WO2012086024A1 - 分散型計算機システムに用いられる設定端末 - Google Patents

分散型計算機システムに用いられる設定端末 Download PDF

Info

Publication number
WO2012086024A1
WO2012086024A1 PCT/JP2010/073101 JP2010073101W WO2012086024A1 WO 2012086024 A1 WO2012086024 A1 WO 2012086024A1 JP 2010073101 W JP2010073101 W JP 2010073101W WO 2012086024 A1 WO2012086024 A1 WO 2012086024A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
power
lan cable
supply
data frame
Prior art date
Application number
PCT/JP2010/073101
Other languages
English (en)
French (fr)
Inventor
和也 我妻
志津弥 渡辺
勲 寺門
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/073101 priority Critical patent/WO2012086024A1/ja
Priority to JP2012549523A priority patent/JP5519807B2/ja
Publication of WO2012086024A1 publication Critical patent/WO2012086024A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40045Details regarding the feeding of energy to the node from the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40293Bus for use in transportation systems the transportation system being a train

Definitions

  • the present invention relates to a setting terminal used for a distributed computer system.
  • DHCP Dynamic Host Configuration Protocol
  • IP Internet Protocol
  • a setting suitable for the installation position is performed according to the installation position of the computer
  • information such as a video advertisement is sent to a display terminal in a vehicle as a railway information service.
  • a vehicle is composed of multiple vehicles, and the vehicle is separated at a midway station, and the destinations from the midway station of the separated trains are different, the store guidance according to the destination (if Sendai bound) It is convenient to be able to advertise information on restaurants near Sendai.
  • Patent Document 1 an unused 4-core cable line is installed in a LAN (Local Area Network) cable in which 8 cores (8 cables) for connecting a display terminal to a network are combined into one.
  • LAN Local Area Network
  • the display terminal is notified of the installation position information without hindering the data transmission of the LAN cable, and the setting suitable for the installation position is realized.
  • a LAN cable (twisted pair wire) that is widely used is not always a combination of a 4-core for data transmission and an unused 4-core among the 8-core.
  • the unused four cores are deleted and only the four cores for data transmission are used, and the thickness of the cable is reduced to facilitate wiring.
  • Gigabit Ethernet registered trademark
  • all eight cores are used for data transmission in order to realize a transmission rate of 1 Gbps.
  • the main object of the present invention is to solve the above-described problems and to realize automatic setting of a computer according to an installation position for a computer connected via a LAN cable having no unused line. To do.
  • the present invention is a setting terminal for performing different network settings for each of its own connection positions
  • the setting terminal includes an installation position specifying unit, a storage unit for position specifying information, a PoE circuit, and a network interface.
  • the network interface is composed of a first connector and a second connector as a connector that is an interface for connecting a LAN cable
  • the PoE circuit is a circuit for transmitting an Ethernet data frame and supply power in the LAN cable, and a power receiving means for receiving the supply power from the LAN cable connected to the first connector; Power supply means for transmitting the power for supply to the LAN cable connected to the second connector,
  • the position specifying information stores correspondence data between a supply voltage value of the supply power and a position ID for specifying its connection position
  • the installation position specifying unit is The voltage value of the supply power is measured from the LAN cable connected to the first connector via the power receiving means, and the position specifying information is searched using the measurement value as a search key for the supply voltage value.
  • the position specifying information is searched using the next connection position of the specified own connection position as a search key for the position ID, and the power supply means is supplied with the supply voltage value corresponding to the searched position ID.
  • a setting terminal that transmits the power for supply to the LAN cable connected to the second connector Other means will be described later.
  • FIG. 1 is a configuration diagram illustrating a distributed computer system according to an embodiment of the present invention. It is a block diagram which shows the distributed computer system different from FIG. 1 regarding one Embodiment of this invention. It is a block diagram which shows the detail of the connector which connects each PC and PC of a distributed computer system regarding one Embodiment of this invention to a network. It is a circuit diagram which shows the example of mounting of the PoE (Power * over * Ethernet) circuit regarding one Embodiment of this invention. It is a block diagram which shows the software structure and data structure of PC regarding one Embodiment of this invention. It is a flowchart explaining operation
  • PoE Power * over * Ethernet
  • FIG. 1 is a configuration diagram showing a distributed computer system.
  • FIG. 1A shows a configuration in which a plurality of PCs (Personal Computers) are connected in series
  • FIG. 1B shows a configuration in which a plurality of PCs are connected in parallel.
  • Each PC 1 (# 3 to # 10, “#” indicates a number) is connected to a network located in the vicinity of each door (# 1 to # 8) in the railway vehicle.
  • the management apparatus 2 and each PC 1 and each PC 1 are connected via a LAN cable 3 (see FIG. 3A) as a communication line.
  • the communication lines are indicated by arrows in FIG. 1 in order to indicate the position information notification flow in an upstream / downstream relationship.
  • the connection from the management apparatus 2 to the PC 1 # 3 is indicated by an arrow, so that the management apparatus 2 that is the original of the arrow is an upstream apparatus viewed from the PC 1 # 3, PC 1 # 3 is a downstream device viewed from the management device 2.
  • the connection from PC1 # 3 to PC1 # 4 is indicated by an arrow
  • the original PC1 # 3 of the arrow is an upstream device viewed from PC1 # 4
  • the PC1 # 4 at the end of the arrow is PC1 # 4 3 is a downstream device.
  • the arrow is an upstream / downstream relationship focused on notification of position information, and does not mean unidirectional communication (data cannot be transmitted from the downstream device to the upstream device).
  • the management device 2 is an upstream device, and each PC 1 is a downstream device for the management device 2. That is, the cable from the management apparatus 2 to each PC 1 is directly connected via the port for each PC 1. Since the PCs 1 are not directly connected, there is no upstream / downstream relationship between the PCs 1.
  • FIG. 2 is a configuration diagram showing a distributed computer system different from FIG. FIG. 2A shows a configuration when a part of the system is configured in parallel, and FIG. 2B shows a configuration when a VLAN (Virtual LAN) configuration is used.
  • the first stage (management device 2 ⁇ PC1 # 3, 5, 7, 9) has a parallel configuration
  • the second stage (PC1 # 3, 5, 7, 9 ⁇ PC1 # 4). 6, 8, 10) is a serial configuration.
  • the physical line from the management apparatus 2 to each PC 1 (# 3 to # 10) is shared among the PCs, but the logical line using the VLAN-ID is each PC 1 Use separate lines.
  • FIG. 3 is a configuration diagram showing details of each PC of the distributed computer system and a connector for connecting the PC to the network.
  • FIG. 3A is an explanatory diagram showing the relationship between the LAN cable and the connector of each PC, and the serial configuration of FIG. 1A will be described as an example.
  • the upstream / downstream relationship is “management device 2 ⁇ PC1 # 3 (upstream PC) ⁇ PC1 # 4 (downstream PC)” in order from the upstream device.
  • Each device has an upstream connector 35 for connecting the LAN cable 3 toward the upstream device viewed from the device, and a downstream connector 36 for connecting the LAN cable 3 toward the downstream device viewed from the device.
  • the upstream connector 35 may be omitted.
  • FIG. 3B is a configuration diagram showing the hardware configuration of the PC.
  • Each PC 1 is configured as a computer having a CPU (Central Processing Unit) 31, a concentrator circuit 33, a PoE circuit 34, an upstream connector 35, and a downstream connector 36, and these components are connected by a bus 32. It is connected.
  • the PC 1 includes a memory as a storage unit, and a program read on the memory is processed by each processing unit and each processing unit described later in FIG. Configure each target data.
  • the concentrator circuit 33 is a LAN concentrator circuit and is connected to the upstream connector 35 and the downstream connector 36 for the RJ45.
