to obtain movement information relative to the camera in the three-dimensional space for each part of the photographed subject, and therefore, for example, different from other parts of the photographed subject. It is possible to specify a portion that has moved three-dimensionally, that is, a portion that is different from other portions.
  • the specifying unit 17A (FIG. 2) includes an image space corresponding to each of the reference image 21 and the original distance image 31 (each reference distance information 27) according to a predetermined determination criterion, including the main subject among the photographed subjects.
  • a specifying process for classifying and specifying a gaze area to be determined and a non-gaze area other than the gaze area is performed (step S130 in FIG. 21).
  • the specifying unit 17A can perform various types of specific processing corresponding to the set various operation modes as the specific processing. Below, the various specific processes which the specific
  • the specifying unit 17A performs a specifying process based on the image information of the reference image 21, which is an image obtained by photographing light ray information from the subject, according to the set operation mode. Specifically, the specifying unit 17 ⁇ / b> A calculates the gaze area by acquiring color information, blur information, and the like from the reference image 21.
  • the specifying unit 17A performs statistical analysis of the color information in the video in order to perform scene analysis on the acquired reference image 21.
  • a color histogram showing a simple distribution state is calculated.
  • the specifying unit 17A extracts color information that satisfies a predetermined criterion such as a frequency of 5% or more and less than 20% of the total number of pixels of the reference image 21 from the calculated histogram, and extracts the reference image 21.
  • a predetermined criterion such as a frequency of 5% or more and less than 20% of the total number of pixels of the reference image 21 from the calculated histogram, and extracts the reference image 21.
  • a portion where the color information is present is classified and specified as a gaze region, and a portion other than the gaze region in the reference image 21 is classified and specified as a non-gaze region.
  • the reference image 21a (FIG. 5)
  • a white signboard, an adult and a child wearing red clothes and blue clothes, respectively are photographed, and around these subjects, green trees and gray The roads are being photographed. Therefore, when the above-described identification process based on the color information is applied to the reference image 21a, the gaze areas 1a and 1h corresponding to the signboard and the person respectively are specified as the gaze area, and the reference image 21a Among these, the non-gaze areas 3a other than the gaze areas 1a and 1h are specified.
  • the specifying unit 17A extracts color information different from the highest frequency color information from the calculated color histogram, and classifies a portion where the color information extracted in the reference image 21 exists as a gaze area.
  • a specific process of classifying and specifying a part other than the gaze area in the reference image 21 as a non-gaze area may be employed.
  • FIG. 8 is a diagram showing a reference image 21b in which light blue clothes are worn and a person whose hair is black and green trees which are the background of the person are photographed as an example of the reference image 21. It is.
  • the background trees in the reference image 21b are photographed in a blurred state due to the relationship between the depth of field of the reference camera 61 and the distance between the trees. Therefore, when the specific processing based on the color information described above is applied to the reference image 21b, the gaze area 1b where the person is photographed and the non-gaze area 3b other than the gaze area 1b in the reference image 21b Is identified.
  • the specifying unit 17A binarizes each pixel of the reference image 21 based on a predetermined reference regarding the above-described statistical distribution state of the color information, and further performs a labeling process and performs a size larger than the reference. May be specified as a gaze area, and the specifying unit 17A binarizes each pixel of the reference image 21 based on a determination criterion as to whether or not it is a specific color, and performs a labeling process or the like.
  • the connected area of the color may be extracted by applying, and the extracted connected area having a size larger than the reference may be specified as the gaze area.
  • the specifying unit 17A performs the above-described specifying process on the reference image 21 based on at least one of the statistical distribution state of color (color information) of the reference image 21 and the spatial distribution state.
  • the area may be specified as a gaze area.
  • the reason for doing this is that when a human region is included in a certain size in the image, the photographer can determine that he / she is shooting while paying attention to the person.
  • a identification process that classifies and identifies the gaze area and the non-gaze area based on the distribution state of the luminance information of the reference image 21 is adopted.
  • the usefulness of the present invention is not impaired.
  • the specific process for each area once extracted as the gaze area, the brightness in the area and the brightness of the peripheral portion of the area are confirmed, and as a result of the confirmation, for example, A gaze area that is 30% or more brighter than the surrounding area may be specified again as a gaze area, and the gaze area that does not satisfy the condition may be changed to be a non-gaze area. This is because in a shooting scene in which a low-brightness subject and a high-brightness subject are mixed, the observer is likely to focus on a region with high brightness.
  • the specifying unit 17A calculates the blur information of the image with respect to the acquired reference image 21, and sets a clear position as the video. Calculate as the gaze area.
  • the blur information is detected by detecting an edge (contour) in the image, and using the detected intensity of each edge as an index value that quantitatively represents the blurred state of the image.
  • the specifying unit 17A performs frequency analysis on the reference image 21 so that the reference image 21 has a spatial frequency higher than a predetermined reference, that is, a gaze area including a main subject and a region other than the gaze area. You may classify
  • the specific processing based on the blur information of the image is applied to the reference image 21b (FIG. 8), as described above, the background blur of the person area is blurred in the reference image 21b. Therefore, the gaze area 1b in which the person is photographed and the non-gaze area 3b other than the gaze area 1b in which the blur is generated in the reference image 21b are specified.
  • the specifying unit 17A For example, based on the area information for specifying the center portion of the reference image 21, an operation for specifying the center portion as a gaze area can be performed.
  • the specifying process is a specifying process based on the fact that the main subject is usually photographed in the central portion of the image. Further, for example, when the angle of view of the reference camera 61 that captured the reference image 21 is wider than the viewing angle of the observer, the specifying unit 17A determines the center portion of the reference image 21 based on the viewing angle range information. It is also possible to adopt a specific process in which only the range of the viewing angle is cut out and specified as a gaze area, and a portion other than the gaze area in the reference image 21 is specified as a non-gaze area.
  • FIG. 9 is a diagram illustrating an example of a gaze area identified in the reference image 21a and a non-gaze area other than the gaze area in the reference image 21a.
  • a determination criterion for specifying, as the central portion a region that is 40% of the central portion in each of the X-axis direction and the Y-axis direction in the image is used as the region information that specifies the central portion of the reference image 21a
  • the reference image 21a is specified by being classified into a gaze area 1c and a non-gaze area 3c.
  • the specifying unit 17A is the first.
  • the specifying process is performed by detecting a moving body in the subject based on the two-dimensional movement vector 91 (FIG. 2) for each pixel of the reference image 21 acquired by the vector acquisition unit 18.
  • the specifying process based on the two-dimensional movement vector is a specifying process based on the fact that the observer usually pays attention to the moving object among the stationary object and the moving object.
  • the specifying unit 17A detects the two-dimensional movement vector 91 having a non-zero magnitude. By this, it is possible to detect a moving body in the photographed image. In addition, if the vanishing point is used, it is possible to detect a moving body that moves along a direction different from a stationary object relative to the camera even when the camera is moving. Therefore, the specifying unit 17A classifies the image space of the reference image 21 into a gaze area where the moving object, that is, the main subject is photographed, and a non-gaze area other than the gaze area based on the two-dimensional movement vector 91. Can be identified.
  • FIG. 10 is a diagram showing a reference image 21c as an example of the reference image 21 (FIG. 2).
  • the gaze regions 1d, 1e, and 1f each including three persons running in the reference image 21c are included. Are identified, and a non-gaze area 3d other than the identified gaze area is identified.
  • Specific processing based on distance information When the operation mode corresponding to the specific process for the distance information about the reference image 21, that is, the gaze area based on the three-dimensional still image and the non-gaze area, is set, for example, The specifying process is performed by performing one of the processes 1 to 5 described below based on the reference distance information 27 (original distance image 31) supplied from the second acquisition unit 13.
  • Process 1 In the implementation of Process 1, the specifying unit 17A sets the reference distance information 27 supplied from the second acquisition unit 13 based on the distance range information that is preset and stored in the storage device 46 or the like. By determining whether or not to enter the distance range, a gaze area determined to include the main subject in the image space corresponding to the original distance image 31 and a non-gaze area other than the gaze area are specified. Specifically, for example, as the information defining the value on the near distance side from the stereo camera 300 in the distance range information described above, the closest approach distance that can be stereoscopically viewed by the base line length of the stereo camera 300 is employed.
  • the specifying unit 17A may display the stereoscopic effect even if the non-gaze region is displayed as a stereoscopic image with a region closer to the closest approach distance that can be stereoscopically viewed by the baseline length of the stereo camera 300, for example. Can be classified into areas of distance ranges where it cannot be obtained. Accordingly, the first generation unit 14A blurs the image with respect to the region of the reference image 21 corresponding to the region closer to the above-described closest approachable distance in the non-gaze region, or corresponds to the region closer to the reference image 21.
  • the stereoscopic image 26 (FIG. 2) generated by the third acquisition unit 16 by setting each distance information in the region of the original distance image 31 to the closest approach distance that can be stereoscopically viewed. It is possible to reduce the eyestrain of the observer.
  • the specifying unit 17A includes the main subject in the original distance image 31, that is, the image space corresponding to the original distance image 31, based on the focus distance information related to the photographing of the reference image 21.
  • a specifying process for classifying and specifying a gaze area to be determined and a non-gaze area other than the gaze area is performed. For example, when an autofocus camera is used as the reference camera 61, the in-focus distance information used when the reference image 21 is captured is associated with the reference image 21. Then, it is acquired by the specifying unit 17A by being supplied to the image processing apparatus 200A.
  • the specifying unit 17A estimates the distance information in which the camera is in focus in the original distance image 31, and only the area corresponding to the distance information in which the pixel value is estimated in the original distance image 31.
  • the area corresponding to the distance information in the range of 95% to 105% of the distance information in which the pixel value is estimated in the original distance image 31 can be extracted as the gaze area.
  • the specifying unit 17A includes a connected region in which pixels whose difference in mutual distance information in the original distance image 31 acquired by the second acquiring unit 13 is within a predetermined distance range are connected.
  • An image space corresponding to the original distance image 31 by setting an area of a predetermined size or more as the gaze area, that is, the gaze area determined to include the main subject, and the non-gaze area other than the gaze area A specific process for classifying and specifying the data is performed.
  • the specifying unit 17A divides the distribution range of each distance information of the original distance image 31 into a plurality of sections, and each of the distance information in the area includes a connected area having a predetermined size or more belonging to one of the plurality of sections.
  • the identification process corresponding to the process 3 can be performed by sequentially performing the process identified in the original distance image 31 for all of the divided sections.
  • FIG. 11 is a diagram for explaining an example of labeling processing related to processing 3 performed by the specifying unit 17A and processing 4 described later.
  • the identifying unit 17A can realize the labeling process by performing, for example, processes (b-1) to (b-5) described later.
  • the specifying unit 17A divides the distribution range of each distance information of the original distance image 31 into a plurality of sections, selects one of the sections, and sets the pixel value of each pixel of the original distance image 31. That is, the pixel value of each pixel of the original distance image 31 is binarized according to the determination criterion whether the distance information belongs to the distance range of the selected section.
  • the specifying unit 17A performs a labeling process on the binarized original distance image 31, and connects each pixel whose pixel value, that is, distance information belongs to the distance range of the selected section. All the connected areas formed by the above are specified in the original distance image 31.
  • the specifying unit 17A determines whether or not each of the above-described connected regions satisfies the predetermined determination criterion based on a predetermined determination criterion related to the size of the connection region, and the connection satisfying the criterion Extract all regions.
  • a region 4g in FIG. 11 illustrates a connected region when there is one connected region specified by the extraction.
  • the determination criterion for example, a determination criterion for specifying a region having a size of 5% or more of the size of the original distance image 31 among the connected regions is adopted.
  • the specifying unit 17A specifies position information about each direction of the X axis and the Y axis of the region 4g, and the rectangular region including the region 4g is set as the distance information of the original distance image 31. It is specified as a gaze area 1g for one selected section among a plurality of sections in which the distribution range is divided.
  • the region 3g other than the gaze region 1g in the original distance image 31 is a region corresponding to a non-gaze region for one selected section. Note that even if the specifying unit 17A specifies the region 4g as a gaze region without setting the rectangular region, the usefulness of the present invention is not impaired.
  • the specifying unit 17A performs the processes (b-1) to (b-4) described above for each section in which the distribution range of each distance information of the original distance image 31 is divided into a plurality of sections. As a result, all gaze regions for the entire range of the distribution range of each distance information of the original distance image 31 are specified. Further, the specifying unit 17A specifies a region obtained by removing all specified gaze regions from the original distance image 31 as a non-gaze region.
  • the distances from the stereo cameras 300 of the three persons are different from each other, but the labeling process according to the process 3 described above is applied to the reference image 21c shown in FIG.
  • the gaze areas 1d, 1e, and 1f each including the three persons running in the reference image 21c are identified, and the non-gaze area 3d other than the identified gaze area is identified. Is done.
  • the process 3 as described above, in the original distance image 31, only the connected area where the pixels whose distance information is within the predetermined distance range is connected and whose size is equal to or larger than the predetermined reference is included. Identified as a gaze area. For this reason, even if it is a connected region in which the difference in distance information in the original distance image 31 is connected to pixels within a predetermined distance range, a connected region smaller than the predetermined reference is classified as a non-gaze region.
  • at least one of the reference image 21 and the original distance image 31 is subjected to a blurring process by a first generation unit 14A described later on an area corresponding to the gaze area, and the reference image when the blurring process is ended.
  • a pseudo image is generated by the processing in the second generation unit 15A based on the 21 and the original distance image 31, and is used for stereoscopic display. Accordingly, since the stereoscopic effect that the observer learns is reduced with respect to a connected area smaller than the predetermined standard described above, the observer feels that there is a flickering feeling caused by excessive or mixed information regarding the stereoscopic view of the connected area. Can reduce eye fatigue.
  • the specifying unit 17A includes a connected region in which pixels whose distance information in the original distance image 31 acquired by the second acquiring unit 13 is within a predetermined distance range are connected.
  • the maximum size area as the gaze area, the image space corresponding to the original distance image 31, that is, the gaze area where the original distance image 31 is determined to include the main subject, and the non-gaze area other than the gaze area.
  • a specific process for classifying and specifying the data is performed.
  • the specifying unit 17A performs, for example, the processes (b-1) to (b-5) described in process 3 and then selects the maximum gaze area specified in the original distance image 31. Processing 4 can be performed by specifying a size as the only gaze region.
  • the image processing apparatus 200A can be remembered by the observer for a portion corresponding to a non-gaze area other than the only specified gaze area in the stereoscopic image generated by the image processing apparatus 200A. Since the stereoscopic effect can be reduced, the observer can further reduce the fatigue of the eyes due to the glare caused by the information related to the stereoscopic vision of the non-gaze area, compared to the case where the processing 3 is performed.
  • Process 5 In the execution of the process 5, the specifying unit 17A, based on the area information that defines the range of a predetermined area in the image space of the original distance image 31 acquired by the second acquisition unit 13, the original distance image 31. Specific processing for classifying and specifying the image space corresponding to, ie, the original distance image 31, by classifying it into a gaze area determined to include the main subject and a non-gaze area other than the gaze area.
  • the specifying unit 17A for example, based on a criterion for specifying, as the central portion, an area that is 40% of the central portion in each of the X-axis direction and the Y-axis direction in the original distance image 31a illustrated in FIG.
  • a central portion of the image space of the original distance image 31 is specified as a gaze region. If the specifying unit 17A performs the process 5, image processing is performed on the non-gaze region specified in the original distance image 31 among the stereoscopic images generated by the image processing apparatus 200A, that is, the part corresponding to the peripheral part excluding the central part.
  • the apparatus 200 ⁇ / b> A can reduce the three-dimensional feeling that the observer remembers, and can reduce the eyestrain of the observer due to the flickering feeling of the portion.
  • Specific processing based on 3D movement vectors When the operation mode corresponding to the specific process for the gaze area based on the three-dimensional movement vector and the non-gaze area is set, the specification unit 17A acquires the reference image 21 acquired by the second vector acquisition unit 19. An image space corresponding to each of the reference image 21 and the original distance image 31 is detected by detecting a moving body in the subject based on the three-dimensional movement vector 92 (FIG. 2) for each of the pixels. A specific process for classifying and specifying a non-gaze area other than is performed. Note that the identification process based on the three-dimensional movement vector is based on the fact that the observer usually pays attention to the moving body among the stationary body and the moving body, similarly to the identification process based on the two-dimensional movement vector. Specific processing.
  • the specifying unit 17A uses the three-dimensional movement vector, the relative portion of the photographed subject with respect to the camera in the three-dimensional space is relative to each other. Since the movement information can be acquired, the specifying unit 17A, for example, in the photographed subject, a gaze region of a part that has a three-dimensional movement different from the other part, that is, a part different from the other part. Can be specified as In addition, for each three-dimensional movement vector 92 corresponding to each pixel of the reference image 21, the specifying unit 17A determines the size of the three-dimensional movement vector, that is, the amount of movement of each part of the subject, for example, from the stereo camera 300 to the subject. By determining whether or not the distance is equal to or greater than a predetermined threshold, such as 10% or more of the distance, a specific process for identifying the moving object photographed in the reference image 21, that is, the gaze area can be performed.
  • a predetermined threshold such as 10% or more of the distance
  • the specifying unit 17A determines the image space corresponding to each of the reference image 21 and the original distance image 31 based on the movement direction of each part of the subject photographed in the reference image 21, that is, the direction of the three-dimensional movement vector 92. Even if a specific process for classifying and specifying a gaze area and a non-gaze area other than the gaze area is performed, the usefulness of the present invention is not impaired.
  • FIG. 12 is a diagram for explaining an example of a process in which the specifying unit 17A specifies the gaze area based on the direction of the three-dimensional movement vector 92.
  • the subjects 71c and 71d are moving with the passage of time in the photographing field of the reference camera 61 defined by the photographing field edges 78a and 78b passing through the optical center 73a of the reference camera 61, respectively.
  • the three-dimensional movement vectors 92a and 92b are three-dimensional movement vectors corresponding to the subjects 71c and 71d, respectively, and are acquired by the second vector acquisition unit 19.
  • the extension line of the three-dimensional movement vector 92a intersects the reference camera 61, but the extension line of the three-dimensional movement vector 92b does not intersect the reference camera 61. That is, in each reference image 21 in which the subjects 71c and 71d, which are moving objects, are taken in time series, the image of the subject 71c approaches the central portion of the reference image 21 while expanding, while the time passes, The image disappears from the screen of the reference image 21 over time. In this case, the observer usually watches the subject 71c out of the subjects 71c and 71d, which are moving bodies.
  • the specifying unit 17A includes an image of a subject that comes toward the reference camera 61 based on the three-dimensional movement vector 92, that is, a subject in which an extension line of the three-dimensional movement vector 92 intersects the reference camera 61.
  • the subject is determined to be the gaze region, and for the subject that the extension line of the three-dimensional movement vector 92 leaves without intersecting the reference camera 61, the image of the subject is determined as the non-gaze region. Perform the specified process.
  • intersection determination method for determining whether or not the three-dimensional movement vector 92 intersects with the reference camera 61 for example, a three-dimensional area having substantially the same size as the reference camera 61 is set at the position of the reference camera 61, and the three-dimensional area A method of determining whether or not each surface forming the outer edge of the crossing line and the extension line of the three-dimensional movement vector 92 intersect may be employed.
  • the specifying unit 17A sets the image space corresponding to each of the reference image 21 and the original distance image 31 (each reference distance information 27) according to the set operation mode, among the captured subjects.
  • a specifying process for classifying and specifying a gaze area determined to include the main subject and a non-gaze area other than the gaze area is performed.