  • Each connector (upstream connector 35, downstream connector 36) is an insertion portion of the LAN cable 3.
  • the LAN cable 3 is configured as four cores (Tx (+), Tx ( ⁇ ), Rx (+), Rx ( ⁇ )) as shown in FIG. 3B, but may be eight cores.
  • the LAN cable 3 transmits Ethernet signal data and supplied power within the same cable.
  • the power supply method is implemented, for example, by PoE defined in the standard specification “IEEE 802.3af”.
  • ADSL Asymmetric Digital Subscriber Line
  • ADSL can transmit a data signal and power for feeding within the same cable, so this ADSL system may be used.
  • the PoE circuit 34 detects power and signal data by performing voltage conversion processing on the signal received from the LAN cable 3 via the concentrator circuit 33.
  • the PoE circuit 34 detects power and signal data using any of the following types defined by PoE.
  • FIG. 4 is a circuit diagram showing a mounting example of the PoE circuit 34.
  • the PoE circuit 34 is mainly realized by a combination of a power receiving unit 34a and a power feeding unit 34b.
  • the power receiving means 34a is also called PD (Powered Device).
  • the power receiving unit 34a communicates with a power receiving circuit that detects a voltage (change) from the LAN cable 3 connected to the upstream connector 35, a voltage conversion circuit for controlling the circuit of the power receiving unit 34a, and a power feeding unit 34b.
  • the power supply means 34b is also called PSE (Power Sourcing Equipment).
  • the power feeding unit 34b communicates with the power feeding circuit that flows to the LAN cable 3 connected to the downstream connector 36, the voltage conversion circuit that controls the power (voltage change) that flows to the LAN cable 3, and the power receiving unit 34a. And a communication circuit. Since these circuits are well known, description thereof is omitted.
  • FIG. 5 is a configuration diagram showing the software configuration and data configuration of the PC.
  • the PC 1 includes a power-on detection unit 11, a temporary IP address generation unit 12, an autoconfiguration instruction request transmission unit 13, an autoconfiguration instruction reception unit 21, an installation position specification unit 22, an actual IP address generation unit 23, a VLAN setting table 28, In addition, a position specifying table (position specifying information) 29 is included.
  • the power-on detector 11 detects the power-on of the PC 1 and activates the temporary IP address generator 12.
  • the temporary IP address generation unit 12 generates a MAC (Media Access Control) address that does not overlap with other terminal devices as a temporary IP address when the power is turned on, and activates the autoconfiguration instruction request transmission unit 13.
  • the temporary IP address generation unit 12 adopts the lower first byte (XX) and the lower second byte (YY) of the MAC address of its own device (for example, 00-00-87-59-YY-XX) as the IP address. 192.168 .. YY. XX is set as a temporary IP address.
  • the temporary IP address generation unit 12 may use a temporary IP address that is arbitrarily assigned, such as DHCP.
  • the autoconfiguration instruction request transmission unit 13 transmits a configuration information setting start request generated by the temporary IP address setting to the management apparatus 2 via the LAN cable 3.
  • the management apparatus 2 When the management apparatus 2 receives a configuration information setting start request from each PC 1 (# 3 to # 10) connected to the distributed computer system, the management apparatus 2 sends an autoconfiguration instruction (configuration information acquisition trigger) to the autoconfiguration instruction receiving unit of each PC1. Reply to 21.
  • an autoconfiguration instruction configuration information acquisition trigger
  • the autoconfiguration instruction receiving unit 21 activates the installation position specifying unit 22.
  • the installation position specifying unit 22 specifies the installation position of the own device (PC1 which is the upstream PC) (specific specification methods 1 to 3 will be described later), and notifies the actual IP address generation unit 23 of the specification result. To do.
  • the real IP address generation unit 23 issues a real IP address reflecting the installation position based on the notified installation position of the own device. Note that the actual IP address reflecting the installation position is, for example, a table in which a correspondence table between the installation position and the real IP address is prepared in advance in the storage unit, and the result of searching from the correspondence table using the installation position as a search key.
  • the real IP address generation unit 23 changes the IP address set in the own device from the temporary IP address set by the temporary IP address generation unit 12 to the real IP address (other than an IP address such as a netmask). Reset the parameters in the same way).
  • FIG. 6 is a flowchart for explaining the operation of the distributed computer system.
  • the operation when the distributed computer system is applied to a railway vehicle system will be described below.
  • the installation position of the PC 1 is expressed by a combination of the car number of the railway vehicle and the door number in the vehicle (position information string “# 1 to # 8” of the position specifying table 29 in Table 1). .
  • the power-on detection unit 11 of the PC 1 detects that the own device has started up by turning on the power to the own device (S11: device power-on detection).
  • the temporary IP address generation unit 12 of the PC 1 sets a temporary IP address as a preparation for communication processing (S13, S14) to be described later (S12: generation of a temporary IP address).
  • the auto configuration instruction request transmission unit 13 of the PC 1 transmits an auto configuration instruction request signal to the management apparatus 2 via the LAN cable 3 (S13: auto configuration instruction request transmission).
  • the management device 2 executes a process of turning off all the flags before receiving the autoconfiguration instruction request (S30: all flags off).
  • S30 all flags off.
  • the management apparatus 2 receives the autoconfiguration instruction request in S13 (S31: reception of autoconfiguration instruction request)
  • the management apparatus 2 turns on the flag of the PC1 corresponding to the request source (S32: flag ON of the corresponding PC1). Since it is only necessary to confirm that the autoconfiguration instruction request has been received from all the PCs 1 to be managed by the management apparatus 2, instead of turning on the flag for each transmission source, the reception count of the autoconfiguration instruction request is set to the PC1. You may add only the number.
  • the management device 2 determines whether or not all the flags are turned on as a result of S32 (S33: are all the flags turned on?). When all the flags are turned on (S33, Yes), a timing signal is generated for all the PCs 1 as a trigger for executing the process of acquiring the installation positions (S34: auto configuration instruction transmission). If there is no response from all the PCs 1, that is, if the number of connected devices is not prepared (S33, No), the system waits for reception of an autoconfiguration instruction request and returns to S31.
  • the management apparatus 2 When the management device 2 transmits an opportunity (automatic configuration instruction transmission) for obtaining the installation position to all the PCs 1, the management apparatus 2 clears information (flags) related to the automatic configuration instruction requests transmitted from the PCs 1 (S35: all). Flag OFF).
  • the auto configuration instruction receiving unit 21 of the PC 1 receives the auto configuration instruction from the management device 2 (S14: auto configuration instruction reception).
  • the installation position specifying unit 22 of the PC 1 performs an acquisition process of the installation position of the own device (S15: acquisition of in-vehicle position information) and specifies a car number (S16: acquisition of a car number).
  • the real IP address generation unit 23 of the PC 1 performs processing for generating a real IP address used for business (S17: Generation of a real IP address). Then, the PC 1 starts up an interface (a communication port of the upstream connector 35 and the downstream connector 36) so that communication can be performed with the management apparatus 2 (S18: startup of the interface). The business using the IP address can be started (S19: business start).
  • the position of the PC 1 is specified by any one of these three methods.
  • Method 1 A method in which the voltage value supplied by the power supply unit 34b of the PoE circuit 34 is set to a different value for each piece of position information, and the position information is transmitted to the device that has received the voltage value by the power receiving unit 34a.