  • the specifying unit 17A generates area information 2a (FIG. 2) that defines the range of the non-gaze area.
  • the generated area information 2a is supplied to the second generation unit 15A.
  • the operation mode of the specifying unit 17A is, for example, a method that the operator sets via the operation unit 42, or a method that the CPU 11A determines whether the acquired reference camera 61 is a time-series image. It is set by various methods such as.
  • an image space corresponding to each of the reference image 21 and the original distance image 31 is photographed based on a determination criterion for extracting a gaze area from the reference image 21.
  • a determination criterion for extracting a gaze area from the reference image 21 was demonstrated, the specific part 17A gazes among the reference images 21. Even if the specific processing is performed by adopting a determination criterion for determining a non-gaze region in the reference image 21 instead of the determination criterion for extracting the region, the usefulness of the present invention is not impaired.
  • the first generation unit 14A When the region information 2a is supplied, the first generation unit 14A performs a blurring process on an image in a region corresponding to at least one of the reference image 21 and the original distance image 31 based on the region information 2a. . As a result, the first generator 14A generates the derived image 24 (FIG. 2) and the derived distance information 28 (derived distance image 32) (respectively FIG. 2) corresponding to the reference image 21 and the reference distance information 27, respectively. (Step S140 in FIG. 21).
  • each reference distance is usually set.
  • Each reference distance information 27 original distance image 31
  • each derived distance information 28 derived distance image 32
  • the blur intensity is low, for example, 10% or less of the blur intensity of the blur process for the non-gaze region. Even if the processed distance image is adopted as the derived distance image 32, the usefulness of the present invention is not impaired.
  • the reference image 21 itself is adopted as the derived image 24 corresponding to 21.
  • a blurring process with a low blurring intensity for example, a blurring intensity is 10% or less of the blurring intensity of the blurring process for a non-gaze area, for example. Even if the reference image subjected to is adopted as the derived image 24, the usefulness of the present invention is not impaired.
  • the blurring process for the image data such as the reference image 21 and the original distance image 31 performed by the first generation unit 14A for example, a smoothing filter using various smoothing filters such as an averaging filter, a median filter, or a Gaussian filter Processing etc. are adopted.
  • the smoothing strength of the smoothing filter can be changed by changing the size of the filter, for example.
  • the first generation unit 14A replaces the pixel value of each pixel in the target area of the blurring process with a representative value of the pixel value in the target area such as the average value of the pixel values of each pixel in the target area. Even if it is performed as a blurring process, the usefulness of the present invention is not impaired.
  • FIG. 13 is a diagram illustrating an example of the averaging filter 55.
  • the averaging filter 55 shown in FIG. 13 has a value of 1 for each matrix element, and is displayed as a size of 5 ⁇ 5 pixels (5 rows and 5 columns) for convenience of illustration.
  • the filter size that is, the smoothing intensity varies according to the value of the parameter K that defines the number of pixels (number of elements) in each of the X direction and the Y direction.
  • a product-sum operation is performed on the pixel value of each pixel in the region and the value of each matrix element of the averaging filter 55 facing each pixel. Processing for replacing the value divided by the number of pixels obtained with the pixel value of the target pixel is performed.
  • the averaging filter 55 is applied for blurring processing on the non-gaze region of the reference image 21 and the original distance image 31, the image size of the reference image 21 and the original distance image 31 is 3456 pixels ⁇ 2592 pixels. If there is, for example, a value of about 100 to 400 is adopted as the value of the parameter K.
  • the first generation unit 14A can perform various blurring processes described below according to the operation mode set in the same manner as the specifying unit 17A.
  • the operation mode is set by various methods such as a method in which the operator sets the operation unit 42 via the operation unit 42 and a method in which the first generation unit 14A sets the operation mode of the specifying unit 17A. Is done.
  • ⁇ Blur process 1 When an operation mode corresponding to the blur process 1 is set, the first generation unit 14A blurs an image of an area corresponding to a non-gaze area in the original distance image 31, that is, blurs each distance information. Each derived distance information 28 is generated by performing processing.
  • the first generation unit 14A determines, based on the operation mode, the non-gaze area of the original distance image 31 and the origin position of each distance information in which the distance between each part of the subject imaged in the non-gaze area is greater than a predetermined reference distance, That is, it is divided into a near area near the optical center 73a of the reference camera 61 and a far area farther than the reference distance with respect to the origin position, and the near area and the far area
  • a blurring process with different intensities. Note that, in order to reduce a sense of discomfort that an observer who observes the stereoscopic image 26 feels, the blur intensity for the near area is usually set to be lower than the blur intensity for the far area.
  • a reference distance used for the division between the near area and the outer edge area for example, an average value of each distance information of an area corresponding to the gaze area in the original distance image 31 is adopted.
  • the first generation unit 14A can perform one of the following processes of blurring processes 1A to 1C in which more detailed processing contents are defined for the blurring process 1 in accordance with the operation mode. Note that, even if the first generation unit 14A performs any of the blur processing 1A to 1C, the usefulness of the present invention is not impaired.
  • the first generation unit 14A When the operation mode corresponding to the blur process 1A is set, the first generation unit 14A performs, for example, an image of an area corresponding to the non-gaze area in the original distance image 31, for example, Each derivative distance information 28 is generated by performing a blurring process by performing an averaging filter process using the averaging filter 55 (FIG. 13) and the like. Note that the usefulness of the present invention is not impaired even if a smoothing filter process using various smoothing filters such as a median filter or a Gaussian filter is performed instead of the averaging filter process.
  • the first generation unit 14A sets each pixel of the original distance image 31 in the area corresponding to the non-gaze area. Specify the mode value of each distance information in a predetermined size area such as 3 ⁇ 3 pixel size to 50 ⁇ 50 pixel size based on the statistical distribution state of each distance information such as a histogram Then, the derived mode information 28 is generated by performing the blurring process by using the specified mode value as the pixel value of each pixel.
  • Blur process 1C When the operation mode corresponding to the blur process 1C is set, the first generation unit 14A uses the distance information in the area corresponding to the non-gaze area in the original distance image 31 as the distance. Each derived distance information 28 is generated by performing a blurring process by changing the origin position of information, that is, the optical center 73a of the reference camera 61 to the far side.
  • ⁇ Blur process 2 When the operation mode corresponding to the blur process 2 is set, the first generation unit 14A generates the derived image 24 by blurring the image in the region corresponding to the non-gaze region in the reference image 21. Generate. Each two-dimensional movement vector is acquired by the first vector acquisition unit 18 based on the reference image 21 acquired as a time-series image and another reference image taken at a time different from the reference image 21. In this case, the first generation unit 14A can perform a blurring process using a two-dimensional movement vector on the another reference image according to the operation mode.
  • the first generation unit 14A determines the area corresponding to the non-gaze area in the reference image 21. As a result, the derived image 24 is generated. Note that each pixel of the other reference image associated with the two-dimensional movement vector exists in each pixel of the region corresponding to the non-gazing region of the reference image 21. Then, the first generation unit 14A corresponds to the other reference image by performing the blurring process applied to each pixel in the non-gaze region of the reference image 21 so that the other reference image is associated with the pixel. It is also possible to generate a derived image.
  • time-series stereoscopic image generated based on each time-series reference image. It is possible to reduce a sense of incongruity that an observer observes, and to suppress a flickering feeling in a time series direction, thereby reducing fatigue of the eyes of the observer.
  • the first generation unit 14A determines the distance information of each area of the original distance image 31 corresponding to the gaze area other than the non-gaze area specified by the area information 2a, according to the operation mode.
  • the distance information representing the gaze area is obtained by obtaining an average value, and the area corresponding to the non-gaze area in the original distance image 31 is determined based on the distance information.
  • the first generation unit 14A can perform one of the following blurring processes 2A to 2C in which more detailed processing contents are defined for the blurring process 2 according to the operation mode. Note that even if the first generation unit 14A performs any of the blurring processes 2A to 2C, the usefulness of the present invention is not impaired.
  • the first generation unit 14A applies an image of a region corresponding to the non-gaze region specified by the region information 2a in the reference image 21 according to the operation mode.
  • the blurring process 2A for performing the averaging filter process using the averaging filter 55 (FIG. 13) or the like can be employed.
  • the first generation unit 14A specifies and identifies each pixel spatially discretely present in the area corresponding to the non-gaze area in the reference image 21 according to the operation mode. Based on the pixel value of each pixel, the blurring process 2B that performs the blurring process by acquiring pixel values of pixels other than the discretely specified pixels in the region corresponding to the non-gaze region in the reference image 21 Can also be adopted. Specifically, for example, the first generation unit 14A divides the reference image 21 into a plurality of areas, discretely specifies the central pixel for each area, and other than the specified pixels among the pixels in each area. The blurring process 2B is performed by adopting the pixel value of the pixel specified in each area as the pixel value of the pixel.
  • Blur process 2C As a specific method of the blur process 2, the first generation unit 14A performs a frequency analysis or the like on the spatial high-frequency component of the pixel value in the region corresponding to the non-gaze region in the reference image 21. It is also possible to employ a blurring process 2C that performs a blurring process by removing using a technique.
  • the second generation unit 15A described later is based on the reference image 21 and the original distance image 31 or the derived distance image 32.
  • the present invention is useful. There is no loss of sex.
  • the generated derived image 24 (FIG. 2) and each derived distance information 28 (derived distance image 32) are supplied to the second generator 15A.
  • the second generation unit 15A illustrated in FIG. 2 generates a pseudo image 25 of a subject corresponding to shooting from a virtual viewpoint different from the viewpoint from which the reference image 21 was shot based on the derived image and each derived distance information. It is generated (step S150 in FIG. 21).
  • the generated pseudo image 25 is supplied to the third acquisition unit 16 and used for acquiring the stereoscopic image 26.
  • the second generation unit 15A generates one pseudo image 25 as one of the left-eye image and the right-eye image constituting the stereoscopic image 26 according to the set operation mode.
  • the second generation unit 15A generates a pseudo image based on each parallax corresponding to each pixel of the reference image or each distance information such as each distance
  • 18 shows, based on the parallaxes for the reference image 21e and the reference image 22e shown in FIG. 17, and the reference image 21e, the subject from a virtual viewpoint different from the viewpoint from which the reference image 21e was photographed. It is a figure for demonstrating an example of the basic method which produces
  • the virtual viewpoint corresponding to the pseudo image 25e in FIG. 18 is separated from the viewpoint from which the reference image 21e is photographed in the + X direction along the X axis by the baseline length of the reference camera 61 and the reference camera 62. Exists in position. Further, the foreground subject image 66c and the foreground subject image 67c in the pseudo image 25e correspond to the foreground subject image 66a and the foreground subject image 67a in the reference image 21, respectively.
  • the pixel 68a on the foreground subject image 66a corresponds to the pixel 68c on the foreground subject image 66c
  • the pixel 69a on the far view subject image 67a corresponds to the pixel 69c on the far view subject image 67c.
  • the reference image 21e and the pseudo image 25 are displayed side by side in the vertical direction (Y-axis direction in FIG. 18) so that the X coordinates of the left end (right end) are equal.
  • the parallax 9a between the pixel 68a and the pixel 68b in FIG. 17 is set as the parallax between the pixel 68a of the reference image 21e and the pixel 68c of the pseudo image 25e, and the pixel 69a of the reference image 21e and the pseudo image
  • the parallax 9b between the pixel 69a and the pixel 69b in FIG. 17 is set.
  • the parallax between the other pixels of the pseudo image 25e and the pixels of the reference image 21e is set in the same manner, whereby the parallax of each pixel of the pseudo image 25e with each pixel of the reference image 21e is acquired.
  • the pseudo image 25e is acquired by deforming the reference image 21e based on the acquired parallax.
  • FIG. 22 is a diagram illustrating an operation flow S10 of the above-described basic method for generating the pseudo image 25e based on the reference image 21e and the distance information about each pixel of the reference image 21e.
  • a partial image 23a for one line in the horizontal scanning direction (X-axis direction) at the upper end ( ⁇ Y direction end) of the reference image 21e (FIG. 18). Is selected (step S20).
  • FIG. 19 shows a part of each pixel 7a to 7j of the partial image 23a (FIG. 19) for one line in the horizontal scanning direction (X-axis direction) at the upper end ( ⁇ Y direction end) of the reference image 21e (FIG. 18).
  • the partial image 23a and the partial image 23b correspond to the same part of the subject, respectively.
  • each of the pixels 7a to 7j and each of the pixels 8a to 8j is displayed by being classified for each pixel by shading according to the pixel value.
  • FIG. 20 shows an example of the correspondence between the pixel coordinates and parallax (distance information) of the pixels 7a to 7j of the partial image 23a (FIG. 19) and the pixel coordinates of the pixels 8a to 8j of the partial image 23b (FIG. 19).
  • FIG. The first row and the fifth row in FIG. 20 show pixel numbers that specify the respective pixels 7a to 7j of the partial image 23a and pixel numbers that specify the respective pixels 8a to 8j of the partial image 23b.
  • the X coordinate of each of the pixels 7a to 7j is shown in association with the pixel number shown in the first row.
  • the parallax corresponding to the pixels 7a to 7j among the parallaxes (distance information) calculated for the standard image 21e and the reference image 22e (FIG. 17) is shown in the first row.
  • the corresponding pixel number is shown.
  • step S20 of FIG. 22 For each pixel of the selected partial image 23a, the corresponding pixel in the pseudo image 25e, that is, the pixels 8a to 8j of the partial image 23b. Pixel coordinates (X coordinate) in the horizontal scanning direction (X axis direction) are acquired (step S30 in FIG. 22).
  • the virtual viewpoint corresponding to the pseudo image 25e (FIG. 18) is in the + X direction along the X axis with respect to the viewpoint where the reference image 21e (FIGS. 17 and 18) is captured.
  • This is a method in the case where the base camera 61 and the reference camera 62 are present at positions separated from each other by the base line length. Accordingly, the pixel coordinates (Y coordinate) in the vertical direction (Y-axis direction) of the partial image 23a and the partial image 23b are the same. 20 is also the parallax between the partial image 23a and the partial image 23b.
  • the X coordinate of each pixel of the partial image 23b is calculated by the equation (4).
  • the X coordinates of the pixels 8a to 8j calculated by the equation (4) are shown in association with the respective pixel numbers shown in the fifth row.
  • step S40 the processing in step S40 will be described using the pixels 7a to 7j of the partial image 23a and the pixels 8a to 8j of the partial image 23b shown in FIG. 19 as an example.
  • each pixel 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7i, 7j of the partial image 23a is This corresponds to each pixel 8a, 8b, 8b, 8c, 8d, 8d, 8e, 8g, 8i, 8j of the partial image 23b. That is, each of the pixels 8a to 8j includes a first type pixel corresponding to one pixel among the pixels 7a to 7j, a second type pixel corresponding to two pixels, and the pixels 7a to 7j. There are three types of pixels, the third type of pixels, that none of the pixels 7j correspond to.
  • the pixel value of the pixel of the partial image 23a corresponding to the pixel is adopted as the pixel value of the first type pixel, and the pixel value of the second type pixel is used as the pixel value of the second type pixel.
  • a representative value for example, an average value of the two pixel values of the partial image 23a corresponding to the pixel is employed.
  • the pixel value of the third type pixel for example, among the pixels of the partial image 23b in which the pixel value is acquired based on the correspondence with the partial image 23a, the third type pixel is most spatially related.
  • the pixel value of a close pixel is adopted.
  • the image of the partial image 23b is specified by the pixel coordinate (X coordinate) specified for each pixel of the partial image 23b and the pixel value.
  • step S40 it is confirmed whether or not the process (steps S30 to S40) for generating the corresponding partial image of the pseudo image is completed for all the horizontal lines (X-axis direction) of the reference image 21e.
  • Step S50 in FIG. 22 As a result of the confirmation in step S50, if the processing has not been completed for all the horizontal lines, the next line in the + Y direction of the processed line in the reference image 21 is selected as a new processing target ( The process returns to step S30 in step S60 of FIG. Further, as a result of the confirmation in step S50, if the process of generating the partial image of the pseudo image for all the horizontal lines has been completed, the generation process of the pseudo image 25e is ended.
  • the deformation of the reference image 21e based on the parallax may be performed using the pixel size as the minimum unit. Therefore, if the parallax is acquired in units of pixel size, the pseudo image 25e can be acquired. For example, the parallax is acquired in units of subpixels by performing corresponding point search for determining the parallax in units of subpixels equal to or smaller than the pixel size. Even when the deformation of the reference image 21e based on the parallax is performed, the pseudo image 25e can be obtained if the deformation amount is performed in units of pixels, so that the usefulness of the present invention is not impaired.
  • the baseline lengths of the virtual viewpoint and the viewpoint related to the capture of the reference image 21e are different from the baseline lengths of the reference camera 61 and the reference camera 62 corresponding to the reference image 21e and the reference image 22e in FIG.
  • a pseudo image acquisition method in this case will be described.
  • the distance of each point of the subject corresponding to each point is calculated from the parallax of each point of the reference image 21e using the equation (1), and the calculated distance and the virtual viewpoint
  • the parallax between each pixel of the reference image 21e and each pixel of the pseudo image 25 is acquired by the formula (1) based on the baseline length with the viewpoint related to the shooting of the reference image 21e, and the reference is based on the acquired parallax.
  • the pseudo image 25 corresponding to the different baseline length can be acquired. Therefore, as will be described later in the description of the modification, various coordinate measuring machines can be employed instead of the stereo camera 300.
  • the second generation unit 15A uses, for example, the basic method for generating the pseudo image 25 described above in the derived image 24 and the derived distance information 28 (derived distance image 32) corresponding to the reference image 21 and the reference distance information 27, respectively.
  • a pseudo image 25 of the subject corresponding to shooting from a virtual viewpoint different from the viewpoint from which the reference image 21 was shot is generated.
  • the generated pseudo image 25 is supplied to the third acquisition unit 16.
  • the third acquisition unit 16 illustrated in FIG. 2 acquires the reference image 21 and the pseudo image 25 supplied from the first acquisition unit 12 and the second generation unit 15A as a stereoscopic image, and displays the acquired stereoscopic image. This is displayed on the unit 43.
  • the third acquisition unit 16 can also acquire the left-eye pseudo image and the right-eye pseudo image generated by the second generation unit 15A based on the reference image 21, respectively, as a stereoscopic image.
  • the third acquisition unit 16 also displays the pseudo image 25 according to the difference in the baseline length and focal length between the stereo camera 300 and the observer's eyes stored in the storage device 46, the size information of the display unit 43, and the like. It is also possible to deform and generate a stereoscopic image.
  • an observer who observes the stereoscopic image 26 generated by the image processing apparatus 200A can generate a stereoscopic image of a subject whose original image quality and sense of distance are maintained in the gaze area.
  • the amount of visual information related to stereoscopic vision in the non-gaze area can be reduced, thereby reducing eye fatigue due to excessive or mixed visual information relating to stereoscopic vision in the non-gaze area.
  • the base line length direction of the base camera 61 and the reference camera 62 is the vertical direction, but the base line length direction may be the horizontal direction or any other direction. Good. Further, the shooting magnifications of the base camera 61 and the reference camera 62 may be different.
  • the stereo camera 300 is configured to include a reference camera 61 and a light projecting device that projects various detection lights for shape measurement such as laser light onto a subject, and the principle of triangulation or An active distance measuring type three-dimensional measuring machine that acquires the reference image 21 of the subject and distance information about each point of the subject corresponding to each pixel of the reference image 21 by a TOF (Time of Flight) method or the like was adopted.
  • the parallax of the pseudo image 25 with respect to the reference image 21 can be acquired based on the distance information and the expression (1), and the pseudo image 25 can be acquired based on the parallax and the reference image 21. It does not impair the usefulness.
  • the saturation of an image obtained by photographing a subject is higher as the subject is closer, and the saturation is lower as the subject is farther. Therefore, the reference image 21 is acquired by the reference camera 61 instead of the stereo camera 300.
  • the usefulness of the present invention is impaired. is not.
  • for each pixel of the reference image 21 (FIG. 5), it is assumed that the point on the subject corresponding to the pixel is farther from the reference camera 61 as the Y coordinate of the pixel increases. Even if a method of estimating and acquiring distance information corresponding to each pixel of the reference image 21 is employed based on this, the usefulness of the present invention is not impaired.
  • a stereo camera 300 is adopted instead of the stereo camera 300, and a three-dimensional measuring machine that measures distance information about a subject based on an image taken from a viewpoint different from the viewpoint related to the reference image 21. Even so, it is possible to associate the reference image 21 with the measured distance information by matching the image relating to the different viewpoints with the reference image 21, thereby impairing the usefulness of the present invention. It is not a thing.
  • Image processing system 200A Image processing apparatus 300 Stereo camera 2a Area information 3a, 3b Non-gaze area 9a, 9b, d Parallax 21 Reference image 22 Reference image 23a, 23b Partial image 24 Derived image 25 Pseudo image 26 Stereoscopic image 27 Each reference Distance information 28 Derived distance information 31 Original distance image 32 Derived distance image 55 Averaging filter 61 Reference camera 62 Reference camera 66a, 66b Foreground object image 67a, 67b Distant object image 91 Two-dimensional movement vector 92 Three-dimensional movement vector 104 Vanishing point b Baseline length