  • Method 2 By changing the number of times of temporarily stopping the power supply by the power supply unit 34b of the PoE circuit 34 (the number of times of stoppage) to different values for each piece of position information, the device that detects the number of stops by the power receiving unit 34a A method for transmitting location information.
  • temporarily stopping power supply refers to a state in which power supply is performed (on state) to a state in which power supply is stopped (off state), and then power supply is performed again. Refers to returning to the ON state.
  • Method 3 A method of storing different values for each piece of position information as data (ether frame value) in an Ethernet frame transmitted via the LAN cable 3, and causing the device that receives the ether frame to read the position information. .
  • each PC1 may be set in advance.
  • Table 1 shows the contents of the position specifying table 29 for each of the three methods.
  • the position specifying table 29 (method 1), which is the top table, uses the supply voltage value [V] output from the PoE circuit 34 as the position specifying data. That is, the position information of the PC 1 is associated with each supply voltage value [V].
  • the rightmost column “PC” indicates the identifier of the PC whose position is specified in the serial configuration of FIG. 1A, and is only shown for explanation. May be.
  • (Method 1) for example, when a voltage of 13 V is supplied, the position information of the PC 1 that has received the voltage is “# 1 (door # 1)”. Or when the voltage of 48V is supplied, the positional information of PC1 which received the voltage is "# 5 (door # 5).” In this manner, by associating different position information for each supply voltage value, the position information can be transmitted by reading the voltage once even when the value range (possible values) of the position information increases.
  • the range of values that can be transmitted as position information is defined by the resolution of the supply voltage value and the dynamic range.
  • the dynamic range is the width between the lowest voltage and the highest voltage.
  • Table 1 shows an example in which power is supplied between the lowest voltage (13 V) and the highest voltage (48 V) with resolution (every 5 V).
  • the supply voltage value [V] output from the PoE circuit 34 is a fixed value (for example, 48 V), but it depends on the power supply means 34b.
  • the number of times that power supply is temporarily stopped is set to a different value for each piece of position information. For example, if the number of stops is one, the position information of the PC 1 that has received the voltage is “# 1 (door # 1)”. Since the number of stops can be any number of times as long as time permits, increasing the number of stops makes it possible to transmit a large range of data as position information.
  • the position specifying table 29 of (Method 3) is a method of directly writing position information values as data in the Ethernet frame. For example, if the ether frame value is “1”, the position information of the PC 1 that has received the frame is “# 1 (door # 1)”.
  • Table 2 is a table showing the position information notification process of method 1 in the serial configuration system of FIG.
  • the “computer” identifies the position of the “computer” that is its own device in accordance with the signal “received from upstream”, and then “send downstream” to the downstream device as viewed from its own device. Indicates that the signal indicated by is transmitted.
  • each PC 1 for example, PC # 3
  • the installation position specifying unit 22 of each PC 1 reads the supply voltage value from the upstream side (for example, the management apparatus 2) via the power receiving means 34a of its own apparatus (for example, 13V)
  • the position specifying table 29 of (method 1) is searched using the supply voltage value as a search key, and the corresponding position information of the own device is acquired (for example, # 1).
  • the position specifying table 29 of (method 1) is searched by using one downstream (next) position information (for example, # 2) as a search key, and the corresponding supply voltage value (For example, 18V), and the obtained supply voltage value is boosted (from 13V to 18V, 5V) from the power supply means 34b of the own device to the downstream device (for example, PC # 4).
  • the position information of one downstream side can be specified by reading data defined in advance in the storage means.
  • Table 3 is a table showing position information notification processing of method 1 in the system having the parallel configuration shown in FIG.
  • the management apparatus 2 since the management apparatus 2 is directly connected to each PC 1 through a port for each PC 1, the location information is notified only once from the management apparatus 2 to each PC 1. (Each PC 1 does not need to transmit downstream).
  • the PC 1 # 3 reads the supply voltage value from the management device 2 (for example, 13V)
  • the PC 1 # 3 searches the position specifying table 29 of (method 1) using the supply voltage value as a search key, and the corresponding own device Is acquired (for example, # 1).
  • Table 4 is a table showing position information notification processing of method 1 in the partially parallel configuration system of FIG.
  • the first transmission is direct transmission via the port for each PC 1 as in the parallel configuration system of Table 3 (PC # 3, # 5, # 9, # 7).
  • the second transmission is a transmission from the upstream PC1 (for example, PC # 3) to the downstream PC1 (for example, PC # 4), as in the serial configuration system of Table 2.
  • Table 5 is a table showing the position information notification process of method 2 in the serial configuration system of FIG. Compared with method 1 in Table 2, the position specifying data is replaced with the number of stops from the supply voltage value.
  • Table 6 is a table showing the position information notification process of method 3 in the serial configuration system of FIG. Compared with method 1 in Table 2, the position specifying data is replaced with the frame value from the supply voltage value.
  • Table 7 is a VLAN setting table used for the position information notification process of method 3 when the serial configuration of FIG. 1A is constructed as a logical network on the VLAN configuration of FIG. 28 is a table showing 28.
  • VLAN is a technology that can arbitrarily divide a network. Using this technology, it is possible to make settings for transmitting data only to an arbitrary computer while limiting the network for transmitting location information.
  • a VLAN setting process performed together with the position information notification process of the method 3 such as Table 6 will be described.
  • Table 7 shows the state, the port in that state, and the setting of communication availability for each port of each device (management device 2, PC1 # 3 to # 10) in the state.
  • communication availability “ ⁇ ” indicates communication permission, “ ⁇ ” indicates communication disapproval, and “-” indicates that setting is not required.
  • the management device 2 is always the most upstream device, and since there is no port receiving from the upstream side for the management device 2, it is always “ ⁇ ”.
  • the port that transmits to the downstream side of PC # 7 which is the most downstream apparatus in the serial configuration is not used, it is always “ ⁇ ”.
  • the VLAN In the state “initial state”, the VLAN is not set, and all communication between the management apparatus 2 and each PC 1 is permitted. Then, the transmission from the “initial state” to the next state “when the frame value“ 1 ”is transmitted” is triggered by transmission of the autoconfiguration instruction from the management apparatus 2 to each PC 1 (S34).
  • the PC 1 that can receive the frame value “1” is directly connected from the management apparatus 2 by disabling communication for the setting to transmit downstream of all PCs # 1. Only PC # 3 that has been used. As a result, the PC # 3 can specify the position # 1 of its own device from the frame value “1”. When the Ethernet frame having the frame value “1” is received, the state transits to the next state “when frame value“ 2 ”is transmitted”.
  • each computer can grasp
  • the cable wiring cost can be reduced by reducing the weight of the cable, and an 8-core Gigabit Ethernet cable is used. When doing so, since all the 8 cores can be used for data transmission, high-speed communication can be realized.
  • the position information can be specified from the read data by reading the data for specifying the position information only once. Therefore, compared with the method of Patent Document 1 in which data for specifying position information is transmitted in multiple times via unused lines, the time required for position specification can be shortened and automatic setting can be performed quickly. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