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

 立体視画像を観察する観察者の目の疲労を軽減させ得る技術を提供することを図る。該目的を達成するために、画像処理装置は、被写体が撮影された基準画像を取得する第1の取得部と、被写体の各点のうち基準画像の各画素にそれぞれ対応した各点についての距離情報を表現した各基準距離情報を取得する第2の取得部と、所定の判定基準によって基準画像と基準距離画像とのそれぞれに対応する画像空間を、注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う特定部と、基準画像および基準距離画像のうち少なくとも一方の非注視領域に対応した領域の画像に対するぼかし処理の結果として基準画像および各基準距離情報にそれぞれ対応した派生画像および各派生距離情報をそれぞれ生成する生成処理を行う第1の生成部と、派生画像と各派生距離情報とに基づいて、仮想視点からの撮影に対応した被写体の疑似画像を生成する第2の生成部とを備える。

Description

画像処理装置、そのプログラム、および画像処理方法
 本発明は、画像処理技術に関する。
 近年、表示される画像を立体視可能な三次元テレビなどの三次元表示装置の普及が進んでおり、三次元表示装置用の立体視可能な左目用および右目用の画像群(立体視画像)を容易に生成可能な技術が望まれている。このため、所定の視点から被写体を撮影したときに得られる画像についての疑似画像を模擬的に生成する装置が、各種表示ディスプレイ用の立体視画像を生成する用途などに活用され始めている。
 ところで、立体視画像を観察者が観察する場合には、画像全体の各部において、該各部にそれぞれ対応した被写体各部の距離に応じた立体表示がされるため、立体視に関する情報の過多や混在によって観察者の目が疲れるといった問題がある。
 特許文献1では、遠景と近景とを含む被写体のうち遠景が実際よりも遠距離に存在するかのように観察される左目用および右目用の各疑似画像を生成することによって該被写体についての立体視画像を生成する技術が提案されている。より詳細には、特許文献1の技術により生成される立体視画像においては、本来の距離に対応した遠景の画像の各部間の相対的位置関係が維持された状態で、遠景の表示位置が、右目用の疑似画像においては本来の表示位置よりも右に移動されたほぼ画像中央の位置となり、左目用の疑似画像においては本来の表示位置よりも左に移動されたほぼ画像中央の位置となる。そして、特許文献1では、遠景の移動により左目用の疑似画像と、右目用の疑似画像とのそれぞれにおける遠景の表示位置をほぼ同じにすることによって、観察者の目の疲労の軽減を図っている。
特開2010-087807号公報
 しかしながら、特許文献1の技術では遠景がその各部分間の相対的な距離情報を維持したままで左右に移動されるために遠景の各部分における立体視に関する情報の過多や混在に起因したちらつき感が軽減されず、観察者の目の疲労が軽減されないといった問題がある。
 本発明は、こうした問題を解決するためになされたもので、立体視画像を観察する観察者の目の疲労を軽減することが可能な技術を提供することを目的とする。
 上記の課題を解決するために、第1の態様に係る画像処理装置は、被写体が撮影された基準画像を取得する第1の取得部と、前記被写体の各点のうち前記基準画像の各画素にそれぞれ対応した各点について、所定の原点位置からの距離情報を表現した各基準距離情報を取得する第2の取得部と、を備え、前記基準画像の画素配列に対応する前記各基準距離情報の配列によって基準距離画像を定義したとき、所定の判定基準によって前記基準画像と前記基準距離画像とのそれぞれに対応する画像空間を、前記被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う特定部と、前記基準画像および前記基準距離画像のうち少なくとも一方の前記非注視領域に対応した領域の画像に対するぼかし処理の結果として前記基準画像および前記各基準距離情報にそれぞれ対応した派生画像および各派生距離情報をそれぞれ生成する生成処理を行う第1の生成部と、前記派生画像と前記各派生距離情報とに基づいて、前記基準画像が撮影された視点とは別の仮想視点からの撮影に対応した前記被写体の疑似画像を生成する第2の生成部とをさらに備える。
 第2の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記特定部は、前記基準画像における色彩の統計的な分布状態および空間的な分布状態の少なくとも一方に基づいて前記特定処理を行う。
 第3の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記特定部は、前記基準画像におけるぼけ部分を前記非注視領域とすることにより前記特定処理を行う。
 第4の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記特定部は、前記基準画像の中心部分の範囲を規定した領域情報に基づいて前記特定処理を行う。
 第5の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記第1の取得部は、前記被写体が前記基準画像とは異なる時刻に撮影された別画像を取得し、前記画像処理装置は、前記基準画像と前記別画像とに基づいて前記基準画像の各画素についての各二次元移動ベクトルを求める二次元移動ベクトル取得部を更に備え、前記特定部は、前記各二次元移動ベクトルに基づいて前記特定処理を行う。
 第6の態様に係る画像処理装置は、第4の態様に係る画像処理装置であって、前記特定部は、前記各二次元移動ベクトルの消失点に基づいて前記特定処理を行う。
 第7の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記特定部は、前記各基準距離情報に基づいて前記特定処理を行う。
 第8の態様に係る画像処理装置は、第7の態様に係る画像処理装置であって、前記特定部は、前記各基準距離情報のうち所定の距離範囲の各距離情報に基づいて前記特定処理を行う。
 第9の態様に係る画像処理装置は、第7の態様に係る画像処理装置であって、前記特定部は、前記各基準距離情報のうち前記基準画像についての合焦距離情報に基づいて特定される各距離情報に基づいて前記特定処理を行う。
 第10の態様に係る画像処理装置は、第7の態様に係る画像処理装置であって、前記特定部は、前記基準距離画像のうち相互の距離情報の差異が所定の距離範囲内である画素が連結した所定サイズ以上の領域を前記注視領域とすることにより前記特定処理を行う。
 第11の態様に係る画像処理装置は、第7の態様に係る画像処理装置であって、前記特定部は、前記基準距離画像のうち相互の距離情報の差異が所定の距離範囲内である画素が連結した所定サイズ以上の領域のうち最大サイズの領域を前記注視領域とすることにより前記特定処理を行う。
 第12の態様に係る画像処理装置は、第7の態様に係る画像処理装置であって、前記特定部は、前記基準距離画像のうち所定の空間的な領域の範囲を規定した領域情報に基づいて前記特定処理を行う。
 第13の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記第1の取得部は、前記被写体が前記基準画像とは異なる時刻に撮影された別画像を取得するとともに、前記第2の取得部は、前記被写体の各点のうち前記別画像の各画素にそれぞれ対応した各点について各別距離情報を取得し、前記画像処理装置は、前記基準画像と前記別画像と前記各基準距離情報と前記各別距離情報とに基づいて前記基準画像の各画素についての各三次元移動ベクトルを求める三次元移動ベクトル取得部を更に備え、前記特定部は、前記各三次元移動ベクトルに基づいて前記特定処理を行う。
 第14の態様に係る画像処理装置は、第13の態様に係る画像処理装置であって、前記特定部は、前記各三次元移動ベクトルに基づいて前記基準画像のうち移動物が撮影された領域を抽出し、該領域を前記注視領域とすることにより前記特定処理を行う。
 第15の態様に係る画像処理装置は、第13の態様に係る画像処理装置であって、前記特定部は、前記基準画像のうち前記各三次元移動ベクトルの大きさが所定の閾値以上となる領域を前記注視領域とすることにより前記特定処理を行う。
 第16の態様に係る画像処理装置は、第13の態様に係る画像処理装置であって、前記特定部は、前記各三次元移動ベクトルのうち三次元移動ベクトルの延長線が前記基準画像の撮影に係る撮影系と交差する三次元移動ベクトルを特定し、特定された三次元移動ベクトルに対応する前記基準画像の領域を前記注視領域とすることにより前記特定処理を行う。
 第17の態様に係る画像処理装置は、第1から第16の何れか1つの態様に係る画像処理装置であって、前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域の画像に対するぼかし処理によって前記各派生距離情報を生成する。
 第18の態様に係る画像処理装置は、第17の態様に係る画像処理装置であって、前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域の画像に平均化フィルタ処理を施すことによって前記ぼかし処理を行う。
 第19の態様に係る画像処理装置は、第17の態様に係る画像処理装置であって、前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域の各画素について、該各画素をそれぞれ内包する所定サイズの領域における各距離情報の最頻値を該各画素の画素値とすることによって前記ぼかし処理を行う。
 第20の態様に係る画像処理装置は、第17の態様に係る画像処理装置であって、前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域における各距離情報を前記原点位置に対して遠方側にそれぞれ変更することによって前記ぼかし処理を行う。
 第21の態様に係る画像処理装置は、第1から第16の何れか1つの態様に係る画像処理装置であって、前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域の画像に対するぼかし処理によって前記派生画像を生成する。
 第22の態様に係る画像処理装置は、第5または第6の態様に係る画像処理装置であって、前記第1の生成部は、a)前記基準画像のうち前記非注視領域に対応する領域の画像に対するぼかし処理によって前記生成処理を行うとともに、b)該領域の各画素に対応する前記各二次元移動ベクトルよって対応づけがされた前記別画像の各画素には、該各画素に対応付けがなされた前記基準画像の画素に適用されたぼかし処理と同一のぼかし処理を施すことによって前記別画像に対応した別派生画像を生成する。
 第23の態様に係る画像処理装置は、第21または第22の態様に係る画像処理装置であって、前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域の画像に平均化フィルタ処理を施すことによって前記ぼかし処理を行う。
 第24の態様に係る画像処理装置は、第21または第22の態様に係る画像処理装置であって、前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域において離散的に特定された各画素の画素値に基づいて、該領域のうち前記離散的に特定された各画素以外の画素の画素値を取得することによって前記ぼかし処理を行う。
 第25の態様に係る画像処理装置は、第21または第22の態様に係る画像処理装置であって、前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域における画素値の空間的な高周波成分を除去することによって前記ぼかし処理を行う。
 第26の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記第1の生成部は、前記前記基準画像および前記基準距離画像の少なくとも一方の前記非注視領域に対応した領域の画像について、該画像のうち前記原点位置に対して前記注視領域よりも遠側の領域と、前記原点位置に対して前記注視領域よりも近側の領域とについて、異なる強度のぼかし処理をそれぞれ施す。
 第27の態様に係る画像処理装置は、第1の態様に係る画像処理装置であって、前記疑似画像に基づいて立体視画像を取得する第3の取得部をさらに備える。
 第28の態様に係るプログラムは、画像処理装置に搭載されたコンピュータにおいて実行されることにより、当該画像処理装置を第1から第27の何れか1つの態様に係る画像処理装置として機能させる。
 第29の態様に係る画像処理方法は、被写体が撮影された基準画像を取得する第1の取得工程と、前記被写体の各点のうち前記基準画像の各画素にそれぞれ対応した各点について、所定の原点位置からの距離情報を表現した各基準距離情報を取得する第2の取得工程と、を備え、前記基準画像の画素配列に対応する前記各基準距離情報の配列によって基準距離画像を定義したとき、所定の判定基準によって前記基準画像と前記基準距離画像とのそれぞれに対応する画像空間を、前記被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う特定工程と、前記基準画像および前記基準距離画像のうち少なくとも一方の前記非注視領域に対応した領域の画像に対するぼかし処理の結果として前記基準画像および前記各基準距離情報にそれぞれ対応した派生画像および各派生距離情報をそれぞれ生成する生成処理を行う第1の生成工程と、前記派生画像と前記各派生距離情報とに基づいて、前記基準画像が撮影された視点とは別の仮想視点からの撮影に対応した前記被写体の疑似画像を生成する第2の生成工程とをさらに備える。
 第1から第27の何れの態様に係る画像処理装置または第28の態様に係るプログラムまたは第29の態様に係る画像処理方法によっても、立体視画像を観察する観察者の目の疲労を軽減することが可能になる。
図1は、実施形態に係る画像処理システムの主な構成の1例を示す図である。 図2は、実施形態に係る画像処理装置の主な機能構成の1例を示す図である。 図3は、実施形態に係るステレオカメラの主な機能構成の1例を示す図である。 図4は、ステレオカメラに係るカメラ座標系および画像座標系を例示する図である。 図5は、基準画像の1例を示す図である。 図6は、参照画像の1例を示す図である。 図7は、原距離画像の1例を示す図である。 図8は、基準画像の1例を示す図である。 図9は、基準画像における注視領域と非注視領域との1例を示す図である。 図10は、基準画像の1例を示す図である。 図11は、ラベリング処理の1例を説明するための図である。 図12は、注視領域を特定する処理の1例を説明するための図である。 図13は、平均化フィルタ55の1例を示す図である。 図14は、二次元移動ベクトルの取得処理の1例を説明する図である。 図15は、三次元移動ベクトルの算出処理の1例を説明するための図である。 図16は、三次元移動ベクトルの算出処理の1例を説明するための図である。 図17は、基準画像と参照画像とにおける視差の1例を説明するための図である。 図18は、疑似画像を生成する基本手法の1例を説明するための図である。 図19は、基準画像の部分画像と、疑似画像の部分画像とのそれぞれにおける各画素の対応関係の1例を示す図である。 図20は、基準画像の画素座標および距離情報と、疑似画像の画素座標との対応関係の1例を示す図である。 図21は、実施形態に係る画像処理装置の動作フローを例示する図である。 図22は、疑似画像を生成する基本手法の動作フローを例示する図である。
 <実施形態について:>
 <◎画像処理システム100Aについて:>
 図1は、実施形態に係る画像処理システム100Aの主な構成の1例を示すブロック図である。図1に示されるように、画像処理システム100Aは、ステレオカメラ300と画像処理装置200Aとを主に備えて構成されている。画像処理システム100Aでは、ステレオカメラ300が撮影した基準画像21(図1、図2)および参照画像22(図1、図2)を画像処理装置200Aが取得し、画像処理装置200Aが基準画像21および参照画像22を処理することによって、基準画像21が撮影された視点とは別の仮想視点からの被写体の撮影に対応した疑似画像25(図2)、すなわち基準画像21が撮影された視点とは別の仮想視点から撮影した被写体の画像に相当する疑似画像25を生成する。
 <◎ステレオカメラ300の構成と動作:>
 次に、ステレオカメラ300の構成と動作について説明する。図3は、実施形態に係るステレオカメラ300の主な機能構成の1例を示す図である。図3に示されるように、ステレオカメラ300は、基準カメラ61および参照カメラ62を主に備えて構成されている。また、基準カメラ61と参照カメラ62とは、垂直方向に所定の基線長を隔てて設けられている。基準カメラ61は、撮影光学系72a、撮像素子75a、および制御処理回路85aを主に備えて構成されている。また、参照カメラ62は、撮影光学系72b、撮像素子75b、および制御処理回路85bを主に備えて構成されている。
 ステレオカメラ300の各種動作は、画像処理装置200Aから入出力部41およびデータ線DLを介して供給される制御信号に基づいて制御される。ステレオカメラ300は、被写体71からの光を基準カメラ61および参照カメラ62で撮影してステレオ画像を構成する基準画像21および参照画像22を取得し、画像処理装置200Aへと供給する。
 撮影光学系72aおよび72bは、薄肉レンズと該レンズを支持する不図示の鏡胴とを主に備えて構成されており、被写体71の画像をそれぞれ撮像素子75aおよび75b上に結像させる光学系である。このとき、被写体71上の物点Mの像は、光学中心73aおよび73bをそれぞれ通過する主光線76aおよび76bに沿って撮像素子75aおよび75b上にそれぞれ像点PaおよびPbとして結像される。光学中心73aおよび73bは、通常、撮像光学系の主点であるが、例えば、撮像光学系としてテレセントリック光学系が採用された場合には、通常、撮像光学系の焦点が光学中心となる。
 また、仮想主光線76avは、光学中心73bを通るように主光線76aを平行移動した仮想の主光線であり、像点Paに対応する仮想の像点Pavは仮想主光線76avに沿って撮像素子75b上に設定される。
 基準カメラ61および参照カメラ62の結像中心77aおよび77bは、それぞれ撮像素子75aと光軸74aとの交点、および撮像素子75bと光軸74bとの交点であり、また、撮影光学系72aおよび72b間の基線長bは、光学中心73aおよび73b間の距離である。
 仮想の像点Pavと像点Pbとの距離dは、被写体71上の同一物点Mに対応する各像点PaおよびPbを、結像中心の座標が等しい共通の画像座標系で表現したときの各像点位置間の距離であり、物点Mに対する基準カメラ61と参照カメラ62との視差に相当する。なお、視差については後述する。
 ここで、ステレオカメラ300については、撮影光学系72aおよび72bのそれぞれ焦点距離fr(より正確には、光学中心と撮像素子との距離)は等しく、それぞれの光軸74aおよび74bは平行である。また、撮影光学系72aおよび72bの各主平面は光軸74aおよび74bのそれぞれに垂直な同一平面上にあり、それぞれの光学中心73aおよび73bも、該同一平面上にある。さらに、それぞれの撮影光学系の撮像素子75aおよび75bは、光軸74aおよび74bのそれぞれに垂直な同一平面上にある。また、基準画像21および参照画像22の相互間での対応点探索処理が容易に行えるように、撮像素子75aおよび75bは、それぞれの走査線が平行になるように設置されている。
 実際の構成においては、通常、上述した構成条件に対して誤差があるが、基準カメラ61および62から供給される基準画像21および参照画像22に対して、画像処理装置200Aがカメラパラメータなどを用いた処理(「平行化処理」とも称する)を行うことによってステレオカメラ300の各機能要素が上述した構成条件を満たす場合と同等の状態を実現することができる。
 撮像素子75aおよび75bは、例えば、3456×2592画素サイズの有効画素数を持つCCDイメージセンサやCMOSイメージセンサなどによって構成される撮像素子であり、撮像素子75aおよび75bに結像された像の強度に応じた画像信号を生成して制御処理回路85aおよび制御処理回路85bに供給する。なお、撮像素子75aおよび75bは、カラーイメージセンサであっても、モノクロイメージセンサであっても本発明の有用性を損なうものではない。
 図3に示される制御処理回路85aおよび制御処理回路85bは、撮像素子75aおよび75bから供給される各画像信号を同期して処理してデジタル画像に変換することにより、各撮像素子の有効画素数に応じた基準画像21(図1、図2)および参照画像22(図1、図2)を生成し、画像処理装置200Aへと供給する。生成された基準画像21および参照画像22は、被写体のステレオ画像を構成する。
 なお、基準画像21と参照画像22とのそれぞれの撮影時におけるステレオカメラ300に対する被写体の位置関係が同じであれば、基準画像21と参照画像22とは、同時刻に撮影されていなくても良い。また、ステレオカメラ300は、基準カメラ61と参照カメラ62との同期をとりつつ被写体を時間順次に連続的に撮影することによって、複数の基準画像21および複数の参照画像22(「時系列ステレオ画像」とも称する)を生成することもできる。なお、ステレオカメラ300が被写体の時系列ステレオ画像を撮影する際には、ステレオカメラ300は移動していても良い。
 生成された基準画像21および参照画像22は、データ線DLを介して画像処理装置200Aの入出力部41へと供給される。
 ○ステレオカメラ300の座標系について:
 図4は、ステレオカメラ300に係るカメラ座標系C1、ならびに画像座標系C2およびC3を例示する図である。なお、図4に示される各要素のうち図3に示される各要素と同一のものについては、図3と同じ符号を付して説明を省略する。
 図4に示されるように、カメラ座標系C1は、基準カメラ61の撮影光学系72aに対して設けられた直交座標系である。カメラ座標系C1の原点は光学中心73aであり、各座標軸はXc、Yc、Zcである。Zc軸の方向は光軸74aと一致しており、Xc軸と撮像素子75aの走査線とは平行である。
 画像座標系C2は、基準画像21における各像点の座標を表す直交座標系である。画像座標系C2は、その原点が撮影光学系72aに対して設けられた撮像素子75aの角部Opであり、その座標軸はXa、Yaである。Xa軸の方向は撮像素子75aの水平走査方向(主走査方向)に一致し、Ya軸の方向は撮像素子75aの垂直走査方向(副走査方向)と一致している。
 同様に、画像座標系C3は、参照画像22における各像点の座標を表す直交座標系である。画像座標系C3は、その原点が撮影光学系72bに対して設けられた撮像素子75bの角部Oqであり、その座標軸はXb、Ybである。Xb軸の方向は撮像素子75bの水平走査方向(主走査方向)に一致し、Yb軸の方向は撮像素子75bの垂直走査方向(副走査方向)と一致している。
 なお、観察者が観察する画像は、撮像素子に結像した像の上下左右が反転されるため、観察者が観察する画像における画像座標系は、例えば、後述する図5の基準画像21に設定されたXY座標系のように、画像の左上端部が原点となり、撮像素子上での画像座標系のX軸、Y軸の向きがそれぞれ反転される。
 <◎ステレオ画像に基づいた三次元測定方法の説明:>
 次に、ステレオカメラ300によって撮影されるステレオ画像に基づいた三次元測定方法について説明する。該三次元測定方法は、画像処理装置200Aにおいては後述する第2ベクトル取得部19などによって使用される。平行化処理が行われた場合には、図3に示される撮影光学系72aおよび72bの主平面と物点Mとの距離Dは、視差d、焦点距離fr、および撮影光学系72aおよび72b間の基線長bを用いて(1)式によって与えられる。
Figure JPOXMLDOC01-appb-M000001
 (1)式に示されるように、視差は、被写体上の点のステレオカメラ300からの距離に関する指標値となっている。
 また、図4に示されるカメラ座標系C1で表現された被写体71上の物点Mの座標Mcと、物点Mに対応する撮像素子75a上の像点Paの画像座標系C2で表現された座標Pacとの関係は(2)式によって与えられる。
Figure JPOXMLDOC01-appb-M000002
 (1)式の距離Dと(2)式で示される座標zcとは同一であるので、先ず、後述する対応点探索処理によって求められる物点Mに対応する各像点PaおよびPbについての視差dを(1)式に代入して距離Dを求め、求めた距離Dを(2)式のzcに代入することによってxcおよびycも求められる。
 なお、撮影光学系72aおよび72bは収差を有しており、収差に起因した視差d、および座標Pacのそれぞれの歪みを収差補正処理によって補正すれば、物点Mの座標Mcはより正確に求められるが、収差補正処理が施されないとしても本発明の有用性を損なうものではない。また、収差補正処理の処理内容は、(3)式によって与えられる。
Figure JPOXMLDOC01-appb-M000003
 ここで、(1)式~(3)式における焦点距離fr、基線長b、撮像素子の画素サイズps、結像中心座標u0およびv0、収差補正係数k1~k5は、三次元化に用いられるカメラパラメータである。また、収差補正係数k1~k3は、撮影光学系72aおよび撮影光学系72bのレンズの径方向の収差を補正する係数であり、収差補正係数k4~k5は、レンズの径と直交する方向についての収差を補正する係数である。
 <◎画像処理装置200Aの構成について:>
 図1に示されるように、画像処理装置200Aは、CPU11A、入出力部41、操作部42、表示部43、ROM44、RAM45および記憶装置46を主に備えて構成されており、例えば、汎用のコンピュータでプログラムを実行することなどによって実現される。
 入出力部41は、例えばUSBインタフェースなどの入出力インタフェース、マルチメディアドライブ、およびネットワークアダプタなどのLANやインターネットに接続するためのインタフェースなどを備えて構成され、CPU11Aとの間でデータの授受を行うものである。具体的には、入出力部41は、例えば、CPU11Aがステレオカメラ300を制御するための各種の制御信号を、データ線DLなどを介して入出力部41に接続されたステレオカメラ300へと供給する。また、入出力部41は、ステレオカメラ300が撮影した基準画像21および参照画像22を画像処理装置200Aへとそれぞれ供給する。なお、入出力部41は、予め基準画像21および参照画像22が記憶された光ディスクなどの記憶媒体を受け付けることなどによっても、基準画像21および参照画像22を画像処理装置200Aへとそれぞれ供給することができる。
 操作部42は、例えば、キーボードあるいはマウスなどによって構成されており、操作者が操作部42を操作することによって、画像処理装置200Aへの各種制御パラメータの設定、画像処理装置200Aの各種動作モードの設定などが行われる。また、画像処理装置200Aの機能部は、操作部42から設定される各動作モードに応じた処理を行うことができるように構成されている。
 表示部43は、例えば、液晶ディスプレイなどによって構成されており、ステレオカメラ300から供給される基準画像21、参照画像22、および画像処理装置200Aが生成する疑似画像25(図2)などの各種画像情報の表示、ならびに画像処理システム100Aに関する各種情報および制御用GUI(Graphical User Interface)などの表示を行う。
 ROM(Read Only Memory)44は、読出し専用メモリであり、CPU11Aを動作させるプログラムなどを格納している。なお、読み書き自在の不揮発性メモリ(例えば、フラッシュメモリ)が、ROM44に代えて使用されてもよい。
 RAM(Random Access Memory)45は、読み書き自在の揮発性メモリであり、画像処理装置200Aが取得した各種画像、ならびに画像処理装置200Aが生成する疑似画像、距離情報(距離画像)などを一時的に記憶する画像格納部、CPU11Aの処理情報を一時的に記憶するワークメモリなどとして機能する。
 記憶装置46は、例えば、フラッシュメモリなどの読み書き自在な不揮発性メモリやハードディスク装置等によって構成されており、画像処理装置200Aの各種制御パラメータや各種動作モードなどの情報を恒久的に記録する。また、記憶装置46には第1生成部14Aが行うぼかし処理に用いられる平滑化フィルタを規定する情報、すなわち平滑化フィルタの種類、平滑化の強度などを規定する情報、または平滑化処理に対応したプログラムなどの平滑化処理に関する種々の情報なども記憶されている。
 CPU(Central Processing Unit)11Aは、画像処理装置200Aの各機能部を統轄制御する制御処理装置であり、ROM44に格納されたプログラムに従った制御および処理を実行する。CPU11Aは、後述するように、第1取得部12、第2取得部13、第1生成部14A、第2生成部15A、第3取得部16、特定部17A、第1ベクトル取得部18、および第2ベクトル取得部19としても機能する。
 CPU11Aは、これらの機能部などによって、基準視点から撮影された被写体についての基準画像21(図2)から、基準視点とは異なる仮想視点からの撮影に対応した被写体についての疑似画像25(図2)を生成する。また、CPU11Aは、ステレオカメラ300の撮像動作の制御を行うとともに、表示部43を制御して、各種画像、算出結果、および各種制御情報などを表示部43に表示させる。
 また、CPU11A、入出力部41、操作部42、表示部43、ROM44、RAM45、記憶装置46等のそれぞれは、信号線49を介して電気的に接続されている。したがって、CPU11Aは、例えば、入出力部41を介したステレオカメラ300の制御およびステレオカメラ300からの画像情報の取得、および表示部43への表示等を所定のタイミングで実行できる。
 なお、図1に示される構成例では、第1取得部12、第2取得部13、第1生成部14A、第2生成部15A、第3取得部16、特定部17A、第1ベクトル取得部18、および第2ベクトル取得部19の各機能部は、CPU11Aで所定のプログラムを実行することによって実現されているが、これらの各機能部はそれぞれ、例えば、専用のハードウェア回路などによって実現されてもよい。
 <◎画像処理装置200Aの各機能部の動作:>
 <○画像処理装置200Aの動作の概要について:>
 図2は、実施形態に係る画像処理装置200Aの主な機能構成の1例を示すブロック図である。画像処理装置200Aは、基準画像21(図2)および参照画像22(図2)に基づいて被写体についての距離情報である各基準距離情報27(図2)を取得し、さらに基準画像21と、各基準距離情報27とに基づいた疑似画像25(図2)の生成を経て、立体視画像26(図2)を生成する。
 先ず、図2を参照しつつ、画像処理装置200Aの動作の概要について説明する。画像処理装置200Aによる立体視画像26の生成処理においては、先ず、第1取得部12は、被写体がステレオカメラ300によって撮影された基準画像21を取得する。そして、第2取得部13は、被写体の各点のうち基準画像21の各画素にそれぞれ対応した各点について、例えば、基準カメラ61の光学中心73a(図3)などの所定の原点位置からの距離情報を表現した各基準距離情報27を取得する。なお、各基準距離情報27が基準画像21の画素配列に対応して配列された画像が原距離画像31(図2)である。
 基準画像21と各基準距離情報27(原距離画像31)とがそれぞれ取得されると、特定部17Aは、所定の判定基準によって基準画像21と原距離画像31とのそれぞれに対応する画像空間を、被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行い、該画像空間における該非注視領域の範囲を規定する領域情報2a(図2)を生成する。なお、時系列に撮影された基準画像21が取得された場合には、第1ベクトル取得部18(図2)および第2ベクトル取得部19(図2)は、設定された動作モードに応じて後述する二次元移動ベクトル91(図2)および三次元移動ベクトル92(図2)をそれぞれ生成する。そして、特定部17Aは、二次元移動ベクトル91または三次元移動ベクトル92を用いて該特定処理を行うこともできる。
 領域情報2aが生成されると、第1生成部14Aは、領域情報2aに基づいて基準画像21および原距離画像31のうち少なくとも一方の非注視領域に対応した領域の画像に対して後述するぼかし処理を行う。そして、該ぼかし処理の結果として第1生成部14Aは、基準画像21および各基準距離情報27にそれぞれ対応した派生画像24(図2)および各派生距離情報28(派生距離画像32)(それぞれ図2)をそれぞれ生成する。
 派生画像24と各派生距離情報28(派生距離画像32)とがそれぞれ生成されると、第2生成部15Aは、基準画像21が撮影された視点とは別の仮想視点からの撮影に対応した被写体の疑似画像25(図2)を生成する。疑似画像25が生成されると第3取得部16(図2)は、基準画像21および疑似画像25を立体視画像として取得し、取得した立体視画像を表示部43に表示させる。なお、第3取得部16は、第2生成部15Aが基準画像21に基づいてそれぞれ生成した左目用の疑似画像および右目用のそれぞれの疑似画像25を立体視画像26としてそれぞれ取得することもできる。
 上述したように、画像処理装置200Aによる立体視画像26の生成処理においては、派生画像24および派生距離画像32のそれぞれの注視領域の画像は、ぼかし処理が施されない基準画像21および原距離画像31のそれぞれの注視領域の画像に基づいてそれぞれ生成される。従って、疑似画像25のうち注視領域に対応した部分の色彩および明るさなどの画質は、基準画像21の注視領域に撮影された被写体の画像の画質が保持されるとともに、疑似画像25のうち注視領域に対応した部分における基準画像21との各視差には、注視領域に対応した被写体の各部分の距離が保持されて反映される。このため、立体視画像26のうち注視領域への対応部分を観察する観察者は、被写体の本来の画質と距離感とが保持された立体像を認識することができる。
 一方、派生画像24および派生距離画像32のそれぞれの非注視領域の画像のうち少なくとも一方は、ぼかし処理がそれぞれ施された基準画像21の非注視領域の画像または原距離画像31の非注視領域の画像に基づいて生成される。従って、疑似画像25のうち非注視領域に対応した部分については、基準画像21の非注視領域に撮影された被写体の画像がぼかされる現象と、原距離画像31における非注視領域に対応した被写体各部の距離に基づいた疑似画像25と基準画像21との各視差のばらつきが低減される現象とのうち少なくとも一方が発生する。このため、立体視画像26のうち非注視領域への対応部分を観察する観察者は、立体画像情報の空間的変化がゆるやかになって視覚的な情報量が低減された立体像を認識する。
 従って、画像処理装置200Aによって生成される立体視画像26を観察する観察者は、注視領域において本来の画質と距離感とが保持された被写体の立体像を認識できるとともに、非注視領域における立体視に関する視覚的な情報量が低減されることによって、非注視領域での立体視に関する視覚的な情報の過多や混在に起因した目の疲労を軽減され得る。立体視に関する視覚的な情報とは、例えば、色彩、明るさ、および距離情報などである。
 <○画像処理装置200Aの動作の詳細について:>
 図5および図6は、実施形態に係るステレオカメラ300の基準カメラ61および参照カメラ62が、それぞれ被写体を撮影した基準画像21(図2)および参照画像22(図2)の1例として基準画像21aおよび参照画像22aをそれぞれ示す図である。また、図21は、実施形態に係る画像処理装置200Aの動作フローを例示する図である。以下では、画像処理装置200Aが、基準画像21と参照画像22とに基づいて、基準画像21が撮影された視点とは別の仮想視点からの被写体の撮影に対応した疑似画像25(図2)を生成する場合を例に、画像処理装置200Aの各機能部の動作について図21の動作フローを適宜参照しつつ詳しく説明する。
 仮想視点からの撮影に対応した疑似画像の生成の対象となる被写体の撮影に先立って、基準カメラ61と参照カメラ62との両方から該被写体が撮影できるように、ステレオカメラ300の位置および姿勢が調整される。例えば、基準カメラ61の撮影光学系の光学中心(主点位置など)が基準画像21が撮影された基準視点となる。ステレオカメラ300の位置および姿勢が調整された状態で、操作者からの操作などに応答して、ステレオカメラ300に撮影動作を行わせる制御信号がCPU11Aからステレオカメラ300へと供給されると、ステレオカメラ300の撮影動作が行われる。該撮影動作が終了すると、基準カメラ61および参照カメラ62によってそれぞれ撮影された、被写体についてのステレオ画像を構成する基準画像21および参照画像22がそれぞれ生成されて画像処理装置200Aの入出力部41に供給される。
 ○第1取得部12の動作:
 被写体が撮影された基準画像21と参照画像22とが入出力部41に供給されると、第1取得部12(図2)は、入出力部41を介して基準画像21を取得するとともに(図21の動作フローS100AにおけるステップS110)、参照画像22を取得する。基準カメラ61と参照カメラ62との基線長の方向が垂直走査方向(図5、図6のY軸方向)に沿っているため、基準画像21と参照画像22とには、基準画像21a(図5)と参照画像22a(図5)とに示されるように、視差がY軸方向に沿って生じている。なお、図5および図6においては、基準画像21aと参照画像22aとのそれぞれについての画像座標系の座標軸がそれぞれ設けられている。また、本願の他の図面においても座標軸を適宜設けて説明に使用することがある。なお、第1取得部12は、予め撮影されて記録メデイアに保存された基準画像21および参照画像22を、入出力部41を介して取得してもよい。取得された基準画像21は、第2取得部13、第1生成部14A、第2生成部15A、第3取得部16、特定部17A、第1ベクトル取得部18、および第2ベクトル取得部19へと供給される。また、参照画像22は、第2取得部13へと供給される。
 ○第2取得部13の動作:
 図7は、第2取得部13(図2)が取得する原距離画像31(各基準距離情報27)(それぞれ図2)の1例として原距離画像31a(各基準距離情報27a)を示す図である。基準画像21および参照画像22が第2取得部13に供給されると、第2取得部13は、基準画像21と参照画像22とを対象として、相関演算法などを用いたマッチング処理を行うことによって、基準画像21の各注目画素に対応する参照画像22の各対応画素を特定する。う6、これらのマッチング処理が、画素単位で行われたとしても、また画素単位以下のサブピクセル単位で行われたとしても、本発明の有用性を損なうものではない。また、基準画像21の注目画素に対応する参照画像22の対応画素を特定するマッチング処理に用いられる相関演算手法としては、例えば、NCC(Normalized Cross Correlation)法、SAD(Sum of Absolute Difference)法、またはPOC(Phase Only Correlation)法などが採用される。また、基準カメラ61と参照カメラ62との撮影倍率が異なる場合には、第2取得部13は、撮影倍率が低いカメラの撮影倍率に対する撮影倍率が高いカメラの撮影倍率の比(「撮影倍率比」とも称する)に応じて、高倍率で撮影された画像を低解像度化するとともに、低倍率で撮影された画像のうち画素数および配列形状が低解像度化された画像の画素数および配列形状と等しい部分画像を抽出し、該部分画像と、低解像度化された画像とをマッチング処理の対象とする。また、第2取得部13は、撮影倍率比に応じて低倍率で撮影された画像を画素値の補間処理などによって高解像度化するとともに、高解像度化された画像のうち画素数および配列形状が高倍率で撮影された画像の画素数および配列形状と等しい部分画像を抽出し、該部分画像と、高倍率で撮影された画像とをマッチング処理の対象としてもよい。
 各対応画素の特定がなされると、第2取得部13は、相互に対応する注目画素と対応画素とについて、基準画像21の画像座標系における該注目画素の画素座標と、参照画像22の画像座標系における該対応画素の画素座標との差(本願において、「視差」とも称する)を求める処理を、基準画像21の各注目画素に対して行う。
 (1)式に示されるように、視差は、被写体上の点の光学中心73a(図3)からの距離に関する指標値となっており、本願においては、視差と、距離との総称として「距離情報」という用語を使用する。また、各基準距離情報27においては、各基準距離情報27を構成する各視差が、対応する基準画像21の各画素の画素座標と関連づけられている。このため、各基準距離情報27は、例えば、基準画像21の画素配列に応じて配列された原距離画像31として取得され得る。第2取得部13によって取得された各基準距離情報27(原距離画像31)は、特定部17A、第1生成部14A、および第2ベクトル取得部19に供給される。
 なお、(1)式に示されるように、視差dと距離Dとは相互に変換できるので、第2取得部13は、上述した各視差の代わりに、基準画像21の各画素に対応した被写体上の各点についての各距離を各基準距離情報27として取得しても良い。該各距離は、例えば、第2取得部13が(1)式の演算を行うこと、または、変形例についての説明欄において後述するように別の三次元測定機によって測定された被写体上の各点についての各距離を入出力部41を介して取得することなどによって取得される。すなわち、第2取得部13は、被写体の各点のうち基準画像21の各画素にそれぞれ対応した各点について、所定の原点位置からの距離情報を表現した各基準距離情報27を取得する(図21のステップS120)。
 ○視差の例について:
 図17は、基準画像21eと参照画像22eとにおける視差の1例を説明するための図である。なお、基準画像21eは、基準カメラ61によって撮影された被写体の基準画像21(図2)の1例であり、参照画像22eは、基準カメラ61に対して垂直方向(図17の+Y方向)に所定の基線長を隔てて設けられた参照カメラ62によって撮影された該被写体の参照画像22(図2)の1例である。図17おいては、基準画像21eと参照画像22eとは、視差の把握を容易にするため該両画像の上端(下端)のY座標が等しくなるように水平方向(図17のX軸方向)に並べて表示されている。
 基準画像21eと、参照画像22eとには、ステレオカメラ300に対して+Z方向に位置する同一の近側被写体についての近景被写体像66aおよび66bがそれぞれ撮影されているとともに、ステレオカメラ300に対して+Z方向に該近側被写体より遠方にある同一の遠側被写体についての遠景被写体像67aおよび67bがそれぞれ撮影されている。図17においては、説明を容易にするために、各被写体像のそれぞれにおける各特徴部のエッジ(輪郭)のみが表示されている。また、近景被写体像66a上の画素68aおよび近景被写体像66b上の画素68bは、近側被写体の同一の点にそれぞれ対応した画素であり、遠景被写体像67a上の画素69aおよび遠景被写体像67b上の画素69bは、遠側被写体の同一の点にそれぞれ対応した画素である。また、視差9aは、画素68aと画素68bとについての視差であり、視差9bは、画素69aと画素69bとについての視差である。ここで、ステレオカメラ300に対する近側被写体と遠側被写体とのそれぞれの距離の差異に起因して視差9aと視差9bとは異なった値となっている。より詳細には、近側被写体に対応した視差9aの方が遠側被写体に対応した視差9bよりも視差の大きさが大きくなっている。このように視差の大きさは、画像上の画素に対応した被写体上の点のステレオカメラ300からの距離に応じて変動する。
 次に、特定部17Aの動作の説明に先立って、特定部17Aが設定された動作モードに応じて適宜使用する二次元移動ベクトル91(図2)および三次元移動ベクトル92(図2)をそれぞれ生成する第1ベクトル取得部18および第2ベクトル取得部19の動作をそれぞれ説明する。
 ○第1ベクトル取得部18の動作:
 図14は、第1ベクトル取得部18(図2)が行う二次元移動ベクトルの取得処理の1例を説明する図である。図14に示された基準画像21fおよび21gは、静止しているステレオカメラ300の基準カメラ61によって時系列に撮影された移動中の車103を含む被写体の画像であり、基準画像21fおよび21gは同一の画像空間に重ねて表示されている。また、基準画像21gは、基準画像21fよりも後の時刻に撮影されている。基準画像21fに撮影されている車103は、消失点104の方向へ直線的に移動している。なお、車103は、基準画像21gにおいても撮影されているが、基準画像21gにおける車103の表示は省略されている。
 二次元移動ベクトル91(図2)は、同一の被写体が時系列に撮影されて同一の画像空間にそれぞれ表示された複数の画像間での、該被写体上の同一の点にそれぞれ対応した各像の動きをベクトルとして表現したものである。すなわち、二次元移動ベクトル91は、該被写体上の同一の点の、例えば、カメラ座標系C1(図4)などの三次元空間における動きベクトルを、例えば、カメラ座標系C1におけるXc-Yc平面などの奥行き情報のない二次元空間に投影した動きベクトルである。時系列に撮影された各基準画像における被写体上の同一の点にそれぞれ対応した対応画素(対応点)は、該各基準画像間で、既述した相関演算法などを用いた対応点探索処理を行うことなどによって求められる。また、勾配法(gradient-based method)を用いることによって二次元移動ベクトル91が算出されても良い。勾配法を用いた二次元移動ベクトル91の算出処理では、対応点探索を行う必要がなく、処理時間をより短くすることができる。第1ベクトル取得部18は、基準画像21が時系列画像として取得された場合に、動作モード応じて二次元移動ベクトルの取得処理を行う。なお、各時系列画像の撮影時刻を用いて二次元移動ベクトル91を単位時間当りの移動ベクトルとして求めたとしても本発明の有用性を損なうものではない。
 図14においては、二次元移動ベクトル91の例として2つの二次元移動ベクトル91aおよび91bが示されている。二次元移動ベクトル91aおよび91bは、基準画像21fに撮影された車103上の異なる2点にそれぞれ対応した、基準画像21fおよび21g間での二次元移動ベクトルである。基準画像21fに撮影された各被写体のうち、車103以外の被写体は静止している。このため、非零の大きさを有する二次元移動ベクトル91は、移動体である車103についてのみ求められる。従って、カメラが静止している場合には、非零の大きさを有する二次元移動ベクトル91を検出することによって、撮影された画像中の移動体を検出することができる。
 ここでは、車103は基準カメラ61に対して直線的に移動しているため、図14に示されるように二次元移動ベクトル91aおよび91bをそれぞれ延長した各二次元移動ベクトルは、1の消失点(Focus of Expansion:FOE)104で交差している。消失点104は、例えば、同一の被写体の複数の各点に対応した二次元移動ベクトルをそれぞれ表現した複数の直線の方程式を連立させて最小二乗法を用いて解くことなどによって算出される。消失点は、カメラに対する各被写体の相対的な移動方向によって定められる定点となる。カメラが移動しつつ時系列画像を撮影する場合であっても、カメラに対して相対的に移動している被写体についての消失点は、静止物についての消失点とは、通常、異なった位置に存在する。従って、消失点を用いれば、カメラが移動している場合であっても、カメラに対して相対的に静止物とは異なった方向に沿って移動する移動体を検出することができる。
 ○第2ベクトル取得部19の動作:
 図15および図16は、第2ベクトル取得部19(図2)が行う三次元移動ベクトルの算出処理の1例を説明するための図である。なお、図15および図16では、基準画像F311,F312および参照画像F321,F322が、簡略化されて表されているが、ここでは、縦方向に2592画素が配列され且つ横方向に3456画素が配列される格子状の画素配列を有する。
 基準画像F311および参照画像F321は、時刻tにおいてステレオカメラ300の基準カメラ61および参照カメラ62によってそれぞれ撮影された被写体の画像が第1取得部12によってそれぞれ取得された画像である。また、基準画像F312および参照画像F322は、時刻t+Δtにおいてステレオカメラ300の基準カメラ61および参照カメラ62によってそれぞれ撮影された同じ被写体の画像が第1取得部12によってそれぞれ取得された画像である。なお、説明を容易にするために基準画像F311,F312および参照画像F321,F322においては、撮影された被写体の画像の表示は省略されている。また、被写体はステレオカメラ300に対して相対的に移動している。第2ベクトル取得部19は、基準画像21と参照画像22とがそれぞれ時系列画像として取得された場合に、三次元移動ベクトルの取得処理を行う。
 この方法では、第2ベクトル取得部19などによって、以下の工程(a-1)~(a-4)が順次に実行されることで、基準画像に撮影された被写体についての三次元移動ベクトルが求められる。
 (a-1)図15で示されるように、時刻tにおいてステレオカメラ300によって撮影された基準画像F311と参照画像F321との間で、既述した相関演算法等を用いたマッチング処理が第2取得部13によって行われる。その結果、基準画像F311上の座標(i1t,j1t)で表される点P311に対して、参照画像F321から、同じある被写体の一部分をとらえた点P321の座標(i2t,j2t)が検出され、点P311の座標(i1t,j1t)と、点P321の座標(i2t,j2t)との視差、すなわち距離情報が取得される。取得された視差は、第2ベクトル取得部19に供給され、第2ベクトル取得部19は、点P311の座標(i1t,j1t)と、点P321の座標(i2t,j2t)との視差から、既述した(1)式および(2)式を用いて点P311および点P321のそれぞれに対応した被写体の一部分に係る三次元の座標(xt,yt,zt)を取得する。
 (a-2)時刻tにおいてステレオカメラ300によって撮影された基準画像F311と、時刻tから時間Δt経過した時刻t+Δtにおいてステレオカメラ300によって撮影された基準画像F312との間で、第2取得部13によってマッチング処理が行われる。その結果、基準画像F311上の座標(i1t,j1t)で表される点P311に対して、基準画像F312から、該被写体の同じ一部分をとらえた点P312の座標(i1(t+Δt),j1(t+Δt))が検出される。