 PC1の設置位置特定部22は、受電手段34aを介して、上流側コネクタ35に接続されるLANケーブル3から供給用電力の電圧値を測定し、その測定値を供給電圧値の検索キーとして位置特定用テーブル29を検索し、検索された供給電圧値に対応する位置IDを自身の接続位置として特定し、特定した自身の接続位置の次の接続位置を位置IDの検索キーとして位置特定用テーブル29を検索し、検索された位置IDに対応する供給電圧値にて、給電手段34bに対して下流側コネクタ36に接続されるLANケーブル3へ供給用電力を送信させる。

Description

分散型計算機システムに用いられる設定端末
 本発明は、分散型計算機システムに用いられる設定端末に関する。
 表示用端末などの計算機をネットワークに接続すると、その接続先のネットワークを介して計算機の自動設定を行う形態が普及している。例えば、DHCP(Dynamic Host Configuration Protocol)は、割当可能なIP(Internet Protocol)アドレスのリストから未割当のIPアドレスを無作為に抽出して、その抽出したIPアドレスを新たに接続された計算機に対して割り当てる仕組みを提供する。
 なお、計算機の設置位置に応じて、その設置位置に適した設定を行う応用例としては、鉄道情報サービスとして、車両内の表示用端末に映像広告などの情報が流す例が挙げられる。例えば、列車が複数の車両から構成され、途中駅で車両の切り離しを行って、切り離された列車の途中駅からの行き先が別々になるときには、その行き先に応じた店の案内など(仙台行なら、仙台付近の飲食店の案内など)を広告することができると便利である。
 そのためには、IPアドレス、サブネットマスク、ホスト名などの設定を、計算機の設置位置に対応させて設定する必要がある。しかし、DHCPでは、新たに接続された計算機の設置位置に応じて、その設置位置に適した設定を行うことはできない。
 そこで、特許文献1では、表示用端末をネットワークに接続するための8芯(8本)を1つに束ねたLAN(Local Area Network)ケーブルのうち、未使用である4芯のケーブル線を設置位置情報の通知用とすることにより、LANケーブルのデータ送信を妨げることなく、表示用端末に設置位置情報を通知させて、その設置位置に適した設定を実現している。
特開2009-170989号公報
 一般に普及しているLANケーブル(ツイストペア線)は、8芯のうち、データ送信用の4芯と、未使用の4芯との組み合わせとは限らない。
 例えば、スリムケーブルでは、未使用の4芯を削除して、データ送信用の4芯だけとする構成により、ケーブルの太さを細くすることで、配線をしやすくしている。または、ギガビット・イーサネット(登録商標)(1000BASE-T)では、伝送速度1Gbpsを実現するため、8芯のすべてをデータ送信用として用いている。
 これらのLANケーブルでは、未使用の4芯を設置位置情報の通知用とすることができないため、前記の特許文献1の方式を用いた設置位置に応じた計算機の自動設定はできない。
 そこで、本発明は、前記した問題を解決し、未使用線が存在しないLANケーブルを介して接続された計算機に対して、設置位置に応じた計算機の自動設定を実現することを主な目的とする。
 前記課題を解決するため、本発明は、自身の接続位置ごとに異なるネットワーク設定を行う設定端末であって、
 前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、PoE回路と、ネットワークインタフェースとを有しており、
 前記ネットワークインタフェースは、LANケーブルを接続するインタフェースであるコネクタとして、第1コネクタおよび第2コネクタから構成され、
 前記PoE回路は、前記LANケーブル内でイーサネットのデータフレームと供給用電力とを伝達するための回路であり、前記第1コネクタに接続される前記LANケーブルから前記供給用電力を受ける受電手段と、前記第2コネクタに接続される前記LANケーブルへ前記供給用電力を送信する給電手段とから構成され、
 前記位置特定用情報は、前記供給用電力の供給電圧値と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
 前記設置位置特定部は、
 前記受電手段を介して、前記第1コネクタに接続される前記LANケーブルから前記供給用電力の電圧値を測定し、その測定値を前記供給電圧値の検索キーとして前記位置特定用情報を検索し、検索された前記供給電圧値に対応する前記位置IDを自身の接続位置として特定し、
 特定した自身の接続位置の次の接続位置を前記位置IDの検索キーとして前記位置特定用情報を検索し、検索された前記位置IDに対応する前記供給電圧値にて、前記給電手段に対して前記第2コネクタに接続される前記LANケーブルへ前記供給用電力を送信させることを特徴とする
 設定端末。
 その他の手段は、後記する。
 本発明によれば、未使用線が存在しないLANケーブルを介して接続された計算機に対して、設置位置に応じた計算機の自動設定を実現することが可能になった。
本発明の一実施形態に関する分散型計算機システムを示す構成図である。 本発明の一実施形態に関する図1とは別の分散型計算機システムを示す構成図である。 本発明の一実施形態に関する分散型計算機システムの各PCおよびPCをネットワークに接続するコネクタの詳細を示す構成図である。 本発明の一実施形態に関するPoE(Power over Ethernet)回路の実装例を示す回路図である。 本発明の一実施形態に関するPCのソフトウェア構成およびデータ構成を示す構成図である。 本発明の一実施形態に関する分散型計算機システムの動作を説明するフローチャートである。
 以下、本発明の一実施形態を、図面を参照して詳細に説明する。
 図1は、分散型計算機システムを示す構成図である。図1(a)は、複数のPC(Personal Computer)を直列(シリアル)に接続する構成を示し、図1(b)は、複数のPCを並列(パラレル)に接続する構成を示す。
 各PC1(#3~#10、「#」は番号を示す)は、鉄道車両内の各ドア(#1~#8)の近傍に位置するネットワークに接続されている。
 管理装置2と各PC1との間、ならびに、各PC1どうしは、通信回線としてのLANケーブル3(図3(a)参照)を介して接続される。
 なお、図1で通信回線を矢印で示しているのは、位置情報の通知の流れを上流下流関係で示すためである。例えば、図1(a)において、管理装置2からPC1#3への接続を矢印で示していることにより、矢印の元の管理装置2がPC1#3からみた上流装置であり、矢印の先のPC1#3が管理装置2からみた下流装置である。
 同様に、PC1#3からPC1#4への接続を矢印で示していることにより、矢印の元のPC1#3がPC1#4からみた上流装置であり、矢印の先のPC1#4がPC1#3からみた下流装置である。
 一方、矢印は、あくまで位置情報の通知に着目した上流下流関係であり、単方向通信(下流側装置から上流側装置へのデータ送信ができない)という意味ではない。
 また、図1(b)は、管理装置2が上流装置であり、各PC1がそれぞれ管理装置2に対する下流装置である。つまり、管理装置2から各PC1までのケーブルは、PC1ごとのポートを介して直接接続されている。そして、PC1どうしは直接接続されていないため、PC1どうしの上流下流関係は存在しない。
 図2は、図1とは別の分散型計算機システムを示す構成図である。図2(a)は、システムの一部を並列構成にしたときの構成を示し、図2(b)は、VLAN(Virtual LAN)構成にしたときの構成を示す。
 図2(a)では、1段目(管理装置2→PC1#3,5,7,9)は、並列構成であり、2段目(PC1#3,5,7,9→PC1#4,6,8,10)は、直列構成である。
 図2(b)では、管理装置2から各PC1(#3~#10)への物理回線は、各PC間で共有されているものの、VLAN-IDを用いた論理的な回線は、各PC1で別々の回線を使用する。
 図3は、分散型計算機システムの各PCおよびPCをネットワークに接続するコネクタの詳細を示す構成図である。
 図3(a)は、各PCのLANケーブルとコネクタとの関係を示す説明図であり、図1(a)の直列構成を例に説明するものである。
 上流下流関係は、既に説明したように、上流側装置から順に「管理装置2→PC1#3(上流側PC)→PC1#4(下流側PC)」である。
 各装置は、その装置からみた上流側装置に向かうLANケーブル3を接続するための上流側コネクタ35と、その装置からみた下流側装置に向かうLANケーブル3を接続するための下流側コネクタ36とを有している。なお、管理装置2は、常に最上流装置となるので、上流側コネクタ35を省略してもよい。
 図3(b)は、PCのハードウェア構成を示す構成図である。各PC1は、CPU(Central Processing Unit)31と、集線回路33と、PoE回路34と、上流側コネクタ35と、下流側コネクタ36とを有するコンピュータとして構成され、これらの構成要素は、バス32で接続されている。
 なお、図3(b)では図示を省略したが、PC1は、記憶手段としてのメモリを備えており、メモリ上に読み込まれたプログラムが、図5で後記する各処理部および各処理部の処理対象である各データを構成する。
 集線回路33は、LANの集線回路であり、RJ45用の上流側コネクタ35と、下流側コネクタ36と接続される。