 (a-3)図16で示されるように、時刻t+Δtにおいてステレオカメラ300によって撮影された基準画像F312と参照画像F322との間で、第2取得部13によってマッチング処理が行われる。その結果、基準画像F312上の座標(i1(t+Δt),j1(t+Δt))で表される点P312に対して、参照画像F322から、該被写体の同じ一部分をとらえた点P322の座標(i2(t+Δt),j2(t+Δt))が検出される。その結果、点P312の座標(i1(t+Δt),j1(t+Δt))と、点P322の座標(i2(t+Δt),j2(t+Δt))との視差、すなわち距離情報が取得される。取得された視差は、第2ベクトル取得部19に供給され、第2ベクトル取得部19は、点P312の座標(i1(t+Δt),j1(t+Δt))と、点P322の座標(i2(t+Δt),j2(t+Δt))との視差から既述した(1)式および(2)式を用いて点P312および点P322のそれぞれに対応した被写体の一部分に係る三次元の座標(xt+Δt,yt+Δt,zt+Δt)を求める。
 (a-4)第2ベクトル取得部19によって、時刻tにおけるある被写体の一部分に係る三次元の座標(xt,yt,zt)と、時刻t+Δtにおけるある被写体の一部分に係る三次元の座標(xt+Δt,yt+Δt,zt+Δt)とから該被写体の一部についてのステレオカメラ300についての相対的な三次元空間での移動方向と大きさとが三次元移動ベクトルとして求められる。なお、第2ベクトル取得部19が、時間Δtを用いて、ステレオカメラ300と、該被写体の一部分との間における単位時間当たりの三次元移動ベクトルを取得したとしても本発明の有用性を損なうものではない。
 また、上述した工程(a-1)~(a-4)においては、同時刻にそれぞれ撮影された基準画像と参照画像とのマッチング処理、および異なる時刻にそれぞれ撮影された各基準画像間でのマッチング処理は第2取得部13によって行われているが、これらのマッチング処理が、例えば、第2ベクトル取得部19によって行われるようにするなど、各種の構成の変更が行われたとしても本発明の有用性を損なうものではない。また、これらのマッチング処理が、画素単位で行われたとしても、また画素単位以下のサブピクセル単位で行われたとしても、本発明の有用性を損なうものではない。
 三次元移動ベクトルを用いれば、撮影された被写体の各部分についての三次元空間におけるカメラに対する相対的に移動情報を取得することができるので、例えば、撮影された被写体のうち、他の部分と異なる三次元的な動きをした部分、すなわち、他の部分と異なる部分を特定することができる。
 ◎特定部17Aの動作:
 次に、特定部17Aの動作について説明する。特定部17A(図2)は、所定の判定基準によって基準画像21と原距離画像31(各基準距離情報27)とのそれぞれに対応する画像空間を、撮影された被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う(図21のステップS130)。なお、特定部17Aは、該特定処理として、設定された各種の動作モードにそれぞれ応じた各種の特定処理を行うことができる。以下では、特定部17Aが行う各種の特定処理を順次説明する。
 ○被写体からの光線情報が撮影された画像情報に基づいた特定処理:
 特定部17Aは、設定された動作モードに応じて、被写体からの光線情報が撮影された画像である基準画像21の画像情報に基づいた特定処理を行う。具体的には、特定部17Aは、基準画像21から色情報、ぼけ情報等を取得することにより注視領域を算出する。
 ・色情報に基づいた特定処理:
 特定部17Aは、色情報に基づいた特定処理に対応した動作モードが設定されている場合には、取得した基準画像21に対し、シーン解析を実施するために、映像内の色情報の統計的な分布状態を示すカラーヒストグラムを算出する。特定部17Aは、算出したヒストグラムに対し、例えば、基準画像21の全画素数の5%以上かつ20%未満の度数であるなどの所定の基準を満たす色情報を抽出し、基準画像21において抽出された色情報が存在する部分を注視領域として分類して特定するとともに、基準画像21のうち該注視領域以外の部分を非注視領域として分類して特定する。
 例えば、基準画像21a(図5)においては、白色の看板と、赤色服および青色の服をそれぞれ着用した大人と子供とが撮影されるとともに、これら被写体の周りには、緑色の木々と、灰色の道路とが撮影されている。従って、基準画像21aに対して上述した色情報に基づいた特定処理が適用された場合には、注視領域として看板および人物にそれぞれ対応した注視領域1aおよび1hが特定されるとともに、基準画像21aのうち注視領域1aおよび1h以外の非注視領域3aが特定される。また、特定部17Aは、例えば、算出したカラーヒストグラムに対し、最も高い度数の色情報とは異なる色情報を抽出し、基準画像21において抽出された色情報が存在する部分を注視領域として分類して特定するとともに、基準画像21のうち該注視領域以外の部分を非注視領域として分類して特定する特定処理を採用してもよい。
 また、図8は、基準画像21の1例として、水色の服を着用するとともに、毛髪が黒色である人物と、該人物の背景である緑色の木々とが撮影された基準画像21bを示す図である。なお、基準画像21bにおける背景の木々は、基準カメラ61の被写界深度と該木々の距離との関係によりぼけた状態で撮影されている。従って、基準画像21bに対して上述した色情報に基づいた特定処理が適用された場合には、人物が撮影された注視領域1bと、基準画像21bのうち注視領域1b以外の非注視領域3bとがそれぞれ特定される。
 なお、特定部17Aは、例えば、上述した色情報の統計的な分布状態についての所定の基準に基づいて基準画像21の各画素を2値化し、さらにラベリング処理などを施こして基準以上のサイズの連結領域を注視領域として特定してもよい、また、特定部17Aは、基準画像21の各画素を、特定の色彩であるか否かという判定基準に基づいて2値化し、ラベリング処理などを施こすことによって該色彩の連結領域を抽出し、抽出された連結領域のうち基準以上のサイズのものを注視領域として特定しても良い。上述したように、特定部17Aは、基準画像21の色彩(色情報)の統計的な分布状態、および空間的な分布状態のうち少なくとも一方に基づいて基準画像21を上述した特定処理を行う。
 また、別の方法としては、色情報から抽出される肌色領域や、人物検出アルゴリズムにより、基準画像21内に人領域があると判断された場合は、その領域を注視領域として特定しても良い。このようにする理由としては、画像内にある程度の大きさで人領域が含まれる場合、撮影者は、人に対し注目して撮影していると判断することが出来るからである。
 また、上述した色情報に基づいた特定処理に代えて、例えば、基準画像21の輝度情報の分布状態に基づいて注視領域と、非注視領域とを分類して特定する特定処理が採用されたとしても本発明の有用性を損なうものではない。なお、該特定処理が採用される場合には、一旦、注視領域として抽出された各領域について、領域内の輝度と、領域の周辺部分の輝度とをそれぞれ確認し、該確認の結果、例えば、周辺領域よりも30%以上高い輝度である注視領域を改めて注視領域として特定するとともに、該条件を満たさない注視領域については判定を変更して非注視領域としてもよい。低輝度の被写体と、高輝度の被写体とが混在した撮影シーンでは、観察者は、輝度が高い領域に注目する可能性が高いからである。
 ・画像のぼけ情報に基づいた特定処理:
 特定部17Aは、画像のぼけ情報に基づいた特定処理に対応した動作モードが設定されている場合には、取得した基準画像21に対し、画像のぼけ情報を算出し、映像として鮮明な位置を注視領域として算出する。具体的には、ボケ情報は、例えば、画像内のエッジ(輪郭)を検出し、検出した各エッジの強度を、画像のぼけ状態を定量的に表現する指標値として採用することによって基準画像21を、エッジが所定の基準よりも明確な領域、すなわち注視領域と、該注領域以外の非注視領域とにそれぞれ分類して特定しても良い。画像の撮影者は、通常、主要被写体にカメラの焦点を合わせるため、主要被写体の画像は、通常、ぼけを生じず、カメラの合焦範囲から外れた主要被写体以外の被写体は、ぼけを生じる可能性が高いからである。
 また、特定部17Aは、基準画像21に対して周波数解析を行うことによって、基準画像21を、空間周波数が所定の基準よりも高い領域、すなわち、主要被写体を含む注視領域と、注視領域以外の非注視領域とに分類して特定しても良い。
 例えば、基準画像21b(図8)に画像のぼけ情報に基づいた特定処理が適用された場合には、基準画像21bにおいては、既述したように、人物領域の背景部分に画像ぼけが生じているため、人物が撮影された注視領域1bと、基準画像21bのうちぼけを生じた注視領域1b以外の非注視領域3bとがそれぞれ特定される。
 ○二次元画像における領域に基づいた特定処理:
 二次元映像である基準画像21を、主要被写体に対応した注視領域と、該注視領域以外の非注視領域とに分類して特定する他の特定処理として、特定部17Aは、基準画像21において、例えば、基準画像21の中央部分を特定する領域情報に基づいて、該中央部分を注視領域として特定する動作を行うことができる。該特定処理は、主要被写体は、通常、画像の中央部分に撮影されることに基づいた特定処理である。また、例えば、基準画像21を撮影した基準カメラ61の画角が、観察者の視野角よりも広い場合は、特定部17Aは、該視野角の範囲情報に基づいて基準画像21の中央部分における該視野角の範囲のみを切り出して注視領域として特定するとともに、基準画像21のうち注視領域以外の部分を非注視領域として特定する特定処理を採用することもできる。
 図9は、基準画像21aにおいてそれぞれ特定された注視領域と、基準画像21aのうち該注視領域以外の非注視領域の1例を示す図である。例えば、基準画像21aの中央部分を特定する領域情報として、画像のうちX軸方向およびY軸方向のそれぞれについて中央部分の40%に入る領域を中央部分として特定する判定基準が採用された場合には、基準画像21aは、図9に示されるように注視領域1cと非注視領域3cとにそれぞれ分類して特定される。
 ○二次元移動ベクトルに基づいた特定処理:
 特定部17Aは、時系列に撮影された基準画像についての二次元移動ベクトルに基づいた注視領域と、非注視領域とについての特定処理に対応した動作モードが設定されている場合には、第1ベクトル取得部18が取得した基準画像21の各画素についての二次元移動ベクトル91(図2)に基づいて被写体中の移動体を検出することによって該特定処理を行う。なお、二次元移動ベクトルに基づいた該特定処理は、観察者が、通常、静止体と移動体とのうち移動体に注視することに基づいた特定処理である。
 第1ベクトル取得部18の動作についての説明欄において既述したように、カメラが静止している場合には、特定部17Aは、非零の大きさを有する二次元移動ベクトル91を検出することによって、撮影された画像中の移動体を検出することができる。また、消失点を用いれば、カメラが移動している場合であっても、カメラに対して相対的に静止物とは異なった方向に沿って移動する移動体を検出することができる。従って、特定部17Aは、二次元移動ベクトル91に基づいて基準画像21の画像空間を、移動体、すなわち主要被写体が撮影された注視領域と、該注視領域以外の非注視領域とに分類して特定することができる。
 図10は、基準画像21(図2)の1例として基準画像21cを示す図である。例えば、上述した二次元移動ベクトルに基づいた特定処理が、基準画像21cに適用された場合には、基準画像21cのうち走っている3人の人物をそれぞれ内包した注視領域1d、1e、および1fがそれぞれ特定されるとともに、特定された注視領域以外の非注視領域3dが特定される。
 ○距離情報に基づいた特定処理:
 特定部17Aは、基準画像21についての距離情報、すなわち三次元の静止画像に基づいた注視領域と、非注視領域とについての特定処理に対応した動作モードが設定されている場合には、例えば、第2取得部13から供給される各基準距離情報27(原距離画像31)に基づいた以下に説明する処理1~5の各処理のうち1つの処理を行うことなどによって該特定処理を行う。
 ・処理1:処理1の実施において特定部17Aは、第2取得部13から供給された各基準距離情報27を、予め設定されて記憶装置46等に記憶された距離範囲情報に基づいて、該距離範囲に入るか否かを判定することによって、原距離画像31に対応した画像空間のうち、主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とを特定する。具体的には、例えば、上述した距離範囲情報のうちステレオカメラ300から近距離側の値を規定する情報としては、ステレオカメラ300の基線長により立体視可能な最近接近距離が採用される。逆に上述した距離範囲情報のうちステレオカメラ300から遠距離側の値を規定する情報としては、立体視映像として表示しても立体感を得ることが出来ない距離範囲のうちステレオカメラ300に対して最も近い距離が採用される。
 処理1を採用すれば、特定部17Aは、例えば、非注視領域を、ステレオカメラ300の基線長により立体視可能な最近接近距離よりもさらに近い領域と、立体視映像として表示しても立体感を得ることが出来ない距離範囲の領域とにそれぞれ分類することができる。従って、非注視領域のうち上述した立体視可能な最近接近距離よりもさらに近い領域に対応した基準画像21の領域に対して第1生成部14Aが画像をぼかす処理、または該さらに近い領域に対応した原距離画像31の領域における各距離情報を立体視可能な最近接近距離に設定することなどによって、第3取得部16が生成する立体視画像26(図2)を観察者が観察したときの観察者の目の疲労を、軽減することが可能となる。
 ・処理2:処理2の実施において特定部17Aは、基準画像21の撮影に係る合焦距離情報に基づいて原距離画像31、すなわち原距離画像31に対応した画像空間を、主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う。該特定処理に用いられる合焦距離情報は、基準カメラ61として、例えばオートフォーカスカメラが採用された場合には、基準画像21が撮影されたときの合焦距離情報が基準画像21に対応づけられて画像処理装置200Aに供給されることなどによって、特定部17Aに取得される。処理2によれば、特定部17Aは、原距離画像31のうちカメラのピントが合っている距離情報を推定し、原距離画像31のうち画素値が推定された距離情報に対応する領域のみ、あるいは原距離画像31のうち画素値が推定された距離情報の、例えば、95%~105%の範囲の距離情報に対応する領域のみを注視領域として抽出することができる。
 ・処理3:処理3の実施において特定部17Aは、第2取得部13によって取得された原距離画像31における相互の距離情報の差異が所定の距離範囲内である画素が連結した連結領域のうち所定サイズ以上の領域を注視領域とすることにより原距離画像31に対応した画像空間、すなわち原距離画像31を、主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う。
 特定部17Aは、例えば、原距離画像31の各距離情報の分布範囲を複数の区間に分割するとともに、領域内の各距離情報が該複数の区間の1つに属する所定サイズ以上の連結領域を原距離画像31において特定する処理を、分割された区間の全てに対して順次実施することなどによって処理3に対応した特定処理を行うことができる。
 図11は、特定部17Aが行う処理3および後述する処理4に係るラベリング処理の1例を説明するための図である。特定部17Aは、該ラベリング処理を、例えば、後述する(b-1)~(b-5)の処理を行うことなどによって実現できる。
 (b-1)特定部17Aは、先ず、原距離画像31の各距離情報の分布範囲を複数の区間に分割し、そのうち1の区間を選択するとともに、原距離画像31の各画素の画素値、すなわち距離情報が選択した区間の距離範囲に属するか否かという判定基準によって原距離画像31の各画素の画素値を2値化する。
 (b-2)次に、特定部17Aは、2値化された原距離画像31に対してラベリング処理を施して、画素値すなわち距離情報が選択区間の距離範囲に属する各画素が連結することによって形成された全ての連結領域をそれぞれ原距離画像31において特定する。
 (b-3)その後、特定部17Aは、連結領域のサイズに関する所定の判定基準に基づいて、上述した各連結領域が該所定の判定基準を満たすか否かを判定し、該基準を満たす連結領域を全て抽出する。例えば、図11の領域4gは、該抽出によって特定された連結領域が1つである場合の連結領域を例示している。また、該判定基準としては、例えば、各連結領域のうち原距離画像31のサイズの5%以上のサイズを有する領域を特定する判定基準などが採用される。
 (b-4)特定部17Aは、例えば、領域4gのX軸およびY軸の各方向についての位置情報を特定し、領域4gを内包する矩形の領域を、原距離画像31の各距離情報の分布範囲が分割された複数の区間のうち選択された1つの区間についての注視領域1gとして特定する。また、原距離画像31のうち注視領域1g以外の領域3gは、選択された1つの区間について非注視領域に相当する領域である。なお、特定部17Aが、該矩形の領域を設定することなく領域4gをそのまま注視領域として特定したとしても本発明の有用性を損なうものではない。
 (b-5)特定部17Aは、上述した処理(b-1)から(b-4)を、原距離画像31の各距離情報の分布範囲が複数の区間に分割された各区間についてそれぞれ行うことにより、原距離画像31の各距離情報の分布範囲の全範囲についての全ての注視領域を特定する。また、特定部17Aは、特定された全ての注視領域を原距離画像31から除いた領域を非注視領域として特定する。
 例えば、図10に示される基準画像21cにおいては、3名の人物のステレオカメラ300から距離は相互に異なっているが、上述した処理3に係るラベリング処理が図10に示される基準画像21cに適用された場合には、基準画像21cのうち走っている3人の人物をそれぞれ内包した注視領域1d、1e、および1fがそれぞれ特定されるとともに、特定された注視領域以外の非注視領域3dが特定される。
 処理3においては、上述したように、原距離画像31において距離情報の差異が所定の距離範囲内である画素が連結した連結領域であり、かつ、サイズが所定の基準以上である連結領域のみが注視領域として特定される。このため、たとえ原距離画像31のうち距離情報の差異が所定の距離範囲内である画素が連結した連結領域であったとしても、所定の基準よりも小さな連結領域は、非注視領域として分類される。なお、基準画像21および原距離画像31のうち少なくとも一方において該注視領域に対応する領域に対して後述する第1生成部14Aによってぼかし処理が行われるとともに、該ぼかし処理が終了した際の基準画像21および原距離画像31に基づいて第2生成部15Aでの処理によって疑似画像が生成されて立体視表示に供される。従って、上述した所定の基準よりも小さな連結領域に対しては観察者が覚える立体感が低減されるので、観察者は、該連結領域についての立体視に関する情報の過多や混在に起因したちらつき感による目の疲労を軽減することができる。
 ・処理4:処理4の実施において特定部17Aは、第2取得部13によって取得された原距離画像31における相互の距離情報の差異が所定の距離範囲内である画素が連結した連結領域のうち最大サイズの領域を注視領域とすることにより、原距離画像31に対応した画像空間、すなわち原距離画像31を、主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う。具体的には、特定部17Aは、例えば、処理3で説明された(b-1)~(b-5)の処理を行った後、原距離画像31において特定された各注視領域のうち最大サイズのものを唯一の注視領域として特定することによって処理4を行うことができる。従って、特定部17Aが処理4を行えば、画像処理装置200Aが生成する立体視画像のうち唯一特定された注視領域以外の非注視領域に対応した部分について、画像処理装置200Aは観察者が覚える立体感を低減することができるので、観察者は、該非注視領域の立体視に関する情報に起因したちらつき感による目の疲労を処理3が行われた場合よりもさらに軽減することができる。
 ・処理5:処理5の実施において特定部17Aは、第2取得部13によって取得された原距離画像31の画像空間のうち所定の領域の範囲を規定した領域情報に基づいて、原距離画像31に対応した画像空間、すなわち原距離画像31を、主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う。特定部17Aは、例えば、図7に示された原距離画像31aのうちX軸方向およびY軸方向のそれぞれについて中央部分の40%に入る領域を中央部分として特定する判定基準などに基づいて、原距離画像31の画像空間のうち中央部分の領域を注視領域として特定する。特定部17Aが処理5を行えば、画像処理装置200Aが生成する立体視画像のうち原距離画像31において特定された非注視領域、すなわち中央部分を除いた周辺部分に対応した部分について、画像処理装置200Aは観察者が覚える立体感を低減することができ、該部分のちらつき感による観察者の目の疲労を軽減することができる。
 ○三次元移動ベクトルに基づいた特定処理:
 特定部17Aは、三次元移動ベクトルに基づいた注視領域と、非注視領域とについての特定処理に対応した動作モードが設定されている場合には、第2ベクトル取得部19が取得した基準画像21の各画素についての三次元移動ベクトル92(図2)に基づいて被写体中の移動体を検出することによって基準画像21および原距離画像31のそれぞれに対応した画像空間を、注視領域と、注視領域以外の非注視領域とに分類して特定する特定処理を行う。なお、三次元移動ベクトルに基づいた該特定処理は、二次元移動ベクトルに基づいた特定処理と同様に、観察者が、通常、静止体と移動体とのうち移動体に注視することに基づいた特定処理である。
 第2ベクトル取得部19の動作についての説明欄において既述したように、特定部17Aが三次元移動ベクトルを用いれば、撮影された被写体の各部分に対して、三次元空間におけるカメラに対する相対的な移動情報を取得することができるので、特定部17Aは、例えば、撮影された被写体のうち、他の部分と異なる三次元的な動きをした部分、すなわち、他の部分と異なる部分を注視領域として特定することができる。また、特定部17Aは、基準画像21の各画素に対応する各三次元移動ベクトル92について、三次元移動ベクトルの大きさ、すなわち、被写体の各部の移動量が、例えば、ステレオカメラ300から被写体までの距離の10%以上であるなど、所定の閾値以上であるか否かを判定することによって、基準画像21に撮影された移動体、すなわち注視領域を特定する特定処理を行うこともできる。
 また、特定部17Aは、基準画像21に撮影された被写体の各部の移動方向、すなわち三次元移動ベクトル92の方向に基づいて、基準画像21および原距離画像31のそれぞれに対応した画像空間を、注視領域と、注視領域以外の非注視領域とに分類して特定する特定処理を行ったとしても本発明の有用性を損なうものではない。
 図12は、特定部17Aが三次元移動ベクトル92の方向に基づいて注視領域を特定する処理の1例を説明するための図である。図12に示されるように、基準カメラ61の光学中心73aをそれぞれ通る撮影視野端78aおよび78bによって規定される基準カメラ61の撮影視野において被写体71cおよび71dがそれぞれ時間の経過とともに移動している。三次元移動ベクトル92aおよび92bは、被写体71cおよび71dにそれぞれ対応した三次元移動ベクトルであり、第2ベクトル取得部19によって取得されている。
 ここで、三次元移動ベクトル92aの延長線は、基準カメラ61に交差しているが、三次元移動ベクトル92bの延長線は、基準カメラ61と交差していない。すなわち、それぞれ移動体である被写体71cおよび71dが時系列に撮影された各基準画像21においては、時間の経過とともに被写体71cの画像が基準画像21の中央部分へ拡大しながら近づく一方、被写体71dの画像は時間の経過とともに基準画像21の画面から消えていく。この場合、観察者は、それぞれ移動体である被写体71cおよび71dのうち、通常、被写体71cを注視する。
 従って、特定部17Aは、三次元移動ベクトル92に基づいて基準カメラ61に向かってくる被写体、すなわち三次元移動ベクトル92の延長線が基準カメラ61と交差する被写体については、該被写体の画像を含む領域を注視領域であると判定するとともに、三次元移動ベクトル92の延長線が基準カメラ61と交差せずに去っていく被写体については、該被写体の画像を非注視領域として判定することによって、上述した特定処理を行う。
 三次元移動ベクトル92が基準カメラ61と交差するか否かを判定する交差判定の手法としては、例えば、基準カメラ61の位置に基準カメラ61とほぼ同サイズの立体領域を設定し、該立体領域の外縁を形成する各面と三次元移動ベクトル92の延長線とが交差するか否かを判定する手法などが採用され得る。
 上述したように、特定部17Aは、設定された動作モードに応じて、基準画像21と原距離画像31(各基準距離情報27)とのそれぞれに対応する画像空間を、撮影された被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う。該特定処理が完了すると特定部17Aは、非注視領域の範囲を規定する領域情報2a(図2)を生成する。生成された領域情報2aは、第2生成部15Aに供給される。また、特定部17Aの動作モードは、例えば、操作者が操作部42を介して設定する手法、取得された基準カメラ61が時系列画像であるか否かをCPU11Aが判定することによって設定する手法などの各種の手法によって設定される。
 なお、上述した特定部17Aの動作説明においては、基準画像21のうち注視領域を抽出する判定基準に基づいて、基準画像21と原距離画像31とのそれぞれに対応する画像空間を、撮影された被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理の例を説明したが、特定部17Aが、基準画像21のうち注視領域を抽出する判定基準に代えて、基準画像21のうち非注視領域を判定する判定基準を採用することによって該特定処理を行ったとしても本発明の有用性を損なうものではない。
 ○第1生成部14Aの動作:
 領域情報2aを供給されると第1生成部14Aは、領域情報2aに基づいて基準画像21および原距離画像31のうち少なくとも一方の非注視領域に対応した領域の画像に対してぼかし処理を行う。その結果、第1生成部14Aは、基準画像21および各基準距離情報27にそれぞれ対応した派生画像24(図2)および各派生距離情報28(派生距離画像32)(それぞれ図2)をそれぞれ生成する(図21のステップS140)。
 ここで、第1生成部14Aは、基準画像21および原距離画像31のうち基準画像21のみの非注視領域に対応した領域の画像に対してぼかし処理を行う場合には、通常、各基準距離情報27に対応した各派生距離情報28(派生距離画像32)として各基準距離情報27(原距離画像31)自体を採用する。しかしながら、原距離画像31に対して、例えば、ランダムノイズの除去などを目的として、ぼかし強度が、例えば、非注視領域に対するぼかし処理のぼかし強度の10%以下であるなどの、ぼかし強度の弱いぼかし処理が施された距離画像が派生距離画像32として採用されたとしても本発明の有用性を損なうものではない。同様に、第1生成部14Aは、基準画像21および原距離画像31のうち原距離画像31のみの非注視領域に対応した領域の画像に対してぼかし処理を行う場合には、通常、基準画像21に対応した派生画像24として基準画像21自体を採用する。しかしながら、基準画像21に対して、例えば、ランダムノイズの除去などを目的として、ぼかし強度が、例えば、非注視領域に対するぼかし処理のぼかし強度の10%以下であるなどの、ぼかし強度の弱いぼかし処理が施された基準画像が派生画像24として採用されたとしても本発明の有用性を損なうものではない。
 第1生成部14Aが行う基準画像21および原距離画像31などの画像データに対するぼかし処理としては、例えば、平均化フィルタ、メディアンフィルタ、またはガウシアンフィルタなどの各種の平滑化フィルタを用いた平滑化フィルタ処理などが採用される。また、平滑化フィルタの平滑化強度は、例えば、フィルタのサイズを変更することなどによって変更され得る。また、第1生成部14Aが、例えば、ぼかし処理の対象領域の各画素の画素値を、該対象領域の各画素の画素値の平均値などの該対象領域における画素値の代表値に置き換える処理をぼかし処理として行ったとしても本発明の有用性を損なうものではない。
 図13は、平均化フィルタ55の1例を示す図である。図13に示された平均化フィルタ55は、各行列要素の値が1であり、図示の都合上、5×5画素(5行5列)サイズとして表示されている。平均化フィルタ55では、X方向およびY方向のそれぞれ画素数(要素数)を規定するパラメータKの値に応じて、フィルタサイズ、すなわち平滑化強度が変動する。平均化フィルタ55が平滑化処理の対象である画像データに適用される場合には、平滑化対象の画像データに係る画像空間のうち着目画素を中心とした、平均化フィルタ55と同サイズの領域に対して平均化フィルタ55が重ねられる。そして、該領域内の各画素の画素値と、各画素にそれぞれ正対している平均化フィルタ55の各行列要素の値との積和演算が行われ、該演算結果を積和演算の対象となった画素数で除算した値を、着目画素の画素値に置き換える処理が行われる。また、基準画像21および原距離画像31の非注視領域に対するぼかし処理のために平均化フィルタ55が適用される場合には、基準画像21および原距離画像31の画像サイズが3456画素×2592画素であれば、パラメータKの値としては、例えば、100~400程度の値が採用される。
 なお、第1生成部14Aは、特定部17Aと同様に設定された動作モードに応じて以下に説明する各種のぼかし処理を行うことできる。また、該動作モードは、例えば、操作者が操作部42を介して設定する手法や、特定部17Aの動作モードを第1生成部14Aが判定することによって設定する手法などの各種の手法によって設定される。
 ○ぼかし処理1:ぼかし処理1に対応した動作モードが設定された場合には、第1生成部14Aは、原距離画像31のうち非注視領域に対応する領域の画像、すなわち各距離情報に対するぼかし処理を行うことによって各派生距離情報28を生成する。また、第1生成部14Aは、動作モードに応じて、原距離画像31の非注視領域を、該非注視領域に撮影された被写体各部の距離が所定の基準距離よりも各距離情報の原点位置、すなわち基準カメラ61の光学中心73aに近い近側の領域と、該原点位置に対して該基準距離よりも遠い遠側の領域とに区分し、該近側の領域と、該遠側の領域とにそれぞれ強度の異なるぼかし処理を施す処理も行い得る。なお、立体視画像26を観察する観察者が覚える違和感を軽減するために、該近側の領域に対するぼかし強度は、該遠側の領域に対するぼかし強度よりも、通常、弱く設定される。また、該近側の領域と、外縁側の領域との区分けに使用される基準距離としては、例えば、原距離画像31のうち注視領域に対応した領域の各距離情報の平均値などが採用される。
 また、第1生成部14Aは、ぼかし処理1についてさらに詳細な処理内容が規定された以下のぼかし処理1A~1Cの各処理のうち1つの処理を動作モードに応じて行うこともできる。なお、第1生成部14Aが、ぼかし処理1A~1Cのいずれの処理を行ったとしても本発明の有用性を損なうものではない。
 ・ぼかし処理1A:ぼかし処理1Aに対応した動作モードが設定されている場合には、第1生成部14Aは、原距離画像31のうち非注視領域に対応する領域の画像に対して、例えば、平均化フィルタ55(図13)などを用いた平均化フィルタ処理を施すことによってぼかし処理を行って各派生距離情報28を生成する。なお、平均化フィルタ処理に代えて、例えば、メディアンフィルタ、またはガウシアンフィルタなどの各種の平滑化フィルタを用いた平滑化フィルタ処理が施されたとしても本発明の有用性を損なうものではない。
 ・ぼかし処理1B:ぼかし処理1Bに対応した動作モードが設定されている場合には、第1生成部14Aは、原距離画像31のうち非注視領域に対応する領域の各画素について、該各画素をそれぞれ内包する、例えば、3×3画素サイズ~50×50画素サイズなどの所定サイズの領域における各距離情報の最頻値を例えばヒストグラムなどの各距離情報の統計的な分布状態に基づいて特定し、特定された最頻値を該各画素の画素値とすることによってぼかし処理を行って各派生距離情報28を生成する。
 ・ぼかし処理1C:ぼかし処理1Cに対応した動作モードが設定されている場合には、第1生成部14Aは、原距離画像31のうち非注視領域に対応する領域における各距離情報を、各距離情報についての原点位置、すなわち基準カメラ61の光学中心73aに対して、より遠方側にそれぞれ変更することによってぼかし処理を行って各派生距離情報28を生成する。
 ○ぼかし処理2:ぼかし処理2に対応した動作モードが設定された場合には、第1生成部14Aは、基準画像21のうち非注視領域に対応する領域の画像に対するぼかし処理によって派生画像24を生成する。なお、時系列画像として取得された基準画像21と、基準画像21とは異なる時刻に撮影された別の基準画像とに基づいて各二次元移動ベクトルが第1ベクトル取得部18によって取得されている場合には、第1生成部14Aは、動作モードに応じて、該別の基準画像に対して二次元移動ベクトルを用いたぼかし処理を行うことができる。具体的には、取得された二次元移動ベクトルに基づいて基準画像21の非注視領域が特定された場合には、第1生成部14Aは、基準画像21のうち非注視領域に対応する領域の画像に対するぼかし処理を施し、その結果として派生画像24を生成する。なお、基準画像21の非注視領域に対応する領域の各画素には、二次元移動ベクトルによって対応付けられた該別の基準画像の各画素が存在する。そして、第1生成部14Aは、基準画像21の非注視領域における各画素に適用されたぼかし処理を該別の基準画像該各画素に対応付けがなされた施すことによって該別の基準画像に対応した派生画像を生成することもできる。上述したように時系列の各基準画像間の対応した画素に対して同一のぼかし処理が行われれば、時系列の各基準画像に基づいて生成された時系列の立体視画像(動画像)を観察する観察者が覚える違和感を軽減することができるとともに、時系列方向でのちらつき感を抑制することができ、観察者の目の疲労を軽減することができる。
 また、第1生成部14Aは、動作モードに応じて、原距離画像31のうち領域情報2aによって特定される非注視領域以外の注視領域に対応した領域の画像について、該領域の各距離情報の平均値を求めることなどによって該注視領域を代表する距離情報を取得するとともに、該距離情報に基づいて原距離画像31のうち非注視領域に対応した領域を、各距離情報の原点位置、すなわち基準カメラ61の光学中心73aに対して注視領域よりも遠側の領域と、注視領域よりも近側の領域とに区分し、区分された2つの領域に対して強度の異なるぼかし処理をそれぞれ施す処理も行い得る。なお、立体視画像26を観察する観察者が覚える違和感を軽減するために、該近側の領域に対するぼかし強度は、該遠側の領域に対するぼかし強度よりも、通常、弱く設定される。
 また、第1生成部14Aは、ぼかし処理2についてさらに詳細な処理内容が規定された以下のぼかし処理2A~2Cの各処理のうち1つの処理を動作モードに応じて行うこともできる。なお、第1生成部14Aが、ぼかし処理2A~2Cのいずれの処理を行ったとしても本発明の有用性を損なうものではない。
 ・ぼかし処理2A:ぼかし処理2の具体的な手法として、第1生成部14Aは、動作モードに応じて基準画像21のうち領域情報2aにより特定される非注視領域に対応する領域の画像に対して平均化フィルタ55(図13)などを用いた平均化フィルタ処理を施すぼかし処理2Aを採用し得る。
 ・ぼかし処理2B:同様に、第1生成部14Aは、動作モードに応じて基準画像21のうち非注視領域に対応する領域において空間的に離散的に存在する各画素を特定するとともに、特定された各画素の画素値に基づいて、基準画像21のうち非注視領域に対応する領域のうち離散的に特定された各画素以外の画素の画素値を取得することによってぼかし処理を行うぼかし処理2Bを採用することもできる。具体的には、第1生成部14Aは、例えば、基準画像21を複数領域に分割して、各領域ごとに中心画素を離散的に特定し、各領域の画素のうち特定された画素以外の画素の画素値として、各領域に置いて特定された画素の画素値を採用することによってぼかし処理2Bを行う。
 ・ぼかし処理2C:また、ぼかし処理2の具体的な手法として、第1生成部14Aは、基準画像21のうち非注視領域に対応する領域における画素値の空間的な高周波成分を周波数解析などの手法を用いて除去することによってぼかし処理を行うぼかし処理2Cを採用することもできる。
 なお、第1生成部14Aが、基準画像21に対してぼかし処理を行う手法に代えて、後述する第2生成部15Aが、基準画像21と、原距離画像31または派生距離画像32とに基づいて生成した疑似画像に対して、例えば第2生成部15Aが、生成された疑似画像のうち基準画像21の非注視領域に対応した領域の画像をぼかす手法が採用されたとしても本発明の有用性を損なうものではない。
 第1生成部14Aが行うぼかし処理によって、派生画像24(図2)および各派生距離情報28(派生距離画像32)がそれぞれ生成されると、生成された派生画像24(図2)および各派生距離情報28(派生距離画像32)は、第2生成部15Aへとそれぞれ供給される。
 ○第2生成部15Aの動作:
 図2に示される第2生成部15Aは、派生画像と各派生距離情報とに基づいて、基準画像21が撮影された視点とは別の仮想視点からの撮影に対応した被写体の疑似画像25を生成する(図21のステップS150)。生成された疑似画像25は、第3取得部16へと供給されて立体視画像26の取得に供される。なお、第2生成部15Aは、設定された動作モードに応じて、立体視画像26を構成する左目用の画像と右目用の画像とのうち一方の画像として1つの疑似画像25を生成する処理を行うことができるとともに、動作モードに応じて、左目用の画像および右目用の画像として2つの疑似画像25をそれぞれ生成する処理を行うこともできる。また、第2生成部15Aが表示部43に係る情報に基づいて疑似画像25の視差量を調整したとしても本発明の有用性を損なうものではない。
 次に、第2生成部15Aが、基準画像の各画素に対応した各視差、または各距離などの各距離情報に基づいて疑似画像を生成する手法について説明する。図18は、図17に示された基準画像21eと参照画像22eとについての各視差と、基準画像21eとに基づいて、基準画像21eが撮影された視点とは別の仮想視点からの被写体の撮影に対応した疑似画像25eを生成する基本手法の1例を説明するための図である。
 なお、図18における疑似画像25eに対応した仮想視点は、基準画像21eが撮影された視点に対して、X軸に沿って+X方向に、基準カメラ61と参照カメラ62との基線長を隔てた位置に存在している。また、疑似画像25eにおける近景被写体像66cおよび遠景被写体像67cは、基準画像21における近景被写体像66aおよび遠景被写体像67aにそれぞれ対応している。また、近景被写体像66a上の画素68aには、近景被写体像66c上の画素68cが対応し、遠景被写体像67a上の画素69aには、遠景被写体像67c上の画素69cが対応している。なお、図18においても、図17と同様に、説明を容易にするために、各被写体像のそれぞれにおける各特徴部のエッジ(輪郭)のみが表示されているとともに、視差の把握を容易にするため基準画像21eと疑似画像25の左端(右端)のX座標が等しくなるように垂直方向(図18のY軸方向)に並べて表示されている。
 この場合、基準画像21eの画素68aと、疑似画像25eの画素68cとの視差として、図17における画素68aと画素68bとの視差9aが設定されるとともに、基準画像21eの画素69aと、疑似画像25eの画素69cとの視差として、図17における画素69aと画素69bとの視差9bが設定される。また、疑似画像25eの他の画素についても同様に基準画像21eの画素との視差が設定されることによって、疑似画像25eの各画素についての基準画像21eの各画素との視差が取得される。そして、取得された視差に基づいて基準画像21eを変形させることによって疑似画像25eが取得される。
 次に、基準画像と視差とに基づいて疑似画像を生成する上述した基本手法について詳しく説明する。図22は、基準画像21eと、基準画像21eの各画素についての距離情報とに基づいて疑似画像25eを生成する上述した基本手法の動作フローS10を例示する図である。
 図22の動作フローS10の処理が開始されると、基準画像21e(図18)の上端(-Y方向端)における水平走査方向(X軸方向)の1ライン分の部分画像23a(図19)が選択される(ステップS20)。
 図19は、基準画像21e(図18)の上端(-Y方向端)の水平走査方向(X軸方向)の1ライン分の部分画像23a(図19)の一部の各画素7a~7jと、基準画像21eに対応した疑似画像25e(図18)の上端(-Y方向端)の水平走査方向の1ライン分の部分画像23b(図19)の一部の各画素8a~8jとの対応関係の1例を示す図である。また、部分画像23aと部分画像23bとは、被写体の同一部分にそれぞれ対応している。なお、該対応関係の把握を容易にするために、各画素7a~7jと、各画素8a~8jとは、画素値に応じた濃淡によって画素毎に区分されて表示されている。
 図20は、部分画像23a(図19)の各画素7a~7jの画素座標および視差(距離情報)と、部分画像23b(図19)の各画素8a~8jの画素座標との対応の1例を示す図である。図20の第1行目と第5行目には、部分画像23aの各画素7a~7jをそれぞれ特定する画素番号と、部分画像23bの各画素8a~8jをそれぞれ特定する画素番号とが示されている。また、図20の第2行目には、各画素7a~7jのX座標が第1行目に示された画素番号に対応づけられて示されている。また、図20の第3行目には基準画像21eと参照画像22e(図17)とについて算出された視差(距離情報)のうち各画素7a~7jに対応した視差が第1行目に示された画素番号に対応づけられて示されている。
 図22のステップS20において、1ライン分の部分画像23aが選択されると、選択された部分画像23aの各画素について、疑似画像25eにおいて対応する画素、すなわち部分画像23bの各画素8a~8jの水平走査方向(X軸方向)の画素座標(X座標)が取得される(図22のステップS30)。
 ここで、上述した基本手法は、疑似画像25e(図18)に対応した仮想視点が、基準画像21e(図17、図18)が撮影された視点に対して、X軸に沿って+X方向に、基準カメラ61と参照カメラ62との基線長を隔てた位置に存在している場合の手法である。従って、部分画像23aと部分画像23bとのそれぞれの垂直方向(Y軸方向)の画素座標(Y座標)は同じである。また、図20の第3行目に示された視差は、部分画像23aと、部分画像23bとの視差でもある。
 従って、部分画像23bの各画素のX座標は、(4)式によって算出される。図20の第4行目には、(4)式によって算出された各画素8a~8jのX座標がそれぞれ第5行目に示された各画素番号に対応づけられて示されている。
Figure JPOXMLDOC01-appb-M000004
 疑似画像25eの水平方向の1ライン分の部分画像23bにおける各画素の画素座標が取得されると、次に、部分画像23bの各画素の画素値がそれぞれ取得される。すなわち、1ライン分の部分画像23bの画像が生成される(図22のステップS40)。次に、ステップS40における処理を、図19に示された部分画像23aの各画素7a~7jと、部分画像23bの各画素8a~8jを例として説明する。
 図20の第4行目に示された各画素8a~8jのX座標によれば、部分画像23aの各画素7a、7b、7c、7d、7e、7f、7g、7h、7i、7jは、部分画像23bの各画素8a、8b、8b、8c、8d、8d、8e、8g、8i、8jにそれぞれ対応している。すなわち、各画素8a~8jには、各画素7a~7jのうち1つの画素が対応している第1種の画素、2つの画素が対応している第2種の画素、および各画素7a~7jの何れの画素も対応していない第3種の画素の3種類の画素が存在している。
 図22のステップS40の処理においては、該第1種の画素の画素値として、該画素に対応する部分画像23aの画素の画素値が採用され、また、該第2種の画素の画素値として、該画素に対応する部分画像23aの2つの画素の画素値の代表値、例えば、平均値が採用される。また、該第3種の画素の画素値としては、例えば、部分画像23aとの対応関係に基づいて画素値が取得された部分画像23bの画素のうち該第3種の画素に最も空間的に近い画素の画素値が採用される。そして、部分画像23bの画像は、部分画像23bの各画素についてそれぞれ特定された画素座標(X座標)と、画素値とによって特定される。
 ステップS40の処理が終了すると、基準画像21eの水平方向(X軸方向)の全てのラインについて、対応する疑似画像の部分画像を生成する処理(ステップS30~S40)が終了したか否かが確認される(図22のステップS50)。ステップS50での確認の結果、水平方向の全てのラインについて処理が終了していなければ、基準画像21のうち、処理されたラインの+Y方向の次のラインが新たな処理対象として選択されて(図22のステップS60)、処理はステップS30へと戻される。また、ステップS50での確認の結果、水平方向の全てのラインについて疑似画像の部分画像を生成する処理が終了していれば、疑似画像25eの生成処理は終了される。
 なお、視差に基づいた基準画像21eの変形は、画素サイズを最小単位として行えばよい。従って、画素サイズ単位で視差が取得されれば疑似画像25eを取得できるが、例えば、視差を求めるための対応点探索を画素サイズ以下のサブピクセル単位で実施することにより視差をサブピクセル単位で取得したとしても、視差に基づいた基準画像21eの変形の際に、該変形量を画素単位で行えば疑似画像25eが取得できるので、本発明の有用性を損なうものではない。
 次に、仮想視点と、基準画像21eの撮影に係る視点との基線長が、図17における基準画像21eと参照画像22eとにそれぞれ対応した基準カメラ61と参照カメラ62との基線長とは異なる場合における疑似画像の取得手法について説明する。この場合には、例えば、先ず、基準画像21eの各点の視差から(1)式を用いて該各点に対応した被写体の各点の距離を算出し、算出された距離、および仮想視点と基準画像21eの撮影に係る視点との基線長に基づいて、基準画像21eの各画素と、疑似画像25の各画素との視差を(1)式によって取得し、取得された視差に基づいて基準画像21eの画像を変形することによって該異なる基線長に対応した疑似画像25を取得することが出来る。従って、変形例についての説明欄で後述するように、ステレオカメラ300に代えて各種の三次元測定機を採用することができる。
 第2生成部15Aは、基準画像21および各基準距離情報27にそれぞれ対応した派生画像24および各派生距離情報28(派生距離画像32)に、例えば、上述した疑似画像25の生成に係る基本手法などを適用して基準画像21を変形することによって、基準画像21が撮影された視点とは別の仮想視点からの撮影に対応した被写体の疑似画像25を生成する。生成された疑似画像25は、第3取得部16に供給される。
 ○第3取得部16の動作:
 図2に示される第3取得部16は、第1取得部12および第2生成部15Aからそれぞれ供給された基準画像21および疑似画像25を立体視画像として取得し、取得した立体視画像を表示部43に表示させる。なお、第3取得部16は、第2生成部15Aが基準画像21に基づいてそれぞれ生成した左目用の疑似画像および右目用の疑似画像を立体視画像として取得することもできる。また、第3取得部16は、記憶装置46に記憶されたステレオカメラ300と観察者の両眼とについての基線長および焦点距離の差異、表示部43のサイズ情報などに応じて疑似画像25を変形し、立体視画像を生成することもできる。
 上述したように、画像処理装置200Aによれば、画像処理装置200Aが生成した立体視画像26を観察する観察者は、注視領域において本来の画質と距離感とが保持された被写体の立体像を認識できるとともに、非注視領域における立体視に関する視覚的な情報量が低減されることによって、非注視領域での立体視に関する視覚的な情報の過多や混在に起因した目の疲労を軽減され得る。
 <変形例について:>
 以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく様々な変形が可能である。
 例えば、上述した画像処理システム100Aにおけるステレオカメラ300では、基準カメラ61と参照カメラ62との基線長の方向は垂直方向であったが、該基線長の方向は、水平方向その他の任意の方向でもよい。また、基準カメラ61と参照カメラ62との撮影倍率は、異なっていても良い。
 また、ステレオカメラ300に代えて、例えば、基準カメラ61と、レーザ光などの形状計測用の各種検出光を被写体へと投影する投光装置とを備えて構成され、三角測量の原理、または、TOF(Time of Flight)方式などによって被写体の基準画像21と、基準画像21の各画素に対応した被写体の各点についての距離情報とを取得するアクティブ測距方式の三次元測定機が採用されたとしても、該距離情報と(1)式とによって、基準画像21に対する疑似画像25の視差を取得し、該視差と基準画像21とに基づいて疑似画像25を取得することが出来るので、本発明の有用性を損なうものではない。
 また、通常、被写体を撮影した画像の彩度は、被写体が近いほど彩度が高く、被写体が遠いほど彩度が低くなるので、ステレオカメラ300に代えて、基準カメラ61によって基準画像21を取得するとともに、基準画像21の彩度に基づいて、基準画像21の各画素に対応する距離情報を推定して取得する方式の三次元測定機が採用されたとしても本発明の有用性を損なうものではない。また、例えば、基準画像21(図5)の各画素について、画素のY座標が増加すればするほど該画素に対応した被写体上の点が基準カメラ61に対して遠距離であるとの仮定に基づいて、基準画像21の各画素に対応する距離情報を推定して取得する手法が採用されたとしても本発明の有用性を損なうものではない。
 また、基準画像21の撮影に係る視点とは異なる視点から撮影される画像に基づいて被写体についての距離情報の測定を行う三次元測定機と、基準カメラ61とがステレオカメラ300に代えて採用されたとしても、該異なる視点に係る画像と、基準画像21とのマッチングを介することによって、基準画像21と測定された距離情報との対応付けを行うことができるので、本発明の有用性を損なうものではない。
 100A 画像処理システム
 200A 画像処理装置
 300 ステレオカメラ
 2a 領域情報
 3a,3b 非注視領域
 9a,9b,d 視差
 21 基準画像
 22 参照画像
 23a,23b 部分画像
 24 派生画像
 25 疑似画像
 26 立体視画像
 27 各基準距離情報
 28 各派生距離情報
 31 原距離画像
 32 派生距離画像
 55 平均化フィルタ
 61 基準カメラ
 62 参照カメラ
 66a,66b 近景被写体像
 67a,67b 遠景被写体像
 91 二次元移動ベクトル
 92 三次元移動ベクトル
 104 消失点
 b 基線長