 各コネクタ(上流側コネクタ35、下流側コネクタ36)は、LANケーブル3の差し込み部である。このLANケーブル3は、図3(b)で示したように4芯(Tx(+)、Tx(-)、Rx(+)、Rx(-))として構成されるが、8芯でもよい。
 LANケーブル3は、イーサネットの信号データと、給電される電力とを同じケーブル内で伝達する。電力の供給方法は、例えば、標準仕様「IEEE 802.3af」で規定されているPoEで実施する。または、ADSL(Asymmetric Digital Subscriber Line)では、同じケーブル内で、データ信号と給電用電力とを送信することができるので、このADSLの方式でもよい。
 PoE回路34は、LANケーブル3から集線回路33を介して受信した信号について、電圧変換処理を行うことにより、電力および信号データを検出する。なお、PoE回路34は、PoEで規定されている以下のいずれかのタイプを用いて、電力および信号データを検出する。
 (タイプA)信号データと、電力供給とを同じケーブルで受信する。
 (タイプB)信号データと、電力供給とを別々のケーブルで受信する。
 図4は、PoE回路34の実装例を示す回路図である。PoE回路34は、主に、受電手段34aと給電手段34bとの組み合わせにより実現される。
 受電手段34aは、PD(Powered Device)とも呼ばれる。受電手段34aは、上流側コネクタ35に接続されるLANケーブル3からの電圧(の変化)を検出する受電回路と、受電手段34aの回路を制御するための電圧変換回路と、給電手段34bと通信を行う通信回路とを有する。
 給電手段34bは、PSE(Power Sourcing Equipment)とも呼ばれる。給電手段34bは、下流側コネクタ36に接続されるLANケーブル3へ流す給電回路と、LANケーブル3へ流す電力(電圧の変化)を制御するための電圧変換回路と、受電手段34aと通信を行う通信回路とを有する。これらの回路は周知であるので、説明を省略する。
 図5は、PCのソフトウェア構成およびデータ構成を示す構成図である。PC1は、電源投入検知部11、仮IPアドレス生成部12、オートコンフィグ指示要求送信部13、オートコンフィグ指示受信部21、設置位置特定部22、実IPアドレス生成部23、VLAN設定用テーブル28、および、位置特定用テーブル(位置特定用情報)29を有する。
 電源投入検知部11は、PC1の電源投入を検知して仮IPアドレス生成部12を起動する。
 仮IPアドレス生成部12は、電源投入を契機に他の端末装置と重複することの無いMAC(Media Access Control)アドレスを仮のIPアドレスとして生成してオートコンフィグ指示要求送信部13を起動する。例えば、仮IPアドレス生成部12は、自装置のMACアドレス(例えば00-00-87-59-YY-XX)の下1バイト目(XX)および下2バイト目(YY)をIPアドレスに採用し、192.168.YY.XXを仮IPアドレスとして設定する。または、仮IPアドレス生成部12は、DHCPのように任意に割り当てられた仮のIPアドレスを用いてもよい。
 オートコンフィグ指示要求送信部13は、仮IPアドレス設定により生成される構成情報設定開始要求を、LANケーブル3経由で管理装置2に送信する。
 管理装置2は、分散型計算機システムに接続される各PC1(#3~#10)から構成情報設定開始要求を受信すると、オートコンフィグ指示(構成情報取得契機)を各PC1のオートコンフィグ指示受信部21へと返信する。
 オートコンフィグ指示受信部21は、管理装置2からオートコンフィグ指示(構成情報取得契機を示すタイミング信号)を受信すると、設置位置特定部22を起動する。
 設置位置特定部22は、自装置(上流側PCであるPC1)の設置位置を特定し(具体的な特定方式1~3は、後記する)、その特定結果を実IPアドレス生成部23に通知する。
 実IPアドレス生成部23は、通知された自装置の設置位置に基づき、その設置位置が反映された実IPアドレスを発行する。なお、設置位置が反映された実IPアドレスとは、例えば、あらかじめ設置位置と実IPアドレスとの対応表を記憶手段に用意しておき、その対応表から設置位置を検索キーとして検索した結果の、設置位置に対応する実IPアドレスである。
 そして、実IPアドレス生成部23は、仮IPアドレス生成部12が設定した仮のIPアドレスから、実IPアドレスへと自装置に設定されるIPアドレスを変更する(ネットマスクなどのIPアドレス以外のパラメータも同様に再設定する)。
 図6は、分散型計算機システムの動作を説明するフローチャートである。以下、分散型計算機システムを鉄道車両システムへ応用したときの動作を説明する。ここで、PC1の設置位置は、鉄道車両の号車番号と、その車両内のドア番号(表1の位置特定用テーブル29の位置情報列「#1~#8」)との組み合わせで表現される。
 PC1の電源投入検知部11は、自装置への電源投入により自装置が立ち上がったことを検知する(S11:機器電源投入検知)。
 PC1の仮IPアドレス生成部12は、後記する通信処理(S13,S14)の前準備として、仮のIPアドレスを設定する(S12:仮IPアドレスの生成)。
 PC1のオートコンフィグ指示要求送信部13は、オートコンフィグ指示要求信号をLANケーブル3経由で管理装置2宛て送信する(S13:オートコンフィグ指示要求送信)。
 管理装置2は、オートコンフィグ指示要求受信前に、全フラグをOFFする処理を実行する(S30:全フラグOFF)。
 管理装置2は、S13のオートコンフィグ指示要求を受信すると(S31:オートコンフィグ指示要求受信)、その要求元に該当するPC1のフラグをONにする(S32:該当PC1のフラグON)。なお、管理装置2の管理対象である全てのPC1からオートコンフィグ指示要求を受信したことを確認できればよいので、送信元ごとのフラグをONにする代わりに、オートコンフィグ指示要求の受信回数をPC1の台数分だけ加算してもよい。
 ここで、管理装置2は、S32の結果、全てのフラグがONになったか否かを判定する(S33:全フラグがONになったか?)。全フラグがONになった場合(S33,Yes)、全てのPC1に対して、設置位置を取得する処理を実行するための契機となるタイミング信号を生成する(S34:オートコンフィグ指示送信)。もし、全てのPC1から応答がない場合、つまり、接続台数分揃わない場合は(S33,No)、オートコンフィグ指示要求の受信待ちとし、S31へ戻る。
 管理装置2は、全てのPC1に対して設置位置取得のための契機(オートコンフィグ指示送信)を送信すると、各PC1から送信されたオートコンフィグ指示要求に関する情報(フラグ)をクリアする(S35:全フラグOFF)。
 PC1のオートコンフィグ指示受信部21は、管理装置2からオートコンフィグ指示を受信する(S14:オートコンフィグ指示受信)。
 PC1の設置位置特定部22は、自装置の設置位置の取得処理を行う(S15:車両内位置情報の取得)とともに、号車番号を特定する(S16:号車番号の取得)。
 PC1の実IPアドレス生成部23は、業務で使う実IPアドレスの生成処理を行う(S17:実IPアドレスの生成)。
 そして、PC1は、管理装置2との間で通信ができるようにインタフェース(上流側コネクタ35および下流側コネクタ36の通信用ポート)を立ち上げる(S18:インタフェースの立上げ)、このことにより、実IPアドレスを用いた業務を開始することができるようになる(S19:業務開始)。
 以下、図6の位置特定処理(S15)の詳細について、以下の3つの方式を説明する。これらの3つの方式のうちのいずれか1つの方式により、PC1の位置を特定する。
 (方式1)PoE回路34の給電手段34bが供給する電圧値を位置情報ごとに異なった値とすることで、その電圧値を受電手段34aにより受信した装置に位置情報を伝達する方式。
 (方式2)PoE回路34の給電手段34bによる電力供給を一時的に停止する回数(停止回数)を位置情報ごとに異なった値とすることで、その停止回数を受電手段34aにより検知した装置に位置情報を伝達する方式。なお、電力供給を一時的に停止するとは、電力供給が行われている状態(オンの状態)から、電力供給を停止した状態(オフの状態)に遷移し、その後、再度電力供給が行われている状態(オンの状態)に復帰することを指す。
 (方式3)LANケーブル3を介して送信されるイーサネットフレーム内のデータ(イーサフレーム値)として、位置情報ごとに異なった値を格納し、そのイーサフレームを受信する装置に位置情報を読み込ませる方式。
 なお、前記した3つの方式のうちのどの方式を採用するのか、または、採用された方式で使用するパラメータなどの詳細は、オートコンフィグ指示として、管理装置2から各PC1に送信してもよいし(S34→S14)、あらかじめ各PC1に設定しておいてもよい。
Figure JPOXMLDOC01-appb-T000001
 表1は、3つの方式それぞれの位置特定用テーブル29の内容を示す。
 一番上の表である、(方式1)の位置特定用テーブル29では、位置特定用データとして、PoE回路34にて出力する供給電圧値[V]を用いる方式である。つまり、供給電圧値[V]ごとにPC1の位置情報を対応づけている。なお、一番右の列「PC」は、図1(a)の直列構成において位置が特定されたPCの識別子を示すものであり、説明用に掲載しただけなので、位置特定用テーブル29から省略してもよい。
 (方式1)では、例えば、13Vの電圧が供給された場合、その電圧を受信したPC1の位置情報は、「#1(ドア#1)」である。または、48Vの電圧が供給された場合、その電圧を受信したPC1の位置情報は、「#5(ドア#5)」である。このように、供給電圧値ごとに異なる位置情報を対応づけることにより、位置情報の値域(取り得る値)が大きくなっても、1回の電圧読み取りにより、位置情報を伝達することができる。
 なお、位置情報として送信できる値の範囲は、供給電圧値の分解能と、ダイナミックレンジとによって規定される。ダイナミックレンジとは、最低電圧と最高電圧との幅のことである。例えば、最低電圧(18V)と最高電圧(48V)との間を分解能(1Vごと)で給電できる給電手段34bを用いるときには、30通り(=48-18)の位置情報を伝達することができる。また、表1では、最低電圧(13V)と最高電圧(48V)との間を分解能(5Vごと)で給電する一例を示している。
 上から2つめの表である、(方式2)の位置特定用テーブル29では、PoE回路34にて出力する供給電圧値[V]は固定値(例えば48V)とするものの、その給電手段34bによる電力供給を一時的に停止する回数(停止回数)を位置情報ごとに異なった値とする方式である。例えば、停止回数が1回なら、その電圧を受信したPC1の位置情報は、「#1(ドア#1)」である。なお、停止回数は、時間の許す限り何回でも行えるので、停止回数を増やすことにより、位置情報として大きな範囲のデータを送信することができる。
 上から3つめの表である、(方式3)の位置特定用テーブル29では、イーサネットのフレーム内にデータとして位置情報の値を直接書き込む方式である。例えば、イーサフレーム値「1」なら、そのフレームを受信したPC1の位置情報は、「#1(ドア#1)」である。
Figure JPOXMLDOC01-appb-T000002
 表2は、図1(a)の直列構成のシステムにおける、方式1の位置情報の通知処理を示す表である。この表は、「計算機」が、「上流から受信」した信号に従って自装置である「計算機」の位置を特定し、その後に、自装置からみて下流側の装置に対して、「下流へ送信」で示す信号を送信する旨を示す。
 各PC1(例えば、PC#3)の設置位置特定部22は、自装置の受電手段34aを介して上流側(例えば、管理装置2)からの供給電圧値を読み取ると(例えば、13V)、その供給電圧値を検索キーとして(方式1)の位置特定用テーブル29を検索し、対応する自装置の位置情報を取得する(例えば、#1)。
 そして、自装置の位置情報からみて、1つ下流側(次の)の位置情報(例えば、#2)を検索キーとして(方式1)の位置特定用テーブル29を検索して対応する供給電圧値を取得し(例えば、18V)、その取得した供給電圧値を自装置の給電手段34bから下流側の装置(例えば、PC#4)へと昇圧(13V→18Vへ、5V分)してから給電する。
 ここで、自装置の位置情報からみて、1つ下流側の位置情報は、あらかじめ記憶手段にて定義されているデータを読み取ることなどにより、特定可能である。
Figure JPOXMLDOC01-appb-T000003
 表3は、図1(b)の並列構成のシステムにおける、方式1の位置情報の通知処理を示す表である。図1(b)で説明したように、管理装置2から各PC1へは、PC1ごとのポートにより直接接続されているので、位置情報の通知は、管理装置2から各PC1への1回だけで済む(各PC1は下流へ送信する必要はない)。
 例えば、PC1#3は、管理装置2からの供給電圧値を読み取ると(例えば、13V)、その供給電圧値を検索キーとして(方式1)の位置特定用テーブル29を検索し、対応する自装置の位置情報を取得する(例えば、#1)。
Figure JPOXMLDOC01-appb-T000004
 表4は、図2(a)の一部並列構成のシステムにおける、方式1の位置情報の通知処理を示す表である。この表では、1回目の送信が表3の並列構成システムと同じように、PC1ごとのポートを介した直接送信である(PC#3,#5,#9,#7)。2回目の送信が表2の直列構成システムと同じように、上流側のPC1(例えば、PC#3)から下流側のPC1(例えば、PC#4)への送信である。
Figure JPOXMLDOC01-appb-T000005
 表5は、図1(a)の直列構成のシステムにおける、方式2の位置情報の通知処理を示す表である。表2の方式1と比較すると、位置特定用データが、供給電圧値から停止回数へと置き換わっている。
Figure JPOXMLDOC01-appb-T000006
 表6は、図1(a)の直列構成のシステムにおける、方式3の位置情報の通知処理を示す表である。表2の方式1と比較すると、位置特定用データが、供給電圧値からフレーム値へと置き換わっている。
Figure JPOXMLDOC01-appb-T000007
 表7は、図2(b)のVLAN構成上に、論理的なネットワークとして図1(a)の直列構成を構築したときの、方式3の位置情報の通知処理に使用されるVLAN設定用テーブル28を示す表である。VLANは、ネットワークを任意に分割することができる技術である。その技術を使い、位置情報を送信するネットワークを限定しながら任意の計算機だけにデータを送信するための設定が可能である。以下、表6などの方式3の位置情報の通知処理と併せて行われる、VLANの設定処理を示す。
 表7は、状態と、その状態におけるポートと、状態における各装置(管理装置2、PC1#3~#10)のポートごとの通信可否の設定を示す。
 通信可否は、「○」が通信許可を示し、「×」が通信不許可を示し、「-」は設定不要を示す。例えば、管理装置2の上流から受信するポートでは、管理装置2は常に最上流装置であり、管理装置2にとっての上流から受信するポートは存在しないので、常に「-」である。同様に、直列構成における最下流装置であるPC#7の下流へ送信するポートも使用しないので、常に「-」である。
 状態「初期状態」では、VLANの設定をせず、管理装置2および各PC1の通信は全て許可されている。そして、管理装置2から各PC1へのオートコンフィグ指示の送信(S34)を契機に、「初期状態」から次状態「フレーム値「1」送信時」へと遷移する。
 状態「フレーム値「1」送信時」では、全てのPC#1の下流へ送信する設定を通信不許可にすることで、フレーム値「1」を受信可能なPC1を、管理装置2から直接接続されているPC#3だけにする。これにより、PC#3は、フレーム値「1」から自装置の位置#1を特定できる。そして、このフレーム値「1」のイーサフレームを受信したときに、次状態「フレーム値「2」送信時」へと遷移する。
 状態「フレーム値「2」送信時」では、フレーム値「1」を受信したPC#3の下流(PC#4)へ送信する設定を不許可から許可へと変更する。これにより、PC#3から下流側に送信されるフレーム値「2」のイーサフレームは、PC#4だけが受信できる。そして、PC#4がフレーム値「2」を受信して、PC#4の位置を#2として特定した後に、次状態「フレーム値「3」送信時」へと遷移する。以下同様にして、直列構成における最下流装置であるPC#7まで、1つずつ状態を遷移させていく。
 このようにして、1つのPC1だけが位置情報を受けられるようにVLANの通信許可/通信不許可のフィルタリングを設定することにより、送信する位置情報に該当しないPC1への不要なデータを受信を防止する。これにより、各計算機は管理装置から何番目に接続されているかを把握することができ、自装置の位置を特定することができる。
 以上説明した本実施形態では、(方式1,2)では、PoEの供給電力に位置情報を特定するためのデータを含ませ、(方式3)では、イーサフレームのデータ内に位置情報を特定するためのデータを含ませることにより、それらを受信した各PC1は、自装置の位置情報を取得することができる。
 これにより、特許文献1の方式のような未使用線に位置情報を特定するためのデータを流す必要がなくなるため、未使用線が存在しないLANケーブルを介して接続された計算機に対して、設置位置に応じた計算機の自動設定を実現することができる。
 未使用線が存在しないLANケーブル3として、4芯のスリムケーブルを使用するときには、ケーブルの軽量化などにより、ケーブルの配線コストを削減することができるとともに、8芯のギガビットイーサネット用のケーブルを使用するときには、8芯を全てデータ送信用に利用できるので、高速通信を実現することができる。
 さらに、(方式1,3)では、位置情報を特定するためのデータを1回読み取るだけで、その読み取りデータからの位置情報の特定が可能である。よって、未使用線を介して複数回に分けて位置情報を特定するためのデータを送信していた特許文献1の方式に比べ、位置特定に要する時間を短縮化でき、自動設定を迅速に実行できる。
 1   PC(設定端末)
 2   管理装置
 3   LANケーブル
 11  電源投入検知部
 12  仮IPアドレス生成部
 13  オートコンフィグ指示要求送信部
 21  オートコンフィグ指示受信部
 22  設置位置特定部
 23  実IPアドレス生成部
 28  VLAN設定用テーブル
 29  位置特定用テーブル(位置特定用情報)
 31  CPU
 32  バス
 33  集線回路
 34  PoE回路
 34a 受電手段
 34b 給電手段
 35  上流側コネクタ
 36  下流側コネクタ