Claims (29)

  1.  画像処理装置であって、
     被写体が撮影された基準画像を取得する第1の取得部と、
     前記被写体の各点のうち前記基準画像の各画素にそれぞれ対応した各点について、所定の原点位置からの距離情報を表現した各基準距離情報を取得する第2の取得部と、
    を備え、
     前記基準画像の画素配列に対応する前記各基準距離情報の配列によって基準距離画像を定義したとき、
     所定の判定基準によって前記基準画像と前記基準距離画像とのそれぞれに対応する画像空間を、前記被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う特定部と、
     前記基準画像および前記基準距離画像のうち少なくとも一方の前記非注視領域に対応した領域の画像に対するぼかし処理の結果として前記基準画像および前記各基準距離情報にそれぞれ対応した派生画像および各派生距離情報をそれぞれ生成する生成処理を行う第1の生成部と、
     前記派生画像と前記各派生距離情報とに基づいて、前記基準画像が撮影された視点とは別の仮想視点からの撮影に対応した前記被写体の疑似画像を生成する第2の生成部と、
    をさらに備える画像処理装置。
  2.  請求項1に記載された画像処理装置であって、
     前記特定部は、前記基準画像における色彩の統計的な分布状態および空間的な分布状態の少なくとも一方に基づいて前記特定処理を行う画像処理装置。
  3.  請求項1に記載された画像処理装置であって、
     前記特定部は、前記基準画像におけるぼけ部分を前記非注視領域とすることにより前記特定処理を行う画像処理装置。
  4.  請求項1に記載された画像処理装置であって、
     前記特定部は、前記基準画像の中心部分の範囲を規定した領域情報に基づいて前記特定処理を行う画像処理装置。
  5.  請求項1に記載された画像処理装置であって、
     前記第1の取得部は、前記被写体が前記基準画像とは異なる時刻に撮影された別画像を取得し、
     前記画像処理装置は、前記基準画像と前記別画像とに基づいて前記基準画像の各画素についての各二次元移動ベクトルを求める二次元移動ベクトル取得部を更に備え、
     前記特定部は、前記各二次元移動ベクトルに基づいて前記特定処理を行う画像処理装置。
  6.  請求項4に記載された画像処理装置であって、
     前記特定部は、前記各二次元移動ベクトルの消失点に基づいて前記特定処理を行う画像処理装置。
  7.  請求項1に記載された画像処理装置であって、
     前記特定部は、前記各基準距離情報に基づいて前記特定処理を行う画像処理装置。
  8.  請求項7に記載された画像処理装置であって、
     前記特定部は、前記各基準距離情報のうち所定の距離範囲の各距離情報に基づいて前記特定処理を行う画像処理装置。
  9.  請求項7に記載された画像処理装置であって、
     前記特定部は、前記各基準距離情報のうち前記基準画像についての合焦距離情報に基づいて特定される各距離情報に基づいて前記特定処理を行う画像処理装置。
  10.  請求項7に記載された画像処理装置であって、
     前記特定部は、前記基準距離画像のうち相互の距離情報の差異が所定の距離範囲内である画素が連結した所定サイズ以上の領域を前記注視領域とすることにより前記特定処理を行う画像処理装置。
  11.  請求項7に記載された画像処理装置であって、
     前記特定部は、前記基準距離画像のうち相互の距離情報の差異が所定の距離範囲内である画素が連結した所定サイズ以上の領域のうち最大サイズの領域を前記注視領域とすることにより前記特定処理を行う画像処理装置。
  12.  請求項7に記載された画像処理装置であって、
     前記特定部は、前記基準距離画像のうち所定の空間的な領域の範囲を規定した領域情報に基づいて前記特定処理を行う画像処理装置。
  13.  請求項1に記載された画像処理装置であって、
     前記第1の取得部は、前記被写体が前記基準画像とは異なる時刻に撮影された別画像を取得するとともに、
     前記第2の取得部は、前記被写体の各点のうち前記別画像の各画素にそれぞれ対応した各点について各別距離情報を取得し、
     前記画像処理装置は、前記基準画像と前記別画像と前記各基準距離情報と前記各別距離情報とに基づいて前記基準画像の各画素についての各三次元移動ベクトルを求める三次元移動ベクトル取得部を更に備え、
     前記特定部は、前記各三次元移動ベクトルに基づいて前記特定処理を行う画像処理装置。
  14.  請求項13に記載された画像処理装置であって、
     前記特定部は、前記各三次元移動ベクトルに基づいて前記基準画像のうち移動物が撮影された領域を抽出し、該領域を前記注視領域とすることにより前記特定処理を行う画像処理装置。
  15.  請求項13に記載された画像処理装置であって、
     前記特定部は、前記基準画像のうち前記各三次元移動ベクトルの大きさが所定の閾値以上となる領域を前記注視領域とすることにより前記特定処理を行う画像処理装置。
  16.  請求項13に記載された画像処理装置であって、
     前記特定部は、前記各三次元移動ベクトルのうち三次元移動ベクトルの延長線が前記基準画像の撮影に係る撮影系と交差する三次元移動ベクトルを特定し、特定された三次元移動ベクトルに対応する前記基準画像の領域を前記注視領域とすることにより前記特定処理を行う画像処理装置。
  17.  請求項1から請求項16の何れか1つの請求項に記載された画像処理装置であって、
     前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域の画像に対するぼかし処理によって前記各派生距離情報を生成する画像処理装置。
  18.  請求項17に記載された画像処理装置であって、
     前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域の画像に平均化フィルタ処理を施すことによって前記ぼかし処理を行う画像処理装置。
  19.  請求項17に記載された画像処理装置であって、
     前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域の各画素について、該各画素をそれぞれ内包する所定サイズの領域における各距離情報の最頻値を該各画素の画素値とすることによって前記ぼかし処理を行う画像処理装置。
  20.  請求項17に記載された画像処理装置であって、
     前記第1の生成部は、前記基準距離画像のうち前記非注視領域に対応する領域における各距離情報を前記原点位置に対して遠方側にそれぞれ変更することによって前記ぼかし処理を行う画像処理装置。
  21.  請求項1から請求項16の何れか1つの請求項に記載された画像処理装置であって、
     前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域の画像に対するぼかし処理によって前記派生画像を生成する画像処理装置。
  22.  請求項5または請求項6に記載された画像処理装置であって、
     前記第1の生成部は、
     a)前記基準画像のうち前記非注視領域に対応する領域の画像に対するぼかし処理によって前記生成処理を行うとともに、
     b)該領域の各画素に対応する前記各二次元移動ベクトルよって対応づけがされた前記別画像の各画素には、該各画素に対応付けがなされた前記基準画像の画素に適用されたぼかし処理と同一のぼかし処理を施すことによって前記別画像に対応した別派生画像を生成する画像処理装置。
  23.  請求項21または請求項22に記載された画像処理装置であって、
     前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域の画像に平均化フィルタ処理を施すことによって前記ぼかし処理を行う画像処理装置。
  24.  請求項21または請求項22に記載された画像処理装置であって、
     前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域において離散的に特定された各画素の画素値に基づいて、該領域のうち前記離散的に特定された各画素以外の画素の画素値を取得することによって前記ぼかし処理を行う画像処理装置。
  25.  請求項21または請求項22に記載された画像処理装置であって、
     前記第1の生成部は、前記基準画像のうち前記非注視領域に対応する領域における画素値の空間的な高周波成分を除去することによって前記ぼかし処理を行う画像処理装置。
  26.  請求項1に記載された画像処理装置であって、
     前記第1の生成部は、前記前記基準画像および前記基準距離画像の少なくとも一方の前記非注視領域に対応した領域の画像について、該画像のうち前記原点位置に対して前記注視領域よりも遠側の領域と、前記原点位置に対して前記注視領域よりも近側の領域とについて、異なる強度のぼかし処理をそれぞれ施す画像処理装置。
  27.  請求項1に記載された画像処理装置であって、
     前記疑似画像に基づいて立体視画像を取得する第3の取得部をさらに備える画像処理装置。
  28.  画像処理装置に搭載されたコンピュータにおいて実行されることにより、当該画像処理装置を請求項1から請求項27の何れか1つの請求項に記載の画像処理装置として機能させるプログラム。
  29.  画像処理方法であって、
     被写体が撮影された基準画像を取得する第1の取得工程と、
     前記被写体の各点のうち前記基準画像の各画素にそれぞれ対応した各点について、所定の原点位置からの距離情報を表現した各基準距離情報を取得する第2の取得工程と、
    を備え、
     前記基準画像の画素配列に対応する前記各基準距離情報の配列によって基準距離画像を定義したとき、
     所定の判定基準によって前記基準画像と前記基準距離画像とのそれぞれに対応する画像空間を、前記被写体のうち主要被写体を含むと判定される注視領域と、該注視領域以外の非注視領域とに分類して特定する特定処理を行う特定工程と、
     前記基準画像および前記基準距離画像のうち少なくとも一方の前記非注視領域に対応した領域の画像に対するぼかし処理の結果として前記基準画像および前記各基準距離情報にそれぞれ対応した派生画像および各派生距離情報をそれぞれ生成する生成処理を行う第1の生成工程と、
     前記派生画像と前記各派生距離情報とに基づいて、前記基準画像が撮影された視点とは別の仮想視点からの撮影に対応した前記被写体の疑似画像を生成する第2の生成工程と、
    をさらに備える画像処理方法。
PCT/JP2011/077187 2010-12-22 2011-11-25 画像処理装置、そのプログラム、および画像処理方法 WO2012086362A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012549695A JP5464279B2 (ja) 2010-12-22 2011-11-25 画像処理装置、そのプログラム、および画像処理方法
US13/994,038 US9332247B2 (en) 2010-12-22 2011-11-25 Image processing device, non-transitory computer readable recording medium, and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010285429 2010-12-22
JP2010-285429 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012086362A1 true WO2012086362A1 (ja) 2012-06-28

Family

ID=46313644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077187 WO2012086362A1 (ja) 2010-12-22 2011-11-25 画像処理装置、そのプログラム、および画像処理方法

Country Status (3)

Country Link
US (1) US9332247B2 (ja)
JP (1) JP5464279B2 (ja)
WO (1) WO2012086362A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178066B2 (ja) 2012-11-06 2017-08-09 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、情報処理方法、プログラム及び情報記憶媒体
US9292927B2 (en) * 2012-12-27 2016-03-22 Intel Corporation Adaptive support windows for stereoscopic image correlation
JP6143469B2 (ja) * 2013-01-17 2017-06-07 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
KR102125775B1 (ko) * 2014-02-24 2020-06-23 삼성전자주식회사 배제 픽셀 데이터를 보상하여 영상을 생성하는 방법 및 그것을 이용하는 영상 생성 장치
JP6674630B2 (ja) * 2016-05-30 2020-04-01 カシオ計算機株式会社 画像処理装置、画像処理方法、及びプログラム
PL3494695T3 (pl) 2016-08-04 2024-02-19 Dolby Laboratories Licensing Corporation Rozwiązania akomodacji-wergencji ze śledzeniem pojedynczej głębi
CN110785789A (zh) * 2017-06-27 2020-02-11 索尼公司 图像处理装置、图像处理方法和程序
JP7052513B2 (ja) * 2018-04-16 2022-04-12 日本電信電話株式会社 画像生成装置、画像生成方法、プログラム
US11423516B2 (en) * 2019-03-29 2022-08-23 Tobii Ab Gaze enhanced natural motion blur
US11682297B2 (en) * 2020-03-31 2023-06-20 Flir Systems Trading Belgium Bvba Real-time scene mapping to GPS coordinates in traffic sensing or monitoring systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115989A (ja) * 1985-11-15 1987-05-27 Hitachi Ltd 立体表示システム
JPH06215092A (ja) * 1993-01-18 1994-08-05 Toshiba Corp 表示装置
JPH10239634A (ja) * 1997-02-27 1998-09-11 Minolta Co Ltd 立体映像表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966941B2 (ja) 2008-09-30 2012-07-04 オリンパスビジュアルコミュニケーションズ株式会社 3次元映像データ生成方法、3次元映像データ生成システム、及び3次元映像データ生成プログラム
US8774498B2 (en) * 2009-01-28 2014-07-08 Xerox Corporation Modeling images as sets of weighted features

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115989A (ja) * 1985-11-15 1987-05-27 Hitachi Ltd 立体表示システム
JPH06215092A (ja) * 1993-01-18 1994-08-05 Toshiba Corp 表示装置
JPH10239634A (ja) * 1997-02-27 1998-09-11 Minolta Co Ltd 立体映像表示装置

Also Published As

Publication number Publication date
JP5464279B2 (ja) 2014-04-09
US9332247B2 (en) 2016-05-03
US20130300828A1 (en) 2013-11-14
JPWO2012086362A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5464279B2 (ja) 画像処理装置、そのプログラム、および画像処理方法
JP5968107B2 (ja) 画像処理方法、画像処理装置およびプログラム
JP6112824B2 (ja) 画像処理方法および装置、プログラム。
JP4657313B2 (ja) 立体画像表示装置および方法並びにプログラム
JP7238381B2 (ja) 画像処理装置、画像処理プログラム、画像処理方法および顕微鏡
JP6786225B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
WO2013038833A1 (ja) 画像処理システム、画像処理方法および画像処理プログラム
WO2017217115A1 (ja) 画像処理装置、画像処理方法、プログラム、及び画像処理システム
KR20110090886A (ko) 3차원 표시 장치 및 방법과, 프로그램
JP5874649B2 (ja) 画像処理装置、そのプログラム、および画像処理方法
JP2013026844A (ja) 画像生成方法及び装置、プログラム、記録媒体、並びに電子カメラ
JP6585938B2 (ja) 立体像奥行き変換装置およびそのプログラム
CN110519493A (zh) 成像设备和成像方法
JP2016225811A (ja) 画像処理装置、画像処理方法およびプログラム
TWI589150B (zh) 3d自動對焦顯示方法及其系統
JP5741353B2 (ja) 画像処理システム、画像処理方法および画像処理プログラム
GB2585197A (en) Method and system for obtaining depth data
KR101219859B1 (ko) 3d촬영장치에서의 반자동 주시각 제어장치 및 반자동 주시각 제어방법
JP5891554B2 (ja) 立体感提示装置および方法ならびにぼけ画像生成処理装置,方法およびプログラム
JP5351878B2 (ja) 立体画像表示装置および方法並びにプログラム
JP2014049895A (ja) 画像処理方法
JP6439285B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
US20240169492A1 (en) Selective extended depth-of-field correction for image reconstruction
JP7208809B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP5516365B2 (ja) 画像処理装置、そのプログラム、および画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13994038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849991

Country of ref document: EP

Kind code of ref document: A1