Claims (6)

  1.  自身の接続位置ごとに異なるネットワークの設定を行う設定端末であって、
     前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、PoE(Power over Ethernet)回路と、ネットワークインタフェースとを有しており、
     前記ネットワークインタフェースは、LANケーブルを接続するインタフェースであるコネクタとして、第1コネクタおよび第2コネクタから構成され、
     前記PoE回路は、前記LANケーブル内でイーサネット(登録商標)のデータフレームと供給用電力とを伝達するための回路であり、前記第1コネクタに接続される前記LANケーブルから前記供給用電力を受ける受電手段と、前記第2コネクタに接続される前記LANケーブルへ前記供給用電力を送信する給電手段とから構成され、
     前記位置特定用情報は、前記供給用電力の供給電圧値と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
     前記設置位置特定部は、
     前記受電手段を介して、前記第1コネクタに接続される前記LANケーブルから前記供給用電力の電圧値を測定し、その測定値を前記供給電圧値の検索キーとして前記位置特定用情報を検索し、検索された前記供給電圧値に対応する前記位置IDを自身の接続位置として特定し、
     特定した自身の接続位置の次の接続位置を前記位置IDの検索キーとして前記位置特定用情報を検索し、検索された前記位置IDに対応する前記供給電圧値にて、前記給電手段に対して前記第2コネクタに接続される前記LANケーブルへ前記供給用電力を送信させることを特徴とする
     設定端末。
  2.  自身の接続位置ごとに異なるネットワークの設定を行う設定端末であって、
     前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、PoE(Power over Ethernet)回路と、ネットワークインタフェースとを有しており、
     前記ネットワークインタフェースは、LANケーブルを接続するインタフェースであるコネクタとして構成され、
     前記PoE回路は、前記LANケーブル内でイーサネット(登録商標)のデータフレームと供給用電力とを伝達するための回路であり、前記コネクタに接続される前記LANケーブルから前記供給用電力を受ける受電手段から構成され、
     前記位置特定用情報は、前記供給用電力の供給電圧値と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
     前記設置位置特定部は、
     前記受電手段を介して、前記コネクタに接続される前記LANケーブルから前記供給用電力の電圧値を測定し、その測定値を前記供給電圧値の検索キーとして前記位置特定用情報を検索し、検索された前記供給電圧値に対応する前記位置IDを自身の接続位置として特定することを特徴とする
     設定端末。
  3.  自身の接続位置ごとに異なるネットワークの設定を行う設定端末であって、
     前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、PoE(Power over Ethernet)回路と、ネットワークインタフェースとを有しており、
     前記ネットワークインタフェースは、LANケーブルを接続するインタフェースであるコネクタとして、第1コネクタおよび第2コネクタから構成され、
     前記PoE回路は、前記LANケーブル内でイーサネット(登録商標)のデータフレームと供給用電力とを伝達するための回路であり、前記第1コネクタに接続される前記LANケーブルから前記供給用電力を受ける受電手段と、前記第2コネクタに接続される前記LANケーブルへ前記供給用電力を送信する給電手段とから構成され、
     前記位置特定用情報は、前記供給用電力の供給を一時的に停止する回数を示す停止回数と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
     前記設置位置特定部は、
     前記受電手段を介して、前記第1コネクタに接続される前記LANケーブルから前記供給用電力の前記停止回数を測定し、その停止回数を前記供給電圧値の検索キーとして前記位置特定用情報を検索し、検索された前記停止回数に対応する前記位置IDを自身の接続位置として特定し、
     特定した自身の接続位置の次の接続位置を前記位置IDの検索キーとして前記位置特定用情報を検索し、検索された前記位置IDに対応する前記停止回数を取得し、前記給電手段に対して前記第2コネクタに接続される前記LANケーブルへ前記供給用電力を送信させるとともに前記停止回数分だけ前記供給用電力の送信を一時停止することを特徴とする
     設定端末。
  4.  自身の接続位置ごとに異なるネットワークの設定を行う設定端末であって、
     前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、PoE(Power over Ethernet)回路と、ネットワークインタフェースとを有しており、
     前記ネットワークインタフェースは、LANケーブルを接続するインタフェースであるコネクタとして構成され、
     前記PoE回路は、前記LANケーブル内でイーサネット(登録商標)のデータフレームと供給用電力とを伝達するための回路であり、前記コネクタに接続される前記LANケーブルから前記供給用電力を受ける受電手段から構成され、
     前記位置特定用情報は、前記供給用電力の供給を一時的に停止する回数を示す停止回数と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
     前記設置位置特定部は、
     前記受電手段を介して、前記第1コネクタに接続される前記LANケーブルから前記供給用電力の前記停止回数を測定し、その停止回数を前記供給電圧値の検索キーとして前記位置特定用情報を検索し、検索された前記停止回数に対応する前記位置IDを自身の接続位置として特定することを特徴とする
     設定端末。
  5.  自身の接続位置ごとに異なるネットワークの設定を行う設定端末であって、
     前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、ネットワークインタフェースとを有しており、
     前記ネットワークインタフェースは、イーサネット(登録商標)のデータフレームを伝達するLANケーブルを接続するインタフェースであるコネクタとして、第1コネクタおよび第2コネクタから構成され、
     前記位置特定用情報は、前記データフレーム内のデータフレーム値と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
     前記設置位置特定部は、
     前記受電手段を介して、前記第1コネクタに接続される前記LANケーブルから受信した前記データフレーム内のデータフレーム値を読み取り、そのデータフレーム値を検索キーとして前記位置特定用情報を検索し、検索された前記データフレーム値に対応する前記位置IDを自身の接続位置として特定し、
     前記第2コネクタに接続される前記LANケーブルの接続先の設定端末に対して、データフレームの受信を許可した後に、前記特定した自身の接続位置の次の接続位置を前記位置IDの検索キーとして前記位置特定用情報を検索し、検索された前記位置IDに対応する前記データフレーム値を含めたデータフレームを、前記第2コネクタに接続される前記LANケーブルへ送信することを特徴とする
     設定端末。
  6.  自身の接続位置ごとに異なるネットワークの設定を行う設定端末であって、
     前記設定端末は、設置位置特定部と、位置特定用情報の記憶部と、ネットワークインタフェースとを有しており、
     前記ネットワークインタフェースは、イーサネット(登録商標)のデータフレームを伝達するLANケーブルを接続するインタフェースであるコネクタから構成され、
     前記位置特定用情報は、前記データフレーム内のデータフレーム値と、自身の接続位置を特定するための位置IDとの対応データを格納しており、
     前記設置位置特定部は、
     前記受電手段を介して、前記コネクタに接続される前記LANケーブルから受信した前記データフレーム内のデータフレーム値を読み取り、そのデータフレーム値を検索キーとして前記位置特定用情報を検索し、検索された前記データフレーム値に対応する前記位置IDを自身の接続位置として特定することを特徴とする
     設定端末。
PCT/JP2010/073101 2010-12-22 2010-12-22 分散型計算機システムに用いられる設定端末 WO2012086024A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/073101 WO2012086024A1 (ja) 2010-12-22 2010-12-22 分散型計算機システムに用いられる設定端末
JP2012549523A JP5519807B2 (ja) 2010-12-22 2010-12-22 分散型計算機システムに用いられる設定端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073101 WO2012086024A1 (ja) 2010-12-22 2010-12-22 分散型計算機システムに用いられる設定端末

Publications (1)

Publication Number Publication Date
WO2012086024A1 true WO2012086024A1 (ja) 2012-06-28

Family

ID=46313328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073101 WO2012086024A1 (ja) 2010-12-22 2010-12-22 分散型計算機システムに用いられる設定端末

Country Status (2)

Country Link
JP (1) JP5519807B2 (ja)
WO (1) WO2012086024A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207121A (ja) * 2014-04-18 2015-11-19 コイト電工株式会社 画像表示装置
JP2015207115A (ja) * 2014-04-18 2015-11-19 コイト電工株式会社 画像表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203709A (ja) * 2000-01-20 2001-07-27 Oki Electric Ind Co Ltd 信号多重化方法、信号多重化装置及び信号多重化伝送装置
JP2005033695A (ja) * 2003-07-11 2005-02-03 Japan Radio Co Ltd 情報伝送システム
JP2010198511A (ja) * 2009-02-26 2010-09-09 Mitsubishi Materials Corp データ収集システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565200B2 (ja) * 2001-11-08 2004-09-15 株式会社デンソー 車両用障害物検知装置
JP2006109164A (ja) * 2004-10-06 2006-04-20 Asmo Co Ltd アクチュエータ制御システム及びアドレス設定方法
JP2006165957A (ja) * 2004-12-07 2006-06-22 Victor Co Of Japan Ltd シリアル通信システム及びアドレス設定方法
JP2010074572A (ja) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp 設備機器のアドレス自動設定方法、この方法を適用した設備システム、設備機器、パワーコンバータのアドレス自動設定方法及びこの方法を適用した太陽光発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203709A (ja) * 2000-01-20 2001-07-27 Oki Electric Ind Co Ltd 信号多重化方法、信号多重化装置及び信号多重化伝送装置
JP2005033695A (ja) * 2003-07-11 2005-02-03 Japan Radio Co Ltd 情報伝送システム
JP2010198511A (ja) * 2009-02-26 2010-09-09 Mitsubishi Materials Corp データ収集システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE 802.3AF-2003, 18 June 2003 (2003-06-18), pages 30 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207121A (ja) * 2014-04-18 2015-11-19 コイト電工株式会社 画像表示装置
JP2015207115A (ja) * 2014-04-18 2015-11-19 コイト電工株式会社 画像表示装置

Also Published As

Publication number Publication date
JPWO2012086024A1 (ja) 2014-05-22
JP5519807B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
JP3876732B2 (ja) ゲートウェイ装置、ゲートウェイ装置のアドレス管理方法及びゲートウェイ機能を有するav機器
EP2947907B1 (en) Startup configuration method in base station, base station and server
CN111490923B (zh) 基于bras系统的报文封装方法、装置及系统
US6944706B2 (en) System and method for efficiently processing broadband network traffic
US20030154285A1 (en) Method and system for assigning network addreses
CN102025792A (zh) 路由器及其ip地址设置方法
US11232922B2 (en) Power supply circuit, relay device and power over ethernet system
CN101427523A (zh) 一种业务绑定的方法和设备
US7983205B1 (en) Outgoing interface mapping for multicast traffic
CN103327137A (zh) 一种路由器域名访问方法
CN103262502B (zh) 多核平台的dns代理服务
JP5519807B2 (ja) 分散型計算機システムに用いられる設定端末
CN101188628A (zh) 发放业务信息的方法和系统、网络及业务信息发放设备
CN109728926B (zh) 通信方法以及网络设备
CN107547341B (zh) 虚拟扩展局域网vxlan的接入方法及装置
CN101087251A (zh) 一种报文转发的方法、系统和通信设备
US20100091790A1 (en) Patch identification beacon
JP2003179615A (ja) データ処理端末のネットワーク接続を提供する装置及び方法
Cisco Administering the Switch
Cisco Administering the Switch
JP6052876B2 (ja) 中継装置、その制御方法、及びその制御プログラム
CN104363310B (zh) 一种用于配置设备ip的方法
US12058104B2 (en) Remote controller source address verification and retention for access devices
US11218523B2 (en) Method of providing information to an audio/video receiver device and corresponding apparatus
JP2010206483A (ja) ネットワークシステム及び仮想ネットワークインターフェースの自動作成及び設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861159

Country of ref document: EP

Kind code of ref document: A1